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Abstract. Modern e-voting systems provide what is called verifiability, i.e., voters are able to check
that their votes have actually been counted despite potentially malicious servers and voting authorities.
Some of these systems, called tally-hiding systems, provide increased privacy by revealing only the actual
election result, e.g., the winner of the election, but no further information that is supposed to be kept
secret. However, due to these very strong privacy guarantees, supporting complex voting methods at a
real-world scale has proven to be very challenging for tally-hiding systems.
A widespread class of elections, and at the same time, one of the most involved ones is parliamentary
election with party-based seat-allocation. These elections are performed for millions of voters, dozens
of parties, and hundreds of individual candidates competing for seats; they also use very sophisticated
multi-step algorithms to compute the final assignment of seats to candidates based on, e.g., party lists,
hundreds of electoral constituencies, possibly additional votes for individual candidates, overhang seats,
and special exceptions for minorities. So far, it has not been investigated whether and in how far such
elections can be performed in a verifiable tally-hiding manner.
In this work, we design and implement the first verifiable (fully) tally-hiding e-voting system for an
election from this class, namely, for the German parliament (Bundestag). As part of this effort, we pro-
pose several new tally-hiding building blocks that are of independent interest. We perform benchmarks
based on actual election data, which show, perhaps surprisingly, that our proposed system is practical
even at a real-world scale. Our work thus serves as a foundational feasibility study for this class of
elections.

1 Introduction

E-voting is of rising interest. In order to ensure secure and correct elections, modern e-voting systems are
designed to be (end-to-end) verifiable [1, 3, 4, 7–9, 18–20, 22, 26], that is, voters should be able to check
that their votes/ballots were submitted correctly, and voters, election officials, and even external observers
should be able to check that the election result corresponds to the votes that were cast. A stronger notion of
verifiability is accountability, which states that, if the result turns out to be incorrect, then a misbehaving
party causing this mistake can be identified and be held accountable. A very common method for election
systems to achieve verifiability is by publishing the full tally, which consists of all (potentially aggregated)
individual votes, along with additional evidence, such as zero-knowledge proofs (ZKPs), which proves that
the tally was computed correctly. With the knowledge of the full tally, everyone is able to compute the actual
election result, e.g., the winner of the election, and check whether this corresponds to the claimed election
result.

More recently, verifiable tally-hiding e-voting systems (e.g. [5,6,10,14,16,17,21,25,29]), have been proposed
that defer from revealing the full tally. They are rather designed to only publish the actual election result,
e.g., the winning candidate(s) of an election, and as little further information as possible (ideally none),
while the correctness of the election result can still be verified. Following the terminology of [17], tally-hiding
systems can be divided into three classes: Fully tally-hiding systems (e.g., [6, 10, 16, 21]) are the strongest
ones as they reveal only the election result. Publicly or partially tally-hiding systems (see, e.g., [17, 25])
are more relaxed in that they reveal some information beyond the election result, possibly only to certain
parties. As discussed for example in [10,16,17,21], tally-hiding systems offer several attractive features such



as improved ballot privacy for voters, avoiding embarrassment or weakening of candidates, protection against
a specific class of coercion attacks called Italian attacks [5, 15], and preventing Gerrymandering. So far, it
has been shown that simple election schemes can be performed at a large scale, even in a fully tally-hiding
manner. However, due to the strong privacy requirements, more complex voting methods have proven to be
a challenge for all types of tally-hiding systems, with some types of elections even turning out to be practical
only for very few candidates and/or voters (cf. Section 6).

A very important class of elections in practice is parliamentary election with party-based seat allocation
as carried out by many countries around the world. These are among the most complex types of elections:
They usually involve millions of voters, dozens of parties, hundreds of individual candidates, and hundreds of
electoral constituencies. In some cases, voters have not just one but multiple votes that they can distribute
among parties and possibly also individual candidates. Sophisticated multi-step algorithms are used to com-
pute the election result, i.e., the assignment of seats to individual candidates. An important component for
this process is a so-called seat allocation method, which takes as input a number of available seats and a set of
parties with their total number of votes and then computes the number of seats assigned to each party. While
a crucial part this seat allocation method is only a small step in the computation of the actual election result.
Additional steps are taken, e.g., to combine the results of different constituencies to distribute seats that are
directly allocated to individual candidates instead of just parties, to take into account minimum vote counts
for parties before they are assigned any seats, and to include special exceptions for minorities. Furthermore,
the seats assigned to each party need to be mapped to individual candidates, typically according to party
candidate lists for each constituency and weighted by how many votes a party has obtained in the respective
constituency. In some cases, even the size of the parliament is modified while computing the election result,
possibly only after the seat allocation method has already been computed to more closely reflect the vote
distribution.

Perhaps due to this intimidating complexity, so far, it has not been investigated whether and in how far
this class of elections can be performed in a tally-hiding manner, and whether this is possible even at the
same scale in terms of voters, parties, candidates, and constituencies as needed in real-world elections. There
are only a few existing works that propose tally-hiding algorithms for computing certain seat allocation
methods, namely, the d’Hondt method [10] and the Hare-Niemeyer method [16]. As explained above, while
seat allocation methods are important components, they constitute just a small portion of the entire election
scheme, and hence, these prior works do not answer the above question. In this work, we therefore, for the
first time, investigate this open research question.

Contributions. More specifically, we design, implement, and benchmark the first verifiable (and even
accountable) fully tally-hiding e-voting system for a major real-world party-based parliamentary election,
namely, the election of the German parliament (Bundestag). Perhaps surprisingly, and as our main insight,
with this system, we are able to show that such a parliamentary election scheme with party-based seat
allocation can actually be performed in a verifiable, fully tally-hiding manner at a real-world scale. Our
system supports the strongest level of tally-hiding, namely full tally-hiding. That is, if desired, one can
reveal only the allocation of individual candidates to seats and the number of voters who cast a vote and
nothing else to anybody. But one can also easily relax the kind of information that is revealed, e.g., by
additionally publishing the winners of individual constituencies.

On a technical level, to obtain our voting system, we follow and slightly modify a generic approach for
constructing verifiable fully tally-hiding systems, namely the Ordinos framework [21]. The Ordinos frame-
work provides a general blueprint for the structure of such systems. Some components in this blueprint
are unspecified and have to be filled in by protocol designers on a case-by-case basis to obtain a concrete
instantiation of Ordinos that can perform an election for a specific voting method. It has been shown in [21]
that, as long as those components meet specific requirements, the overall system/instantiation is a secure
verifiable, fully tally-hiding e-voting system. The main challenge lies in constructing those components for
a specific voting method in such a way that they provide all expected security properties while achieving
practical performance.

The most important and also most difficult to design component is a publicly verifiable secure multi-
party computation (MPC) protocol that computes the election result for the German parliament from the

2



set of (encrypted) ballots. Due to the inherent complexity and scale of this election, this requires special
care to obtain not just a theoretically secure but also a practically efficient system. Specifically, we first
propose several MPC building blocks, including the first MPC subroutine for computing the Sainte-Laguë
seat allocation method used for parliamentary elections, not just in Germany but also in, e.g., Indonesia, New
Zealand, Nepal, Sweden, Norway, and Kosovo. Based on these building blocks, we then construct an efficient
MPC protocol that performs the entire election evaluation for the German parliament. Along the way, we
evaluate different options for designing our algorithms and propose several novel optimizations to improve
the overall efficiency. We note that many of our ideas and building blocks, such as our MPC protocol for the
Sainte-Laguë method, are of interest also for other parliamentary election schemes since such elections often
use similar concepts and components.

The overall practicality of e-voting systems following the Ordinos approach is determined essentially
only by the performance of the MPC component. Hence, to evaluate the performance and identify potential
limitations of our system, we have implemented our full MPC protocol for electing the German parliament
and performed extensive benchmarks based on actual real-world election data consisting of the votes of all
respective constituencies. Our solution needs about a day to compute the election result, which is within the
usual time frame expected for this election, thus demonstrating that our MPC protocol is practical even for
such a complex large-scale political election.

Altogether, our results serve as a foundational feasibility study for (fully) tally-hiding elections for the
important class of parliamentary elections with party-based seat allocation. Of course, as can be seen in
countries already using or aiming at online elections, establishing and actually deploying a full-fledged ready-
to-use system in the real world requires a huge effort beyond studying feasibility. Future deployments can
build on our results by considering further aspects of parliamentary elections that are out of scope of this
work, such as deciding which parties run the election in a distributed fashion, tackling the risk of voter
coercion, establishing procedures for handling voter complaints, etc.
Structure. We recall the Ordinos framework in Section 2. In Section 3, we present novel building blocks that
we have constructed to realize the voting methods in this work. In Section 4, we present the Sainte-Laguë
method, including a novel variant to compute the Sainte-Laguë seat allocation and different tally-hiding
algorithms to compute the Sainte-Laguë method. We present our voting system for the German Bundestag
in Section 5. We discuss related work and conclude in Section 6. Our implementation is available at [28].

2 Preliminaries

Notation. We write [n] to denote the set {0, . . . , n−1}. Let ncand be the number of candidates/parties/choices,
and let nvotes be the (maximal) number of votes. We will use nseats to denote the number of seats that are
being distributed among nparties parties. With nj

votes we denote the number of votes, and with nj
seats the num-

ber of seats that party j has received. The format of a plain, i.e., unencrypted, ballot is defined via a finite
choice space C ⊆ Nncand , i.e., a ballot assigns each candidate a number subject to constraints defined by C.
For example, a single vote election where a plain ballot contains one vote for a single candidate/party/choice
can be modeled via the choice space Csingle := {(b0, . . . , bncand−1) ∈ {0,1}ncand |

∑
i bi = 1}. For voter j we

denote her plain ballot by vj := (vji )i∈[ncand] ∈ C.

The Ordinos Framework. The Ordinos framework was introduced in [21] as a general blueprint for
constructing verifiable, fully tally-hiding e-voting systems. Systems following the Ordinos approach use a
voting authority, an arbitrary number of voters, nt trustees, an authentication server, and an append-only
bulletin board (B) and roughly work as follows. In an initial setup phase, parameters of the election are
generated and published on B, including a public key and corresponding secret key shares for an additively
homomorphic t-out-of-nt threshold public key encryption scheme E = (E,D). Each trustee has one secret
key share and publishes a non-interactive zero-knowledge proof of knowledge (NIZKP) πKeyShareGen to prove
knowledge of their key share. The choice space C and the result function fres of the election are published
on B as well, where fres takes as input a tally and outputs the corresponding election result, e.g., the
candidate with the most votes. In the following voting phase, the voters first encrypt their ballots and then
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publish them on B, authenticating themselves as eligible voters with the help of the authentication server
and the authentication server adds a signature to the ballot. An encrypted ballot of voter j has the form
(Epk(v

j
i ))i∈[ncand], i.e., each component of the plain ballot is encrypted separately. The encrypted ballot comes

with a NIZKP πEnc that proves validity of the plain ballot, i.e., vj = (vji )i∈[ncand] ∈ C. The published encrypted
ballots can be homomorphically (and publicly) aggregated to obtain an encryption of the aggregated full tally,
i.e., one obtains one ciphertext on each vi :=

∑
j∈[nvotes]

vji , where vi is the total number of votes/points that
candidate/choice i obtained in the election. In the tallying phase, the trustees run a publicly verifiable MPC
protocol PMPC to compute fres. This protocol takes as (secret) inputs the secret key shares of the trustees
and the (public) encrypted aggregated tally and outputs the election result res = fres(v0, . . . , vncand−1). This
result, along with any material that is needed to allow external parties to verify the MPC computation, is
published by the trustees on B. Finally, in the verification phase, voters can check that their ballots appear
on B, and everyone can verify that the election result res was computed correctly from the encrypted ballots
by re-computing the homomorphic aggregation, checking all NIZKPs, and checking the MPC computation
(which typically involves additional NIZKP verifications).

Many of the above components are not fixed by the Ordinos framework because they strongly depend on
the specific election method that is to be implemented. Specifically, the following parameters and components
have to be specified or constructed by a protocol designer to create an instantiation of Ordinos for a concrete
election method: (i) the choice space C and election result function fres, (ii) a threshold encryption scheme
E , (iii) NIZKPs πKeyShareGen and πEnc, (iv) a EUF-CMA-secure signature scheme S, and (v) an MPC protocol
PMPC for computing the election result function fres.

Voting systems following the Ordinos approach are intended to provide verifiability and full tally-hiding.
As already mentioned, verifiability intuitively means that everyone can check whether the election result
returned by the voting system corresponds to the actual votes. Full tally-hiding intuitively means that no
one, including attackers, learns anything besides the number of submitted ballots and the final election
result; this property, therefore, also implies the security notion of ballot privacy. We refer interested readers
to [21] for formal definitions of both verifiability and full tally-hiding. Küsters et al. [21] have shown that
if the above components defined by protocol designers meet certain properties, then the resulting Ordinos
instance, indeed achieves both security notions:

Theorem 1 (Verifiability and Full Tally Hiding [21], informal). Let E be an additively homomorphic
threshold public-key encryption scheme E, πKeyShareGen and πEnc be secure NIZKPs for E, S be an EUF-CMA-
secure signature scheme, and PMPC be a publicly verifiable secure MPC protocol for computing fres, i.e., if
the result does not correspond to the input, then this can be detected, and at least one misbehaving trustee can
be identified; this must hold even if all trustees running the MPC protocol are malicious. Then, the resulting
instance of Ordinos is verifiable and fully tally-hiding.1

Existing building blocks. In this work, we will use a threshold variant of the Paillier encryption scheme [11]
to implement E . Given a public key pk for this encryption scheme, there exist publicly verifiable MPC building
blocks [11,16,24] that allow the owners of the corresponding secret key shares to compute the following basic
operations for a,b,c ∈ Zn (all operations are modn where n is determined by pk):

– Epk(c) = fadd(Epk(a), Epk(b)) s.t. c = a+ b; for brevity, we denote this operation by ⊕.
– Epk(c) = fmul(Epk(a), Epk(b)) s.t. c = a · b, for brevity, we denote this operation by ⊙.
– Epk(c) = fgt(Epk(a), Epk(b)) s.t. c = 1 iff a ≥ b and 0 otherwise.
– Epk(c) = feq(Epk(a), Epk(b)) s.t. c = 1 iff a = b and 0 otherwise.
– (Epk(si))

n
i=1 = fmax((Epk(vi))

n
i=1) s.t. si ∈ {0,1} and si = 1 means that vi = maxj∈{1,...,n} vj ∧ ∀j ∈

{i+ 1, . . . ,n} : vj < vi.
– c = fdec(Epk(c)) s.t. Epk(c) is an encryption of c.

1 Full tally-hiding requires that at most t−1 trustees are malicious, verifiability does not require any honest trustees
at all. This theorem uses further standard e-voting assumptions, such as honesty of B. We refer interested readers
to [21] for full details.
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The MPC building blocks for computing the above operations have a useful property, namely, encrypted
outputs from one building block can be used as inputs for another building block such that the resulting
combined protocol is still a secure, publicly verifiable MPC protocol [24]. In other words, they allow for
building more complex protocols such as PMPC for Ordinos that meet the requirements of Theorem 1. We
further note that the MPC building blocks for computing fgt() and feq() proposed by [24] offer sublinear
runtime as long as an upper bound < n for both input values a and b is known; hence, performance drastically
increases as long as a,b are known to remain small. This, in turn, also improves performance of MPC protocols
based on these two building blocks, including the MPC building block for computing fmax() [16].

3 New MPC Building Blocks

In this section, based on the primitives introduced in Section 2, we describe several new publicly verifiable
MPC building blocks that we need for constructing our PMPC. We note that these building blocks are of
independent interest.

Election methods for parliamentary elections often make use of divisions that produce fractions, which
is an issue for encryption schemes and MPC protocols which operate on natural numbers, such as those
from Section 2. One common approach [10,16] to deal with this is to multiply all values by the least common
multiple of all divisors used in a computation such that divisions are guaranteed to always produce natural
numbers. This can drastically increase the size of numbers, which in turn severely reduces the efficiency gain
of the sublinear comparisons protocols fgt(), feq() from Section 2. Therefore, we instead take an alternative
approach to deal with fractions by representing our values, where needed, as rational numbers consisting of a
numerator n and denominator d. Encrypted rational numbers are denoted as Efrac

pk (a) := (Epk(a.n), Epk(a.d))
where a.n is the numerator and a.d the denominator of a. We denote by Fraction(n, d) the operation that
creates an encrypted rational number with numerator n and denominator d (if the inputs n and/or d
are not already encrypted, then they are first encrypted with public constant randomness). Based on this
representation, we design and implement MPC components for basic arithmetic computations on encrypted
rational numbers, including addition, multiplication, and comparisons.

Based on fmax() (see Section 2), we propose the method getMaxFraction that takes a list of k encrypted
fractions and returns another list of the same length with Epk(1) at the index of the maximal fraction and
Epk(0) everywhere else, where if there are multiple maxima, only the last one in the list is marked Epk(1).

Election methods often need to deal with breaking ties. For this purpose, Cortier et al. [10] proposed an
algorithm that finds the maximum in a list and additionally takes care of tie-breaking by scaling values and
adding small tie-breaking values. While this scaling idea is conceptually simple, care must be taken to obtain
a correct implementation. For example, in the method proposed by Cortier et al., for each party j a score
is computed as mj = 2⌈lognparties+1⌉ · sj + r(j) and then the values mj are compared. Here, r(j) ∈ [nparties]
denotes a tie-breaking value (or rank) uniquely assigned to party j and the values sj are the values that
one would compare without tie-breaking (i.e., if si > sj then party i should always win this comparison).
However, if the values sj are allowed to be fractions, that can be very close to each other (which can occur
in our setting), one can easily construct examples where this tie-breaking approach fails, i.e., si > sj but
mi < mj . The explanation for this is that in this situation ranks are taken into account although the values
si and sj are different and hence no tie-breaking would be required. These cases can occur in our application
described in Section 4. For this reason, we present a new algorithm for breaking ties that does not run into
this issue. This algorithm additionally takes encrypted ranks r = (Epk(ri))

k
i=1 as input, where the (r1, . . . ,rk)

form a permutation of 0, . . . ,k − 1, and first scales all ciphertexts qi by a certain value, adds the encrypted
ranking ri to the scaled qi, and then continues just as getMaxFraction. By the scaling the addition of ri
does not change the output if the qi are not tied. But, if any of the inputs qi are equal, then the party with
the highest rank ri will have the greater (encrypted) value after the addition.

We first show that breaking ties similarly to the method proposed in [10] works when only comparing
values in N.
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procedure getMaxFractionByRank(l = (Efrac
pk (vi))

k
i=1, k, r = (Epk(ri))

k
i=1)

Efrac
pk (c_max_val) = Efrac

pk (v1)
Epk(c_max_idx) = Epk(1)
Epk(c_max_r) = Epk(r1)
for i = 2, . . . , k do

Epk(mmax) = Efrac
pk (c_max_val)⊙ Epk(c_max_val.d)⊙ Epk(vi.d)⊙ k ⊕ Epk(c_max_r)

Epk(mi) = Efrac
pk (vi)⊙ Epk(vi.d)⊙ Epk(c_max_val.d)⊙ k ⊕ Epk(ri)

Epk(set) = fgt(Epk(mi), Epk(mmax))
Epk(c_max_val) = Epk(set)⊙ Epk(vi)⊕ (1− Epk(set))⊙ Epk(c_max_val)
Epk(c_max_idx) = Epk(set)⊙ Epk(i)⊕ (1− Epk(set))⊙ Epk(c_max_idx)
Epk(c_max_r) = Epk(set)⊙ Epk(ri)⊕ (1− Epk(set))⊙ Epk(c_max_r)

result = (feq(Epk(i), Epk(c_max_idx)))ki=1

return result

Fig. 1: Algorithm to find a maximum in a list of fractions, including tie breaking by rank.

Lemma 1 (Tie Breaking with Natural Numbers). If nparties parties are given and each party has a
value ei ∈ N and a unique rank ri ∈ [nparties], then the modified elements mi = ei · nparties + ri preserve the
order between unequal elements but create a unique ordering between equal elements according to their ranks.

Proof. First, it is shown that the order is preserved for different values of ei and ej . Without loss of generality,
let ei < ej . Then for the modified elements it holds that mi < mj :

mi = ei · nparties + ri ≤ ei · nparties + nparties − 1 =

(
ei +

nparties − 1

nparties

)
· nparties

< (ei + 1) · nparties ≤ ej · nparties ≤ ej · nparties + rj = mj

Next, we show that a unique ordering according to the ranks is realized if ei and ej are equal. Without loss
of generality, let ri > rj . Then the party with the higher rank gets a larger modified element mi.

mi = ei · nparties + ri = ej · nparties + ri > ej · nparties + rj = mj

⊓⊔

Now, we apply this to breaking ties even when considering arbitrary fractions to obtain the tie-breaking
method that underlies the algorithm presented in Figure 1.

Theorem 2 (Pairwise Tie-Breaking between Fractions). For nparties parties, where each party is
assigned a fraction fi =

ai

bi
(ai, bi ∈ N) and a unique rank ri ∈ [nparties], tie-breaking between two fractions

fi and fj using the modified elements mij = fi · bi · bj · nparties + ri works.

Proof. Let eij = fi · bi · bj , eij = fj · bj · bi ∈ N. Then, eij and eji have the same ordering as fi and fj , i.e.,
eij < eji if and only if fi < fj and eij = eji if and only if fj = fi. According to the previous theorem, the
modified elements mij = eij · nparties + ri and mji = eji · nparties + ri preserve the order between unequal
elements but create a unique order between equal elements according to the ranks. Since this is valid between
every two fractions and the same ranks are used for each pairwise comparison, the statement also holds for
the global order. ⊓⊔

Finally, in Figure 2 we introduce a new MPC algorithm for computing the floor division Epk(
⌊
a
b

⌋
) from

two encrypted natural numbers Epk(a), Epk(b) and a publicly known upper bound u ≥
⌊
a
b

⌋
of the result.

Compared to the floor division MPC algorithm presented in [16], we require u but can be much more efficient
by performing a binary search instead of iterating over a full set of values.
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procedure FloorDivision(Epk(a), Epk(b), u)
length = bitLength(u)
Epk(lower) = Epk(0)
for i = 1, . . . , length do

Epk(j) = Epk(lower)⊕ Epk(2
length−i)

Epk(gt) = fgt(Epk(a), Epk(j)⊙ Epk(b))
Epk(lower) = Epk(lower)⊕ (2length−i ⊙ Epk(gt))

return Epk(lower)

Fig. 2: Floor Division to calculate Epk(
⌊
a
b

⌋
) where u is a known upper bound.

4 MPC Protocol for the Sainte-Laguë Method

The Sainte-Laguë method (also called Webster method) is a seat allocation method, i.e., a procedure that
describes how a given number of seats is allocated to a set of parties depending on the number of votes
each party has received. The Sainte-Laguë method is used by parliamentary elections in many countries, for
example, Indonesia, New Zealand, Nepal, Sweden, Norway, Germany, and Kosovo. As part of computing the
election result, these elections run the Sainte-Laguë method multiple times on different inputs. For example,
the official evaluation of the final seat distribution of the German Bundestag of the election in 2021 required
running the Sainte-Laguë method 23 times (in addition to several other steps, as explained in Section 1).
Hence, in order to obtain an efficient tally-hiding voting system for these elections, it is crucial to design a
heavily optimized MPC component for computing the Sainte-Laguë method. In this section, we first give both
a general overview of the Sainte-Laguë method and then present our efficient tally-hiding MPC algorithm,
including several optimizations and variations.

4.1 Computing a Sainte-Laguë Distribution

There are essentially two distinct (but provably equivalent [23]) algorithms for computing the seat allocation
following the Sainte-Laguë method, one based on highest quotients and one on finding suitable denominators.
Both algorithms take as input the number of seats nseats to be distributed and, for each party j ∈ [nparties],
the total number of votes nj

votes that party j has received. They return the number of seats assigned to each
party.

– Highest-Quotients. For i ∈ [nseats], j ∈ [nparties] compute the quotients qji :=
nj

votes
2i+1 . Let M be the list

of the nseats highest quotients. Then party j is assigned k seats, where k is the number of quotients in M
that belong to j, i.e., quotients of the form qji , i ∈ [nseats].

– Suitable-Denominator. Given a suitable denominator d, the number nj
seats of seats assigned to party

j is computed as nj
seats = ⌊nj

votes
d ⌉, where ⌊·⌉ denotes rounding to the closest integer (rounding of .5 can

be chosen to be either up or down and can be chosen differently for each j). A denominator d is suitable
if the result of this computation leads to the number of desired total seats, i.e., if

∑
j n

j
seats = nseats. To

find a suitable denominator, one generally starts with an arbitrary denominator d, e.g., d =

⌊∑
j nj

votes
nseats

⌉
,

checks the corresponding number of seats that would be assigned, and then tweaks d until a suitable value
has been found.

For both algorithms, there might be ties that would need to be resolved. E.g., in the highest-quotients
algorithm, there might be two equal quotients while there is only enough space left in M for one of them. In
the suitable-denominator algorithm, it can happen that all suitable denominators are such that the quotients
of multiple parties end on .5 and some of which need to be rounded up while others need to be rounded
down to achieve an overall sum of nseats. The Sainte-Laguë method does not define any specific tie-breaking
mechanism. Instead, elections using this method additionally need to specify how they handle ties.
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1: procedure AddSeatBasic((q = Efrac
pk (qjcurrent))

nparties−1
j=0 , s = (Epk(n

j
seats))

nparties−1
j=0 )

2: t = (Epk(mj))
nparties−1
j=0 = getMaxFraction(q)

3: for j ∈ [nparties] do
4: d = Epk(qj .d)⊕ 2⊙ tj
5: qj = Fraction(Epk(qj .n), d) ▷ Update q
6: sj = sj ⊕ tj ▷ Update seats (s)
7: return q, s

Fig. 3: One iteration step of SLQBasic.

4.2 Tally-Hiding MPC Realization of Sainte-Laguë

We want to construct a tally-hiding MPC component that takes as inputs Epk(n
j
votes) for each party as

well as publicly known values nparties and nseats, and computes the encrypted Sainte-Laguë seat distribution
Epk(n

j
seats). As an initial insight, we observe that basing the MPC protocol on the suitable-denominator

algorithm is generally very inefficient: This algorithm has to iterate over several potential denominators
d until a suitable one is found. Since the number of iterations required to find d would reveal non-trivial
information about the secret inputs, the MPC protocol would rather have to be constructed such that it
always uses an apriori fixed number m of iterations (some of which will discard their results if a suitable
divisor has already been found by a previous iteration) where m must be chosen sufficiently large such
that, for all possible input sequences, a suitable divisor d is guaranteed to always be found. This worst case
approximation introduces a lot of additional overhead.

Therefore, we have constructed a basic tally-hiding MPC realization SLQBasic of the Sainte-Laguë method
following the highest-quotients approach: each party j is assigned its current quotient qcurrent (see the de-
scription of the highest-quotients algorithm) and seats nj

seats thus far. Figure 3 shows this excerpt of a single
iteration step. Note that this SLQBasic uses the fast getMaxFraction algorithm in all iterations, and hence,
breaks ties via a fixed mechanism that always assigns the seat to the party with the highest index j.

Support for Breaking Ties by Lot. Many elections use more involved tie-breaking algorithms than
the default one implemented by SLQBasic. For example, for many parliamentary elections, e.g., elections in
Indonesia, Sweden, and Germany, whenever several parties are tied for a seat, then a new lot is drawn to
resolve the tie. A more general tally-hiding MPC implementation SLQCustomTiebreaking for this election does
not only have to support this tie-breaking mechanism but also has to keep secret whether any lots were drawn
and what the result was. In particular, to build such a SLQCustomTiebreaking we need to first extend/modify
the iteration step AddSeatBasic shown in Figure 3, obtaining a new subroutine AddSeatTieBreaking which
takes as additional input an encrypted ranking of parties r = (Epk(r0), . . . , Epk(rnparties−1)) where r is a
uniformly chosen permutation of 0, . . . , nparties − 1, and then resolves ties based on that ranking.

We construct AddSeatTieBreaking by making use of getMaxFractionByRank as presented in Section 3.
We replace the call to getMaxFraction in Line 2 of AddSeatBasic by our algorithm getMaxFractionByRank
which takes as additional input the ranking r. Based on this AddSeatTieBreaking, we have constructed two
versions of a SLQCustomTiebreaking MPC component which implement Sainte-Laguë. In essence, these MPC
components first compute, in each iteration, an encrypted ranking r that encodes the result of tie-breaking
and then use AddSeatTieBreaking with that r. There are two main optimizations that we introduce in both
cases: First, for tie-breaking by lot, we run a distributed randomness generation protocol [24] for each iteration
to then compute r based on the results. Since this step is input/vote independent, it can be pre-computed
even before the election. Secondly, observe that if a tie occurs between m parties in one iteration of the
quotient approach while there are at least m seats to be distributed, then all parties in the tie will obtain a
seat in the next m iterations, i.e., it does not actually matter how this tie is broken. Hence, only ties during
the last nparties − 1 iterations need to be handled by AddSeatTieBreaking, while otherwise we use the faster
AddSeatBasic algorithm.
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Secret number of seats. We note that all of our MPC algorithms for the tally-hiding baseline quotient
method (as well as for the new method presented next) can also be extended to run with a secret, i.e.,
encrypted, total number of seats nseats to be assigned, as long as an upper limit of seats is known. For
this one uses AddSeatTieBreaking in every iteration since the number of rounds in which tie-breaking is not
necessary is secret. This property is used for the tally-hiding voting system for the German elections, where
the Sainte-Laguë method is used, among others, on the number of seats assigned to a specific constituency,
which is an intermediate result that might have to remain secret depending on the desired tally-hiding
property.

4.3 Sainte-Laguë based on Floor Division

While our MPC algorithms SLQBasic and SLQCustomTiebreaking based on the highest-quotients approach
are already practical in terms of efficiency, they always use nseats iterations to assign all seats and thus do
not scale overly well for elections where a high number of seats nseats needs to be allocated. To improve
performance in such cases, we propose a new algorithm for computing the Sainte-Laguë method which we
call floor division method. Our floor division method is different from the highest-quotient and the suitable-
denominator methods and allows us to construct an MPC component, called SLQFloorDiv, that requires
nparties instead of nseats many iterations, and thus, is more efficient in the common case that the number
of seats exceeds the number of parties. In what follows, we first present the floor division method and then
describe our MPC component SLQFloorDiv.

Description of our Method. Intuitively, the main idea of our floor division method is to replace the initial
iterations and hence seat assignments of the quotient method by computing an under- and an overestimation
of the final seat allocation, and then run only the final (at most nparties many) iterations of the quotient
method to add/remove a seat from both of these initial estimations until exactly nseats many seats are
assigned. As we prove one of the resulting final seat distributions will be the correct Sainte-Laguë distribution,
and it can be determined efficiently which one is correct.

Concretely, for each party j compute mj := ⌊nj
votes·nseats
nvotes

⌋. For the underestimation case, we start by
assigning mj seats to party j. Note that smin

initial :=
∑

j∈[nparties]
mj might be smaller than nseats, but not smaller

than nseats − nparties. Hence, in order to distribute exactly nseats seats in total, we distribute the remaining
nseats−smin

initial (≤ nparties) seats to the parties by executing the final iterations of the highest-quotients method
(and the desired tie-breaking mechanism). That is, starting from the intermediate quotients qjmj

:=
nj

votes
2mj+1

instead of starting from the initial qj0 for each party j. For the overestimation case, we start by assigning
mj + 1 seats to party j, which might result in at most nparties additional seats being assigned beyond the
desired total of nseats. To remove those seats, we use a reverse variant of the highest-quotients algorithm.
For this purpose, we again initialize the quotients as qjmj

and then, in each iteration step, determine the
minimal current quotient and remove a seat from the corresponding party (using the desired tie-breaking
mechanism). Then, we update the quotient of that party by reducing the denominator by 2.2 This continues
until only a total of nseats seats is distributed.

Finally, to figure out which result is the correct Sainte-Laguë distribution, we evaluate the underestimation
case an additional time to compute the next seat that would be assigned. If the corresponding quotient
is less than all the initial quotients qjmj

of the underestimation, then the result computed based on the
underestimation is the correct seat distribution. Otherwise, the result computed based on the overestimation
is the correct seat distribution. We show the following result:

Lemma 2 (Correctness of SLQFloorDiv). The algorithm SLQFloorDiv as presented above is correct, i.e.,
always outputs the seat allocation according to the Sainte-Laguë method with the desired tie-breaking.

2 It might happen that all mj+1 seats are removed from a party j. In that case, this party is ignored in the following
iterations. Note that this special case is non-trivial to implement in our SLQFloorDiv MPC component since we
cannot reveal the values mj or the quotients.
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In order to prove Lemma 2, we first make the connection between the values qcurrent occurring during the
execution of SLQCustomTiebreaking and the highest quotients from the generic description of the Sainte-Laguë
method explicit. That is, by construction, all of the nseats highest quotients must occur as a maximal value
qcurrent at some iteration step during the execution of SLQCustomTiebreaking. On the other hand, if a value
qjcurrent = qji is not a maximal value in the first nseats iteration steps of the execution of SLQCustomTiebreaking,
then it does not belong to the nseats highest quotients and hence party j does not receive the i-th seat.

Next, we will require the following lemma, where we follow Genssler [13]:

Lemma 3 (Over- and Underestimation). For j ∈ [nparties] denote mj := ⌊nj
votes·nseats
nvotes

⌋. If in a Sainte-
Laguë distribution a party i is assigned mi + 2 seats, then all parties j receive at least mj seats.

Proof. We compare the quotients qjmj
and qimi+2. In the case that mj = 0, the statement is trivial. If mi = 0

and mj = 1 we have nj
votes > ni

votes, so party j must be assigned (at least) as many seats as party i. Thus,
if party i is assigned mi + 2 = 2 seats, then also party j is assigned (at least) 2 > 1 = mj seats and the
statement holds. In all other cases, we know that mj +mi − 1 > 0 and can reason as follows:

mj > −(mi + 1) =⇒ 2mjmi + 3mj > 2mjmi − (mi + 1) + 2mj

=⇒ mj · (2mi + 3) > (mi + 1) · (2mj − 1)

=⇒ mj

2mj − 1
>

mi + 1

2mi + 3
(∗)

Now, using that nj
votes · nseats

nvotes
= mj + aj for some aj ∈ [0,1) and the fact that nseats

nvotes
> 0, we can conclude

from (∗) as follows:

(∗) =⇒ mj + aj
2mj − 1

>
mi + ai
2mi + 3

=⇒ nj
votes

2mj − 1
>

ni
votes

2i + 3
,

i.e., qjmj
> qimi+2 and hence if qmi+2 belongs to the nseats highest quotients, then also all qmj

belong to the
nseats highest quotients. ⊓⊔

These preparations now allow for proving the correctness of SLQFloorDiv:

Proof (of Lemma 2). We use that Lemma 3 allows us to distinguish two cases:

(i) There is a party i that in the seat allocation according to the Sainte-Laguë method receives at least mi+2
seats.

(ii) Each party j receives at most mj + 1 seats in the seat allocation according to the Sainte-Laguë method.

Let us first consider case (i). In this case, by the previous lemma, each party j receives at least mj seats. Thus,
we find that all quotients qji for i ≤ mj must belong to the nseats highest quotients and hence occur as max-
imal values qjcurrent during one of the first nseats iteration steps of SLQCustomTiebreaking. Since the order in
which seats are allocated in the Sainte-Laguë method does not affect the final result, one can therefore simply
start by assigning mj seats to each party and then allocate the remaining seats using SLQCustomTiebreaking
starting with the quotients qjmj

that match the setting that each party j has been assigned mj seats. This is
exactly what the first subroutine in SLQFloorDiv does. Moreover, since in case (i) all of the values qjmj

must
belong to the nseats largest quotients, we find that - if we follow the SLQFloorDiv algorithm - the maximal
value qcurrent at the end of the computation of the first subroutine must be less than3 all of the values qjmj

,
since this value of qcurrent is the first one to not belong to the nseats largest quotients. Hence, in case (i)
the seat allocation output by SLQFloorDiv is the result from the first subroutine which as we argued is the

3 In this comparison we take tie-breaking into account.
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correct seat allocation according to the Sainte-Laguë method.

If we fall in case (ii), it can still happen that the maximal value qcurrent at the end of the computation
of the first subroutine is less than or equal to all of the values qjmj

. Namely, this happens if all parties j
receive mj or mj + 1 seats. In that case, we can again argue as above to see that SLQFloorDiv returns the
correct seat allocation. However, if a party i receives less than mi seats, then qimi

does not belong to the
nseats highest quotients and thus the check at the end of the first subroutine will fail. In particular, in this
case SLQFloorDiv will return the result obtained from the second subroutine. However, since we fall in case
(ii), we know that each party j has received at most mj + 1 seats, so if we start by assigning mj + 1 seats
to each party j, we know that no party has received too few seats and can then remove the surplus seats.

In this case, if we denote smax
initial :=

∑
j∈[nparties]

(mj+1) and let Mover be the list of quotients qji for i ≤ mj ,
then the list M from the generic description of the highest-quotients method (cf. Section 4.1) consists exactly
of the nseats largest entries in Mover. Thus, if we remove the β = smax

initial − nseats seats corresponding to the
β smallest quotients (with tie-breaking) in Mover, then each party is assigned the correct number of seats
according to the Sainte-Laguë method.

This is exactly what SLQFloorDiv does in the second subroutine. More precisely, by starting with the
quotients qjcurrent = qjmj

, the minimal value qjcurrent is exactly the minimal value in Mover. Removing a seat
from the corresponding party and updating the quotient by reducing its denominator by 2 then exactly
corresponds to removing the minimal element from Mover. Repeating this process until a total of nseats seats
remain assigned corresponds exactly to removing the β seats corresponding to the β smallest quotients in
Mover and hence the result of the second subroutine in this case is exactly the seat allocation according to
the Sainte-Laguë method.4 ⊓⊔

Tally-Hiding MPC Component. Using our building blocks described in Section 3 and the other building
blocks from Section 2, most of our tally-hiding MPC protocol for computing the above algorithm for Sainte-
Laguë is straightforward. The main issue left to be solved is that the number of iterations that our algorithm
needs to add/subtract seats from the MPC protocol reveals initial seat assignment (this would reveal non-
trivial information about the inputs/votes). We solve this by always using nparties iterations in our MPC
protocol, which is an upper bound on the number of iterations that are needed.

Our benchmarks of single runs of the Sainte-Laguë algorithms show that this variant of the Sainte-Laguë
method is indeed faster than SLQCustomTiebreaking for larger numbers of seats and smaller numbers of
parties. For example, we have the following runtime for ten parties: To distribute 60 resp. 100 seats using
SLQCustomTiebreaking, the runtime is 6.7h resp. 12.6h while SLQFloorDiv only needs 4.7h resp. 5h. However,
for smaller numbers of, say, 20 seats, SLQCustomTiebreaking is faster with 1.6h instead of SLQFloorDiv, which
needs 4.6h. Further comparisons are presented in Figure 4. SLQCustomTiebreaking is linear in the number of
seats while SLQFloorDiv has a larger initial overhead time but is nearly constant in the number of seats.

5 Election of the German Parliament (Bundestag)

The election of the German federal parliament, the Bundestag, which consists of at least 598 seats is a
combination of proportional representation and first-past-the-post voting. Each voter has two votes: a con-
stituency vote (called first vote) given towards an individual candidate, who is typically but not necessarily
also a member of a party, and a vote for state-specific party lists (called second vote) which determines the
proportions of parties in the parliament. The first votes are evaluated for each of the 299 constituencies
individually: The candidate with the most votes wins the constituency and is guaranteed a seat in the parlia-
ment, called a direct mandate.5 Each constituency belongs to exactly one of the 16 German states, say state
l ∈ L where L is the set of all states. We denote by sd

j,l the total number of direct mandates that candidates
of party j win in state l.
4 Recall that we ignore quotients for parties j from which mj + 1 seats have already been removed.
5 Ties for the first place and hence the direct mandate are resolved by lot. Ties in any of the following iterations of

the Sainte-Laguë method are also resolved by lot with one exception discussed below.
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Fig. 4: Benchmarks for one execution of the two Sainte-Laguë algorithms.

Let vj,l be the number of second votes for party j in state l and vj :=
∑

l∈L vj,l the total number of
second votes for party j. In the next step, the baseline of 598 seats of the parliament are assigned to the
states in proportion to their number of inhabitants; we call this the first top distribution and refer to these
seats as state seats. A party j can obtain state seats if vj is at least 5% of all second votes, j has obtained at
least

∑
l∈L sd

j,l ≥ 3 direct mandates, or j represents a special minority. Let S be the set of parties that are
allowed to obtain state seats. Then, for each state l, the state seats are assigned to parties j ∈ S following
the Sainte-Laguë method based on vj,l. The resulting seats are called quota seats, denoted by sq

j,l for party
j and state l. We call this distribution the first low distribution.

It usually happens in several states l that a party j ∈ S wins more direct mandates and hence guaranteed
seats for their candidates than the party actually receives in terms of quota seats, i.e., sd

j,l > sq
j,l. In such

cases, the overall size of the parliament is increased, and the seat assignment to parties is updated such
that (i) parties have enough seats for all their candidates with direct mandates and (ii) the number of seats
given to party j in the final parliament is “close” to the Sainte-Laguë seat distribution based on vj (up to 3
additional seats, called overhang seats, are tolerated). This is computed via the following procedure.

Let smin
j :=

∑
l∈L

(
max(⌈ sdj,l+sqj,l

2 ⌉, sd
j,l)

)
be a lower bound for the seats that party j ∈ S will receive.

Compute dno := minj∈S

(
vj

smin
j −0.5

)
. Then, for each party j ∈ S, it is determined whether there is a state

l ∈ L such that t(j,l) := sd
j,l − sq

j,l > 0. This value is also called the threatening overhang of party j in state
l. Based on these values, one computes a set of divisors:

Doverh = { vj
smin
j − i

| i ∈ {0.5, 1.5, 2.5, 3.5}, j ∈ S and ∃l : t(j,l) > 0, t(j,l) + 1 > i}.

Let doverh be the fourth smallest element of Doverh and set d := min(dno, doverh).

Then, as in the suitable-denominator algorithm (c.f. Section 4), party j ∈ S receives nj
seats := ⌊nj

votes
d ⌉

seats, where .5 is always rounded up, i.e., in this step, ties are resolved by giving every tied party a seat.
The resulting distribution is called the second top distribution. Next, for each party j ∈ S, these nj

seats are
assigned to individual states following the Sainte-Laguë method weighted by vj,l, resulting in the second low
distribution.

In addition to those nj
seats seats, (some) parties further receive αj := smin

j − nj
seats(≤ 3) overhang seats

to cover a possibly remaining surplus of direct mandates. These overhang seats are then also distributed to
states according to the smallest αj many values from the following set:

Oj
overh = { vj,l

smin
j,l − i

| i ∈ {0.5, 1.5, 2.5}, l ∈ L, i < αj}.
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All seats assigned to party j ∈ S in state l are then assigned to candidates as follows. First, candidates
of party j that won a direct mandate in a constituency of state l obtain a seat. The remaining seats, if any,
are assigned to the party candidate list for that state, starting with the first one and skipping any candidates
that have already obtained a direct mandate. Finally, if there are any direct mandates for candidates that do
not belong to a party from S, then each of these candidates receives a seat that is added to the parliament.
The resulting set of seats defines the updated size of the parliament.
Our Tally-Hiding Realization. We construct our e-voting system by following the general Ordinos
approach, except for one difference. The original Ordinos framework proposed in [21] was designed for
elections without electoral constituencies or with just a single constituency where all votes are treated
equally. We capture the existence of several constituencies in the German parliamentary elections, where
the result also depends on the constituency that a vote was submitted in, via the following small changes:
The list of eligible voters that is published during the setup phase now additionally assigns each voter to a
constituency. Ballots are extended to additionally contain (in plain) the identifier of the constituency they
were cast in such that everyone can check whether ballots were cast for the correct constituency. Encrypted
ballots are aggregated per constituency and then evaluated via (the MPC component for) fres. We note that
this difference in settings also slightly changes the meaning of full tally-hiding: For elections without electoral
constituencies, only the number of submitted votes (since this is public on B) and the final result become
known. In the setting with electoral constituencies, only the number of submitted votes per constituency and
the final result becomes known. As part of our security proof (cf. Theorem 3), we define full tally-hiding for
our setting and verify that the original proofs of Theorem 1 carry over in a natural way to our setting using
the same preconditions.

We hence instantiate the (modified) Ordinos approach for the German election by using the threshold
Paillier encryption scheme E , choice space Csingle × Csingle, standard NIZKPs πKeyShareGen and πEnc [11] and
any standard EUF-CMA-secure signature scheme from the literature, result function fres-Ger for the German
parliamentary election as described above, and importantly our new MPC protocol PMPC-Ger for fres-Ger
described next.
Constructing PMPC-Ger. We have constructed PMPC-Ger using the components from Sections 2 and 3 to
compute the full evaluation procedure for German parliament, as described above. This includes all small
details and special cases, e.g., computing and changing the final parliament size, determining and distributing
up to 3 overhang seats per party, and exempting parties from obtaining state seats iff they did not win 5%
of the total second votes, won less than 3 direct mandates, and are not representing a special minority.

Of course, capturing the full complexity of the election evaluation of the German parliament in an
MPC protocol PMPC-Ger comes at a hefty cost in terms of performance and hence runs the risk of becoming
impractical. We have therefore spent considerable effort into carefully optimizing PMPC-Ger by, among others,
the following: (i) Computing the election result requires multiple iterations of Sainte-Laguë. We use both
SLQCustomTiebreaking and SLQFloorDiv, depending on the number of seats and candidates that has to be
processed in the current iteration. (ii) We have constructed PMPC-Ger in such a way that, as far as possible,
substeps such as repeated state-wise operations can be computed in parallel. We have performed benchmarks
for various numbers of threads, which demonstrate that this is a major factor in improving performance,
see Table 1. (iii) We first compute and reveal the set of parties that will obtain at least one seat in the
parliament. This allows us to tailor the following computations to this specific set of parties and thus save
time by not having to perform the same operations for (dozens of) parties that will not obtain a seat.
As part of Theorem 3, we argue that this construction is still a secure MPC protocol as, intuitively, the
intermediate output can be computed from/is part of the final result. (iv) By proposing a different algorithm
for computing the final number of seats for each party in the German parliament based on an encrypted
divisor d = min(dno, doverh), we can use an efficient binary search on encrypted data to obtain this value.

In more detail, regarding the last point described above, we can compute a ciphertext of the divisor d,
which is then used to compute the final number of seats of the German parliament and the number of seats
per party. To determine how many seats party j receives, we would then - as in the suitable-denominator
algorithm - compute nj

seats = ⌊nj
votes
d ⌉. However, in order to compute this in a tally-hiding way, we would

have to perform a floor division, followed by suitable rounding, which is non trivial on encrypted values.
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procedure TestSeatsMatchDivisor(nj
seats, Epk(n

j
votes), Epk(d))

Epk(q) = Fraction(2⊙ Epk(n
j
votes), 2 · n

j
seats − 1)

Epk(i) = fgt(Epk(q), Epk(d))
i = fdec(Epk(i))
return 1− i

Fig. 5: Test whether party j receives at least nj
seats seats.

procedure DetermineFinalSeats((Epk(n
j
votes))

nparties−1
j=0 , Epk(d))

for j ∈ [nparties] do
i = 1
h = 0
while i do ▷ First approximation for hundreds

i = TestSeatsMatchDivisor(h, Epk(d), Epk(n
j
votes))

if i == 1 then
h = h+ 100

l = h− 100
u = h
while l < u do ▷ Find number of seats via binary search

k = ⌊l + 1
2 (u− l)⌋

i = TestSeatsMatchDivisor(k, Epk(d), Epk(n
j
votes))

if i == 1 then
l = k

else
u = k

if l + 1 = u then
break

nj
seats = l

return (nj
seats)

nparties−1
j=0

Fig. 6: Computing the final seats of each party in the German Bundestag using the divisor d.

Instead, we use the fact that we can reveal the final number of seats per party, since this is public information
(we will discuss this in more detail in the security proof of Theorem 3). The idea is to construct an MPC
protocol that can check whether a given number of seats for party j is exceeded in a correct seat distribution
based on d. Then one can perform a public binary search and use this MPC component to find the correct
number of seats. To realize such a checking functionality, we use the following fact: Consider an execution
of the highest-quotients algorithm for distributing nseats seats, where qnseats is the nseats-th highest quotient
and qnseats+1 is the next highest quotient. Then it holds true that a suitable denominator d of an execution
of the equivalent suitable-denominator algorithm is in range (2 · qnseats+1, 2 · qnseats ] [2]. This implies that if
a quotient q causes a seat assignment in the highest-quotient algorithm, then the suitable-denominator d of
the equivalent suitable-denominator algorithm must be of size at most 2 · q. We use this fact to construct the
algorithm TestSeatsMatchDivisor presented in Figure 5 that for party j takes as input a guess of seats nj

seats,
the number of votes Epk(n

j
votes), and the divisor Epk(d) and checks whether the divisor is less or equal to

2·nj
votes

2·nj
seats−1

. If this is not the case, then this divisor d does not assign the seat of this quotient to this party.

Then, we update the guess nj
seats and try again. In Figure 6 we make use of TestSeatsMatchDivisor in a binary

search.
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Theorem 3 (Security). Let PMPC-Ger be our MPC protocol from above. Then, the Ordinos instance using
the aforementioned components is a verifiable (and even accountable) and fully tally-hiding e-voting system
for the election of the German parliament.

Proof Sketch. We first observe that the original Ordinos framework [21] was designed for monolithic elections
where nothing beyond the election result and the total number of votes shall be revealed. The election for the
German Bundestag is not monolithic but rather based on multiple sub-elections in separate constituencies.
This difference is reflected in our system, which publishes the total number of submitted votes for each con-
stituency (instead of just the total number of all votes) as well as the final election result. Hence, privacy/full
tally-hiding has a slightly different meaning in our setting and existing proofs for Ordinos do not directly
apply.

For this reason, we modify the Ordinos framework in the following ways. During the setup phase, where
the list id of eligible voters is published, this list is expanded by adding a constituency identifier to each id,
such that it is publicly visible which id is allowed to vote in which constituency. Since the ballots published
on the bulletin board contain the id, it is public information to which constituency this ballot corresponds.
Furthermore, we modify the ideal protocol such that the voter under observation is voting in a specific
constituency.

These changes do not affect accountability (and thus verifiability), and therefore the original proof
from the original Ordinos framework for Theorem 1 still applies. However, it is public information to which
constituency a ballot corresponds (the id of the voter of a ballot is contained in the ballot, and the id is
published during the setup phase alongside the corresponding constituency). These changes naturally lead to
a lower level of privacy than in the original Ordinos framework. While voting in constituencies might open
new options for an adversary, as she can try to change the voting constituencies of specific ballots, she is not
able to do so without being caught. Thus, when considering risk avoiding adversaries that aim for not being
caught and therefore only manipulate a fixed number of ballots, these adversaries would only manipulate up
to a certain number ballots overall (and not per constituency), since the global risk of being caught would
be too high. Hence, to a certain extend, the privacy analysis from the original Ordinos framework carries
over (with the natural restrictions of public constituency identifiers).

The above discussion allows for proving security similarly to the proofs of the original Ordinos framework.
That is, if we can show that all of our cryptographic primitives including PMPC meet the requirements stated
for Theorem 1 in [21], then it follows analogous to the proof in [21] that our system is (i) accountable and
(ii) private/fully tally-hiding in the sense of our setting, i.e., only the final result and the total numbers of
submitted votes for each constituency are revealed.

Next, observe that the primitives E , πKeyShareGen, and πEnc already fulfill the requirements of Theorem 1.
The only thing left to show for Theorem 1 is that our new tallying protocol PMPC is secure. That is, we have
to show that PMPC is a private and publicly accountable implementation of the evaluation of the German
Bundestag.

Both properties follow almost directly because our MPC protocol is built from combinations of the basic
components presented in Section 2. As mentioned in that section, each of these basic components already
guarantees privacy and public accountability on a per-component level. Apart from very few exceptions
discussed below, we have that the connections of these components, i.e., the respective inputs and outputs, are
all encrypted and published on B. Due to the encryption, these intermediate results do not leak any additional
information, neither to internal parties nor to external observers. Also, since the encrypted intermediate
results are published, external observers can check that the output of one step is used correctly as the input
to the next step. Thus, if some trustee tries to use a different input, she can be held accountable. Hence, also
such combinations of the individual components remain accountable and private.

The only special cases and exceptions to the above are that we actually decrypt and reveal which parties
enter the Bundestag and how many seats each party receives as an intermediate value in order to facilitate a
more efficient evaluation of the following computations. This, however, is still secure: observe that the final
result of the election consists of a mapping of seats to candidates. Since the mapping from candidates to
parties is unique public knowledge and candidates can only receive a seat if that seat was assigned to their
party, it is easy to compute the seats assigned to each party from the final election result. In particular,
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# Threads per Trustee 1 2 4 8 16 32

Single-member constituency seats 40.03 h 20.04 h 10.06 h 5.06 h 2.56 h 1.32 h

Determine which parties enter the Bundestag 71 min 36 min 18 min 9 min 5 min 3 min

First low distribution 23.38 h 11.77 h 6.07 h 3.25 h 1.82 h 1.1 h

Minimal number of seats per party 11.68 h 5.84 h 2.93 h 1.46 h 0.74 h 0.36 h

Second top distribution 2.81 h 2.0 h 1.42 h 1.19 h 1.19 h 1.19 h

Second low distribution 77.06 h 38.53 h 19.4 h 12.34 h 6.3 h 5.93 h

Assigning overhang seats 6.67 h 3.33 h 2.2 h 1.14 h 1.14 h 1.14 h

Computing the final result 4 min 2 min 1 min 1 min 0 min 0 min

Total Runtime 163 h 82 h 42 h 24.3 h 13.8 h 11.1 h

Table 1: Benchmarks of the election for the German Bundestag in 2021 using real-world data available at [12].
Total runtime of the evaluation for the German parliament with real-world data from 2021 and with different
numbers of available parallel threads for each Trustee.

a simulator for our MPC protocol, who is given only the election result, can compute the corresponding
intermediate values that are decrypted/revealed during a run of our MPC protocol. Given this information,
the simulator can then use standard techniques as described in [11, 27] for simulating the decryption of
ciphertexts to the correct intermediate values. ⊓⊔

5.1 Benchmarks

In this section, we present the benchmarks of our evaluation of the election for the German Bundestag in 2021.
We use a Paillier key of size 2048 bits. The setup for our benchmarks consists of three trustees communicating
over a local network. Each trustee ran on an ESPRIMO Q957 (64bit, i5-7500T CPU @ 2.70GHz, 16 GB
RAM). As in [21], the benchmarks of our MPC protocols start with an already aggregated tally. Küsters
et al. [21] showed for the MPC protocols in their Ordinos instances that the number of trustees does not
influence the benchmarks in a noticeable way and that, due to the sublinear communication complexity of the
comparison protocols, there is no significant difference between a local network and the Internet. Since our
MPC protocols are based on the same primitives and basic building blocks as used by [21], the same is also
true for our MPC protocols. Our benchmarks therefore focus mostly on the number of candidates/parties
which is the main factor for the performance of our protocols.

The election for the German Bundestag in 2021 had 61,181,072 eligible voters, 46,854,508 valid submitted
ballots, and 47 parties with 6,211 candidates, distributed over 299 constituencies. We note that, for this,
we have used the real-world data available at [12]. In Table 1 we show the benchmarks of our evaluation,
including the benchmarks of all steps described in Section 5 individually. The benchmarks are separated by
the number of threads that each trustee uses. Since many intermediate results can be computed in parallel
(e.g., the intermediate results of the states do not affect each other), allowing the trustees to make use of
multiple threads greatly affects the overall runtime of the election evaluation. For example, as shown in the
table, the runtime of the second low distribution can already be cut in half by using two threads instead of
one.

Each constituency has about 250,000 German inhabitants, and the number of candidates varies between
5 and 18. Therefore, there are some differences in the runtime of the first step of the evaluation, namely the
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Fig. 7: Runtime of the evaluation of the constituency seats for all constituencies. The y-axis denotes how
many of the 299 constituencies took the respective runtime.

computation of the single-member constituency seats. We present the runtime per constituency in Figure 7.
The runtime ranges from 4.6 to 14.2 minutes and the mean value is eight minutes.

The first low distribution assigns the seats of each state to the local parties, where all states have six
parties except for Schleswig-Holstein (SH) with seven and Saarland (SL) with five parties. The distribution
is computed with SLQFloorDiv. The runtime of the substeps of SLQFloorDiv (floor division, under- and
overestimation) is presented in Figure 8. We note that the last two steps can be evaluated in parallel. The
runtime also depends on the bit length of the number of seats. Without the use of parallelization, this
step takes 23.4 hours. Overall, our benchmarks indicate that the tally-hiding evaluation of the German
parliamentary elections are practical for real-world election data.

Verification of an election following the Ordinos approach essentially consists of two main tasks: Firstly,
checking the correctness of the ballots submitted to B including verification of the ballot NIZKPs πEnc for
the choice space. Secondly, verifying that the MPC protocol PMPC was executed correctly.

The first task can be performed on the fly for each new ballot submitted to B while the election is still
running. Notably, we use a NIZKP πEnc from [11] that is standard and employed by many e-voting systems
since it is very efficient and fast to verify. The second step requires checking certain data, including further
NIZKPs, that is published on B while PMPC-Ger is running. Notably, all trustees also perform all of the same
verification checks as part of running PMPC-Ger. Hence, not only is it possible for an external observer to
perform verification of PMPC-Ger in parallel to PMPC-Ger being executed. An external observer will also be
done with this verification as soon as the end result is returned by PMPC-Ger because he has to perform strictly
less work than the trustees running PMPC-Ger. We therefore only had to benchmark the runtime of PMPC-Ger
to obtain the overall time for both computing and verifying the election result of our system proposed in
Section 5.
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6 Related Work and Conclusion

Various tally-hiding e-voting systems for a wide variety of election types have been proposed so far, e.g., [5,
6,10,14,16,17,21,25,29]. For simple types of elections such as single vote (every voter submits a single vote
for the candidate of their choice with the winner(s) being the candidate(s) with the most votes), it has been
demonstrated that they can be performed in a verifiable tally-hiding manner, even at a large scale (see,
e.g., [10,16,17,21]). However, many real-world elections, notably political ones, are much more complex and
have proven to be a challenge for tally-hiding systems.

Preferential Elections: An important class of complex real-world elections are preferential ones. Tally
hiding has already been studied for several voting methods from this class, with such systems typically
being viable at a small to medium scale but often being impractical for large-scale applications. For ex-
ample: (i) Recent advances in tally-hiding e-voting have managed to support instant-runoff voting (IRV)
for small numbers of candidates [17, 25]. However, none of these systems remain practical for more than 6
candidates. (ii) Cortier et. al [10] have proposed the first MPC component that can be used to construct a
fully tally-hiding voting system for single transferable vote (STV), a preferential voting method somewhat
similar to IRV. However, they state that the computational cost of the resulting system would be too high
for large-scale elections. (iii) For the Condorcet Schulze election scheme, Hertel et.al. [16] proposed an Or-
dinos instantiation that can handle small numbers of candidates, however, already needs about 9 days to
compute an election result for 20 candidates (and essentially arbitrary numbers of voters). Cortier et. al [10]
proposed an alternative tally-hiding MPC component for computing Condorcet Schulze, which is faster for
small numbers of voters but can be extrapolated to also require 9 days for 20 candidates as soon as there
are ∼32.000 voters.
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Parliamentary Elections With Party-Based Seat Allocations: As already explained in the introduc-
tion, prior to our work, it had not been investigated for any election from this class, whether and in how far,
it can be performed in a tally-hiding manner. In this work, we have proposed several new tally-hiding build-
ing blocks, as well as the first verifiable tally-hiding voting system for an election from this class, namely,
the German parliament. Our results serve as an important foundational feasibility study, which, perhaps
surprisingly and for the first time, demonstrates that even such a complex and large-scale real-world election
can, in principle be performed in a verifiable fully tally-hiding manner. It is interesting future work to use
our building blocks and ideas to construct tally-hiding voting systems for further elections from this class.
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