
Fully Tally-Hiding Verifiable E-Voting for
Real-World Elections with Seat-Allocations

Carmen Wabartha∗2, Julian Liedtke×2[0000−0002−8289−4970],
Nicolas Huber×1,2[0000−0001−6905−3571], Daniel Rausch×2[0000−0002−1901−3659],

and Ralf Küsters×2[0000−0002−9071−9312]

1 Corresponding Author
2 University of Stuttgart

∗st161329@stud.uni-stuttgart.de
×firstname.secondname@sec.uni-stuttgart.de

Abstract. Modern e-voting systems provide what is called verifiability,
i.e., voters are able to check that their votes have actually been counted
despite potentially malicious servers and voting authorities. Some of
these systems, called tally-hiding systems, provide increased privacy by
revealing only the actual election result, e.g., the winner of the election,
but no further information that is supposed to be kept secret. However,
due to these very strong privacy guarantees, supporting complex vot-
ing methods at a real-world scale has proven to be very challenging for
tally-hiding systems.
A widespread class of elections, and at the same time, one of the most
involved ones is parliamentary election with party-based seat-allocation.
These elections are performed for millions of voters, dozens of parties,
and hundreds of individual candidates competing for seats; they also use
very sophisticated multi-step algorithms to compute the final assignment
of seats to candidates based on, e.g., party lists, hundreds of electoral
constituencies, possibly additional votes for individual candidates, over-
hang seats, and special exceptions for minorities. So far, it has not been
investigated whether and in how far such elections can be performed in
a verifiable tally-hiding manner.
In this work, we design and implement the first verifiable (fully) tally-
hiding e-voting system for an election from this class, namely, for the
German parliament (Bundestag). As part of this effort, we propose sev-
eral new tally-hiding building blocks that are of independent interest. We
perform benchmarks based on actual election data, which show, perhaps
surprisingly, that our proposed system is practical even at a real-world
scale. Our work thus serves as a foundational feasibility study for this
class of elections.

1 Introduction

E-voting is of rising interest. In order to ensure secure and correct elections,
modern e-voting systems are designed to be (end-to-end) verifiable [1–3,6–8,16–
18, 20, 24], that is, voters should be able to check that their votes/ballots were

2 C. Wabartha et al.

submitted correctly, and voters, election officials, and even external observers
should be able to check that the election result corresponds to the votes that
were cast. A stronger notion of verifiability is accountability, which states that,
if the result turns out to be incorrect, then a misbehaving party causing this
mistake can be identified and be held accountable. A very common method for
election systems to achieve verifiability is by publishing the full tally, which
consists of all (potentially aggregated) individual votes, along with additional
evidence, such as zero-knowledge proofs (ZKPs), which proves that the tally
was computed correctly. With the knowledge of the full tally, everyone is able
to compute the actual election result, e.g., the winner of the election, and check
whether this corresponds to the claimed election result.

More recently, verifiable tally-hiding e-voting systems (e.g. [4, 5, 9, 12, 14, 15,
19,23,27]), have been proposed that defer from revealing the full tally. They are
rather designed to only publish the actual election result, e.g., the winning candi-
date(s) of an election, and as little further information as possible (ideally none),
while the correctness of the election result can still be verified. Following the
terminology of [15], tally-hiding systems can be divided into three classes: Fully
tally-hiding systems (e.g., [5,9,14,19]) are the strongest ones as they reveal only
the election result. Publicly or partially tally-hiding systems (see, e.g., [15, 23])
are more relaxed in that they reveal some information beyond the election re-
sult, possibly only to certain parties. As discussed for example in [9, 14, 15, 19],
tally-hiding systems offer several attractive features such as improved ballot pri-
vacy for voters, avoiding embarrassment or weakening of candidates, protection
against a specific class of coercion attacks called Italian attacks [4,13], and pre-
venting Gerrymandering. So far, it has been shown that simple election schemes
can be performed at a large scale, even in a fully tally-hiding manner. However,
due to the strong privacy requirements, more complex voting methods have
proven to be a challenge for all types of tally-hiding systems, with some types
of elections even turning out to be practical only for very few candidates and/or
voters (cf. Section 6).

A very important class of elections in practice is parliamentary election with
party-based seat allocation as carried out by many countries around the world.
These are among the most complex types of elections: They usually involve
millions of voters, dozens of parties, hundreds of individual candidates, and hun-
dreds of electoral constituencies. In some cases, voters have not just one but
multiple votes that they can distribute among parties and possibly also indi-
vidual candidates. Sophisticated multi-step algorithms are used to compute the
election result, i.e., the assignment of seats to individual candidates. An impor-
tant component for this process is a so-called seat allocation method, which takes
as input a number of available seats and a set of parties with their total number
of votes and then computes the number of seats assigned to each party. While a
crucial part this seat allocation method is only a small step in the computation
of the actual election result. Additional steps are taken, e.g., to combine the re-
sults of different constituencies to distribute seats that are directly allocated to
individual candidates instead of just parties, to take into account minimum vote

Tally-Hiding E-Voting for Real-World Elections with Seat-Allocations 3

counts for parties before they are assigned any seats, and to include special ex-
ceptions for minorities. Furthermore, the seats assigned to each party need to be
mapped to individual candidates, typically according to party candidate lists for
each constituency and weighted by how many votes a party has obtained in the
respective constituency. In some cases, even the size of the parliament is modi-
fied while computing the election result, possibly only after the seat allocation
method has already been computed to more closely reflect the vote distribution.

Perhaps due to this intimidating complexity, so far, it has not been inves-
tigated whether and in how far this class of elections can be performed in a
tally-hiding manner, and whether this is possible even at the same scale in terms
of voters, parties, candidates, and constituencies as needed in real-world elec-
tions. There are only a few existing works that propose tally-hiding algorithms
for computing certain seat allocation methods, namely, the d’Hondt method [9]
and the Hare-Niemeyer method [14]. As explained above, while seat allocation
methods are important components, they constitute just a small portion of the
entire election scheme, and hence, these prior works do not answer the above
question. In this work, we therefore, for the first time, investigate this open
research question.

Contributions. More specifically, we design, implement, and benchmark the
first verifiable (and even accountable) fully tally-hiding e-voting system for a
major real-world party-based parliamentary election, namely, the election of the
German parliament (Bundestag). Perhaps surprisingly, and as our main insight,
with this system, we are able to show that such a parliamentary election scheme
with party-based seat allocation can actually be performed in a verifiable, fully
tally-hiding manner at a real-world scale. Our system supports the strongest
level of tally-hiding, namely full tally-hiding. That is, if desired, one can reveal
only the allocation of individual candidates to seats and the number of voters
who cast a vote and nothing else to anybody. But one can also easily relax the
kind of information that is revealed, e.g., by additionally publishing the winners
of individual constituencies.

On a technical level, to obtain our voting system, we follow and slightly
modify a generic approach for constructing verifiable fully tally-hiding systems,
namely the Ordinos framework [19]. The Ordinos framework provides a general
blueprint for the structure of such systems. Some components in this blueprint
are unspecified and have to be filled in by protocol designers on a case-by-case
basis to obtain a concrete instantiation of Ordinos that can perform an election
for a specific voting method. It has been shown in [19] that, as long as those com-
ponents meet specific requirements, the overall system/instantiation is a secure
verifiable, fully tally-hiding e-voting system. The main challenge lies in con-
structing those components for a specific voting method in such a way that they
provide all expected security properties while achieving practical performance.

The most important and also most difficult to design component is a pub-
licly verifiable secure multi-party computation (MPC) protocol that computes
the election result for the German parliament from the set of (encrypted) ballots.
Due to the inherent complexity and scale of this election, this requires special

4 C. Wabartha et al.

care to obtain not just a theoretically secure but also a practically efficient sys-
tem. Specifically, we first propose several MPC building blocks, including the
first MPC subroutine for computing the Sainte-Laguë seat allocation method
used for parliamentary elections, not just in Germany but also in, e.g., Indone-
sia, New Zealand, Nepal, Sweden, Norway, and Kosovo. Based on these building
blocks, we then construct an efficient MPC protocol that performs the entire elec-
tion evaluation for the German parliament. Along the way, we evaluate different
options for designing our algorithms and propose several novel optimizations
to improve the overall efficiency. We note that many of our ideas and building
blocks, such as our MPC protocol for the Sainte-Laguë method, are of inter-
est also for other parliamentary election schemes since such elections often use
similar concepts and components.

The overall practicality of e-voting systems following the Ordinos approach is
determined essentially only by the performance of the MPC component. Hence,
to evaluate the performance and identify potential limitations of our system, we
have implemented our full MPC protocol for electing the German parliament
and performed extensive benchmarks based on actual real-world election data
consisting of the votes of all respective constituencies. Our solution needs about a
day to compute the election result, which is within the usual time frame expected
for this election, thus demonstrating that our MPC protocol is practical even for
such a complex large-scale political election.

Altogether, our results serve as a foundational feasibility study for (fully)
tally-hiding elections for the important class of parliamentary elections with
party-based seat allocation. Of course, as can be seen in countries already using
or aiming at online elections, establishing and actually deploying a full-fledged
ready-to-use system in the real world requires a huge effort beyond studying
feasibility. Future deployments can build on our results by considering further
aspects of parliamentary elections that are out of scope of this work, such as
deciding which parties run the election in a distributed fashion, tackling the risk
of voter coercion, establishing procedures for handling voter complaints, etc.

Structure. We recall the Ordinos framework in Section 2. In Section 3, we
present novel building blocks that we have constructed to realize the voting
methods in this work. In Section 4, we present the Sainte-Laguë method, includ-
ing a novel variant to compute the Sainte-Laguë seat allocation and different
tally-hiding algorithms to compute the Sainte-Laguë method. We present our
voting system for the German Bundestag in Section 5. We discuss related work
and conclude in Section 6. Our implementation is available at [26]. A full version
of this paper with complete details for all of our results is available at [25].

2 Preliminaries

Notation. We write [n] to denote the set {0, . . . , n−1}. Let ncand be the number
of candidates/parties/choices, and let nvotes be the (maximal) number of votes.
We will use nseats to denote the number of seats that are being distributed
among nparties parties. With nj

votes we denote the number of votes, and with

Tally-Hiding E-Voting for Real-World Elections with Seat-Allocations 5

nj
seats the number of seats that party j has received. The format of a plain,

i.e., unencrypted, ballot is defined via a finite choice space C ⊆ Nncand , i.e., a
ballot assigns each candidate a number subject to constraints defined by C.
For example, a single vote election where a plain ballot contains one vote for
a single candidate/party/choice can be modeled via the choice space Csingle :=
{(b0, . . . , bncand−1) ∈ {0, 1}ncand |

∑
i bi = 1}. For voter j we denote her plain

ballot by vj := (vji)i∈[ncand] ∈ C.

The Ordinos Framework. The Ordinos framework was introduced in [19] as a
general blueprint for constructing verifiable, fully tally-hiding e-voting systems.
Systems following the Ordinos approach use a voting authority, an arbitrary
number of voters, nt trustees, an authentication server, and an append-only
bulletin board (B) and roughly work as follows. In an initial setup phase, param-
eters of the election are generated and published on B, including a public key
and corresponding secret key shares for an additively homomorphic t-out-of-nt

threshold public key encryption scheme E = (E,D). Each trustee has one secret
key share and publishes a non-interactive zero-knowledge proof of knowledge
(NIZKP) πKeyShareGen to prove knowledge of their key share. The choice space
C and the result function fres of the election are published on B as well, where
fres takes as input a tally and outputs the corresponding election result, e.g.,
the candidate with the most votes. In the following voting phase, the voters first
encrypt their ballots and then publish them on B, authenticating themselves as
eligible voters with the help of the authentication server and the authentication
server adds a signature to the ballot. An encrypted ballot of voter j has the form
(Epk(v

j
i))i∈[ncand], i.e., each component of the plain ballot is encrypted separately.

The encrypted ballot comes with a NIZKP πEnc that proves validity of the plain
ballot, i.e., vj = (vji)i∈[ncand] ∈ C. The published encrypted ballots can be homo-
morphically (and publicly) aggregated to obtain an encryption of the aggregated
full tally, i.e., one obtains one ciphertext on each vi :=

∑
j∈[nvotes]

vji , where vi
is the total number of votes/points that candidate/choice i obtained in the elec-
tion. In the tallying phase, the trustees run a publicly verifiable MPC protocol
PMPC to compute fres. This protocol takes as (secret) inputs the secret key shares
of the trustees and the (public) encrypted aggregated tally and outputs the elec-
tion result res = fres(v0, . . . , vncand−1). This result, along with any material that
is needed to allow external parties to verify the MPC computation, is published
by the trustees on B. Finally, in the verification phase, voters can check that
their ballots appear on B, and everyone can verify that the election result res
was computed correctly from the encrypted ballots by re-computing the homo-
morphic aggregation, checking all NIZKPs, and checking the MPC computation
(which typically involves additional NIZKP verifications).

Many of the above components are not fixed by the Ordinos framework be-
cause they strongly depend on the specific election method that is to be im-
plemented. Specifically, the following parameters and components have to be
specified or constructed by a protocol designer to create an instantiation of Or-
dinos for a concrete election method: (i) the choice space C and election result
function fres, (ii) a threshold encryption scheme E , (iii) NIZKPs πKeyShareGen

6 C. Wabartha et al.

and πEnc, (iv) a EUF-CMA-secure signature scheme S, and (v) an MPC proto-
col PMPC for computing the election result function fres.

Voting systems following the Ordinos approach are intended to provide verifi-
ability and full tally-hiding. As already mentioned, verifiability intuitively means
that everyone can check whether the election result returned by the voting sys-
tem corresponds to the actual votes. Full tally-hiding intuitively means that no
one, including attackers, learns anything besides the number of submitted ballots
and the final election result; this property, therefore, also implies the security
notion of ballot privacy. We refer interested readers to [19] for formal definitions
of both verifiability and full tally-hiding. Küsters et al. [19] have shown that
if the above components defined by protocol designers meet certain properties,
then the resulting Ordinos instance, indeed achieves both security notions:

Theorem 1 (Verifiability and Full Tally Hiding [19], informal). Let E be
an additively homomorphic threshold public-key encryption scheme E, πKeyShareGen

and πEnc be secure NIZKPs for E, S be an EUF-CMA-secure signature scheme,
and PMPC be a publicly verifiable secure MPC protocol for computing fres, i.e.,
if the result does not correspond to the input, then this can be detected, and at
least one misbehaving trustee can be identified; this must hold even if all trustees
running the MPC protocol are malicious. Then, the resulting instance of Ordinos
is verifiable and fully tally-hiding.3

Existing building blocks. In this work, we will use a threshold variant of the
Paillier encryption scheme [10] to implement E . Given a public key pk for this
encryption scheme, there exist publicly verifiable MPC building blocks [10,14,22]
that allow the owners of the corresponding secret key shares to compute the
following basic operations for a, b, c ∈ Zn (all operations are mod n where n is
determined by pk):

– Epk(c) = fadd(Epk(a), Epk(b)) s.t. c = a + b; for brevity, we denote this
operation by ⊕.

– Epk(c) = fmul(Epk(a), Epk(b)) s.t. c = a · b, for brevity, we denote this opera-
tion by ⊙.

– Epk(c) = fgt(Epk(a), Epk(b)) s.t. c = 1 iff a ≥ b and 0 otherwise.
– Epk(c) = feq(Epk(a), Epk(b)) s.t. c = 1 iff a = b and 0 otherwise.
– (Epk(si))

n
i=1 = fmax((Epk(vi))

n
i=1) s.t. si ∈ {0, 1} and si = 1 means that

vi = maxj∈{1,...,n} vj ∧ ∀j ∈ {i+ 1, . . . , n} : vj < vi.
– c = fdec(Epk(c)) s.t. Epk(c) is an encryption of c.

The MPC building blocks for computing the above operations have a useful
property, namely, encrypted outputs from one building block can be used as
inputs for another building block such that the resulting combined protocol is
still a secure, publicly verifiable MPC protocol [22]. In other words, they allow
for building more complex protocols such as PMPC for Ordinos that meet the

3 Full tally-hiding requires that at most t− 1 trustees are malicious, verifiability does
not require any honest trustees at all. This theorem uses further standard e-voting
assumptions, such as honesty of B. We refer interested readers to [19] for full details.

Tally-Hiding E-Voting for Real-World Elections with Seat-Allocations 7

requirements of Theorem 1. We further note that the MPC building blocks for
computing fgt() and feq() proposed by [22] offer sublinear runtime as long as an
upper bound < n for both input values a and b is known; hence, performance
drastically increases as long as a, b are known to remain small. This, in turn,
also improves performance of MPC protocols based on these two building blocks,
including the MPC building block for computing fmax() [14].

3 New MPC Building Blocks

In this section, based on the primitives introduced in Section 2, we describe
several new publicly verifiable MPC building blocks that we need for constructing
our PMPC, with full details provided in [25]. We note that these building blocks
are of independent interest.

Election methods for parliamentary elections often make use of divisions that
produce fractions, which is an issue for encryption schemes and MPC protocols
which operate on natural numbers, such as those from Section 2. One common
approach [9, 14] to deal with this is to multiply all values by the least common
multiple of all divisors used in a computation such that divisions are guaran-
teed to always produce natural numbers. This can drastically increase the size
of numbers, which in turn severely reduces the efficiency gain of the sublin-
ear comparisons protocols fgt(), feq() from Section 2. Therefore, we instead take
an alternative approach to deal with fractions by representing our values, where
needed, as rational numbers consisting of a numerator n and denominator d. En-
crypted rational numbers are denoted as Efrac

pk (a) := (Epk(a.n), Epk(a.d)) where
a.n is the numerator and a.d the denominator of a. We denote by Fraction(n, d)
the operation that creates an encrypted rational number with numerator n and
denominator d (if the inputs n and/or d are not already encrypted, then they are
first encrypted with public constant randomness). Based on this representation,
we design and implement MPC components for basic arithmetic computations
on encrypted rational numbers, including addition, multiplication, and compar-
isons.

Based on fmax() (see Section 2), we propose the method getMaxFraction

that takes a list of k encrypted fractions and returns another list of the same
length with Epk(1) at the index of the maximal fraction and Epk(0) everywhere
else, where if there are multiple maxima, only the last one in the list is marked
Epk(1).

Election methods often need to deal with breaking ties. For this purpose,
Cortier et al. [9] proposed an algorithm that finds the maximum in a list and
additionally takes care of tie-breaking by scaling values and adding small tie-
breaking values. While this scaling idea is conceptually simple, care must be
taken to obtain a correct implementation. As we discuss in the full version [25],
we found cases where directly applying the tie-breaking mechanism described
in [9] in our setting, where fractions are represened by their numerator and de-
nominator, which leads to an incorrect output. We address this problem in our
implementation getMaxFractionByRank shown in Figure 1. This algorithm ad-

8 C. Wabartha et al.

procedure getMaxFractionByRank(l = (Efrac
pk (vi))

k
i=1, k, r = (Epk(ri))

k
i=1)

Efrac
pk (c max val) = Efrac

pk (v1)

Epk(c max idx) = Epk(1)
Epk(c max r) = Epk(r1)
for i = 2, . . . , k do

Epk(mmax) = Efrac
pk (c max val) ⊙ Epk(c max val.d) ⊙ Epk(vi.d) ⊙ k ⊕ Epk(c max r)

Epk(mi) = Efrac
pk (vi) ⊙ Epk(vi.d) ⊙ Epk(c max val.d) ⊙ k ⊕ Epk(ri)

Epk(set) = fgt(Epk(mi), Epk(mmax))
Epk(c max val) = Epk(set) ⊙ Epk(vi) ⊕ (1 − Epk(set)) ⊙ Epk(c max val)
Epk(c max idx) = Epk(set) ⊙ Epk(i) ⊕ (1 − Epk(set)) ⊙ Epk(c max idx)
Epk(c max r) = Epk(set) ⊙ Epk(ri) ⊕ (1 − Epk(set)) ⊙ Epk(c max r)

result = (feq(Epk(i), Epk(c max idx)))ki=1
return result

Fig. 1: Algorithm to find a maximum in a list of fractions, including tie breaking
by rank.

procedure FloorDivision(Epk(a), Epk(b), u)
length = bitLength(u)
Epk(lower) = Epk(0)
for i = 1, . . . , length do

Epk(j) = Epk(lower) ⊕ Epk(2
length−i)

Epk(gt) = fgt(Epk(a), Epk(j) ⊙ Epk(b))

Epk(lower) = Epk(lower) ⊕ (2length−i ⊙ Epk(gt))

return Epk(lower)

Fig. 2: Floor Division to calculate Epk(
⌊
a
b

⌋
) where u is a known upper bound.

ditionally takes encrypted ranks r = (Epk(ri))
k
i=1 as input, where the (r1, . . . , rk)

form a permutation of 0, . . . , k−1, and first scales all ciphertexts qi by a certain
value, adds the encrypted ranking ri to the scaled qi, and then continues just as
getMaxFraction. By the scaling the addition of ri does not change the output
if the qi are not tied. But, if any of the inputs qi are equal, then the party with
the highest rank ri will have the greater (encrypted) value after the addition.

Finally, in Figure 2 we introduce a new MPC algorithm for computing the
floor division Epk(

⌊
a
b

⌋
) from two encrypted natural numbers Epk(a), Epk(b) and

a publicly known upper bound u ≥
⌊
a
b

⌋
of the result. Compared to the floor

division MPC algorithm presented in [14], we require u but can be much more
efficient by performing a binary search instead of iterating over a full set of
values.

4 MPC Protocol for the Sainte-Laguë Method

The Sainte-Laguë method (also called Webster method) is a seat allocation
method, i.e., a procedure that describes how a given number of seats is al-
located to a set of parties depending on the number of votes each party has
received. The Sainte-Laguë method is used by parliamentary elections in many
countries, for example, Indonesia, New Zealand, Nepal, Sweden, Norway, Ger-
many, and Kosovo. As part of computing the election result, these elections run
the Sainte-Laguë method multiple times on different inputs. For example, the

Tally-Hiding E-Voting for Real-World Elections with Seat-Allocations 9

official evaluation of the final seat distribution of the German Bundestag of the
election in 2021 required running the Sainte-Laguë method 23 times (in addition
to several other steps, as explained in Section 1). Hence, in order to obtain an
efficient tally-hiding voting system for these elections, it is crucial to design a
heavily optimized MPC component for computing the Sainte-Laguë method. In
this section, we first give both a general overview of the Sainte-Laguë method
and then present our efficient tally-hiding MPC algorithm, including several op-
timizations and variations.

4.1 Computing a Sainte-Laguë Distribution

There are essentially two distinct (but provably equivalent [21]) algorithms for
computing the seat allocation following the Sainte-Laguë method, one based on
highest quotients and one on finding suitable denominators. Both algorithms
take as input the number of seats nseats to be distributed and, for each party
j ∈ [nparties], the total number of votes nj

votes that party j has received. They
return the number of seats assigned to each party.

– Highest-Quotients. For i ∈ [nseats], j ∈ [nparties] compute the quotients

qji :=
nj
votes

2i+1 . Let M be the list of the nseats highest quotients. Then party j
is assigned k seats, where k is the number of quotients in M that belong to
j, i.e., quotients of the form qji , i ∈ [nseats].

– Suitable-Denominator.Given a suitable denominator d, the number nj
seats

of seats assigned to party j is computed as nj
seats = ⌊nj

votes

d ⌉, where ⌊·⌉ denotes
rounding to the closest integer (rounding of .5 can be chosen to be either
up or down and can be chosen differently for each j). A denominator d is
suitable if the result of this computation leads to the number of desired total
seats, i.e., if

∑
j n

j
seats = nseats. To find a suitable denominator, one generally

starts with an arbitrary denominator d, e.g., d =

⌊∑
j nj

votes

nseats

⌉
, checks the

corresponding number of seats that would be assigned, and then tweaks d
until a suitable value has been found.

For both algorithms, there might be ties that would need to be resolved. E.g., in
the highest-quotients algorithm, there might be two equal quotients while there
is only enough space left in M for one of them. In the suitable-denominator
algorithm, it can happen that all suitable denominators are such that the quo-
tients of multiple parties end on .5 and some of which need to be rounded up
while others need to be rounded down to achieve an overall sum of nseats. The
Sainte-Laguë method does not define any specific tie-breaking mechanism. In-
stead, elections using this method additionally need to specify how they handle
ties.

10 C. Wabartha et al.

1: procedure AddSeatBasic((q = Efrac
pk (qjcurrent))

nparties−1

j=0 , s = (Epk(n
j
seats))

nparties−1

j=0)

2: t = (Epk(mj))
nparties−1

j=0 = getMaxFraction(q)

3: for j ∈ [nparties] do
4: d = Epk(qj .d) ⊕ 2 ⊙ tj
5: qj = Fraction(Epk(qj .n), d) ▷ Update q
6: sj = sj ⊕ tj ▷ Update seats (s)

7: return q, s

Fig. 3: One iteration step of SLQBasic.

4.2 Tally-Hiding MPC Realization of Sainte-Laguë

We want to construct a tally-hiding MPC component that takes as inputs
Epk(n

j
votes) for each party as well as publicly known values nparties and nseats

4,

and computes the encrypted Sainte-Laguë seat distribution Epk(n
j
seats). As an

initial insight, we observe that basing the MPC protocol on the suitable-denominator
algorithm is generally very inefficient: This algorithm has to iterate over several
potential denominators d until a suitable one is found. Since the number of it-
erations required to find d would reveal non-trivial information about the secret
inputs, the MPC protocol would rather have to be constructed such that it al-
ways uses an apriori fixed number m of iterations (some of which will discard
their results if a suitable divisor has already been found by a previous iteration)
where m must be chosen sufficiently large such that, for all possible input se-
quences, a suitable divisor d is guaranteed to always be found. This worst case
approximation introduces a lot of additional overhead.

Therefore, we have constructed a basic tally-hiding MPC realization SLQBasic
of the Sainte-Laguë method following the highest-quotients approach: each party
j is assigned its current quotient qcurrent (see the description of the highest-
quotients algorithm) and seats nj

seats thus far. Figure 3 shows this excerpt of
a single iteration step. Note that this SLQBasic uses the fast getMaxFraction
algorithm in all iterations, and hence, breaks ties via a fixed mechanism that
always assigns the seat to the party with the highest index j.

Support for Breaking Ties by Lot. Many elections use more involved
tie-breaking algorithms than the default one implemented by SLQBasic. For
example, for many parliamentary elections, e.g., elections in Indonesia, Swe-
den, and Germany, whenever several parties are tied for a seat, then a new lot
is drawn to resolve the tie. A more general tally-hiding MPC implementation
SLQCustomTiebreaking for this election does not only have to support this tie-
breaking mechanism but also has to keep secret whether any lots were drawn
and what the result was. In particular, to build such a SLQCustomTiebreaking we
need to first extend/modify the iteration step AddSeatBasic shown in Figure 3,
obtaining a new subroutine AddSeatTieBreaking which takes as additional input

4 As we explain in our full version [25], all MPC algorithms presented in this and the
next section can be extended to run with a secret number of seats nseats, as long as
an upper limit of seats is known.

Tally-Hiding E-Voting for Real-World Elections with Seat-Allocations 11

an encrypted ranking of parties r = (Epk(r0), . . . , Epk(rnparties−1)) where r is a
uniformly chosen permutation of 0, . . . , nparties − 1, and then resolves ties based
on that ranking.

We construct AddSeatTieBreaking by making use of getMaxFractionByRank
as presented in Section 3. That is, we replace the call to getMaxFraction in
Line 2 of AddSeatBasic by our algorithm getMaxFractionByRank which takes
as additional input the ranking r. Based on this AddSeatTieBreaking, we have
constructed two versions of a SLQCustomTiebreaking MPC component which
implement Sainte-Laguë. In essence, these MPC components first compute, in
each iteration, an encrypted ranking r that encodes the result of tie-breaking and
then use AddSeatTieBreaking with that r. There are two main optimizations that
we introduce in both cases: First, for tie-breaking by lot, we run a distributed
randomness generation protocol [22] for each iteration to then compute r based
on the results. Since this step is input/vote independent, it can be pre-computed
even before the election. Secondly, observe that if a tie occurs between m parties
in one iteration of the quotient approach while there are at least m seats to be
distributed, then all parties in the tie will obtain a seat in the next m iterations,
i.e., it does not actually matter how this tie is broken. Hence, only ties during
the last nparties − 1 iterations need to be handled by AddSeatTieBreaking, while
otherwise we use the faster AddSeatBasic algorithm.

4.3 Sainte-Laguë based on Floor Division

While our MPC algorithms SLQBasic and SLQCustomTiebreaking based on the
highest-quotients approach are already practical in terms of efficiency, they al-
ways use nseats iterations to assign all seats and thus do not scale overly well
for elections where a high number of seats nseats needs to be allocated. To im-
prove performance in such cases, we propose a new algorithm for computing
the Sainte-Laguë method which we call floor division method. Our floor divi-
sion method is different from the highest-quotient and the suitable-denominator
methods and allows us to construct an MPC component, called SLQFloorDiv,
that requires nparties instead of nseats many iterations, and thus, is more efficient
in the common case that the number of seats exceeds the number of parties. In
what follows, we first present the floor division method and then describe our
MPC component SLQFloorDiv.

Description of our Method. Intuitively, the main idea of our floor division
method is to replace the initial iterations and hence seat assignments of the
quotient method by computing an under- and an overestimation of the final seat
allocation, and then run only the final (at most nparties many) iterations of the
quotient method to add/remove a seat from both of these initial estimations
until exactly nseats many seats are assigned. As we prove one of the resulting
final seat distributions will be the correct Sainte-Laguë distribution, and it can
be determined efficiently which one is correct.

Concretely, for each party j compute mj := ⌊nj
votes·nseats

nvotes
⌋. For the under-

estimation case, we start by assigning mj seats to party j. Note that smin
initial :=

12 C. Wabartha et al.∑
j∈[nparties]

mj might be smaller than nseats, but not smaller than nseats−nparties.
Hence, in order to distribute exactly nseats seats in total, we distribute the re-
maining nseats − smin

initial (≤ nparties) seats to the parties by executing the final
iterations of the highest-quotients method (and the desired tie-breaking mecha-

nism). That is, starting from the intermediate quotients qjmj
:=

nj
votes

2mj+1 instead

of starting from the initial qj0 for each party j. For the overestimation case, we
start by assigning mj +1 seats to party j, which might result in at most nparties

additional seats being assigned beyond the desired total of nseats. To remove
those seats, we use a reverse variant of the highest-quotients algorithm. For this
purpose, we again initialize the quotients as qjmj

and then, in each iteration
step, determine the minimal current quotient and remove a seat from the cor-
responding party (using the desired tie-breaking mechanism). Then, we update
the quotient of that party by reducing the denominator by 2.5 This continues
until only a total of nseats seats is distributed.

Finally, to figure out which result is the correct Sainte-Laguë distribution,
we evaluate the underestimation case an additional time to compute the next
seat that would be assigned. If the corresponding quotient is less than all the
initial quotients qjmj

of the underestimation, then the result computed based
on the underestimation is the correct seat distribution. Otherwise, the result
computed based on the overestimation is the correct seat distribution. In the
full version [25], we show the following result for our algorithm:

Lemma 1 (Correctness of SLQFloorDiv). The algorithm SLQFloorDiv as pre-
sented above is correct, i.e., always outputs the seat allocation according to the
Sainte-Laguë method with the desired tie-breaking.

Tally-Hiding MPC Component. Using our building blocks described in Sec-
tion 3 and the other building blocks from Section 2, most of our tally-hiding
MPC protocol for computing the above algorithm for Sainte-Laguë is straight-
forward. The main issue left to be solved is that the number of iterations that our
algorithm needs to add/subtract seats from the MPC protocol reveals initial seat
assignment (this would reveal non-trivial information about the inputs/votes).
We solve this by always using nparties iterations in our MPC protocol, which is
an upper bound on the number of iterations that are needed.

Our benchmarks of single runs of the Sainte-Laguë algorithms show that this
variant of the Sainte-Laguë method is indeed faster than SLQCustomTiebreaking
for larger numbers of seats and smaller numbers of parties. For example, we
have the following runtime for ten parties: To distribute 60 resp. 100 seats using
SLQCustomTiebreaking, the runtime is 6.7h resp. 12.6h while SLQFloorDiv only
needs 4.7h resp. 5h. However, for smaller numbers of, say, 20 seats, SLQCustomTiebreaking
is faster with 1.6h instead of SLQFloorDiv, which needs 4.6h. We compare bench-
marks for further values of nseats and nparties in Appendix A.2.

5 It might happen that all mj +1 seats are removed from a party j. In that case, this
party is ignored in the following iterations. Note that this special case is non-trivial
to implement in our SLQFloorDiv MPC component since we cannot reveal the values
mj or the quotients.

Tally-Hiding E-Voting for Real-World Elections with Seat-Allocations 13

5 Election of the German Parliament (Bundestag)

The election of the German federal parliament, the Bundestag, which consists of
at least 598 seats is a combination of proportional representation and first-past-
the-post voting. Each voter has two votes: a constituency vote (called first vote)
given towards an individual candidate, who is typically but not necessarily also
a member of a party, and a vote for state-specific party lists (called second vote)
which determines the proportions of parties in the parliament. The first votes
are evaluated for each of the 299 constituencies individually: The candidate with
the most votes wins the constituency and is guaranteed a seat in the parliament,
called a direct mandate.6 Each constituency belongs to exactly one of the 16
German states, say state l ∈ L where L is the set of all states. We denote by sdj,l
the total number of direct mandates that candidates of party j win in state l.

Let vj,l be the number of second votes for party j in state l and vj :=
∑

l∈L vj,l
the total number of second votes for party j. In the next step, the baseline of 598
seats of the parliament are assigned to the states in proportion to their number
of inhabitants; we call this the first top distribution and refer to these seats as
state seats. A party j can obtain state seats if vj is at least 5% of all second votes,
j has obtained at least

∑
l∈L sdj,l ≥ 3 direct mandates, or j represents a special

minority. Let S be the set of parties that are allowed to obtain state seats. Then,
for each state l, the state seats are assigned to parties j ∈ S following the Sainte-
Laguë method based on vj,l. The resulting seats are called quota seats, denoted
by sqj,l for party j and state l. We call this distribution the first low distribution. It
usually happens in several states l that a party j ∈ S wins more direct mandates
and hence guaranteed seats for their candidates than the party actually receives
in terms of quota seats, i.e., sdj,l > sqj,l. In such cases, the overall size of the
parliament is increased, and the seat assignment to parties is updated such that
(i) parties have enough seats for all their candidates with direct mandates and
(ii) the number of seats given to party j in the final parliament is “close” to
the Sainte-Laguë seat distribution based on vj (up to 3 additional seats, called
overhang seats, are tolerated). This is computed via the following procedure.

Let smin
j :=

∑
l∈L

(
max(⌈ sdj,l+sqj,l

2 ⌉, sdj,l)
)

be a lower bound for the seats

that party j ∈ S will receive. Compute dno := minj∈S

(
vj

smin
j −0.5

)
. Then, for

each party j ∈ S, it is determined whether there is a state l ∈ L such that
t(j, l) := sdj,l − sqj,l > 0. This value is also called the threatening overhang of
party j in state l. Based on these values, one computes a set of divisors: Doverh =
{ vj
smin
j −i

| i ∈ {0.5, 1.5, 2.5, 3.5}, j ∈ S and ∃l : t(j, l) > 0, t(j, l) + 1 > i}. Let
doverh be the fourth smallest element of Doverh and set d := min(dno, doverh).

Then, as in the suitable-denominator algorithm (c.f. Section 4), party j ∈ S

receives nj
seats := ⌊nj

votes

d ⌉ seats, where .5 is always rounded up, i.e., in this step,

6 Ties for the first place and hence the direct mandate are resolved by lot. Ties in any
of the following iterations of the Sainte-Laguë method are also resolved by lot with
one exception discussed below.

14 C. Wabartha et al.

ties are resolved by giving every tied party a seat. The resulting distribution is
called the second top distribution. Next, for each party j ∈ S, these nj

seats are
assigned to individual states following the Sainte-Laguë method weighted by vj,l,
resulting in the second low distribution.

In addition to those nj
seats seats, (some) parties further receive αj := smin

j −
nj
seats(≤ 3) overhang seats to cover a possibly remaining surplus of direct man-

dates. These overhang seats are then also distributed to states according to
the smallest αj many values from the following set: Oj

overh = { vj,l
smin
j,l −i

| i ∈
{0.5, 1.5, 2.5}, l ∈ L, i < αj}.

All seats assigned to party j ∈ S in state l are then assigned to candidates as
follows. First, candidates of party j that won a direct mandate in a constituency
of state l obtain a seat. The remaining seats, if any, are assigned to the party
candidate list for that state, starting with the first one and skipping any can-
didates that have already obtained a direct mandate. Finally, if there are any
direct mandates for candidates that do not belong to a party from S, then each
of these candidates receives a seat that is added to the parliament. The resulting
set of seats defines the updated size of the parliament.

Our Tally-Hiding Realization. We construct our e-voting system by fol-
lowing the general Ordinos approach, except for one difference. The original
Ordinos framework proposed in [19] was designed for elections without elec-
toral constituencies or with just a single constituency where all votes are treated
equally. We capture the existence of several constituencies in the German par-
liamentary elections, where the result also depends on the constituency that a
vote was submitted in, via the following small changes: The list of eligible voters
that is published during the setup phase now additionally assigns each voter
to a constituency. Ballots are extended to additionally contain (in plain) the
identifier of the constituency they were cast in such that everyone can check
whether ballots were cast for the correct constituency. Encrypted ballots are
aggregated per constituency and then evaluated via (the MPC component for)
fres. We note that this difference in settings also slightly changes the meaning of
full tally-hiding: For elections without electoral constituencies, only the number
of submitted votes (since this is public on B) and the final result become known.
In the setting with electoral constituencies, only the number of submitted votes
per constituency and the final result becomes known. As part of our security
proof (cf. Theorem 2), we define full tally-hiding for our setting and verify that
the original proofs of Theorem 1 carry over in a natural way to our setting using
the same preconditions.

We hence instantiate the (modified) Ordinos approach for the German elec-
tion by using the threshold Paillier encryption scheme E , choice space Csingle ×
Csingle, standard NIZKPs πKeyShareGen and πEnc [10] and any standard EUF-CMA-
secure signature scheme from the literature, result function fres-Ger for the Ger-
man parliamentary election as described above, and importantly our new MPC
protocol PMPC-Ger for fres-Ger described next.

Constructing PMPC-Ger. We have constructed PMPC-Ger using the components
from Sections 2 and 3 to compute the full evaluation procedure for German par-

Tally-Hiding E-Voting for Real-World Elections with Seat-Allocations 15

liament, as described above. This includes all small details and special cases, e.g.,
computing and changing the final parliament size, determining and distributing
up to 3 overhang seats per party, and exempting parties from obtaining state
seats iff they did not win 5% of the total second votes, won less than 3 direct
mandates, and are not representing a special minority.

Of course, capturing the full complexity of the election evaluation of the Ger-
man parliament in an MPC protocol PMPC-Ger comes at a hefty cost in terms of
performance and hence runs the risk of becoming impractical. We have therefore
spent considerable effort into carefully optimizing PMPC-Ger by, among others,
the following: (i) Computing the election result requires multiple iterations of
Sainte-Laguë. We use both SLQCustomTiebreaking and SLQFloorDiv, depending
on the number of seats and candidates that has to be processed in the current it-
eration. (ii) We have constructed PMPC-Ger in such a way that, as far as possible,
substeps such as repeated state-wise operations can be computed in parallel. We
have performed benchmarks for various numbers of threads, which demonstrate
that this is a major factor in improving performance, see Table 1. (iii) We first
compute and reveal the set of parties that will obtain at least one seat in the
parliament. This allows us to tailor the following computations to this specific
set of parties and thus save time by not having to perform the same operations
for (dozens of) parties that will not obtain a seat. As part of Theorem 2, we argue
that this construction is still a secure MPC protocol as, intuitively, the interme-
diate output can be computed from/is part of the final result. (iv) By proposing
a different algorithm for computing the final number of seats for each party in
the German parliament based on an encrypted divisor d = min(dno, doverh), we
can use an efficient binary search on encrypted data to obtain this value.

We provide full details of PMPC-Ger, including all of our optimizations in the
full version [25]. We have the following:

Theorem 2 (Security). Let PMPC-Ger be our MPC protocol from above. Then,
the Ordinos instance using the components mentioned above is a verifiable7 and
fully tally-hiding e-voting system for the election of the German parliament.

We prove this theorem in the full version [25]. As part of this, we define full
tally-hiding for elections with constituencies, re-verify the original proofs of the
Ordinos framework for our setting, and show that our PMPC-Ger is a secure,
publicly verifiable MPC protocol for fres-Ger.

Benchmarks: We have benchmarked our system using the election data for
the German parliament in 2021 available at [11]. This election had 61, 181, 072
eligible voters, 46, 854, 508 valid submitted ballots, and 47 parties with 6211
candidates running in 299 constituencies. With each trustee running on an ES-
PRIMO Q957 (64bit, i5-7500T CPU @ 2.70GHz, 16 GB RAM) using 8 cores,
we can evaluate (and verify, as explained in Appendix A.4) the German parlia-

7 We actually show that our voting system achieves the stronger notion of account-
ability as well. That is, if the result turns out to be incorrect, then a misbehaving
party causing this mistake can be identified and be held accountable.

16 C. Wabartha et al.

mentary elections based on this real-world data in about a day. For more details
on our setup and further benchmarks,see Appendix A and our full version [25].

6 Related Work and Conclusion

Various tally-hiding e-voting systems for a wide variety of election types have
been proposed so far, e.g., [4,5,9,12,14,15,19,23,27]. For simple types of elections
such as single vote (every voter submits a single vote for the candidate of their
choice with the winner(s) being the candidate(s) with the most votes), it has been
demonstrated that they can be performed in a verifiable tally-hiding manner,
even at a large scale (see, e.g., [9,14,15,19]). However, many real-world elections,
notably political ones, are much more complex and have proven to be a challenge
for tally-hiding systems.

Preferential Elections: An important class of complex real-world elections
are preferential ones. Tally hiding has already been studied for several voting
methods from this class, with such systems typically being viable at a small to
medium scale but often being impractical for large-scale applications. For ex-
ample: (i) Recent advances in tally-hiding e-voting have managed to support
instant-runoff voting (IRV) for small numbers of candidates [15, 23]. However,
none of these systems remain practical for more than 6 candidates. (ii) Cortier
et. al [9] have proposed the first MPC component that can be used to construct a
fully tally-hiding voting system for single transferable vote (STV), a preferential
voting method somewhat similar to IRV. However, they state that the compu-
tational cost of the resulting system would be too high for large-scale elections.
(iii) For the Condorcet Schulze election scheme, Hertel et.al. [14] proposed an
Ordinos instantiation that can handle small numbers of candidates, however,
already needs about 9 days to compute an election result for 20 candidates (and
essentially arbitrary numbers of voters). Cortier et. al [9] proposed an alternative
tally-hiding MPC component for computing Condorcet Schulze, which is faster
for small numbers of voters but can be extrapolated to also require 9 days for
20 candidates as soon as there are ∼32.000 voters.

Parliamentary Elections With Party-Based Seat Allocations: As al-
ready explained in the introduction, prior to our work, it had not been investi-
gated for any election from this class, whether and in how far, it can be performed
in a tally-hiding manner. In this work, we have proposed several new tally-hiding
building blocks, as well as the first verifiable tally-hiding voting system for an
election from this class, namely, the German parliament. Our results serve as
an important foundational feasibility study, which, perhaps surprisingly and for
the first time, demonstrates that even such a complex and large-scale real-world
election can, in principle be performed in a verifiable fully tally-hiding manner.
It is interesting future work to use our building blocks and ideas to construct
tally-hiding voting systems for further elections from this class.

Acknowledgements: This research was supported by the DFG through
grant KU 1434/11-1, by the Carl Zeiss Foundation, and by the Centre for Inte-
grated Quantum Science and Technology (IQST).

Tally-Hiding E-Voting for Real-World Elections with Seat-Allocations 17

A Appendix

A.1 Details of the Setup for our Benchmarks

We use a Paillier key of size 2048 bits. The setup for our benchmarks consists
of three trustees communicating over a local network. Each trustee ran on an
ESPRIMO Q957 (64bit, i5-7500T CPU @ 2.70GHz, 16 GB RAM). As in [19],
the benchmarks of our MPC protocols start with an already aggregated tally.
Küsters et al. [19] showed for the MPC protocols in their Ordinos instances that
the number of trustees does not influence the benchmarks in a noticeable way
and that, due to the sublinear communication complexity of the comparison
protocols, there is no significant difference between a local network and the
Internet. Since our MPC protocols are based on the same primitives and basic
building blocks as used by [19], the same is also true for our MPC protocols. Our
benchmarks therefore focus mostly on the number of candidates/parties which
is the main factor for the performance of our protocols.

A.2 Comparison of SLQCustomTiebreaking and SLQFloorDiv

We present benchmarks for both SLQFloorDiv and SLQCustomTiebreaking (cf.
Section 4) in Figure 4. As the figure shows, SLQCustomTiebreaking is linear in
the number of seats. While SLQFloorDiv has a larger overhead depending on the
number of parties, it is nearly constant in the number of seats.

20 30 40 50 60 70 80 90 100
Number of Seats

0

2

4

6

8

10

12

Ti
m

e
[h

]

Runtime of the SLQCustomTiebreaking Algorithm
2 parties
4 parties
6 parties
8 parties
10 parties

20 30 40 50 60 70 80 90 100
Number of Seats

0

1

2

3

4

5

Ti
m

e
[h

]

Runtime of the SLQFloorDiv Algorithm
2 parties
4 parties
6 parties
8 parties
10 parties

Fig. 4: Benchmarks for one execution of SLQFloorDiv and SLQCustomTiebreaking
from Section 4.

A.3 Benchmarks of the Evaluation of the Elections for the German
Bundestag in 2021

In Table 1 we present our benchmarks of the evaluation of the elections for
the German Bundestag in 2021 using real-world data available at [11]. Each
row in the table represents one main step of the algorithm, where each of these
main steps is executed in sequence. Within each individual step, it is possible

18 C. Wabartha et al.

Threads per Trustee 1 2 4 8 16 32

Single-member constituency seats 40.03 h 20.04 h 10.06 h 5.06 h 2.56 h 1.32 h

Determine which parties enter the Bundestag 71 min 36 min 18 min 9 min 5 min 3 min

First low distribution 23.38 h 11.77 h 6.07 h 3.25 h 1.82 h 1.1 h

Minimal number of seats per party 11.68 h 5.84 h 2.93 h 1.46 h 0.74 h 0.36 h

Second top distribution 2.81 h 2.0 h 1.42 h 1.19 h 1.19 h 1.19 h

Second low distribution 77.06 h 38.53 h 19.4 h 12.34 h 6.3 h 5.93 h

Assigning overhang seats 6.67 h 3.33 h 2.2 h 1.14 h 1.14 h 1.14 h

Computing the final result 4 min 2 min 1 min 1 min 0 min 0 min

Total Runtime 163 h 82 h 42 h 24.3 h 13.8 h 11.1 h

Table 1: Benchmarks of the election for the German Bundestag in 2021 using real-
world data available at [11] with different numbers of available parallel threads
for each trustee.

to leverage parallelism. We show the resulting runtime for various numbers of
threads/cpu cores. Further benchmarks are presented in the full version [25].

A.4 Verification of the Election

Verification of an election following the Ordinos approach essentially consists of
two main tasks: Firstly, checking the correctness of the ballots submitted to B
including verification of the ballot NIZKPs πEnc for the choice space. Secondly,
verifying that the MPC protocol PMPC was executed correctly.

The first task can be performed on the fly for each new ballot submitted to B
while the election is still running. Notably, we use a NIZKP πEnc from [10] that
is standard and employed by many e-voting systems since it is very efficient and
fast to verify. The second step requires checking certain data, including further
NIZKPs, that is published on B while PMPC-Ger is running. Notably, all trustees
also perform all of the same verification checks as part of running PMPC-Ger.
Hence, not only is it possible for an external observer to perform verification of
PMPC-Ger in parallel to PMPC-Ger being executed. An external observer will also
be done with this verification as soon as the end result is returned by PMPC-Ger

because he has to perform strictly less work than the trustees running PMPC-Ger.
We therefore only had to benchmark the runtime of PMPC-Ger to obtain the
overall time for both computing and verifying the election result of our system
proposed in Section 5.

Tally-Hiding E-Voting for Real-World Elections with Seat-Allocations 19

References

1. Adida, B.: Helios: Web-based Open-Audit Voting. In: Proceedings of the 17th
USENIX Security Symposium. pp. 335–348. USENIX Association (2008)

2. Benaloh, J.: Verifiable Secret Ballot Elections. Ph.D. thesis, Yale University (1987)

3. Benaloh, J., Byrne, M.D., Eakin, B., Kortum, P.T., McBurnett, N., Pereira,
O., Stark, P.B., Wallach, D.S., Fisher, G., Montoya, J., Parker, M., Winn, M.:
Star-vote: A secure, transparent, auditable, and reliable voting system. In: 2013
Electronic Voting Technology Workshop / Workshop on Trustworthy Elections,
EVT/WOTE ’13. USENIX Association (2013)

4. Benaloh, J., Moran, T., Naish, L., Ramchen, K., Teague, V.: Shuffle-Sum: Coercion-
Resistant Verifiable Tallying for STV Voting. IEEE Transactions on Information
Forensics and Security 4(4), 685–698 (2009). https://doi.org/10.1109/TIFS.

2009.2033757

5. Canard, S., Pointcheval, D., Santos, Q., Traoré, J.: Practical Strategy-Resistant
Privacy-Preserving Elections. In: Computer Security - ESORICS 2018. Lecture
Notes in Computer Science, vol. 11099, pp. 331–349. Springer (2018). https://
doi.org/10.1007/978-3-319-98989-1_17

6. Chaum, D., Carback, R., Clark, J., Essex, A., Popoveniuc, S., Rivest, R.L.,
Ryan, P.Y.A., Shen, E., Sherman, A.T.: Scantegrity II: end-to-end verifiabil-
ity for optical scan election systems using invisible ink confirmation codes. In:
2008 USENIX/ACCURATE Electronic Voting Workshop, EVT 2008, Proceedings.
USENIX Association (2008)

7. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a Secure Voting System.
In: 2008 IEEE Symposium on Security and Privacy (S&P 2008). pp. 354–368. IEEE
Computer Society (2008). https://doi.org/10.1109/SP.2008.32

8. Cortier, V., Galindo, D., Glondu, S., Izabachène, M.: Election Verifiability for
Helios under Weaker Trust Assumptions. In: Computer Security - ESORICS 2014.
Proceedings, Part II. Lecture Notes in Computer Science, vol. 8713, pp. 327–344.
Springer (2014). https://doi.org/10.1007/978-3-319-11212-1_19

9. Cortier, V., Gaudry, P., Yang, Q.: A Toolbox for Verifiable Tally-Hiding E-Voting
Systems. In: Computer Security - ESORICS 2022. Lecture Notes in Computer
Science, vol. 13555, pp. 631–652. Springer (2022). https://doi.org/10.1007/

978-3-031-17146-8_31

10. Damg̊ard, I., Jurik, M., Nielsen, J.B.: A generalization of Paillier’s public-key sys-
tem with applications to electronic voting. International Journal of Information
Security 9(6), 371–385 (2010). https://doi.org/s10207-010-0119-9

11. Der Bundeswahlleiter: Wahl zum 20. Deutschen Bundestag am 26. Septem-
ber 2021: Heft 3 Endgültige Ergebnisse nach Wahlkreisen (2021), https:

//bundeswahlleiter.de/dam/jcr/cbceef6c-19ec-437b-a894-3611be8ae886/

btw21_heft3.pdf, https://www.bundeswahlleiter.de/bundestagswahlen/

2021/ergebnisse/opendata/csv/

12. Haines, T., Pattinson, D., Tiwari, M.: Verifiable Homomorphic Tallying for the
Schulze Vote Counting Scheme. In: Verified Software. Theories, Tools, and Exper-
iments - VSTTE 2019. Lecture Notes in Computer Science, vol. 12031, pp. 36–53.
Springer (2019). https://doi.org/10.1007/978-3-030-41600-3_4

13. Heather, J.: Implementing STV securely in Prêt à Voter. In: IEEE 20th Computer
Security Foundations Symposium (CSF 2007). pp. 157–169. IEEE Computer So-
ciety (2007). https://doi.org/10.1109/CSF.2007.22

20 C. Wabartha et al.

14. Hertel, F., Huber, N., Kittelberger, J., Küsters, R., Liedtke, J., Rausch, D.: Extend-
ing the Tally-Hiding Ordinos System: Implementations for Borda, Hare-Niemeyer,
Condorcet, and Instant-Runoff Voting. In: Electronic Voting - 6th International
Joint Conference, E-Vote-ID 2021, Proceedings. pp. 269—-284. University of Tartu
Press (2021)

15. Huber, N., Küsters, R., Krips, T., Liedtke, J., Müller, J., Rausch, D., Reisert, P.,
Vogt, A.: Kryvos: Publicly Tally-Hiding Verifiable E-Voting. In: CCS 2022. pp.
1443–1457. ACM (2022). https://doi.org/10.1145/3548606.3560701

16. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant Electronic Elections.
In: Proceedings of the 2005 ACM Workshop on Privacy in the Electronic Soci-
ety, WPES 2005. pp. 61–70. ACM (2005). https://doi.org/10.1145/1102199.
1102213

17. Kiayias, A., Zacharias, T., Zhang, B.: DEMOS-2: Scalable E2E Verifiable Elections
without Random Oracles. In: CCS 2015. pp. 352–363. ACM (2015). https://doi.
org/10.1145/2810103.2813727

18. Kiayias, A., Zacharias, T., Zhang, B.: End-to-End Verifiable Elections in the Stan-
dard Model. In: Advances in Cryptology - EUROCRYPT 2015. Lecture Notes in
Computer Science, vol. 9057, pp. 468–498. Springer (2015). https://doi.org/10.
1007/978-3-662-46803-6_16

19. Küsters, R., Liedtke, J., Müller, J., Rausch, D., Vogt, A.: Ordinos: A Verifiable
Tally-Hiding E-Voting System. In: 2020 IEEE European Symposium on Security
and Privacy (EuroS&P 2020). pp. 216–235. IEEE Computer Society (2020). https:
//doi.org/10.1109/EuroSP48549.2020.00022

20. Küsters, R., Müller, J., Scapin, E., Truderung, T.: sElect: A Lightweight Verifiable
Remote Voting System. In: IEEE 29th Computer Security Foundations Symposium
(CSF 2016). pp. 341–354. IEEE Computer Society (2016). https://doi.org/10.
1109/CSF.2016.31

21. Lijphart, A.: Degrees of proportionality of proportional representation formulas.
RIVISTA ITALIANA DI SCIENZA POLITICA 13(2), 295–305 (1983)

22. Lipmaa, H., Toft, T.: Secure Equality and Greater-Than Tests with Sublinear
Online Complexity. In: Automata, Languages, and Programming, ICALP 2013.
Lecture Notes in Computer Science, vol. 7966, pp. 645–656. Springer (2013). https:
//doi.org/10.1007/978-3-642-39212-2_56

23. Ramchen, K., Culnane, C., Pereira, O., Teague, V.: Universally Verifiable MPC
and IRV Ballot Counting. In: Financial Cryptography and Data Security, FC
2019. Lecture Notes in Computer Science, vol. 11598, pp. 301–319. Springer (2019).
https://doi.org/10.1007/978-3-030-32101-7_19

24. Ryan, P.Y.A., Rønne, P.B., Iovino, V.: Selene: Voting with transparent verifiability
and coercion-mitigation. In: Financial Cryptography and Data Security, FC 2016.
Lecture Notes in Computer Science, vol. 9604, pp. 176–192. Springer (2016). https:
//doi.org/10.1007/978-3-662-53357-4_12

25. Wabartha, C., Liedtke, J., Huber, N., Rausch, D., Küsters, R.: Fully Tally-Hiding
Verifiable E-Voting for Real-World Elections with Seat-Allocations. Cryptology
ePrint Archive, Paper 2023/1289 (2023), https://eprint.iacr.org/2023/1289,
Full Version of this Paper

26. Wabartha, C., Liedtke, J., Huber, N., Rausch, D., Küsters, R.: Implementation of
our System. (2023), https://github.com/JulianLiedtke/ordinos-bundestag

27. Wen, R., Buckland, R.: Minimum Disclosure Counting for the Alternative Vote. In:
E-Voting and Identity, Second International Conference, VoteID 2009. Proceedings.
Lecture Notes in Computer Science, vol. 5767, pp. 122–140. Springer (2009). https:
//doi.org/10.1007/978-3-642-04135-8_8

