
Selecting Theories and Recursive Protocols?

Tomasz Truderung

LORIA-INRIA-Lorraine,FRANCE

Institute of Computer Science, Wrocław University,POLAND

Abstract. Many decidability results are known for non-recursive cryptographic
protocols, where the protocol steps can be expressed by simple rewriting rules.
Recently, a tree transducer-based model was proposed forrecursiveprotocols,
where the protocol steps involve some kind of recursive computations. This model
has, however, some limitations: (1) rules are assumed to have linear left-hand
sides (so no equality tests can be performed), (2) only finite amount of informa-
tion can be conveyed from one receive-send action to the next ones. It has been
proven that, in this model, relaxing these assumptions leads to undecidability.
In this paper, we propose a formalism, calledselecting theories, which extends
the standard non-recursive term rewriting model and allows participants to com-
pare and store arbitrary messages. This formalism can model recursive protocols,
where participants, in each protocol step, are able to send a number of messages
unbounded w.r.t. the size of the protocol. We prove that insecurity of protocols
with selecting theories is decidable inNEXPTIME.

1 Introduction

Formal verification of cryptographic protocols has been very successful in finding flaws
in published cryptographic protocols (see [14, 7] for an overview). Although the general
verification problem is undecidable [10, 1, 11], there are important decidable variants [9,
10, 16]. One of them is the insecurity problem of protocols analyzed w.r.t. a bounded
number of sessions, in presence of the so-called Dolev-Yao intruder [16, 6, 5, 8]. In
this case, one assumes that actions performed by participants during the course of the
protocol execution are simple and can be described by single rewrite rules of the form
t → s. Such a rule is intended to specify receive-send action of a principal who after
receiving a messagetθ, for some ground substitutionθ, repliessθ. However, in many
protocols, participants perform more complicated, recursive computations which cannot
be expressed by simple rewrite rules. Examples of protocols of this kind are Internet
Key Exchange Protocol (IKE), the Recursive Authentication (RA) protocol [4], and the
A-GDH.2 protocol [2]. We will call protocols that involve some kind of iterative or
recursive computationsrecursive protocols.

Recently, a tree transducer-based model was proposed for recursive protocols [13,
12]. Tree transducers seem to be a natural choice in the context of recursive cryp-
tographic protocols. The proposed model has, however, the following limitations: (1)
rules are assumed to have linear left-hand sides, so no equality tests can be performed,
? Partially supported by the RNTL project PROUVE-03V360 and by SATIN Project of ACI
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(2) only finite amount of information can be conveyed from one receive-send action to
the next ones. Moreover, these assumptions cannot be relaxed without losing decidabil-
ity. In some cases, these limitations can make modeling of protocols inconvenient or
even impossible. For example, the RA protocol, which was chosen in [13] and [12] to
illustrate the tree transducer-based protocol model, has rules with non-linear left-hand
sides and had to be slightly modified. It should be mentioned that both equality tests
for messages of arbitrary size and the possibility of storing arbitrary messages can be
easily expressed in the standard term rewriting-based model.

The goal of this paper is to provide a model which can express some recursive
computations, without limiting the possibility of compare and store messages. In fact,
in many cases the expression power of tree transducers is more than sufficient, so one
could ask, whether there is some restricted class of tree transducers which can be used
to model protocols, preserving the ability of parties to compare and store messages. One
can, however, prove that these assumption cannot be relaxed even, if we consider very
weak forms of tree transducers (or any similar formalism) which allow us to model the
following basic kinds of computations:
(a) list mapping— for an input which is an encoded list{[t1, . . . tn]}k, produce an

encoded list{[t′1, . . . , t′n]}k′ , where, for eachi = 1, . . . , n, the termt′i is the result
of applying some simple rewrite rule toti,

(b) mapping functional symbols— replace functional symbols of a given term with
functional symbols of the same arity, preserving the exact structure of the term
(distinct occurrences of a symbol need not be replaced with the same symbol).

The model presented in this paper can express recursive protocols, where participants,
in each protocol step, can send a number of messages unbounded w.r.t. the size of the
protocol. Each of these messages is the result of applying some simple rewriting rule to
some subterm of the messages received so far. So calledselecting theoriesare used to
determine which rewriting rule should be applied to which terms. Participants are able
to store and compare arbitrary messages, like in the case of standard term rewriting-
based approach. We assume that keys used in symmetric and public key encryption
are constants. Clearly, in our model, one cannot model computations described in the
items (a) and (b) above. One can, however, model actions like for instance: for a list
[t1, . . . , tn] produce and send the list[t′1, . . . , t

′
n], where, for eachi = 1, . . . , n, the

term t′i is the result of applying some simple rewrite rule toti. It is possible, because
from the point of view of the Dolev-Yao intruder, the effect of sending[t′1, . . . , t

′
n] is

the same as the effect of sending termst′1, . . . , t
′
n separately. The key fact here is that

the result list is not encrypted, which is the case, when protocols like IKE or RA are
considered. In the paper, we show how to model the RA protocol in our framework.
Because the formalism can express protocols with non-linear left-hand sides of rules,
we model this protocol without changes.

We prove that insecurity of protocols with selecting theories with respect to bounded
number of sessions decidable inNEXPTIME.

Structure of the paper. Section 2 contains some basic definitions. In Section 3, the
model is introduced. It is also showed how to model the RA protocol in the proposed
framework. Section 4 contains the proof of the main result of the paper, decidability of
protocols with selecting theories.
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2 Preliminaries

Let T (Σ, V ) denote the set of terms over the signatureΣ and the set of variablesV .
A term isground, if it does not contain variables. A (ground)substitutionis a mapping
from variables to (ground) terms, which, in a natural way, is extended to a mapping
from term to terms. We denote the set of subterms oft by sub(t).

For a given signatureΣ, a term-DAG D is a labelled directed acyclic ordered graph
such that, if a nodev is labelled with a function symbolf of arity n, then it hasn
ordered immediate successorsv1, . . . , vn. In such a case we writev =D f(v1, . . . , vn),
and we say thatv is aparentof vi (for eachi = 1, . . . , n), andvi is achild of v. We
define also the notion ofdescendantin the usual way. For a term-DAG D, and a vertex
v =D f(v1, . . . , vn), we recursively define theterm t(v, D) represented byv in D
by the equationt(v, D) = f(t(v1, D), . . . , t(vn, D)). For s = t(v,D), we will write
v ⇒D s, or v ⇒ s, if D is known from the context.

Let Σ be a signature,V be a set of variables, andP be a set of unary predicate
symbols. Ifp ∈ P , and t ∈ T (Σ,V ), thenp(t) is an atomic formula. An atomic
formulap(t) is ground, if t is ground. Aunary Horn theoryis a finite set ofclausesof
the forma0 ← a1, . . . , an, wherea0, . . . , an are atomic formulas.

We will use the following notation. LetT be a unary Horn theory, letA,B be sets
of ground atomic formulas. We writeA `T B, if there existsa proof ofB with respect
to T assumingA, i.e. a sequencea1, . . . , an of atomic formulas such that each element
of B occurs ina1, . . . , an, and, for eachi = 1, . . . , n, we have either (i)ai ∈ A, or
(ii) there exists a clauseb0 ← b1, . . . , bm in T and a substitutionθ such thatai = b0θ,
and each ofb1θ, . . . , bmθ occurs ina1, . . . , ai−1. For a set of atomic formulasA, and
an atomic formulaa, we writeA `T a for A `T {a}.

3 The Formal Model

Protocols with Selecting Theories.Messagesare ground terms over the signatureΣ
consisting of constants (atomic messagessuch as principal names, nonces, keys), the
unary function symbolhash(·) (hashing), and the following binary function symbols:
〈·, ·〉 (pairing), {·}· (symmetric encryption), and{|·|}· (public key encryption). We as-
sume that keys used to encrypt messages are constants1. We assume that there is a
bijection ·−1 on atomic messages which maps every public (private) keyk to its corre-
sponding private (public) keyk−1. We assume thatΣ contains the constantc0 known
to the intruder and the constantSec(a secret). We will sometimes omit〈·, ·〉 and write,
for instance,{t, s}k instead of{〈t, s〉}k.

Let Q andR be disjoint sets ofpop predicate symbolsandpush predicate symbols,
respectively. Aselecting theoryΦ over(Q,R) is a set of clauses of the forms

q1(x1), . . . , qn(xn) ⇒ q(f(x1, . . . , xn)), (1)

q1(t), . . . , ql(t), r(t) ⇒ r′(x) wherex ∈ Var(t) (2)

q1(t), . . . , ql(t), r(t) ⇒ I (s) whereVar(s) ⊆ Var(t), (3)

1 In the case of the NP-completeness result for non-recursive protocols [16], only keys used in
public-key cryptography are assumed to be constants.
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whereI /∈ Q ∪ R is a predicate symbol,q, q1, . . . , qn ∈ Q, r, r′ ∈ R, f ∈ Σ is a
function symbol of arityn, andx, x1, . . . , xn are variables. Clauses of the form (1),
called pop clauses, have an auxiliary role: they can simulate runs of any finite tree
automaton. The information about which states (predicate symbols) can be assigned to
a term can be used in (2) and (3), which provides a regular look-ahead. Clauses of the
form (2), calledpush clauses, transfer some information (predicate symbols) from a
term to its subterms. Clauses of the form (3), calledsend clauses, select terms to be sent
(the predicate symbolI means that the term is sent and thus it is known to the intruder).

Let Φ be a selecting theory over(Q,R). For a termt andr ∈ R ∪ {I }, we define
the set ofterms selected byΦ, Jr(t)KΦ = {s | r(t) `Φ I (s)}. A rule over(Q,R) has
the formt → r(s), wheret, s are terms andr ∈ R ∪ {I }. The intended meaning of
such a rule is that a principal, after receiving a termtθ, for some ground substitutionθ,
sends all the terms from the setJr(sθ)KΦ. Note that the number of terms which are sent
in one step of a protocol is not bounded by the size of the protocol, it is only bounded
by the size of the messagesθ. Because (for anyΦ) we haveJI (s)KΦ = {s}, each simple
non-recursive rewrite rulet → s can be easily expressed in our formalism byt → I (s).

A principal Π over (Q,R) is a sequence(ti → ri(si))n
i=1 of rules over(Q,R)

such that, for eachi = 1, . . . , n, we haveti, si ∈ T (Σ,V ), for a set of variablesV , and
every variable insi occurs int1, . . . , ti. A protocol over(Q,R) is a pair(P, Φ), where
P is a finite set of principals over(Q,R) andΦ is a selecting theory over(Q,R).

Example. Now, we show how to model theRecursive Authentication(RA) protocol
[4] in our formalism. This protocol has been analyzed using theorem provers [15, 3]. In
[13] and [12] a version of this protocol has been expressed in the tree transducer-based
model (the original version has rules with non-linear left hand sides which cannot be
expressed in this model). In the presentation of the protocol we follow [13] and [12].
Because, as it was mentioned above, non-recursive receive-send actions can be modeled
in our formalism in a straightforward way, we will only describe the only recursive
action of the protocol. In this action, the serverS receives a sequence of requests of
pairs of principals who want to obtain session keys. In response,S generates certificates
containing the sessions keys. For instance, suppose thatS receives

m = hKc(C, S, Nc, hKb
(B, C, Nb, hKa(A,B, Na,−))),

whereNa, Nb, Nc are nonces generated byA, B,C, respectively,Ka,Kb,Kc are long-
term keys shared betweenS andA,B, C, andhk(m) stands for the term〈hash(k,m),m〉.
The constant ‘−’ marks the end of the sequence of requests. In general, messages sent
to S may contain an arbitrary number of requests. In response tom, the server gener-
ates two certificates forC: {Kcs, S, Nc}Kc

and{Kbc, B, Nc}Kc
, two certificates for

B: {Kbc, C, Nb}Kb
and{Kab, A, Nb}Kb

, and one certificate forA: {Kab, B,Na}Ka
.

So, suppose thatP0, . . . , Pn are principals,S = Pn, andKi is the long-term key
shared byPi andS. The recursive action ofS can be described by the rulex → r(x)
with the selecting theory over(∅, {r}) given by the following set of clauses.

r
(
hKi(Pi, Pj , x, y)

) ⇒ r(y)

r
(
hKi(Pi, Pj , x, hKl

(Pl, Pi, x
′, y))

) ⇒ I
({Kij , Pj , x}Ki

)
, I

({Kil, Pl, x}Ki

)

r
(
hKi(Pi, Pj , x, −)

) ⇒ I
({Kij , Pj , x}Ki

)
,
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I (x), I (y) ⇒ I (〈x, y〉), I (x), I (k) ⇒ I ({x}k), (4)

I (x) ⇒ I (hash(x)) I (x), I (k) ⇒ I ({|x|}k), (5)

I (〈x, y〉) ⇒ I (x), I ({x}k), I (k) ⇒ I (x), (6)

I (〈x, y〉) ⇒ I (y), I ({|x|}k), I (k−1) ⇒ I (x) (for each keyk) (7)

Fig. 1.TI — The Intruder Theory.

where the constantKij is the key for secure communication ofPi andPj . Note that
this theory does not use a regular look-ahead, and uses only one push symbolr.

Attacks. In the Dolev-Yao model [9], the intruder have the entire control over the net-
work. He can intercept and memorize messages, generate new messages and send them
to participants with a false identity. We express the ability of the intruder to generate
(derive) new messages from a given set of messages by the theoryTI in Figure 1, where
the predicate symbolI is intended to describe the intruder knowledge. For a setA of
messages, letI (A) = {I (t) | t ∈ A}. We will say that the intruder canderive a message
t from messagesA, if I (A) `TI

I (t).
Now, we give a definition of anattack for a bounded number of sessions. In an at-

tack, the intruder nondeterministically chooses an execution order for the protocol steps
and then produces input messages for the protocol rules. These input messages have to
be derived from the intruder’s initial knowledge and the output messages obtained so
far. The aim of the intruder is to derive the secret messageSec. If some number of inter-
leaving sessions of a protocol is to be analyzed, then these sessions have to be encoded
into the protocol, which is the standard approach when protocols are analyzed w.r.t. a
bounded number of sessions (see, for instance [16, 6]).

Formally, given a protocol({Π1, . . . , Πl}, Φ), a protocol execution schemeis a
sequence of rulesπ = π1, . . . , πn such that each element ofπ can be assigned to
one of the participantsΠ1, . . . , Πl, and, for each participantΠk (k = 1, . . . , l), the
subsequence of the elements ofπ assigned toΠk is Π1

k , . . . ,Πm
k , for somem ≤ |Πk|,

whereΠi
k is thei-th rule ofΠk.2 An attackis a pair(π, σ), whereπ = (ti → ri(si))n

i=1

is a protocol execution scheme, andσ is a ground substitution such that

I (c0), I (Jr1(s1σ)KΦ), . . . , I (Jri−1(si−1σ)KΦ) `TI I (tiσ), for all i = 1, . . . , n (8)

I (c0), I (Jr1(s1σ)KΦ), . . . , I (Jrn(snσ)KΦ) `TI I (Sec). (9)

Recall thatc0 is the only constant initially known to the intruder3. A protocol isinse-
cure, if there exists an attack on it.

We end this section with the following, easy to prove lemma.

Lemma 1. A `TI
B iff there exists a proof ofB with respect toTI assumingA such

that all the facts obtained by rules(6), (7) are before the facts obtained by rules(4), (5).

2 More formally, a sequenceπ1, . . . , πn of rules is a protocol execution scheme, if there is a
functionf : {1, . . . , n} → {1, . . . , l} such that, for eachk = 1, . . . , l, assuming that integers
i1 < · · · < im are all the elements off−1(k), we haveπij = Πj

k, for eachj = 1, . . . , m.
3 If we want to consider an initial knowledge of the intruder given by a finite set{t1, . . . , tm},

we can add a principal with the rulec0 → I (〈t1, . . . , tm〉).
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I (x), I (y) ⇒ I (〈x, y〉), I (x), I (k) ⇒ I ({x}k), (10)

I (x) ⇒ I (hash(x)) I (x), I (k) ⇒ I ({|x|}k), (11)

rI(x) ⇒ I (x), (12)

rI(〈x, y〉) ⇒ rI(x), rI({x}k), I (k) ⇒ rI(x), (13)

rI(〈x, y〉) ⇒ rI(y), rI({|x|}k), I (k−1) ⇒ rI(x) (for each keyk) (14)

ϕ, for each pop or push ruleϕ of Φ (15)

I (k1), . . . , I (kn),q1(t), . . . , ql(t), r(t) ⇒ p(s′), (16)

for each send ruleq1(t), . . . , ql(t), r(t) ⇒ I (s) of Φ, for eachs′/K ∈ Acc(s) with K =
{k1, . . . , kn}, wherep = I , if s′ is not a variable, andp = rI , otherwise.

Fig. 2.ΦI — the theory of the protocol(P, Φ).

4 Main Result

Theorem 1. Insecurity of protocols with selecting theories w.r.t. a bounded number of
sessions is decidable in nondeterministic exponential time.

The remainder of this section is devoted to prove Theorem 1. In Subsections 4.1 and
4.2, the existence of an attack is expressed in a way which is more appropriate for the
rest of the proof. In Subsection 4.3 we introduce the key notion ofADAG. ADAGs are
labelled term-DAGs which can represent attacks. We show how to minimizeADAG, so
that, if anADAG exists, then there exists anADAG of an exponential size, which gives
rise to the nondeterministic exponential time algorithm for the insecurity problem.

4.1 The Theory of a Protocol

In this section we express the existence of an attack in a more uniform way, without
using expressions of the formJr(s)KΦ. We use here the fact that both selecting theories
and the intruder theory are unary horn theories. Moreover, Lemma 1 allows us to extend
selecting theories in such a way that the clauses (6) and (7) ofTI are not necessary.

In the following, Acc(t) denotes the set of elements of the forms/K , wheres is
a subterm oft and K is a minimal set of keys sufficient to accesss providing t is
known. For example, ift = {c, {d}b}a

, thenAcc(t) = {t/∅, c/{a}, {d}b/{a}, d/{a,b}}.
Formally, we defineAcc by the equationsAcc(〈t1, t2〉) = {〈t1, t2〉/∅} ∪ Acc(t1) ∪
Acc(t2), Acc({t}k) = {{t}k/∅} ∪ {s/{k}∪K | s/K ∈ Acc(t))}, andAcc({|t|}k) =
{{|t|}k/∅} ∪ {s/{k−1}∪K | s/K ∈ Acc(t))}. Note thatt/∅ ∈ Acc(t), for each termt.

Definition 1. Let (P, Φ) be a protocol over(Q,R). Let rI be a fresh predicate symbol.
The theoryΦI of the protocolP consists of the rules given in Fig. 2.

Note that the theoryΦI consists of rules of three types: (a) rules (10)
and (11), called theintruder pop rules, (b) pop rules, (c) rules of the form
I (k1), . . . , I (kn), q1(t), . . . , ql(t), r(t) ⇒ r′(x), calledgeneralized push rules, and (d)
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rules of the formI (k1), . . . , I (kn), q1(t), . . . , ql(t), r(t) ⇒ I (s), calledgeneralized
send rules. Note also thatΦI contains all the rules ofΦ. By Lemma 1, rules (12)–(14)
and (16) can simulate the intruder rules (6) and (7). Thus, one can prove the following
characterization of the existence of an attack.

Lemma 2. Let (P, Φ) be a protocol over(Q,R), let π = (ti → ri(si))n
i=1 be a proto-

col execution scheme forP andσ be a substitution. The pair(π, σ) is an attack iff we
have

I (c0), r̂1(s1σ), . . . , r̂i−1(si−1σ) `ΦI I (tiσ), for all i = 1, . . . , n (17)

I (c0), r̂1(s1σ), . . . , r̂n(sn) `ΦI
I (Sec), (18)

where, for eachi = 1, . . . , n, we putr̂i = rI , if ri = I , andr̂i = ri, otherwise.

4.2 Stage Theories

In this subsection, we express the existence of an attack usinga stage theory of a proto-
col. In this theory, instead of representing the knowledge of the intruder by the predicate
symbolI , the family of predicate symbolsI (0), . . . , I (m) is used to represent his knowl-
edge at different stages of an attack.

Let (P, Φ) be a protocol over(Q,R) and π = (ti → ri(si))n
i=1 be a protocol

execution scheme. LetK be the set containing the constantSecand all the keys ofP .
A sequencee = e1, . . . , em of elements ofK ∪ {1, . . . , n} is called astage sequence
for π, if e contains all the elementsSec, 1, . . . , n, and wheneverei = k andej = l, for
i < j, thenk < l. A stage sequence represents key elements of the intruder knowledge
at consecutive stages of an attack. An elementei of such a sequence either represents a
new key that can be used by the intruder at thei-th stage (ifei is a key), or, ifei = j,
it express progress in the protocol execution, and it means that at thei-th stage thej-th
step of the protocol has been executed, so the intruder can use terms fromJrj(sjσ)KΦ.

LetKi = {a ∈ K | a = ej for somej ≤ i}. Thestage theory forΦ ande, denoted
by Φe, is given in Figure 3, wherep(i), for i = 0, . . . ,m, andp ∈ R ∪ {rI , I}, are
fresh predicate symbols. The predicate symbolI (k) is intended to describe the intruder
knowledge at thek-th stage of an attack. The intended meaning ofr(k)(t) is that the
intruder is able to prover(t) at thek-th stage.

Lemma 3. Let π = (ti → ri(si))n
i=1 be a protocol execution scheme andσ be a

ground substitution. The pair(π, σ) is an attack iff there is a stage sequencee =
e1, . . . , em for π such that

I (0)(c0), ψ1, . . . , ψm `Φe ϕ1, . . . , ϕm, (23)

whereϕ1, . . . , ϕm and ψ1, . . . , ψm are defined as follows. Ifei = j ∈ {1, . . . , n},
thenϕi = I (i−1)(tjσ), and ψi = r̂

(i)
j (sjσ), wherer̂ is defined like in Lemma 2. If

ei = a ∈ K, thenϕi = I (i−1)(a) andψi = I (0)(c0).

Proof. First, suppose that (23) holds, for someπ, e, andσ, and thatΓ is a proof of it.
Let Γ0 denotes the subsequence ofΓ containing only facts of the formq(t), for q ∈ Q.
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q1(x1), . . . , qn(xn) ⇒ q(f(x1, . . . , xn)), (19)

for each pop ruleq1(x1), . . . , qn(xn) ⇒ q(f(x1, . . . , xn)) of ΦI ,

q1(t), . . . , ql(t), r
(j)(t) ⇒ p(i)(s), (20)

for each (generalized) push or send ruleI (k1), . . . , I (km), q1(t), . . . , ql(t), r(t) ⇒ p(s) of ΦI ,
for i ≥ j, andk1, . . . , km ∈ Ki,

I (j)(x), I (k)(y) ⇒ I (i)(〈x, y〉) I (j)(x) ⇒ I (i)(hash(x)) if i ≥ j, k (21)

I (j)(x) ⇒ I (i)({x}a), I (j)(x) ⇒ I (i)({|x|}a) if i ≥ j, anda ∈ Ki. (22)

Fig. 3.Φe — The Stage Theory forΦ ande.

Let Γi denotes the subsequence ofΓ containing only facts of the formp(i)(t), and let
Γ≤i be the concatenation ofΓ0, . . . , Γi. Let Γ ∗≤i be the sequence obtained fromΓ≤i by
substituting eachp(k) by p. One can show thatΓ ∗≤i−1 is a proof of (17), andΓ ∗≤m is a
proof of (18). Hence,(π, σ) is an attack.

Now, suppose that we have an attack(π, σ). By Lemma 2, (17) and (18) hold.
So, letΠi be a proof of (17), fori = 1, . . . , n, and letΠn+1 be a proof of (18).
We split eachΠk (for k = 1, . . . , (n + 1)) into the maximal (w.r.t. its length)
sequenceΠ1

k , . . . , Πmk

k such that the last element ofΠi
k, for 1 ≤ i < mk, is

of the form I (a), for a ∈ K, and this occurrence ofI (a) is the only one in
Π1, . . . ,Πk−1,Π

1
k , . . . ,Πi

k. We want to re-index the obtained sequence ofΠi
k, so let

Π̂1, . . . , Π̂N = Π1
1 , . . . , Πm1

1 , . . . , Π1
n+1, . . . , Π

mn+1
n+1 .

For i = 1, . . . , N , let Γi be the sequence of facts obtained from̂Πi by substituting
eachp(t), for p ∈ R ∪ {rI , I}, by p(i−1)(t), and letei be equal tok, if Π̂i = Πmk

k , for
somek, and, otherwise, letei bea, whereI (a) is the last element of̂Πi. One can prove
that the concatenation ofΓ1, . . . , Γn is a proof of (23). ut

We say that a factI(i)(t) is stronger thanI(j)(t), if i ≤ j. A proof isnormal, if for
each termt, it contains at most one fact of the formI (i). The following lemma is easy
to prove.

Lemma 4. It holds(23) iff there is a normal proof of

I (0)(c), ψ1, . . . , ψm `Φe ϕ′1, . . . , ϕ
′
m, (24)

where, for eachk = 1, . . . , m, the factϕ′k is stronger thanϕk.

4.3 ADAGs

This section is the central part of the proof of Theorem 1. We give here the definition
of an ADAG and link the existence ofADAGs with the existence of attacks (Lemma 5).
Next, we show that if there exists anADAG which represents an attack on a protocols,
then there exists anADAG of exponential size. Finally, as a consequence of the above,
we obtain anNEXPTIME algorithm for deciding insecurity of protocols.
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We will assume that selecting theories have the following property: the push rules
areflat, i.e. are of the form (2) witht = f(x1, . . . , xn), wherex1, . . . , xn are variables.
We can do it without loss of generality, because, for any selecting theory, one can easily
obtain an equivalent selecting theory with this property.

Definition 2. Let D be a term-DAG over Σ with the setV of vertices, and letT be
a set of terms overΣ andV. A function θ : sub(T ) → V is aD-embedding forT , if
θ(f(t1, . . . , tn)) = v implies thatv =D f(v1, . . . , vn) andθ(ti) = vi, for i = 1, . . . , n.
Embeddingsθ1 andθ2 arecompatible, if for each variablex which is in the domain of
bothθ1 andθ2, we haveθ1(x) = θ2(x).

Let v ∈ V , andt ∈ T (Σ,V). By emb(t 7→ v) we denote the unique embedding
θ for {t} such thatθ(t) = v (if it exists). Letv1, v2 ∈ V , andt1, t2 ∈ T (Σ,V). The
terms(t1, t2) embeds to(v1, v2), if the embeddings emb(t1 7→ v1) and emb(t2 7→ v2)
exist and are compatible.

Definition 3. Let Φ andΨ be stage theories over(Q,R). The theoryΨ is an instance
of Φ, if each clause inΨ is an instance of a clause inΦ.

Definition 4. Let (P, Φ) be a protocol over(Q,R), let π = (ti → ri(si))n
i=1 be a

protocol execution scheme, ande = e1, . . . , em be a stage sequence forπ. Let TP

denote the set{ti, si}n
i=1 ∪{c0}∪K, andQe denote the set of predicate symbols ofΦe.

A DAG of the attack(anADAG for short) for(Φ, π, e) is a tupleD = 〈D,α, β, Ψ, δ〉
whereD is a term-DAG over Σ with the set of verticesV , δ : V → 2Qe, α is a
D-embedding forTP , a stage theoryΨ is an instance ofΦ, andβ is a partial function
from V ×Qe to V × Ψe, called awitness function, such that

(i) if v = α(tj), thenI (i′) ∈ δ(v), for somei′ < i, wherei is the integer such that
ei = j,

(ii) for each vertexv, the setδ(v) contains at most one element of the formI (i),
(iii) if p ∈ δ(v) then one of the following conditions holds:

(a) v = α(c0) andp = I (l) (for somel), or v = α(sj) andp = r̂
(i)
j , for some

i, j such thatei = j,
(b) v =D f(v1, . . . , vn), and Ψe contains the clausep1(x1), . . . , pn(xn) ⇒

p(f(x1, . . . , xn)), for somep1 ∈ δ(v1), . . . , pn ∈ δ(vn),
(c) β(v, p) = (v′, ϕ), where ϕ =

(
p1(t), . . . , pl(t) ⇒ p(xi)

)
, for t =

f(x1, . . . , xj), is a push clause ofΨe, {p1, . . . , pl} ⊆ δ(v′), andv′ =D

f(v1, . . . , vn) with vi = v, or
(d) β(v, p) = (v′, ϕ), whereϕ =

(
p1(t′), . . . , pl(t′) ⇒ p(t)

)
is a send clause

of Ψe (sop = I (j)), {p1, . . . , pl} ⊆ δ(v′), and(t, t′) embeds to(v, v′).

Lemma 5. If there is an attack(π, σ) on a protocol(P,Φ) then there is anADAG

〈D, α, β, Ψ, δ〉 for (Φ, π, e), for some stage sequencee for π, such thatΨ = Φ. If there
exists anADAG for (Φ, π, e) then there exists an attack(π, σ), for some substitutionσ.

Proof. Suppose that there is an attack(π, σ). By Lemma 3 and Lemma 4, there is
a sequencee and a normal proofΓ of (24). Let D be theDAG representing all the
terms of the formtσ, wheret ∈ TP . For t ∈ TP , let α(t) be the vertexv such that
v ⇒ tσ. For a vertexv of D, let δ(v) be the set of the predicate symbolsp ∈ Qe
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such thatp(tv) occurs inΓ , for v ⇒ tv. Further, if we havep(tv) in Γ , because
ϕ =

(
q1(s′), . . . , ql(s′), p′(s′) ⇒ p(s)

)
is a push or send clause ofΦe, tv = sσ,

for some substitutionσ, andq1(s′σ), . . . , ql(s′σ), p′(s′σ) occur inΓ beforep(tv), then
let β(v, p) = (v′, ϕ), wherev′ is the vertex ofD such thatv′ ⇒ s′σ (such a vertex
exists, becauses′σ has to be a subterm of somesiσ). One can show that〈D,α, β, Φ, δ〉
is anADAG.

Now, suppose that〈D,α, β, Ψ, δ〉 is anADAG for (Φ, π, e). Let σ(x) = t, wheret
is the term such thatα(x) ⇒ t. We produce the following sequence of facts: First, we
put all the facts of the formq(t), wherev ⇒ t andq ∈ δ(v), for q ∈ Q, in such a way
thatq(t) is beforeq′(t′), if t < t′. Second, we put all the fact of the formr(i)(t), where
v ⇒ t andr(i) ∈ δ(v), for r ∈ R ∪ {rI}, in such a way thatp(t) is beforep′(t′), if
t > t′. Finally, we put all the fact of the formI (i)(t), wherev ⇒ t and I (i) ∈ δ(v),
in such a way thatp(t) is beforep′(t′), if t < t′. One can prove that this sequence
is a normal proof of (24) (note thatΨ is an instance ofΦ, so each clause ofΨe is an
instance of a clause ofΦe), which by Lemma 3 and Lemma 4, implies that there exists
an attack. ut

Lemma 5 is a crucial step of our construction, because it characterizes the existence
of an attack by a structure which is defined by some local properties. Now, we will
describe how to minimizeADAGs, roughly speaking, by merging vertices which are
indistinguishable from the point of view of this local properties. We proceed in three
steps given by Lemmas 6, 7, and 8 below (proofs of these lemmas are given in the
separate sections). To formulate these lemmas we need the following definitions.

Let (P,Φ) be a protocol, and letD = 〈D,α, β, Ψ, δ〉 be anADAG for (Φ, π, e). A
vertexv of D is bounded, if v = α(t), for somet ∈ sub(TP ). Otherwise,v is free. Let
B(D) be the set of vertices which can be reached from bounded vertices, moving from
a vertex to its child, in less than|P | · |Φ| steps. Note thatB(D) is exponentially bounded
with respect to the size of the protocol.

A goal is a vertexv with I (i) ∈ δ(v), for somei, such that the item (iii,d) of Defini-
tion 4 holds forv andp = I (i). Let G(D) be the set of goals ofD. For a stage sequence
e, let Gk(D) = {v | v ∈ G(D), andI (i) ∈ δ(v) for e−1(k) ≤ i < e−1(k + 1)}, where
e−1(0) = 0, e−1(n + 1) = ∞, and, fork = 1, . . . , n, let e−1(k) be the integeri such
thatei = k. Let G>k(D) =

⋃
i>k Gi(D).

An ADAG D is simple, if, wheneveru /∈ B(D) is a descendant ofv ∈ Gi(D), then
u /∈ G>i(D). Let Φ̂ = Φ ∪ {C ′ | C ′ is an instance of a send clauseC ∈ Φ of the form
(. . . ⇒ I (i)(s)), and the depth ofC ′ is not greater than|P | · i}.
Lemma 6. Let (P, Φ) be a protocol. IfD = 〈D, α, β, Φ, δ〉 is an ADAG for (Φ, π, e),
then there exists a simpleADAG D′ = 〈D′, α′, β′, Φ̂, δ′〉 for (Φ, π, e).

Lemma 6 states that eachADAG can be transformed to a simpleADAG. Having a
simple ADAG, we can minimize the number of its goals, which is expressed by the
following lemma. It allows us to minimize the size of the wholeADAG, as is stated in
Lemma 8.

Lemma 7. Let (P,Φ) be a protocol. IfD = 〈D, α, β, Φ̂, δ〉 is a simpleADAG for
(Φ, π, e), then there exists anADAG D′ = 〈D′, α′, β′, Φ̂, δ′〉 such that the set of goals
ofD′ is exponentially bounded w.r.t. the size of(P,Φ).
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Lemma 8. Let (P, Φ) be a protocol over(Q,R). If D0 = 〈D, α, β, Φ̂, δ〉 (for some
D, α, β, δ) is an ADAG for (Φ, π, e) with an exponentially bounded set of goals (w.r.t.
the size of(P, Φ)), then there is anADAG for (Φ, π, e) of an exponentially bounded size.

Lemmas 5, 6, 7, and 8 have the following consequence.

Corollary 1. Let (P, Φ) be a protocol, and letπ be a protocol execution scheme. There
is an attack(π, σ), for someσ, iff there exists anADAG for (Φ, π, e), for somee, of an
exponential size w.r.t. the size of the protocol.

The Algorithm. To decide insecurity of a given protocol(P,Φ), we guess an attack
skeletonπ, a stage sequencee, and anADAG for (Φ, π, e) of exponential size w.r.t.
the size of the protocol. Correctness of this algorithm is given by the Corollary 1. The
algorithm works inNEXPTIME, which concludes the proof of Theorem 1. ut

An easy to obtain lower bound isDEXPTIME, because the problem of the emptiness
of the intersection of regular tree languages, which isDEXPTIME-hard, can be easily
reduced to the problem of deciding protocols with selecting theories (in the reduction,
pop-clauses of selecting theories are used).

4.4 Proof of Lemma 6

We start this section with technical definitions used in this section and in the following
ones. For anADAG D, let Si

D denote the set of descendants ofα(c0), α(tj), α(sj), for
j ≤ i. For a goalu, we define sets of verticesBu

D andFu
D in the following way. Let

β(u, I (i)) = (u′, ϕ), with ϕ =
(
q1(t′), . . . , ql(t′), r(t′) ⇒ I (i)(t)

)
, θ = emb(t 7→ u),

andθ′ = emb(t′ 7→ u′). Bu
D = {θ(s) | s is a subterm oft or t′}. Fu

D = {θ(x) | x ∈
dom(θ) ∩ dom(θ′)} (note thatθ andθ′ are compatible, soθ(x) = θ′(x)).

We write(v′, p′) DÃ(v, p), if β(v, p) = (v′, ϕ), for ϕ =
(
q1(t′), . . . , ql(t′), p′(t′) ⇒

p(t)
)
. Let DÃ∗ denotes the transitive closure ofDÃ. If u is a goal andI (i) ∈ δ(u), then

we can write(v, p) DÃ∗u instead of(v, p) DÃ∗(u, I (i)), andv DÃ∗u, if, for somep′, we
have(v, p′) DÃ∗(u, I (i)).

In order to prove Lemma 6, we construct a sequenceD0, . . . ,Dn = D′ of ADAGs
such thatD0 = 〈D, α, β, Ψ̂ , δ〉 and, for eachDi (i = 0, . . . , n), we have

(∗) if u /∈ B(Di) is a descendant ofv ∈ Gj(Di), for j = 1, . . . , i, thenu /∈
G>j(Di), and

(∗∗) if u ∈ G>i(Di) andβ(u) = (u′, ϕ), then eitherϕ ∈ Φ, or Fu
Di
⊆ Si

Di
.

It is easy to show thatD0 is an ADAG for (Φ, π, e) and (∗), (∗∗) hold forD0. Now,
assume that(∗) and (∗∗) hold for Di−1 = 〈Di−1, α, βi−1, Φ̂, δi−1〉. We will con-
structDi = 〈Di, α, βi, Φ̂, δi〉. Let Vi−1 and Vi denote the sets of vertices ofDi−1

and Di, respectively. LetA = {u | u is a descendant of someu′ ∈ Gi(Di−1),
u /∈ Gi(Di−1), u /∈ Si

Di−1
}. Let X be the least set of vertices ofDi−1 such that

(i) if u ∈ A andu is bounded, thenu ∈ X, (ii) if u ∈ X andu′ ∈ A is a child ofu,
thenu′ ∈ X.

The construction ofDi. Let Vi = Vi−1∪Wi, whereWi is the set of fresh vertices of the
form v̂, for v ∈ A. Now, suppose thatv =Di−1 f(v1, . . . , vn). For eachi = 1, . . . , n,
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we defineh(v, i) as follows. Ifv /∈ A, vi ∈ A, v /∈ G≤i(Di−1), andv or vi is free,
thenh(v, i) = v̂i. Otherwise,h(v, i) = vi. We putv =Di

f(h(v, 1), . . . , h(v, n)).
For v ∈ A with v =Di−1 f(v1, . . . , vn) we putv̂ =Di f(v′1, . . . , v

′
n), where, for each

i = 1, . . . , n, v′i = v̂i, if vi ∈ A, andv′i = vi, otherwise. Note thatSi
Di−1

= Si
Di

.

The construction ofδi. For v ∈ A we define the setR(u) ⊆ R ∪ {rI} by the fol-
lowing equivalence:r ∈ R(u) iff there exist verticesw /∈ A andv ∈ A such that
h(w, k) = v̂, for somek, and(w, r′′)Di−1Ã (v, r′)Di−1Ã ∗(u, r), for somer′, r′′. Forv /∈ A,
let δi(v) = δi−1(v). For v ∈ A, we defineδi(v) andδi(v̂) as follows:δQ = {q ∈
Q | q ∈ δi−1(v)}, δi(v) = δQ ∪ {r ∈ R | r ∈ δi−1(v), r /∈ R(v)} ∪ {I (j) | I (j) ∈
δi−1(v), and eitherj ≤ i, or v ∈ X}, andδi(v̂) = δQ ∪ {r ∈ R | r ∈ δi−1(v), r ∈
R(v)} ∪ {I (j) | I (j) ∈ δi−1(v)}. It is easy to check thatδi−1(v) = δi(v) ∪ δi(v̂).

The construction ofβi. If v is a vertex ofDi−1 andr ∈ R ∪ {rI}, r ∈ δi(v), then let
βi(v, r) = βi−1(v, r). If v ∈ A andr ∈ R∪{rI}, r ∈ δi(v̂), then letβi(v̂, r) = (w, r′),
whereβi−1(v, r) = (u, r′), andw = u, if u /∈ A, andw = û, otherwise.

For v ∈ Vi, let us definěv ∈ Vi−1 as follows:v̌ = v, if v ∈ Vi−1, andv̌ = u, if
v = û. Forv ∈ Vi−1, andr ∈ δi−1(v), we defineg(v, r) ∈ Vi as follows:g(v, r) = v,
if r ∈ δi(v), andg(v, r) = v̂, otherwise.

Let v ∈ Vi with I (j) ∈ δi(v). We will defineβi(v, I (j)). Let (v′, ϕ) = βi−1(v̌, I (j)),
with ϕ =

(
q1(t′), . . . , ql(t′), r(t′) ⇒ I (j)(t)

)
. Let w = g(v′, r). Note that, because

r ∈ δi(u), we haver ∈ δi+1(w). Since, by the inductive hypothesis,(∗∗) holds for
Di−1, it is enough to consider two cases:

1. Bv̌
Di−1

∩A = ∅, or F v̌
Di−1

⊆ Si
Di

. In this case, letβi(v, I (j)) = (w,ϕ).
2. Bv̌

Di−1
∩ A 6= ∅, and ϕ ∈ Φ. In this case we proceed as follows. Letθv̌ =

emb(t 7→ v̌). We define a substitutionσ with the domain dom(σ) = {x | x ∈
Var(t), θv̌(x) ∈ A} as follows. Letx ∈ dom(σ). Let u be an (arbitrarily chosen)
vertex inGi(Di−1) such thatθv̌(x) is a descendant ofu (such a vertex exists, be-
causeθv̌(x) ∈ A). Let βi(u, I (i)) = (u′, ψ), with ψ of the form(. . . ⇒ I (i)(s)),
θu = emb(s 7→ u). One can show that there exists a subterms′′ of s such that
θv̌(x) = θu(s′′). We defineσ(x) = s′′. Let ϕ′ = ϕσ. One can show thatϕ′ ∈ Φ̂.
Finally, letβi(v, I (j)) = (w,ϕ′).

One can prove thatDi is anADAG and(∗∗) holds. Now we will show that(∗) holds.
Let u /∈ B(Di) be a descendant of somev ∈ Gj(Di), for somej = 1, . . . , i. Note that
u /∈ B(Di) impliesu /∈ X. For j < i, if we suppose thatu ∈ G>j(Di), then we have
v̌ ∈ Gj(Di−1) andǔ ∈ G>j(Di−1). We also have thaťu is a descendant of̌v, which
contradicts the inductive hypothesis.

Now, assume thatj = i. Note that, for anyv ∈ A, the vertex̂v is not a descendant
of anyv′ ∈ Gi(Di). So, suppose thatu ∈ A. In this case the definition ofδi guarantees
thatu /∈ G>j(Di). Second, suppose thatu /∈ A. In this caseu ∈ Si

Di
, and becauseu /∈

B(Di), u is free andu is reachable fromα(ti). It means that there is a pathv1, . . . , vM

in Di, such thatv1 = α(ti), vM is a leaf, andu = vk, for somek. BecauseI (i−1) ∈
δi(v1), then there exists an indexl such thatvl ∈ Gi−1(Di) and, for eachl′ = 1, . . . , l,
I (i−1) ∈ δi(vl′). So, if k ≤ l, thenu /∈ G>j(Di) (δi(v) containsI (i−1), so it cannot
containI (j) for anyj 6= i− 1), and ifk > l, then by inductive hypothesis, we also have
u /∈ G>j(Di). It concludes the proof of Lemma 6. ut
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One can also prove, using very similar argumentation to the one in the last paragraph
of the proof above, the following fact.

Lemma 9. If D is a simpleADAG, u ∈ Si
D andu /∈ B(D), thenu /∈ G≥i(D).

4.5 Proof of Lemma 7

We will construct a sequenceDn, . . . ,D0 of ADAGs, starting withDn = D. We will
show thatG≥i(Di) is exponentially bounded, which, fori = 0, means that the set of
goals ofD0 is exponentially bounded. All theADAGs of this family share the sameα, Φ̂,
and the same set of vertices. So, letDi+1 = 〈Di+1, α, β, δi+1〉. We will constructDi =
〈Di, α, β, δi〉. By induction, we assume thatG>i(Di+1) is exponentially bounded.

For v1, v2 ∈ Gi(Di+1), let v1 ∼ v2 iff δi+1(v1) = δi+1(v2). Let h be a function
which for the equivalence class[v]∼ of v, gives some vertexh([v]∼) ∈ [v]∼ such that no
vertexv′ ∈ [v]∼ is a descendant ofh([v]∼). Let H = {v ∈ Gi(Di+1) | h([v]∼) = v}.
Let G be the least subset ofGi(Di+1) such that:
(a) if u ∈ Gi(Di+1) is an element ofB(Di+1) ∪H, thenu ∈ G,
(b) if u ∈ Bv

Di+1
, for somev ∈ G>i(Di+1), thenu ∈ G,

(c) if u
Di+1Ã ∗u′, for someu′ ∈ G>i(Di+1), thenu ∈ G,

(d) if u ∈ Gi(Di+1) is a descendant of someu′ ∈ G, thenu ∈ G.
Using Lemma 9 and the fact that, foru ∈ Gi(Di+1), we haveFu

Di+1
⊆ Si

Di+1
, one can

show that eachu ∈ Gi(Di+1) can have at most exponentially many descendants inG,
and hence, the size ofG is exponentially bounded as well. LetḠ = Gi(Di+1) \ G.

The construction ofDi. We defineδi(v) as follows. LetδQ(v) = δi+1(v) ∩ Q, let

δR(v) = {r(j) | r(j) ∈ δi+1(v), and(v, r(j))Di+1Ã u, for someu /∈ Ḡ }, and letδI(v) =
{I (j) | I (j) ∈ δi+1(v)}. If v ∈ Ḡ, then letδi(v) = δQ(v) ∪ δR(v). Otherwise, let
δi(v) = δQ(v)∪ δR(v)∪ δI(v). To define the term-DAG Di, letv =Di+1 f(v1, . . . , vk).
For eachi = 1, . . . , k, we definev′i: If I (j) ∈ δ(v), v /∈ Gj(Di+1), andvi ∈ Ḡ, then
v′i = h([vi]∼). Otherwise,v′i = vi. Note that becauseGi(Di) = G, the size ofGi(Di)
is exponentially bounded. Note also that the number of goals fromG>i(Di)∪G<i(Di)
has not been changed.

One can show thatDi it is an ADAG. The most difficult thing to prove is that the
item (iii,d) of Definition 4 holds for each vertexv ∈ Gj(Di) (for somej). So sup-
pose thatv ∈ Gj(Di). Clearly,v ∈ Gj(Di+1). Let (v′, ϕ) = β(v, I (j)) with ϕ =(
q1(t′), . . . , ql(t′), r(t′) ⇒ I (j)(t)

)
. We have(t, t′) embeds to(v, v′) inDi+1. If Bv

Di+1

does not contain anyu ∈ Ḡ, thenBv
Di+1

andBv
Di

have exactly the same structure and
clearly(t, t′) embeds to(v, v′) in Di. So suppose that there existsu ∈ Bv

Di+1
such that

u ∈ Ḡ. Becauseu /∈ G, we havev /∈ G>i(Di+1) (see (b) above). We consider two
cases. In the both we get a contradiction.

1. u is a descendant ofv. Thenv /∈ G<i(Di+1), becauseDi+1 is simple and, by (a),
u /∈ B(Di+1). So,v ∈ Gi. But in this case we cannot havev ∈ G (becauseu
would be inG too; see (d)), andv cannot be inGi(Di).

2. u is not a descendant ofv. By Lemma 9, eitheru ∈ B(Di+1) andu ∈ G (see (a)),
or u /∈ Si

Di+1
which impliesv′ /∈ Si

Di+1
andv /∈ G≤i(Di+1). ut
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4.6 Proof of Lemma 8

For anADAG D let U(D) be the set of free vertices which are not inBv
D, for any goal

v of D, and letU(D) denote the set of vertices ofD which are not inU(D). One can
check that the size ofU(D0) is exponentially bounded.

Now, consider the following procedure. For an inputADAG D = 〈D,α, β, Ψ, δ〉
such that some vertexu ∈ U(D) has more than one parent, we construct anADAG D′ =
〈D′, α, β′, Ψ, δ′〉 in the following way. Letv1, . . . , vk be the parents ofu (k > 1). We
construct the term-DAG D′ fromD by splittingu intou1, . . . , uk and makingvi the only
parent ofui. If u′ 6= u, then we putδ′(u′) = δ(u) andβ′(u′) = β(u′). We putδ′(ui) =
{p ∈ δ(u) | eitherp ∈ Q, p is of the formI (j), or (p′, vi) DÃ(p, u), for somep′}. For
r ∈ R ∪ {rI}, r ∈ δ′(ui), we put alsoβ′(ui, r) = β(u, r). One can verify, thatD′ is in
fact anADAG. Note also thatU(D′) = U(D).

Starting withD0, we can repeat this procedure until we obtain anADAG D1 =
〈D1, α, β1, Φ̂, δ1〉 for (Φ, π, e) such that eachv ∈ U(D1) has at most one parent and,
becauseU(D0) = U(D1), the number of goals is exponentially bounded. Now, we will
minimize the number of vertices inU(D1). Let V denotes the set of vertices ofD1, let
U = U(D1), andU = U(D1). Let≺ be a linear ordering onV compatible with the
DAG ordering (i.e. ifv is a descendant ofv′ thenv ≺ v′). Let v1 ≺ · · · ≺ vN−1 be
all the vertices ofU . For k = 0, . . . , N , we define thek-th segmentUk of D by the
following equations:U0 = {u ∈ U | u ≺ v1}, UN = {u ∈ U | vN−1 ≺ u}, and for
k = 1, . . . , (N − 1), Uk = {u ∈ U | vk−1 ≺ u ≺ vk}. Note that

⋃N
k=1 Uk = U .

For a vertexv, let ρ(v) = {u | u is a goal andvD1Ã∗u}. Let v, v′ ∈ Uk (for k =
0, . . . , N ). Suppose thatρ(v) = ρ(v′) andδ(v) = δ(v′). Then we have eitherv < v′

or v′ < v. Let us assume thatv < v′ holds. Let us removev and replace it byv′ (i.e.
wheneverv was a child ofu, we makev′ a child ofu instead). For eachr ∈ δ(v′), let
β(v′, r) = β(v, r). One can prove that what we have obtained is anADAG. We repeat
this procedure until theADAG has no two distinct verticesv, v′ ∈ Uk, for somek, with
ρ(v) = ρ(v′) andδ(v) = δ(v′).

Because|U | = |U(D0)| is exponentially bounded andN = |U |, to complete the
proof it is enough to show that eachUk is exponentially bounded. LetM denote the
number of goals of the resultingADAG (which is equal to the number of goals ofD0)
andK denote the number of distinct possible values ofδ. One can show that each path
in Uk is not longer thanM ·K (since vertices fromUk can have at most one parent, the
values ofρ(u) can only decrease along a path). One can also show that, ifv, v′ ∈ Uk are
not on the same path, thenρ(v)∩ρ(v′) = ∅, and thus, the number of distinct (maximal)
paths inUk is bounded byM . Hence, the size ofUk is bounded byM2 · K which is
exponential w.r.t. the size of(P, Φ). ut

5 Conclusions

We have introduced a new formalism to model recursive cryptographic protocols. In this
formalism, one can express protocols such that participants are able to send many mes-
sages in one step, to compare, and to store messages. Usefulness of the proposed model
is illustrated by an example. We have proven that the insecurity problem of protocols
with selecting theories w.r.t. a bounded number of sessions is decidable inNEXPTIME.
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The proof technique used in this paper (stage theories, representing attacks by
ADAGs) is, in its outline, an adaptation of the method used in [17] to prove NP-com-
pleteness of insecurity of (non-recursive) protocols, where the initial knowledge of the
intruder is a regular language of terms. In [17], however, the minimization of anADAG

is relatively simple and straightforward, whereas in this paper, it is the main technical
difficulty.

Future work.The exact complexity of the problem of deciding protocols with selecting
theories is not known. Another open problem is decidability of security of protocols
with selecting theories andwith complex keys.
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