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Abstract. Many decidability results are known for non-recursive cryptographic
protocols, where the protocol steps can be expressed by simple rewriting rules.
Recently, a tree transducer-based model was proposegdorsiveprotocols,
where the protocol steps involve some kind of recursive computations. This model
has, however, some limitations: (1) rules are assumed to have linear left-hand
sides (so no equality tests can be performed), (2) only finite amount of informa-
tion can be conveyed from one receive-send action to the next ones. It has been
proven that, in this model, relaxing these assumptions leads to undecidability.

In this paper, we propose a formalism, calklecting theorieswhich extends

the standard non-recursive term rewriting model and allows participants to com-
pare and store arbitrary messages. This formalism can model recursive protocols,
where participants, in each protocol step, are able to send a number of messages
unbounded w.r.t. the size of the protocol. We prove that insecurity of protocols
with selecting theories is decidableNEXPTIME.

1 Introduction

Formal verification of cryptographic protocols has been very successful in finding flaws
in published cryptographic protocols (see [14, 7] for an overview). Although the general
verification problem is undecidable [10, 1, 11], there are important decidable variants [9,
10, 16]. One of them is the insecurity problem of protocols analyzed w.r.t. a bounded
number of sessions, in presence of the so-called Dolev-Yao intruder [16, 6,5, 8]. In
this case, one assumes that actions performed by participants during the course of the
protocol execution are simple and can be described by single rewrite rules of the form
t — s. Such a rule is intended to specify receive-send action of a principal who after
receiving a messagé#, for some ground substitutiah repliessd. However, in many
protocols, participants perform more complicated, recursive computations which cannot
be expressed by simple rewrite rules. Examples of protocols of this kind are Internet
Key Exchange Protocol (IKE), the Recursive Authentication (RA) protocol [4], and the
A-GDH.2 protocol [2]. We will call protocols that involve some kind of iterative or
recursive computationgcursive protocols

Recently, a tree transducer-based model was proposed for recursive protocols [13,
12]. Tree transducers seem to be a natural choice in the context of recursive cryp-
tographic protocols. The proposed model has, however, the following limitations: (1)
rules are assumed to have linear left-hand sides, so no equality tests can be performed,
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(2) only finite amount of information can be conveyed from one receive-send action to
the next ones. Moreover, these assumptions cannot be relaxed without losing decidabil-
ity. In some cases, these limitations can make modeling of protocols inconvenient or
even impossible. For example, the RA protocol, which was chosen in [13] and [12] to
illustrate the tree transducer-based protocol model, has rules with non-linear left-hand
sides and had to be slightly modified. It should be mentioned that both equality tests
for messages of arbitrary size and the possibility of storing arbitrary messages can be
easily expressed in the standard term rewriting-based model.

The goal of this paper is to provide a model which can express some recursive
computations, without limiting the possibility of compare and store messages. In fact,
in many cases the expression power of tree transducers is more than sufficient, so one
could ask, whether there is some restricted class of tree transducers which can be used
to model protocols, preserving the ability of parties to compare and store messages. One
can, however, prove that these assumption cannot be relaxed even, if we consider very
weak forms of tree transducers (or any similar formalism) which allow us to model the
following basic kinds of computations:

(a) list mapping— for an input which is an encoded lift,,...t,]},, produce an
encoded lis{[t},...,t,]},,, where, for eacti = 1, ..., n, the term¢; is the result

of applying some simple rewrite rule tg,

(b) mapping functional symbols- replace functional symbols of a given term with
functional symbols of the same arity, preserving the exact structure of the term

(distinct occurrences of a symbol need not be replaced with the same symbol).

The model presented in this paper can express recursive protocols, where participants,
in each protocol step, can send a number of messages unbounded w.r.t. the size of the
protocol. Each of these messages is the result of applying some simple rewriting rule to
some subterm of the messages received so far. So calledting theorieare used to
determine which rewriting rule should be applied to which terms. Participants are able
to store and compare arbitrary messages, like in the case of standard term rewriting-
based approach. We assume that keys used in symmetric and public key encryption
are constants. Clearly, in our model, one cannot model computations described in the
items (a) and (b) above. One can, however, model actions like for instance: for a list
[t1,...,t,] produce and send the ligt,,... ¢ ], where, for each = 1,...,n, the
term¢; is the result of applying some simple rewrite rulettolt is possible, because
from the point of view of the Dolev-Yao intruder, the effect of sendijtig. .., ¢, ] is
the same as the effect of sending tertfhs . . , ¢/, separately. The key fact here is that
the result list is not encrypted, which is the case, when protocols like IKE or RA are
considered. In the paper, we show how to model the RA protocol in our framework.
Because the formalism can express protocols with non-linear left-hand sides of rules,
we model this protocol without changes.

We prove that insecurity of protocols with selecting theories with respect to bounded
number of sessions decidableNEXPTIME.

Structure of the paper. Section 2 contains some basic definitions. In Section 3, the
model is introduced. It is also showed how to model the RA protocol in the proposed
framework. Section 4 contains the proof of the main result of the paper, decidability of
protocols with selecting theories.



2 Preliminaries

Let T(X, V) denote the set of terms over the signatiif@nd the set of variablei.

A term isground if it does not contain variables. A (grounsi)bstitutionis a mapping

from variables to (ground) terms, which, in a natural way, is extended to a mapping
from term to terms. We denote the set of subtermshyfsul(t).

For a given signature’, aterm-DAG D is a labelled directed acyclic ordered graph
such that, if a node is labelled with a function symbaf of arity n, then it hasn
ordered immediate successois. . ., v,. In such a case we write=p f(v1,...,v,),
and we say that is aparentof v; (for eachi = 1,...,n), andv; is achild of v. We
define also the notion afescendanin the usual way. For a termAG D, and a vertex
v =p f(v1,...,v,), we recursively define theerm ¢t(v, D) represented by in D
by the equatiori(v, D) = f(t(v1,D),...,t(vn, D)). Fors = t(v, D), we will write
v =p s, 0rv = s, if D is known from the context.

Let X be a signaturel” be a set of variables, anfl be a set of unary predicate
symbols. Ifp € P, andt € T(X,V), thenp(t) is anatomic formula An atomic
formulap(t) is ground if ¢ is ground. Aunary Horn theonyis a finite set otlausesof
the formag < a1, ..., a,, Whereay, ..., a,, are atomic formulas.

We will use the following notation. Lef’ be a unary Horn theory, let, B be sets
of ground atomic formulas. We writé -1 B, if there existsa proof of B with respect
to T assumingi, i.e. a sequence,, . . ., a,, Of atomic formulas such that each element
of B occurs inay,...,a,, and, for each = 1,...,n, we have either (i, € A, or
(ii) there exists a clausk < b1, ...,b,, in T and a substitutiod such thatz; = by0,
and each ob0,...,b,,0 occurs inaq,...,a;_1. For a set of atomic formulad, and
an atomic formulaz, we write A ¢ a for A F¢ {a}.

3 The Formal Model

Protocols with Selecting Theories.Messagesire ground terms over the signature
consisting of constantafomic messagesuch as principal names, nonces, keys), the
unary function symbohash(-) (hashing, and the following binary function symbols:
(-,-) (pairing), {-}. (symmetric encryptionand{-[}. (public key encryption We as-
sume that keys used to encrypt messages are corstivésassume that there is a
bijection-—! on atomic messages which maps every public (private }keyits corre-
sponding private (public) key~—!. We assume tha¥' contains the constamt known
to the intruder and the constaBeéc(a secret). We will sometimes ot -) and write,
for instance{t, s}, instead of{ (¢, s)},.

Let Q andR be disjoint sets opop predicate symbobndpush predicate symbgls
respectively. Aselecting theory over(Q, R) is a set of clauses of the forms

q1($1),...,qn(mn) :Q(f(wla""xn)L (1)
q1(t),...,qt),r(t) = r'(z) wherex € Var(t) (2)
@ (t),...,qt),r(t) =1(s) whereVar(s) C Var(t), (3)

1 n the case of the NP-completeness result for non-recursive protocols [16], only keys used in
public-key cryptography are assumed to be constants.



wherel ¢ QU R is a predicate symbol, ¢1,...,q, € Q, 7,7 € R, f € Yisa
function symbol of arityn, andz, z4, ..., z,, are variables. Clauses of the form (1),
called pop clauseshave an auxiliary role: they can simulate runs of any finite tree
automaton. The information about which states (predicate symbols) can be assigned to
a term can be used in (2) and (3), which provides a regular look-ahead. Clauses of the
form (2), calledpush clausestransfer some information (predicate symbols) from a
term to its subterms. Clauses of the form (3), cafledd clauseselect terms to be sent
(the predicate symbolmeans that the term is sent and thus it is known to the intruder).
Let & be a selecting theory ovéQ), R). For a term¢ andr € R U {I }, we define
the set ofterms selected b@, [r(¢)]e = {s | 7(t) F¢ 1(s)}. A rule over(Q, R) has
the formt — r(s), wheret, s are terms and € R U {I }. The intended meaning of
such a rule is that a principal, after receiving a tefinfor some ground substitutiah
sends all the terms from the Je{sf)]s. Note that the number of terms which are sent
in one step of a protocol is not bounded by the size of the protocol, it is only bounded
by the size of the messagé. Because (for ang) we have]l (s)]s = {s}, each simple
non-recursive rewrite rule— s can be easily expressed in our formalisméby 1 (s).
A principal IT over (Q, R) is a sequencét; — 7;(s;))", of rules over(Q, R)
such that, for each=1,...,n, we havet;, s; € T(X, V), for a set of variable$”, and
every variable irs; occurs inty, . .., ¢;. A protocol over(Q, R) is a pair(P, ®), where
P is afinite set of principals ovéiQ, R) and® is a selecting theory ovér), R).

Example. Now, we show how to model thRecursive AuthenticatiofRA) protocol

[4] in our formalism. This protocol has been analyzed using theorem provers [15, 3]. In
[13] and [12] a version of this protocol has been expressed in the tree transducer-based
model (the original version has rules with non-linear left hand sides which cannot be
expressed in this model). In the presentation of the protocol we follow [13] and [12].
Because, as it was mentioned above, non-recursive receive-send actions can be modeled
in our formalism in a straightforward way, we will only describe the only recursive
action of the protocol. In this action, the servereceives a sequence of requests of
pairs of principals who want to obtain session keys. In respdiigenerates certificates
containing the sessions keys. For instance, supposé tteaieives

m = hKC(Ca Sa NthKb(Ba C? Nbtha(Aa BaNaa _)))7

whereN,, Ny, N, are nonces generated Hy B, C, respectivelyK,, K3, K. are long-
term keys shared betweérandA, B, C, andhy (m) stands for the ternthash(k, m), m).
The constant-' marks the end of the sequence of requests. In general, messages sent
to .S may contain an arbitrary number of requests. In response, tihe server gener-
ates two certificates fof': { K., S, NC}KC and{ K., B, NC}KC, two certificates for
B: {Kye,C, No} g, @nd{Kap, A, No} g, » and one certificate fad: { K, B, Na}g, -
So, suppose thak, ..., P, are principalsS = P,, and K; is the long-term key
shared byP; and.S. The recursive action of can be described by the rule— r(x)
with the selecting theory ovéf), {r}) given by the following set of clauses.

T(hK,i(Pi,Pj,x,y)) = T(y)
T(hKL'(P%Pjaxa hKl(B,B,I/,y))) =1 ({K1‘}7Pjam}]{l)a| ({Kihphx}}(,i)
T(hKi(PL‘,Pj,I7 7)) =1 ({K,;j,Pj,l‘}Ki),



(@), (y) =1 ((z,9)), (@)1 (k) =1 ({z},), @
I () = I (hash(z)) I (x),1 (k) =1 ({z},), (5)

| ((z,9)) =1 (x), L ({a}), 1 (k) =1 (2), 6)
I ((z,y) =1 (), L({b), ) (7Y =1 () (for each keyk)  (7)

Fig. 1.7t — The Intruder Theory.

where the constank;; is the key for secure communication 8f and P;. Note that
this theory does not use a regular look-ahead, and uses only one push symbol

Attacks. In the Dolev-Yao model [9], the intruder have the entire control over the net-
work. He can intercept and memorize messages, generate new messages and send them
to participants with a false identity. We express the ability of the intruder to generate
(derive) new messages from a given set of messages by the theorfFigure 1, where
the predicate symboal is intended to describe the intruder knowledge. For adsef
messages, lef4) = {1 (t) | t € A}. We will say that the intruder caterive a message
t from messaged, if 1 (A) Fq, 1 ().

Now, we give a definition of aattack for a bounded number of sessioimsan at-
tack, the intruder nondeterministically chooses an execution order for the protocol steps
and then produces input messages for the protocol rules. These input messages have to
be derived from the intruder’s initial knowledge and the output messages obtained so
far. The aim of the intruder is to derive the secret mesS&agdf some number of inter-
leaving sessions of a protocol is to be analyzed, then these sessions have to be encoded
into the protocol, which is the standard approach when protocols are analyzed w.r.t. a
bounded number of sessions (see, for instance [16, 6]).

Formally, given a protocol{I1:,...,II;},®), a protocol execution scherris a
sequence of rules = m,...,m, such that each element af can be assigned to
one of the participantély, ..., I1;, and, for each participanfl;, (k = 1,...,10), the
subsequence of the elementsradissigned tdly is I1}, .. ., II}™, for somem < |II],
wherelI} is thei-th rule of I7;..2 An attackis a pair(r, o), wherer = (t; — ri(s;))",
is a protocol execution scheme, amdés a ground substitution such that

I (co),l ([r1(s10)]@)s---s 1 ([ric1(si—10)]a) b1, | (tio), forali=1,....,n (8)
1(co), 1 ([r1(s10)]@), . .- 1 ([rn(sno)le) Fry 1(Seq. 9)

Recall thatc, is the only constant initially known to the intrude@ protocol isinse-
cure, if there exists an attack on it.
We end this section with the following, easy to prove lemma.

Lemma l. A p, B iff there exists a proof oB with respect tdl’; assumingA such
that all the facts obtained by rul€s), (7) are before the facts obtained by rul@y, (5).

2 More formally, a sequence;, . .., m, of rules is a protocol execution scheme, if there is a
functionf : {1,...,n} — {1,...,1} such that, foreach = 1,. .., assuming that integers
i1 < -+ < i, are all the elements of "' (k), we haver;, = I}, foreachj = 1,...,m.

% If we want to consider an initial knowledge of the intruder given by a finite{sgt. . ., tm },
we can add a principal with the rutg — | ((t1,...,tm)).



(), 1 (y) =1 ({z,9)), I (2),1 (k) = 1 ({x},), (10)

I (z) = I (hash(z)) I (z),1 (k) =1 ({zf},), (11)

ri(z) = 1 (x), (12)
ri((z,y)) = ri1(z), ri{z}y), 1 (k) = ri(2), (13)
ri({(z,y)) = ri(y), rr({zf,),! (k_l) = rr(z) (for each keyk) (14)

P, for each pop or push rulg of ¢ (15)

Lk, (B (B), .. qu(t), r(t) = p(s)), (16)

for each send ruleq (t),...,q(t),r(t) = 1(s) of &, for eachs’/x € Acq(s) with K =

{k1,...,kn}, wherep = I, if s’ is not a variable, angd = r;, otherwise.

Fig. 2. &1 — the theory of the protocdP, @).

4 Main Result

Theorem 1. Insecurity of protocols with selecting theories w.r.t. a bounded number of
sessions is decidable in nondeterministic exponential time.

The remainder of this section is devoted to prove Theorem 1. In Subsections 4.1 and
4.2, the existence of an attack is expressed in a way which is more appropriate for the
rest of the proof. In Subsection 4.3 we introduce the key notionDafc. ADAGS are
labelled termpAGs which can represent attacks. We show how to minimizeG, so
that, if anADAG exists, then there exists amAG of an exponential size, which gives
rise to the nondeterministic exponential time algorithm for the insecurity problem.

4.1 The Theory of a Protocol

In this section we express the existence of an attack in a more uniform way, without
using expressions of the forfn(s)]s. We use here the fact that both selecting theories
and the intruder theory are unary horn theories. Moreover, Lemma 1 allows us to extend
selecting theories in such a way that the clauses (6) and (7)) afe not necessary.

In the following, Acq(t) denotes the set of elements of the fosyfx, wheres is
a subterm oft and K is a minimal set of keys sufficient to accesgroviding ¢ is
known. For example, if = {c,{d},} . thenAcdt) = {t/y,c/1a}, {d}s/(a}s d/5ap} }-
Formally, we defineAcc by the equations\cd((t1,t2)) = {(t1,t2)/p} U Acdty) U
Acclts), Acd{th,) = {{th/o} U{s/yur | s/ € Acdt))}, andAc({t},) =
Hthy /oy U{s/e-1yuk | s/ € Acdt))}. Note thatt /y € Acd(t), for each ternt.

Definition 1. Let (P, &) be a protocol ovefQ, R). Letr; be a fresh predicate symbol.
The theory?; of the protocolP consists of the rules given in Fig. 2.

Note that the theory®; consists of rules of three types: (a) rules (10)
and (11), called theintruder pop rules (b) pop rules, (c) rules of the form
F(k1), .. 51 (kn),q1(€), ..., q(t),r(t) = r'(x), calledgeneralized push rulesnd (d)



rules of the forml (k1),...,1(kn),q1(t),...,q(t),r(t) = 1(s), calledgeneralized
send rulesNote also that?; contains all the rules ap. By Lemma 1, rules (12)—(14)

and (16) can simulate the intruder rules (6) and (7). Thus, one can prove the following
characterization of the existence of an attack.

Lemma 2. Let (P, $) be a protocol ove(Q, R), letw = (¢t; — r;(s;))", be a proto-
col execution scheme fd@ and o be a substitution. The paitr, o) is an attack iff we
have

|(Co)7f1(510),...7727;_1(57;_10') F@I |(ti0')7 forall : = 1,...,71 (17)
| (Co), f1(810'), . ,fn(sn) |—<p1 | (Sec), (18)

where, foreachi = 1,...,n, we put?; = ry, if r, = 1, and#; = r;, otherwise.

4.2 Stage Theories

In this subsection, we express the existence of an attack asitage theory of a proto-
col. In this theory, instead of representing the knowledge of the intruder by the predicate
symboll , the family of predicate symbols$?, ..., 1 (") is used to represent his knowl-
edge at different stages of an attack.

Let (P,®) be a protocol ovefQ, R) andn = (¢; — r;i(s;))", be a protocol
execution scheme. L&t be the set containing the const&@ecand all the keys of.
A sequencee = ey, ..., e, of elements ofC U {1,...,n} is called astage sequence
for «, if e contains all the elemen8ec1,...,n, and whenevee; = k ande; = [, for
i < j, thenk < [. A stage sequence represents key elements of the intruder knowledge
at consecutive stages of an attack. An elenegof such a sequence either represents a
new key that can be used by the intruder atithle stage (ife; is a key), or, ife; = 7,
it express progress in the protocol execution, and it means that athtetage the-th
step of the protocol has been executed, so the intruder can use tern{sf{ene )] s.

LetKC; = {a € K | a = ¢; for somej < i}. Thestage theory fotb ande, denoted
by @, is given in Figure 3, whergp(®, fori = 0,...,m, andp € RU {r;, I}, are
fresh predicate symbols. The predicate symb®l is intended to describe the intruder
knowledge at thé-th stage of an attack. The intended meaning &f(t) is that the
intruder is able to prove(t) at thek-th stage.

Lemma 3. Let® = (t; — r;(s;))"_, be a protocol execution scheme amdbe a
ground substitution. The paifr, o) is an attack iff there is a stage sequeree=
e1, ..., ey for m such that

|(0)(Co)7’(/J1,...,’(/)m "q;e Plyev s Pmyy (23)
whereyq, ..., o, and ¢y, ..., 1, are defined as follows. ¥; = j € {1,...,n},
thenp; = 10-Y(t;0), and; = f§z)(sja), where? is defined like in Lemma 2. If
e; = a € K, theng; =1 0=Y(a) andp; =1 (cg).

Proof. First, suppose that (23) holds, for somge, ando, and thatl” is a proof of it.
Let I'y denotes the subsequencel/o€ontaining only facts of the form(t), for ¢ € Q.



q1($1)7---,qn($n):>q(f(1'17.~~733n))7 (19)
for each pop rule (z1), ..., gn(zn) = q(f(21,...,2,)) Of Dy,

o), q@),r@) = pP(s), (20)
for each (generalized) push or send ru{&:), ..., 1 (km), qi(t), ..., q(t),r(t) = p(s) of &,
fori > j,andky, ..., km € K,

1D @), 1B () = 1Dz, 9)  19(x) = 1P (hash(z)) ifi>jk (21)
1D (@) = 19{z},), 19@) =>19{z},) if i >j,anda € K;.  (22)

Fig. 3. &c — The Stage Theory fob ande.

Let I'; denotes the subsequencelotontaining only facts of the form(® (¢), and let
I'<; be the concatenation @b, . .., I;. Let I'Z, be the sequence obtained frdma; by
substituting eacp®) by p. One can show that, ; is a proof of (17), and %, is a
proof of (18). Hence(r, o) is an attack. a B

Now, suppose that we have an attdek o). By Lemma 2, (17) and (18) hold.
So, letIl; be a proof of (17), fori = 1,...,n, and letil,., be a proof of (18).
We split eachll;, (for £k = 1,...,(n + 1)) into the maximal (w.r.t. its length)
sequencell},..., II;" such that the last element df}, for 1 < i < my, is
of the form1(a), for a € K, and this occurrence of(a) is the only one in
II, ..., Iy, I}, ... II}. We want to re-index the obtained sequence@f so let
Ih,... dy=10},... 07", . I}, I

Fori =1,..., N, letI; be the sequence of facts obtained frﬁnby substituting
eachp(t), forp € RU {ry, I}, by p"~1(t), and lete; be equal td, if IT; = IT;"*, for
somek, and, otherwise, let; bea, wherel (a) is the last element aff;. One can prove
that the concatenation d@fi, .. ., I3, is a proof of (23). a

We say that a fact(*) (t) is stronger thanf /) (¢), if « < j. A proof isnormal if for
each ternt, it contains at most one fact of the forrfi). The following lemma is easy
to prove.

Lemma 4. It holds(23)iff there is a normal proof of
|(0)(C),1/)1,,,,’1/)m '_¢'e (pllv"'vcp;nv (24)

where, for eaclk = 1, ..., m, the facty) is stronger thanpy,.

4.3 ADAGs

This section is the central part of the proof of Theorem 1. We give here the definition
of anADAG and link the existence ofDAGs with the existence of attacks (Lemma 5).
Next, we show that if there exists amAG which represents an attack on a protocaols,
then there exists anDAG of exponential size. Finally, as a consequence of the above,
we obtain amNEXPTIME algorithm for deciding insecurity of protocols.



We will assume that selecting theories have the following property: the push rules
areflat, i.e. are of the form (2) with = f(x4,...,x,), wherez,, ..., z, are variables.
We can do it without loss of generality, because, for any selecting theory, one can easily
obtain an equivalent selecting theory with this property.

Definition 2. Let D be a termpAG over X' with the setV of vertices, and lef” be
a set of terms oveE’ andV. A functioné : suhT) — V is a D-embedding fofl’, if
0(f(t1,...,tn)) =vimpliesthat =p f(vy,...,v,)andd(t;) = v;, fori =1,... n.
Embedding®; andf, arecompatible if for each variable: which is in the domain of
both6, andf,, we haved; (x) = 0;(x).

Letv € V, andt € T(X,V). By emit — v) we denote the unique embedding
6 for {t} such that¥(t) = v (if it exists). Letvy, v € V, andty,t2 € T(X, V). The
terms(ty, t2) embeds tdvy, v2), if the embeddings enfb, — v;1) and emift; — v5)
exist and are compatible.

Definition 3. Let & and¥ be stage theories ové@), R). The theory is aninstance
of @, if each clause i is an instance of a clausedn

Definition 4. Let (P, ®) be a protocol ovefQ, R), letm = (¢; — r;(s;))", be a
protocol execution scheme, amd= e, ..., e, be a stage sequence for Let 7p
denote the seftt;, s; 17, U{co} UK, andQ. denote the set of predicate symbolsfaf
A DAG of the attacKkanADAG for short) for(®, 7, e) is atupleD = (D, «, 8, %, 0)
where D is a termpAG over X with the set of verticed’, § : V — 29, aisa
D-embedding fof7p, a stage theory is an instance of, andg is a partial function
fromV x QetoV x W, called awitness functionsuch that
(i) if v = a(t;), thenl @) ¢ §(v), for somei’ < i, wherei is the integer such that
e =J
(i) for each vertexv, the sety(v) contains at most one element of the farff,
(ii) if p € 6(v) then one of the following conditions holds:

(@) v = a(c) andp = 1! (for somel), orv = a(s,) andp = 7", for some
i,j such that; = j,

(b)v =p f(v1,...,v,), and ¥, contains the clause;(x1),...,pn(z,) =
P(f(21, - 0)), TOF SOMEp| € 3(01), ., pn € (),

(© B(v,p) = ('), wherew = (pi(t),...,pu(t) = pla)), for ¢ =
f(z1,...,x;), is a push clause aFe, {p1,...,p} C 6(v'), andv’ =p

f(v1,...,v,) Withv; = v, Or
/

(d) B(v,p) = (v ) wherep = (p1(t'),...,m(t') = p(t)) is a send clause
of e (sop = 1 D), {py1,...,m} C 6(v'), and(t, ') embeds tqv, v').

Lemma 5. If there is an attack(w, o) on a protocol (P, ?) then there is amDAG
(D, a, B,¥,9) for (9, , e), for some stage sequeneéor 7, such thatl = @. If there
exists amDAG for (@, 7, e) then there exists an atta¢k, o), for some substitutios.

Proof. Suppose that there is an attagk ). By Lemma 3 and Lemma 4, there is
a sequence and a normal proof” of (24). Let D be theDAG representing all the
terms of the formio, wheret € 7p. Fort € 7p, let a(t) be the vertexw such that
v = to. For a vertexv of D, let 6(v) be the set of the predicate symbeglsc Q.



such thatp(t,) occurs inl’, for v = t,. Further, if we havep(t,) in I', because
¢ = (q1(s),...,a(s"),p'(s) = p(s)) is a push or send clause @, ¢, = so,
for some substitutionr, andq, (s'c), ..., q(s'c),p’(s'c) occurinl” beforep(t,), then
let B(v,p) = (v', ), wherev’ is the vertex ofD such that’ = s’o (such a vertex
exists, becaus€o has to be a subterm of somgr). One can show thatD, «, 3, @, 0)
iS anADAG.

Now, suppose thatD, «, 3, ¥, ¢) is anADAG for (&, m,e). Leto(z) = ¢, wheret
is the term such that(xz) = ¢. We produce the following sequence of facts: First, we
put all the facts of the form(t), wherev = t andq € §(v), for ¢ € @, in such a way
thatq(t) is beforeq’(t'), if t < t'. Second, we put all the fact of the forrff) (¢), where
v = tandr® ¢ §(v), forr € RU {r;}, in such a way thap(t) is beforep’(t'), if
t > t'. Finally, we put all the fact of the form( (), wherev = t andl ®) € §(v),
in such a way thap(t) is beforep’(t'), if ¢ < t’. One can prove that this sequence
is a normal proof of (24) (note that is an instance o, so each clause af, is an
instance of a clause df.), which by Lemma 3 and Lemma 4, implies that there exists
an attack. O

Lemma 5 is a crucial step of our construction, because it characterizes the existence
of an attack by a structure which is defined by some local properties. Now, we will
describe how to minimizeDAGSs, roughly speaking, by merging vertices which are
indistinguishable from the point of view of this local properties. We proceed in three
steps given by Lemmas 6, 7, and 8 below (proofs of these lemmas are given in the
separate sections). To formulate these lemmas we need the following definitions.

Let (P, 2) be a protocol, and |eb = (D, «, 8, %, §) be anADAG for (@, €e). A
vertexv of D is boundedif v = «(¢), for somet € sul(7p). Otherwisey is free Let
B(D) be the set of vertices which can be reached from bounded vertices, moving from
avertex to its child, in less thdi| - |&| steps. Note thaB(D) is exponentially bounded
with respect to the size of the protocol.

A goalis a vertexv with 1 ) € §(v), for somei, such that the item (jii,d) of Defini-
tion 4 holds forv andp = 1 (V). Let G(D) be the set of goals @. For a stage sequence
e letGy(D) = {v | v e G(D),andl V) € §(v) fore ' (k) <i < e '(k+1)}, where
e 1(0)=0,e1(n+1) =00, and, fork = 1,...,n, lete ! (k) be the integef such
thate; = k. Let G- (D) = U, Gi(D).

An ADAG D is simple if, wheneveru ¢ B(D) is a descendant of € G,(D), then
u ¢ G-;(D). Letd = & U {C’ | C' is an instance of a send clauSec & of the form
(... =10)(s)), and the depth of” is not greater thafP| - i}.

Lemma 6. Let (P, @) be a protocol. IfD = (D, a, 3,,6) is an ADAG for (&, m,e),
then there exists a simpkoaGc D' = (D', o/, ', ®, ") for (P, 7, €).

Lemma 6 states that ea@bAG can be transformed to a simpdAG. Having a
simple ADAG, we can minimize the number of its goals, which is expressed by the
following lemma. It allows us to minimize the size of the whalpAG, as is stated in
Lemma 8.

Lemma 7. Let (P,®) be a protocol. fD = (D,a,@,qﬁ,& is a simpleADAG for
(@, m,e), then there exists anbaGc D' = (D', o/, 5/, @, 4’) such that the set of goals
of D’ is exponentially bounded w.r.t. the sizg & ).
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Lemma 8. Let (P, ®) be a protocol ovel(Q, R). If Dy = (D,a,ﬂ,@, ) (for some
D, «, 3,0) is an ADAG for (@, 7, e) with an exponentially bounded set of goals (w.r.t.
the size of P, @)), then there is amDAG for (P, 7, e) of an exponentially bounded size.

Lemmas 5, 6, 7, and 8 have the following consequence.

Corollary 1. Let(P,®) be a protocol, and let be a protocol execution scheme. There
is an attack(w, o), for someo, iff there exists ambAG for (@, 7, €), for somee, of an
exponential size w.r.t. the size of the protocol.

The Algorithm. To decide insecurity of a given protoc@P, #), we guess an attack
skeletonn, a stage sequencee and anADAG for (@, ,e) of exponential size w.r.t.

the size of the protocol. Correctness of this algorithm is given by the Corollary 1. The
algorithm works inNEXPTIME, which concludes the proof of Theorem 1. ad

An easy to obtain lower bound sEXPTIME, because the problem of the emptiness
of the intersection of regular tree languages, whicbexpPTIME-hard, can be easily
reduced to the problem of deciding protocols with selecting theories (in the reduction,
pop-clauses of selecting theories are used).

4.4 Proof of Lemma 6

We start this section with technical definitions used in this section and in the following
ones. For ampAG D, let Sk, denote the set of descendantswty ), a(t;), a(s;), for
j < i. For a goak, we define sets of verticeB% and F in the following way. Let
Bu, 1 D) = (v, ), with o = (qu(t'),...,qt"),r{t') = 10(t)), 0 = emh(t — u),
andd’ = eml(t’ — u'). B, = {0(s) | sisasubtermofort'}. F, = {0(z) | = €
dom(f) Nndom(#”)} (note thaty andé’ are compatible, sé(x) = 6'(z)).

We write (v, p') & (v, p), if B(v,p) = (', ), foro = (qi(t'), ..., a(t),p'(t') =
p(t)). Let &+ denotes the transitive closure &f. If u is a goal and V) € §(u), then
we can write(v, p)2*u instead of(v, p)&*(u,1 V), andv2*y, if, for somep’, we
have(v, p')&*(u,1 ).

In order to prove Lemma 6, we construct a sequebge .., D,, = D’ of ADAGS

such thatDy = (D, «, 3, v, ) and, for eactD; (i = 0,...,n), we have

() if w ¢ B(D;) is a descendant of € G,(D;), for j = 1,...,i, thenu ¢

G~;(D;), and

(sx) if u € G5i(D;) andB(u) = (v, ¢), then eitherp € &, or B C S, .
It is easy to show thaD, is an ADAG for (&,,e) and (), (x+) hold for Dy. Now,
assume thatx) and (xx) hold for D;,_; = (Di,ha,ﬁi,l,é,&,l}. We will con-
structD; = (Di,a,ﬁi,é,éi). Let V;_; andV; denote the sets of vertices &f;_;
and D;, respectively. Letd = {u | u is a descendant of som€ € G;(D;_1),
u ¢ Gi(Di—1), u ¢ Sp,_ }. Let X be the least set of vertices @;_; such that
() if w € A andw is bounded, them € X, (ii) if u € X andu’ € A is a child ofu,
thenu’ € X.

The construction aD,. LetV; = V;_; UW;, wherelV; is the set of fresh vertices of the
form o, for v € A. Now, suppose that =p, , f(vi,...,v,). Foreachi = 1,...,n,
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we defineh(v, i) as follows. Ifv ¢ A, v; € A, v ¢ G<;(D;_1), andv or v; is free,
thenh(v,i) = 9;. Otherwiseh(v,i) = v;. We putv =p, f(h(v,1),...,h(v,n)).

Forv € Awithv =p, | f(v1,...,v,) We putd =p, f(vi,...,v),), where, for each

e n

i=1,...,n,v, =1, if v; € A, andv] = v;, otherwise. Note that}, = = S, .

The construction of,. Forv € A we define the seR(u) C R U {r;} by the fol-
lowing equivalencer € R(u) iff there exist verticesv ¢ A andv € A such that
h(w, k) = b, for somek, and(w, ") 75" (v, ') "5 * (u, ), for somer’, . Forv ¢ A,

let §;(v) = d;—1(v). Forv € A, we defined;(v) andd;(v) as follows:dg = {q €

Qlgedsii(v)}6i(v)=8U{reR|redi(v),r¢ Ru)Iu{1W |10 ¢

d;—1(v), and eitherj <4, orv e X}, andé;(0) = dgU{r € R | r € d;—1(v),r €

R)}U{1W 10 €§;_1(v)}. Itis easy to check tha_; (v) = &;(v) U §;(0).

The construction of;. If v is a vertex ofD;_; andr € RU {r;}, r € 6;(v), then let
Bi(v,r) = Bi—1(v, 7). Ifv € Aandr € RU{r},r € 6;(0), thenlets;(v,r) = (w,r’),
whereg;_1 (v, ) = (u,r’), andw = u, if u ¢ A, andw = 4, otherwise.

Forv € V;, let us definev € V;_; as follows:v = v, if v € V;_1, andv = u, if
v =14. Forv € V;_y1, andr € §,_1(v), we defineg(v,r) € V; as follows:g(v,r) = v,
if r € d;(v), andg(v,r) = 9, otherwise.

Letv € V; with 1 0) € §;(v). We will defineg; (v,19)). Let(v/, @) = Bi_1 (9,1 ¥)),
with o = (¢ (t),...,q(t),r(t') = 10(t)). Letw = g(v/,r). Note that, because
r € 0;(u), we haver € d;41(w). Since, by the inductive hypothesisx) holds for
D;_1, itis enough to consider two cases:

1. By NA=0,0rF} C S5 . Inthiscase, leB;(v,1 ) = (w,¢).

2. B}, ,NA# 0, andy € &. In this case we proceed as follows. Lt =
embt — ©). We define a substitutioa with the domain dorfy) = {z | = €
Var(t), 6;(xz) € A} as follows. Letr € dom(o). Letw be an (arbitrarily chosen)
vertex inG;(D;_1) such tha¥;(x) is a descendant af (such a vertex exists, be-
causef,(x) € A). Let B;(u,1 D) = (v, ), with ¢ of the form(... = 1) (s)),
6, = eml(s — wu). One can show that there exists a subtefhof s such that
05(x) = 0.,(s”). We defines(z) = s”. Let ¢’ = po. One can show that’ € &.
Finally, let 3;(v,1 9)) = (w, ¢').

One can prove thaP; is anADAG and (xx) holds. Now we will show thatx) holds.

Letu ¢ B(D;) be a descendant of some= G;(D;), for somej = 1, ..., . Note that
u ¢ B(D;) impliesu ¢ X. Forj < 1, if we suppose that € G+ ;(D;), then we have
v € Gj(D;—1) andu € G ;(D;—1). We also have that is a descendant af, which

contradicts the inductive hypothesis.

Now, assume that = i. Note that, for any € A, the vertexo is not a descendant
of anyv’ € G;(D;). So, suppose that € A. In this case the definition @ guarantees
thatu ¢ G ;(D;). Second, suppose that¢ A. In this case: € Sj, , and because ¢

B(D;), uis free andu is reachable frona(¢;). It means that there is a path, . . ., v,
in D;, such that, = «a(t;), vy is a leaf, andu = vy, for somek. Because (—1) ¢
8;(v1), then there exists an indésuch thaw, € G;_,(D;) and, foreacl’ =1, ...,

10=1 € §;(vp). So, ifk < [, thenu ¢ G~;(D;) (6;(v) containsl “~1), so it cannot
containl ¥) for anyj # i — 1), and ifk > [, then by inductive hypothesis, we also have
u ¢ G-, (D;). It concludes the proof of Lemma 6. O
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One can also prove, using very similar argumentation to the one in the last paragraph
of the proof above, the following fact.

Lemma 9. If D is a simpleaDAG, u € S5 andu ¢ B(D), thenu ¢ G>;(D).

4.5 Proof of Lemma?7

We will construct a sequen@®,,, . .., Dy of ADAGS, starting withD,, = D. We will
show thatG>;(D;) is exponentially bounded, which, fer= 0, means that the set of
goals ofD, is exponentially bounded. All thebaGs of this family share the same &,
and the same set of vertices. So,t y = (D, 1, , 3, d;+1). We will constructD; =
(D;, «, B,0;). By induction, we assume thét. ;(D, 1) is exponentially bounded.
For v1,V2 € Gi(Di+1)1 let V1~ V2 iff 6i+1 (’Ul) = (5i+1(1}2). Let h be a function
which for the equivalence clagg ... of v, gives some vertek([v]..) € [v]. suchthatno
vertexv’ € [v]. is a descendant df([v]..). Let H = {v € G;(D;y1) | h([v]~) = v}.
Let G be the least subset 6f;(D; 1) such that:
(@) ifu € G;(D;41) is an element oB(D; 1) U H, thenu € G,
(b) ifu e By, . for somev € G~;(D;41), thenu € G,

(c) if w5/, for someu’ € Gsi(Diy1), thenu € G,

(d) if u € G;(D;+1) is a descendant of somé € G, thenu € G.

Using Lemma 9 and the fact that, fore G;(D;1), we haveF;;i+1 - S%i+1, one can
show that eaclhh € G;(D;41) can have at most exponentially many descendands in
and hence, the size ¢fis exponentially bounded as well. Lét= G;(D; ;1) \ G.

The construction of;. We defined;(v) as follows. Letdg(v) = d;+1(v) N Q, let

or(v) = {r¥ | r@) € 5,1 (v), and(v, ) 25 u, for someu ¢ G }, and lety; (v) =

{00 110 € §;41(v)}. If v € G, then lets;(v) = do(v) U dr(v). Otherwise, let
di(v) = dg(v)Udr(v)Udr(v). To define the ternbAG D;, letv =p,., f(v1,...,vk).

For eachi = 1,...,k, we definev): If 1) € §(v), v ¢ G;(Dis1), andy; € G, then
vi = h([vi]~). Otherwisep; = v;. Note that becaus@;(D;) = G, the size ofG;(D;)

is exponentially bounded. Note also that the number of goals ffaniD,) U G;(D;)

has not been changed.

One can show thaD; it is an ADAG. The most difficult thing to prove is that the
item (iii,d) of Definition 4 holds for each vertex € G,(D;) (for somej). So sup-
pose thaty € G;(D;). Clearly,v € G;(Dis1). Let (v/,¢) = B(v,1 D)) with p =
(@), -, a),r(t) =10(t)). We have(t, ') embeds tdv, v') in Dy y1. If By,
does not contain any € G, thenByp, | andBp, have exactly the same structure and
clearly (t,t") embeds tqv, v') in D;. So suppose that there exists By, such that
u € G. Becausey ¢ G, we havev ¢ G~;(D;41) (see (b) above). We consider two
cases. In the both we get a contradiction.

1. uis a descendant af. Thenv ¢ G;(D;11), becaus®; ., is simple and, by (a),
u ¢ B(D;y1). So,v € G;. Butin this case we cannot havee G (because:
would be ing too; see (d)), and cannot be irG;(D;).

2. u is not a descendant ef By Lemma 9, either, € B(D;,1) andu € G (see (a)),
oru ¢ Sp, . whichimpliesv’ ¢ S3,  andv ¢ G<i(Diy1). O

13



4.6 Proof of Lemma 8

For anADAG D let U (D) be the set of free vertices which are notB4,, for any goal
v of D, and letU (D) denote the set of vertices &f which are not inl/ (D). One can
check that the size df (D) is exponentially bounded.

Now, consider the following procedure. For an inpwiaGc D = (D, «,3,V¥,0)
such that some vertexe U (D) has more than one parent, we construckanc D’ =
(D', a, §',W,4") in the following way. Letvy, ..., v be the parents af (k > 1). We
construct the ternbaG D’ from D by splittingu intouy, . . ., u,, and making; the only
parent ofu,. If u’ # u, then we put’(v') = §(u) andf’(u') = S(u’). We putd’ (u;) =
{p € 6(u) | eitherp € Q, pis of the formi U), or (p', v;)-2(p,u), for somep'}. For
re RU{rr},r € ¢'(u;), we putalsa?d’ (u;, r) = 5(u,r). One can verify, thad’ is in
fact anADAG. Note also that/(D’) = U(D).

Starting withDy, we can repeat this procedure until we obtainsaamc D; =
(Dq, o, B, , 1) for (&, 7, e) such that each € U(D;) has at most one parent and,
becausé/(Dy) = U(D; ), the number of goals is exponentially bounded. Now, we will
minimize the number of vertices iti(D, ). Let V denotes the set of vertices Df, let
U = U(D,), andU = U(D,). Let < be a linear ordering oY compatible with the
DAG ordering (i.e. ifv is a descendant af thenv < v’). Letv; < -+ < vy_1 be
all the vertices ofU. Fork = 0,..., N, we define thé:-th segment;, of D by the
following equationsly = {u € U | u < v1}, Uy = {u € U | vy_1 < u}, and for
k=1,...,(N=1),Up = {u €U | vp_1 < u < v;}. Note thal J,_, Uy = U.

For a vertexv, let p(v) = {u | uis agoal and:i+u}. Letv,v' € Uy (for k =
0,...,N). Suppose that(v) = p(v') andd(v) = 4(v’). Then we have either < v’
orv’ < v. Let us assume that < v’ holds. Let us remove and replace it by’ (i.e.
whenever was a child ofu, we makev’ a child ofu instead). For each € §(v'), let
B(v',r) = B(v,r). One can prove that what we have obtained i2BaG. We repeat
this procedure until thabAG has no two distinct vertices v’ € Uy, for somek, with
p(v) = p(v) andd(v) = 6(v').

BecausdU| = |U(Dy)| is exponentially bounded and = |U|, to complete the
proof it is enough to show that eaéh, is exponentially bounded. Lei/ denote the
number of goals of the resultingbAG (which is equal to the number of goals Bf)
and K denote the number of distinct possible values.ddne can show that each path
in Uy, is not longer thar/ - K (since vertices fron/;, can have at most one parent, the
values ofp(u) can only decrease along a path). One can also show that/iE Uy, are
not on the same path, the(w) N p(v') = ), and thus, the number of distinct (maximal)
paths inU,, is bounded bylM. Hence, the size df;, is bounded byM/? - K which is
exponential w.r.t. the size ¢, ¢). O

5 Conclusions

We have introduced a new formalism to model recursive cryptographic protocols. In this
formalism, one can express protocols such that participants are able to send many mes-
sages in one step, to compare, and to store messages. Usefulness of the proposed model
is illustrated by an example. We have proven that the insecurity problem of protocols
with selecting theories w.r.t. a bounded number of sessions is decidat#erTIME.
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The proof technique used in this paper (stage theories, representing attacks by
ADAGS) Is, in its outline, an adaptation of the method used in [17] to prove NP-com-
pleteness of insecurity of (non-recursive) protocols, where the initial knowledge of the
intruder is a regular language of terms. In [17], however, the minimization abac
is relatively simple and straightforward, whereas in this paper, it is the main technical
difficulty.

Future work. The exact complexity of the problem of deciding protocols with selecting
theories is not known. Another open problem is decidability of security of protocols
with selecting theories andgith complex keys
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