
Regular Protocols and Attacks with Regular
Knowledge

Tomasz Truderung?

Loria-Inria-Lorraine, France
Institute of Computer Science, WrocÃlaw University, Poland

Abstract. We prove that, if the initial knowledge of the intruder is given
by a deterministic bottom-up tree automaton, then the insecurity prob-
lem for cryptographic protocols with atomic keys for a bounded number
of sessions is NP-complete. We prove also that if regural languages (given
by tree automata) are used in protocol descriptions to restrict the form
of messages, then the insecurity problem is NexpTime-complete.
Furthermore, we define a class of cryptographic protocols, called regular
protocols, such that the knowledge which the intruder can gain during
an unlimited number of sessions of a protocol is a regular language.

1 Introduction

Formal verification of cryptographic protocols has been attracting much atten-
tion in the recent years (see [10, 4] for an overview). It has been very succesful in
finding flaws in cryptographic protocols. Althout the general verification prob-
lem is undecidable [6, 1, 7], there are interesting and important decidable variants
[5, 6, 13, 2]. One of them is the insecurity problem of protocols analyzed w.r.t.
a bounded number of sessions, in presence of the so-called Dolev-Yao intruder,
which is NP-complete [13]. In this case, one assumes that the initial knowledge
of the intruder is a finite set of terms.

In this paper, we prove the decidability of security for bounded number of
sessions, when the initial knowledge of the intruder is a regular language, with
the assumption that keys used in protocols are atomic. We show that if the initial
knowledge of the intruder is given by a deterministic bottom-up tree automaton,
then the existence of an attack remains NP-complete.

A regular language which represents the initial knowledge of the intruder
can be an approximation or an exact representation of the set of messages which
could have been intercepted during an unbounded number of prior executions of
some protocols. In fact, approximating the knowledge of the intruder by means
of finite tree automata or similar formalisms has been studied by several authors
(see e.g. [9, 11]). As a complementary result we define also a class of crypto-
graphic protocols, called regular protocols, such that the exact knowledge which
the intruder can gain during an unbounded number of sessions of a protocol is a
? Partially supported by the RNTL project PROUVE-03V360 and by IST-2001-39252

AVISPA.

regular language given by an alternating tree automaton of polynomial size w.r.t.
the size of the protocol. The security problem for such protocols is DexpTime-
complete. As an immediate consequence we obtain also an NexpTime algorithm
for deciding protocols which consist of two phases: in the first one, only regular
rules can be used, these rules can be, however, executed an unbounded number
of times. Then, in the second phase, non-regular rules (i.e. rules of an arbitrary
form as long as they have atomic keys) can be used a fixed number of times.

We extend also our decidability result to protocols which regular constraints,
i.e. protocols which impose some well-formness constraints on messages that can
be sent. In [13], a receive-send action of a principal is described by a rewrite rule
t → s (where t, s are terms). The meaning of such a rule is that a principal after
receiving any ground instance tθ of t (for any ground substitution θ), replies
sθ. It is impossible to model the behaviour of a principal who replies only if
the term tθ has some form which cannot be expressed by patern matching (e.g.
if tθ is list of encrypted messages). Protocols with regular constraints allow us
to express required form of messages by constraints of the form x ∈ L, where
L is a regular language (given by some tree automaton). Such constraints may
express some integrity requirements. For instance, a checksum for a message m
can be simulated by a term f(m) (where f is a new function symbol), which
can be adequate, if checksums are collision-free. This approach can be however
inadequate, when weak checksums (in which, given a checksum of a message, it
is possible to produce another message that evaluates to the same checksum)
are considered. Modeling the set {〈m, c〉 | c is the checksum of m} by a regular
language, and using regular constraints can give more precise results.

We show that the insecurity problem of protocols with regular constraints,
and with the initial knowledge of the intruder given by finite tree automata
is NexpTime-complete (it is NexpTime-hard, when the used automata are
deterministic, and remains in NexpTime even for alternating tree automata).

In this paper, we make the following abstractions. We use the Dolev-Yao
model of the intruder [5], which is a standard practice in formal verification of
cryptographic protocols. We formulate protocols in the rule-based model used in
[2, 3, 13]. In the case of regular protocols, where unbounded number of sessions
is considered, this model cannot express fresh nonces which have to be replaced
by constants (or some other terms). It implies that some false attacks can be
found. It should be mentioned, that this approach is also quite standard, since
verification of protocols with nonces is undecidable even in the restricted case,
where the size of messages is bounded.

Related work. The security problem of protocols when the initial knowledge of
the intruder is given by finite automata has not been considered so far. Similarly,
there are no previous decidability results for protocols with regular constraints.

There are, however, many results related to regular protocols defined in
Sect. 5. Regular protocols are a generalization of regular unary-predicate pro-
grams proposed in [8]. They are also closely related to a class of monadic Horn
theories defined in [15]. Our regular protocols are more general than the class H1
defined in [12]. In [1], the authors specify a class of protocols (without nonces,

2

and satisfying so called independence condition) which is DexpTime-hard. Reg-
ular protocols are also more general than this class.

Structure of the paper. Sect. 2 contains some basic definitions. In Sect. 3,
we prove that the insecurity problem for bounded number of sessions, when
the initial intruder knowledge is given by a deterministic tree automaton is
NP-complete. Sect. 4 contains complexity results for protocols with regular con-
straints. In Sect. 5, we define regular protocols, and prove their properties.

2 Preliminaries

Terms and term-DAGs. Let T (Σ,V) denote the set of terms over the signa-
ture Σ and the set of variables V . If V = ∅, then we can write T (Σ) instead of
T (Σ,V). A term is ground, if it does not contain variables. A (ground) substi-
tution is a mapping from variables to (ground) terms, which, in a natural way,
is extended to a mapping from term to terms.

For a given signature Σ, a term-dag D is a labelled directed acyclic or-
dered graph such that, if a node v is labelled with a function symbol f of arity
n, then it has n ordered immediate successors v1, . . . , vn. In such a case we
write v =D f(v1, . . . , vn). For a term-dag D, and a vertex v =D f(v1, . . . , vn),
we recursively define the term t(v, D) represented by v in D by the equation
t(v, D) = f(t(v1, D), . . . , t(vn, D)).

Unary definite logic programs. Let Σ be a signature, V be a set of variables,
and P be a set of predicate symbols (we assume here that all predicates are
unary). If p ∈ P , and t ∈ T (Σ, V), then p(t) is an atomic formula. An atomic
formula p(t) is ground, if t is ground. A unary definite logic program is a finite
set of clauses of the form a0 ← a1, . . . , an, where a0, . . . , an are atomic formulas.

We will use the following notation. Let P be a unary definite logic program,
let A,B be sets of ground atomic formulas. We write A `P B, if there exists
a proof of B with respect to P assuming A, i.e. a sequence a1, . . . , an of atomic
formulas such that each element of B occurs in a1, . . . , an, and, for each i =
1, . . . , n, we have either (i) ai ∈ A, or (ii) there exists a clause b0 ← b1, . . . , bm

in P , and a substitution θ such that ai = b0θ, and each of b1θ, . . . , bmθ occurs
in a1, . . . , ai−1.

For a set of atomic formulas A, and an atomic formula a, we write A `P a
for A `P {a}. We write also `P B for ∅ `P B. It is easy to show that A `P a, if
and only if a is in the least Herbrand Model of P ∪A.

Messages, protocols, and intruder. Messages are ground terms over the
signature Σ consisting of constants (atomic messages such as principal names,
nonces, keys), and the following binary function symbols: 〈·, ·〉 (pairing) {·}·
(symmetric encryption), and {·}p· (public key encryption), with the restriction
that keys used in public key encryption are constants, i.e. that a term of the form
{t}p

s is valid only if s is a constant. We assume that there is a bijection ·−1 on
atomic messages which maps every public (private) key k to its corresponding

3

I(〈x, y〉) ← I(x), I(y), I(x) ← I(〈x, y〉), I(y) ← I(〈x, y〉), (1)

I({x}y) ← I(x), I(y), I(x) ← I({x}y), I(y), (2)

I({x}p

k) ← I(x), I(k), I(x) ← I({x}p

k), I(k−1) (for each key k) (3)

Fig. 1. TI — Intruder Rules.

private (public) key k−1. We assume that Σ contains special constant Sec (a
secret). We will sometimes omit 〈·, ·〉, and write, for instance, {t, s}k instead of
{〈t, s〉}k.

A principal Π is a sequence (ri → si)n
i=1 of rules, where, for each i = 1, . . . , n,

we have ri, si ∈ T (Σ, V), for a set of variables V , and every variable in si occurs
in r1, . . . , ri. By |Π| we denote the number of rules of Π (i.e. the length of
the sequence Π). A rule (r → s) is intended to specify receive-send action of a
principal who after receiving rθ, for a ground substitution θ, replies sθ. A protocol
is a finite set of principals. This method of representing principals and protocols
follows [13, 3, 2], where examples of modeling protocols in this framework can be
found. The set of variables occurring in a protocol P will be denoted by Var(P).

In the Dolev-Yao model [5], the intruder has the entire control over the
network. He can intercept and memorize messages, generate new messages and
send them to participants with a false identity. We express the ability of the
intruder to generate (derive) new messages from a given set of messages by the
program TI in Figure 1, where the predicate symbol I is intended to describe the
intruder knowledge. The rules (1) express his ability to construct new messages
by pairing known messages, and by deconstructing them. The rules (2) and (3)
express his ability to crypt and decrypt messages, when he has appropriate keys.
For a set A of messages, let I(A) = {I(t) | t ∈ A}. We will say that the intruder
can derive a message t from messages A, if I(A) `TI

I(t).

Now we give a definition of an attack for a bounded number of sessions. In
an attack, the intruder chooses some execution order of the rules of the given
protocol and then produces input messages for these rules. These input messages
have to be derived from the intruder’s initial knowledge and the output messages
obtained so far. The aim of the intruder is to derive the secret message Sec . Note
that in this definition of an attack, only security (or more precisely secrecy) is
the concern. We do not study here properties like for instance authentication or
liveness. If some number of interleaving sessions of a protocol is to be analyzed,
then these sessions have to be encoded into the protocol, which is the standard
approach when protocols are analyzed w.r.t. a bounded number of sessions (see,
for instance [13, 2]).

Formally, given a protocol P = {Π1, . . . , Πl}, a protocol execution scheme is
a sequence of rules π = π1, . . . , πn such that each element of π can be assigned to
one of the participants Π1, . . . , Πl, and, for each participant Πk (k = 1, . . . , l),
the subsequence of the elements of π assigned to Πk is Π1

k , . . . , Πm
k , for some

4

m ≤ |Π|, where Πi
k is the i-th rule of Πk.1 An attack with an initial knowledge

A0 is a pair (π, σ), where π is a protocol execution scheme, and σ is a ground
substitution such that, for all i = 1, . . . , n, we have

I(A0), I(s1σ), . . . , I(si−1σ) `TI
I(riσ), and (4)

I(A0), I(s1σ), . . . , I(snσ) `TI
I(Sec). (5)

A protocol is insecure, if there exists an attack on it.

Finite tree automata. We will express finite tree automata by means of unary
logic programs. We say that a logic program T with a set of accepting predicate
symbols QF is an alternating finite tree automaton, if each rule of T has the
form

p0(f(x1, . . . , xn)) ← p1(y1), . . . , pm(ym) (6)

where x1, . . . , xn are distinct variables, and for each i = 1, . . . ,m, the variable
yi ∈ {x1, . . . , xn}. A program is a nondeterministic finite tree automaton, if each
its rule has the form

p0(f(x1, . . . , xn)) ← p1(x1), . . . , pn(xn). (7)

where x1, . . . , xn are distinct variables. A program T is a deterministic bottom-
up finite tree automaton, if each its rule has the form (7), and for each function
symbol f and each sequence of predicate symbols p1, . . . , pn, the program con-
tains at most one clause of the form (7). It is easy to see that, in this case, for
each term t, there exists at most one predicate symbol p such that `T p(t).

Let T with QF be an automaton. A term t is accepted by (T,QF), if `T q(t),
for some q ∈ QF . The set of terms accepted by (T,QF) will be denoted by
L(T,QF).

3 Attacks with Regular Knowledge

In this section we consider the insecurity problem of protocols analyzed w.r.t. a
bounded number of sessions, assuming that the initial knowledge of the intruder
is a regular language given by a finite tree automaton. We assume that keys
(both in symmetric and public key encryption) are atomic, which is the only
assumption not made in [13], where only keys used in public key encryption were
assumed to be atomic (in other respects, the result presented here subsumes the
decidability result from [13]).

The rest of this section is devoted to prove that, when the initial knowledge
of the intruder is given by a deterministic bottom-up tree automaton, then the
insecurity problem is NP-complete. The proof proceeds in two steps. First, in
1 More formally, a sequence π1, . . . , πn of rules is a protocol execution scheme, if there

is a function f : {1, . . . , n} → {1, . . . , l} such that, for each k = 1, . . . , l, assuming
that integers i1 < · · · < im are all the elements of f−1(k), we have πij = Πj

k, for
each j = 1, . . . , m.

5

Ii(f(x1, . . . , xn)) ← q1(x1), . . . , qn(xn) (8)

whenever q0(f(x1, . . . , xn)) ← q1(x1), . . . , qn(xn) is a rule of T , and q0 ∈ QF ;

Ii(〈x, y〉) ← Ij(x), Ik(y) if i ≥ j, k (9)

Ii(x) ← Ij(〈x, y〉) Ii(y) ← Ij(〈x, y〉) if i ≥ j (10)

Ii(x) ← Ij({x}a) Ii(x) ← Ij({x}p

a−1) if i ≥ j, and a ∈ Es
i , (11)

Ii({x}a) ← Ij(x) Ii({x}p

a) ← Ij(x) if i ≥ j, and a ∈ Es
i . (12)

Fig. 2. The Stage Theory for T and e.

Section 3.1, we introduce stage theories of protocols which allow us to represent
attacks in more uniform way. Next, in Section 3.2, we introduce the notion of
adags which are labelled term-dags suitable to represent attacks. We show that
if an adag exists, then there exists an adag of polynomial size. It gives rise to
the nondeterministic polynomial-time algorithm for the insecurity problem.

3.1 Stage Theories

In this subsection we express the existence of an attack, using a stage theory
of a protocol which takes into account the fact that A0 is a regular language
represented by a logic program (and hence A0 and the intruder inference rules can
be represented in a uniform way). Second, instead of representing the knowledge
of the intruder by the predicate I, the family of predicate symbols I0, . . . , Im is
used to represent his knowledge at different stages of an attack.

Let P be a protocol, and A0 be the initial knowledge of the intruder, rep-
resented by a finite tree automaton (T, QF). Let K be the set consisting of the
constant Sec , and all the keys of the given protocol. We can assume without loss
of generality that no rule of P have the form a → s, for a ∈ K (if it is the case,
we can replace it by e.g. 〈a, a〉 → s, obtaining a protocols which is equivalent
w.r.t. the existence of an attack).

Let π = (ri → si)n
i=1 be a protocol execution scheme, and Ω = K∪{1, . . . , n}.

A sequence e = e1, . . . , em of elements of Ω is called a stage sequence for π, if
e contains all the elements Sec , 1, . . . , n, and whenever ei = k and ej = l, for
i < j, then k < l.

For e ∈ Ω, let us define er, and es by the equations er = re, es = se, if
e ∈ {1, . . . , n}, and er = es = e, otherwise. Let Er

i = {er
1, . . . , e

r
i}, and Es

i =
{es

1, . . . , e
s
i}. The set Es

i represents keys and terms of the form sjσ available to
the intruder at the i-th stage of an attack. The set Er

i represents keys and terms
of the form rjσ which should be known to the intruder before the i-th stage. Let
Te denote the program T extended with the stage theory for T and e (Figure
2), where QI = {I0, . . . , Im} are fresh predicate symbols. The predicate symbol
Ik is intended to describe the intruder knowledge at the k-th stage of an attack
with a substitution σ, where the terms from {tσ | t ∈ Es

k} are available to him.

6

Lemma 1. Let π be a protocol execution scheme, and σ be a ground substitution.
The pair (π, σ) is an attack iff there is a stage sequence e for π such that

I1(es
1σ), . . . , Im(es

mσ) `Te I0(er
1σ), . . . , Im−1(er

mσ). (13)

Proof. First, suppose that (13) holds, for some π, e, and σ, and that ∆ is a
proof of it. Without loss of generality, we can assume that Ik(t) occurs in ∆
before Il(s), if k < l. Let ∆i denote the subsequence of ∆ containing only facts
of the form Ii(t), and let ∆≤i be the concatenation of ∆1, . . . , ∆i. Let ∆∗

≤i

be the sequence obtained from ∆≤i by substituting Ik by I. One can show, by
induction on i, that ∆∗

≤i is a proof w.r.t. TI which uses only assumptions from
I(A0)∪{I(sjσ) : sj ∈ Es

i} (i.e. ∆∗
≤i is a proof of I(A0)∪{I(sjσ) : sj ∈ Es

i} `TI
∅).

Now, let k be any integer from {1, . . . , n}. There exists i such that ei = k.
By the definition of Es

i , we have es
i = sk /∈ Es

i−1. Moreover, if sl ∈ Es
i−1,

then l < k. So, ∆∗
≤i−1 is a proof w.r.t. TI which uses only assumption from

I(A0), I(s1σ), . . . , I(sk−1σ). By the definition of ∆, we have Ii−1(rkσ) ∈ ∆≤i−1

(because rk = er
i), hence ∆∗

≤i−1 is a proof of I(A0), I(s1σ), . . . , I(sk−1σ) ` I(rkσ).
Similarly, we show that (5) holds. So, we can conclude that (π, σ) is an attack.

Now, suppose that we have an attack (π, σ). Let Πi be a proof of (4), for i =
1, . . . , n, and let Πn+1 be a proof of (5). We split each Πk (for k = 1, . . . , (n+1))
into the maximal (w.r.t. its length) sequence Π1

k , . . . , Πmk

k such that the last el-
ement of Πi

k, for 1 ≤ i < mk, is of the form I(a) for a ∈ K, and this occurrence
of I(a) is the only one in Π1, . . . ,Πk−1,Π

1
k , . . . ,Πi

k. We want to re-index the ob-
tained sequence of Πi

k, so let Π̂1, . . . , Π̂N = Π1
1 , . . . , Πm1

1 , . . . ,Π1
n+1, . . . , Π

mn+1
n+1 .

For i = 1, . . . , N , let ∆i be the sequence of facts obtained from Π̂i by sub-
stituting each I(t) by Ii−1(t), and let ei be equal to k, if Π̂i = Πmk

k , for some
k, and, otherwise, let ei be a, where I(a) is the last element of Π̂i. Finally, let
S = {t ∈ A0 | I(t) occurs in Π1, . . . , Πn+1}, and let ∆0 be a proof of `Te I0(S).
One can prove that the concatenation of ∆0, . . . ,∆N is a proof of (13).2 ut

A proof is normal, if for each term t, it contains at most one fact of the form
Ik(t) (for some k). The following fact is easy to prove.

Lemma 2. It holds (13) iff there is a normal proof ∆ of

I1(es
1σ), . . . , Im(es

mσ) `Te Ii1(e
r
1σ), . . . , Iim(er

mσ), (14)

where, for each k = 1, . . . , m, we have 0 ≤ ik < k.

3.2 DAG of the Attack

Suppose that we have a protocol P , a protocol execution scheme π = (ri →
si)n

i=1, and a stage sequence e for π. We denote by T (P) the set of subterms of
{ri, si}n

i=1 ∪ K. Suppose that the initial knowledge of the intruder is given by a
deterministic bottom-up automaton (T, QF) with the set of predicate symbols
Q, and the set of accepting predicate symbols QF . Let Z be the set of elements
of the form ε, and I

↓
k, I

↑
k (for 0 ≤ k ≤ |e|).

2 We use here the assumption that no rule of P is of the form a → s, for a ∈ K.

7

Definition 1. A dag of the attack (an adag for short) for P, e is a tu-
ple 〈D, α, δ1, δ2〉 where D is a term-dag over Σ with the set of vertices V ,
δ1 : V → Q, δ2 : V → Z, and α is a mapping from T (P) to V such that

(i) if α(f(t1, . . . , tn)) = v, then v =D f(v1, . . . , vn), and α(ti) = vi, for i =
1, . . . , n,

(ii) if v0 =D f(v1, . . . , vn), and δ1(vi) = qi, for i = 0, . . . , n, then T contains
the rule q0(f(x1, . . . , xn)) ← q1(x1), . . . , qn(xn),

(iii) if δ2(v) = I
↑
i , then we have either (a) δ1(v) ∈ QF , or (b) for each child

v′ of v, δ2(v′) = I
↓
j or δ2(v′) = I

↑
j , for some j ≤ i, and if v =D {v′}a or

v =D {v′}p

a then a ∈ Es
i ,

(iv) if δ2(v) = I
↓
i , then either (a) v = α(sk), for sk = es

i, or (b) for some parent
v′ of v, δ2(v′) = I

↓
j , for some j ≤ i, and if v′=D {v}a or v′=D {v}p

a−1 , then
a ∈ Es

i ,
(v) if v = α(er

i), then δ2(v) = I↓j or δ2(v) = I↑j , for some j < i.

The following lemma links the existence of an attack and the existence of an
adag for a given protocol and stage sequence.

Lemma 3. Let P be a protocol. There exists an attack on P iff there exists a
stage sequence e and an adag for P, e.

Proof. Suppose that there is an attack (π, σ). By Lemma 1 and Lemma 2, there
is a sequence e, and a normal proof ∆ of (14). Let D be the dag representing
all the terms of the form tσ, where t ∈ T (P) (i.e. for each term s of the form
tσ, D contains a vertex v representing s). For t ∈ T (P), let α(t) be the vertex v
such that t(v, D) = tσ. For a vertex v of D, let δ1(v) be (the only) state which
T assigns to tv = t(v, D). Let δ2(v) = ε, if ∆ does not contain Ij(tv), for any
j. If Ij(tv) occurs in ∆, then let δ2(v) be I

↑
j , if Ij(tv) is obtained using (9) or

(12), and let δ2(v) be I
↓
j , otherwise (in this case either tv = skσ, for sk = es

j , or
Ij(tv) is obtained in ∆ using (10) or (11)). One can show that 〈D,α, δ1, δ2〉 is an
adag.

Now, suppose that 〈D, α, δ1, δ2〉 is an adag for P, e. Let σ(x) = t(α(x), D).
We produce the following sequence of facts: First, we put all the fact of the form
Ik(t), where δ2(v) = I

↓
k (for some k), and t = t(v,D), in such a way that q(t)

is before q′(t′), if t > t′. Second, we put all the facts of the form p(t), where
δ1(v) = p, for t = t(v, D), and all the facts of the form Ik(t) (for some k), where
δ2(v) = I

↑
k, for t = t(v,D), in such a way that q(t) is before q′(t′), if t < t′. One

can prove that this sequence is a normal proof of (14), which by Lemma 1 and
Lemma 2, implies that there exists an attack. ut

Lemma 3 is a crucial step of our construction, because it characterizes the
existence of an attack by a structure which is defined by some local properties
((i)–(v) of Definition 1). As we will see, it allows us to minimize adags, roughly
speaking, by merging vertices which are indistinguishable from the point of view
of this local properties.

8

Let D be an adag. We say that v ∈ V is free, if v 6= α(t), for each t ∈ T (P).
Let δ(v) = (δ1(v), δ2(v)). A vertex v is said to be a push vertex, if δ2(v) = I

↓
k, for

some k; otherwise it is a non-push vertex. A vertex v is a top vertex, if δ2(v) = I
↓
i

(and so it is a push vertex), and v = α(sk), for sk = es
i (and so we do not have

to use its parents in order to ensure that (iv) of Definition 1 is met).
Now, we will show that if there exists an adag (for some P, e) then there

exists an adag of polynomial size. The proof proceeds in two steps. First, in
Lemma 4, we minimize the number of non-push vertices. It is a simple step
which resembles the proof of pumping lemma for regular (tree) languages. In the
second step (Lemma 5), we show how to minimize the number of push vertices.
To explain this step, it is convenient to think that Item (iv) of Definition 1 allows
us to transfer labels of the form I

↓
k down the adag, so that it can be used by

pop vertices (Item (iii)). Now, roughly speaking, if a number of pop vertices is
polynomially bounded, then a polynomially bonded number of push vertices is
sufficient to transfer the necessary information from top vertices to pop-vertices
(which is expressed by the pushing relation in the proof of Lemma 5).

Lemma 4. If there is an adag D, then there is an adag D′ with the same
number of push vertices, and with the set of non-push free vertices of the size
at most c = m · (2n + 1), where n is the length of e, and m is the number of
predicate symbols of T .

Proof. Let v, v′ be free non-push vertices of D with δ(v) = δ(v′). We can assume
that v 6< v′ (if it is not the case, we can switch them). Let us remove v and replace
it by v′ (i.e. whenever v was a child of u, we make v′ a child of u instead). One
can show that in this way we obtain an adag. We repeat this step until there
are no two distinct free non-push vertices with the same value of δ. ut

Lemma 5. If there is an adag D, then there is an adag D∗ of polynomial size
w.r.t. the size of the given protocol, and the program T .

Proof. Suppose that D is an adag Let D′ be the adag obtained from D using
Lemma 4. Let W be the set of all the push vertices of D′ which either are not
free, or are children of some non-push vertices. Note that |W | ≤ 2c + |P |, where
c is the constant from Lemma 4.

For each non-top vertex v with δ2(v) = I
↓
k, we chose one of its parents h(v)

such that δ2(h(v)) = I
↓
k′ , for some k′ ≤ k (so h(v) can be used to verify the

point (iv) of Definition 1). We will write v′ 7→h v, if v′ = h(v), and denote the
transitive closure of 7→h by 7→∗

h. We will call 7→h a pushing relation of D. Note
that 7→h defines a forest such that the roots of its trees are top vertices, and
every push vertex is a node of this forest. Let us denote this forest by Th. For a
push vertex v, let G(v) be the set {w ∈ W | v 7→∗

h w} (note that if v ∈ W , then
v ∈ G(v)).

Now, we perform the following changes in D′. Let us set δ2 to ε in each
free push vertex v such that G(v) = ∅. One can show that in this way we
obtain an adag Next, suppose that v, v′ are distinct free vertices such that

9

δ(v) = δ(v′) = (q, I↓k) with G(v) = G(v′) 6= ∅. Note that v 7→∗
h v′ or v′ 7→∗

h v.
We assume the former case. Let us remove v and replace it by v′, and put
h(v′) = h(v). Let δ2(u) be set to ε in each push vertex u such that v 7→∗

h u, and
v′ 67→∗

h u. One can prove that what we have obtained is an adag Note that no
vertex from W has been removed, and moreover, for v ∈ W , the value of δ(v)
has not been changed.

We repeat this step until there are no two distinct free push vertices v, v′

with δ(v) = δ(v′) and G(v) = G(v′). Note that each time we modify the adag
we modify also its pushing relation. Let D′′ be the adag obtained in this way,
and let 7→h′′ be its pushing relation. Because W is polynomial, Th′′ is polynomial
as well: this forest has at most |W | leafs (each leaf is an element of W), and each
its path is not longer than |W | · c (note that c is the number of distinct values of
δ, and |W | is the maximal number of distinct values of the function G on each
path). Each push vertex of D′′ is in Th′′ , so the number of push vertices in D′′

is polynomial. Let us apply Lemma 4 to D′′ obtaining D∗. The number of push
vertices is unchanged, and the number of free non-push vertices is polynomial.
Thus D∗ has polynomial size. ut
Theorem 1. Protocol insecurity for a bounded number of sessions, with the ini-
tial knowledge of the intruder given by a deterministic bottom-up tree automaton
is NP-complete.

Proof. For deciding a protocol, we guess a protocol execution scheme, a sequence
e for it, then we guess an adag of polynomial size (verifying whether such
a guessed structure is an adag can be easily done in polynomial time). NP-
hardness follows from NP-hardness of deciding protocols without composed keys,
with the initial knowledge of the intruder given as a finite set [13]. ut

4 Protocols with Regular Constraints

Definition 2. A protocol with regular constraints is a tuple (P,D), where P is
a protocol, and D is a domain assignment which assigns a regular language Dx

(the domain of x) to each variable x ∈ Var(P).
For a protocol with regular constraint (P,D), a pair (π, σ) is an attack on

(P,D), if it is an attack on P , and furthermore, for each x ∈ Var(P), we have
xσ ∈ Dx.

We consider the problem of deciding protocols with regular constraints, where
both the initial knowledge of the intruder, and languages Dx are given by finite
tree automata. As we will see the choice of the type of automata (deterministic,
nondeterministic, alternating) does not have any impact on the complexity of
the problem: in all these cases the problem turns out to be NexpTime-complete.

Proposition 1. The problem of deciding a protocol with constraints (P,D),
where the initial knowledge of the intruder and the languages Dx, for x ∈ Var(P),
are given by alternating tree automata can be reduced to the problem of deciding
a protocol (without constraints) with a regular initial knowledge of the intruder
given by an alternating automaton.

10

Proof. Suppose that (P,D) is a protocol with regular constraints, and that
Var(V) = {x1, . . . , xm}. Let A0 and {Ai}m

i=1 be alternating tree automata which
describe the initial knowledge of the intruder and the languages Dxi

, respectively.
We assume that these automata have disjoint sets of states, and that the accept-
ing state of Ai is qi (for 0 ≤ i ≤ m). Let A denote the union of A0, . . . , Am with
the accepting state q0 (recall that it is the accepting state of A0).

Let P ′ be the protocol P with one additional principal having the only rule

Sec , {x1}k1
, . . . , {xm}km

→ Sec ′,

where k1, . . . , km and Sec ′ are fresh constants. Let A′ be the automaton A with
additional transitions that assign the state q0 to a term {t}ki

only if t can be
assigned the state qi. One can show that the intruder with the initial knowledge
given by A0 can derive Sec in the protocol (P,D), if and only if the intruder
with the initial knowledge given by A′ can derive Sec ′ in the protocol P ′. ut

It is known that, for an alternating tree automaton, one can construct an
equivalent deterministic bottom-up tree automaton of exponential size. Hence,
Proposition 1, and Theorem 1 have the following consequence.

Theorem 2. The insecurity of a protocol (P,D) with the initial knowledge of
the intruder and the languages Dx given by alternating tree automata is in Nex-
pTime.

One can show that the exponential bounded tiling problem (which is Nexp-
Time-hard) can be reduced to the problem of deciding a protocol with regular
constraints which use deterministic automata only. Thus we have the following
result (the proof is given the extended version of this paper [14]).

Theorem 3. The insecurity of a protocol (P,D) with regular constraints is
NexpTime-hard, even if the initial knowledge of the intruder and languages
Dx are given by bottom-up deterministic tree automata.

Let us note that the reduction given in the proof of Proposition 1 has the
following property: if the initial knowledge of the intruder and the languages
Dx are given by nondeterministic (but not alternating) tree automata, then the
resulting automaton A′ is also nondeterministic (does not use alternations). We
can use this fact and Theorem 3 to obtain the following result, which shows
that the assumption about the determinism of the automaton in Theorem 1 is
essential.

Corollary 1. The insecurity problem of protocols (without constraints) with the
initial intruder knowledge given by nondeterministic tree automata is NexpTime-
hard.

11

5 Regular protocols

The aim of this section is to specify a (possibly general) class of protocols such
that each protocol P in this class has the following property: the knowledge which
the intruder can gain during an unbounded number of sessions of P is a regular
language. The class defined here is closely related to regular unary-predicate
programs defined in [8], and to a class of monadic Horn theories defined in [15].

In this section we consider the analysis w.r.t. unbounded number of sessions.
We should note that in this case, the formalism used do describe protocols does
not model nonces (in the case of a bounded number of sessions nonces can be
modeled by constants). Hence, we can assume without loss of generality, that a
protocol is just a set of (independent) rules3, and that each of its rules r → s
says that if the intruder knows a term rθ, than it can also know sθ, for any
ground substitution θ.

Definition 3. A term s covers x in a term t, if either s = x, or s = f(s1, . . . , sn),
for some f ∈ Σ, and each occurrence of x in t is in the context of one of s1, . . . , sn.

For instance, s = 〈{x}b, y〉 covers x in t = {{x}b, {y, {x}b}a
}

a
(because each

occurrence of x in t is in the context of {x}b), but s does not cover x in {{x}c}b.
Note also that any term covers x in {y}a.

Definition 4. Let ϕ be the function, which assigns a set of terms to a term,
defined by the equations ϕ(t) = ϕ(t1) ∪ ϕ(t2), if t = 〈t1, t2〉, and ϕ(t) = {t},
otherwise.

For instance ϕ(〈{b}k, 〈{b, c}k, d〉〉) = {{b}k, {b, c}k, d}.
Definition 5. A rule r → s is regular, if for each s′ ∈ ϕ(s) the following condi-
tions hold: s′ is linear, and each term r′ ∈ ϕ(r) can be assign a subterm γs′(r′)
of s′, such that:

(i) for each r′ ∈ ϕ(r) and each x ∈ Var(s′), the term γs′(r′) covers x in r′,
(ii) for each r′, r′′ ∈ ϕ(r), if a variable y /∈ Var(s′) occurs in both r′ and r′′,

then γs′(r′) = γs′(r′′).

A protocol is regular, if it consists of regular rules only.

Example 1. The rule r → s, where r = {NA, x, B, {x, A}p

KB
}p

KA
and s = {x,A}p

KB

is regular. In fact, for γs(r) = x, the conditions of Definition 5 hold (it is be-
cause x covers x in any term, and Var(s) = {x}; note also that ϕ(r) = {r} and
ϕ(s) = {s}). Similarly, one can easily check that each rule which has only one
occurrence of a variable on the right-hand side, is regular.
3 If it is not the case, each principal {ri → si}n

i=1 can be transformed to n principals
with rules r1, . . . , ri → si, for each i = 1, . . . , n. It is easy to check that this transfor-
mation is correct in the following sense: the sets of messages the intruder can gain
during an unbounded number of sessions of the original protocol and the protocol
after the transformation are the same.

12

Example 2. The rule {{x, y}a, z}
b
, {z, z}c → {{y, x}b, d}c

, {z, {x, y}a}c
is regu-

lar. To show it, let us denote the left hand side by r, and the right-hand side
by s. Note that ϕ(r) = {r1, r2}, where r1 = {{x, y}a, z}b and r2 = {z, z}c, and
ϕ(s) = {s1, s2}, where s1 = {{y, x}b, d}c and s2 = {z, {x, y}a}c. Clearly, terms
s1 and s2 are linear. So, let γs1(r1) = γs1(r2) = 〈y, x〉 (note that 〈y, x〉 is a sub-
term of s1, because {y, x}b is a shorthand for {〈y, x〉}b), and γs2(r1) = γs2(r2) =
〈z, {x, y}a〉. One can see that 〈y, x〉 covers x and y in r1 and r2. One can also
see that 〈z, {x, y}a〉 covers x, y, and z in r1 and r2.

Similarly, we can show that the rule {z, {{y}a, x}b}a
→ {{x, {y}a}b, z

′}
c

is
regular. The rule {{x}b, y}a

→ {x, {y}b}a
is not regular.

Theorem 4. The knowledge which the intruder can gain during an unbounded
number of sessions of a regular protocol, can be described by an alternating tree
automaton with the polynomial number of states w.r.t. the size of the protocol.
Moreover, such an automaton can be computed in exponential time.

Proof (sketch). First, we translate a given regular protocol to a logic program:
for each rule r → s, we produce clauses of the form I(s′) ← I(r1), . . . , I(rn), where
s′ ∈ ϕ(s), and {r1, . . . , rn} = ϕ(r). Suppose that T is a logic program obtained
in this way Let T ′ = T ∪TI. One can show that the knowledge that the intruder
can gain during the protocol execution is the interpretation of I in the least
Herbrand model of T ′. Moreover one can show that each clause s ← r1 . . . rn of
T ′ meets the following conditions: s is linear, and each term ri (for i = 1, . . . , n)
can be assign a subterm γ(ri) of s, such that: (i) for each i = 1, . . . , n, and each
x ∈ Var(s), the term γ(ri) covers x in ri, (ii) for each i, j = 1, . . . , n, if a variable
y /∈ Var(s) occurs in both ri and rj , then γ(ri) = γ(rj). We will call clauses of
this form regular.

Now, T ′ can be translated to equivalent program T ′′ which consists of rules
of the following form only:

p(f(x1, . . . , xn)) ← p1(t1), . . . , pn(tn), where f(x1, . . . , xn) is linear. (15)

In order to obtain T ′′, one can first eliminate clauses with the head of the form
p(x) (we assume that we have a fixed signature). Now, suppose that a clause has
the form p(〈s1, s2〉) ← p1(t1), . . . , pn(tn) (for other function symbols the proof
proceeds similarly). Let γ be as in the definition of regular clauses. We divide
the literals p1(t1), . . . , pn(tn) into three groups A,B, C such that p(ti) ∈ A iff
γ(ti) = 〈s1, s2〉, ti ∈ B iff γ(ti) ≤ s1, and ti ∈ C iff γ(ti) ≤ s2. We remove the
rule, and add the following ones:

p(〈x, y〉) ← A[s1/x, s2/y], p′(x), p′′(y), p′(s1) ← B, p′′(s2) ← C,

where p′ and p′′ are fresh predicate symbols. We recursively repeat this procedure
for p′ and p′′. One can show that the size of T ′′ is polynomial w.r.t. the size of
T .

Monadic Horn theories consisting of clauses of the form (15) are considered in
[15], where it is shown that they can be finitely saturated by a sort resolution4.
4 One can also show that the program T ′′ is in the class H1 defined in [12], and so,

by Theorem 1 of [12], is normalizable.

13

We can proceed similarly. Roughly speaking, we saturate P ′, successively adding
simpler clauses, and finally, we remove all the clauses which are not of the form
(6) (see page 5). Thus the obtained program is just an alternating automaton.
We show that the saturation process stops after at most exponential number of
steps, and that the obtained program is equivalent to P . The detailed proof can
be found in the extended version of the paper [14].

Theorem 5. Secrecy of a regular protocol is DexpTime-complete.

Proof. To decide a secrecy of a regular protocol, we build (in exponential time)
an alternating tree automaton A of polynomial number of states which describes
the knowledge of the intruder, and check whether Sec ∈ L(A), which can be done
in exponential time.

We prove DexpTime-hardness by reduction of the emptiness of the inter-
section of regular tree languages given by n finite automata. We build a pro-
tocol that encode all these automata in such a way that the i-th automaton
recognizes a term t iff the intruder knows the term {t}ki

. We add the rule
{x}k1

, . . . , {x}kn
→ Sec to the protocol. One can see that the protocol is in-

secure, iff the intersection of the given automata is not empty. ut

By a very similar technique, regular protocols can be extended to work with
regular constraints: we can encode a finite state automaton A by some regular
rules so that t ∈ L(A) iff I({t}kA

), and add terms of the form {x}kA to the
left-hand side of rules.

The results of this section and Sections 3 can be easily combined to achieve
decidability of secrecy of the following two-phases protocols. Suppose that a pro-
tocol, which uses only atomic keys, consists of some regular rules P1, and some
rules P2 of arbitrary form. The intruder can execute rules from P1 unbounded
number of times (building a knowledge which is a regular language), and then
he can execute the rules of P2 at most once. Because, for an alternating tree
automaton, one can construct an equivalent deterministic bottom-up tree au-
tomaton of exponential size, by Theorems 4 and 1, the insecurity problem of
such a protocol can be decided in NexpTime.

6 Conclusions

We have extended the decidability result for protocols analyzed w.r.t. a bounded
number of sessions to the case when the initial knowledge of the intruder is a
regular language. We have shown that if this language is given by a deterministic
bottom-up automaton, then the insecurity problem of a protocol is NP-complete,
assuming that complex keys are not allowed. We have showed also that if we add
to protocols regular constraints which guarantee that messages have a required
form, then the problem of deciding protocols is NexpTime-complete. These
results can be a starting point for developing practical algorithms for detecting
attacks with regular initial knowledge.

14

We have also defined a family of protocols such that the set of messages that
the intruder can gain during unbounded number of sessions is exactly a regular
language.

An open problem is decidability of the security of protocols with complex
keys against attacks with regular initial knowledge.

References

1. R. M. Amadio and W. Charatonik, On name generation and set-based analysis
in the Dolev-Yao model., in CONCUR, vol. 2421 of Lecture Notes in Computer
Science, Springer, 2002, pp. 499–514.

2. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani, An NP deci-
sion procedure for protocol insecurity with XOR., in LICS, IEEE Computer Society,
2003, pp. 261–270.

3. Y. Chevalier, R. Küsters, M. Rusinowitch, M. Turuani, and L. Vigneron,
Extending the Dolev-Yao intruder for analyzing an unbounded number of sessions.,
in CSL, vol. 2803 of Lecture Notes in Computer Science, Springer, 2003, pp. 128–
141.

4. H. Comon and V. Shmatikov, Is it possible to decide whether a cryptographic
protocol is secure or not?, Journal of Telecommunications and Information Tech-
nology, special issue on cryptographic protocol verification, 4 (2002), pp. 5–15.

5. D. Dolev and A. Yao, On the security of public-key protocols, IEEE Transactions
on Information Theory, 29 (1983), pp. 198–208.

6. N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov, Undecidability of
bounded security protocols, in Workshop on Formal Methods and Security Pro-
tocols (FMSP’99), 1999.

7. S. Even and O. Goldreich, On the security of multi-party ping-pong protocols,
in Technical Report 285, Israel Institute of Technology, 1983.

8. T. W. Frühwirth, E. Y. Shapiro, M. Y. Vardi, and E. Yardeni, Logic pro-
grams as types for logic programs, in LICS, 1991, pp. 300–309.

9. T. Genet and F. Klay, Rewriting for cryptographic protocol verification., in
CADE, vol. 1831 of Lecture Notes in Computer Science, Springer, 2000, pp. 271–
290.

10. C. Meadows, Formal methods for cryptographic protocol analysis: Emerging issues
and trends, IEEE Journal on Selected Areas in Communication, 21 (2003), pp. 44–
54.

11. D. Monniaux, Abstracting cryptographic protocols with tree automata., in SAS,
A. Cortesi and G. Filé, eds., vol. 1694 of Lecture Notes in Computer Science,
Springer, 1999, pp. 149–163.

12. F. Nielson, H. R. Nielson, and H. Seidl, Normalizable horn clauses, strongly
recognizable relations, and spi., in SAS, vol. 2477 of Lecture Notes in Computer
Science, Springer, 2002, pp. 20–35.

13. M. Rusinowitch and M. Turuani, Protocol insecurity with a finite number of
sessions, composed keys is NP-complete., Theor. Comput. Sci., 1-3 (2003), pp. 451–
475.

14. T. Truderung, Regular protocols and attacks with regular knowledge. Extended
version, 2005. Available at http://www.ii.uni.wroc.pl/~tt/papers/.

15. C. Weidenbach, Towards an automatic analysis of security protocols in first-order
logic., in CADE, vol. 1632 of Lecture Notes in Computer Science, Springer, 1999,
pp. 314–328.

15

