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Abstract. In scenarios where direct access to displayed content, such as
secured web pages or confidential documents, is restricted, eye-tracking
data can serve as a side channel for information inference. Represented
as human attention maps, eye tracking data is widely used in research,
for example, to quantify how users explore visual information. In this
work, we specifically focus on visual question-answering (VQA) scenar-
ios to demonstrate, for the first time, that a rich amount of information
can be leaked solely from human attention maps. Hence, we assume that
an adversary only has access to the gaze attention maps and aims to
derive a range of attributes about the image (e.g. the chart type), the
question (e.g. question type), and the answer (e.g. the accuracy-based
complexity). This information leakage could be the first step towards
potentially more complex insights about human perception and cogni-
tion. Our experiments demonstrate that deriving attributes is feasible,
and simultaneously predicting multiple attributes improves the success
rate for attributes that are difficult to infer. This paper highlights poten-
tial threats, encouraging the community to address these concerns and
develop appropriate privacy-preserving solutions.

Keywords: VQA · Side-Channel Attack · Multitask Learning · Transformer ·
Privacy

1 Introduction

Attention maps – 2D maps that encode human gaze data – have become an
indispensable tool in eye-tracking research, particularly in understanding how
users engage with information visualisations within documents [3, 17, 26]. By
identifying and highlighting areas of visualisation that attract attention, gaze
attention maps help researchers and designers determine what aspects of visual
content are most salient to the human visual system [38, 47]. Particularly in vi-
sual question-answering scenarios, gaze attention maps bridge the gap between
perception and cognition by showing how visual attention is distributed in re-
sponse to a question, thus revealing insights into how individuals prioritize visual
⋆ Both authors contributed equally to this research
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Fig. 1. Human attention maps can unintentionally reveal sensitive information in
visual question-answering (VQA) scenarios where users’ gaze patterns are collected
and aggregated, and then attention maps are publicly shared. We demonstrate, for the
first time, that adversaries with access only to gaze attention maps can infer various
attributes related to the chart, the question, and the answer.

information, manage cognitive load, and integrate perceptual features to infer
answers [43,50].

Even when the content or stimuli presented to a user, such as a secured
webpage or protected document, cannot be directly accessed by an attacker, eye-
tracking data can serve as a side-channel to infer what the user is viewing [46,48].
This, therefore, raises significant privacy concerns:

First, the visualisation image can be privacy-sensitive in several scenarios,
particularly when they involve personal, confidential, or sensitive data [55, 57].
For example (c.f. Figure 1), a dashboard visualising patient health records, such
as medical histories, diagnoses, or medication usage, can reveal sensitive health
information, or a graph visualising income distribution or spending patterns in
a community could expose individuals’ financial data, including salaries, debts,
or investment information. The visualisation image can also reveal information
about the users’ visual perception, which forms the foundation of further cog-
nitive processing since human attention is not only naturally drawn to visually
salient parts of an image but can also be modulated by the task at hand, where
the question guides the focus to specific parts of the image that are relevant for
answering [43,50].

Second, the question asked to the users is subsequently crucial and poten-
tially privacy-sensitive since it can reveal information about the visualisations,
such as the topic or some visual references [31]. Additionally, it acts as a cogni-
tive guide, shaping where a person looks (or should look) in the image [36]. This
is an example of top-down attention, where higher cognitive functions (the ques-
tion) influence visual perception [53]. In addition, the question helps filter out
unnecessary information by narrowing the search space within the image [16].
The cognitive system uses the question to determine which visual features and
regions are worth attending to. Human cognition integrates multiple aspects of
the visual scene (e.g., colours, shapes, sizes, and spatial relationships) to ex-
tract meaningful information that answers the question. This integration relies
on working memory and executive function, which keep track of relevant visual
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elements while the question is being processed cognitively [43]. Therefore, infor-
mation about the question can leak information about the user’s perceptual and
cognitive processes.

Third, the answer can also raise privacy concerns since it might reveal infor-
mation about the users’ prior knowledge, memory recall, and semantic under-
standing [32,43]. Moreover, the complexity of the question can increase cognitive
load, affecting both the processing time and accuracy of the answer [50].

Overall, VQA serves as an effective domain for handling multiple modalities,
particularly images (visual representations) and text (questions and answers),
relying on various human cognitive and perceptual factors.

In this paper, we aim to shed light on the amount of information that could be
inferred from gaze attention maps solely, beyond the simple gaze location estima-
tion [46,48]. More technically, we present AttentionLeak – an adversarial attack
that only leverages the gaze attention maps to derive privacy-sensitive informa-
tion in the form of a range of attributes about the image (e.g. the chart type),
the question (e.g. question type), and the answer (e.g. the answer complexity).
This could act as the first step towards potentially more complex insights about
human perception and cognition1. In summary, our paper makes the following
contributions:

– Our work is the first to demonstrate the potential of gaining information from
gaze attention maps alone.

– We show that we can glean insights about the image, question, and answer
solely from the gaze attention maps in VQA scenarios.

– Through extensive experiments2, we demonstrate that an adversary, even with
limited resources in terms of data and computing power, can successfully
perform the attack.

– We further recommend the most suitable model architectures, optimizers, and
augmentation techniques for our attack according to the characteristics of
attention maps.

2 Related Work

In this section, we introduce the key related work on how an adversary can
derive private information through inference attacks, what this information can
reveal about the users and the corresponding information visualisation, and why
privacy-preserving techniques are, therefore, crucial.

2.1 How can an adversary infer private information?

Inference attacks are privacy-violating strategies that aim to extract sensitive
or private information from seemingly benign or aggregated data. They have
1 Note that even if the data is aggregated (the common practice in gaze attention maps

[50]), patterns could still re-identify individuals [23,34], leaking further information.
However, this remains out of the scope of this paper.

2 The implementation code will be publicly available upon acceptance.
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become an increasingly important area of research as the reliance on data shar-
ing and machine learning systems grows. The pioneering work of Denning et
al. [11] on statistical database security showed that adversaries could aggregate
query responses to piece together sensitive information, even when the data is
aggregated, such as in the case of attention maps. Later works [23, 34] demon-
strated that databases could be de-anonymised through cross-referencing with
auxiliary information (i.e. shadow models) and individuals can be re-identified.
This concern further grows in our case since eye data includes identifiers [8] and
quasi-identifiers (e.g. gender [39]).

Inference attacks include: (i) membership inference attacks, introduced by
Shokri et al. (2017) [42], that allow adversaries to determine whether a par-
ticular data point was included in a model’s training set, (ii) model inversion
attacks, demonstrated by Fredrikson et al. (2015) [15], that enables attackers to
reconstruct sensitive input data from model outputs, and (iii) attribute infer-
ence attacks where adversaries leverage access to trained models to infer missing
dataset attributes. In this paper, we focus on attribute inference attacks since
they exploit indirect information, which users might not even realize could reveal
such insights.

Melis et al. (2019) [33] demonstrated the feasibility of such attacks in the
context of collaborative learning, where participants may unknowingly expose
sensitive information about their data to other participants. Recently, the work
by Zhang et al. (2018) [55] revealed that attention maps generated by deep
learning models, commonly used for interpretation, can unintentionally reveal
sensitive patterns in the data, allowing attackers to infer underlying private
information even without access to the original dataset. In contrast, we focus on
human attention maps generated through gaze data.

2.2 What does the inferred information reveal about the users and
the corresponding information visualisation?

Numerous studies in eye tracking research and cognitive science have revealed
that human eye movements can provide insights into a user’s mental state [6,7],
and this has inspired a growing number of research in eye-based user mod-
elling [21,37,47]. Previous works have also estimated participants’ levels of text
comprehension [1],intention [27, 40, 56], mind-wandering tendencies [22, 54],and
recallability [49] from their eye movements. In addition, an increasing num-
ber of researchers have studied the correlations between human eye movements
and tasks and proposed many successful gaze-based task recognition meth-
ods [2, 5, 20,21].

More specifically, in information visualisations, several eye-tracking datasets
have been collected by researchers to understand human visual attention for
bottom-up [3, 41] as well as top-down attention [17, 26, 38, 50]. In this paper,
we focus on the most recent dataset by Wang et al. [50] that used the Bubble-
View technique [24] to collect SalChartQA, a large-scale question-driven dataset
comprising 6,000 attention maps under analytical questions.
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2.3 How does awareness of attack feasibility aid in mitigation
efforts?

Inspired by the famous side-channel attack on Apple passwords through gaze
reflection [48], privacy-preserving eye tracking [4, 9, 28, 29] started to attract
attention but remains under-investigated [18]. In particular, privacy threats are
not yet well-understood, and the community remains unaware of the potential
risks. Nonetheless, it remains necessary to share eye tracking data in order to
cover the large variety in eye data and infer insights or train ML models [13,14].
Hence, the associated privacy risks, the possible misuse of data copies, and the
potential for personal information leakage, e.g. inference attacks, increase.

Hence, building on the above-mentioned works, our work investigates the
feasibility of attribute inference attacks on information visualisations.

3 Attack Methodology

In this section, we present our threat model and assumption about the adver-
sary’s capabilities. Then, we introduce the dataset used and the related chal-
lenges. Finally, we present AttentionLeak, our attribute inference attack on at-
tention maps.

3.1 Threat Model

Adversary’s Goal The main goal of the adversary is to infer attributes about
the inputs (i.e. the visualisation images) given the gaze attention maps. In gen-
eral, the attack can be generalised to any visual attention scenario. However,
in this paper, we focus on data visualisation since it incorporates information
about different fields. We further focus on visual question-and-answer (VQA)
scenarios since they are information-rich and can reveal insights about the user
perception (i.e. information about the charts) as well as the user cognition (i.e.
the corresponding questions and answers).

Adversary’s Knowledge We assume that the adversary has access to the pub-
lic/leaked/inferred (c.f. Section 2) attention maps and does not have access to
the private stimuli (i.e. visualisation images, questions, and answers). Nonethe-
less, the adversary can create shadow datasets by collecting publicly available
stimuli with her selected attributes and mimicking the gaze attention maps.

Adversary’s Strategy The adversary starts by compiling the shadow dataset from
public knowledge. She then trains a model that takes the shadow gaze atten-
tion maps as input and outputs the corresponding attribute(s). The predicted
attribute(s) is compared against the shadow ground-truth attribute(s). In this
paper, we investigate two main types of models: single- and multi-class classifica-
tion models with different architectures. Once the model is trained, the adversary
uses the model in inference mode to reveal information about the victim dataset
(i.e. the dataset to be attacked/targeted).
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3.2 The Information Visualisation Dataset
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Fig. 2. Class distribution of the four tasks. Chart-type: horizontal bar chart (h-bar),
vertical bar chart (v-bar), pie chart, and line chart. Chart-simplicity: simple and com-
plex. Question-type: filtering (F), finding extremum (FE), and retrieving values (RV).
Answer-complexity: easy, medium, and hard.

We target the SalChartQA dataset [50]. The dataset consists of 3,000 charts,
with 2 questions per chart, resulting in 6, 000 question-driven attention maps.
The mean participant number is 13.1 (with a minimum of 10 participants) per
question. For each chart, participants’ attention maps are aggregated with a
Gaussian filter with a 1-degree visual angle. We split the dataset into two sub-
sets (shadow and target dataset) with an 8:2 ratio. The shadow dataset is further
split into train and validation sets with a 3:1 ratio. We ensure that each chart
and participant occurs only in one subset to prevent information leakage from
the same charts or participants into the different subsets. Therefore, we mod-
elled the participant, question, image, and relationship as a bipartite graph. We
then calculated the connected components in this graph, where each node rep-
resents either a participant or a chart, and the edge represents the question. In
other words, a participant node and a chart node are connected if the partici-
pant answers a question related to that chart. Then, we ensured that an entire
component only occurs either in the shadow dataset or in the target dataset.

Targetted Attributes In our attack construction, the adversary targets four key
attributes of SalChartQA to infer information about the chart, question, and
answer. Note that the attribute distribution is highly imbalanced in the dataset,
as shown in Figure 2:

– Chart-type: the dataset consists of three commonly used chart types: bar,
line, and pie charts with an approximate ratio of 4:1:1, respectively.

– Chart-simplicity: the charts are categorised into simple and complex ac-
cording to the visual complexity of the image, e.g. the number of columns or
the existence of stacked or grouped bars. The simple-to-complex ratio is 8:3
for bar charts and 6:4 for line charts. All pie charts are classified as simple.

– Question-type: Each chart image includes two questions of the following
types: (i) compositional questions that contain mathematical/logical opera-
tions such as sum, difference or average, (ii) visual questions that refer to
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the image visual attributes such as colour, length/height of graphical marks,
and (iii) data retrieval questions. Namely, we use the top-3 most occurring
questions: filtering (F), finding extremum (FE) and retrieving values (RV).

– Answer-complexity: To illustrate that an adversary can infer additional,
unintended attributes beyond those initially available in the dataset, we com-
pute the answer-complexity attribute. Answer-complexity is derived from the
number of clicks performed by users to answer a question. This metric, there-
fore, outlines the complexity of answering a question. Hence, we calculate
the 0.25- and 0.75-quantile of the number of clicks per image type and as-
sign the saliency maps with the number of clicks below the 0.25- quantile to
the complexity easy between the quantiles to medium and the ones over the
0.75-quantile to hard.

Attention Maps The SalChartQA dataset includes three types of attention maps:
aggregation of all answers, correct answers only, and incorrect answers only. For
our experiments, we mostly focus on the aggregation of correct answers because
it helps to separate genuine visual cues from biases that might arise due to
question phrasing, misinterpretation, or other cognitive and linguistic factors.
By analyzing only the attention maps from correct answers, we can identify
unbiased, task-relevant attention patterns that contribute to accurate responses
to improve the reliability and fairness of our findings across diverse users and
contexts.

3.3 The AttentionLeak Attack

Using the shadow dataset, the adversary maps each attribute inference attack
to an image single- or multi-classification task, taking the attention map as in-
put and predicting the respective attribute class(es). The adversary can further
employ different types of model architectures depending on the access to re-
sources (e.g. GPUs and datasets). We demonstrate the feasibility of the attack
through three different model types: (i) a convolutional neural network (CNN),
e.g. Resnet101 [19], (ii) a vision transformer (ViT), e.g. ViT-b/16 [12], and (iii)
a foundation model, e.g. Dino v2 [35]:

Convolutional Neural Network (CNN) ResNet-101 [19] is a deep convolutional
neural network (CNN) that embeds strong inductive biases about visual data
directly into its architecture. Through its convolutional operations, it processes
images in a way that inherently accounts for the locality and hierarchical na-
ture of visual information – nearby pixels are more likely to be related than
distant ones and visual features build up from simple to complex. This architec-
tural bias, combined with its local receptive fields, makes ResNet-101 naturally
data-efficient for image processing tasks. The network consists of 101 layers or-
ganized into residual blocks, where each block can learn additional features while
preserving already learned information through skip connections. This design al-
lows for very deep networks while maintaining stable training dynamics, making
ResNet-101 particularly effective even with moderate-sized datasets.
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Vision Transformer (ViT) Vision Transformer (ViT) [12] represents a departure
from traditional computer vision architectures by having minimal built-in as-
sumptions about image structure. Unlike CNNs, ViT treats images as sequences
of patches and relies on self-attention mechanisms to learn relationships between
these patches from scratch. The "B/16" variant processes images by dividing
them into 16x16 pixel patches. These patches are linearly embedded and com-
bined with position embeddings before being fed into a series of transformer
encoder blocks [45]. While this architecture is extremely flexible and can theo-
retically learn any kind of spatial relationship in the data, this flexibility comes
at a cost of data efficiency. The model must learn these visual relationships from
the data itself, rather than having them built into its architecture. This explains
why ViT models often underperform CNNs like ResNet101 on smaller datasets,
where the benefits of their flexibility cannot overcome the advantage of CNNs’
built-in inductive biases.

Probed Foundation Model Nowadays, it is becoming more and more common to
work with embeddings of large-scale pre-trained foundation models and apply
classical classification algorithms on top of these embeddings. We calculate em-
beddings of all attention maps using the image feature extraction pipeline from
Huggingface [52] with Dino v2 [35]. These embeddings are then classified for the
respective attributes using Logistic Regression or Random Forest.

Single- and Multi-Task Training The adversary inputs the attention maps to the
attack model after rescaling them to a maximum height/width of 224, without
changing the aspect ratio (no normalisation is computed). The model is trained
using a cross-entropy loss. In the single-task training, the adversary trains the
attack model on one of the four tasks and outputs one class.

#tasks∑
i=1

(
1

σ2
i

Li + log σi

)
,

Where Li is the respective cross entropy loss of task i and log σi is learned.
This method is effective, simple to implement, and keeps the number of hyper-
parameters low.

4 Evaluation

In this section, we show, through extensive experiments, (i) if it is possible to infer
private information solely from the attention maps, (ii) the effect of multi- and
single-task attacks, (iii) the shadow model variations that an adversary can use
(e.g. architectures and hyperparameters), (iv) the quantitative and qualitative
information that an adversary can gain.
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4.1 Implementation details

We use ResNet-101 and ViT-B/16 models from the pytorch-image-models library
[51], pretrained on the ImageNet dataset [10]. We trained all models on a single
NVIDIA A100-40 GPU.

For evaluation, we use both micro- and macro-average accuracy to better
assess the performance on majority as well as minority classes:

Micro-Averaging Accuracy (Acc) =
∑C

i=1(TPi + TNi)∑C
i=1(TPi + TNi + FPi + FNi)

(1)

Macro-Averaging Accuracy (Macro Acc) =
1

C

C∑
i=1

TPi + TNi

TPi + TNi + FPi + FNi
(2)

where C denotes the number of classes.
We use two baselines for comparison: (i) random guessing and (ii) predict-

ing the majority class. In the case of random guessing, the micro- and macro-
accuracy is 1

C . For predicting the majority class, the macro-accuracy is 1
C and

the micro-accuracy depends on how imbalanced the label distribution is. The
more imbalanced, the higher the micro-accuracy.

We conducted extensive hyperparameter optimization across five distinct
classification tasks: multi-task , chart-type , chart-simplicity, question-type ,
and answer-complexity classification. For each task, we optimized for maximum
macro accuracy on the validation set. The search space was consistent across
all tasks and included three optimizer variants (Adam [25], AdamW [30], and
SGD with Nesterov momentum [44]), with learning rates ranging from 1e− 4 to
5e−1. We also explored the impact of data augmentation and sampling strategies
(random vs. balanced) on model performance.

4.2 Is It Possible to Infer Chart-, Question-, and Answer-related
Attributes from Attention Maps Alone?

Our main goal is to evaluate the feasibility of inferring chart-, answer- and
question-related attributes solely from gaze attention maps. Table 1 compares
various models, including random and majority baselines, CNNs, ViTs, and
probed foundation models, in predicting attributes such as chart-type, chart-
simplicity, question-tpe, and answer-complexity. All models substantially out-
perform random chance and majority baselines, with fine-tuned neural architec-
tures achieving notably higher accuracy. Fully fine-tuned models such as ResNet-
101 and ViT-B/16 demonstrated strong performance, particularly in detecting
chart-type and chart-simplicity, achieving a macro accuracy of up to 89.59% and
88.32%, respectively. These results indicate that human attention maps contain
a significant amount of information that can reveal private details about the
chart (e.g. chart-type and chart-simplicity), the question (e.g. question-type),
and the answer (e.g. answer-complexity), underscoring potential privacy risks of
attention maps in gaze-based applications and side channel attacks.

Interestingly, despite the advancements of vision transformers in computer
vision, our findings show that CNNs outperform ViTs mixed ViT vs. CNN result.
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Model Fully Chart-type Chart-simplicity Question-type Answer-complexity
Fine-tuned Macro Acc Acc Macro Acc Acc Macro Acc Acc Macro Acc Acc

Baselines
Majority - 25.00 47.61 50.00 60.20 33.33 55.96 33.33 50.63
Random - 25.00 25.00 50.00 50.00 33.33 33.33 33.33 33.33
CNNs
ResNet-101 ✓ 89.59 89.42 88.32 89.17 50.79 52.54 64.52 59.78
ViTs
ViT-B/16 ✓ 87.69 89.08 86.48 86.73 47.70 56.51 63.88 61.13
Probed Foundation Models
Dino v2 + Random Forest × 69.67 75.65 78.88 80.19 39.70 58.63 51.36 58.02
Dino v2 + Logistic Regression × 80.30 81.52 80.54 81.78 45.30 53.74 53.04 54.07

Table 1. Different neural architectures used for inferring attributes from attention
maps alone. All models outperform the baselines, highlighting the privacy risks.

While ViTs B/16 has a roughly double parameter count, ResNet-101 outperforms
the ViT model on three out of the four attributes tested—namely, chart-type,
chart-simplicity, and question-type. Conversely, ViT achieves (an insignificant)
higher accuracy on answer-complexity. One possible explanation is the nature
of the pre-training data. Both ViTs and CNNs, typically undergo pre-training
on large image datasets that may not align well with the unique characteris-
tics of gaze attention maps. As a result, features from these large models may
not transfer as effectively to gaze data, potentially leading to overfitting. While
ResNet-101 is also pre-trained on image data, it has fewer parameters, poten-
tially leading to less overfitting when faced with this unfamiliar data. In addition,
gaze attention maps typically have strong local spatial correlations (e.g., con-
centrated fixations or heatmaps), which CNNs, like ResNet-101, are designed to
exploit through hierarchical feature extraction. ResNet uses convolutional filters
to capture local textures and structures efficiently, whereas ViTs rely on global
self-attention, which may struggle with localized patterns. Moreover, ResNet-101
has strong inductive biases (translation invariance, local receptive fields), mak-
ing it better suited for structured, spatially dependent data like attention maps.
ViTs rely on self-attention mechanisms without built-in spatial biases, requiring
large-scale training to learn such relationships effectively. Similarly, the founda-
tion models (Dino v2, also ViT-based) are pre-trained on very large datasets in a
self-supervised manner, and instead of being fully fine-tuned, the models remain
frozen with only a classifier applied to their extracted features.

Looking at different attributes, distinguishing chart-type and chart-simplicity
appears to be relatively simple, with ResNet-101 achieving 89.59% and 88.32%
macro accuracy. In contrast, inferring question-type and answer-complexity are
more challenging, with the best macro accuracy score of 50.79% and 64.52. This is
not surprising since chart-type and chart-simplicity are visually-driven attributes
while identifying cognitively-driven attributes, such as the type of question and
the answer that users attempt to solve, might require very subtle eye gaze cues.

Overall, these findings suggest that gaze data alone can effectively reveal
chart-, question-, and answer-related attributes, posing privacy concerns. We
show that even if an adversary has limited access to resources (e.g. GPUs or
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Attribute Model Macro Acc. MT Macro Acc. ST ∆ Macro Acc. Acc. MT Acc. ST ∆ Acc.

Chart-type ResNet-101 87.80 89.59 -1.79 89.01 89.42 -0.41
Chart-type ViT-B/16 80.76 87.69 -6.93 83.38 89.08 -5.70
Chart-simplicity ResNet-101 89.97 88.32 +1.65 91.04 89.17 +1.87
Chart-simplicity ViT-B/16 86.24 86.48 -0.24 87.17 86.73 +0.44
Question-type ResNet-101 53.18 50.79 +2.39 60.48 52.54 +7.94
Question-type ViT-B/16 52.45 47.70 +4.75 54.85 56.51 -1.66
Answer-complexity ResNet-101 59.84 64.52 -4.68 62.51 59.78 +2.73
Answer-complexity ViT-B/16 60.40 63.88 -3.48 62.33 61.13 +1.20

Table 2. Multi-Task (MT) vs Single-Task (ST) training regime for inferring attributes
from attention maps. Performance deltas show that MT training particularly improves
question-type classification, which was the primary objective for model selection on the
validation set, while showing varying effects on other attributes.

shadow data), she can effectively infer attributes through lower-parameter ar-
chitectures (e.g. CNNs) as this task and modality are relatively data-scarce.

4.3 Single- vs. Multi-Task Models for Inferring Multiple Attributes
from Attention Maps

In addition to specific targetted attributes, an adversary might be interested
in inferring multiple sensitive attributes simultaneously. We, therefore, further
investigate the effectiveness of Multi-Task (MT) versus Single-Task (ST) train-
ing for inferring multiple chart-, question-, and answer-related attributes from
attention maps.

As shown in Table 2 and Figure 3, ST training performs best in visually-
driven attributes such as chart-type and answer-complexity while MT performs
better for the other attributes. These findings are due to the fact that ST excels in
tasks requiring in-depth modelling of nuanced features or patterns by allocating
all resources to capturing these intricate details.

Furthermore, our analysis of the confusion matrices, shown in Figure 4, re-
veals biases toward over-represented classes, particularly for the question-type
attribute (FE class) and the answer-complexity attribute (medium class), with
a notable amount of false positives. This is mostly because, in attention-based
models (e.g., Vision Transformers, attention layers in CNNs), these classes re-
ceive higher attention weights, making their activation maps more pronounced
and consistent, exhibiting highly predictable attention distributions. Neverthe-
less, these results highlight that, despite some biases, the models can accurately
infer sensitive information from attention maps, often revealing details about
the chart, question, and answer.

Multi-task (MT) training demonstrates notable improvements in question-
type classification, the most challenging attribute. While question-type accuracy
remains lower compared to other attributes, both architectures show substantial
gains under MT training, with macro accuracy improvements of +2.39% and
+4.75% for ResNet-101 and ViT-B/16 respectively, indicating that the shared
representations learned through MT training effectively address our primary
objective of enhancing question-type inference.
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Fig. 3. Qualitative results for Multi-Task (MT) vs Single-Task (ST) training.

4.4 Optimizer Effect on the Attack Success

We demonstrate the effect of the different optimization techniques on the attack
success by pairing the ViT and CNN models with Adam, AdamW, and Stochastic
Gradient Descent (SGD) optimizers for all four attributes. Figure 5 shows that
SGD optimization performs particularly well with the ViT model. Since the ViT
model relies on self-attention mechanisms that capture long-range dependencies
and global contextual information in images, ViT models are therefore, sensitive
to weight updates that align well with global features. SGD, with its steady
convergence, often works well for ViTs, as it avoids the risk of overfitting and
allows for stable learning of these global patterns across layers.

For CNN-based models, the results are more mixed, with some tasks ben-
efiting from AdamW and others from SGD or Adam. This is due to the fact
that CNNs focus on local features through convolutional layers, which capture
spatial hierarchies by learning increasingly complex feature maps from layer to
layer. The features are often localized, meaning that different parts of the model
capture different aspects of the data. This architectural difference creates di-
verse learning dynamics across layers, leading to mixed results with different
optimizers depending on the task.

4.5 Data Augmentation Effect on the Attack Success

Depending on the adversary’s access to shadow data, she might exploit data
augmentation techniques to compensate for limited data access. Hence, we in-
vestigate the effect of training with and without data augmentation on the attack
success. For non-augmented input, the longer edge of the image is rescaled to
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Fig. 4. Confusion matrices results on the SalChartQA dataset.

224 pixels, the shorter edge is padded equally on both sides to 224 pixels. This
ensures that the entire attention map, including borders, is always present. This
procedure is done in both training on the shadow dataset and attacking the
victim dataset. With augmentation, we first randomly flip the image over the
horizontal axis. Then, we randomly crop out a patch with the scale of 90% to
110% of the original image and an aspect ratio between 0.9 and 1.1. Scaling a
plot and the attention map or changing the aspect ratio, i.e., stretching or com-
pressing the image, does not change any information present in both images.

Despite the relatively simple image transformations, we observe a consistent
performance drop across all attributes when using augmentation (Figure 6),
showcasing that typical augmentations used in visual recognition might not be
suitable for attention maps. This effect is particularly pronounced for chart-type,
where accuracy is ∼ 30% higher without augmentation. For question-type, accu-
racy improves by around ∼ 5% without augmentation. These findings suggest
that standard transformations like shifting and cropping, which are usually ef-
fective in computer vision, disrupt the spatial and relational integrity crucial for
gaze data and special data augmentation methods need to be developed for this
modality. In other words, an adversary requires a real-world shadow dataset or
a specially-designed augmentation technique for attention maps.
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the exact visual characteristics of the attention maps is crucial for a successful attack.

5 Discussion

We demonstrate that gaze-based attention maps alone can effectively reveal sen-
sitive information about the underlying chart, question, and answer in informa-
tion visualisations, raising potential privacy concerns. Despite no direct access
to the chart, our results indicate that attention maps can expose both visual
content (e.g. chart-type) and aspects of user intent (e.g. answer-complexity).

Our results show that an adversary with limited compute power can still
be successful through (i) lower-parameter models like CNNs (e.g., ResNet-101)
may outperform larger models like ViTs, presumably due to the data scarcity
of the gaze modality, or (ii) training only one model since multi-task (MT)
training improves accuracy for cognitively-driven attributes, like question-type.
Nonetheless, we show that standard augmentation techniques used in visual
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recognition (e.g., cropping, flipping) are not suitable for attention maps and,
therefore, do not solve the limited access to data issue.

Limitations and future work We mainly focused on demonstrating the feasibility
of attribute inference attacks on information visualisations. Nonetheless, further
attributes could be inferred about (i) the information visualisation, such as the
linguistics of the question and answer (e.g. number of characters and the visual
references), and the topics (e.g. politics, economy, health, and society), as well
as (ii) the users in the data such as their cognitive states and attention models.

Privacy and ethics statement Demonstrating the feasibility and simplicity of
these attacks is critical for raising awareness within the community about the
potential privacy and ethical risks associated with human attention data. By
showcasing the vulnerabilities, we underscore the need for robust safeguards
to prevent the unintentional leakage of sensitive information, foster responsible
development, and motivate the creation of privacy-preserving solutions. Without
a clear understanding of the risks, researchers and developers may inadvertently
overlook the ethical implications, leaving systems exposed to exploitation and
users’ data privacy at risk.

6 Conclusion

For the first time, we were able to demonstrate the feasibility of gaining informa-
tion from gaze attention maps alone. We further show that an adversary, even
with limited resources in terms of data and compute power, is able to retrieve
the private information encoded and glean insights about the chart, question,
and answer in information visualisations. Our work, therefore, highlights these
potential threats to increase awareness and encourage the community to develop
appropriate privacy-preserving solutions.
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