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Abstract

Web-based single sign-on (SSO) systems enable Web sites, so-called relying parties (RPs), to

outsource user authentication to other entities, so-called identity providers (IdPs). Such systems

are widely deployed in the Web, e.g., Facebook Login or Google Sign-in. RPs do not need to

maintain authentication data of their users, and users can log in at RPs in a convenient way.

Fundamental to SSO is security: The SSO protocol must not permit an attacker to impersonate

anyone else, nor must it allow a false identity to be imposed on anyone. If this is not the case,

attacks are possible that have devastating effects on the security of RPs and their users.

While aiming at security, most SSO systems, however, neglect privacy. IdPs can track their

users as they (by design) learn at which RP a user logs in. This lack of privacy allows IdPs

to create extensive user profiles and might cause some users not to use SSO at all. Moreover,

IdPs are enabled to decide ad-hoc whether they allow a user to log in at a specific RP. Therefore,

privacy-preserving systems, which do not reveal to IdPs to which RP a user would like to log in

or has logged in, are highly desirable in many situations. The design of such systems, however,

is very challenging because privacy can easily be compromised. So far, only one SSO system has

been proposed with this kind of privacy in mind: Mozilla’s BrowserID (a.k.a. Mozilla Persona).

In this thesis, we use the Web Infrastructure Model (WIM) to analyze the security of SSO

protocols. The WIM is the most comprehensive formal model of the Web infrastructure to date,

which applies to a wide range of Web applications and standards. We also extend the WIM to be

able to analyze privacy. We use the extended WIM to, for the first time, carry out a systematic

and rigorous formal analysis of privacy for Web SSO systems.

Using our approach, we analyze the Web SSO system BrowserID. As a result of this first

rigorous analysis of an SSO system in the Web infrastructure, we find severe attacks. These

attacks not only affect the security of BrowserID but also show that BrowserID’s unique privacy

claim does not hold. We propose fixes for BrowserID and prove that the fixed system provides

security. Regarding privacy, we show that BrowserID, unfortunately, is broken beyond repair.

Inspired by BrowserID’s goal, we propose the first privacy-preserving Web SSO system,

called SPRESSO (for Secure Privacy-REspecting Single Sign-On). SPRESSO is easy to use,

decentralized and based solely on native Web features. We design SPRESSO within the WIM

right from the start and prove that SPRESSO satisfies strong security and privacy guarantees.
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Kurzzusammenfassung

Webbasierte Single-Sign-On-Systeme (SSO) ermöglichen es Webdiensten, so genannten Relying

Parties (RPs), Benutzerauthentifizierung an Dritte, so genannte Identity Provider (IdPs), auszu-

lagern. Solche Systeme, z.B. Facebook Login oder Google Sign-In, sind weit verbreitet. RPs

müssen weniger kritische Daten speichern, und Benutzer können sich bequem bei RPs anmelden.

Sicherheit ist für SSO essentiell: Es darf nicht möglich sein, sich als jemand anderes auszu-

geben, noch darf jemandem eine falsche Identität untergeschoben werden können. Andernfalls

sind Angriffe möglich, die verheerend für die Sicherheit von RPs und Benutzern sind.

Privatsphäre spielt für die meisten SSO-Systeme leider keine Rolle. IdPs können ihre Benutzer

aussphähen, da sie (per Design) erfahren, bei welchem RP sich ein Benutzer anmeldet. Dadurch

können IdPs umfangreiche Profile erstellen und einige Benutzer werden von der Verwendung

von SSO abgeschreckt. Zudem können IdPs ad-hoc entscheiden, ob sie einem Benutzer erlauben,

sich an einem bestimmten RP anzumelden. Für den Schutz der Privatsphähre darf ein IdP nicht

sehen können bei welcher RP sich ein Benutzer anmeldet. Bisher gibt es nur ein nennenswertes

SSO-System mit diesem Ziel: Mozillas BrowserID (auch bekannt als Mozilla Persona).

Wir verwenden das Web Infrastructure Model (WIM) um die Sicherheit von SSO-Protokollen

zu analysieren. Das WIM ist das bisher umfassendste formale Modell der Web-Infrastruktur. Wir

erweitern das WIM, um auch Privatsphähreneigenschaften analysieren zu können. Basierend

auf dem so erweiterten Modell führen wir die erste systematische und umfassende Analyse im

Hinblick auf Privatssphäre in Web SSO durch.

Mit unserem Ansatz analysieren wir BrowserID. Als Ergebnis dieser ersten rigorosen Analyse

eines SSO-Systems in der Web-Infrastruktur finden wir schwerwiegende Angriffe. Diese Angriffe

kompromittieren nicht nur die Sicherheit von BrowserID, sondern zeigen auch, dass BrowserID

keine Privatsphäre bietet. Wir empfehlen Korrekturen für BrowserID und zeigen, dass BrowserID

damit sicher ist. In Bezug auf Privatsphäre ist BrowserID leider irreparabel.

Inspiriert von BrowserIDs Ziel entwerfen wir das erste Privatsphäre-schützende Web-SSO-

System, genannt SPRESSO (für Secure Privacy-REspecting Single Sign-On). SPRESSO ist leicht

zu bedienen, dezentralisiert und nutzt ausschließlich native Web-Bestandteile. Wir entwickeln

SPRESSO von Anfang im WIM und beweisen formal, dass SPRESSO starke Sicherheitseigen-

schaften erfüllt und die Privatsphäre seiner Nutzer schützt.
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1. Introduction

The World Wide Web has become a vital part of our modern information society. Built on top of

the Internet, the Web is a universal information and communication platform and enables people

around the globe to interact with each other and to exchange information. Many important and

security-critical applications are based on the Web, for example, social networks, commercial

services, or e-government portals. Users share private data, enter contracts, and even make

monetary transactions online.

When users perform such sensitive actions, one important aspect is to authenticate users in a

secure way. This means that a user needs to prove her identity to the services she wants to use.

Only after successful authentication of the user, a Web service should grant access to its services

and the user’s resources stored at this service. For example, a social network needs to ensure that

a user successfully authenticates herself before the user gets access to her personal messages and

is allowed to post content.

Traditionally, each service on its own authenticates each user, typically by prompting the

user for her username and password. To this end, a Web service maintains its own password

database to be able to verify the password provided by the user. Secure password storage and

management are non-trivial and hard to implement securely. Best practice recommendations

(see, e.g., [Ope18]) are complex, extensive, and updated often. Many Web services realize their

password management in a proprietary way leading to a huge set of different implementations

in the wild. Such a very heterogeneous set of implementations and also responsibilities spread

across many parties makes it hard to identify and fix (common) mistakes and security problems.

Further, the services need to individually provide user support regarding authentication, such as

password reset procedures.

Not only for Web sites, but also for users, password management is non-trivial. Users have

to memorize many different passwords and are confronted with many different authentication

dialogs. A password entered in the wrong place and sent to a malicious party easily leads to a

compromised account. Likewise, if a user uses the same or similar passwords at different Web

sites, a malicious Web site can easily guess this user’s password at other Web sites.

Hence, it is very desirable to relieve users and Web services from the many downsides of this

traditional approach. This is where Web Single Sign-On (Web SSO) comes into play. Web SSO
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promises to relieve users and Web services from the burden of handling passwords.

1.1. Web Single Sign-On

In Web Single Sign-On (SSO), a Web service, in this context called relying party (RP), delegates

authentication to a so-called identity provider (IdP). The task of an IdP in Web SSO is to authen-

ticate users and attest their identities to RPs. Typically, some service that users use on a daily

basis, such as email providers or social networks, serve as IdPs.

An SSO protocol defines the interaction between RP, IdP, and user. Many different SSO

protocols have been developed so far. For the Web, the most important protocols include

OAuth 1.0a [RFC5849] (used, for example, by Twitter), OAuth 2.0 [RFC6749] (used, e.g.,

by Facebook), OpenID 2.0 [FR+07] (used, e.g., by Yahoo), OpenID Connect 1.0 [Sak+14] (used,

e.g., by Google and Microsoft), and Security Assertion Markup Language 2.0 (SAML) [Rag+08]

(used, e.g., by Amazon AWS). A main feature of these modern Web SSO systems is that users are

not required to have a special setup on their devices and can use standard Web browsers out of the

box to log in. This sets these systems apart from other approaches such as Kerberos [RFC4120]

or TLS client authentication [RFC8446].1

Web SSO provides many advantages for all parties. A user only needs to remember her

credentials for one account (her account at the IdP) to log in at many different parties. If the user

is already logged in at the IdP, the IdP might enable her to log in at many RPs without further

interaction. Logging in at an RP where the user did not login before also becomes easier as the

user does not need to register any authentication data at this RP. Using the SSO system, the user

experience is always the same in all cases: the user only needs to interact with a familiar user

interface (also reducing the user’s susceptibility for phishing attacks). An example of a login

flow from a user’s perspective is given in Figure 1.1.

An SSO system allows the RP to outsource almost all authentication related tasks to a (set of)

IdP(s). Hence, RPs do not need to develop and set up user registration and management systems

and also do not need to handle user support concerning authentication (e.g., reset lost passwords).

RPs are relieved from storing and protecting user credentials, which, as already mentioned, is

not a trivial task.

While an SSO system seems to only bring high responsibility and cost to IdPs at first, also

entities acting as IdPs can benefit from providing an SSO service: The IdP service provides

added value for their users and therefore makes their services more appealing to new users.

1Note that while many browsers support TLS client authentication, users still need to create a new or import an
existing certificate into the browser and cannot choose this login method ad-hoc. Besides this limitation, browser
vendors have neglected the usability of this authentication method and provide sub-par user interfaces only.
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1.1. Web Single Sign-On

(a) TripAdvisor login page.

(b) Facebook login dialog.

Figure 1.1.: A typical example of single sign-on in the Web: The travel information platform TripAdvisor
provides several login options to users (a). While a user can create a local account at TripAdvisor using
her email address and a password, the user can also choose to use single sign-on using her Facebook or
Google account (based on the protocol OAuth 2.0). TripAdvisor is the RP and Facebook or Google serve
as the IdP. If the user, for instance, clicks on the button “Sign-in with Facebook”, she is prompted to log
in into Facebook using her Facebook account (b). After successful authentication to Facebook, the user
is then also logged in into the TripAdvisor Web site. When the user is already logged in at Facebook,
the user can authenticate to TripAdvisor without further interaction. As the SSO protocols used in this
example do not provide privacy towards the IdP, Facebook can easily observe that this user logs in at
TripAdvisor.
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1.2. Security in Web SSO

In the light of numerous attacks on SSO systems (see, e.g., [Arm+13; Arm+08; Ban+14; Cer+08;

Gro03; HSN05; IET09; KR00; Som+12; SB12; SHB12; WCW12; YHR04; ZE14]), it is rea-

sonable to put any SSO protocol under rigorous scrutiny. Such attacks can originate from many

different sides, such as malicious RPs, third parties, or even IdPs. Clearly, security is crucial for

an SSO protocol, and Web SSO systems obviously need to safeguard their users’ identities.

An SSO protocol must ensure correct authentication, i.e., that nobody except the user herself

should be authenticated under her identity to an RP. This means in particular that an adversary

should be unable to authenticate himself such that an RP believes that this entity (the adversary) is

some (different) user, i.e., the attacker cannot “break in” into the user’s account at RP. Otherwise,

an adversary can easily access the user’s data or impersonate the user at the RP.

Another important, but not so obvious aspect is the integrity of the user’s login session. That

is, that an attacker should also not be able to force a user to log in at some RP or to manipulate a

login process such that the user is logged in under some different account. The outcome of such

attacks would be similar to the attack class of session swapping: The user might then interact

with the RP under the attacker’s identity and, for example, store confidential data at the RP that

is then accessible under the attacker’s account at RP.

Of course, such security goals can only be met based on certain assumptions: For example,

the IdP of the user needs to be honest and attest the user’s identity only if the user presents the

correct password. If the adversary learns a user’s password, he can easily impersonate himself

to the IdP as the (honest) user and subsequently also log into any RP using the SSO protocol.

This also requires that at least some communication must be performed via secure channels, e.g.,

when passwords are exchanged.

1.3. Privacy in Web SSO

The deployment of SSO might also impact privacy: The traditional approach of authentication

in the Web, i.e., every RP authenticates its users on its own, does not involve any third party. Of

course, entities running the network infrastructure can see that the user is communicating with the

RP as well as other third parties that are meshed into the Web service itself (e.g., advertisements).

The fact that a user is using a service of an RP is hidden from all other parties, e.g., some

other Web services, that are not somehow involved (e.g., by hosting some parts of the RP’s Web

page). If SSO is introduced into this setting, then another third party, the IdP, which has not been

involved before, is participating.

If the IdP can tell at which RP a user is logging in, this provides a huge impact on the user’s
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privacy. As authentication is centralized to the IdP, the IdP can easily create a detailed log

containing every login at every RP the user is using. Such data can be used to create very

extensive user profiles (e.g., for targeted advertisements) that do not only reveal the interests of a

user, but might also allow to infer the user’s sexual orientation, health issues, political opinions,

a detailed schedule of the user’s daily routines, or other personal information. People also tend

to differently behave if they are aware of such surveillance (see, e.g., [BNR06]). A user might,

for example, refrain from using SSO for authentication or from using some RPs at all. Following

such ethical considerations, the legislation also requires companies to reduce the processing

and storage of user data, for example, by the European Union’s new general data protection

regulations [GDPR].

Further, an IdP that knows exactly where a user is logging in, gains power over its users and

RPs: The IdP can block certain RPs completely (e.g., to force RPs to pay for the SSO service or

to enforce censorship) or ad-hoc decide whether it allows a user to log in at a certain RP, locking

the user out from this RP and her data stored there.

In most Web SSO protocols, including the protocols mentioned in Section 1.1, IdPs always

know exactly — by design — at which RPs their users log in. In Figure 1.1, for example,

Facebook (the IdP) obviously knows that the user is about to log in at TripAdvisor, which is even

displayed in Facebook’s login dialog.

This problem would be solved by a privacy-preserving SSO system, i.e., a SSO protocol that

hides the identity of the RP where a user is logging in from the IdP. So far, there has been only

one Web SSO system claiming to provide privacy in the sense as defined above: BrowserID

(a.k.a. Mozilla Persona). This SSO system has been developed by Mozilla to achieve this privacy

goal explicitly. The question is whether this goal can be achieved with current Web technology,

and in particular, if it is actually achieved by BrowserID. In this thesis, we will answer this

question.

1.4. Formal Security and Privacy Analysis of Web
Standards, Protocols, and Applications

Performing security and privacy analyses in the context of the Web is a non-trivial task. Since

the initial proposal of the Web by Tim Berners-Lee in 1989 [Ber89], the Web has grown to a

very complex infrastructure: Many different entities interact with each other using a variety of

protocols and mechanisms. For example, if a user just opens a Web page by entering a URL, her

browser triggers various actions, such as a DNS lookup, the establishment of a secure channel to

this Web site’s Web server using TLS, the request of the Web page itself using HTTP, the server
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creating a response (which in turn can be based on a complex application-specific algorithm),

processing of the response, rendering the actual Web page, executing scripts contained in the

Web page, fetching additional resources, and so on.

The specification of these protocols and mechanisms is spread across many different stan-

dards and de-facto standards (such as proposals and common browser implementations). The

standardization documents are managed by multiple organizations such as the Internet Engi-

neering Task Force (IETF), the World Wide Web Consortium (W3C), and the Web Hyper-

text Application Technology Working Group (WHATWG). For example, the markup language

for Web pages, Hypertext Markup Language (HTML), is developed by W3C [Fau+17] and

WHATWG [WHA19b] in parallel. The retrieval of a Web page itself is defined in the Fetch

standard by WHATWG [WHA19a], which makes use of the Hypertext Transfer Protocol (HTTP)

protocol standardized by the IETF (with the very popular version 1.1 specified in [RFC7230;

RFC7231; RFC7232; RFC7233; RFC7234; RFC7235]). Various other technologies, such as

Cookies [RFC6265] or Strict Transport Security (STS) [RFC6797], are built on top of the data

transfer via HTTP or complement it.

HTML documents can contain scripts written in JavaScript, a programming language devel-

oped for the Web [Ter18]. Such scripts can make use of various technologies, such as Web

Messaging (postMessage) [Hic15], Web Storage (localStorage, sessionStorage) [Ian16], Cross-

Origin Resource Sharing [Ann14], or XHRs [WHA19c] just to name a few.

This brief glimpse on important parts of the Web infrastructure illustrates that the Web is

very complex. Moreover, many of the mechanisms mentioned above build upon other, complex

technologies, such as the Internet and its transport protocols (e.g., TCP/IP [RFC791; RFC793]

or TLS [RFC8446]).

Another aspect that adds complexity in today’s Web is that many applications are not de-

signed as standalone, isolated systems, but are interconnected or meshed together, i.e., they are

composed of services provided by several different parties.

Unfortunately, the Web is a potentially hostile environment with a large group of participants

having malicious intent. The inherent complexity of the Web plays into the hands of such

adversaries. Developers can easily overlook problems that lead to attacks (see, e.g., [Ban+13;

Ban+14; Han+10; Kar+07; SS13; SKS10; Sto+17; SB12; WCW12; Wan+11; Zhe+15]).

So far, the typical approach to check whether a Web standard (or application) meets its security

and privacy goals, is to have groups of experts examine the protocol closely. Typically, these

experts check whether known attacks are applicable. These experts might also discuss the

protocol in detail and try to find new attacks, which obviously depends on the creativity of these

analysts. Often, they do not formulate or even consider clear attacker models and make many

implicit assumptions. Clearly, the result of such an analysis does not prove the non-existence of

30



1.4. Formal Security and Privacy Analysis of Web Standards, Protocols, and Applications

unknown attacks. Further, while these experts have some intuition about the properties they want

to prove, they cannot state these properties in a precise fashion as they only use natural language

to describe a more or less vague concept.

Formal methods provide a systematic way to perform comprehensive analyses in a concise,

rigorous mathematical fashion. To this end, the analyst first creates a formal model which reflects

all relevant aspects of the system to analyze (e.g., a protocol or an application). This model then

allows the analyst to precisely state all properties of interest in the analysis. Such properties can

be functional properties, i.e., properties that require that a system matches its functional goals,

or they can reflect security goals or privacy goals of a system. The analyst then tries to create a

proof in a mathematical sense that the model actually fulfills the stated properties. As a model is

an abstract representation of the real world, the result of a proof in the model can be translated

to the real world (taking the modeling into account). For example, a security proof in a formal

model proves security for certain classes of attacks in reality.

If a formal proof cannot be established, then this means that the model violates the properties

in some way. Such a failed proof attempt can yield information about which part of the model is

flawed. For example, in the context of a security property, this means that an attack exists and

the step in which the proof failed provides hints about how the attack can be constructed. Further,

the information gathered from such attacks can then be used by experts to develop fixes. These

fixes can then be incorporated into the formal model, and the process of proving the properties

can start over until the properties are proven.

In this thesis, we build on this approach and use formal methods to analyze the security and

privacy of Web SSO protocols. In the remainder of this section, we take a closer look at formal

approaches for the analysis of protocols and, in particular, the Web infrastructure.

1.4.1. Protocol Analysis

There exist two main approaches for formal protocol analysis: symbolic analysis and computa-

tional analysis. Symbolic analysis (initially proposed by Dolev and Yao in [DY83]) is based

on formal terms that can be assembled and derived based on an equational theory. In the initial

proposal, parties send and receive terms (messages) over a network that is completely controlled

by an attacker, i.e., the attacker is able to intercept any message and to spoof new messages. In

the world of symbolic analyses, cryptographic primitives are typically assumed to be perfect. For

example, if the attacker observes a term encs(s,k), which represents the symmetric encryption

of some message s using a key k, the attacker cannot derive s from this term without knowing k

(and without having learned s from somewhere else).

In contrast, in the so-called computational analysis (see, e.g., [SS84; SSR88]), messages are
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bitstrings and are processed by (probabilistic) Turing machines. In particular, the attacker is also

modeled as a (probabilistic) Turing machine with limited runtime. Cryptographic primitives are

typically included in the analysis and are not considered as black boxes (as in symbolic analyses).

This approach uses a lower level of abstraction, making it more precise including a stronger

attacker model.

The computational analysis of very complex systems, however, can be very hard. To capture

such systems and their complexity, symbolic approaches are more suitable due to their higher

level of abstraction that focuses on analyzing the logic and interaction of protocols. Furthermore,

although being less precise regarding cryptography, symbolic analyses still yield useful results.

A very famous example of a symbolic analysis is Lowe’s attack [Low95] on the Needham-

Schroeder public-key authentication protocol [NS78]. This protocol only consists of three simple

steps and was considered to be secure for 17 years until Lowe published his remarkably simple

attack on this protocol. This simple example shows that it is not sufficient to just have many

experts “take a close look” at a protocol, but that a protocol’s security needs to be analyzed and

proven using rigorous methods. Such a proof (based on symbolic analysis) was carried out by

Lowe for the fix he proposed in [Low96].

In this thesis, we have chosen to use a symbolic approach, which is ideally suited to capture

the complexity of the Web.

1.4.2. First Approaches

Systematic analysis capturing the inherent complexity of the Web and also the protocols built on

top of the Web would be very valuable. As we have seen in the Needham-Schroeder example

above, even the analysis of simple protocols is non-trivial. So far, formal methods in this context

have only been considered in a few approaches. In this section, we give an overview of first

approaches before we cover the WIM, the most comprehensive model of the Web infrastructure

to date, in the next section.

Early work in this direction includes work by Kerschbaum [Ker07], in which a mitigation

against Cross-Site Request Forgery (XSRF) is proposed and formally analyzed using a simple

model expressed using Alloy, a finite-state model checker that is based on a first-order logic

language [Jac02]. This model includes a very abstract model of browsers and Web pages and is

tailored to the XSRF setting.

A first formal foundation for the Web infrastructure has been proposed by Akahwe, Barth,

Lam, Mitchell, and Song in [Akh+10], also based on Alloy. This work, however, includes only

a very simple model of the browser and is not very expressive. In particular, this approach can

yield only counter-examples, i.e., attacks, in bounded runs of the model. This work considers
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three types of attackers: the Web attacker, which runs a malicious Web site and participates in the

system as any other party, the gadget attacker, which is a slightly extended variant of the Web

attacker and which in addition can inject (limited kinds of) content into otherwise honest Web

sites, and the network attacker, which not only is able to provide malicious Web sites, but is also

able to intercept and spoof network messages, i.e., messages exchanged between honest parties.

This model was successfully used to find attacks on Web standards and protocols in [Akh+10].

In [Kum12; Kum14; Pai+11], Kumar et al. propose another approach based on Alloy extended

with BAN logic to analyze the security of Web protocols. This approach, too, includes only a

very limited set of Web features. The tool was used to analyze the Web authorization protocol

OAuth 2.0 [RFC6749] as well as the Security Assertion Markup Language (SAML) [Rag+08].

The models consider one or more participants of a protocol to be malicious but do not take

external attackers into account.

In [Ban+13; Ban+14], Bansal, Bhargavan, Delignat-Lavaud, and Maffeis propose the WebSpi

model based on ProVerif [Bla13]. ProVerif is an automated tool to analyze cryptographic pro-

tocols (based on a variant of the applied pi calculus [AF01]). WebSpi includes many features

of the Web infrastructure, such as Web Storage [Ian16], and is able to derive attack traces au-

tomatically. The model considers a network attacker, which is able to read, modify, and spoof

the content of unprotected network messages. Still, this approach does not yield strong secu-

rity proofs due to various limitations: imposed by the tool ProVerif, the WebSpi model is of

monotonic nature. For instance, cookies and localStorage cannot be deleted or modified, but

only be added. Cross-window interactions (e.g., postMessages or cross-window navigation) in

browsers are not captured as the browser model does not include any window structure. Also,

requests can only contain a limited number of cookies. Still, WebSpi was successfully applied

to find vulnerabilities and attacks in encrypted cloud-storage services and the Web authorization

protocol OAuth 2.0.

Besides these approaches, there are other approaches to analyze Web standards, protocols,

and applications formally. These approaches, however, only consider limited models of the Web

infrastructure. Bai et al. analyze the BrowserID protocol in [Bai+13]. Their work focuses on the

automated extraction of a model for ProVerif from a protocol implementation. Their analysis of

BrowserID is not very detailed, and only two rather trivial attacks are identified. For example,

some critical protocol messages that when sent unencrypted, can be replayed by the attacker.

We will also discuss their work in more detail as well as other work related to BrowserID in

Section 4.5.3.

Bohannon and Pierce propose a formal model of a Web browser core [BP10]. Börger et

al. present an approach for the analysis of Web application frameworks, focusing on the server

[BCG12]. In [Arm+13; Arm+08], Armando et al. perform analyses of the SSO protocols SAML
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and OpenID 2.0 [FR+07] focusing on a high-level abstraction of these protocols.

1.4.3. The Web Infrastructure Model (WIM)

The Web Infrastructure Model (WIM) is the most comprehensive model of the Web infrastructure

to date. The WIM includes many relevant aspects of the Web. Besides basic infrastructure, such

as Web and DNS servers, the WIM includes a very detailed model of a Web browser. This

browser model captures many Web features, such as the handling of DNS, HTTP, and HTTPS

messages, a detailed structure of windows and documents, an abstract model of JavaScript, Web

storage and cookies, Web messaging (postMessage) and asynchronous HTTP communication

(XMLHTTPRequest), a rich set of HTTP headers, HTTP redirections as well as security policies

for cross-window navigation and access.

The WIM provides a concise view of all these aspects and allows modeling of complex modern

Web applications and protocols, including systems composed of interactions between several

entities via browsers.

For our analyses carried out in this thesis, the WIM is the only model available that is ex-

pressive enough. For example, BrowserID makes heavy use of Web Messaging across (nested)

browser windows, which cannot be captured in other models.

We note that the author of this thesis is also a co-author of the WIM, which was first pre-

sented in [FKS14a] and subsequently extended and improved in follow-up publications [FHK19;

FKS15a; FKS15b; FKS16a; FKS17b]. The development of the WIM itself is covered in the

thesis of Daniel Fett [Fet18] and not part of this thesis. For self-containment of this thesis, we

present the WIM in Chapter 2. During the work on this thesis, the author was continuously

involved in the extension and improvement of the WIM. Our analysis of the BrowserID SSO

system (see contributions below) is, in fact, the first analysis that was carried out using the WIM

and part of the first publication of the WIM [FKS14a].

1.5. Contributions of This Thesis

In this thesis, we, in a first step, define a generic template for Web SSO systems. This template

is independent of a specific SSO protocol. Based on this generic definition, we formally state

the security and privacy goals introduced above. These generic definitions of the Web SSO

system and properties serve as a foundation for our subsequent analyses and make their results

comparable.

In the second step, we provide a detailed formal analysis of the security and privacy of a

complex SSO system, namely BrowserID. As mentioned above, BrowserID was proposed by
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Mozilla in order to create the first Web SSO system with privacy guarantees. We show, using

formal methods, that the system does not achieve its privacy goal. The problem we discover

is subtle and highlights the importance of formal analysis, which rigorously takes all relevant

details into account.

In the third step, we then take the goal pursued by BrowserID and show that privacy is, in fact,

achievable in a Web-based SSO system. We propose SPRESSO (Secure, Privacy-REspecting

Single Sign-On), the first SSO system providing strong privacy and security guarantees. For

SPRESSO, we provide a full formal model and formal proofs for its privacy and security guaran-

tees. SPRESSO, therefore, is the only Web SSO system that provides this kind of privacy and is

also the first with a formal proof for this property. Unlike BrowserID, SPRESSO does not rely

on a centralized service, which by itself can easily break privacy.

We discuss our contributions in more detail below.

1.5.1. Generic SSO Web Systems and Generic Properties for Security and
Privacy

As mentioned, our first step is to extract general characteristics of Web SSO systems and provide

a generic definition of such systems. This definition captures important (but generic) user-driven

events such as the user starting a login flow or entering her password. When modeling a concrete

SSO system, these definitions serve as a template that is then refined to create concrete definitions

for the SSO system. This template simplifies the modeling and analysis and is also reusable for

others to analyze SSO systems.

Based on this generic definition, we identify and specify properties for the security of SSO

systems, namely a property for authentication, i.e., a property that captures that a user’s account

can only be accessed by its owner, and a property for session integrity, i.e., a property that

captures the integrity of a login flow.

For this generic SSO template, we also formulate our privacy property, i.e., that an IdP cannot

see at which RP a user is logging in. In particular, we require that the IdP cannot distinguish

between two login flows at different RPs. For this property to be fulfilled, all information that

the user’s IdP can possibly get in each login flow has to look exactly the same to the IdP.

These generic security and privacy properties are universally applicable to all SSO systems

following the generic schema above. This way, analyses of different Web SSO protocols can be

easily compared as the results are based on the same properties.
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1.5.2. Analysis of BrowserID

As the Web SSO system BrowserID claims to provide privacy to its users, BrowserID is a very

interesting system to analyze. BrowserID is also very complex and makes use of many modern

Web features, making it a good example to exercise the expressiveness of the WIM.

At first, BrowserID was envisioned to be integrated into Web browsers, but to ease adoption,

the actual realization only builds upon native features of the modern Web, such as Web messaging

and Web storage. To achieve this goal, the protocol implemented in practice deviates from the

original specification [Adi+13]. In particular, the envisaged browser integration is implemented

as a Web application hosted by Mozilla. As a result, BrowserID has become a very complex SSO

protocol that, for example, takes more than 80 steps for a typical login flow.

The BrowserID implementation also extends the original BrowserID specification with a

second mode, in which Mozilla serves as an IdP that is tightly integrated with the core the

protocol’s implementation. This so-called secondary or fallback mode actually constitutes a

separate protocol.

Extraction of the BrowserID model. As pointed out above, the specification of BrowserID

only provides a high-level idea of its real-world counterpart. To get a comprehensive overview

of all steps of the protocol, we manually analyzed the code of BrowserID (approx. 47k lines of

code, written in JavaScript). Based on this analysis, we create separate models for BrowserID’s

primary mode and secondary mode using the WIM, which covers all features needed to describe

BrowserID.

Each model is based on the WIM, i.e., the communication model as well as generic compo-

nents, such as browsers and attackers and contains (1) a definition for Mozilla’s server which

provides the Web application component of BrowserID mentioned above along with the scripts

that cover its browser-side parts, (2) a definition for IdPs (server and scripts), and (3) a definition

for RPs (again, server and scripts). For these models, we follow our generic definition for SSO

systems mentioned above and refine all generic SSO events such that our generic properties for

security and for privacy are usable in these models.

Attacks on Security of BrowserID. During modeling and while trying to prove the security

properties (authentication and session integrity) for BrowserID, we found several severe attacks

that break the security properties.

In the identity injection attack, a malicious IdP is able to force the user to sign in at RPs using

an identity which is not owned by the user. The login injection attack allows any malicious party

to foist a different identity on a user. The identity forgery attack allows an attacker to exploit an

error in the identity bridge feature of BrowserID, effectively enabling the attacker to authenticate
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himself to any RP as any Gmail or Yahoo user. In the key cleanup failure attack, an attacker can

get hold of a user’s private key although the user thinks that her key is removed from a shared

device. Similarly, in the cookie cleanup failure attack, the attacker is able to link his key pair to

a user’s account due to incorrect usage of cookies.

Security proof for fixed BrowserID. For all of the attacks on security mentioned above, we

propose fixes and show that these fixes are indeed sufficient using a formal proof. To this end, we

incorporate our fixes into the BrowserID models and show based on these models that both modes

of BrowserID indeed satisfy the security properties. This security proof is the first security proof

carried out using the WIM and the most comprehensive formal analysis of a Web application at

the time of the publication [FKS14a].

Attacks on Privacy of BrowserID. While trying to analyze BrowserID’s privacy, we discovered

a severe attack (and several variants of this attack) that completely breaks privacy. A malicious

IdP is able to probe whether a user logs into a specific RP based on the window structure in the

user’s browser. As it turns out, this problem is not easy to fix and would require a major redesign

of BrowserID.

Further, as BrowserID relies on a central Web application provided by Mozilla, this application

and its operator need to be trusted ultimately. Mozilla is able to track all login activities of

BrowserID’s users in all cases. This, in particular, applies to the secondary mode in which

Mozilla itself serves as an IdP.

1.5.3. SPRESSO

Based on the lessons learned from BrowserID, we design a new SSO system for the Web: The

Secure, Privacy-Respecting Single Sign-On System (SPRESSO). This SSO system aims to provide

security, privacy, and true decentralization. Further, SPRESSO relies only on native Web features

and does not require any add-ons or modifications to the Web infrastructure.

Design. To design SPRESSO, we take a unique approach: After the initial design draft, instead

of coding a proof-of-concept prototype, we first opt for the creation of a formal model based

on the WIM. For development, the WIM provides a concise view on the Web infrastructure and

thus, eases design decisions. This approach also enables us to perform a rigorous security and

privacy analysis right away (see below).

For SPRESSO we need to master several challenges: To create an SSO system, RP and IdP

need to be able to exchange data in some way that provides integrity while hiding the identity

of the RP from the IdP. Also, this SSO system should be completely decentralized without the

need for a central authority. Moreover, the SSO system needs to be usable ad-hoc without any
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setup in the users’ browsers. With SPRESSO, we achieve all of these goals and create an easy to

integrate and easy to use SSO system.

As a side-effect of privacy, RPs can even seamlessly integrate SPRESSO into their traditional

login procedures, i.e., when a user starts a login, the RP can automatically invoke an SPRESSO

flow without any negative privacy implications.

Security Proof. Based on our model of SPRESSO built using the WIM, we show that the

SPRESSO protocol indeed satisfies our security properties. As we designed SPRESSO with

lessons learned from the BrowserID analysis in mind, we designed a much simpler protocol. As

a result, the security analysis is less complex, more straightforward, and easier to comprehend.

Privacy Proof. We proved privacy, one of the main goals of SPRESSO. To this end, we show,

based on our model, that a malicious IdP cannot learn any information about the RP from

the authentication procedure. To this end, we show that the IdP’s view is always the same,

independent of the RP chosen by the user.

Proof-of-Concept Implementation. After successful analysis of SPRESSO using the WIM, we

create a proof-of-concept implementation of all SPRESSO components. This implementation

demonstrates that SPRESSO is indeed easy to use and simple to deploy at RPs and IdPs.

1.5.4. Generic Properties of the WIM

Besides continuous improvements of the WIM, we also identified and proved generic properties

of the WIM, such as that the TLS abstraction of the WIM actually provides confidentiality and

integrity. These generic properties are used in the analyses presented in this thesis and can also

serve as helper lemmas for further analyses.

1.6. Publications

The contributions presented in this thesis are based on five peer-reviewed publications that have

been published in international security conferences. All of these publications are complemented

by accompanying technical reports. While the author of this thesis substantially contributed to

all of these publications, some content is not part of this thesis.

An Expressive Model for the Web Infrastructure: Definition and Application to the BrowserID

SSO System (S&P 2014) [FKS14a; FKS14b]. This work covers the analysis of the so-called

secondary mode of BrowserID (see Section 4). Further, the WIM was initially proposed in this

publication, but as already pointed out above, the WIM itself is not part of this thesis.
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Analyzing the BrowserID SSO System with Primary Identity Providers Using an Expressive

Model of the Web (ESORICS 2015) [FKS14c; FKS15a]. This work complements the previous

one by analyzing the so-called primary mode of BrowserID (see Section 4).

SPRESSO: A Secure, Privacy-Respecting Single Sign-On System for the Web (CCS 2015) [FKS15b;

FKS15c]. In this publication, we propose the SSO system SPRESSO (see Section 5).

A Comprehensive Formal Security Analysis of OAuth 2.0 (CCS 2016) [FKS16a; FKS16b] and The

Web SSO Standard OpenID Connect: In-Depth Formal Security Analysis and Security Guidelines

(CSF 2017) [FKS17a; FKS17b]. In these publications, we further improve the WIM and present

refined security properties. Further, we analyze the Web authorization framework OAuth and

the Web SSO system OpenID Connect. Both analyses are again covered in the thesis of Daniel

Fett [Fet18] and are not part of this thesis.

Improvements on These Publications. The work presented in this thesis further improves on the

publications discussed above as follows:

We extracted all privacy and security definitions to a more generalized form (see Chapter 3).

These generic definitions allow for easier adaption of these properties to different SSO protocols

while maintaining a superordinate notion of privacy and security across SSO protocols.

For session integrity, we here use a notion derived from our analyses of OAuth [FKS16a] and

OpenID Connect [FKS17b] that — in contrast to the session integrity property used in [FKS14a;

FKS15a; FKS15b] — also requires that a user must have actually expressed her wish to get

logged in under one of her identities using a specific IdP.

While in the original proposal of SPRESSO, we relied on a specific feature of HTML5 to

suppress the so-called Referer header in order to protect a user’s privacy towards the IdP, we

here propose a slightly different version of SPRESSO that relies on a recently added Web feature

called Referrer Policies. This change streamlines the protocol by eliminating a few steps.

We further note that in this thesis, all models and analyses have been adapted to a recent

version of the WIM.

1.7. Structure of This Thesis

We first, in Chapter 2, present an overview of the WIM (incorporating our improvements) which

we use as a framework to construct formal models of SSO protocols. In Chapter 3, we show how

we can formalize SSO protocols, in general, using the WIM. This chapter is complemented by

generic security properties which we use for our analyses in the subsequent chapters. We present

BrowserID in Chapter 4 along with the formal models of the primary and the secondary mode

and the analysis of these modes. We give a description of our new SSO protocol SPRESSO,
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discuss the design decisions for this protocol, and present our formal model and our formal

analysis of SPRESSO in Chapter 5. We conclude in Chapter 6 and provide an outlook on future

work. Further details, such as formal definitions and the full proofs can be found in the appendix.
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The formal security analyses presented in this thesis are based on the Web Infrastructure Model

(WIM), a generic Dolev-Yao style model of the Web infrastructure. The WIM has first been

published in [FKS14a] and has been extended in follow-up publications [Fet18; FHK19; FKS15a;

FKS15b; FKS16a; FKS17b]. Here, we recall this model following the descriptions in these

publications with more technical definitions given in Appendix A.

As already explained in the introduction, the WIM is designed independently of a specific

Web application and closely mimics published (de-facto) standards and specifications for the

Web, for example, the HTTP/1.1 and HTML5 standards and associated (proposed) standards.

The WIM defines a general communication model, and, based on it, Web systems consisting of

Web browsers, DNS servers, and Web servers as well as Web and network attackers.

2.1. Communication Model

The communication model of the WIM is illustrated in Figure 2.1. The main entities in the model

are (atomic) processes, which are used to model browsers, servers, and attackers. Each process

listens to one or more (IP) addresses. Processes communicate via events, which consist of a

message as well as a receiver and a sender address. In every step of a run, one event is chosen

Network

Process1

Ip1

. . .

Processn

Ipn

Browsers,
Web servers,
DNS servers,
...

Pool of waiting events

IP addresses of processes

Processes exchange events with the network

Figure 2.1.: Illustration of the WIM’s communication model.
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non-deterministically from a “pool” of waiting events and is delivered to one of the processes

which listens to the event’s receiver address. The process can then handle the event and output

new events, which are added to the pool of events, and so on.

2.2. Terms, Messages, and Events

As usual in Dolev-Yao models (see, e.g., [AF01; DY83]), events and messages are expressed as

formal terms over a signature Σ. The signature contains constants (for (IP) addresses, strings,

nonces) as well as sequence, projection, and function symbols (e.g., for encryption/decryption

and signatures).

Formally, the signature Σ for the terms and messages considered in this work is the union of

the following pairwise disjoint sets of function symbols:

• constants C = IPs∪ S∪{⊤,⊥,♢}where the three sets are pairwise disjoint, S is interpreted

to be the set of ASCII strings (including the empty string ε), and IPs is interpreted to be a

set of (IP) addresses,

• function symbols for public keys, (a)symmetric encryption/decryption, and signatures:

pub(·), enca(·, ·), deca(·, ·), encs(·, ·), decs(·, ·), sig(·, ·), checksig(·, ·), and extractmsg(·),

• n-ary sequences ⟨⟩,⟨·⟩,⟨·, ·⟩,⟨·, ·, ·⟩, etc., and

• projection symbols πi(·) for all i ∈ N.

Based on Σ, we define terms as follows: Let X = {x0,x1, . . .} be a set of variables and N be

an infinite set of constants (nonces) such that Σ, X , and N are pairwise disjoint. For N ⊆N , we

define the set TN(X) of terms over Σ∪N∪X inductively as usual:

1. If t ∈ N∪X , then t is a term.

2. If f ∈ Σ is an n-ary function symbol in Σ for some n ≥ 0 and t1, . . . , tn are terms, then

f (t1, . . . , tn) is a term.

By TN = TN( /0), we denote the set of all terms over Σ∪N without variables, called ground terms.

The equational theory associated with Σ is defined as usual in Dolev-Yao models and is

depicted in Figure 2.2. The theory induces a congruence relation ≡ on terms, capturing the

meaning of the function symbols in Σ. For instance, the equation in the equational theory which

captures asymmetric decryption is deca(enca(x,pub(y)),y) = x. With this, we have that, for

example, deca(enca(⟨r,k′⟩,pub(kex.com)),kex.com) ≡ ⟨r,k′⟩ , i.e., these two terms are equivalent

w.r.t. the equational theory.
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deca(enca(x,pub(y)),y) = x (2.1)

decs(encs(x,y),y) = x (2.2)

checksig(sig(x,y),pub(y)) =⊤ (2.3)

extractmsg(sig(x,y)) = x (2.4)

πi(⟨x1, . . . ,xn⟩) = xi if 1≤ i≤ n (2.5)

π j(⟨x1, . . . ,xn⟩) = ♢ if j ̸∈ {1, . . . ,n} (2.6)

Figure 2.2.: Equational theory for Σ.

For some term t, we use t↓ to refer its normal form, i.e., a term t ′ with t ′ ≡ t where all function

symbols have been reduced from left to right as far as possible using the equational theory. For

example, for some term t = deca(enca(x,pub(y)),y), we use t↓ to refer to x.

For readability, strings (elements in S) are depicted using a specific font. For example,

HTTPReq and HTTPResp are strings. Further, we use a notation for mappings (dictionaries).

For example:

[dictkey1 : value1,dictkey2 : value2] = ⟨⟨dictkey1,value1⟩,⟨dictkey1,value1⟩⟩

Full definitions of terms and notations can be found in Appendix A.1.

In the context of the Web, we define several specific sets of terms: We denote by Doms ⊆
S the set of domains, e.g., example.com ∈ Doms. By Origins ⊆ Doms×{P,S}, we denote

the set of (Web) origins with the second element of the origin denoting the protocol, i.e., P

denoting an (insecure) HTTP origin and S denoting a (secure) HTTPS origin of the domain

(first element of the origin). For example, the term ⟨example.com,S⟩ denotes the origin https:

//example.com. For HTTP(S) requests, we denote by Methods ⊆ S the set of methods, e.g.,

GET, POST ∈Methods.

As already mentioned above, entities in our model communicate via events that contain a

message. The set M of messages (over N ) is defined to be the set of ground terms TN .

For example, k ∈ N and pub(k) are messages, where k typically models a private key and

pub(k) the corresponding public key. For constants a, b, c and the nonce k ∈ N , the message

enca(⟨a,b,c⟩,pub(k)) is interpreted to be the message ⟨a,b,c⟩ (the sequence of constants a, b, c)

encrypted by the public key pub(k).

While messages can be arbitrary terms, we also define special kinds of messages:

• DNS messages
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• HTTP messages,

• HTTPS messages,

• trigger messages, and

• corrupt messages.

While DNS and HTTP(S) messages model their real-world counterparts, trigger messages can be

seen as “dummy messages” that are used to invoke actions in processes that are not taken in direct

response to another message as in our communication model an action of some entity is always

based on the processing of some message. For example, when a trigger message is delivered to

a browser (which incorporates the behavior of a user, see below) and then this browser might

(non-deterministically) follow some link on some Web page (currently opened in this browser).

Corrupt messages are sent by attackers to honest parties in order to corrupt these parties, i.e., an

honest party becomes a (collaborator of an) attacker. We will discuss corruption in more depth

in Section 2.4 below.

DNS and HTTP(S) messages can be further divided into requests and responses. A response

is associated with a request. To match a response to a request, both kinds of messages contain a

nonce.1 When a request is created by some process, this process freshly chooses this nonce. This

nonce is then also used for the corresponding response message. For example, an HTTP request

is represented as a term r containing the nonce mentioned above (say, n1), an HTTP method, a

domain name, a path, URI parameters, request headers, and a message body. For instance, an

HTTP GET request for the URI http://example.com/show?p=1 is represented as

req := ⟨HTTPReq,n1,GET,example.com,/show,⟨⟨p,1⟩⟩,⟨⟩,⟨⟩⟩

where the body and the list of request headers are empty. A corresponding HTTP response is

represented as

resp := ⟨HTTPResp,n1,200,⟨⟩,body⟩

where the status code of the response 200 indicates that the request was accepted and processed

by the server, the list of headers is empty, and body is a term containing the requested Web page.

For HTTPS messages, the underlying TLS channel is modeled in an abstract way as follows:

The sender of the request (say, A, typically a browser) chooses a fresh symmetric key k′ (a nonce)

and includes k′ in the request message. The request message is then asymmetrically encrypted

1The nonce of an HTTP(S) message models the TCP/TLS connection of the real world. DNS messages are typically
sent as UDP messages in the real world and contain such a nonce by specification.
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with the public key of the receiver (say, B). Such an HTTPS request for the HTTP request req

above is of the form

enca(⟨req,k′⟩,pub(kexample.com)).

If kexample.com (the private key for example.com) is only known to B, only B can decrypt this

request message.2 The symmetric key k′ (now only known by A and B) is used by B to encrypt

the response message, which can then later be decrypted by A using k′. Such an HTTPS response

sent from B to A is of the form

encs(resp,k′).

An event (over IPs and M ) is of the form ⟨a, f ,m⟩ for a, f ∈ IPs and m ∈M , where a is

interpreted to be the receiver address and f to be the sender address of the event. We denote

by E the set of all events. Events can be compared to IP messages in practice, that carry some

payload (a message) between two entities which are referred to by IP addresses.

For all formal definitions of messages and data formats, we refer the reader to Appendix A.2.

2.3. Processes, Systems, and Runs

An (atomic) process takes its current state and an event as input, and then (non-deterministically)

outputs a new state and a set of events. We typically require that the events and the state that

an atomic process outputs can be computed (more formally, derived) from the current input

event and state. Such atomic processes are called atomic Dolev-Yao processes (or simply, a DY

process).

An atomic Dolev-Yao process p = (Ip,Zp,Rp,sp
0) is defined to have

• a set of associated (IP) addresses Ip,

• a set of (possible) states Zp (⊂ TN),

• a process relation Rp that defines transitions from an (input) event and a (current) state

to a set of (output) events and a (new) state such that both its output is derivable from its

input,3 and

• an initial state sp
0 (∈ Zp).

2In analyses, we typically show that a private key for a domain that is not controlled by an attacker is only known to
its legitimate Web server (B in this example), i.e., the key is initially only known to this server and does not leak
to any other party.

3We typically describe a process relation using pseudo-code. See Algorithm A.12 on Page 165 for a simple example.
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We combine processes to a system P which is a (possibly infinite) set of atomic processes. A

system itself does include state (except for the initial states of the processes). Also, as explained

in the communication model above, processes communicate via events. Further, processes may

use fresh nonces that have not been used before. We capture these aspects in a configuration of a

system. A configuration is a tuple (S,E,N), which contains

• a mapping S from each atomic process p ∈ P to its current state S(p) ∈ Zp,

• an infinite sequence of waiting events E, i.e., E = (e1,e2, . . .) where ei are events that are

about to be delivered to a process (for i ∈ N), and

• an infinite sequence of (fresh) nonces N = (n1,n2, . . .).

The sequence of waiting events E contains all events that have been sent by some process (but

have not been delivered yet) and a (possibly infinite) number of trigger messages addressed to

each (IP) address (interleaved by addresses). The sequence of nonces N is used to provide fresh,

unique nonces to what we call a processing step. A processing step describes a transition from one

configuration to a new configuration. In such a processing step, an event is non-deterministically

taken from the sequence of waiting events, a process that is associated with the receiver’s (IP)

address of the event is selected,4 and a new set of events and a new state for this process is

(non-deterministically) derived using this process’ relation. The relation might use nonces but

does not assign them immediately. The nonces are described by placeholders, which are replaced

with fresh nonces from the sequence of nonces by the processing step. We write, for example,

(S,E,N)
ein→p−−−−→
p→Eout

(S′,E ′,N′)

to denote the processing step from the configuration (S,E,N) to the configuration (S′,E ′,N′) in

which some event ein was delivered to some process p and p has outputted the set of events Eout

(with S and S′ are the states of the processes in the system, E and E ′ are pools of waiting events,

and N and N′ are sequences of unused nonces, i.e., N′ contains all nonces from N except for the

ones that are “used” in this processing step). We may omit the superscript and/or subscript of the

arrow.

The output configuration of the processing step then contains

• the states of all processes S′ (as a mapping as above), which are the same as in the previous

configuration for each process except for the selected process,

4If multiple processes are associated with the same (IP) address, one of these processes is selected non-
deterministically.
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• the sequence of waiting events E ′ where the delivered event has been removed and events

output by the process are added, and

• the sequence of nonces N′ without nonces that are used in this processing step.

A run ρ of a system is a (possibly infinite) sequence of configurations, such that there exists a

processing step between each consecutive configurations.

For readability, given a finite run ρ = ((S0,E0,N0), . . . , (Sn,En,Nn)) or an infinite run ρ =

((S0,E0,N0), . . .), we denote by Qi a processing step (Si,E i,Ni)−→ (Si+1,E i+1,Ni+1) in ρ (with

i≥ 0 and, for finite runs, i < n).

Based on this generic Dolev-Yao style model, we define Web systems. A Web system formal-

izes the Web infrastructure and Web applications. It contains a system W consisting of honest

and attacker processes. Honest processes can be Web browsers, Web servers, or DNS servers.

Attackers and (generic) honest processes are described in the next sections below. A Web system

further contains a set of so-called scripts, which we will cover in Section 2.5. For each Web

system, we also define the mapping addr that describes the ownership of (IP) addresses to DY

process and the mapping dom that describes the ownership of domains to DY processes.

For full definitions of processes, systems, and runs, we refer the reader to Appendices A.3, for

Web systems to Appendix A.8.

2.4. Attackers

Attackers are modeled as processes in the WIM. An attacker is a Dolev-Yao process, which

records all messages it receives and outputs all events it can possibly derive from its recorded

messages. Hence, an attacker process carries out all attacks any Dolev-Yao process could possibly

perform. We distinguish two types of attackers: Web attackers and network attackers. Both types

are illustrated in Figure 2.3. Web attackers participate in the network as any other process,

i.e., they can receive events that are addressed to the respective Web attacker process, and they

can send arbitrary events.5 A network attacker6 essentially controls the network. The network

attacker can not only do the same actions as a Web attacker but can also receive messages that are

not addressed to it. As the delivery of events is non-deterministic, all cases of a network attacker

intercepting or blocking a message are captured.7

As already mentioned above, attackers can also corrupt other processes, e.g., browsers. If

an honest process receives a corrupt message, it effectively turns into a Web attacker process

5The WIM allows any process to send arbitrary events, which includes IP spoofing.
6Note that one network attacker can subsume any number of network attackers and Web attackers.
7Note that an analysis in the WIM typically reasons about all possible runs of a system.
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(a) Web attackers participate in the same way as any other process.
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(b) A network attacker controls the network and can intercept and spoof events.

Figure 2.3.: Illustration of different attackers in the WIM.

that is given the process’ state including secret values, such as credentials (passwords), cookies,

etc.8 Note that in security analyses, we typically require that certain processes do not become

corrupted, while all other parties might be dishonest.

For the formal definition of attacker processes, we refer the reader to Appendix A.5. A

mechanism for malicious Web pages opened in a browser is covered below.

2.5. Browsers and Scripts

In the WIM, a browser is a specific kind of DY process that mimics the behavior of a real-world

Web browser. In Appendix A.6, we provide the full definition of a browser’s state and relation.

A browser’s state includes (among others) a list of open windows, cookies, and Web storage

(localStorage and sessionStorage). A window inside a browser’s state contains a set of documents

(one being active at any time), modeling the history of documents presented in this window (see

Figure 2.4 for an illustration). Each document represents one loaded Web page and, again,

includes a list of windows, creating a tree of windows and documents.

8In our security analyses of SSO protocols, an attacker initially does not have any credentials for any account at
(honest) IdPs. Using corruption, the attacker can gain access to such credentials, modeling that the attacker can
use accounts of (now dishonest) users at an IdP.
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Figure 2.4.: Illustration of the window and document structure inside a browser. The depicted tree shows
an example of the structure of one browser tab. Active documents are highlighted in orange.

Each document contains a script9 and a state of this script (scriptstate). A script is a relation

that models the behavior of one Web page and subsumes all components of this Web page

including all external resources, such as external JavaScript files. Each document and its script

behave similar to processes: Whenever a browser (during a processing step) decides to run a

script in a document, the browser provides the script with its scriptstate (stored in the document)

and a limited view on the browser’s state (based on the document)10 and expects to receive a

command in return along with an updated scriptstate. This way, scripts can navigate or create

windows, send XMLHttpRequests and postMessages, submit forms, set/change cookies and Web

storage data, and create iframes. Scripts can be either honest, in which case they model the

behavior of the modeled application, or scripts can be dishonest, in which case they can derive

any possible output, i.e., any output that is derivable from the script’s input. We subsume all

dishonest scripts in the so-called attacker script (Ratt). Navigation and security rules ensure that

scripts can manipulate only specific aspects of the browser’s state, according to the relevant Web

standards. See Section 2.5.2 below for more details on scripts.

One browser is thought to be used by one user, who is modeled as part of the browser. User

9More precisely, a document contains a script identifier which refers to a script relation.
10The view of a script includes a (limited) view on other documents and windows, certain cookies, Web storage data,

and certain user credentials.
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actions, such as following a link, are modeled as non-deterministic actions of the Web browser

and scripts. User credentials are stored in the initial state of the browser annotated by an origin

and are given to scripts according to the origin under which the script is running.

The browser relation takes care of processing many different types of messages, i.e., trigger

messages, DNS responses, HTTP(S) responses, and corruption messages. As a result, the relation

can then output messages such as DNS and HTTP(S) requests (including XHRs). When handling

HTTP(S) messages, the relation takes care of important HTTP(S) headers, for example, cookie,

location, strict transport security (STS), and origin headers.

Before we describe the handling of each of these messages in detail, we will first give a

description of the dispatching mechanism for HTTP(S) requests, which is one of the browser’s

core functionality and spread across multiple processing steps.

2.5.1. Dispatchment of HTTP(S) Requests

If a browser wants to send out some HTTP(S) request (either as a result of a script, a URL bar

action, or a reload), the browser prepares the (term of the) HTTP(S) request. Before sending

this HTTP(S) request out, the browser first performs a DNS lookup for the domain to which the

request is addressed to (recall that in the network model, all messages need to be addressed to

some (IP) address, which is not a domain). For this DNS lookup, the browser creates an event

that is addressed to some DNS server and that contains a DNS request message for the domain.

The DNS server is determined by the browser’s state, i.e., the browser is configured to send DNS

requests to some (IP) address. The browser assigns the DNS request a fresh nonce as its message

id. In the browser’s state (namely in a subterm called pendingDNS), the browser records that

it expects a DNS response that bears this message id. Further, along with this message id, the

browser stores the HTTP(S) request that is to be sent out as well as a term reference that will

be used to process the HTTP(S) response to this HTTP(S) request. The reference can be of two

different kinds: (1) If the HTTP(S) request is an XHR (caused by a script), then the reference

contains an identifier for the script’s document as well as some term determined by the script

(the script will later use this term to match the response to the request), or (2) in any other case,

the reference contains an identifier for the window that will consume the HTTP(S) response, i.e.,

that will load the response’s body as a new document. Finally, the browser outputs the event

containing the DNS request and its modified state.

When the browser concludes the DNS lookup, i.e., when the browser receives a matching

DNS response, it sends out the actual HTTP(S) request. At the same time, the browser moves

the corresponding entry in the browser’s state from the subterm pendingDNS to a subterm called

pendingRequests. Entries in this subterm are used to match the corresponding HTTP(S) response
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when it is received by the browser in a later processing step (see also Section 2.5.3 below).

In the case of HTTPS messages, the browser further takes care of encrypting the request. To

this end, the browser looks up the public key of the receiving domain and chooses a fresh nonce

as the (symmetric) key for the response (see also our explanation of HTTPS in Section 2.2 above).

The nonce is stored along with the reference explained above.

Finally, if the browser receives a matching HTTP(S) response, it removes the corresponding

entry from pendingRequests and processes the content of the message (see Section 2.5.4 below

for more details).

2.5.2. Handling of Trigger Messages

A browser, at any time, can receive a trigger message upon which the browser non-determinis-

tically chooses one of the following actions:

• Running a script in some document,

• mimic a user entering a URL in the location bar,

• reload a window, or

• navigate a window forward or backward.

We will describe each of these action in more detail below.

Running a script in some document. The browser non-deterministically selects a window and

runs the script of the document contained within this window. As already mentioned above,

the script subsumes the behavior of (a) a real-world HTML document that contains JavaScript

and (b) user interaction with this document. Similar to process relations, a script is also non-

deterministic and can use nonces by providing placeholders that will be filled with nonces by the

process transition. The script relation maps from

• a limited view on the browser’s window structure based on the document,

• an identifier of the current document in that window structure,

• the script’s current scriptstate, a term that is stored in the document and that is used to

store data of the script between different runs of that script (i.e., to keep state),

• a sequence of script inputs, a term that is stored in the document and that is used to store

XMLHttpRequest responses and postMessages for this document,

• a sequence of cookies for the document’s domain (which are not marked as HTTPonly),
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• a dictionary containing the localStorage of the document’s origin within the browser’s

state,

• a dictionary containing the sessionStorage of the document’s origin within the current

window tree,

• a sequence of ids of the browser’s user, and

• a sequence of secrets (passwords) of the document’s origin within the browser’s state.11

to

• a new scriptstate that will be stored in the document,

• a new set of cookies for the current domain,

• a new dictionary for the localStorage as above,

• a new dictionary for the sessionStorage as above, and

• a command.

Commands issued by a script can be:

• HREF: The script outputs a URL and a window reference. This command models the user

clicking on a link or a JavaScript navigating some window.

• IFRAME: The script outputs a URL and a window reference. This command models the

script creating an iframe in the indicated window.

• FORM: The script outputs a URL, an HTTP method (GET or POST), form data, and a

window reference. This models a user (or the JavaScript itself) filling out a form and

submitting this form.

• SETSCRIPT: The script outputs a window reference and a script identifier. This command

models the script replacing the content of the document of the indicated window.

• SETSCRIPTSTATE: The script outputs a window reference and a (second) scriptstate. This

command models the script changing variables of JavaScript running in the document of

the indicated window.

11Note that we model a user who is at least cautious about at which origin she enters passwords.
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• XMLHTTPREQUEST: The script outputs a URL, an HTTP method, a term for the body of the

HTTP request, and some term that will be used as a reference to match the response to this

request at a later point in time. The response to an XMLHttpRequest will be later added

to the script inputs of the current document.

• BACK, FORWARD, or CLOSE: The script outputs a window reference. This command models

the script navigating the indicated window backward or forward, or closing the window.

The navigation over the history of a window changes a flag that marks the currently active

document in the window’s history.

• POSTMESSAGE: The script outputs a window reference, a message term, and an origin. This

command models the script sending a postMessage to the indicated window. (The origin is

used to restrict the delivery of this message to documents of this origin.) The postMessage

will be added to the active document’s script inputs in the indicated window.

A browser immediately processes the command output by the script (within the same process-

ing step). For most commands, certain restrictions apply. For example, a script may only instruct

the browser to replace a script by the SETSCRIPT command if the target document is of the

same origin as the current document. A browser ignores invalid or forbidden commands.

Some commands, however, require interaction with the network. The browser relation then

prepares the HTTP request, outputs the corresponding DNS request and stores the HTTP request

along with some other metadata (e.g., which document/window, XMLHttpRequest reference, ...)

to later continue processing the command when the DNS response is delivered.

Mimic a user entering a URL in the location bar. The browser non-deterministically de-

cides whether it creates a new (top-level) window. If it does not create a new window, it non-

deterministically selects some existing top-level window. The browser also non-deterministically

chooses a URL (that does not contain any nonces and hence no secrets). For the selected (new or

existing) window, the browser behaves as an (imaginary) script of this window (more precisely of

the document within that window, assuming such a document exists) issued the HREF command

for the chosen URL and a reference for this window.

Reload a window. The browser non-deterministically selects some window and navigates this

window to its current document’s URL similar to the HREF command as described above. This

choice models a user’s click on the reload button in her browser’s navigation bar or of the context

menu of some window (which might be an iframe).

Navigate a window forward or backward. The browser non-deterministically selects some

window and then behaves similar to the BACK and FORWARD commands as described above. This
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mimics a user’s click on the backward or forward button in her browser’s navigation bar or the

context menu of some window (which again might be an iframe).

2.5.3. Handling of DNS Responses

When the browser receives an event containing a DNS response, it looks up in its state whether it

expects such a response. If the browser does not find an entry in pendingDNS, it ignores the DNS

response. If the browser finds an entry, the browser considers the DNS lookup to be finished

and removes this entry from pendingDNS. Now the actual HTTP request will be sent out. The

browser checks whether the HTTP request is to be sent to an HTTPS URL, i.e., the browser

determines whether the original message needs to be encrypted. As mentioned above, the browser

chooses a fresh nonce that will be used as a symmetric key to encrypt the HTTP response later

and encrypts the HTTP request along with this nonce asymmetrically with the public key of the

domain (taken from the browser’s state). The browser now takes this encrypted term12 or the

plain HTTP request (depending on whether the URL is HTTPS or not) as the actual message and

creates a new event with this message that is addressed to the (IP) address contained in the DNS

response. Further, the browser creates a new entry in its state in the subterm pendingRequests.

This entry essentially contains the same information as the former entry in pendingDNS (HTTP

request, reference) plus the (IP) address and (in the case of HTTPS) the nonce that will be used

as the symmetric key to encrypt the response. Finally, the browser outputs the event containing

the HTTP request as well as its modified state.

2.5.4. Handling of HTTP(S) Responses

When the browser receives an event containing an HTTP(S) response, it uses the subterm

pendingRequests in its state to look up whether it expects such a response. If it does not ex-

pect such an event, the browser ignores it. Otherwise, the browser finds an entry in this subterm

that contains all necessary information to process this response (including a symmetric key to

decrypt the response in the case of HTTPS). Similar to DNS responses, the browser removes this

entry from pendingRequests. The browser now checks whether the HTTP(S) response contains

a redirect (i.e., whether the response contains a redirect status code) and continues as described

below.

The HTTP response does not contain a redirect. As above, when the browser created the

corresponding request, the browser again has to distinguish two cases:

12Note that we only consider symbolic encryption in the WIM.
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• The response is for an XMLHttpRequest. In this case, the browser uses the reference

term contained in the entry in pendingRequests to retrieve the document’s identifier and

the script’s reference term that was used when a script instructed the browser to send out

the request. The browser looks up the document in its window structure and appends the

script’s reference along with the body and selected headers of the HTTP response to the list

of script inputs. The script inputs can be used by the script running within this document

when it is triggered in a later processing step.

• The response is for any other kind of request. In this case, the browser expects the

HTTP response’s body to contain a script identifier and an initial state for this script.

The browser creates a new document with this information. This document is then ap-

pended to the history of the window identified by the window identifier contained in the

entry in pendingRequests. This document is also marked as being the active document of

this window.

The HTTP response contains a redirect. In this case, the browser follows the redirect except

if the corresponding HTTP request was caused by an XMLHttpRequest (the browser knows this

from the reference term of the entry that it took from pendingRequests). Following a redirect

means that the browser behaves similar to sending the HTTP request in the first place: The

browser creates an event with a DNS request for the domain of the URL it is redirected to and

creates an entry in pendingDNS that uses the same reference term as for the first HTTP request

(this term is contained in the entry the browser took from pendingRequests. Depending on the

type of the redirect (the WIM implements the redirect codes 303 and 307, which subsume the

behavior of all kinds of redirect codes), the request’s body is dropped.13

2.5.5. Corruption

A browser can also become corrupted as explained above. We model two types of corruption of

browsers, namely full corruption and close-corruption, both of which are triggered by special

network messages in the WIM. In the real world, an attacker can exploit buffer overflows in Web

browsers, compromise operating systems (e.g., using trojan horses), and physically take control

over shared internet terminals.

Full corruption models an attacker that gained full control over a Web browser and its user. Be-

sides modeling a compromised system, full corruption can also serve as a vehicle for the attacker

13If the HTTP request was a POST request, the request might contain request parameters in its body. In the case
of a 307 redirect, the new request remains the same as the old request except for the URL it is directed to and
the Origin HTTP header. In the case of a 303 redirect, the request is changed to a GET request, and the body is
removed.
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to participate in a protocol using secrets of honest browsers (think of the attacker “recruiting”

collaborators).

Close-corruption models a browser that is taken over by the attacker after a user finished

her browsing session, i.e., after closing all windows of the browser. This form of corruption is

relevant in situations where one browser can be used by many people, e.g., in an Internet café or

in a hotel lobby. Information left in the browser state after closing the browser could be misused

by malicious users.

2.6. Web Servers

Web servers are application-specific processes. The primary function of a Web server is to

respond to HTTP(S) requests (with HTTP(S) responses). A Web server might also send out

HTTP requests on its own (e.g., invoked by a trigger message) and process responses to its

requests.

As Web servers model application-specific behavior, they need to be defined depending on the

respective application. To ease the definition of the behavior of Web servers, the WIM provides

a generic server template. This template provides basic functionality to handle incoming HTTPS

requests as well as sending out HTTPS requests. To model application logic in this framework,

several “dummy” functions can be replaced with application specific behavior (i.e., pseudo

code).14

Note that a Web server can typically also become corrupted as explained above.

2.7. DNS Servers

DNS servers respond to DNS requests, which ask for the IP address of some domain. The DNS

server looks up this IP address and responds with a DNS response. Here, we consider a flat DNS

model in which DNS queries are answered directly by one DNS server and always with the same

address for a domain. Hence, DNS servers contain a list of assignments of domain names to IP

addresses in their state and use only their state to look up the result of a DNS query, i.e., they

do not perform further DNS resolving by forwarding the DNS request to another DNS server. A

full (hierarchical) DNS system with recursive DNS resolution, DNS caches, etc. could also be

modeled to cover specific attacks on the DNS system itself.

Here, we only model plain DNS and do not consider recent improvements and extensions such

as DNSSEC [RFC4033] and DNS over HTTPS [HM18], which provide integrity (in the case of

14As we do not make use of the generic server template in this thesis, we do not provide a detailed description and
refer the reader to [Fet18].
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DNSSEC) and confidentiality (in the case of DNS over HTTPS). This is motivated by the fact

that these technologies are not mandatory and — in the worst case — not used at all. Hence,

omitting these techniques is a safe overapproximation. In a system that contains a network

attacker, we typically do not consider honest DNS servers but configure all parties to use the

attacker as their DNS server. In such a system, the attacker is always able to intercept and respond

to all DNS messages and hence, we do not get any guarantees from an honest DNS server. DNS

servers might also become corrupted, giving Web attackers also the ability to interfere with DNS

resolution.

2.8. Limitations

Of course, a model cannot reflect all aspects of the real world as a model is always an abstraction.

As such, the WIM also abstracts away some aspects: There are no details of programming

languages, such as JavaScript, or byte-level attacks, such as buffer overflows. Still, the WIM can

capture the outcome of such attacks by using dynamic corruption or the attacker script within

the browser. The WIM also omits user interface details, which might miss user-level attacks

such as Clickjacking. Further, the WIM, as a Dolev-Yao style model, uses an abstract view on

cryptography and TLS. Still, the WIM provides us with a comprehensive view on the logic of

interactions between different entities, or even scripts within a browser, and allows analyses to

yield meaningful results for this abstraction level.

2.9. General Security Properties of the WIM

We have identified central application independent security properties of web features in the

WIM and formalized them in a general way such that they can be used in and facilitate future

analysis efforts of web standards and web applications. Roughly speaking, these properties show

that our model for HTTPS is sane. In our analyses, we often rely on these properties. In this

section, we provide a brief overview of these properties, with precise formulations and proofs

presented in Appendix B.

The first set of properties concerns encrypted connections (HTTPS): We show that HTTP

requests that were encrypted by an honest browser for an honest receiver cannot be read or

altered by the attacker (or any other party), given that the attacker does not know the private

TLS key of the receiver. This, in particular, implies correct behavior on the browser’s side,

i.e., that browsers that are not fully corrupted never leak a symmetric key used for an HTTPS

connection to any other party. We also show that honest browsers set the host header in their
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requests correctly, i.e., the header reflects an actual domain name of the receiver, and that only

the designated receiver can successfully respond to HTTPS requests.

The second set of properties concerns origins and origin headers. Using the properties stated

above, we show that browsers cannot be fooled about the origin of an (HTTPS) document in

their state: If the origin of a document in the browser’s state is a secure origin (HTTPS), then

the document was actually sent by that origin. Moreover, for requests which contain an origin

header with a secure origin, we prove that such requests were actually initiated by a script that

was sent by that origin to the browser. In other words, in this case, the origin header works as

expected.

58



3. Formalizing SSO Protocols and
Security Properties

In this chapter, we present a generic template to formalize SSO protocols in the WIM. This

template is a template for a Web system which we then call an SSO Web system. The template

includes DY processes for relying parties and identity providers which will be refined for analyses

of concrete SSO protocols. Browsers, DNS servers, and attackers are as defined in the previous

chapter.

For this template, we also specify certain important processing steps that are common to all

SSO protocols. These processing steps represent user actions, such as the start of a login flow,

as well as the success of an SSO login. We further introduce the notion of an SSO session that

captures every processing step related to an SSO login. This notion allows us to reason about

instances of SSO protocol flows.

Using these definitions, we define security properties that every SSO protocol should fulfill.

As already explained in the introduction, these properties cover authentication, integrity of the

user’s login session (which we call session integrity), and privacy.

3.1. SSO Web Systems

The goal of an SSO protocol is to authenticate a user u to an RP r using some account a at some

IdP i. As we consider open and federated SSO protocols, in which many parties can participate,

the account a needs to have some globally unique identifier id. In practice, such an identifier is

typically composed of some domain domain of i and some local identifier of the user name, i.e.,

id is very similar to an email address.1

Note that the identifier id can also be some URL, which is, for example, specified for some

configurations of OpenID 2.0 [FR+07]. Still, such a variant of the identifier can be split into a

domain and a part local to this domain. There exist, however, schemes like extensible resource

1Note that the domain domain does not necessarily “belong” to the IdP i, i.e., the domain may be assigned to some
different entity, which in turn, may delegate the governance over id to the IdP i. Such a delegation can also be
implicitly set by the protocol, e.g., in the case of BrowserID’s secondary mode in which a trusted entitiy takes the
role of an IdP for all accounts.
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identifiers (XRI) [LLW05] that have been developed to enable users to have an identifier that is

independent from a specific IdP or a domain.2

Some SSO protocols, such as OpenID 2.0, also allow one account to be identifiable by multiple

(different) identifiers at the same time, e.g., a URL, some string similar to an email address,

and an XRI identifier. In the case of OpenID 2.0, this is handled by a lookup protocol in

which all identifiers of one account are normalized to a single unique identifier. Without such a

normalization, different identifiers would be treated as identifiers for different accounts from the

SSO protocol’s perspective.

In this thesis, we focus on modeling identifiers similar to email addresses as described above.

Note that this design choice does not restrict our approach. Our template can be easily extended

to support more complex identifier schemes.

Definition 1 (User Identities). A user identity (or identity or id for short) id is a term of the form

⟨name,domain⟩ with name ∈ S and domain ∈ Doms.

Let ID be the finite set of identities and y a Dolev-Yao process. By IDy we denote the set

{⟨name,domain⟩ ∈ ID |domain ∈ dom(y)}. ⋄

We say that an identity id is governed by some DY process i (taking the role of an IdP).

Formally, we define a (protocol-specific) mapping governor : ID→W . As explained above, the

governor i of some identity id is typically the DY process to which the domain of the identity

belongs, i.e., governor : ⟨name,domain⟩ ↦→ dom−1(domain). Note that the governor of some

identity might also be malicious, i.e., we also consider dishonest IdPs.

To authenticate herself as the rightful owner of an identity id, a user needs to authenticate to

the governor of id. To perform the actual authentication of a user, there are a variety of different

authentication schemes: The user can just be asked by the IdP i to provide some credential

(e.g., a password). In other schemes, a user might perform a multi-factor authentication, e.g., by

entering a (long-term) password and some one-time password that she received via a different

channel (e.g., SMS). We consider the actual authentication scheme that is used to authenticate a

user to the IdP to be outside of the SSO protocol itself. We therefore resort to the widely used

password-based approach that is solely based on the knowledge of the password and does not

incorporate any additional security measures. Note that this design decision does not restrict us to

extend our analyses to include stronger authentication schemes. In our formalization, we define

a bijective mapping from identities to passwords (i.e., secrets which are modelled as nonces)

2In XRI, users register their identifier at a central registry, which keeps record of which IdP is currently responsible
for a specific identifier. In this case, the identifier itself does not contain a domain, but lookup of this identifier at
the registry returns a domain of the IdP.
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that assigns secrets to all identities as the authentication credential. We denote this mapping by

secretOfID : ID→ Secrets.

Recall that users in the WIM are modelled as part of browsers. To assign identities to users,

i.e., browser processes, we assign secrets to browsers: Let ownerOfSecret : Secrets→ B denote

the mapping that assigns to each secret a browser that owns this secret. As a shortcut, we

further define the mapping ownerOfID : ID→ B, i ↦→ ownerOfSecret(secretOfID(i)), which

maps identities to browsers (owning the respective identities). We typically distribute secrets to

owners (browsers) and governors (IdPs) of the respective identities using the initial states of the

processes.

RPs are DY processes that conclude a protocol flow by considering some user (identity) to be

authenticated. This final step is characterized by the RP to issue some nonce n, which we refer

to as a service token.3 The service token refers to a (now) authenticated service session between

the RP and and the user (browser). In practice, n can be used as a session cookie and the RP

stores n along with the id of the authenticated user in its state.4

For our template, we define RPs as follows:

Definition 2 (Relying Parties, Service Tokens, and Service Sessions). A relying party (RP)

r = (Ir,Zr,Rr,sr
0) is a Web server to which a user is authenticated as the goal of (a flow of) an

SSO protocol where r meets the following requirements:

1. When r concludes its part in a run of the SSO protocol, i.e., the RP considers the authenti-

cation of some user under some id id to be completed, r issues a freshly chosen nonce n,

which we call a service token.

2. There exists a function serviceSessions : Zr→ [N × ID] which extracts a dictionary over

service tokens and identities from the RP’s state where every service token n (issued by r

and considered valid in the respective state of r) is mapped to the identity id for which n

was issued. We call ⟨n, id⟩ a service session.5

3We require that an RP needs to choose a fresh nonce to create an authenticated Web session (e.g., using a cookie)
with the user at the end of the protocol, which is a best practice for authentication (see, e.g., OWASP session
management recommendations [Ope17]).

4In alternative approaches, RPs might track service sessions outside of their state. For example, the RP can create a
token that contains (among others) a MAC over the user identity and store this in a cookie in the user’s browser.
The exact mechanism how RPs implement service sessions is, however, outside the actual SSO protocol.

5We typically store this dictionary as a subterm in RP’s state, i.e., the function serviceSessions is a projection
from RP’s state in this case. Note that, in practice, an RP might also store additional information related to an
authenticated session. Such information might be stored as additional information in the same dictionary, but
could also be stored in a different subterm in RP’s state, e.g., in a dictionary that contains such information indexed
by n.
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3. For every processing step

Q = (S,E,N)−−−−−→
r→{eout}

(S′,E ′,N′)

in which r concludes a flow of the SSO protocol for the id id and issues the service token

n (contained in eout), we have that

serviceSessions(S′(r)) = serviceSessions(S(r))+⟨⟩ ⟨n, id⟩.

For every processing step

Q′ = (S′′,E ′′,N′′)−→ (S′′′,E ′′′,N′′′)

in which r does not conclude any flow of the SSO protocol, we have that

serviceSessions(S′′′(r)) = serviceSessions(S′′(r)).

4. Initially, an RP is honest. When an RP processes a corrupt event, the RP becomes corrupted

and behaves as a Web attacker from then on.

⋄

As we can see, this template for RP does not contain any SSO protocol specific parts. For a

concrete SSO protocol, we refine this definition to capture all protocol specific parts. Similar,

IdPs are defined in a very generic way. The main requirement for IdPs is the role that they play

in the SSO protocol:

Definition 3 (Identity Providers). An identity provider (IdP) is a Web server that is able to attest

a user’s identity to an RP in an SSO protocol. Similar to RPs, an IdP is initially honest. When

an IdP processes a corrupt event, the IdP becomes corrupted and behaves as a Web attacker from

then on. ⋄

We combine all these definitions to a generic template for an SSO Web system:

Definition 4 (SSO Web System). Let WS = (W ,S ,script,E0) be a Web system. We call WS an

SSO Web system, iff the set W can be partitioned into W = Hon ∪̇Web ∪̇Net with Web attacker

processes in Web, network attacker processes in Net, and a finite set of (initially) honest parties

Hon, which can be further partitioned into Hon := B∪RP∪ IDP∪DNS∪Other with a finite set

B of Web browsers, a finite set RP of Web servers for the relying parties, a finite set IDP of Web
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servers for the identity providers, and a finite set DNS of DNS servers, a finite set Other of other

(honest) parties. ⋄

For the first two security properties below (authentication and session integrity), we consider

SSO Web systems that contain a network attacker and no Web attackers (i.e., Web = /0 and

Net= {attacker}). For privacy, we consider SSO Web systems with a set of Web attackers.

Note that a network attacker can not only observe and spoof events exchanged among other

processes, but also has the power to subsume multiple other network or Web attackers. Also note

that in a SSO Web system with a network attacker, we can safely overapproximate such a system

by omitting DNS servers as all interactions with an honest DNS server can be intercepted and

simulated by a network attacker.

3.2. Important Steps in an SSO Flow

As mentioned in the introduction, SSO protocols are intended for delegated authentication: A

user can log into an RP by authenticating herself at an IdP. In such a flow, we can identify four

distinctive steps: First, the user tells the RP that she wants to start the SSO flow. Second, the

user states which IdP she intends to use. Third, the user states the identity that she wants to use.

Finally, the user gets logged in at the RP. Note that some of these steps may happen in the very

same step: Figure 3.1 shows an example of an RP where the user is prompted to log by selecting

an IdP out of a predefined list. In this example, the user starts the SSO login flow and selects

the IdP for that login flow at the same time. As we will see in our analysis of BrowserID, the

selection of the IdP and the selection of the identity is performed in the very same step.

We will now provide generic definitions of all of these steps as far as generality allows. In

concrete SSO protocols, these steps will be tied to specific elements of process relations (i.e.,

lines of code). These definitions allow us to precisely identify the steps in our session integrity

property below.

We first define the start of the SSO protocol flow as follows:

Definition 5 (Start of an SSO Flow). Let WS be an SSO Web system. Let ρ be a run of WS .

Let Q ∈ ρ be a processing step, b a browser, and r an RP. We write started(Q,b,r) iff in Q, the

browser b started an SSO flow at r. ⋄

Next, we define two choices of the user, i.e., the selection of the IdP a user wishes to use and

the selection of an identity a user wishes to use:
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Figure 3.1.: A screenshot of a typical RP Web page (the Wifi login portal of the Grand Hotel Trento) that
prompts the user to select one out of many different IdPs to log in.

Definition 6 (Selection of an IdP). Let WS be an SSO Web system. Let ρ be a run of WS . Let

Q ∈ ρ be a processing step, b a browser, and i an IdP. We write selectedIdP(Q,b, i) iff in Q, the

browser b stated to use the IdP i to log in. ⋄

Definition 7 (Selection of an Identity). Let WS be an SSO Web system. Let ρ be a run of

WS . Let Q ∈ ρ be a processing step, b a browser, i an IdP, and id an identity. We write

selectedID(Q,b, i, id) iff in Q, the browser b selected to use the identity id (using the IdP i)6 to

log in. ⋄

Finally, we define the conclusion of an SSO protocol flow to be the processing step in which

the user gets logged in at an RP:

6Note that the IdP i is typically given by the selection of the identity id implicitly.
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Definition 8 (User is Logged in at RP). Let WS be an SSO Web system. Let ρ be a run of WS .

Let Q ∈ ρ be a processing step, b a browser, r an RP, id an identity, and n some term. We write

loggedIn(Q,b,r, id,n) iff in Q, b receives n as a service token (i.e., b interprets n to be a service

token, e.g., by storing n as a cookie) and n identifies a service session in the state of r (in Q) and

this service session is authenticated for the identity id. ⋄

3.3. Trace Sessions and SSO Sessions

A trace session (in some run) is a set of processing steps that relate to each other in some way.

We will define a notion of trace sessions based on causal chains of processing steps. Intuitively,

we say that two processing steps are connected if one processing step causes the other. This

can happen either based on network events (i.e., one DY process handles an event output by

another process) or based on a browser’s state (i.e., the script of the some document is invoked

that has been loaded or modified in the earlier processing step or the script of the same document

is invoked in both processing steps or the script of the document in the later processing step has

been influenced by a script of the earlier processing step). Formally, our definiton of connected

processing steps is as follows:

Definition 9 (Connected Processing Steps). Let ρ be an run of some Web system and x,y ∈ N
with x < y. Further let

Qx = (Sx,Ex,Nx)
ein,x→px−−−−−→
px→Eout,x

(Sx+1,Ex+1,Nx+1) and

Qy = (Sy,Ey,Ny)
ein,y→py−−−−−→
py→Eout,y

(Sy+1,Ey+1,Ny+1)

be processing steps in ρ . We say that Qx and Qy are connected iff

(1) ein,y ∈ Eout,x, or

(2) px = py, py is a browser, ein,y is a trigger event, the browser py (in Qy) decided to run the

script of document dy (i.e., selected script in Line 9 of Algorithm A.9 and selected dy in

Line 13 of Algorithm A.9), and

a) ein,x is an HTTP(S) response message that either

i. created dy in Lines 39ff. of Algorithm A.8, or

ii. modified the subterm scriptinputs of dy in Lines 56ff. of Algorithm A.8, or
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b) ein,x is a trigger event, the browser px (in Qx) decided to run the script of some

document dx (i.e., selected script in Line 9 of Algorithm A.9 and selected dx in

Line 13 of Algorithm A.9), and

i. the document selected in Line 13 of Algorithm A.9 is the same in Qx and Qy, or

ii. the browser px (in Qx) modified (as a result of running the script of dx) the

document dy, i.e., modified a subterm of dy in the state of px.7

⋄

Note that the definition above assumes that in the modeling of a concrete SSO protocol, honest

RPs and IdPs do not use trigger events to continue a sequence of logically connected steps.

The definition only captures trigger events handled by browsers to continue the execution of

scripts. Obviously, if in some SSO protocol the usage of trigger events by non-browser parties

is necessary to model this protocol, the definition of connected processing steps needs to be

extended accordingly.

Based on the notion of connected processing steps, we now define trace sessions to be se-

quences of connected processing steps.

Definition 10 (Trace Sessions). A trace session (in a run ρ of a Web system) is a sequence of

processing steps (Q0, . . . ,Qn) or (Q0,Q1, . . .) such that (1) for all Qi with i > 0, Qi is connected

to some processing step in (Q0, . . . ,Qi−1), and (2) all processing steps appear in the same order

as in ρ . ⋄

Based on the notion of trace sessions, we now define SSO sessions. Intuitively, an SSO session

starts when a user expresses her wish to log in at some RP. Each session can only contain one

such request. A session ends when the log in is complete (which does not necessarily happen in

all SSO sessions).

Definition 11 (SSO Sessions). Let SSO be an SSO Web system and ρ be a run of SSO. An

SSO session in ρ by a browser b with an RP r is an infinite trace session (Q0,Q1, . . .) or a

finite trace session (Q0, . . . ,Qn) in ρ such that started(Q0,b,r), but there is no j > 0 such that

started(Q j,b,r). If there exists j > 0 such that loggedIn(Q j,b,r, i, id) for some IdP i and some

identity id, then the SSO Session is finite and n = j. ⋄

We write SSOSessions(ρ,b,r) for the set of all SSO Sessions in ρ by b with the RP r.
7Such a modification is performed in Line 58, Line 62, or Line 95 of Algorithm A.7 as a result of the value of

command output by the script (in Line 10 of Algorithm A.7) being of the form ⟨SETSCRIPT,window,script⟩,
⟨SETSCRIPTSTATE,window,scriptstate⟩, or ⟨POSTMESSAGE,window,message,origin⟩ with window pointing to
the window (in the browser’s state) where dy is the active document of that window and script, scriptstate,
message, origin being some terms.
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3.4. Security Properties

Based on the generic definition of SSO Web systems, we now define security properties for such

a system. As already discussed in the introduction, we identify three fundamental properties that

can be informally described as follows:

Authentication The attacker should not be able to use a service of an honest RP as an honest

user. In other words, the attacker should not get hold of (be able to derive from his current

knowledge) a service token issued by an honest RP for an identity of an honest user

(browser) governed by an honest IdP.

Session Integrity The attacker should not be able to impose a false identity on an honest

browser, i.e., he should not be able to authenticate an honest browser to an honest RP with

an identity that is not owned by the browser.

Privacy An IdP (modeled as a Web attacker) cannot distinguish between a user logging in at

one relying party and the same user logging in at a different relying party.

Formally, we define these properties as follows.

3.4.1. Authentication

For the authentication property, we require that an SSO system cannot be in any configuration in

which the attacker can derive a service token that was assigned by an honest IdP for an identity

of an honest browser that is not fully corrupted. Recall that full corruption of a browser means

that an attacker gets access to all secrets owned by this browser. In a browser that is only close-

corrupted, the attacker does not get to know these secrets because certain parts of the browser’s

state are cleared when it becomes corrupted (recall that this variant of corruption models shared

internet terminals, e.g., an internet kiosk in a hotel lobby, where the user closes all windows

before handing over the machine to the next person, which might be an malicious).

Definition 12 (Authentication Property). Let WS n be an SSO system with a network attacker

(denoted by attacker). We say that WS n is secure w.r.t. authentication iff for every run ρ of

WS n, every configuration (S,E,N) in ρ , every r ∈ RP that is honest in S, every browser b ∈ B

that is not fully corrupted in S, every identity id ∈ ID owned by b with governor(id) being an

honest IdP, every service session ⟨n, id⟩ at r, n is not derivable from the attacker’s knowledge in

S (i.e., n ̸∈ d /0(S(attacker))). ⋄
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3.4.2. Session Integrity

We now define a security property which we call session integrity. This property states that an

attacker is not able to force an honest user to be logged in at an honest RP without the user

giving her explicit consent that she indeed wants to be logged in at this RP. Further, this property

requires that the user is actually logged in using an IdP that the user choose to log in and under

one of her own identities that the user choose to log in. In other words: This security property

captures that a user should only be logged in under one of her identities and that the user actually

expressed the wish to start an SSO flow using a certain IdP and this identity. Formally, we require

that the actual login and user’s selections are connected to each other in a direct causality chain

(i.e., they are part of a single SSO session) and that the created service session matches the user’s

selections.

Note that for this security property, when considered in a setting with network attackers,

one cannot rely on traditional cookies to pass the service token to the browser, as cookies lack

integrity in the presence of a network attacker. The network attacker can trivially inject a cookie

into a browser over an insecure HTTP connection such that this cookie is also used for HTTPS

connections [Zhe+15]. If one still wants to use cookies, there is a recent proposal to fix the

integrity of cookies: If a cookie name is prefixed by the string __Secure, this cookie can not

only be set in browser over secure connections. In addition, such a cookie can also be later

identified as a cookie that was indeed set over a secure connection [BW17]. (Another way is to

not rely on cookies at all and pass the service token in a different way, e.g., as some JavaScript

variable.)

Definition 13 (Session Integrity). Let SSO an SSO Web system with a network attacker. We say

that SSO is secure w.r.t. session integrity iff for every run ρ of SSO, every processing step Qlogin in

ρ , for every browser b that is honest in Qlogin, for every RP r ∈ RP that is honest in Qlogin, and for

every id ∈ IDs the following holds true: If there exists some n such that loggedIn(Qlogin,b,r, id,n)

we have that all following statements hold true:

i) ∃o ∈ SSOSessions(ρ,b,r),

ii) ∃QIdP ∈ o such that selectedIdP(QIdP,b,r,governor(id)),

iii) ∃Qid ∈ o such that selectedID(Q,b, i, id),

iv) Qlogin ∈ o,

v) b owns id.

⋄
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We note that for SSO systems in which the user selects the identity in a document controlled

by the IdP, the session integrity property above cannot hold true if the IdP is dishonest. In the

analyses of OAuth 2.0 and OpenID Connect 1.0 in [FKS16a; FKS17b], a slightly weaker session

integrity property was used: There, the Statement iii) was only considered under the condition

that governor(id) is honest. This integrity property is, however, still reasonable as the usual

attacks on session integrity are targeted towards a user interacting with an RP under an identity

she does not own. In this case, however, we still have that this identity is governed by some IdP,

which in turn can always impersonate all identities of its users and access the services of any RP

under such an identity.

We further note that the results of our BrowserID and SPRESSO analyses presented in

[FKS14a; FKS15a; FKS15b], consider a weaker session integrity, namely only the condition

stated in Statement v) above.

3.4.3. Privacy

So far, for the authentication and session integrity properties above, we considered a network

attacker, which is the most powerful kind of attacker. As the privacy property presented below

reasons about hiding the fact which RP the user is interacting with from the IdP, the property is

stated in a slightly different setting that considers only Web attackers. A network attacker can

trivially break such a privacy property by just observing the addresses of network events.

In the privacy property, we require only a very limited set of honest parties: two honest RPs r1

and r2 with the domains dr1 and dr2, respectively, one honest browser, one honest DNS server,

and — depending on the SSO system — a limited set of other parties. For these parties, we also

require that they cannot become corrupted, i.e., these parties never collaborate with an attacker.

These honest parties interact with a very hostile environment: All other parties, including all

IdPs, are dishonest and modeled as Web attackers. This implies that every login flow involves

attackers.

Before we state the privacy property, we first introduce the notion of indistinguishability of

Web systems. This notion is used to formulate privacy such that an attacker cannot distinguish

between two Web systems in which a user logs into r1 or r2, respectively.

In the following, we provide high-level ideas and the most important definitions and refer the

reader to Appendix C for the remaining formal definitions.

Indistinguishability of Web Systems. Indistinguishability of Web systems follows the idea of

trace equivalence in Dolev-Yao models (see, e.g., [CCD11]), which in turn is an abstract version

of cryptographic indistinguishability. The indistinguishability definition presented here is not

tailored towards a specific Web application, and hence, is also of independent interest.
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Intuitively, two Web systems are indistinguishable if the following holds true: whenever the

attacker8 performs the same actions in both systems, then the sequence of messages he obtains in

both runs look the same from the attacker’s point of view, where, as usual in Dolev-Yao models,

two sequences are said to “look the same” when they are statically equivalent [AF01] (see

below). More specifically, since, in general, Web systems allow for non-deterministic decisions

(in particular, decisions taken by honest parties), the sequence of actions of the attacker might

induce not a single run but a large set of (different) runs. Hence, we allow the attacker to “fix”

all of these non-deterministic decisions, effectively allowing him to control also honest parties

in a limited way.

This gives the attacker effectively more power in this case. Recall that previously, he only

controlled corrupted parties and certain scripts running in honest browsers (most notably the

attacker script Ratt). Now, he might also control a user’s actions in a browser. He can, for

example, instruct the user to navigate any window of her browser.

We model a single action of the attacker by what we call a (Web system) command (not to be

confused with commands output by a script to the browser). A command is a term of the form

⟨i, j,τprocess,cmdswitch,cmdwindow,τscript,url⟩ .

The first component i ∈ N determines which event from the pool of events is processed. If this

event could be delivered to several processes (recall that a network attacker, if present, can listen

to all addresses), then j determines the process which actually gets to process the event. Now,

there are different cases depending on the process to which the event is delivered and depending

on the event itself. We denote the process by p and the event by e: i) If p is corrupted (it is a Web

attacker, network attacker, some corrupted browser or server), then the new state of this process

and its output are determined by the term τprocess, i.e., this term is evaluated with the current state

of the process and the input e. ii) If p is an honest browser and e is not a trigger message (e.g.,

a DNS or HTTP(S) response), then the browser processes e as usual (in a deterministic way).

iii) If p is an honest browser and e is a trigger message, then there are three actions a browser

can (non-deterministically) choose from: open a new window, reload a document, or run a script.

The term cmdswitch ∈ {1,2,3} selects one of these actions. If it chooses to open a new window, a

document will be loaded from the URL url. In the remaining two cases, cmdwindow determines

the window which should be reloaded or in which a script is executed. If a script is executed

and this script is the attacker script, then the output of this script is derived (deterministically) by

the term τscript, i.e., this term is evaluated with the data provided by the browser. The resulting

8Note that there might also be multiple attackers in a system at the same time. For readability, we here describe this
set of all attackers as one single entity.
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command, if any, is processed (deterministically) by the browser. If the script to be executed is an

honest script (i.e., not Ratt), then this script is evaluated and the resulting command is processed

by the browser. (Note that the script might perform non-deterministic actions.) iv) If p is an

honest process (but not a browser), then the process evaluates e as usual. (Again, the computation

might be non-deterministic, as honest processes might be non-deterministic.)

We call a finite sequence of commands a schedule. Given a Web system WS , a schedule σ

induces a set of (finite) runs in the obvious way. We denote this set by σ(WS). If all processes

and scripts in WS are deterministic, only one run is induced.

Before we can define indistinguishability of two Web systems, we, as mentioned above, recall

the definition of static equivalence by Abadi and Fournet [AF01]. We say that two terms t1 and

t2 are statically equivalent, written t1 ≈ t2, if and only if, for all terms M(x) and N(x) which

contain one variable x and do not use nonces, we have that M(t1)≡N(t1) iff M(t2)≡N(t2). That

is, every test performed by the attacker yields the same result for t1 and t2, respectively. For

example, if k and k′ are nonces, and r and r′ are different constants, then

enca(⟨r,k′⟩,pub(k))≈ enca(⟨r′,k′⟩,pub(k)) .

In this example, if the attacker does not know k, this statement is true.

As Web systems may contain multiple attackers and as we base indistinguishability on one

attacker’s view, we need to specify one distinguished attacker process as the “origin” of this view.

Note that this design does not restrict attackers, as all other dishonest processes can always send

their view to this distinguished attacker process.

Definition 14 (Web System with Distinguished Attacker). Let (W,S ,script,E0) be a Web

system and p an attacker process in W. We say that (W,S ,script,E0, p) is a Web system with a

distinguished attacker process p. If ρ is a finite run of this system, we denote by ρ(p) the state

of p at the end of this run. We define SSO Web systems with a distinguished attacker processes

analogously. ⋄

We define indistinguishability of Web systems as follows:

Definition 15 (Indistinguishability). Let WS 0 and WS 1 be two Web systems each with a dis-

tinguished attacker process p0 and p1, respectively. We call WS 0 and WS 1 indistinguishable

under the schedule σ iff for every schedule σ and every i ∈ {0,1}, we have that for every run

ρ ∈ σ(WS i) there exists a run ρ ′ ∈ σ(WS 1−i) such that ρ(pi)≈ ρ ′(p1−i).

We call the two Web systems WS 0 and WS 1 indistinguishable iff they are indististinguishable

under all schedules σ . ⋄
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Formal Definition of Privacy. In order to set up two Web systems that can be used to define

privacy based on indistinguishability, we introduce a special kind of browser that we call a

challenge browser. A challenge browser is a browser that is parameterized with a challenger

domain. When this browser assembles an HTTP(S) request for the special “dummy” domain

CHALLENGE, then instead of putting together and sending out the request for CHALLENGE, it takes

the challenger domain. However, this is done only for the first request to CHALLENGE. Further

requests to this domain are not altered (and would probably fail, as the domain CHALLENGE

is presumably not listed in the honest DNS server). To this end, the state of the challenge

browser contains a flag (i.e., the state is extended with one more subterm that contains this flag)

that stores whether the challenge browser has replaced the placeholder CHALLENGE with the

challenger domain.

We use the challenge browser to create two Web systems that are exactly the same up to the

challenger domain. As we are interested in whether a dishonest IdP can distinguish if a user

logs in into some (honest) RP A or into some (honest) RP B during a run, we set in one case the

challenger domain to a domain of RP A and in the other case to a domain of RP B. For privacy, we

require that in all possible runs induced by all schedules, the attacker cannot distinguish whether

the challenge domain in the challenge browser is the one of RP A or RP B. If the attacker can

distinguish between both cases, then the SSO protocol must have leaked this information and

does not provide privacy.

To model privacy, we define an SSO Web system for privacy analysis that is a Web system with

a distinguished attacker process attacker. This Web system is parameterized by a (challenger)

domain and contains one (honest) challenge browser b that uses this domain as the challenger

domain.

Definition 16 (SSO Web System for Privacy Analysis). We call WS priv
(·) = (W,S ,script,E0)

an SSO Web system for privacy analysis if it is an SSO Web system with a distinguished Web

attacker attacker and

1. there is no network attacker in W (i.e., Net= /0 and attacker ∈Web),

2. there exists at least one honest DNS server dns ∈W,

3. there exist two honest RPs r1, r2 ∈W with dr1 a domain of r1 and dr2 a domain of r2,

4. there exists exactly one challenge browser b ∈W that takes the parameter of WS priv as its

challenger domain and that is configured to only use the honest DNS server dns, and

5. dns, r1, r2, and b cannot become corrupted.
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⋄

As explained above, for privacy, we set up two SSO Web systems with parameter dr1 and

the same one with parameter dr2. We require that the attacker’s view in both systems for all

runs that are induced by an arbitrary schedule9 is statically equivalent, i.e., both systems are

indistinguishable. Hence, the attacker then cannot decide which RP is used by the challenge

browser, i.e., the attacker cannot distinguish between dr1 and dr2 as the challenger domain in b.

Definition 17 (Privacy Property). Let WS priv
(·) be an SSO Web system for privacy analysis

with dr1 and dr2 the domains of the two (honest) relying parties, b the challenge browser, and

attacker the distinguished attacker process as defined above. Let

WS 1 := WS priv
(dr1) = (W1,S ,script,E0,attacker1) and

WS 2 := WS priv
(dr2) = (W2,S ,script,E0,attacker2)

with attacker1 = attacker2 := attacker, b1 := b(dr1), b1 ∈W1, b2 := b(dr2), b2 ∈W2, and

W1 \{b1}= W2 \{b2} (i.e., the Web systems are the same up to the parameter of the challenge

browsers). We say that WS priv is IdP-private iff WS 1 and WS 2 are indistinguishable. ⋄

Note that there are many different situations where the honest browser in WS priv could be

triggered to send an HTTP(S) request to CHALLENGE. This could, for example, be triggered by

the user who enters a URL in the location bar of the browser, a location header (e.g., determined

by the adversary), an (attacker) script telling the browser to follow a link or create an iframe, etc.

Now, the above definition of privacy requires that in every stage of a run and no matter how and

by whom the CHALLENGE request was triggered, no (malicious) IdP can tell whether CHALLENGE

was replaced by dr1 or dr2, i.e., whether this resulted in a login request for dr1 or dr2. Recall that

the CHALLENGE request is replaced by the honest browser only once. This is the only place in a

run where the adversary does not know whether this is a request to dr1 or dr2. Other requests in

a run, even to both dr1 and dr2, the adversary can determine. Still, he should not be able to figure

out what happened in the CHALLENGE request. Hence, this definition captures in a strong sense

the intuition that a malicious IdP should not be able to distinguish whether a user logs in/has

logged in at dr1 or dr2.

9As explained above, the attacker can effectively choose which schedule is used as we require that the attacker’s
view needs to be statically equivalent for runs induced by all possible schedules.
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BrowserID [Adi+13] is a decentralized SSO system developed by Mozilla for user authentication

on Web sites (BrowserID was marketed as Mozilla Persona [Moz18]).1 Although decommis-

sioned by Mozilla in November 2016 [Kel16], BrowserID is a very interesting SSO system as its

distinctive promise is to respect users’ privacy, i.e., identity providers should not be able to track

where their users log in [Bam+18b].

User identities in BrowserID are email addresses and email providers are meant to become

IdPs for BrowserID. To ease wide adoption by users, Mozilla also developed an extension to the

initial BrowserID protocol that enables users without a BrowserID-enabled email provider to use

this SSO system. In this extension, a central IdP run by Mozilla is automatically used for these

identities (see secondary mode below).

In Figure 4.1, we illustrate a user’s perspective of BrowserID. The figure shows screenshots

of the steps a user performs to log in at a demo RP provided by Mozilla. The user first starts a

login (Figure 4.1a), enters her email address (Figure 4.1b) and her password (Figure 4.1c), and

is finally logged in (Figure 4.1d).

At first, BrowserID was envisioned to be integrated into Web browsers, i.e., browsers provide

a BrowserID API that provides necessary key management and communication features. To ease

adoption, the developers opted for implementing BrowserID using native Web features: APIs

needed for RPs and IdPs were provided as JavaScript libraries and the core of the protocol and

its GUI as a Web application that was hosted by Mozilla (which we denote by LPO after its

domain “login.persona.org”). This bundle provides the same functionality as the (envisioned)

browser integration [Moz13] and makes use of a broad variety of browser features, such as XHRs,

postMessage, Web Storage (local- and sessionStorage), cookies, etc. and consists of ∼47k LOC

(excluding code for Sideshow/BigTent, see below, and some libraries). This implementation was

deployed in practice and used in, for example, the blogging software Wordpress [TB15] as well

as Mozilla’s own Web services, such as their bug tracker [Mar12]. As the browser integration

was never realized, the implementation based on native Web features is the only existing one.

1Strictly speaking, the term Persona refers to Mozilla’s implementation of the BrowserID protocol. We will, however,
use the term BrowserID synonymously for both, the protocol and the implementation. This is motivated by the fact
that Mozilla’s implementation is the only implementation of the BrowserID protocol and describes many important
parts of the interaction within the browser, which are not fixed in the original protocol specification [Adi+13].
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(a) A user visits an RP (a demo RP provided by Mozilla) and is not logged in. The user is
offered a button “Sign in with Persona” to log in using BrowserID.

(b) After the user clicked on the login button at the RP, the login dialog opens and the user is
prompted to enter her email address.

Figure 4.1.: A user’s perspective of a typical BrowserID login flow.
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(c) The user’s email provider does not support BrowserID. BrowserID is running in secondary
mode and uses the fallback IdP to authenticate the user. This interaction is seamlessly integrated
into the login dialog.

(d) After the user has entered her credentials into the login dialog, the dialog closes and the
user is logged in at RP.

Figure 4.1.: A user’s perspective of a typical BrowserID login flow (cont’d).
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To enable users of popular email providers, such as Yahoo and Gmail, to use BrowserID

natively, Mozilla developed so-called identity bridges. An identity bridge is a Web application

that connects BrowserID to other SSO services, such as OpenID 2.0 [FR+07], reducing the effort

needed for these providers to implement BrowserID. The identity bridge is (typically) installed

at the email provider and implements all IdP-specific BrowserID interfaces. Two identity bridge

implementations have been provided by Mozilla, namely Sideshow [Moz15b] (used for Gmail

identities) and BigTent [Moz15a] (used for Yahoo identities). For Yahoo and Gmail, however,

Mozilla deployed the identity bridges not at the email provider, but in Mozilla’s data center

instead. The BrowserID implementation explicitly checked whether a user wanted to use a

Yahoo or Gmail address and redirected this user to Mozilla’s own identity bridge services.

In the remainder of this chapter, we first, in Section 4.1, provide a high-level overview of

the BrowserID system. A more detailed description of the BrowserID implementation covering

both, the primary and secondary mode, is then given in Sections 4.2 and 4.3 with further details

provided in Appendices D and E. We discuss how we model BrowserID in the WIM in Section 4.4

followed by our analysis of authentication and session integrity properties of both modes in

Section 4.5. In this section, we also show various severe attacks which violate these properties.

We conclude this chapter in Section 4.6 with our analysis of privacy in BrowserID where we

show that BrowserID does not hold its promise to protect the user’s privacy.

4.1. General Overview

As usual for SSO systems, the BrowserID system knows three distinct parties: the user, who

wants to authenticate herself using a browser, the RP to which the user wants to authenticate

(log in) with one of her email addresses (say, user@eyedee.me), and the IdP. If the IdP (in

this example, eyedee.me) supports BrowserID directly, it is called a primary IdP. Otherwise,

a Mozilla-provided service, the so-called secondary IdP, takes the role of the IdP as a fallback.

The specification of the BrowserID protocol [Adi+13], however, does not forsee such a fallback

mechanism — it had been added by Mozilla’s implementation.

Here, we first present the general idea of the BrowserID protocol before we discuss how this

protocol is realized in the primary and the secondary case using native Web features. Both

cases can be considered as separate modes of a protocol that has been derived from the original

BrowserID protocol specification.

A (primary) IdP provides information about its BrowserID setup in a so-called support

document, which it provides at a fixed URL derivable from the email domain, e.g., https:

//eyedee.me/.well-known/browserid.2 This document contains the public key of the IdP
2The path prefix /.well-known/ is reserved for application-specific interfaces that use fixed paths for each do-
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B pkb, emailpkb, email

D

F CAPCAP

G pkIdPpkIdP

 RP  Browser  IdP

I A gen. key pairgen. key pair

C create UCcreate UC

II E gen. IAgen. IA

III

H verify CAPverify CAP

 RP  Browser  IdP

Figure 4.2.: BrowserID high-level overview.

and a set of (URL) paths that are used for interaction with the IdP.

A user who wants to log in at an RP with an email address for some IdP has to present two

signed documents to the RP: A user certificate (UC) and an identity assertion (IA). The UC

contains the user’s email address and the user’s public key. The UC is signed by the IdP, which

in this context is also called the issuer. The IA contains the origin of the RP and is signed with

the user’s private key. Both documents have a limited validity period. A pair consisting of a

UC and a matching IA is called a certificate assertion pair (CAP) or a backed identity assertion.

Intuitively, the UC in the CAP tells the RP that (the IdP certified that) the owner of the email

address is (or at least claims to be) the owner of the public key. By the IA contained in the CAP

the RP is ensured that the owner of the given public key wants to log in. Altogether, given a valid

CAP, the RP would consider the user (identified by the email address in the CAP) to be logged

in.

The BrowserID authentication process (with a primary IdP) consists of three phases (see

Figure 4.2 for an overview): I provisioning of the UC, II CAP creation, and III verification

of the CAP.

In Phase I , (the browser of ) the user creates a public/private key pair A . She then sends

her public key as well as the email address she wants to use to log in at some RP to the respective

IdP B . The IdP now creates the UC (given that the user is authenticated at the IdP) C . The UC

is then transferred to the user D .

main [RFC5785]. Here, BrowserID uses such a path to discover meta data for a domain.
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With the user having received the UC, Phase II can start. As the user wants to authenticate

to an RP, she creates the IA for RP E . The UC and the IA are concatenated to a CAP, which is

then sent to the RP F .

In Phase III , the RP checks the authenticity of the CAP. For this purpose, the RP can use

an external verification service provided by Mozilla or check the CAP itself as follows: First,

the RP fetches the support document of the IdP G , which is contained the public key of the IdP.

Afterwards, the RP checks the signatures of the UC and the IA H . If this check is successful,

the RP considers the user to be logged in with the given email address and send her some token

(e.g., a cookie with a session id), which can be considered as an RP service token in the sense of

Section 3.1.

The support document can also be used to delegate the governance of identities under a domain,

say A, to a different entity. In this case, the support document only contains an entry authority

that points to a domain, say B, of the other entity. The entity at domain B then acts as the IdP for

all identities under the domain A. The issuer is then B in this case.

4.2. Implementation Details of BrowserID’s Primary Mode

We now provide a more detailed description of the BrowserID implementation. Since the system

is very complex, with many HTTPS requests, XHRs, and postMessages sent between different

entities (servers as well as windows and iframes within the browser), we here describe mainly

the phases of the login process without explaining every single message exchange done in the

implementation. A more detailed step-by-step description can be found in Appendix D.1. Note

that BrowserID’s specification of IdPs only describes the interface to BrowserID and does not

provide further details about (the inner workings of) IdPs. Therefore, in what follows, we

consider a typical IdP, namely the example implementation provided by Mozilla [Moz13].

In addition to the parties mentioned so far, the actual BrowserID implementation uses another

party, Mozilla’s login.persona.org (LPO). Among others, LPO (as a trusted third party)

provides HTML and JavaScript files that, to ensure their integrity, cannot be delivered by either

IdP or RP (which might potentially be malicious). An overview of the implementation is given

in Figure 4.3, which we describe below. For brevity of presentation, several messages and

components, such as the CIF (see below), are omitted in the figure (see Figure D.1 on Pages 176

and 177 for a more detailed version of Figure 4.3).

Windows and iframes in the Browser. By RP-Doc we denote the window containing the

document loaded from some RP, at which the user wants to log in with an email address hosted

by some IdP. RP-Doc typically includes JavaScript from LPO and contains a button “Login with
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Figure 4.3.: Simplified BrowserID implementation overview (primary mode). The CIF has been omitted
for brevity. (See Page 11 for notation.)
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BrowserID”. The LPO JavaScript running in RP-Doc opens an auxiliary window called the login

dialog (LD). Its content is provided by LPO and it handles the interaction with the user. During

the login process, a temporary (invisible) iframe called the provisioning iframe (PIF) can be

created in the LD. The PIF is loaded from IdP.3 It is used by LD to communicate (cross-origin)

with the IdP via postMessages. To this end, the PIF uses a standardized API provided by a

JavaScript library for communication with the LD (as well as the CIF, see below). Using this

API, the PIF acts as the interface between application logic of LPO and application logic of the

IdP. (Similar, communication using XHRs with Cross-Origin Resource Sharing (CORS) [Ann14;

WHA19a] would also be feasible for cross-origin communication between the LD and the IdP

directly, but is not part of the BrowserID protocol.) Temporarily, the LD may navigate itself to a

Web page at IdP to allow for direct user interaction with the IdP. We then call this window the

authentication dialog (AD).4

Login Process. To describe the login process, for the sake of presentation we assume for now

that the user uses a “fresh” browser, i.e., the user has not been logged in before. As mentioned,

the process starts by the user visiting a Web site of some RP. After the user has clicked on the

login button in RP-Doc, the LD is opened and the interactive login flow is started. We can divide

this login flow into seven phases: In Phase i , the LD is initialized and the user is prompted to

provide her email address. Also, LD fetches the support document (see Section 4.1) of the IdP

via LPO. In Phase ii , LD creates the PIF from the provisioning URL provided in the support

document. As (by our assumption) the user is not logged in yet, the PIF notifies LD that the user

is not authenticated to the IdP. In Phase iii , LD navigates itself away to the authentication URL

which is also provided in the support document and links to the IdP. Usually, this document will

show a login form in which the user enters her password to authenticate to the IdP. After the user

has been authenticated to IdP (which typically implies that the IdP sets a session cookie in the

browser), the window is navigated back to LPO.

Now, the login flow continues with Phase iv , which basically repeats Phase i . The user,

however, is not prompted for her email address (it has previously been saved in the localStorage

under the origin of LPO along with a nonce, where the nonce is stored in the sessionStorage). In

Phase v , which essentially repeats Phase ii , the PIF detects that the user is now authenticated

to the IdP and the provisioning phase is started ( I in Figure 4.2): The user’s keys are created

by LD and stored in the localStorage under the origin of LPO. The PIF forwards the certification

request to the IdP, which then creates the UC and sends it back to the PIF. The PIF in turn

forwards it to the LD, which stores it in the localStorage under the origin of LPO.

3Information about the URL of the PIF is contained in the support document of the respective IdP.
4Similar to the PIF, information about the URL of the AD is contained in the support document of the IdP.
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In Phases vi and vii , mainly the IA is generated by LD for the origin of RP-Doc and sent

(together with the UC) to RP-Doc ( II in Figure 4.2). In the localStorage, LD stores that the

user’s email address is logged in at RP. Moreover, to log the user in at LPO, LD generates an IA

for the origin of LPO and sends the UC and IA to LPO.

LPO Session. LPO establishes a session with the browser by setting a cookie browserid_state

(in Step 5 in Figure 4.3) on the client-side. LPO considers such a session authenticated after

having received a valid CAP (in Step 22 in Figure 4.3). In future runs, the user is presented a list

of her email addresses (which is fetched from LPO) in order to choose one address. Then, she is

asked if she trusts the computer she is using and is given the option to be logged in for one month

or “for this session only” (ephemeral session). In order to use any of the email addresses, the

user is required to authenticate to the IdP responsible for that address to get an UC issued. If the

localStorage (under the origin LPO) already contains a valid UC, then, however, authentication

at the IdP is not necessary.

Automatic CAP Creation. In addition to the interactive login presented above, BrowserID

also contains an automatic, non-interactive way for RPs to obtain a freshly generated CAP:

During initialization within RP-Doc, an invisible iframe called the communication iframe (CIF)

is created inside RP-Doc. The CIF’s JavaScript is loaded from LPO and behaves similar to LD,

but without user interaction. The CIF automatically issues a fresh CAP and sends it to RP-Doc

under specific conditions: among others, the email address must be marked as logged in at RP in

the localStorage. If necessary, a new key pair is created and a corresponding new UC is requested

at the IdP. For this purpose, a PIF is created inside the CIF (see Figure D.1 on Pages 176 and 177

for a detailed version of Figure 4.3 including the usage of the CIF).

Logout. We have to differentiate between three ways of logging out: an RP logout, an LPO

logout, and an IdP logout.

An RP logout is handled by the CIF after it has received a logout postMessage from RP-Doc.

The CIF then changes the localStorage such that no email address is recorded to be logged in at

RP.

An LPO logout essentially requires to logout at the Web site of LPO. The LPO logout removes

all key pairs and certificates from the localStorage and invalidates the session on the LPO server.

An IdP logout depends on the IdP implementation and usually cancels the user’s session with

IdP. This entails that IdP will not issue new UCs for the user without re-authentication.

Sideshow and BigTent. As already mentioned above, Mozilla implemented so-called identity

bridges, namely Sideshow and BigTent to connect Gmail and Yahoo users to the BrowserID

ecosystem using other SSO protocols. While Sideshow has been created as a Gmail specific iden-
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tity bridge, BigTent was created to support multiple providers, including Yahoo and Microsoft

Hotmail, for example. In practice, BigTent only supported Yahoo. Both, Sideshow and BigTent

initially used the SSO protocol OpenID 2.0 to interact with Gmail and Yahoo. When Google

shut down its OpenID service [Goo16], Sideshow was changed to use OAuth 2.0 [RFC6749] and

later OpenID Connect 1.0 [Sak+14] to authenticate users. In our description below, we focus on

the OpenID 2.0 variant of Sideshow; BigTent works in a very similar fashion. Technical details

on the communication between OpenID and Sideshow/BigTent can be found in Appendix D.2.

To “bridge” between BrowserID and the OpenID service, Sideshow acts as a “translator”

and is placed in between BrowserID and the email provider (Gmail) running OpenID. That is,

BrowserID uses Sideshow as an IdP. Sideshow translate requests from BrowserID to requests to

the email provider’s OpenID interface.

All BrowserID protocol steps that would normally be carried out by the IdP are now handled

by Sideshow (i.e., the Sideshow server). For this purpose, Sideshow serves the provisioning

URL (for the PIF) and the authentication URL used in iii . It maintains a session with the user’s

browser. This session is considered to be authenticated if the user has successfully authenticated

to Sideshow using OpenID. In this case, Sideshow’s PIF document may send public keys to

Sideshow. Sideshow then creates a UC for the identity it believes to be logged in. If the session

at Sideshow is not authenticated, the user will first be redirected to the Sideshow authentication

URL. Sideshow’s authentication document will redirect the user further to the OpenID URL

at Gmail. This URL contains an authentication request encoding that Sideshow requests an

OpenID assertion that contains an email address. In general, such an assertion is a list of attribute

name/value pairs (partially) MACed by Gmail with a temporary symmetric key known only to

Gmail; an additional attribute, openid.signed, in such an assertion encodes which attribute

name/value pairs have actually been MACed and in which order. The user now authenticates to

Gmail. Then, Gmail issues the requested OpenID assertion and redirects the browser to Sideshow

with the assertion in the URL parameters. Sideshow then sends the OpenID assertion to Gmail

in order to check its validity. If the OpenID assertion is valid, i.e. the MAC over the attributes

listed in openid.signed verifies, Sideshow considers its session with the user’s browser to be

authenticated for the email address contained in the OpenID assertion.

4.3. Implementation Details of BrowserID’s Secondary
Mode

If an email provider does not directly support BrowserID (indicated by the absence of the support

document), LPO serves as the so-called secondary IdP (sIdP), i.e., LPO takes the role as the IdP
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Figure 4.4.: Simplified BrowserID implementation overview (secondary mode). The CIF has been
omitted for brevity. (See Page 11 for notation.)
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for this email provider. As LPO does not have access to the email provider’s user database, the

user has to register at LPO. That is, she creates an account at LPO where she can register one or

more email addresses to be used as identities. She has to prove ownership of all email addresses

she registers. (LPO sends URLs to each email address, which then have to be opened by the

user.)

When secondary mode is used, the phases ii – vi (see Figure 4.3) are not needed as LPO

replaces the IdP and the actions previously performed by IdP and LPO are now carried out by

LPO alone. The user is prompted to enter her password directly into LD. If the password is

correct, LPO now considers the session with the browser to be authenticated. LPO will then

issue UCs on behalf of the email provider. We note that, for automatic CAP creation, the CIF

(see Section 4.2) is still used. The PIF and the AD, however, do not exist. Moreover, in the

primary mode, the behavior of the CIF and the LD is more complex than in the secondary mode.

For example, in the primary mode, just like the LD, the CIF might contain a PIF (as an iframe

within the CIF iframe) and interact with it via postMessages. Altogether, the secondary IdP

case requires much less communication between parties/components and trust assumptions in a

setting with secondary mode are simpler as there is only one IdP, namely LPO. As LPO is always

considered to be honest, there are no malicious IdPs.

In Figure 4.4, we provide an overview of a typical BrowserID login flow in secondary mode.

A detailed step-by-step description can be found in Appendix E.1.

4.4. Modeling BrowserID in the WIM

We model both modes of BrowserID, primary and secondary, as separate SSO Web systems. This

approach, as explained above, is motivated by the fact that both modes constitute two different

protocols. Both modes, however, share the high-level idea of BrowserID and hence, share some

parts in the implementation. LPO evaluates at the beginning of each protocol run, whether the

primary or the secondary mode is used for a specific user id: LPO tries to retrieve the support

document from the domain of the user’s email address. If the support document is available,

LPO continues in primary mode, else LPO falls back to the secondary mode and serves as the

IdP for this identity. The secondary mode, however, is not part of the original BrowserID specifi-

cation [Adi+13], but was added by Mozilla as a temporary solution for marketing and bootstrap

purposes to allow virtually all users to be instantly able to benefit from BrowserID [Mil11]. We

further discuss this division in Section 4.7 below.
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4.4.1. Primary Mode

We model the BrowserID system with primary IdPs as an SSO Web system (as defined in

Section 3.1). Note that while in Section 4.2 we give only a brief overview of this mode, our

modeling and analysis considers the complete system with primary IdPs, where we have extracted

the model from the BrowserID source code [Moz13].

We call an SSO Web system BIDp = (W p,S ,script,E0) a BrowserID primary mode Web

system if it is of the form as described in Appendix D.3. In what follows, we outline the

components of such a Web system.

Following Definition 4, we define the system W p to be composed of the (pairwise disjoint)

subsets Web, Net, B, RP, IDP, DNS, and Other. The set Other = {LPO} consists of one Web

server for LPO. For the analysis of authentication and session integrity, we use a BrowserID

primary mode Web system with a network attacker that is an BrowserID primary mode Web sys-

tem with Web= /0 and Net= {attacker}. For the analysis of privacy, we consider a BrowserID

primary mode Web system for privacy analysis that follows Definition 16.5

The set N of nonces is partitioned into four (disjoint) sets: The (infinite) set NW p
contains

the nonces that are available for each DY process in W p (NW p
is set as a sequence in the initial

configuration of the system), the set KTLS contains the keys that will be used for TLS encryption,

the set Ksign contains the keys that will be used by IdPs for signing UCs (signing keys),6 and the

set Secrets⊆N is the set of passwords (secrets) the browsers share with the identity providers.

The nonces in KTLS, Ksign, and Secrets are distributed according to their purpose over the initial

states of the processes (see below).

The set IPs contains one (IP) address each for LPO, every relying party in RP, every identity

provider in IDP, every DNS server in DNS, every browser in B, every Web attacker in Web, and

every network attacker in Net.7 By addr we denote the corresponding mapping from a process

to its address. The set Doms contains one domain for LPO, one for every relying party in RP, a

finite set of domains for every identity provider in IDP, and a finite set of domains for attackers.

Browsers (in B) and DNS servers (in DNS) do not have a domain. By dom we denote the

corresponding mapping from a process to its domains. Each domain is assigned a unique private

key from KTLS and for each domain, the “owner” (according to dom−1) is given the respective

private key in its initial state. For each of these keys, the public key (i.e., pub(k) for k ∈ KTLS) is

given to (the initial state of) browsers, RPs, and attackers in the form of a dictionary indexed by

the key’s domain.

5As we will see in Section 4.6 below, BrowserID is not IdP-private. Hence, we cannot show this property for
BrowserID and omit a full formal specification of the BrowserID primary mode Web system for privacy analysis.

6We call the public counterpart of a (private) signing key (k ∈ Ksign) a verification key (pub(k)).
7A network attacker can, by definition, also use any other IP address.
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(User) identities are used as specified in Definition 1, which also matches the nature of email

addresses. Each browser b ∈ B is assigned a (finite) set of identities and their respective secrets

(out of Secrets). Identities and secrets are unique to a browser, i.e., browsers have disjoint sets

of identities and disjoint sets of secrets.

As explained in Section 3.1, we define ownerOfSecret to be a function from secrets (pass-

words) to browsers and secretOfID to be a function from identities to secrets. ownerOfID is

defined as a “shortcut” that yields the browser that owns an identity. An identity is governed by

the owner of the domain contained in the identity, i.e., we define the governor to be a function

that resolves the domain of the identity to the process to which the domain was assigned to

(see also above). A user can have multiple identities that are governed by the same IdP. In the

initial state of each IdP, we provide a list of pairs of identities and corresponding secrets that

are governed by the IdP. Similar, we set the initial state of browsers such that browsers provide

secrets to scripts that run under a secure origin of their identities’ governor.8

The set S contains six scripts, with their string representations defined by script: the honest

scripts running in RP-Doc, CIF, LD, PIF, and AD, respectively, and the attacker script Ratt (see

below for more details).

The set E0 only contains the trigger events for each address as sketched in Section 2.3 and

specified in Definition 61 in Appendix A.8.

As explained above, BrowserID relies on user certificates, identity assertions, and certificate

assertion pairs. We formally define these as follows:

Definition 18. A (valid) user certificate (UC) uc for a user u with email address id = ⟨name,d⟩
and public key (verification key) pub(ku), where d ∈ dom(y) is a domain of the governor y of id

and ku is the private key (signing key) of u, is a message of the form

uc = sig(⟨⟨name,d⟩,pub(ku)⟩,signkey(y)) .

A (valid) identity assertion (IA) ia for an origin o (e.g., ⟨example.com,S⟩) signed with the

key ku is a message of the form ia = sig(o,ku).

A certificate assertion pair (CAP) is of the form ⟨uc, ia⟩, with uc and ia as above.9 ⋄

The (sigining) keys for UCs (out of Ksign) are distributed in the initial states of IdPs, RPs, and

LPO as follows: Each IdP is given one private signing key that IdPs uses to sign all UCs for

8Recall that browsers provide a list of secrets to a script based on the origin of this script’s document.
9Note that the time stamps are omitted both from the UC and the IA. This models that both certificates are valid

indefinitely. In reality, they are valid for a certain period of time, as indicated by the time stamps. So our modeling
is a safe overapproximation.
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identities it governs. Every RP and LPO are given a dictionary that maps each domain that is

assigned to an IdP to the respective public key (pub(k) for k ∈ Ksign) of that IdP.

We now describe the processes in W as well as the scripts in S . In Appendix D.3, we provide

a detailed formal specification of these processes and scripts.

Browsers. Each b ∈ B is a Web browser as described in Section 2.5. As explained above, the

initial state contains all secrets owned by b and a list of all identities owned by this browser.

Note that to the browser we do not provide information about which secret is assigned to which

identity (except for the assignment to the correct governor’s origin), allowing a user to confuse

her passwords at an IdP. Still, each secret is “valid” for only one identity at this IdP.

See Appendix D.3.5 for further details on browsers in W p .

LPO. LPO (formally, LPO∈Other) is a Web server that serves important scripts (script_lpo_cif

and script_lpo_ld) and manages user sessions (by assigning cookies to browsers). As we consider

the primary mode, these user sessions are mainly used for XSRF protection at LPO, i.e., LPO

assigns a nonce, the XSRF token, to each session. Each login attempt sent to LPO needs to

include this token (together with the respective cookie) in order to be accepted by LPO. Note

that LPO also acts as an RP in primary mode. In practice, the “RP service” provided by LPO

is to present the user a list of her identities, which she has used before. In our model, we do

not use this (potentially incomplete) list and allow for logins using any of the user’s identities

(based on the list of identities contained in the browser). The selection of an identity, however,

is handled by the script script_lpo_ld (see also below). Still, we include the authentication at

LPO in our model as ephemeral sessions (i.e., the respective cookie is set to be removed by the

browser when the browser is closed, i.e., closecorrupted in our model).

In its initial state, LPO is given the (private) TLS key for its domain, a dictionary of (public)

verification keys, i.e., for each domain owned by an IdP, the respective public key to verify UC

signatures.

Note that LPO cannot become corrupted. If LPO would be corruptible, all security and privacy

properties would be trivially broken.

Client sessions at LPO. Any party can establish a (Web) session at LPO (based on a session

identifier stored in a cookie). Such a session can either be authenticated or unauthenticated.

Roughly speaking, a session becomes authenticated if a client has provided a valid CAP (for the

origin of LPO) to LPO during the session. LPO manages groups of identities, i.e., lists of email

addresses. If a user authenticates a session using any identity in the group, she is authenticated

for all identities in the group. An authenticated session can (non-deterministically) expire, i.e.

the authenticated session can get unauthenticated or it is removed completely. Expiration of

sessions is modeled as a non-deterministic choice when a trigger event is processed. Such an
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expiration is used to model a user logout or a session expiration caused by a timeout.

Each session is identified by a nonce (issued by LPO) and is associated with some XSRF

token, which, as mentioned above, is also a nonce issued by LPO. LPO stores all information

about established sessions in its state as a dictionary indexed by the session identifier. In this

dictionary, for every session, LPO stores a pair containing the XSRF token and, in authenticated

sessions, the sequence of all identities associated with the secret provided for this (Web) session,

or, in unauthenticated sessions, the empty sequence ⟨⟩ of identities. On the client side (typically

a browser) LPO places, by the usage of appropriate headers in its HTTPS responses, a cookie

named browserid_state carrying the session identifier (a nonce). This cookie is flagged to be

a session, httpOnly, and secure cookie.

HTTPSRequests to LPO. LPO answers only to certain requests (listed below). In reality, all

such requests have to be received over HTTPS, and all responses sent by LPO contain the

Strict-Transport-Security header. We safely overapproximate in omitting these two re-

quirements in the model.

GET /cif. LPO replies to such a request by providing the script script_lpo_cif that models the

CIF.

GET /ld. LPO replies to such a request by providing the script script_lpo_ld that models the

login dialog (LD).

GET /ctx. Requests of this form query the current user’s session context information from

LPO. The response body is of the form ⟨loggedIn,xsrfToken⟩, where loggedIn is ⊤ or ⊥,

depending on whether the user is logged in at LPO or not, and xsrfToken is the token that

the client is supposed to include into the auth request (see below).

POST /auth. With such a request, a client can log into LPO. The client has to provide a a

CAP and an XSRF token. If the CAP is valid and issued for the origin of LPO and the

XSRF token matches the one recorded in the session at LPO, LPO considers the user to be

authenticated and modifies the session record in its state accordingly.

See Appendix D.3.6 for full details about LPO.

IdPs. Each IdP i ∈ IdP is a Web server. IdPs are modeled following the example implementation

provided by Mozilla and follow the security considerations in [Moz18] (XSRF protection, e.g., by

checking origin headers, and using HTTPS only with STS enabled). As outlined in Section 4.2,

users can authenticate to the IdP with their credentials. IdP tracks the state of the users with

sessions. Authenticated users can receive signed UCs from the IdP.
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In their initial state, each IdP is given its (private) TLS keys, the private signing key that is used

to sign UCs, and information about the identities this IdP governs. This includes the respective

secret for each identity governed by this IdP. To define the initial state, we define a term that

represents the “user database” of the IdP i. We will call this term userseti. This “database”

defines, which secret is valid for which set of identities. It is encoded as a mapping of secrets to

lists of identities for which these secrets are valid. For example, if the secret secret1 is valid for

the identites id1 and id2 and the secret secret2 is valid for the identities id3 and id4, the userseti

looks as follows:

userseti = [secret1:⟨id1, id2⟩,secret2:⟨id3, id4⟩]

Initially, IdPs are honest. When receiving a corrupt message IdPs become corrupted. Similar

to the definition of corruption for the browser, IdPs then start sending out all messages that are

derivable from their state. This means, that they effectively become Web attackers.

Client sessions at IdPs. When a user authenticates to an IdP, the IdP creates a (Web) session.

This session is identified by a session identifier (a nonce) and is recorded (along with the id of

the authenticated user) in the IdPs state. As usual, the session identifier is set in the browser as a

cookie. This session is only used to authenticate requests for UCs (see below).

HTTPSRequests to IdPs. Similar to LPO above, IdPs answer only to certain requests (listed

below). All of these requests have to be received over HTTPS and IdPs set the Strict-Trans-

port-Security header in all responses.

GET *. An IdP replies to all GET requests (except the one listed below) by providing the script

script_idp_ad that models the authentication dialog.

GET /pif. An IdP replies to such a request by providing the script script_idp_pif that models

the PIF.

POST *. An IdP assumes that all POST requests (except the one listed below) to be authenti-

cation requests. If the request contains an Origin header for a secure origin of the IdP

(for XSRF protection) and the body of the request contains a valid pair of username and

password, the IdP creates a client session (see above) and sets the session identifier in a

cookie in its response.

POST /certreq. An IdP expects such a request to be a signing request of a user’s public key.

The request must contain a cookie with a valid client session identifier, and, in its body,

the user id and the user’s public key.10 Only if the user id in the request matches the id
10The public key can be an arbitrary term.
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recorded in the client session, the IdP creates a UC for this id and the public key contained

in the request. The UC is then sent out in the HTTPS response.

See Appendix D.3.7 for details of IdPs.

RPs. A relying party r ∈ RP is a Web server. The definition of Rr follows the description in

Section 4.2 and, as IdPs, follow the security considerations in [Moz18]. An RP replies to any GET

request with the script script_rp_index (see below). When receiving an HTTPS POST message,

RP checks (among others) if the message contains a valid CAP. For this purpose, all signing keys

of the identity providers (see below) are contained in the initial state of all RPs. If successful, RP

responds with an RP service token n for the identity id, where id ∈ ID is the identity for which

the CAP was issued and n is a freshly chosen nonce. RP also stores the respective service session

in its state.

In a typical flow with one client, r will first receive an HTTP GET request. In this case, it

returns the script script_rp_index (see Appendix D.3.9 below) and sets the Strict-Trans-

port-Security header.

In their initial state, each RP is given its (private) TLS keys and, as explained above for LPO,

a dictionary of (public) verification keys. Just like IdPs, RPs are initially honest and can become

corrupted.

Service sessions at RPs. Each RP maintains (in its state) a list of service sessions (as described

in Section 3.1).

When an RP receives an HTTPS POST request with a CAP, r checks that the UC and IA are

valid and matching. If the check is successful, r creates a new service session for the identity i,

⟨n, i⟩, and sends the service token to the browser. The RP keeps a list of such tokens in its state.

HTTPSRequests to RPs. As LPO and IdPs, RPs answer only to certain requests (listed be-

low). Again, all of these requests have to be received over HTTPS. and RPs also set the

Strict-Transport-Security header in all responses.

GET *. An RP delivers the script script_rp_index in response to all GET requests. This script

models the Web page of RP.

POST *. If an RP receives a POST request, the RP verifies the Origin header for XSRF protec-

tion. This header must be set to a secure origin of the RP. The RP expects that the request

contains a CAP, checks the signatures, and (if the signatures are correct) finally logs the

user in under the identity stated in the CAP by creating a service session and sending the

corresponding service token in the response.

See Appendix D.3.8 for details on RPs.
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BrowserID scripts. The set S of the Web system BIDp
primary = (W p,S ,script,E0) consists of

the scripts Ratt, script_rp_index, script_lpo_cif , script_lpo_ld, script_idp_pif , and script_idp_ad

(a mapping to string representations is defined by script).

The script Ratt is the attacker script (see Section 2.5) and the formal modeling of the remaining

(honest) scripts follows the description below (see Appendix D.3.9 for more details).

All of these scripts are modelled as state machines (as their real-world counterparts) that use

the subterm q of their scriptstate to track their state. Hence, the behavior mainly depends on the

state q the respective script is in.

Relying party script (script_rp_index). The script script_rp_index defines the script of the RP

index page. This script aggregates the behaviour of all scripts that — in reality — are included on

an RP’s index page. In particular, this includes a script that is provided by LPO.11 In particular,

this script is responsible for creating the CIF and the LD iframes/subwindows, whose contents

are loaded from LPO. and later use the service token after a successful login.

When run, the script behaves as follows:

q≡ init This is the initial state. The script creates the CIF iframe and then transitions to

receiveCIFReady.

q≡ receiveCIFReady In this state, the script expects a cifready postMessage from the CIF

iframe with the sender origin of LPO. The script chooses some identity, ⟨⟩, or⊥ and sends

this in a loaded postMessage to the CIF iframe with receiver’s origin set to the origin of

LPO.12 It then transitions to the state default.

q≡ default In this state, the script chooses non-deterministically between (1) opening the LD

subwindow and then transitioning to the same state or (2) handling one of the following

postMessages (identified by their first element):

postMessage login This message has to be sent from the CIF with origin of LPO.

Handling this postMessage stores the CAP (contained in the postMessage) in the

scriptstate and then transitions to the sendCAP state.

postMessage logout This message has to be sent from the CIF with origin of LPO.

Handling this postMessage has no effect and results in the same state.

11Recall that LPO is always honest in our setting (otherwise all security properties would be trivially broken) and
that the script provided by LPO is always loaded from a secure origin of LPO.

12From the point of view of the real scripts running at RP either some identity is considered to be logged in (e.g. from
some former “session”), or no one is considered to be logged in (⟨⟩), or the script script_rp_index does not know
if it should consider anyone to be logged in (⊥). This is overapproximated here by allowing script_rp_index to
choose non-deterministically between these cases.
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postMessage ldready This message can only be handled after the LD has been opened

and before a response postMessage has been received. The ldready postMessage

has to be sent from the origin of LPO. The script sends a request postMessage to

the LD and stays in the default state.

postMessage response This message can only be handled after the LD has been opened

and before another response postMessage has been received. The ldready postMes-

sage has to be sent from the origin of LPO. Handling this postMessage stores the

CAP (contained in the postMessage) in the scriptstate, closes the LD, and then tran-

sitions to the dlgClosed state.

q≡ dlgClosed In this state, the script sends a loggedInUser postMessage to the CIF and

transitions to the loggedInUser state.

q≡ loggedInUser In this state, the script sends a dlgCmplt postMessage to the CIF and

transitions to the sendCAP state.

q≡ sendCAP In this state, the script sends the CAP to RP as a POST XHR and then transitions

to the receiveServiceToken state.

q≡ receiveServiceToken In this state, the script receives ⟨n, i⟩ from RP, but does not do

anything with it. The script then transitions to the default state.

LPO login dialog script (script_lpo_ld). The script script_lpo_ld provides the functionality of

the BrowserID login dialog. The LD controls the BrowserID login flow and also takes care of

requesting and using UCs.

This script (as well as the script script_lpo_cif ) makes use of Web storage (localStorage

and sessionStorage) for tracking a login flow of a user across several instances of (documents

containing) the script. The Web storage (under the origin of LPO) is organized as follows:

The localStorage is a dictionary. There are two types of entries in this dictionary: Under the

key siteInfo, a dictionary is stored which has origins as keys and identities as values. An

entry in this dictionary indicates that the user is logged in at the referenced origin with a certain

identity. The second type of entry has a nonce as a key. The value is an email address (identity).

This models the email address a user entered in the LD before being navigated away to the AD.

The nonce is also stored in the sessionStorage (see below).

For example, if the user is logged in at domainRP1 and domainRP2 with id1 and at domainRP3
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with id2 (using HTTPS), the localStorage can be as follows:

⟨ ⟨siteInfo,⟨ ⟨⟨domainRP1,S⟩, id1⟩,
⟨⟨domainRP2,S⟩, id1⟩,
⟨⟨domainRP3,S⟩, id2⟩⟩⟩,

⟨n1, id1⟩,
⟨n2, id3⟩⟩

The nonces n1 and n2 shown above each refer to a login flow in which the user entered an email

address in the LD. The sessionStorage is supposed to refer to one of these entries as the entry

for the “current” login flow. Mozilla implemented the usage of Web storage this way to support

multiple concurrent login flows.13 The sessionStorage is also a dictionary. Here, it may only

contain one key, idpnonce. Its value is a nonce (e.g., n1 or n2 in the example above) which

references the latest email address entry in the localStorage.

We now describe the states of script_lpo_ld.

q≡ init This is the initial state. Its only transition takes no input and outputs a postMessage

ldready to its parent window and transitions to start.

q≡ start In this state, the script expects a request postMessage. The sender’s origin of

this postMessage is recorded as the requesting origin in the scriptstate. An XHR is sent

to LPO with a GET request to the path /ctx and then the script transitions to the state

receiveContext.

q≡ receiveContext In this state, the script expects an XHR response as input containing

the session context. This context is saved as the current context in the scriptstate. The

script checks if an idpNonce is recorded in the sessionStorage. The presence of this nonce

indicates that there was a run of script_lpo_ld in the same window previously. Indexed

by this nonce, there can be an email address (identity) recorded in the localStorage which is

then copied to the scriptstate. Otherwise an email address is non-deterministically choosen

(and copied to the scriptstate) out of the email addresses owned by the browser.

The script now always issues the command to create an iframe, the PIF. The URL for the

PIF is determined by the domain of the email address now recorded in the state. The script

then transitions to the state startPIF.

q = startPIF In this state, the script waits for a postMessage from the PIF containing a ping

message. If such a message is received and the sender’s window and origin match the PIF,

13Recall that sessionStorage is (in addition to origin) also bound to the top-level window of the current document.
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the script sends a pong message back to the PIF and transitions to the state runPIF.

q = runPIF This is the state in which script_lpo_ld interacts with the PIF. This state handles

all postMessages the LD expects to receive from the latest PIF (as recorded in PIFindex

in its state). If the postMessage received was sent from the PIF’s window and the PIF’s

origin, it behaves as follows, depending on the first element of the received postMessage:

postMessage beginProvisioning The script responds with a postMessage to the PIF

containing the email address of the identity which is to authenticate to the relying

party (as recorded in the LD’s state).

postMessage genKeyPair The script creates a fresh key pair (i.e. the LD chooses a

fresh nonce) and sends the public key contained in an postMessage to the PIF.

postMessage registerCertificate The script stores the UC received in this postMes-

sage in the LD’s state. If the context contained in the scriptstate indicates that the

browser is authenticated to LPO, the script transitions to the state createCAPforRP.

Otherwise, the script transitions to the state createCAPforLPO.

postMessage raiseProvisioningFailure This message indicates that the user is not

logged in at the IdP. The script now chooses a fresh nonce, the so-called idpNonce,

which is stored in the sessionStorage. In the localStorage, this nonce is used as a key

under which the email address is stored, the LD is currently trying to get an UC for.

The script navigates the window it is running to the authentication path at the identity

provider responsible for the email address.

q = createCAPforLD In this state, the script creates an IA for LPO, combines it with the UC

(stored in the scriptstate) to a CAP and sends the CAP to LPO in an XHR. The nonce

identifying the XHR is stored as refXHRLPOauth in the scriptstate.

q = receiveLPOauthresponse In this state, the script expects the response to the XHR iden-

tified by the nonce refXHRLPOauth. If the response indicates a successful authentication

at LPO, the context recorded in the scriptstate is changed accordingly and the script transi-

tions to the state createCAPforRP.

q = createCAPforRP In this state, the script creates an IA for the request origin (as recorded in

the scriptstate), combines the IA with the UC to a CAP, and sends the CAP in a postMes-

sage to its parent restricting the receiver to the request origin. The script records in the

localStorage that the email address it is currently using is logged in at the request origin.

The script then transitions to the state null.
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q≡ null In this state, the script does nothing.

LPO communication iframe script (script_lpo_cif). The script script_lpo_cif provides the func-

tionality of the CIF, which takes a similar role as the LD but without user interaction. We provide

a detailed description of this script in Appendix D.3.9.

IdP authentication dialog script (script_idp_ad). The script script_idp_ad provides the function-

ality of the authentication dialog provided by IdPs. Recall that this script is supposed to run in

the same window as the LD after script_lpo_ld has navigated the LD window to the AD.

The script non-deterministically chooses between sending authentication data to the IdP (i.e.

its origin) via an XHR or navigating the window to an URL at LPO which servers script_lpo_ld.

This script does not make use of any scriptstate.

IdP provisioning iframe script (script_idp_pif). This script acts as a proxy between the LD (or

CIF) and the IdP server. The states of this script are as follows:

q = init This is the initial state. Its only transition handles no input and outputs a postMes-

sage ping to its parent window, which has to have the origin of LPO, and transitions to

waiting.

q = waiting In this state, the script expects a postMessage containing either ping or pong,

which has to be sent by the parent window from the origin of LPO. If such a postMessage

has been received, the script transitions to default.

q = default In this state, the script chooses an action non-deterministically out of the follow-

ing:

beginprovisioning The script sends a postMessage to the parent window, which has to

have the origin of LPO, indicating that the provisioning process of a UC should start.

A fresh nonce is chosen, stored in the scriptstate, and included in this postMessage.

The postMessage requests the email address of the user from the receiver. The

address is to be sent to the PIF in a postMessage which is identified by the nonce in

the request.

genkeypair The script sends a postMessage to the parent window, which has to have the

origin of LPO, indicating that a new key pair should be generated. This postMessage

requests the public key of this fresh key pair. As above, a nonce is included to identify

the response corresponding to the request.

registercert The script sends a postMessage containing a UC to the parent window,

which has to have the origin of LPO. This postMessage is only sent if the script has

received a UC before.
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raisefailure The script sends a postMessage to the parent window, which has to have

the origin of LPO, indicating that the browser is currently not authenticated to the

identity provider.

requestuc The script sends an XHR to the origin of the current document if the script-

state contains at least one email address and one public key. The message contains

a non-deterministically chosen email address and a public key (from the scriptstate).

The nonce identifying this XHR is non-deterministically chosen and stored in the

scriptstate.

handleresponse The script chooses non-deterministically one of its script inputs and

distinguishes if this input is a postMessage or an XHR response.

If the chosen input is a postMessage, it is checked if the postMessage was sent

by the parent window and if this window has the origin of LPO. If this check is

successful, it is checked if the message contains a nonce, which was previously been

recorded in the scriptstate. If this nonce indicates that this message is a response

to a beginProvisioning postMessage, the second part is assumed to contain an

email address. This address is then recorded in the scriptstate. If the nonce indicates

that this message is a response to a genKeyPair postMessage, the second part is

assumed to contain a public key. This public key is then recorded in the scriptstate.

If the chosen input is an XHR response, it is checked if the nonce identifying the

XHR is recorded in the scriptstate. If this is the case, the message is assumed to

contain an UC. The content of the message is stored in the scriptstate.

4.4.2. Secondary Mode

Our model for BrowserID’s secondary mode is constructed in a similar way as the model for the

primary mode above. For presentation, we here only give a brief overview of the model for this

mode. Full details are contained in Appendix E.2.

As discussed in Section 4.3 above, this mode uses some shortcuts and simplifications of the

BrowserID protocol and effectively constitutes a different protocol. In the secondary mode, LPO

takes the role of all IdPs and the BrowserID login dialog (provided by LPO) also takes care of

authenticating the user and provisioning UCs. Hence, there is neither a provisioning iframe nor

a separate authentication dialog.

Again, we model BrowserID in secondary mode as an SSO Web system. We call such a Web

system BIDs = (W s ,S ,script,E0) a BrowserID secondary mode Web system.The system W s is

consists of the subsets Web, Net, B, RP, IDP, DNS, Other. The set IDP = {LPO} consists of
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one Web server for LPO, while the set Other is empty. As in the primary mode, for authentication

and session integrity, we consider a network attacker. Privacy does not apply to the secondary

mode.

The set N of nonces is defined similar to the primary mode. As all identities are (in contrast

to the primary mode) governed by LPO, we only have one IdP. Hence, the set Ksign only contains

one nonce, kLPO, that is used by LPO to sign UCs. As UCs are only issued by LPO (on behalf of

the owners of the respective domains), a UC is of the form uc = sig(⟨i,pub(ku)⟩,kLPO) with ku

being the private key (signing key) of some user with the identity u.

As in primary mode, where a user has a different secret (password) for each identity even at

the same IdP, in our model for the secondary mode, a user also has a different secret for each

identity (i.e., the user needs to log in at LPO for each identity separately by providing the correct

secret).14

The set S contains four scripts (with their string representations defined by script): the honest

scripts script_RP_index, script_LPO_cif , and script_LPO_ld as well as the malicious script Ratt.

4.5. Authentication and Session Integrity of BrowserID

In this section, we present the analyses of both modes of the BrowserID system with respect to

the authentication and session integrity properties.

As mentioned in the introduction, during the analysis of BrowserID it turned out that these

properties are not satisfied and that in fact there are attacks on BrowserID. We confirmed that

all attacks work on the actual implementation of BrowserID. We reported all attacks to the

developers at Mozilla, who acknowledged them. We have been awarded several bug bounties

by Mozilla. In Section 4.5.1, all attacks are presented along with fixes. (Our BrowserID models

presented in Appendices D.3 and E.2 contain these fixes.) In Section 4.5.2, we prove that the

fixed BrowserID systems satisfies both authentication properties.

4.5.1. Attacks and Fixes

Here, we present the attacks on BrowserID that we found and propose fixes for all of these

problems.

Identity Injection Attack (Primary Mode Only). While trying to prove the security properties

of BrowserID with primary IdPs in our model, we discovered a serious attack, which is sketched

below and does not apply to the case with secondary IdPs. We confirmed the attack on the actual

implementation and reported it to Mozilla [Bug14].

14We assume that users are already registered at LPO.
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During the provisioning phase v (see Figure 4.3), the IdP issues a UC for the user’s identity

and public key provided in 16 . This UC is sent to the LD by the PIF in 20 .

If the IdP is malicious, it can issue a UC with different data. In particular, it could replace

the email address by a different one, but keep the original public key. This (malicious) UC is

then later included in the CAP by LD. The CAP will still be valid, because the public key is

unchanged. Now, as the RP determines the user’s identity by the UC contained in the CAP, RP

issues a service token for the spoofed email address. As a result, the honest user will use RP’s

service (and typically will be logged in to RP) under an identity that belongs to the attacker,

which, for example, could allow the attacker to track actions of the honest user or obtain user

secrets.This clearly violates security w.r.t. session integrity.

Proposed fix. Upon receipt of the UC in 20 of Figure 4.3, LD should check whether it

contains the correct email address and public key, i.e., the one requested by LD in 16 . The same

is true for the CIF, which behaves similarly to the LD. The formal model of BrowserID presented

in Appendix D.3 contains these fixes.

Login Injection Attack. During the login process, the origin of the response postMessage

( 26 in Figure 4.3), which contains the CAP, is not checked. An attacker (e.g., in a malicious

advertisement iframe within RP-Doc or in a parent window of RP-Doc), can continuously send

postMessages to the RP-Doc with his own CAP in order to log the user into his own account

(see [Bug13a]). The outcome of this attack is similar to session swapping. For example, if the

attacker is able to log the user into a search engine, the attacker might be able to read the search

terms the user enters. This attack violates security w.r.t. session integrity.

Proposed fix. To fix the problem, the sender’s origin of the postMessage 26 must be checked

to match LPO.

Identity Forgery (for Primary Mode with Identitiy Bridges only). There are two problems in

Sideshow that lead to identity forgery attacks for Gmail addresses; analogously in BigTent with

Yahoo email addresses (See [Bug13b] and [Bug13c]).

1. It is not checked if all requested attributes in the OpenID assertion are MACed, which

allows for the following attack: A (Web) attacker may choose any Gmail address to

impersonate, say victim@gmail.com. He starts a BrowserID login with this email address.

When he is then redirected to the OpenID URL at Gmail, he removes the email attribute

from Sideshow’s authentication request. The attacker authenticates himself at Gmail with

his own account (say, attacker@gmail.com). Upon receipt of the OpenID assertion, he

appends the email attribute with value victim@gmail.com and forwards it to Sideshow.

The assertion is declared valid by Gmail since the MAC is correct (the email attribute is

100



4.5. Authentication and Session Integrity of BrowserID

not listed in openid.signed). Since Sideshow does not require the email attribute to be

in openid.signed, it accepts the OpenID assertion, considers the attacker’s session to

be authenticated for victim@gmail.com, and issues UCs for this address to the attacker.

This violates security w.r.t. authentication.

2. Sideshow uses the first email address in the OpenID assertion (based on the attribute

type information), which is not necessarily the MACed email address. This allows for an

attack similar to the above, except that the attacker does not need to change Sideshow’s

authentication request but only prepends the victim’s email address to the OpenID assertion

in an additional attribute.

Proposed fix. Sideshow/BigTent must ensure to use the correct and MACed attribute for the

email address.

Key Cleanup Failure Attack. When LD creates a key pair ( 15 in Figure 4.3), it stores the keys

in the localStorage (even in ephemeral sessions). When a user quits a session (e.g., by clicking on

RP’s logout button and closing the browser) the key pair (and the UC) remain in the localStorage,

unlike session cookies. Hence, users of shared terminals can read the localStorage (in our model,

a CLOSECORRUPT allows an attacker to do this) and then, using the key pair and the UC, create

valid CAPs to log in at any RP under the identity of the previous user, which violates security

w.r.t. authentication. (See [Iss13b] for the discussion in the BrowserID development team.)

Proposed fix. We propose to use the localStorage for this data only in non-ephemeral sessions.

Cookie Cleanup Failure Attack (Secondary IdP only). The LPO session cookie is not deleted

when the browser is closed, even in ephemeral sessions and even if a user logged out at RP

beforehand. (In our model, if the attacker issues a CLOSECORRUPT, he can therefore still access

the LPO session cookie.) Hence, another user of the same browser could request new UCs for

any identity registered at LPO for that user, and hence, log in at any RP under this identity,

which violates security w.r.t. authentication. (See [Iss13a] for the discussion in the BrowserID

development team.)

Proposed fix. In ephemeral sessions, LPO should limit the cookie lifetime to the browser

session.

4.5.2. Security of the Fixed Systems

We include the fixes mentioned above into our models of the BrowserID primary mode Web

system and the BrowserID secondary mode Web system. We then call such Web systems fixed

BrowserID primary mode Web system and fixed BrowserID secondary mode Web system, respec-

101



4. Analysis of BrowserID

tively. We now state theorems that authentication and session integrity as defined in Section 3.4

are fulfilled by both kinds of Web systems and sketch the respective proofs.

Theorem 1. Let BIDp be a fixed BrowserID primary mode Web system with a network attacker.

Then, BIDp is secure w.r.t. authentication.

To prove Theorem 1, we analyze the request to an honest RP r upon which r returned a service

token n for some id i. We show that it must contain a valid CAP (for the identity i). For this, it

must in particular contain a valid UC and a matching IA. We show that the UC must have been

created by the IdP that governs the identity i (which is honest by assumption). We can then show

that only b can request a UC at the IdP for the identity i, and that b does not leak the private

key that corresponds to the public key used for this UC, and that this key was chosen from b’s

set of fresh nonces. Thus, only b can know the key that is used in the creation of the UC in the

CAP. We show that neither the private key corresponding to the public key in the UC, nor the IA

can leak to the attacker. Thus, the attacker cannot have sent the request that caused r to create

the service token n. Also, n does not leak to the attacker. The attacker can therefore not know

n, which contradicts the assumption and proves that the authentication property is satisfied. The

full proof is contained in Appendix D.4

Before we state our theorem about session integrity of the fixed BrowserID primary mode Web

system, recall that BrowserID also supports a non-interactive mode (see automatic CAP creation

in Section 4.2): If the user has logged in at some RP before, the user gets automatically logged

in again if she visits that RP again. This feature, however, interferes with session integrity as

the creation of a service session is not necessarily in the same SSO session as the user’s consent

actions. We therefore analyze a slightly weaker session integrity property, which we call indirect

session integrity. This property is the same as session integrity but without the requirement

that the actual login must be part of the SSO session, i.e., we consider Definition 13 without

Statement iv).15

Theorem 2. Let BIDp be a fixed BrowserID primary mode Web system with a network attacker.

Then, BIDp is secure w.r.t. indirect session integrity.

We start our reasoning from an (arbitrary) processing step Qlogin that fulfills the predicate

loggedIn(Qlogin,b,r, id,n) for some browser b, some RP r, some identity id, and some service

token n. We trace back on connected processing steps (steps that are related in a causality

chain as defined in Definition 9 in Section 3.3. We show that the user must have interacted
15We note that if the non-interactive mode of BrowserID would be removed, our proof shows that we would then

have (full) session integrity.
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with a login dialog delivered by LPO. Recall that the scripts script_rp_index, script_lpo_cif ,

and script_lpo_ld are implemented as state machines. We use the transitions of the states of

these scripts to derive previous processing steps. We distinguish between two cases: (1) The

respective CAP (which was used to authenticate the user) was created in a login dialog and (2)

the respective CAP was created by a CIF. In (1), using information stored in localStorage and

sessionStorage, we are able to show that the user must have selected the identity to log in at r.

As the user only selects identities owned by b in our model, we can show that id (which is the

identity RP considers to be logged in) is actually owned by b. We further are able to trace back

to the start of the SSO session and show that this session was in fact created by b for r and that

the user actually selected the identity id in this SSO session. (Note that the selection of the IdP

is performed in the very same step as for BrowserID the IdP is selected by the selection of the

identity). For (2), we show that (based on the values in the localStorage), the user must have

completed some login flow as in (1) previously. Hence, the indirect session integrity property is

satisfied. The full proof is contained in Appendix D.5

Theorem 3. Let BIDs be a fixed BrowserID secondary mode Web system with a network attacker.

Then, BIDs is secure w.r.t. authentication.

Again, as for the primary mode above, we prove this Theorem by contradiction. The reasoning

is very similar to above. The full proof is contained in Appendix E.3.

Theorem 4. Let BIDs be a fixed BrowserID secondary mode Web system with a network attacker.

Then, BIDs is secure w.r.t. indirect session integrity.

We also prove this theorem similar to the primary mode. As we only have to consider LPO as

the only IdP in this case and the fact that the login dialog is not navigated, the proof is simpler

for the secondary mode as our reasoning has to consider fewer steps and fewer parties involved.

The full proof can be found in Appendix E.4.

4.5.3. Related Work

As mentioned in the introduction, there are only a few previous approaches to analyze the security

of BrowserID. None of these analyses, however, have revealed the vulnerabilities discovered in

this thesis.

Bai et al. analyze the security of BrowserID’s primary mode in [Bai+13], but focus on the

automatic extraction of a model from a protocol implementation. Their tool-based analysis is

not very detailed and does not reveal any of the attacks presented in this thesis. The analysis

identifies only two rather trivial and implementation specific attacks. In the first attack, if an
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RP does not enforce the usage of HTTPS correctly, CAPs might be sent unencrypted and can

then replayed by the attacker to an RP. In the second attack, if the RP does not protect itself

from XSRF attacks sufficiently, the attacker can force the user to log in under some different

identity by instructing the user’s browser to send a CAP provided by the attacker to the RP. In

our model, RPs follow best practices for the usage of HTTPS and XSRF protection and hence,

are not vulnerable to these attacks.

Dietz and Wallach demonstrated a technique to secure BrowserID when specific flaws in TLS

are considered that break the confidentiality and integrity of TLS [DW14]. They describe an

attack scenario in which the adversary acts as a man-in-the-middle between a browser and an

IdP. To protect against this kind of attacker, they recommend to use a variant of TLS client

authentication to authenticate users to IdPs. Their work is based on a formal model using BAN

logic, that is based on a very high-level model of the BrowserID primary mode and does not take

the complexity of the Web infrastructure into account. In our model, we assume that TLS works

as intended, i.e., TLS provides confidentiality and integrity, and follow Mozilla’s implementation

of BrowserID.

In [Han+10; SS13; SKS10; WCW12], potentially problematic usage of postMessages and

the OpenID interface are discussed. On a high-level, the problems discussed there are similar

to some attacks on BrowserID presented in this thesis. While very useful, these papers do not

consider BrowserID or formal models, and they do not formalize security properties for Web

applications or establish formal security guarantees.

4.6. Privacy of BrowserID

In this section, we study the privacy guarantees of the BrowserID system with primary IdPs. Re-

garding privacy, Mozilla states that “...the BrowserID protocol never leaks tracking information

back to the Identity Provider.” [Bam+18a] and “Unlike other sign-in systems, BrowserID does

not leak information back to any server [. . . ] about which sites a user visits.” [Mil11].16 While

this statement itself is not a formal definition of the level of privacy that BrowserID is supposed

to provide, these and other statements (see, e.g., [Adi11; Bam+18b]) make it certainly clear that,

unlike for other SSO systems, IdPs should not be able to learn to which RPs their users log in.

This intuition matches our privacy definition presented in Section 3.4.3.

While trying to prove this property for BrowserID, we found severe attacks against the pri-

vacy of BrowserID which show that BrowserID does not provide privacy in the presence of a

16Clearly, in the current state of BrowserID a malicious LPO server could gather information about users’ log in
history. However, an integration of the code currently delivered by LPO into the browser, as envisioned, would
avoid this issue. Currently, Mozilla’s LPO needs to be trusted.
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idp.com/index

relyingparty.com/login

login.persona.org/cif

idp.com/pif

a User visits her identity
provider (could be in a PIF
itself, i.e., during login at
some other RP).

b PIF exists only when
BrowserID automatically
logs the user in at r (be-
cause the user was logged
in before).

c When the user is
logged in at r, the identity
provider gets a notification
via postMessage when the
PIF iframe is loaded.

Figure 4.5.: The three main steps of the privacy attack on BrowserID. Using a specially crafted PIF
document, a malicious IdP can notify itself via postMessage when the user is logged in at some RP r.

malicious IdP. The attacks clearly show that privacy is broken for any reasonable definition of

privacy. Unfortunately, our attacks are not caused by a simple implementation error, but rather

a fundamental design flaw in the BrowserID protocol. Fixes for this flaw are conceivable, but

not without major changes to the design of BrowserID as discussed in Section 4.6.2. Note that

for the secondary mode, privacy is not achievable at all as the only IdP (LPO) has access to full

information about the login flow. This mode does not target privacy at all.

4.6.1. Privacy Attacks on BrowserID

As explained in Section 3.4.3, for privacy, we consider Web attackers. Consequently, for our

attacks to work, it suffices that the IdP is a Web attacker. The attacks even work if all DNS

servers, RPs, and LPO are honest, and all parties use encrypted connections. In what follows, we

present several variants of attacks on privacy.

PostMessage-Based Attack. The adversary is a malicious IdP that is interested to learn whether

a user is logged in at RP r. Figure 4.5 illustrates the main steps:

Step a . First, the victim visits her IdP. In BrowserID, email providers serve as IdPs, and therefore

it is not unlikely that a user visits this Web site (e.g., for checking email or to use other services).

As the IdP usually has some cookie set at the user’s browser, it learns the identity of the victim.

The IdP now creates a hidden iframe containing the login page of r.

Step b . The login page of r (now loaded as an iframe within IdP’s Web site) includes and runs the

BrowserID script. As defined in the BrowserID protocol, the script creates the communication

iframe (see “Automatic CAP Creation” in Section 4.2), which in turn checks whether the email

address is marked as logged in at r in the localStorage of the user’s browser. Only then it will try

to create a new CAP, for which it needs a PIF (the same as in Phase ii in Figure 4.3).

Step c . The PIF is loaded from the IdP. Note that from this action alone, the IdP does not learn
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where the user wants to log in. However, instead of the original (honest) PIF document, the IdP

can send a modified one that sends a postMessage to the parent of the parent of the parent of its

own window, which in this setting is the IdP document that was opened by the user in Step a .

When the IdP receives this message in the document from Step a , it knows that the PIF was

loaded, and therefore, that the user is currently logged in at r.

Note that the IdP can repeatedly apply the above as long as the user stays on the IdP’s Web site.

During this period, the IdP can see whether or not the user is logged in at the targeted RP. Clearly,

the IdP can simultaneously run the attack for different RPs in order to track the user’s login status

for all such RPs. In particular, the IdP can distinguish whether a user is logged in at RP r or

r′, which violates the privacy property sketched above. In our formal model, the malicious IdP

would run the attacker script Ratt in idp.com/index and in idp.com/pif (see Figure 4.5) in

order to carry out the attack.

Variant 1: Waiting for UC requests. The IdP first acts as in Step a . Now, it could passively

wait for incoming requests for the PIF document or UC requests on its server, which tell the

IdP that a provisioning flow (probably initiated by Step a ) was started. This variant cannot be

executed in parallel and is less reliable in practice, though.

Variant 2: PIF as Attack Source. Step a can also be launched from within a PIF itself (i.e., the

PIF also takes the role of idp.com/index above). This way, while the user logs in at some r1,

the IdP could check whether the user is logged in at r2, for any r2.

Variant 3: Scanning the Window Structure (I). Instead of using a postMessage to alert the

IdP’s outer document about the existence of the inner PIF document, the outer document could

as well repeatedly scan the window tree of the iframe containing r’s Web site: While the IdP sees

almost no information about r’s document in the iframe (as it is not same origin), it can see the

list of subwindows (i.e., the CIF, and possibly other iframes). For these frames, again, it would

see the subwindows, especially the PIF, which it could identify uniquely by checking whether it

is same origin with the IdPs outer window.

Variant 4: Scanning the Window Structure (II). In Variant 2, using a same-origin check, the

malicious IdP can uniquely identify the PIF in the window structure. This same-origin check

could be skipped and it could only be checked whether a PIF is generated, based on the window

structure alone. While this is less reliable, this attack could be launched by any third party Web

attacker (not only the IdP to which the user’s email address belongs) to check whether the victim

is logged in at r or not.

We verified all variants of the attacks in our model as well as in a real-world BrowserID setup.

Implementing proofs-of-concept required only a few lines of (trivial) JavaScript. In most attack
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variants, we directly or indirectly use the structure of the windows inside the Web browser as

a side channel. To our knowledge, this is the first description of this side channel for breaking

privacy in browsers. The attacks have been reported to and confirmed by Mozilla [Bug15].

4.6.2. Fixing the Privacy of BrowserID

Fixing the privacy of BrowserID seems to require a substantial redesign of the system. Regarding

the presented attacks, BrowserID’s main weakness is the window structure. The most obvious

mitigation, modifying the CIF such that it always creates the PIF (even if the user has not logged

in before), does not work: To open the PIF, the CIF looks up (in the localStorage) the user’s

identity at the current RP to derive the address of the PIF. If the user has not logged in before,

this information is not available.

Another approach would be to use cross-origin XHRs to replace the features of the PIF. This

solution would require a major revision in the inner workings of BrowserID and would not

protect against Variant 1.

Such fixes, however, do not overcome a major design problem of BrowserID: The protocol

heavily relies on LPO. Strictly speaking, BrowserID is not a decentralized SSO system, as every

login always involves LPO as a central authority. The most critical part of the protocol, the

creation of the IA and the CAP is performed under the origin of LPO with all details accessible

to this party. Further, LPO is hard-coded into the implementation and cannot be replaced or

freely determined ad-hoc. Hence, if LPO is considered dishonest, privacy (as well as security

and session integrity) is trivially broken.

4.7. Limitations of the Analysis

Besides the general limitations of our approach as discussed in Section 2.8, our model of

BrowserID is also subject to some limitations, which we discuss below.

We treat the primary and the secondary mode of BrowserID as two different protocols in two

separate analyses. In principle, a protocol that allows for several modes in parallel, an attacker

could try to mix up two or more modes to create new attacks. Also, new problems can arise from

the ability of a domain owner to switch between primary and secondary mode over time. Recall

that LPO decides which mode to be used based on the presence of the support document, which is

also cached at LPO. Hence, a full analysis of both modes in combination, which introduces even

more complexity, might reveal new attacks. BrowserID, however, has been decommissioned and

is nowadays only interesting as a research example. In addition, the secondary mode was planned

to be only a temporary extension of BrowserID [Mil11]. Further, as we see in Section 4.6.1 below,
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BrowserID fails to achieve its privacy goal. Therefore, we move on in Chapter 5 and design

an SSO system that actually fulfills all security and privacy goals, rather than combining the

analyses of both modes of an SSO protocol that does not meet one of its main goals.

Identity bridges, as described in this chapter, have not been included into the formal analysis

as they, from the BrowserID perspective, act as a normal IdP. A full formal analysis of these

services would necessarily include a formal analysis of all SSO protocols that are bridged over

to BrowserID, which clearly goes beyond the scope of an analysis of BrowserID itself.
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As we have seen in the previous chapter, the design of a secure SSO system is non-trivial and

attacks are very easy to overlook. In this chapter, we present SPRESSO, an SSO protocol

that is inspired by BrowserID’s unique design goals, in particular privacy, but is designed from

scratch. We use the WIM to design and model this protocol right from the start. Based on this

formal model, we perform a rigorous analysis of SPRESSO regarding the authentication, session

integrity, and privacy properties presented in Section 3.4. Our analysis shows that SPRESSO

indeed meets these properties making SPRESSO the first SSO system for the Web that provides

strong security and privacy guarantees. We provide a prototypical implementation of SPRESSO

at [FKS19].

We created SPRESSO to be a decentralized, open system. In SPRESSO, users are identi-

fied by their email addresses, and email providers certify the users’ authenticity. Compared to

OpenID 2.0 [FR+07], users do not need to learn a new, complicated identifier — our approach

is similar to BrowserID in this respect. But unlike in BrowserID, there is no central authority

in SPRESSO (see also the discussion in Section 5.2). SPRESSO does not require any prior

coordination or setup between RPs and IdPs: Users can log in at any RP with any email address

with SPRESSO support. For email addresses lacking SPRESSO support, a seamless fallback can

be provided, as discussed later.

SPRESSO is based solely on standard HTML5 and Web features and uses no browser exten-

sions, plug-ins, or other client-side executables. This guarantees that SPRESSO can be used

across browsers, platforms and devices, including both desktop computers and mobile platforms,

without installing any software (besides a browser). Note that on smartphones, for example,

browsers usually do no support extensions or plug-ins.

In this chapter, we first provide a detailed description of SPRESSO in Section 5.1 and discuss

this protocol in Section 5.2. We continue by describing the formal model of SPRESSO in

Section 5.3. We then show that SPRESSO is a sound SSO protocol that provides the necessary

authentication and session integrity properties in Section 5.4. In Section 5.5, we present our result

that SPRESSO indeed provides privacy. We conclude with our proof-of-concept implementation

of SPRESSO in Section 5.6.
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A Log me in as alice@idp.comLog me in as alice@idp.com

C tagtag

D alice@idp.com, tagalice@idp.com, tag

F iaia

G iaia

I nn

 RP  Browser  IdP

B create tagcreate tag

E create iacreate ia

H verify iaverify ia

 RP  Browser  IdP

Figure 5.1.: High-level idea of SPRESSO.

5.1. Protocol

We now explain SPRESSO by a typical login flow in the system. SPRESSO knows three distinct

types of parties: relying parties (RPs), i.e., Web sites where a user wishes to log in, identity

providers (IdPs), providing to RPs a proof that the user owns an email address (identity), and

forwarders (FWDs), who forward messages from IdPs to RPs within the browser. We start with

a brief overview of the login flow and then present the flow in detail.

5.1.1. Overview

On a high level, the login flow consists of the following steps (see also Figure 5.1: First, on the

RP Web site, the user starts the login flow by entering her email address A . RP then creates

what we call a tag by encrypting its own domain name and a nonce with a freshly generated

symmetric key B and sends the tag to the user C . The user forwards this tag along with her

email address to the IdP D . Due to the privacy requirement, this is done via the user’s browser

in such a way that the IdP does not learn from which RP this data was received. Note also that

the tag contains RP’s domain in encrypted form only. The IdP then signs the tag and the user’s

email address (provided that the user is logged in at the IdP, otherwise the user first has to log

in). This signature is called the identity assertion (IA) E . The IA is then sent back to the user’s

browser F who forwards it to the RP G . RP checks the signature and consistency of the data

signed H and then considers the user with the given email address to be logged in (by creating a
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service session and sending the service token to the user I ).

We note that passing the IA to the RP is done using a forwarder within the browser (the RP

determines which one is used). The task of this forwarder is to deliver the IA to the correct RP

(RP document). The IdP cannot ensure this, because, again due to the privacy requirements, IdP

is not supposed to know the intended RP. We will discuss the forwarder mechanism in detail

below.

5.1.2. Detailed Flow

We now take a detailed look at the SPRESSO login flow. We refer to the steps of the protocol

as depicted in Figure 5.2. We use the names RP, IdP, and FWD for the servers of the respective

parties. We use RPdoc, IdPdoc, and FWDdoc as names for HTML documents delivered by the

respective parties. The login flow involves the servers RP, IdP, and FWD as well as the user’s

browser, in which different windows/iframes are created: first, the window containing RPdoc

(which is present from the beginning), second, the login dialog created by RPdoc (containing

IdPdoc), and third, an iframe inside the login dialog where the document FWDdoc from FWD is

loaded.

As the first step in the protocol, the user opens the login page at RP 1 . The actual login then

starts when the user enters her email address 2 . RPdoc sends this address in a POST request

to RP 3 . RP identifies the IdP (from the domain in the email address) and retrieves a support

document from IdP 4 . This document is retrieved from a fixed URL https://IdPdomain/

.well-known/spresso-info1 and contains a public (signature verification) key of the IdP. RP

now selects new nonces/symmetric keys rpNonce, iaKey, tagKey, and loginSessionToken 5 and

creates the tag tag by encrypting RP’s domain RPDomain and the nonce rpNonce under tagKey 6 .

Using the notation introduced in Chapter 2, we denote this term by

tag := encs(⟨RPDomain,rpNonce⟩, tagKey) .

RP further selects (a domain of) an FWD (e.g., a fixed one from its settings, see below). Now,

RP stores tag, iaKey, the FWD domain, and the email address in its session data store under the

session key loginSessionToken and sends tag, tagKey, FWDDomain, and loginSessionToken as

response to the POST request by RPdoc 8 .

RPdoc now opens the login dialog in 9 . This window contains the login dialog from IdP

(IdPdoc) so that the user can log in to IdP (if not logged in already). In this step, special care must

be taken not to reveal the identity of the RP to the IdP via the Referer header (see the discussion

1We use fixed “well-known” paths at IdPs as proposed in [RFC5785].
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 Browser

1 GET /GET /

3 POST /startLoginPOST /startLogin
emailemail

4 GET /.well-known/spresso-infoGET /.well-known/spresso-info

8 ResponseResponse
tag, tagKey, iaKey, FWDDomain, loginSessionToken, loginURLtag, tagKey, iaKey, FWDDomain, loginSessionToken, loginURL

9 open
tag, iaKey,

FWDDomain, loginSessionToken,
loginURL

10 GET /.well-known/spresso-loginGET /.well-known/spresso-login

12 POST /loginxhrPOST /loginxhr
secret, email, tag, FWDDomainsecret, email, tag, FWDDomain

15 ResponseResponse
iaia

17 openopen
tag, eiatag, eia

18 GET /.well-known/spresso-proxyGET /.well-known/spresso-proxy

19 readyready

parent.openerparent.opener

20 tagKeytagKey
to origin https : //FWDDomainto origin https : //FWDDomain

22 eiaeia
to origin https : //RPDomainto origin https : //RPDomain

23 POST /loginPOST /login
eia, loginSessionTokeneia, loginSessionToken

26 ResponseResponse
login successful, serviceTokenlogin successful, serviceToken

n RP-Doc  RP  IdP  FWD

2 User enters email address
and clicks on "login"

5

rpNonce← N
iaKey← N
tagKey← N

loginSessionToken← N

6 tag = encs(⟨RPDomain,rpNonce⟩, tagKey)tag = encs(⟨RPDomain,rpNonce⟩, tagKey)

7
Build loginURL with URL of IdP-Doc
and email, tag, FWDDomain, and iaKey

in the URL fragment identifier

n IdP-Doc

11 User enters secretUser enters secret

13 Check secret and emailCheck secret and email

14 ia := sig(⟨tag,email,FWDDomain⟩,kIdP)ia := sig(⟨tag,email,FWDDomain⟩,kIdP)

16 eia := encs(ia, iaKey)eia := encs(ia, iaKey)

n FWD-Doc

21 ⟨r′,n′⟩= decs(tag, tagKey)
( r′ = RPDomain )

24
ia′ := decs(eia, iaKey)

e := ⟨tag,email,FWDDomain⟩
checksig(eia′,pubkIdP) ?

25 serviceToken← NserviceToken← N

 RPn RP-Doc n IdP-Doc n FWD-Doc  IdP  FWD

Figure 5.2.: Overview on the SPRESSO login flow. (See Page 11 for notation.)
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in Section 5.2). In the URL of the login dialog, RP includes the user’s email address, the tag, the

FWD domain, and the iaKey.2

After the browser loaded IdPdoc from IdP, the user enters her password3 matching her email

address 11 . The password, the email address, the tag, and the FWD domain are now sent to

IdP 12 . After IdP verified the user credentials 13 , it creates the identity assertion as the signature

ia := sig(⟨tag,email,FWDDomain⟩,kIdP)

using its private signing key kIdP 14 and then returns ia to IdPdoc 15 . We note that ia contains

the signature only, not the data that was signed.

To avoid that the FWD learns the IA (we discuss this further in Section 5.2), IdPdoc now

encrypts the IA using the iaKey 16 :

eia := encs(ia, iaKey) .

Then, IdPdoc opens an iframe with the URL of FWDdoc, passing the tag and the encrypted IA

to FWDdoc. After the iframe is loaded 18 , FWDdoc sends a postMessage to its parent’s opener

window, which is RPdoc 19 . This postMessage with the sole content “ready” triggers RPdoc

to send the tagKey to FWDdoc, where in the postMessage the origin of FWD with HTTPS is

declared to be the only allowed receiver of this message 20 . FWDdoc uses the key to decrypt the

tag and thereby learns the intended receiver (RP) of the IA 21 . As its last action, FWD forwards

the encrypted IA eia via postMessage to RPdoc (using RP’s HTTPS origin as the only allowed

receiver) 22 .

RPdoc receives eia and sends it along with the loginSessionToken to RP 23 . RP then decrypts

eia, retrieves ia′ and checks whether ia′ is a valid signature for ⟨tag,email,FWDDomain⟩ under

the verification key pub(kIdP) of the IdP, where tag, email, and FWDDomain are taken from the

session data identified by loginSessionToken 24 .

Now, the user identified by the email address is logged in. The mechanism that is used to

persist this logged-in state (if any) at this point is out of the scope of SPRESSO. In our analysis,

as a model for a standard session-based login, we assume that RP creates a session for the user’s

browser, identified by a service token (as explained in Section 3.1) 25 and sends this token to

the browser 26 .

2This data is passed to IdPdoc in the fragment identifier of the URL (a.k.a. hash), and therefore, it is not necessarily
sent to IdP.

3In fact, the IdP can as well offer any other form of authentication, e.g., TLS client authentication or two-factor
authentication.
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5.2. Discussion of the Protocol

Before we present our formal proof of SPRESSO’s authentication and privacy properties in the

subsequent sections, we first provide more intuition and motivation. We first informally discuss

some challenges, (selected) potential attacks and what measures we took when designing and

implementing SPRESSO to prevent such attacks. These attacks also illustrate the complexity

and difficulty of designing a secure and privacy-respecting Web-based SSO system. We further

discuss the necessity of the forwarder and how this mechanism can be improved by future Web

standards. We also discuss other aspects of SPRESSO, including usability and performance. We

conclude this section with a comparison of SPRESSO and BrowserID.

Malicious RP: Impersonation Attack. An attacker could try to launch a man in the middle

attack against SPRESSO by playing the role of an RP (RP server and RPdoc) to the user. Such

an attacker would run a malicious server at his RP domain, say, RPa, and also deliver a malicious

script (instead of the honest RPdoc script) to the user’s browser. Now assume that the user wants

to log in with her email address at RPa and is logged in at the IdP corresponding to the email

address already. Then, the attacker (outside of the user’s browser) could first initiate the login

process at RPb using the user’s email address. The attacker’s RP could then create a tag of the

form encs(⟨RPb,rpNonce⟩, tagKey) using the domain of an honest RP RPb, instead of RPa. The

IdP would hence create an IA for this tag and the user’s email address and deliver this IA to the

user’s browser. If this IA were now indeed be delivered to the attacker’s RP window (which is

running a malicious RPdoc script), the attacker could use the IA to finish the log in process at

RPb (and obtain the service token from RPb), and thus, log in at RPb as the honest user.

However, assuming that FWD is honest (see below for a discussion of malicious FWDs), FWD

prevents this kind of attack: FWD forwards the (encrypted) IA via a postMessage only to the

domain listed in the tag (so, in this case, RPb), which in the attack above is not the domain of the

document loaded in the attacker’s RP window (RPa). The IA is therefore not transmitted to the

attacker. The same applies when the attacker tries to navigate the RP window to its own domain,

i.e., to RPa, before Step 22 . Our formal analysis presented in the following sections indeed

proves that such attacks are excluded in SPRESSO. We note that in order to make sure that the

postMessage is delivered to the correct RP window (technically, a window with the expected

origin), FWD uses a standard feature of the postMessage mechanism which allows to specify the

origin of the intended recipient of a postMessage.

Malicious IdP. A malicious IdP could try to log the user in under an identity that is not her own.

An attack of this kind is, for example, the identity injection attack on BrowserID presented in

Section 4.5.1. However, in SPRESSO, the IdP cannot select or alter the identity with which
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the user is logged in. Instead, the identity is fixed by RP after Step 6 and checked in Step 24 .

Again, our formal analysis shows that such attacks are indeed not possible in SPRESSO.

The IdP could try to undermine the user’s privacy by trying to find out which RP requests

the IA. However, in SPRESSO, the IdP cannot gather such information: From the information

available to it (email, tag, FWDDomain plus any information it can gather from the browser’s

state), it cannot infer the RP.4 It could further try to corellate the sources and times of HTTPS

requests for the support document with user logins. To minimize this side channel, we suggest

caching the support document at each RP and automatic refreshing of this cache (e.g., an RP

could cache the document for 48 hours and after that period automatically refresh the cache).

Additionally, RPs should use the Tor network (or similar means) when retrieving the support

document in order to hide their IP addresses. Assuming that support documents have been

obtained from IdPs independently of specific login requests by users, our formal analysis shows

that SPRESSO in fact enjoys a very strong privacy property (see Section 5.5).

Recall that in BrowserID, malicious IdPs (in fact, any party who can run malicious scripts in

the user’s browser) can check the presence or absence of certain iframes in the login process,

leading to the privacy break mentioned earlier. Again, our formal analysis implies that this is not

possible for SPRESSO.

Malicious FWD. A malicious FWD could cooperate with or act as a malicious RP and thereby

enable the man in the middle attack discussed above, undermining the authentication guaran-

tees of the system. Also, a malicious FWD could collaborate with a malicious IdP and send

information about the RP to the IdP, and hence, undermine privacy.

Therefore, for our system to provide authentication and privacy, we require that FWDs behave

honestly. Below we discuss technical means to force FWD to behave honestly. We suspect

that there is no way to avoid the use of FWDs or other honest components in a practical SSO

system which is supposed to provide not only authentication but also privacy: In our system,

after Step 15 of the flow, IdPdoc must return the IA to the RP. There are two constraints: First,

the IA should only be forwarded to a document that in fact is RP’s document. Otherwise, it

could be misused to log in at RP under the user’s identity by any other party, which would

break authentication. Second, RP’s identity should not be revealed to IdP, which is necessary

for privacy. Currently, there is no browser mechanism to securely forward the IA to RP without

disclosing RP’s identity to IdP.

Enforcing Honest FWDs. Before we discuss existing and upcoming technologies to enforce

4If only a few RPs use a specific FWD, FWDDomain would reveal some information. However, this is easy to avoid
in practice: the set of FWDs all (or many) RPs trust should be big enough and RPs could randomly choose one of
these FWDs for every login process.
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honest behavior of FWDs, we first note that in SPRESSO, an FWD is chosen by the RP to

which a user wants to log in. So the RP can choose the FWD it trusts. The RP certainly has a

great interest in the trustworthiness of the FWD: As mentioned, a malicious FWD could allow an

attacker to log in as an honest user (and hence, misuse RP’s service and undermine confidentiality

and integrity of the user’s data stored at RP), something an RP would definitely want to prevent.

Second, we note that the IdP needs to trust the (script of the) forwarder to not leak the IA to a

malicious party. If the forwarder fails to do so, this compromises the authentication property for

all of the IdP’s users. Still, the IdP can always deny using a specific, untrustworthy forwarder.

Hence, both parties, the RP and the IdP have to agree on a forwarder which they both trust.

Third, we also note that FWD does not learn a user’s email address: the IA, which is given to

FWD and which contains the user’s email address, is encrypted with a symmetric key unknown

to FWD.5 Therefore, SPRESSO does not provide FWD with information to track at which RP a

specific user logs in.6

Now, as for enforcing honest FWDs, first note that an honest FWD server is supposed to always

deliver the same fixed document containing a JavaScript to a user’s browsers. This JavaScript

code is very short (about 50 lines of code). If this code is used, it is not only ensured that FWD

preserves authentication and privacy, but also that no tracking data is sent back to the FWD

server.

Current browsers have two shortcomings which prevent a removal of the forwarder: The

postMessage mechanism allows a sender to only specify the origin that a receiver must have

(otherwise, the browser does not deliver the message). Hence, the sender does not have any

guarantee about which script will actually process the message on the receiver’s side. Another

shortcoming is that a browser does not provide any guarantees about the content of an iframe

(except that the content is initially loaded from the URL provided by the creator of the iframe).

Using current technology, a user could use a browser extension which can be very simple: This

extension has to make sure that in fact only the correct JavaScript is delivered by FWD (upon the

respective request). As a result, FWD would be forced to behave honestly, without the user having

to trust FWD. Another approach would be an extension that replaces FWD completely, which

could also lead to a simplified protocol. In both cases, SPRESSO would provide authentication

and privacy without having to trust any FWD. Both solutions have the common problem that

they do not work on all platforms, because browsers do not support extensions on all platforms.

The first solution (i.e., the extension checks only that correct JavaScript is loaded) would at least

5We note that IA is a signature anyway, so typically a signed hash of a message. Hence, for common signature
schemes, already from the IA itself FWD is not able to extract the user’s email address. In addition, SPRESSO
even encrypts the IA to make sure that this is the case no matter which signature scheme is used.

6A malicious FWD could try to set cookies and do browser fingerprinting to the track the behavior of specific
browsers. Still it does not obtain the user’s email address.
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still work for users on such platforms, albeit with reduced security and privacy guarantees.

A better approach would be an improvement of browsers: If the postMessage mechanism is

extended such that the sender is able to specify the actual script or the whole document (i.e., by

providing a hash of the full document) of the receiving window, RP-Doc does not need to rely on

the forwarder to actually deliver the correct document. This extension of postMessages would

allow RP-Doc to send the postMessage in Step 26 (Figure 5.2) containing tagKey to the correct

forwarder script. In this postMessage, RP-Doc would not need to require the origin of receiver

to be the forwarder (our proof relies on the fact that the correct forwarder script receives tagKey,

see also later). Instead, the forwarder script could also be provided by the IdP. As tagKey does

not get stored in the scriptstate and is only processed by the (trusted) forwarder script, tagKey

does not leak to the IdP, still protecting the users’ privacy. Obviously, also the authentication

property still holds true in this (slightly) changed setting. This extension of the postMessage

mechanism would be sufficient to remove the forwarder from SPRESSO.

Without this extension of postMessages, a future version the Subresource Integrity (SRI)

standard [Akh+16] would at least enable IdP-Doc to enforce the forwarder to deliver the correct

forwarder script. While the initial SRI draft [Akh+14] proposed a way to enforce that an iframe’s

document must match a certain hash value, this feature was removed in later versions of SRI.

The developers of SRI are still considering to implement this feature (see discussion at [Iss15] as

well as the note to include iframes in future versions in the current SRI specification [Akh+16]).

Using SRI would still not allow us to remove the forwarder, but enable us to distrust the forwarder

in our analyses of the authentication and session integrity properties.

Referer Header and Privacy. The Referer [sic!] header is set by browsers to show which page

caused a navigation to another page. It is set by all common browsers. To preserve privacy, when

the loading of IdPdoc is initiated by RPdoc, it is important that the Referer header is not set,

because it would contain RP’s domain, and consequently, IdP would be able to read off from the

Referer header to which RP the user wants to log in, and hence, privacy would be broken.

The Referrer Policy proposal [ES17] introduces a way to suppress the Referer header for

specific Web pages. Referrer policies allow to specify several conditions under which a browser

must suppress or shorten the Referer header.7 A Web server can deliver a referrer policy as an

HTTP header or as part of HTML code. Major browsers already support the Referrer Policy

proposal [Moz19]. In SPRESSO, RPs always set the Referrer Policy to suppress the Referer

header in every HTTP(S) response.

In an earlier version of SPRESSO presented in [FKS15b], we proposed a slightly different

7In a nutshell, the Referrer policy can completely forbid the browser to send the Referrer header, strip the URL
contained in the Referer header to its origin, allow the Referer header to be sent unaltered, or use a combination of
these modes depending on whether the Referer header will be sent cross-origin or over a non-HTTPS connection.
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solution. At that time, the Referrer Policy proposal had not been made, but a similar way to

suppress the Referer header had already been introduced with HTML5: a special attribute for

links, which causes the Referer header to be suppressed (rel="noreferrer").8 However, when

such a link is used to open a new window, the new window does not have a handle on the opening

window (opener) anymore. But having a handle is essential for SPRESSO, as the postMessage

in Step 19 is sent to the opener window of IdPdoc. To preserve the opener handle while at the

same time hiding the Referer header, we first opened the new window with a redirector document

loaded from RP and then navigate this window to IdPdoc (using a link with the noreferrer attribute

set and triggered by JavaScript). This causes the Referer header to be cleared as well, while

the opener handle is preserved.9 Using this redirect solution, however, is more complicated and

therefore, has been simplified in SPRESSO as presented here. Our formal analysis (presented in

this document and in [FKS15b]) implies that with both solution indeed privacy is preserved.

Cross-Site Request Forgery. Cross-Site Request Forgery is particularly critical at RP, where it

could be used to log a user in under an identity that is not her own. For RP, SPRESSO therefore

employs a session token that is not stored in a cookie, but only in the state of the JavaScript,

avoiding cross-origin and cross-domain cookie attacks. Additionally, RP checks the Origin

header of the login request to make sure that no login can be triggered by a third party (attacker)

Web page. Our formal analysis implies that Cross-Site Request Forgery and related attacks are

not possible in SPRESSO.

Phishing. It is important to notice that in SPRESSO the user can verify the location and TLS

certificate of IdPdoc’s window by checking the location bar of her browser. The user can therefore

check where she enters her password, which would not be possible if IdPdoc was loaded in an

iframe. Setting Strict Transport Security headers can further help in avoiding phishing attacks.

Tag Length Side Channel. The length of the tag created in Step 6 depends on the length of

RPDomain. Since the tag is given to IdP, IdP might try to infer RPDomain from the length of

the tag. However, according to [RFC1035], domain names may at most be 253 characters long.

Therefore, by appropriate padding (e.g., encrypting always nine 256 Bit plaintext blocks)10 the

length of the tag will not reveal any information about RPDomain.

Performance. SPRESSO uses only standard browser features, employs only symmetric en-

cryption/decryption and signatures, and requires (in a minimal implementation) eight HTTPS

8Note that the specification of this attribute has also been incorporated into the Referrer Policy specification [ES17].
9Another option would have been to use a data URI instead of loading the redirector document from RPdoc and to

use a Refresh header contained in a meta tag for getting rid of the Referer header. This however showed worse
cross-browser compatibility, and the Refresh header lacks standardization.

10Eight 256 bit blocks are sufficient for all domain names. We need an additional block for rpNonce.
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requests/responses — all of which pose no significant performance overhead to any modern Web

application, neither for the browser nor for any of the servers. In our prototypical and unopti-

mized implementation, a login process takes less than 400 ms plus the time for entering email

address and password.

Usability. In SPRESSO, users are identified by their email addresses (an identifier many users

easily memorize) and email providers serve as identity providers. Many Web applications today

already use the email address as the primary identifier along with a password for the specific

Web site: When a user signs up, a URL with a secret token is sent to the user’s email address.

The user has to check her emails and click on the URL to confirm that she has control over the

email address. She also has to create a password for this Web site. SPRESSO could seamlessly

be integrated into this sign up scheme and greatly simplify it: If the email provider (IdP) of the

user supports SPRESSO, an SPRESSO login flow can be launched directly once the user entered

her email address and clicked on the login button, avoiding the need for a new user password and

the email confirmation; and if the user is logged in at the IdP already, the user does not even have

to enter a password. Otherwise, or if a user has JavaScript disabled, an automatic and seamless

fallback to a classical email-based account creation process is possible (as RP can detect whether

the IdP supports SPRESSO in Step 4 of the protocol). In contrast to other login systems, such

as Google ID, the user would not even have to decide whether to log in with SPRESSO or not

due to the described seamless integration of SPRESSO. Due to the privacy guarantees (which

other SSO systems do not have), using SPRESSO would not be disadvantageous for the user as

her IdPs cannot track to which RPs the user logs in.

The above illustrates that, using SPRESSO, signing up to a Web site is very convenient: The

user just enters her email address at the RP’s Web site and presses the login button (if already

logged in at the respective IdP, no password is necessary). Also, with SPRESSO the user is free

to use any of her email addresses.

Extendability. SPRESSO could be extended to have the IdP sign (in addition to the email

address) further user attributes in the IA, which then might be used by the RP.

Operating FWD. Operating an FWD is very cheap, as the only task is to serve one static file.

Any party can act as an FWD. Users and RPs might feel most confident if an FWD is operated

by widely trusted non-profit organizations, such as Mozilla or the EFF.

Comparison with BrowserID. As discussed earlier in this thesis, BrowserID was the first and

so far only SSO system designed to provide privacy. Nonetheless, as discussed in Section 4.6,

we discovered severe attacks on BrowserID which show that the privacy promise of BrowserID

is broken: not only IdPs but even other parties can track the login behavior of users. Regaining
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privacy would have required a major redesign of the system, resulting in essentially a completely

new system. Also, BrowserID has the disadvantage that it relies on a single trusted server (LPO).

Furthermore, LPO is quite complex, involved into several server interactions in every login

process, and most importantly, by design, gets full information about the login behavior of users.

In SPRESSO, we do not have a central authority comparable to LPO. SPRESSO, however,

requires a forwarder, which is responsible for transferring an identity assertion from the IdP to

the RP. In a login process, however, the FWD server is not a fixed entity and can be freely chosen.

The FWD server needs to provide only a fixed single and very simple JavaScript and no further

server interaction is necessary. Also, FWD does not get full information and RP in every login

process may choose any FWD it trusts. Moreover, as discussed above, there are means to force

FWD to provide the expected JavaScript.

Finally, BrowserID is a rather complex SSO system (with at least 64 network and inter-frame

messages in a typical login flow11 compared to only 19 in SPRESSO). This complexity implies

that security vulnerability go unnoticed more easily. During our formal analysis of BrowserID,

we have found several severe attacks breaking authentication and privacy claims.

This is why we designed and built SPRESSO from scratch, rather than trying to redesign

BrowserID. The design of SPRESSO is in fact very different to BrowserID. For example, except

for HTTPS and signatures of IdPs, SPRESSO uses only symmetric encryption, whereas in

BrowserID, users (user’s browers) have to create public/private key pairs and IdPs sign the user’s

public keys. The entities in SPRESSO are different to those in BrowserID as well, e.g., SPRESSO

does not rely on the mentioned single, rather complex, and essentially omniscient trusted party,

resulting in a completely different protocol flow. The design of SPRESSO is much slimmer than

the one of BrowserID.

5.3. Formal Model

We here present the formal model of SPRESSO, which is the basis for our formal analysis

of authentication, session integrity, and privacy. Our model closely follows the description of

SPRESSO presented in Section 5.1.2. As this model is also based on the template for SSO

protocols presented in Chapter 3, our description of this model presented here — on a high-level

— looks similar to our description of the model of BrowserID (Section 4.4). Obviously, the details

of the two models differ significantly.

We model SPRESSO as an SSO Web system (in the sense of Section 3.1). We call SWS =

(W sp,S ,script,E0) an SPRESSO Web system if it is of the form as described in Appendix F.1. In

11Counting HTTP request and responses as well as postMessages, leaving out any user requests for GUI elements or
other non-essential resources.
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what follows, we outline the components of such a Web system.

Following Definition 4, we define the system W sp to be composed of the (pairwise disjoint)

subsets Web, Net, B, RP, IDP, DNS, and Other. The set Other contains forwarders. For

readability, we refer to this set by FWD, i.e., FWD= Other.

As described in Section 3.4, for analysis of authentication and session integrity, we use an

SPRESSO Web system with a network attacker that is an SPRESSO Web system with Web= /0

and Net = {attacker}. We also write SWS auth if we refer to an SPRESSO Web system with a

network attacker. For the analysis of privacy, we define an SPRESSO Web system for privacy

analysis that follows Definition 16 (see also Section 5.5 below).

The set N of nonces is partitioned into four (disjoint) sets: The (infinite) set NW sp
contains

the nonces that are available for each DY process in W sp (NW sp
is set as a sequence in the initial

configuration of the system), the set KTLS contains the keys that will be used for TLS encryption,

the set Ksign contains the keys that will be used by IdPs for signing IAs (signing keys),12 and the

set Secrets⊆N is the set of passwords (secrets) the browsers share with the identity providers.

The nonces in KTLS, Ksign, and Secrets are distributed according to their purpose over the initial

states of the processes (see below).

The set IPs contains for every Web attacker in Web, every network attacker in Net, every

relying party in RP, every identity provider in IDP, every forwarder in FWD, every DNS server in

DNS, and every browser in B one IP address each. As usual, by addr we denote the corresponding

assignment from a process to its address. The set Doms contains a finite set of domains for every

forwarder FWD, every relying party in RP, every identity provider in IDP, every Web attacker in

Web, and every network attacker in Net (we denote the assigned by dom). Browsers (in B) and

DNS servers (in DNS) do not have a domain. Each domain is assigned a unique private key from

KTLS and for each domain, the “owner” (according to dom−1) is given the respective private key

in its initial state. For each of these keys, the public key (i.e., pub(k) for k ∈ KTLS) is given to

(the initial state of) browsers, RPs, and attackers in the form of a dictionary indexed by the key’s

domain.

(User) identities are used as specified in Definition 1, which also matches the nature of email

addresses. Each browser b ∈ B is assigned a (finite) set of identities and their respective secrets

(out of Secrets). Identities and secrets are unique to a browser, i.e., browsers have disjoint sets

of identities and disjoint sets of secrets.

Similar to our model of BrowserID, we provide a list of pairs of identities and corresponding

secrets in the initial state of their governor and set the initial state of browsers such that browsers

provide secrets to scripts that run under a secure origin of their identities’ governor.

12As in the model for BrowserID, we call the public counterpart of a (private) signing key (k ∈ Ksign) a verification
key (pub(k)).
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The set S contains four scripts, with their string representations defined by script: besides the

attacker script Ratt, the set contains the honest scripts that describe the honest Web pages of RPs,

IdPs, and the forwarders (see below for more details).

The set E0 contains only the trigger events as specified in Section 2.3.

Recall that in an SPRESSO login flow, RP issues a tag, which in turn is placed by the IdP in

an identity assertion. We first define these elements formally as follows:

Definition 19. A tag is a term of the form encs(⟨d,n⟩,k) for some domain d, a nonce n ∈N , and

a nonce (here used as a symmetric key) k. ⋄

Definition 20. An identity assertion (IA) is a term of the form sig(⟨t,e,d′⟩,k) with t being a tag,

e an identity, d′ a domain, and k a nonce. We call a term eia an encrypted identity assertion (EIA)

if eia is of the form encs(ia,k′) with ia being an IA and k′ a nonce.

⋄

The (signing) keys (nonces) for IAs are distributed in the initial states of IdPs, i.e., each IdP is

given one (private) key that the IdP uses to sign all IAs for identities it governs.

We now sketch the processes and the scripts in W sp and S (see Appendix F.1 for full details).

As mentioned, our modeling closely follows the description in Section 5.1.2.

Browsers. Browsers (in B) are defined as described in Section 2.5 and configured (in their initial

state) similar as in the model of BrowserID: In their initial state, browsers are given a list of

their identities, secrets for these identities (stored in a dictionary under a secure origin of the

respective governor), and a dictionary of public keys used for TLS.

See Appendix F.1.5 for further details on browsers in W sp .

IdPs. Each IdP (in IDP) is a Web server. It responds requests to three distinct paths (see below),

where it serves the login dialog Web page (script_idp), the support document containing its

public key, and where it issues a (signed) identity assertion. Users can authenticate to the IdP

with their credentials and IdP tracks the state of the users with (Web) sessions. Only users that

are authenticated by such a session (or provide credentials to create such a session) can receive

IAs from the IdP.

In their initial state, each IdP is given its (private) TLS keys, the private signing key that is

used to sign IAs, and information about the identities the IdP governs. For the “user database” of

an IdP, we use the same idea as in BrowserID (see Section 4.4.1) and provide the IdP in its initial

state a dictionary that maps secrets to a list of identities the secret is valid for.
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Initially, IdPs are honest. When receiving a corrupt message IdPs become corrupted. Similar

to the definition of corruption for the browser, IdPs then start sending out all messages that are

derivable from their state. This means, that they effectively become Web attackers.

(Web) sessions at IdPs. IdPs maintain (Web) sessions to track whether a user has authenticated

before. These sessions are tracked using cookies.

HTTPSRequests to IdPs. IdPs reply to certain requests only. All of these requests have to be

received over HTTPS. We describe each kind of HTTPS request below:

GET /.well-known/spresso-login. An IdP replies to such an request with a response contain-

ing the script script_idp. Into the initial state of this script, the IdP encodes whether the

browser is already logged in or not. Further, the IdP issues an XSRF token to the browser

(in the same way RPs do).

GET /.well-known/spresso-info. If an IdP receives such a request, it replies with its (public)

verification key that can be used to verify its identity assertion signatures.

POST /sign. Using a POST request to this path requests an IA. Such a request must contain an

identity and a valid session id for that identity or a password for that identity. Further, such

a request must contain a tag and a forwarder domain. When processing such a request, the

IdP creates an identity assertion for these values and replies (in an HTTPS response) with

that identity assertion. Further, the IdP always creates a new session for the identity (with

a cookie in its reply).

RPs. RPs follow our description above. They serve the script script_rp and accept requests

for starting and completing an SPRESSO login flow (see below). Note that all HTTPS responses

an RP sends out contain the ReferrerPolicy header that disables the Referer header in Web

browsers for all requests caused by scripts in documents created by such a response. Initially

RPs are honest and can be corrupted similar to IdPs.

In its initial state, each RP is given the (private) TLS key for its domain, a dictionary of public

TLS keys, and the domain of a forwarder that they use for SPRESSO.

During a run, an RP learns (public) verification keys of IdPs (the RP fetches this key from

the respective IdP via HTTPS). The RP maintains a dictionary for these public keys. In this

dictionary, the RP stores each key it learned under the domain of the respective IdP. If the RP

already knows the (public) verification key for an IdP domain, the RP uses this key right away to

verify the signature of IAs for this domain.

RPs maintain two kinds of (Web) sessions: login sessions, which are only used during the

login phase of a user, and service sessions (as described in Section 3.1).
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Login sessions at RPs. A login session is created by an RP to track the login flow of a user. The

login session is identified by a login session token that is passed to the user when starting a login.

RP records, for each login session, the id of the user, the tag used for the login flow (containing

a fresh nonce), and the key that is used to encrypt the identity assertion.

Service sessions at RPs. Service sessions at RPs are defined as usual, i.e., an RP issues a service

token that refers to an entry for the service session in RP’s state.

HTTPSRequests to RPs. RPs reply to certain requests only. All of these requests have to be

received over HTTPS.

We describe each kind of HTTPS request below:

GET / and POST /. An RP replies to all requests to the path / by providing the script script_rp.

POST /startLogin. If an RP receives such a request, the RP starts a login flow. The RP

expects13 that such a request contains a user identity in its body. If the RP does not know

the domain of this id (i.e., there is no public key for verifying signatures of the domain’s

IdP in RP’s state), the RP first retrieves this information by sending an HTTPS request

to that domain. If the RP has retrieved that information or already knows the domain of

this id, the RP creates a set of fresh keys, tagKey and iaKey. It creates a tag that contains

the RP’s domain and a fresh nonce and that is encrypted (symmetrically) using tagKey.

Further, RP creates a login session (see above) and answers the request with (among others)

the tag, the login session token, the domain of the forwarder that RP selected,14 and the

URL of the login dialog at IdP.15 This URL contains (as parameters) the tag, the identity,

the forwarder domain, and iaKey.

POST /login. If an RP receives such a request, the RP expects this request to contain several

values: a login session token that refers to a current login session, and an identity assertion

(encrypted with the respective key stored in the login session). This identity assertion must

contain (according to the login session) the correct tag, the correct identity, and the correct

forwarder domain and the identity assertion must have a valid signature by the IdP of the

identity. If these conditions are met, the RP creates a service session and responds with an

HTTPS response containing the service token.

See Appendix F.1.7 for more details on RPs.

13When we write expect, we mean that the RP tries to decompose the message into these values and if this is not
possible, the RP stops the processing step without further action.

14In our model for RPs, the forwarder is statically configured in RP’s state. For privacy analysis, we consider that all
(honest) RPs have configured the same forwarder.

15The URL of the login dialog is derived from the domain of the identity.
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FWDs. Forwarders (in FWD) are Web servers that have only one state (i.e., their relation does

not modify the state) and serve only the script script_fwd (for all HTTPS requests). In their

initial state, forwarders are only given their private TLS keys to receive HTTPS requests.

Forwarders cannot become corrupted. As discussed in Section 5.2, if a dishonest forwarder is

used in an SPRESSO flow, attacks are possible. In our analysis, however, we capture all possible

runs of an SPRESSO SSO Web system. In such a run, the attacker can easily simulate an honest

RP that uses a dishonest forwarder (an attacker process). Honest browsers are not restricted in

interacting with this (simulated) RP and can also log in there.

See Appendix F.1.8 for further details.

DNS Servers. Each DNS server (in DNS) contains the assignment of domain names to IP

addresses and answers DNS requests accordingly.

SPRESSO scripts. The set S of the Web system SWS consists of the scripts Ratt, script_rp,

script_idp, and script_rp.

The script Ratt is the attacker script (see Section 2.5) and the formal modeling of the remaining

(honest) scripts follows the descriptions below (see Appendix F.1.10 for more details). Similar

to our model for BrowserID, we model these scripts as state machines that use the subterm q in

their scriptstate to track their state.

Relying party script (script_rp). The script script_rp defines the script of RP’s Web page. In this

script, the user chooses an identity and then this script takes care of invoking the SPRESSO login

flow.

When run, the script behaves as follows:

q≡ start This is the initial state. In this state, the user selects an identity and the script sends

an XHR to RP (determined by the script’s origin). The script transitions to the state

expectStartLoginResponse.

q≡ expectStartLoginResponse The script continues if it has received a response to the

XHR sent above. It stores information received in that XHR in its scriptstate (e.g., the

login session token, tagKey, and the forwarder domain). The script transitions to the state

expectFWDReady and opens the login dialog with the URL received in the XHR. Recall

that this URL is supposed to contain the tag, the identity, the forwarder domain, and iaKey.

q≡ expectFWDReady In this state, the script continues if it has received a postMessage from

the forwarder iframe located in the login dialog the script opened earlier. This postMessage

tells the script that the forwarder is ready. The script then answers this postMessage with
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a postMessage to the forwarder iframe that contains tagKey and transitions to the state

expectEIA.

q≡ expectEIA The script checks whether it has received a new postMessage from the for-

warder iframe (located in the login dialog as above). The script expects that this postMes-

sage contains an encrypted identity assertion, which the script forwards along with the

login session token (from the scriptstate) to its RP in an XHR. The script then transitions

to the state expectServiceToken.

q≡ expectServiceToken In this state, the script does nothing.

Identity provider script (script_idp). This script represents the login dialog of IdPs. This script

authenticates to an IdP, forward a tag to that IdP, expect an identity assertion in return and then

pass this identity assertion (encrypted) to a forwarder iframe.

The states of this script and its behaviour are as follows:

q≡ start. This is the initial state. The script expects an identity, a tag, and a forwarder domain

in the URL parameters of its document. The script sends an XHR to its origin containing

the identity, the secret (password) for this origin, the tag, and the forwarder domain. Then,

the script transitions to the state expectIA.

q≡ expectIA. In this state, the script continues if it has received a response to the XHR sent

above and expects that this XHR response contains an identity assertion. The script

encrypts that identity assertion with the iaKey taken from its document’s URL and creates

an iframe witht he URL of the forwarder. It passes the tag and the encrypted identity

assertion to the forwarder iframe as URL parameters. Finally, the script transitions to the

state stop.

q≡ stop. In this state, the script does nothing.

Forwarder script (script_fwd). The script script_fwd is responsible for the forwarder iframe. The

main purpose of this script is to forward an identity assertion to a document that runs under the

origin the assertion is issued for.

The script can take three states:

q≡ start. This is the initial state. The script sends a postMessage to the opener of the login

dialog (the login dialog is supposed to be the parent of the window containing this script).

This postMessage indicates that the forwarder script is ready. The script then transitions

to the state expectTagKey.
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q≡ expectTagKey. The script continues if it has received a postMessage from the same win-

dow as above. The script expects that this postMessage contains tagKey, which it uses to

decrypt the tag. Recall that the tag contains the domain of the RP that issued the tag. The

script now sends a postMessage to the same window as above. This postMessage contains

the encrypted identity assertion (which the script takes from its document’s URL) and is

restricted to be delivered only to the domain of the RP (contained in the tag). The script

then transitions to the final state stop.

q≡ stop. In this state, the script does nothing.

5.4. Authentication and Session Integrity of SPRESSO

We now show that SPRESSO satisfies authentication and session integrity. For both properties,

we use the SPRESSO SSO Web model with a network attacker as described in the previous

section. Recall that this system contains, beside a network attacker, a finite set of browsers,

a finite set of relying parties, a finite set of identity providers, and a finite set of forwarders.

Browsers and relying parties can become corrupted by the network attacker. The network attacker

subsumes all Web attackers and also acts as a (dishonest) DNS server to all other parties.

We first prove that SPRESSO satisfies authentication:

Theorem 5. Let SWS auth be an SPRESSO Web system as defined above. Then SWS auth is secure

w.r.t. authentication.

For the proof, we first show some general properties of SWS auth. In particular, we show that

encrypted communication over HTTPS between an honest relying party and an honest IdP cannot

be altered by the (network) attacker, and, based on that, any honest relying party always retrieves

the “correct” public signature verification key from honest IdPs. We then proceed to show that

for a service token to be issued by an honest RP, a request of a specific form containing an IA

has to be received by the RP.

We then use these properties and the general Web system properties shown in Section 2.9 to

prove the theorem. We assume that the authentication property is not satisfied and lead this to a

contradiction. In particular, we show that an attacker must get hold of a valid identity assertion

created by an honest IdP for some honest user and for some honest RP. We show that such an

IA is only ever issued to a browser that owns the respective identity. In the browser, the only

script that can receive the issued IA is script_idp (running under an origin of the IdP). This

script only ever passes the IA to a forwarder iframe that is loaded from an honest forwarder (the

forwarder determined by the RP that requested the IA). We show that, in this iframe, only the
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script script_fwd can be loaded and that this script only ever forwards the IA to a document that

is loaded from a (secure) origin of the RP the IA was issued for. Such a document must contain

the script script_rp that only ever forwards the IA to the RP it was loaded from. As the RP never

leaks any IA forwarded by this script, we have that the IA cannot be known by the attacker (or

any other corrupted party). As the RP only ever sends out a service token to the sender of such

an IA (using HTTPS), the attacker cannot get hold of a service token for an honest user.

The full proof is provided in Appendix F.2.

Next, we prove that SPRESSO also provides session integrity:

Theorem 6. Let SWS auth be an SPRESSO Web system as defined above. Then SWS auth is secure

w.r.t. session integrity.

For session integrity, we show that for every (network) event in which an honest browser gets

logged in under some identity at an honest RP (i.e., the browser receives a service token for this

identity at the RP), the browser must have sent a corresponding (HTTPS) request that contains a

login session token that is bound to the same user identity at the RP. Such a request must have

been sent by the script script_rp as this is the only script that is delivered by the RP and hence, the

only script that can instruct the browser to send requests to the RP that pass the Origin header

check at the RP. This script only ever uses a login session token that must have been set when a

certain HTTPS response was processed (by the browser). This response must be a response to a

request sent by the script that starts the login flow at the RP. This request is constructed (by the

script) such that it only ever requests a login at the RP for an identity owned by the browser.16

When the RP processes this request, it creates the login session token and binds this token to the

identity in the request. Hence, the user only gets logged in for identities she owns and the steps

in which the user starts a login flow, selects an IdP, selects an identity, and gets finally logged in

are all part of the same SSO session.

Note that the design of SPRESSO makes this proof very straightforward as the first three steps

(start of the login flow, selection of the IdP, and selection of the identity) are all the very same

processing step. Hence, it is sufficient to show that this processing step and the processing step

in which the user gets logged in, are part of the same SSO session and the identity selected by

the user in the first step matches the one for which the user gets logged in. As SPRESSO only

uses scriptstates to store the login session token in the browser, several (different) login flows

cannot be mixed up.

We provide the full proof in Appendix F.3.

16Recall that we assume that a user only enters identities actually owned by this user.
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5.5. Privacy of SPRESSO

For the analysis of privacy, we consider SPRESSO Web systems for privacy analysis following

the Definition 16 in Section 3.4.3. These Web systems are derived from “normal” SPRESSO Web

systems described in Section 5.3. In such a system for privacy analysis, we have one or more Web

attackers, no network attackers, one honest DNS server, one honest forwarder, one (challenge)

browser, and two honest relying parties r1 and r2 (with domains dr1 and dr2, respectively). All

honest parties may not become corrupted and use the honest DNS server for address resolving.

Identity providers are assumed to be dishonest, and hence, are subsumed by the Web attackers

(which govern all identities). The Web attackers subsume also potentially dishonest forwarders,

DNS servers, relying parties, and other servers. We use a challenge browser as the only honest

browser (see Section 3.4.3). The honest relying parties are set up such that they already contain

the (public) verification keys for each domain registered at the DNS server, modeling that the

RPs have “warm” caches or are able to retrieve these keys through an anonymous channel as

discussed in Section 5.2.

We denote Web systems as described above by SWS priv
(dr), where dr is the domain of the

relying party given to the challenge browser in this system. See Appendix F.1.12 for a full formal

definition.

We now show that SPRESSO indeed enjoys privacy, i.e., that no IdP can tell at which RP a

user is about to log in or has logged in.

Theorem 7. Every SPRESSO Web system for privacy analysis is IdP-private.

In the proof, we define an equivalence relation between configurations of SWS priv
(r1) and

SWS priv
(r2), comprising equivalences between states and equivalences between events (in the

pool of waiting events). For the states, for each (type of an) atomic DY process in the Web

system, we define how their states are related. For example, the state of the FWD server must

be identical in both configurations. As another example, roughly speaking, the attacker’s state is

the same up to subterms the attacker cannot decrypt. Regarding (waiting) events, we distinguish

between messages that result (directly or indirectly) from a CHALLENGE request by the browser

and other messages. While the challenged messages may differ in certain ways, other messages

may only differ in parts that the attacker cannot decrypt.

Given these equivalences, we then show by induction and an exhaustive case distinction that,

starting from equivalent configurations, every schedule leads to equivalent configurations. (We

note that in SWS priv
(·) a schedule induces a single run because in SWS priv

(·) we do not have non-

deterministic actions that are not determined by a schedule: honest servers and scripts perform

only deterministic actions.) As an example, we distinguish between the potential receivers of an
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event. If, e.g., FWD is a receiver of a message, given its identical state in both configurations

(as per the equivalence definition) and the equivalence on the input event, we can immediately

show that the equivalence holds on the output message and state. For other atomic DY processes,

such as browsers and RPs, this is much harder to show. For example, for browsers, we need to

distinguish between the different scripts that can potentially run in the browser (including the

attacker script), the origins under which these scripts run, and the actions they can perform.

For equivalent configurations of SWS priv
(r1) and SWS priv

(r2), we show that the attacker’s

views are indistinguishable. Given that for all SWS priv
(r1) and SWS priv

(r2) every schedule leads

to equivalent configurations, we have that SPRESSO is IdP-private.

The full proof is provided in Appendix F.4.

5.6. Implementation

We developed a proof-of-concept implementation of SPRESSO in about 700 lines of JavaScript

and HTML code. It contains all presented features of SPRESSO itself and a typical IdP. Fig-

ure 5.3 shows screenshots of our implementation. The source code and a demo site are available

at [FKS19]. Our implementation closely follows the model presented in Section 5.3.

The three servers (RP, IdP and FWD) are written in JavaScript and are based on node.js and

its built-in crypto API. We provide these servers as Docker containers for easy deployment. On

the client-side we use the Web Cryptography API. For encryption we employ AES-256 in GCM

mode to provide authenticity. Signatures are created/verified using RSA-SHA256.
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(a) The relying party asks the user to log in.

(b) The user’s email provider (IdP) prompts the user for her password.

(c) The user is logged in at the RP.

Figure 5.3.: Screenshots of our prototypical SPRESSO implementation.
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Our work is the first to systematically analyze privacy in the Web in a formal way. As privacy

itself is worthless without proper security, our approach includes the analysis of security proper-

ties as well. We not only show shortcomings of a real-world SSO system, BrowserID, but also,

for the first time, use formal methods to design a secure and private SSO system from scratch.

Our approach is based on the WIM, the most comprehensive model of the Web infrastructure

to date. The WIM captures many vital aspects of the inherently complex Web. Most importantly,

the WIM includes a detailed model of modern Web browsers with many basic and advanced

features starting at the handling of multiple windows up to Web messaging and Web storage. A

detailed model like the WIM is essential for security and privacy analysis as even inconspicuous

details such as the window structure in a browser can break privacy — as demonstrated by the

attacks on the privacy of BrowserID that we present in this thesis.

To perform our analyses on this solid foundation, we defined generic properties for security

and privacy: The security properties are — as usual in Dolev-Yao style models — based on

conditions that every single run of a system has to meet, e.g., that certain nonces are not derivable

by an adversary. Privacy, however, requires a more complex definition. This property captures

the inability of an adversary to distinguish between different choices of a user. Hence, the notion

of derivability of some secret is not powerful enough as even subtle behavioral differences may

provide hints to the attacker. Therefore, we have based our privacy property on the notion of

static equivalence and compare the attacker’s view on two separate runs. Every pair of runs

that are compared in this way are equally induced by a schedule chosen by the adversary and

only differ by the user’s choice at one specific step determined by the attacker. For the privacy

property to be fulfilled, every possible pair of such runs must match static equivalence of the

attacker’s view, i.e., its runs are effectively indistinguishable for the attacker. Obviously, this kind

of analysis based on the comparison of two similar runs induced by the adversary is particularly

challenging compared to the analysis of the security properties that only reason on possible runs

individually.

To enable privacy analysis, we have extended and improved the WIM. In particular, we had to

remove technical non-determinism in many places, where this non-determinism was in conflict

with our notion of similar runs needed for privacy. Further, we introduced a way for the attacker
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to schedule and to have (limited) control over such runs and also added challenge browsers that

allow an attacker to trigger a user choice which by itself is opaque to the adversary.

To facilitate future analyses of Web SSO systems, we generalized security and privacy prop-

erties such that they can be used more easily in the analysis of other Web SSO systems. This

way, the results of such analyses are also comparable to each other. Although only applied to

Web SSO systems so far, these properties can be adapted for analyses of other Web protocols,

standards, or applications.

As the first application of the WIM itself, we have analyzed BrowserID, the first Web SSO

system aimed at providing privacy to its users. During our analysis, we found severe attacks on

BrowserID. These attacks do not only impact BrowserID’s security, but also break BrowserID’s

privacy property. While we were able to fix all security relevant findings and showed that the

fixed version of BrowserID satisfies the security goals of such an SSO system, we conclude that

regarding privacy, BrowserID is broken beyond repair. We have reported all of our findings to

Mozilla, who acknowledged these severe problems and awarded us several bug bounties.

Our analysis of BrowserID also shows that modeling of a protocol in a comprehensive frame-

work of the Web infrastructure, such as the WIM, already provides some insight. For example,

while analyzing the source code of BrowserID to create the model of BrowserID, we discovered

attacks on BrowserID’s identity bridge feature. Obviously, the creation of a model in such a

concise framework as the WIM does not replace a formal proof, but allows an analyst to discover

some problems already in an early stage of the analysis.

Inspired by BrowserID’s unique privacy goal and driven by the question whether it is possible

to create a privacy-preserving Web SSO, we have designed and analyzed SPRESSO. Our analysis

shows that SPRESSO indeed provides strong privacy and security guarantees. This makes

SPRESSO the first Web SSO system to provide privacy and also the first Web SSO system to

feature a formal proof for its privacy and security properties from the beginning.

SPRESSO is designed to be very easy to use. The protocol is based on native Web features

only and does not require any third party add-ons or extensions which might complicate adoption

or might break compatibility in the future.

Similar to BrowserID, in SPRESSO, email providers become IdPs, and users use their email

addresses to log in. SPRESSO can be seamlessly integrated into RPs, who often already use

email addresses as login names. When a user enters her email address at an RP, an SPRESSO

login flow can be automatically started without confusing the user with additional separate login

options. Thanks to SPRESSO’s strong privacy, this automatic use of SPRESSO does not impose

any disadvantage on users in contrast to other Web SSO protocols. Further, as email addresses

are already a key factor in the traditional approach for account registration and recovery, an IdP

that wants to break into its users’ accounts at RPs maliciously also does not gain more power
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SPRESSO allows RPs to provide SSO to its users without the usual privacy implications.

Email providers can advertise SPRESSO support as a new feature for their users. SPRESSO’s

advantages can be very interesting for email providers who are already committed to privacy

today.

As SPRESSO is designed as an open eco-system, any party can start to support SPRESSO right

now. In contrast to BrowserID, SPRESSO is fully decentralized, and there exists no fixed, single

central authority, which can always control any aspect of the protocol. This makes SPRESSO

also suitable to be used not only in the open Web but also in closed, local systems, such as

companies’ internal intranets.

We have implemented SPRESSO in an entirely usable proof-of-concept implementation. To

ease wide adoption, we plan to provide libraries for popular Web application frameworks and

development languages.

Future versions of SPRESSO can, besides strong privacy and security, also include several

other features, such as additional user claims (i.e., attributes, such as name or postal address)

to be provided and certified by the IdP to the RP. Obviously, such features need to be carefully

selected as some features known from other protocols such as OAuth 2.0, e.g., granting access

to users’ resources stored at IdPs to RPs, break privacy.

So far, all security and privacy proofs based on the WIM have been carried out manually

without any tool support. A next step to assist future work based on the WIM is to mechanize

this framework and its proofs. Such mechanization provides analysts with several advantages:

Proofs can be automatically checked for correctness, which helps to avoid manual errors and can

also facilitate the creation of a (new) formal proof by pointing the analyst to next steps. Proofs

and lemmas can also be reused more easily in subsequent analyses with the tool ensuring that

these proofs can be applied. This automatic re-verification is also helpful to re-check old proofs

in updated versions of the WIM in order to verify that new WIM features do not break old results.

Another advantage of such mechanization is that the accessibility of models and the analyses is

improved for non-experts. Having a verified mechanized model also enables the generation of

executable code for real-world implementations from this model that matches its verified logic.

As a long term goal, we envision further automation, including the automatic extraction of a

model from real-world source code or even specifications. Our vision is to support the whole

development process for Web standards and protocols with formal analysis from the drawing

board up to deployment. Our manual approach already has drawn the attention of standardization

bodies, such as the IETF and the OpenID Foundation (see also our work on OAuth 2.0 [FKS16a]

and OpenID Connect 1.0 [FKS17b]). Hence, a tool enabling members of such organizations to

conduct formal analyses would be very valuable.
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A promising candidate for a tool foundation to mechanize WIM analyses is F* [F*; Swa+13].

F* is a functional programming language aimed at program verification. Properties of a pro-

gram, such as security properties, but also functional properties, can be stated precisely using

F*’s comprehensive type system. F* translates all type constraints into satisfiability modulo

theory (SMT) problems. SMT problems are decision problems based on first-order logic (see,

e.g., [MDS07]). There exist several tools that aim at automatically solving SMT problems. F*

uses the SMT solver Z3 [MB08]. F* has been already applied successfully to analyze and verify

complex cryptographic protocols, such as TLS 1.2 and TLS 1.3 [Bha+17].

Independent of mechanization, the WIM can also be further extended. For example, the

WIM browser can be extended with full support for Cross-Origin Resource Sharing [WHA19a],

including the so-called pre-flight requests. These pre-flight requests enable browsers to check

whether a cross-origin request has given clearance to be sent out. Another possible extension

is support for security extensions of DNS, such as DNS Security (DNSSEC) [RFC4033] and

DNS-based Authentication of Named Entities (DANE) [RFC6394]. DNSSEC introduces a PKI

for DNS that is used to authenticate information stored in DNS. DANE builds upon DNSSEC to

allow DNSSEC’s PKI to be extended to applications outside of DNS, such as HTTPS.

We are also interested in the analysis of other properties not covered so far. One attractive

example of such a property in the context of Web SSO is unlinkability of user logins across

different RPs. On a high-level, this property is similar to the privacy property analyzed in this

thesis but is based on the assumption that RPs instead of IdPs are malicious, collude with each

other, and try to correlate user activities. Some Web SSO protocols, such as OpenID Connect

with so-called pairwise subject identifiers [Sak+14], promise to provide this kind of unlinkability

and can serve as case studies.

The current version of SPRESSO does not provide unlinkability w.r.t. malicious RPs. Re-

designing SPRESSO such that it provides both, privacy w.r.t. malicious IdPs and unlinkability

w.r.t. malicious RPs is also an interesting but challenging goal. Clearly, having both properties

at the same time would make SPRESSO an even more attractive Web SSO protocol.

As we have seen in this thesis, formal treatment of security and privacy properties in the Web

infrastructure is an exciting topic with substantial real-world impact. We have paved the way for

formal analyses of this field and demonstrated that our formal approach is suitable to be applied

in the complex environment of the Web. We hope that this approach will find wide adoption to

ensure a high level of security as well as privacy in the future.
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Here, we provide technical definitions that complete our description of the WIM in Chapter 2.

A.1. Terms and Notations

Definition 21 (Nonces and Terms). By X = {x0,x1, . . .} we denote a set of variables and by N
we denote an infinite set of constants (nonces) such that Σ, X , and N are pairwise disjoint. For

N ⊆N , we define the set TN(X) of terms over Σ∪N ∪X inductively as usual: (1) If t ∈ N ∪X ,

then t is a term. (2) If f ∈ Σ is an n-ary function symbol in Σ for some n ≥ 0 and t1, . . . , tn are

terms, then f (t1, . . . , tn) is a term. ⋄

By ≡ we denote the congruence relation on TN (X) induced by the theory associated with Σ.

For example, we have that π1(deca(enca(⟨a,b⟩,pub(k)),k))≡ a.

Definition 22 (Ground Terms, Messages, Placeholders, Protomessages). By TN = TN( /0), we

denote the set of all terms over Σ∪N without variables, called ground terms. The set M of

messages (over N ) is defined to be the set of ground terms TN .

We define the set Vprocess = {ν1,ν2, . . .} of variables (called placeholders). The set M ν :=

TN (Vprocess) is called the set of protomessages, i.e., messages that can contain placeholders. ⋄

Example 1. For example, k∈N and pub(k) are messages, where k typically models a private key

and pub(k) the corresponding public key. For constants a, b, c and the nonce k ∈N , the message

enca(⟨a,b,c⟩,pub(k)) is interpreted to be the message ⟨a,b,c⟩ (the sequence of constants a, b, c)

encrypted by the public key pub(k).

Definition 23 (Events and Protoevents). An event (over IPs and M ) is a term of the form

⟨a, f ,m⟩, for a, f ∈ IPs and m ∈M , where a is interpreted to be the receiver address and f

is the sender address. We denote by E the set of all events. Events over IPs and M ν are

called protoevents and are denoted Eν . By 2E⟨⟩ (or 2Eν ⟨⟩, respectively) we denote the set of

all sequences of (proto)events, including the empty sequence (e.g., ⟨⟩, ⟨⟨a, f ,m⟩,⟨a′, f ′,m′⟩, . . .⟩,
etc.). ⋄
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Definition 24 (Normal Form). Let t be a term. The normal form of t is acquired by reducing

the function symbols from left to right as far as possible using the equational theory shown in

Figure 2.2. For a term t, we denote its normal form as t↓. ⋄

Definition 25 (Pattern Matching). Let pattern ∈ TN ({∗}) be a term containing the wildcard

(variable ∗). We say that a term t matches pattern iff t can be acquired from pattern by replacing

each occurrence of the wildcard with an arbitrary term (which may be different for each instance

of the wildcard). We write t ∼ pattern. For a sequence of patterns patterns we write t∼̇patterns

to denote that t matches at least one pattern in patterns.

For a term t ′ we write t ′|pattern to denote the term that is acquired from t ′ by removing all

immediate subterms of t ′ that do not match pattern. ⋄

Example 2. For example, for a pattern p = ⟨⊤,∗⟩ we have that ⟨⊤,42⟩ ∼ p, ⟨⊥,42⟩ ̸∼ p, and

⟨⟨⊥,⊤⟩,⟨⊤,23⟩,⟨a,b⟩,⟨⊤,⊥⟩⟩| p = ⟨⟨⊤,23⟩,⟨⊤,⊥⟩⟩ .

Definition 26 (Variable Replacement). Let N ⊆N , τ ∈ TN({x1, . . . ,xn}), and t1, . . . , tn ∈ TN .

By τ[t1/x1, . . . , tn/xn] we denote the (ground) term obtained from τ by replacing all occurrences

of xi in τ by ti, for all i ∈ {1, . . . ,n}. ⋄

Definition 27 (Sequence Notations). For a sequence t = ⟨t1, . . . , tn⟩ and a set s we use t ⊂⟨⟩ s to

say that t1, . . . , tn ∈ s. We define x ∈⟨⟩ t ⇐⇒ ∃i : ti = x . For a term y we write t +⟨⟩ y to denote

the sequence ⟨t1, . . . , tn,y⟩. For a sequence r = ⟨r1, . . . ,rm⟩ we write t ∪ r to denote the sequence

⟨t1, . . . , tn,r1, . . . ,rm⟩. For a finite set M with M = {m1, . . . ,mn} we use ⟨M⟩ to denote the term of

the form ⟨m1, . . . ,mn⟩. (The order of the elements does not matter; one is chosen arbitrarily.) ⋄

Definition 28. A dictionary over X and Y is a term of the form

⟨⟨k1,v1⟩, . . . ,⟨kn,vn⟩⟩

where k1, . . . ,kn ∈ X , v1, . . . ,vn ∈ Y . We call every term ⟨ki,vi⟩, i ∈ {1, . . . ,n}, an element of

the dictionary with key ki and value vi. We often write [k1 : v1, . . . ,ki : vi, . . . ,kn : vn] instead of

⟨⟨k1,v1⟩, . . . ,⟨kn,vn⟩⟩. We denote the set of all dictionaries over X and Y by [X×Y ]. ⋄

We note that the empty dictionary is equivalent to the empty sequence, i.e., [] = ⟨⟩. Figure A.1

shows the short notation for dictionary operations. For a dictionary z = [k1 : v1,k2 : v2, . . . ,kn : vn]

we write k ∈ z to say that there exists i such that k = ki. We write z[k j] to refer to the value v j.

(Note that if a dictionary contains two elements ⟨k,v⟩ and ⟨k,v′⟩, then the notations and operations

for dictionaries apply non-deterministically to one of both elements.) If k ̸∈ z, we set z[k] := ⟨⟩.
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[k1 : v1, . . . ,ki : vi, . . . ,kn : vn] [ki] = vi (A.1)

[k1 : v1, . . . ,ki−1 : vi−1,ki : vi,ki+1 : vi+1 . . . ,kn : vn]− ki =

[k1 : v1, . . . ,ki−1 : vi−1,ki+1 : vi+1 . . . ,kn : vn] (A.2)

Figure A.1.: Dictionary operators with 1≤ i≤ n.

Given a term t = ⟨t1, . . . , tn⟩, we can refer to any subterm using a sequence of integers. The

subterm is determined by repeated application of the projection πi for the integers i in the

sequence. We call such a sequence a pointer:

Definition 29. A pointer is a sequence of non-negative integers. We write τ.p for the application

of the pointer p to the term τ . This operator is applied from left to right. For pointers consisting

of a single integer, we may omit the sequence braces for brevity. ⋄

Example 3. For the term τ = ⟨a,b,⟨c,d,⟨e, f ⟩⟩⟩ and the pointer p = ⟨3,1⟩, the subterm of τ at

the position p is c = π1(π3(τ)). Also, τ.3.⟨3,1⟩= τ.3.p = τ.3.3.1 = e.

To improve readability, we try to avoid writing, e.g., o.2 or π2(o) in this document. Instead,

we will use the names of the components of a sequence that is of a defined form as pointers that

point to the corresponding subterms. E.g., if an Origin term is defined as ⟨host,protocol⟩ and o

is an Origin term, then we can write o.protocol instead of π2(o) or o.2. See also Example 4.

Definition 30 (Concatenation of terms and sequences). For a term a = ⟨a1, . . . ,ai⟩ and a se-

quence b = (b1,b2, . . .), we define the concatenation as a ·b := (a1, . . . ,ai,b1,b2, . . .).

⋄

Definition 31 (Subtracting from Sequences). For a sequence X and a set or sequence Y we

define X \Y to be the sequence X where for each element in Y , a non-deterministically chosen

occurence of that element in X is removed. ⋄

A.2. Message and Data Formats

We now provide some more details about data and message formats that are needed for the formal

treatment of the web model and the analysis presented in the following.
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A.2.1. URLs

Definition 32. A URL is a term of the form

⟨URL,protocol,host,path,parameters, fragment⟩

with protocol ∈ {P,S} (for plain (HTTP) and secure (HTTPS)), a domain host ∈Doms, path∈ S,

parameters ∈
[
S×TN

]
, and fragment ∈ TN . The set of all valid URLs is URLs. ⋄

The fragment part of a URL can be omitted when writing the URL. Its value is then defined to

be ⊥. We sometimes also write URLhost
path to denote the URL ⟨URL,S,host,path,⟨⟩,⊥⟩.

As mentioned above, for specific terms, such as URLs, we typically use the names of its

components as pointers (see Definition 29):

Example 4. For the URL u = ⟨URL,a,b,c,d⟩, u.protocol = a. If, in the algorithm described

later, we say u.path := e then u = ⟨URL,a,b,c,e⟩ afterwards.

A.2.2. Origins

Definition 33. An origin is a term of the form ⟨host,protocol⟩ with host ∈Doms and protocol ∈
{P,S}. We write Origins for the set of all origins. ⋄

Example 5. For example, ⟨FOO,S⟩ is the HTTPS origin for the domain FOO, while ⟨BAR,P⟩ is the

HTTP origin for the domain BAR.

A.2.3. Cookies

Definition 34. A cookie is a term of the form ⟨name,content⟩ where name∈ TN , and content is a

term of the form ⟨value,secure,session,httpOnly⟩where value∈ TN , secure, session, httpOnly∈
{⊤,⊥}. We write Cookies for the set of all cookies and Cookiesν for the set of all cookies where

names and values are defined over TN (V ). ⋄

If the secure attribute of a cookie is set, the browser will not transfer this cookie over unen-

crypted HTTP connections. If the session flag is set, this cookie will be deleted as soon as the

browser is closed. The httpOnly attribute controls whether JavaScript has access to this cookie.

Note that cookies of the form described here are only contained in HTTP(S) requests. In

HTTP(S) responses, only the components name and value are transferred as a pairing of the form

⟨name,value⟩.
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A.2.4. HTTP Messages

Definition 35. An HTTP request is a term of the form shown in (A.3). An HTTP response is a

term of the form shown in (A.4).

⟨HTTPReq,nonce,method,host,path,parameters,headers,body⟩ (A.3)

⟨HTTPResp,nonce,status,headers,body⟩ (A.4)

The components are defined as follows:

• nonce ∈N serves to map each response to the corresponding request

• method ∈Methods is one of the HTTP methods.

• host ∈ Doms is the host name in the HOST header of HTTP/1.1.

• path ∈ S is a string indicating the requested resource at the server side

• status ∈ S is the HTTP status code (i.e., a number between 100 and 505, as defined by the

HTTP standard)

• parameters ∈
[
S×TN

]
contains URL parameters

• headers ∈
[
S×TN

]
, containing request/response headers. The dictionary elements are

terms of one of the following forms:

– ⟨Origin,o⟩ where o is an origin,

– ⟨Set-Cookie,c⟩ where c is a sequence of cookies,

– ⟨Cookie,c⟩ where c ∈
[
S×TN

]
(note that in this header, only names and values of

cookies are transferred),

– ⟨Location, l⟩ where l ∈ URLs,

– ⟨Referer,r⟩ where r ∈ URLs,

– ⟨Strict-Transport-Security,⊤⟩,

– ⟨Authorization,⟨username,password⟩⟩ where username, password ∈ S,

– ⟨ReferrerPolicy, p⟩ where p ∈ {noreferrer,origin}.

• body ∈ TN in requests and responses.

We write HTTPRequests/HTTPResponses for the set of all HTTP requests or responses, respec-

tively. ⋄
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Example 6 (HTTP Request and Response).

r :=⟨HTTPReq,n1,POST,example.com,/show,⟨⟨index,1⟩⟩,

[Origin : ⟨example.com,S⟩],⟨foo,bar⟩⟩ (A.5)

s :=⟨HTTPResp,n1,200,⟨⟨Set-Cookie,⟨⟨SID,⟨n2,⊥,⊥,⊤⟩⟩⟩⟩⟩,⟨somescript,x⟩⟩ (A.6)

An HTTP POST request for the URL http://example.com/show?index=1 is shown in (A.5),

with an Origin header and a body that contains ⟨foo,bar⟩. A possible response is shown in

(A.6), which contains an httpOnly cookie with name SID and value n2 as well as the string

representation somescript of the script script−1(somescript) (which should be an element of

S ) and its initial state x.

Encrypted HTTP Messages. For HTTPS, requests are encrypted using the public key of the

server. Such a request contains an (ephemeral) symmetric key chosen by the client that issued

the request. The server is supported to encrypt the response using the symmetric key.

Definition 36. An encrypted HTTP request is of the form enca(⟨m,k′⟩,k), where k ∈ terms,

k′ ∈N , and m ∈ HTTPRequests. The corresponding encrypted HTTP response would be of the

form encs(m′,k′), where m′ ∈HTTPResponses. We call the sets of all encrypted HTTP requests

and responses HTTPSRequests or HTTPSResponses, respectively. ⋄

We say that an HTTP(S) response matches or corresponds to an HTTP(S) request if both terms

contain the same nonce.

Example 7.

enca(⟨r,k′⟩,pub(kexample.com)) (A.7)

encs(s,k′) (A.8)

The term (A.7) shows an encrypted request (with r as in (A.5)). It is encrypted using the

public key pub(kexample.com). The term (A.8) is a response (with s as in (A.6)). It is encrypted

symmetrically using the (symmetric) key k′ that was sent in the request (A.7).

A.2.5. DNS Messages

Definition 37. A DNS request is a term of the form ⟨DNSResolve,domain,nonce⟩where domain

∈ Doms, nonce ∈N . We call the set of all DNS requests DNSRequests. ⋄
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Definition 38. A DNS response is a term of the form ⟨DNSResolved,domain,result,nonce⟩ with

domain ∈ Doms, result ∈ IPs, nonce ∈N . We call the set of all DNS responses DNSResponses.

⋄

DNS servers are supposed to include the nonce they received in a DNS request in the DNS

response that they send back so that the party which issued the request can match it with the

request.

A.3. Atomic Processes, Systems and Runs

Entities that take part in a network are modeled as atomic processes. An atomic process takes

a term that describes its current state and an event as input, and then (non-deterministically)

outputs a new state and a set of events.

Definition 39 (Generic Atomic Processes and Systems). A (generic) atomic process is a tuple

p = (Ip,Zp,Rp,sp
0)

where Ip ⊆ IPs, Zp ⊆ TN is a set of states, Rp ⊆ (E × Zp)× (2Eν ⟨⟩ × TN (Vprocess)) (input

event and old state map to sequence of output events and new state), and sp
0 ∈ Zp is the ini-

tial state of p. For any new state s and any sequence of nonces (η1,η2, . . .) we demand that

s[η1/ν1,η2/ν2, . . . ] ∈ Zp. A system P is a (possibly infinite) set of atomic processes. ⋄

Definition 40 (Configurations). A configuration of a system P is a tuple (S,E,N) where the state

of the system S maps every atomic process p ∈ P to its current state S(p) ∈ Zp, the sequence of

waiting events E is an infinite sequence1 (e1,e2, . . .) of events waiting to be delivered, and N is

an infinite sequence of nonces (n1,n2, . . .). ⋄

Definition 41 (Processing Steps). A processing step of the system P is of the form

(S,E,N)
ein→p−−−−→
p→Eout

(S′,E ′,N′)

where

1. (S,E,N) and (S′,E ′,N′) are configurations of P ,

2. ein = ⟨a, f ,m⟩ ∈ E is an event,

1Here: Not in the sense of terms as defined earlier.
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3. p ∈ P is a process,

4. Eout is a sequence (term) of events

such that there exists

1. a sequence (term) Eν
out ⊆ 2Eν ⟨⟩ of protoevents,

2. a term sν ∈ TN (Vprocess),

3. a sequence (v1,v2, . . . ,vi) of all placeholders appearing in Eν
out (ordered lexicographically),

4. a sequence Nν = (η1,η2, . . . ,ηi) of the first i elements in N

with

1. ((ein,S(p)),(Eν
out,s

ν)) ∈ Rp and a ∈ Ip,

2. Eout = Eν
out[m1/v1, . . . ,mi/vi]

3. S′(p) = sν [m1/v1, . . . ,mi/vi] and S′(p′) = S(p′) for all p′ ̸= p

4. E ′ = Eout · (E \{ein})

5. N′ = N \Nν

We may omit the superscript and/or subscript of the arrow. ⋄

Intuitively, for a processing step, we select one of the processes in P , and call it with one of

the events in the list of waiting events E. In its output (new state and output events), we replace

any occurences of placeholders νx by “fresh” nonces from N (which we then remove from N).

The output events are then prepended to the list of waiting events, and the state of the process is

reflected in the new configuration.

Definition 42 (Runs). Let P be a system, E0 be sequence of events, and N0 be a sequence of

nonces. A run ρ of a system P initiated by E0 with nonces N0 is a finite sequence of configura-

tions ((S0,E0,N0), . . . , (Sn,En,Nn)) or an infinite sequence of configurations ((S0,E0,N0), . . .)

such that S0(p) = sp
0 for all p ∈ P and (Si,E i,Ni) −→ (Si+1,E i+1,Ni+1) for all 0 ≤ i < n (finite

run) or for all i≥ 0 (infinite run).

We denote the state Sn(p) of a process p at the end of a run ρ by ρ(p). ⋄

Usually, we will initiate runs with a set E0 containing infinite trigger events of the form

⟨a,a,TRIGGER⟩ for each a ∈ IPs, interleaved by address.
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A.4. Atomic Dolev-Yao Processes

We next define atomic Dolev-Yao processes, for which we require that the messages and states

that they output can be computed (more formally, derived) from the current input event and state.

For this purpose, we first define what it means to derive a message from given messages.

Definition 43 (Deriving Terms). Let M be a set of ground terms. We say that a term m

can be derived from M with placeholders V if there exist n ≥ 0, m1, . . . ,mn ∈ M, and τ ∈
T /0({x1, . . . ,xn} ∪V ) such that m ≡ τ[m1/x1, . . . ,mn/xn]. We denote by dV (M) the set of all

messages that can be derived from M with variables V . ⋄

For example, the term a can be derived from the set of terms {enca(⟨a,b,c⟩,pub(k)),k}, i.e.,

a ∈ d{}({enca(⟨a,b,c⟩,pub(k)),k}).
A (Dolev-Yao) process consists of a set of addresses the process listens to, a set of states (terms),

an initial state, and a relation that takes an event and a state as input and (non-deterministically)

returns a new state and a sequence of events. The relation models a computation step of the

process. It is required that the output can be computed (formally, derived in the usual Dolev-Yao

style) from the input event and the state.

Definition 44 (Atomic Dolev-Yao Process). An atomic Dolev-Yao process (or simply, a DY

process) is a tuple p = (Ip,Zp, Rp,sp
0) such that (Ip,Zp,Rp,sp

0) is an atomic process and for all

events e ∈ E , sequences of protoevents E, s ∈ TN , s′ ∈ TN (Vprocess), with ((e,s),(E,s′)) ∈ Rp it

holds true that E, s′ ∈ dVprocess({e,s}). ⋄

A.5. Attackers

The so-called attacker process is a Dolev-Yao process which records all messages it receives and

outputs all events it can possibly derive from its recorded messages. Hence, an attacker process

carries out all attacks any Dolev-Yao process could possibly perform. Attackers can corrupt other

parties (using corrupt messages).

Definition 45 (Atomic Attacker Process). An (atomic) attacker process for a set of sender

addresses A⊆ IPs is an atomic DY process p = (I,Z,R,s0) such that for all events e, and s ∈ TN

we have that ((e,s),(E,s′))∈R iff s′= ⟨e,E,s⟩ and E = ⟨⟨a1, f1,m1⟩, . . . ,⟨an, fn,mn⟩⟩with n∈N,

a1, . . . ,an ∈ IPs, f0, . . . , fn ∈ A, m1, . . . ,mn ∈ dVprocess({e,s}). ⋄

Note that in a Web system, we distinguish between two kinds of attacker processes: Web

attackers and network attackers. Both kinds match the definition above, but differ in the set of
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assigned addresses in the context of a Web system. While for Web attackers, the set of addresses

Ip is disjoint from other Web attackers and honest processes, i.e., Web attackers participate in the

network as any other party, the set of addresses Ip of a network attacker is not restricted. Hence,

a network attacker can intercept events addressed to any party as well as spoof all addresses.

Note that one network attacker subsumes any number of Web attackers as well as any number of

network attackers.

A.6. Browsers

Following the informal description of the browser model in Section 2, we now present the formal

model of browsers.

A.6.1. Scripts

Recall that a script models JavaScript running in a browser. Scripts are defined similarly to

Dolev-Yao processes. When triggered by a browser, a script is provided with state information.

The script then outputs a term representing a new internal state and a command to be interpreted

by the browser (see also the specification of browsers below). See Algorithm F.7 on Page 265

for an annotated example of a script.

Definition 46 (Placeholders for Scripts). By Vscript = {λ1, . . .} we denote an infinite set of

variables used in scripts. ⋄

Definition 47 (Scripts). A script is a relation R ⊆ TN × TN (Vscript) such that for all s ∈ TN ,

s′ ∈ TN (Vscript) with (s,s′) ∈ R it follows that s′ ∈ dVscript(s). ⋄

A script is called by the browser which provides it with state information (such as the script’s

last scriptstate and limited information about the browser’s state) s. The script then outputs a

term s′, which represents the new scriptstate and some command which is interpreted by the

browser. The term s′ may contain variables λ1, . . . which the browser will replace by (otherwise

unused) placeholders ν1, . . . which will be replaced by nonces once the browser DY process

finishes (effectively providing the script with a way to get “fresh” nonces).

Similarly to an attacker process, the so-called attacker script outputs everything that is deriv-

able from the input.

attacker script Ratt:

Definition 48 (Attacker Script). The attacker script Ratt outputs everything that is derivable

from the input, i.e., Ratt = {(s,s′) | s ∈ TN ,s′ ∈ dVscript(s)}. ⋄
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A.6.2. Web Browser State

Before we can define the state of a Web browser, we first have to define windows and documents.

Definition 49. A window is a term of the form w = ⟨nonce,documents,opener⟩ with nonce ∈N ,

documents⊂⟨⟩ Documents (defined below), opener ∈N ∪{⊥}where d.active=⊤ for exactly

one d ∈⟨⟩ documents if documents is not empty (we then call d the active document of w). We

write Windows for the set of all windows. We write w.activedocument to denote the active

document inside window w if it exists and ⟨⟩ else. ⋄

We will refer to the window nonce as (window) reference.

The documents contained in a window term to the left of the active document are the previously

viewed documents (available to the user via the “back” button) and the documents in the window

term to the right of the currently active document are documents available via the “forward”

button.

A window a may have opened a top-level window b (i.e., a window term which is not a

subterm of a document term). In this case, the opener part of the term b is the nonce of a, i.e.,

b.opener= a.nonce.

Definition 50. A document d is a term of the form

⟨nonce, location,headers,referrer,script,scriptstate,scriptinputs,subwindows,active⟩

where nonce ∈ N , location ∈ URLs, headers ∈
[
S×TN

]
, referrer ∈ URLs∪{⊥}, script ∈ TN ,

scriptstate ∈ TN , scriptinputs ∈ TN , subwindows ⊂⟨⟩ Windows, active ∈ {⊤,⊥}. A limited

document is a term of the form ⟨nonce,subwindows⟩ with nonce, subwindows as above. A

window w ∈⟨⟩ subwindows is called a subwindow (of d). We write Documents for the set of all

documents. For a document term d we write d.origin to denote the origin of the document, i.e.,

the term ⟨d.location.host,d.location.protocol⟩ ∈ Origins. ⋄

We will refer to the document nonce as (document) reference.

Definition 51. For two window terms w and w′ we write

w childof−−−→ w′

if w ∈⟨⟩ w′.activedocument.subwindows. We write childof+−−−−→ for the transitive closure and we

write childof∗−−−−→ for the reflexive transitive closure. ⋄
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In the Web browser state, HTTP(S) messages are tracked using references. These are defined

as a pairing of a an identifier for the type of the request (XHR for XMLHTTPRequests, or REQ

for normal HTTP(S) requests) and a nonce (which never leaves the browser unless the browser

becomes corrupted).

We can now define the set of states of Web browsers. Note that we use the dictionary notation

that we introduced in Definition 28.

Definition 52. The set of states Zwebbrowser of a Web browser atomic Dolev-Yao process consists

of the terms of the form

⟨windows, ids,secrets,cookies, localStorage,sessionStorage,keyMapping,

sts,DNSaddress,pendingDNS,pendingRequests, isCorrupted⟩

with the subterms as follows:

• windows ⊂⟨⟩ Windows contains a list of window terms (modeling top-level windows, or

browser tabs) which contain documents, which in turn can contain further window terms

(iframes).

• ids⊂⟨⟩ TN is a list of identities that are owned by this browser (i.e., belong to the user of

the browser).

• secrets ∈
[
Origins×TN

]
contains a list of secrets that are associated with certain origins

(i.e., passwords of the user of the browser at certain Web sites). Note that this structure

allows to have a single secret under an origin or a list of secrets under an origin.

• cookies is a dictionary over Doms and sequences of Cookies modeling cookies that are

stored for specific domains.

• localStorage ∈
[
Origins×TN

]
stores the data saved by scripts using the localStorage API

(separated by origins).

• sessionStorage ∈
[
OR×TN

]
for OR := {⟨o,r⟩|o ∈ Origins, r ∈N } similar to localStor-

age, but the data in sessionStorage is additionally separated by top-level windows.

• keyMapping ∈
[
Doms×TN

]
maps domains to TLS encryption keys.

• sts ⊂⟨⟩ Doms stores the list of domains that the browser only accesses via TLS (strict

transport security).

• DNSaddress ∈ IPs defines the IP address of the DNS server.
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• pendingDNS ∈
[
N ×TN

]
contains one pairing per unanswered DNS query of the form

⟨reference,request,url⟩. In these pairings, reference is an HTTP(S) request reference

(as above), request contains the HTTP(S) message that awaits DNS resolution, and url

contains the URL of said HTTP request. The pairings in pendingDNS are indexed by the

DNS request/response nonce.

• pendingRequests ∈ TN contains pairings of the form ⟨reference,request,url,key, f ⟩ with

reference, request, and url as in pendingDNS, key is the symmetric encryption key if

HTTPS is used or ⊥ otherwise, and f is the IP address of the server to which the request

was sent.

• isCorrupted ∈ {⊥,FULLCORRUPT, CLOSECORRUPT} specifies the corruption level of the

browser.

In corrupted browsers, certain subterms are used in different ways (e.g., pendingRequests is used

to store all observed messages). ⋄

A.6.3. Web Browser Relation

We will now define the relation Rwebbrowser of a standard HTTP browser. We first introduce some

notations and then describe the functions that are used for defining the browser main algorithm.

We then define the browser relation.

Helper Functions. In the following description of the Web browser relation Rwebbrowser we use

the helper functions Subwindows, Docs, Clean, CookieMerge and AddCookie.

Subwindows. Given a browser state s, Subwindows(s) denotes the set of all pointers2 to windows

in the window list s.windows, their active documents, and (recursively) the subwindows of

these documents. We exclude subwindows of inactive documents and their subwindows. With

Docs(s) we denote the set of pointers to all active documents in the set of windows referenced

by Subwindows(s).

Definition 53. For a browser state s we denote by Subwindows(s) the minimal set of pointers

that satisfies the following conditions: (1) For all windows w ∈⟨⟩ s.windows there is a p ∈
Subwindows(s) such that s.p = w. (2) For all p ∈ Subwindows(s), the active document d of

the window s.p and every subwindow w of d there is a pointer p′ ∈ Subwindows(s) such that

s.p′ = w.

2Recall the definition of a pointer in Definition 29.
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Given a browser state s, the set Docs(s) of pointers to active documents is the minimal

set such that for every p ∈ Subwindows(s), there exists a pointer p′ ∈ Docs(s) with s.p′ =

s.p.activedocument. ⋄

By Subwindows+(s) and Docs+(s) we denote the respective sets that also include the inactive

documents and their subwindows.

Clean. The function Clean will be used to determine which information about windows and

documents the script running in the document d has access to.

Definition 54. Let s be a browser state and d a document. By Clean(s,d) we denote the term

that equals s.windows but with (1) all inactive documents removed (including their subwindows

etc.), (2) all subterms that represent non-same-origin documents w.r.t. d replaced by a limited

document d′ with the same nonce and the same subwindow list, and (3) the values of the subterms

headers for all documents set to ⟨⟩. (Note that non-same-origin documents on all levels are

replaced by their corresponding limited document.) ⋄

CookieMerge. The function CookieMerge merges two sequences of cookies together: When

used in the browser, oldcookies is the sequence of existing cookies for some origin, newcookies

is a sequence of new cookies that was output by some script. The sequences are merged into a

set of cookies using an algorithm that is based on the Storage Mechanism algorithm described in

RFC6265.

Definition 55. For a sequence of cookies (with pairwise different names) oldcookies and a se-

quence of cookies newcookies, the set CookieMerge(oldcookies,newcookies) is defined by the

following algorithm: From newcookies remove all cookies c that have c.content.httpOnly≡
⊤. For any c, c′ ∈⟨⟩ newcookies, c.name ≡ c′.name, remove the cookie that appears left of the

other in newcookies. Let m be the set of cookies that have a name that either appears in oldcookies

or in newcookies, but not in both. For all pairs of cookies (cold,cnew) with cold ∈⟨⟩ oldcookies,

cnew ∈⟨⟩ newcookies, cold.name≡ cnew.name, add cnew to m if cold.content.httpOnly≡⊥ and

add cold to m otherwise. The result of CookieMerge(oldcookies,newcookies) is m. ⋄

AddCookie. The function AddCookie adds a cookie c received in an HTTP response to the

sequence of cookies contained in the sequence oldcookies. It is again based on the algorithm

described in RFC6265 but simplified for the use in the browser model.

Definition 56. For a sequence of cookies (with pairwise different names) oldcookies and a

cookie c, the sequence AddCookie(oldcookies,c) is defined by the following algorithm: Let
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m := oldcookies. Remove any c′ from m that has c.name ≡ c′.name. Append c to m and return

m. ⋄

NavigableWindows. The function NavigableWindows returns a set of windows that a document

is allowed to navigate. We closely follow [Ber+14], Section 5.1.4 for this definition.

Definition 57. The set NavigableWindows(w,s′) is the set W ⊆ Subwindows(s′) of pointers to

windows that the active document in w is allowed to navigate. The set W is defined to be the

minimal set such that for every w′ ∈ Subwindows(s′) the following is true:

• If s′.w′.activedocument.origin≡ s′.w.activedocument.origin (i.e., the active doc-

uments in w and w′ are same-origin), then w′ ∈W , and

• If s′.w childof∗−−−−→ s′.w′ ∧ ∄w′′ ∈ Subwindows(s′) with s′.w′ childof∗−−−−→ s′.w′′ (w′ is a top-level

window and w is an ancestor window of w′), then w′ ∈W , and

• If ∃ p ∈ Subwindows(s′) such that s′.w′ childof+−−−−→ s′.p

∧ s′.p.activedocument.origin= s′.w.activedocument.origin (w′ is not a top-level

window but there is an ancestor window p of w′ with an active document that has the same

origin as the active document in w), then w′ ∈W , and

• If ∃ p ∈ Subwindows(s′) such that s′.w′.opener = s′.p.nonce ∧ p ∈W (w′ is a top-level

window—it has an opener—and w is allowed to navigate the opener window of w′, p),

then w′ ∈W .

⋄

Notations for Functions and Algorithms. We use the following notations to describe the

browser algorithms:

Non-deterministic chosing and iteration. The notation let n← N is used to describe that n is
chosen non-deterministically from the set N. We write for each s ∈M do to denote that the fol-
lowing commands (until end for) are repeated for every element in M, where the variable s is the
current element. The order in which the elements are processed is chosen non-deterministically.
We write, for example,

let x,y such that ⟨Constant,x,y⟩ ≡ t if possible; otherwise doSomethingElse

for some variables x,y, a string Constant, and some term t to express that x := π2(t), and

y := π3(t) if Constant≡ π1(t) and if |⟨Constant,x,y⟩|= |t|, and that otherwise x and y are not

set and doSomethingElse is executed.
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Placeholder Usage
ν1 Algorithm A.9, new window nonces
ν2 Algorithm A.9, new HTTP request nonce
ν3 Algorithm A.9, lookup key for pending HTTP requests entry
ν4 Algorithm A.7, new HTTP request nonce (multiple lines)
ν5 Algorithm A.7, new subwindow nonce
ν6 Algorithm A.8, new HTTP request nonce
ν7 Algorithm A.8, new document nonce
ν8 Algorithm A.4, lookup key for pending DNS entry
ν9 Algorithm A.1, new window nonce
ν10, . . . Algorithm A.7, replacement for placeholders in script output

Table A.1.: List of placeholders used in browser algorithms.

Algorithm A.1: Web Browser Model: Determine window for navigation.

1: function GETNAVIGABLEWINDOW(w, window, noreferrer, s′)
2: if window≡ _BLANK then → Open a new window when _BLANK is used
3: if noreferrer ≡⊤ then
4: let w′ := ⟨ν9,⟨⟩,⊥⟩
5: else
6: let w′ := ⟨ν9,⟨⟩,s′.w.nonce⟩
7: end if
8: let s′.windows := s′.windows +⟨⟩ w′

↪→ and let w′ be a pointer to this new element in s′

9: return w′

10: end if
11: let w′← NavigableWindows(w,s′) such that s′.w′.nonce≡ window

↪→ if possible; otherwise return w
12: return w′
13: end function

Stop without output. We write stop (without further parameters) to denote that there is no output

and no change in the state.

Placeholders. In several places throughout the algorithms presented next we use placeholders to

generate “fresh” nonces as described in our communication model (see Definition 21). Table A.1

shows a list of all placeholders used.

Functions. In the description of the following functions, we use a, f , m, and s as read-only

global input variables. All other variables are local variables or arguments.

• The function GETNAVIGABLEWINDOW (Algorithm A.1) is called by the browser to

determine the window that is actually navigated when a script in the window s′.w provides

a window reference for navigation (e.g., for opening a link). When it is given a window
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Algorithm A.2: Web Browser Model: Determine same-origin window.

1: function GETWINDOW(w, window, s′)
2: let w′← Subwindows(s′) such that s′.w′.nonce≡ window

↪→ if possible; otherwise return w
3: if s′.w′.activedocument.origin≡ s′.w.activedocument.origin then
4: return w′

5: end if
6: return w
7: end function

Algorithm A.3: Web Browser Model: Cancel pending requests for given window.

1: function CANCELNAV(reference, s′)
2: remove all ⟨reference,req,key, f ⟩ from s′.pendingRequests for any req, key, f
3: remove all ⟨x,⟨reference,message,url⟩⟩ from s′.pendingDNS

↪→ for any x, message, url
4: return s′

5: end function

Algorithm A.4: Web Browser Model: Prepare headers, do DNS resolution, save message.

1: function HTTP_SEND(reference, message, url, origin, referrer, referrerPolicy, s′)
2: if message.host ∈⟨⟩ s′.sts then
3: let url.protocol := S

4: end if
5: let cookies := ⟨{⟨c.name,c.content.value⟩|c ∈⟨⟩ s′.cookies [message.host]

↪→ ∧(c.content.secure =⇒ (url.protocol= S))}⟩
6: let message.headers[Cookie] := cookies
7: if origin ̸≡ ⊥ then
8: let message.headers[Origin] := origin
9: end if

10: if referrerPolicy≡ no-referrer then
11: let referrer := ⊥
12: end if
13: if referrer ̸≡ ⊥ then
14: if referrerPolicy≡ origin then
15: let referrer := ⟨URL,referrer.protocol,referrer.host,/,⟨⟩,⊥⟩

→ Referrer stripped down to origin.
16: end if
17: let referrer.fragment := ⊥

→ Browsers do not send fragment identifiers in the Referer header.
18: let message.headers[Referer] := referrer
19: end if
20: let s′.pendingDNS[ν8] := ⟨reference,message,url⟩
21: stop ⟨⟨s′.DNSaddress,a,⟨DNSResolve,message.host,ν8⟩⟩⟩, s′

22: end function
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Algorithm A.5: Web Browser Model: Navigate a window backward.

1: function NAVBACK(w′, s′)
2: if ∃ j ∈ N, j > 1 such that s′.w′.documents. j.active≡⊤ then
3: let s′.w′.documents. j.active := ⊥
4: let s′.w′.documents.( j−1).active := ⊤
5: let s′ := CANCELNAV(s′.w′.nonce,s′)
6: end if
7: end function

Algorithm A.6: Web Browser Model: Navigate a window forward.

1: function NAVFORWARD(w′, s′)
2: if ∃ j ∈ N such that s′.w′.documents. j.active≡⊤

↪→ ∧ s′.w′.documents.( j+1) ∈ Documents then
3: let s′.w′.documents. j.active := ⊥
4: let s′.w′.documents.( j+1).active := ⊤
5: let s′ := CANCELNAV(s′.w′.nonce,s′)
6: end if
7: end function

reference (nonce) window, this function returns a pointer to a selected window term in s′:

– If window is the string _BLANK, a new window is created and a pointer to that window

is returned.

– If window is a nonce (reference) and there is a window term with a reference of

that value in the windows in s′, a pointer w′ to that window term is returned, as

long as the window is navigable by the current window’s document (as defined by

NavigableWindows above).

In all other cases, w is returned instead (the script navigates its own window).

• The function GETWINDOW (Algorithm A.2) takes a window reference as input and

returns a pointer to a window as above, but it checks only that the active documents in both

windows are same-origin. It creates no new windows.

• The function CANCELNAV (Algorithm A.3) is used to stop any pending requests for a

specific window. From the pending requests and pending DNS requests it removes any

requests with the given window reference n.

• The function HTTP_SEND (Algorithm A.4) takes an HTTP request message as input,

adds cookie and origin headers to the message, creates a DNS request for the hostname

given in the request and stores the request in s′.pendingDNS until the DNS resolution

finishes. For normal HTTP requests, reference is a window reference. For XHRs, reference

154



A.6. Browsers

Algorithm A.7: Web Browser Model: Execute a script.

1: function RUNSCRIPT(w, d, s′)
2: let tree := Clean(s′,s′.d)
3: let cookies := ⟨{⟨c.name,c.content.value⟩|c ∈⟨⟩ s′.cookies

[
s′.d.origin.host

]
↪→ ∧c.content.httpOnly=⊥
↪→ ∧

(
c.content.secure =⇒

(
s′.d.origin.protocol≡ S

))
}⟩

4: let tlw← s′.windows such that tlw is the top-level window containing d
5: let sessionStorage := s′.sessionStorage

[
⟨s′.d.origin, tlw.nonce⟩

]
6: let localStorage := s′.localStorage

[
s′.d.origin

]
7: let secrets := s′.secrets

[
s′.d.origin

]
8: let R← script−1(s′.d.script)
9: let in := ⟨tree, s′.d.nonce,s′.d.scriptstate, s′.d.scriptinputs, cookies,

↪→ localStorage, sessionStorage, s′.ids, secrets⟩
10: let state′ ← TN (V ), cookies′← Cookiesν , localStorage′← TN (V ), sessionStorage′← TN (V ),

↪→ command← TN (V ), outλ := ⟨state′,cookies′, localStorage′, sessionStorage′,command⟩
↪→ such that (in,outλ ) ∈ R

11: let out := outλ [ν10/λ1,ν11/λ2, . . . ]
12: let s′.cookies

[
s′.d.origin.host

]
:=

↪→ ⟨CookieMerge(s′.cookies
[
s′.d.origin.host

]
, cookies′)⟩

13: let s′.localStorage
[
s′.d.origin

]
:= localStorage′

14: let s′.sessionStorage
[
⟨s′.d.origin, tlw.nonce⟩

]
:= sessionStorage′

15: let s′.d.scriptstate := state′

16: let referrer := s′.d.location
17: let referrerPolicy := s′.d.headers[ReferrerPolicy]
18: let reference := ⟨REQ,s′.w′.nonce⟩
19: let docorigin := s′.d.origin
20: switch command do
21: case ⟨HREF,url,hrefwindow,noreferrer⟩
22: let w′ := GETNAVIGABLEWINDOW(w, hrefwindow, noreferrer, s′)
23: let req := ⟨HTTPReq,ν4,GET,url.host,url.path,url.parameters,⟨⟩,⟨⟩⟩
24: if noreferrer ≡⊤ then
25: let referrerPolicy := noreferrer

26: end if
27: let s′ := CANCELNAV(reference,s′)
28: call HTTP_SEND(reference, req, url, ⊥, referrer, referrerPolicy, s′)
29: case ⟨IFRAME,url,window⟩
30: if window≡ _SELF then
31: let w′ := w
32: else
33: let w′ := GETWINDOW(w,window,s′)
34: end if
35: let req := ⟨HTTPReq,ν4,GET,url.host,url.path,url.parameters,⟨⟩,⟨⟩⟩
36: let w′ := ⟨ν5,⟨⟩,⊥⟩
37: let s′.w′.activedocument.subwindows := s′.w′.activedocument.subwindows+⟨⟩w′

38: call HTTP_SEND(ν5, req, url, ⊥, referrer, referrerPolicy, s′)
This algorithm is continued on the next page.
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39: case ⟨FORM,url,method,data,hrefwindow⟩
40: if method ̸∈ {GET,POST} then 3

41: stop
42: end if
43: let w′ := GETNAVIGABLEWINDOW(w, hrefwindow, ⊥, s′)
44: if method = GET then
45: let body := ⟨⟩
46: let parameters := data
47: let origin := ⊥
48: else
49: let body := data
50: let parameters := url.parameters
51: let origin := docorigin
52: end if
53: let req := ⟨HTTPReq,ν4,method,url.host,url.path,parameters,⟨⟩,body⟩
54: let s′ := CANCELNAV(reference,s′)
55: call HTTP_SEND(reference, req, url, origin, referrer, referrerPolicy, s′)
56: case ⟨SETSCRIPT,window,script⟩
57: let w′ := GETWINDOW(w,window,s′)
58: let s′.w′.activedocument.script := script
59: stop ⟨⟩, s′

60: case ⟨SETSCRIPTSTATE,window,scriptstate⟩
61: let w′ := GETWINDOW(w,window,s′)
62: let s′.w′.activedocument.scriptstate := scriptstate
63: stop ⟨⟩, s′

64: case ⟨XMLHTTPREQUEST,url,method,data,xhrreference⟩
65: if method ∈ {CONNECT,TRACE,TRACK}∧ xhrreference ̸∈ {N ,⊥} then
66: stop
67: end if
68: if url.host ̸≡ docorigin.host ∨ url ̸≡ docorigin.protocol then
69: stop
70: end if
71: if method ∈ {GET,HEAD} then
72: let data := ⟨⟩
73: let origin := ⊥
74: else
75: let origin := docorigin
76: end if
77: let req := ⟨HTTPReq,ν4,method,url.host,url.path,url.parameters,⟨⟩,data⟩
78: let reference := ⟨XHR,s′.d.nonce,xhrreference⟩
79: call HTTP_SEND(reference, req, url, origin, referrer, referrerPolicy, s′)

This algorithm is continued on the next page.
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80: case ⟨BACK,window⟩ 4

81: let w′ := GETNAVIGABLEWINDOW(w, window, ⊥, s′)
82: NAVBACK(w′, s′)
83: stop ⟨⟩, s′

84: case ⟨FORWARD,window⟩
85: let w′ := GETNAVIGABLEWINDOW(w, window, ⊥, s′)
86: NAVFORWARD(w′, s′)
87: stop ⟨⟩, s′

88: case ⟨CLOSE,window⟩
89: let w′ := GETNAVIGABLEWINDOW(w, window, ⊥, s′)
90: remove s′.w′ from the sequence containing it
91: stop ⟨⟩, s′

92: case ⟨POSTMESSAGE,window,message,origin⟩
93: let w′← Subwindows(s′) such that s′.w′.nonce≡ window
94: if ∃ j ∈ N such that s′.w′.documents. j.active≡⊤

↪→ ∧(origin ̸≡ ⊥ =⇒ s′.w′.documents. j.origin≡ origin) then
95: let s′.w′.documents. j.scriptinputs := s′.w′.documents. j.scriptinputs

↪→ +⟨⟩ ⟨POSTMESSAGE,s′.w.nonce,docorigin,message⟩
96: end if
97: stop ⟨⟩, s′

98: case else
99: stop
100: end function

is a value of the form ⟨document,nonce⟩ where document is a document reference and

nonce is some nonce that was chosen by the script that initiated the request. url contains

the full URL of the request (this is mainly used to retrieve the protocol that should be

used for this message, and to store the fragment identifier for use after the document was

loaded). origin is the origin header value that is to be added to the HTTP request.

• The functions NAVBACK (Algorithm A.5) and NAVFORWARD (Algorithm A.6), navi-

gate a window forward or backward. More precisely, they deactivate one document and

activate that document’s succeeding document or preceding document, respectively. If no

such successor/predecessor exists, the functions do not change the state.

• The function RUNSCRIPT (Algorithm A.7) performs a script execution step of the script

in the document s′.d (which is part of the window s′.w). A new script and document state

is chosen according to the relation defined by the script and the new script and document

state is saved. Afterwards, the command that the script issued is interpreted.

• The function PROCESSRESPONSE (Algorithm A.8) is responsible for processing an

HTTP response (response) that was received as the response to a request (request) that
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Algorithm A.8: Web Browser Model: Process an HTTP response.

1: function PROCESSRESPONSE(response, reference, request, requestUrl, key, f , s′)
2: if Set-Cookie ∈ response.headers then
3: for each c ∈⟨⟩ response.headers [Set-Cookie], c ∈ Cookies do
4: let s′.cookies [request.host]

↪→ := AddCookie(s′.cookies [request.host] ,c)
5: end for
6: end if
7: if Strict-Transport-Security ∈ response.headers ∧ requestUrl.protocol≡ S then
8: let s′.sts := s′.sts +⟨⟩ request.host
9: end if

10: if Referer ∈ request.headers then
11: let referrer := request.headers[Referer]
12: else
13: let referrer := ⊥
14: end if
15: if Location ∈ response.headers∧ response.status ∈ {303,307} then
16: let url := response.headers [Location]
17: if url.fragment≡⊥ then
18: let url.fragment := requestUrl.fragment
19: end if
20: let method′ := request.method
21: let body′ := request.body
22: if Origin ∈ request.headers then
23: let origin := ⟨request.headers[Origin],⟨request.host,url.protocol⟩⟩
24: else
25: let origin := ⊥
26: end if
27: if response.status≡ 303∧ request.method ̸∈ {GET,HEAD} then
28: let method′ := GET

29: let body′ := ⟨⟩
30: end if
31: if ∃w ∈ Subwindows(s′) such that s′.w.nonce≡ reference then → Do not redirect XHRs.
32: let req := ⟨HTTPReq,ν6,method′,url.host,url.path,url.parameters,⟨⟩,body′⟩
33: let referrerPolicy := response.headers[ReferrerPolicy]
34: call HTTP_SEND(reference, req, url, origin, referrer, referrerPolicy, s′)
35: end if
36: end if

This algorithm is continued on the next page.
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37: switch π1(reference) do
38: case REQ
39: let w← Subwindows(s′) such that s′.w.nonce≡ π2(reference) if possible;

↪→ otherwise stop → normal response
40: if response.body ̸∼ ⟨∗,∗⟩ then
41: stop {}, s′

42: end if
43: let script := π1(response.body)
44: let scriptstate := π2(response.body)
45: let d := ⟨ν7,requestUrl,response.headers,referrer,script,scriptstate,⟨⟩,⟨⟩,⊤⟩
46: if s′.w.documents≡ ⟨⟩ then
47: let s′.w.documents := ⟨d⟩
48: else
49: let i← N such that s′.w.documents.i.active≡⊤
50: let s′.w.documents.i.active := ⊥
51: remove s′.w.documents.(i+1) and all following documents

↪→ from s′.w.documents
52: let s′.w.documents := s′.w.documents +⟨⟩ d
53: end if
54: stop {}, s′

55: case XHR
56: let w← Subwindows(s′), d such that s′.d.nonce≡ π2(reference)

↪→ ∧ s′.d = s′.w.activedocument if possible; otherwise stop
→ process XHR response

57: let headers := response.headers−Set-Cookie
58: let s′.d.scriptinputs := s′.d.scriptinputs +⟨⟩

⟨XMLHTTPREQUEST,headers,response.body,π3(reference)⟩
59: stop {}, s′

60: end function

was sent earlier. In reference, either a window or a document reference is given (see

explanation for Algorithm A.4 above). requestUrl contains the URL used when retrieving

the document.

The function first saves any cookies that were contained in the response to the browser

state, then checks whether a redirection is requested (Location header). If that is not the

case, the function creates a new document (for normal requests) or delivers the contents of

the response to the respective receiver (for XHR responses).

Browser Relation. We can now define the relation Rwebbrowser of a Web browser atomic process

as follows:

Definition 58. The pair ((⟨⟨a, f ,m⟩⟩,s) ,(M,s′)) belongs to Rwebbrowser iff the non-deterministic

Algorithm A.9 (or any of the functions called therein), when given (⟨a, f ,m⟩,s) as input, termi-
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Algorithm A.9: Web Browser Model: Main Algorithm.

Input: ⟨a, f ,m⟩,s
1: let s′ := s
2: if s.isCorrupted ̸≡ ⊥ then
3: let s′.pendingRequests := ⟨m,s.pendingRequests⟩ → Collect incoming messages
4: let m′← dV (s′)
5: let a′ ← IPs
6: stop ⟨⟨a′,a,m′⟩⟩, s′

7: end if
8: if m≡ TRIGGER then → A special trigger message.
9: let switch← {script,urlbar,reload,forward,back}

10: let w← Subwindows(s′) such that s′.w.documents ̸= ⟨⟩
↪→ if possible; otherwise stop → Pointer to some window.

11: let tlw← N such that s′.tlw.documents ̸= ⟨⟩
↪→ if possible; otherwise stop → Pointer to some top-level window.

12: if switch≡ script then → Run some script.
13: let d := w+⟨⟩ activedocument
14: call RUNSCRIPT(w, d, s′)
15: else if switch≡ urlbar then → Create some new request.
16: let newwindow← {⊤,⊥}
17: if newwindow≡⊤ then → Create a new window.
18: let windownonce := ν1
19: let w′ := ⟨windownonce,⟨⟩,⊥⟩
20: let s′.windows := s′.windows +⟨⟩ w′

21: else → Use existing top-level window.
22: let windownonce := s′.tlw.nonce
23: end if
24: let protocol← {P,S}
25: let host← Doms
26: let path← S
27: let fragment← S
28: let parameters← [S×S]
29: let url := ⟨URL,protocol,host,path,parameters, fragment⟩
30: let req := ⟨HTTPReq,ν2,GET,host,path,parameters,⟨⟩,⟨⟩⟩
31: call HTTP_SEND(windownonce, req, url, ⊥, ⊥, ⊥, s′)
32: else if switch≡ reload then → Reload some document.
33: let url := s′.w.activedocument.location
34: let req := ⟨HTTPReq,ν2,GET,url.host,url.path,url.parameters,⟨⟩,⟨⟩⟩
35: let referrer := s′.w.activedocument.referrer
36: let s′ := CANCELNAV(s′.w.nonce,s′)
37: call HTTP_SEND(s′.w.nonce, req, url, ⊥, referrer, ⊥, s′)
38: else if switch≡ forward then
39: NAVFORWARD(w, s′)
40: else if switch≡ back then
41: NAVBACK(w, s′)
42: end if

This algorithm is continued on the next page.
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43: else if m≡ FULLCORRUPT then → Request to corrupt browser
44: let s′.isCorrupted := FULLCORRUPT

45: stop ⟨⟩, s′

46: else if m≡ CLOSECORRUPT then → Close the browser
47: let s′.secrets := ⟨⟩
48: let s′.windows := ⟨⟩
49: let s′.pendingDNS := ⟨⟩
50: let s′.pendingRequests := ⟨⟩
51: let s′.sessionStorage := ⟨⟩
52: let s′.cookies⊂⟨⟩ Cookies such that

↪→ (c ∈⟨⟩ s′.cookies)⇐⇒ (c ∈⟨⟩ s.cookies∧ c.content.session≡⊥)
53: let s′.isCorrupted := CLOSECORRUPT

54: stop ⟨⟩, s′

55: else if ∃⟨reference,request,url,key, f ⟩ ∈⟨⟩ s′.pendingRequests such that
↪→ π1(decs(m,key))≡ HTTPResp then → Encrypted HTTP response

56: let m′ := decs(m,key)
57: if m′.nonce ̸≡ request.nonce then
58: stop
59: end if
60: remove ⟨reference,request,url,key, f ⟩ from s′.pendingRequests
61: call PROCESSRESPONSE(m′, reference, request, url, key, f , s′)
62: else if π1(m)≡ HTTPResp ∧ ∃⟨reference,request,url,⊥, f ⟩ ∈⟨⟩ s′.pendingRequests such that

↪→ m.nonce≡ request.nonce then → Plain HTTP Response
63: remove ⟨reference,request,url,⊥, f ⟩ from s′.pendingRequests
64: call PROCESSRESPONSE(m, reference, request, url, key, f , s′)
65: else if m ∈ DNSResponses then → Successful DNS response
66: if m.nonce ̸∈ s.pendingDNS∨m.result ̸∈ IPs∨m.domain ̸≡ π2(s.pendingDNS).host then
67: stop
68: end if
69: let ⟨reference,message,url⟩ := s.pendingDNS[m.nonce]
70: if url.protocol≡ S then
71: let s′.pendingRequests := s′.pendingRequests

↪→ +⟨⟩ ⟨reference, message, url, ν3, m.result⟩
72: let message := enca(⟨message,ν3⟩,s′.keyMapping [message.host])
73: else
74: let s′.pendingRequests := s′.pendingRequests

↪→ +⟨⟩ ⟨reference, message, url, ⊥, m.result⟩
75: end if
76: let s′.pendingDNS := s′.pendingDNS−m.nonce
77: stop ⟨⟨m.result,a,message⟩⟩, s′

78: end if
79: stop
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nates with stop M, s′, i.e., with output M and s′. ⋄

Recall that ⟨a, f ,m⟩ is an (input) event and s is a (browser) state, M is a sequence of (output)

protoevents, and s′ is a new (browser) state (potentially with placeholders for nonces).

A.6.4. Definition of Web Browsers

Finally, we define Web browser atomic Dolev-Yao processes as follows:

Definition 59 (Web Browser atomic Dolev-Yao Process). A Web browser atomic Dolev-Yao

process is an atomic Dolev-Yao process of the form p = (Ip,Zwebbrowser,Rwebbrowser,so
p) for

a set Ip of addresses, Zwebbrowser and Rwebbrowser as defined above, and an initial state s0
p ∈

Zwebbrowser. ⋄

A.6.5. Script Notations and Helper Functions

In order to simplify the description of scripts, we use several notations and helper functions.

In the formal description of the scripts we use an abbreviation for URLs. We write URLd
path

to describe the following URL term: ⟨URL,S,d,path,⟨⟩⟩. If the domain d belongs to some

distinguished process P and it is the only domain associated to this process, we may also write

URLPpath. For a (secure) origin ⟨d,S⟩ of some domain d, we also write origind . Again, if the

domain d belongs to some distinguished process P and d is the only domain associated to this

process, we may write originP.

CHOOSEINPUT (Algorithm A.10). As explained in Section 2.5, the state of a document contains

a term, say scriptinputs, which records the input this document has obtained so far (via XHRs and

postMessages). If the script of the document is activated, it will typically need to pick one input

message from scriptinputs and record which input it has already processed. For this purpose, the

function CHOOSEINPUT(s′,scriptinputs) is used, where s′ denotes the scripts current state. It

saves the indexes of already handled messages in the scriptstate s′ and chooses a yet unhandled

input message from scriptinputs. The index of this message is then saved in the scriptstate (which

is returned to the script).

CHOOSEFIRSTINPUTPAT (Algorithm A.11). Similar to the function CHOOSEINPUT above,

we define the function CHOOSEFIRSTINPUTPAT. This function takes the term scriptinputs,

which as above records the input this document has obtained so far (via XHRs and postMessages,

append-only), and a pattern. If called, this function chooses the first message in scriptinputs

that matches pattern and returns it. This function is typically used in places, where a script only
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Algorithm A.10: Function to retrieve an unhandled input message for a script.

1: function CHOOSEINPUT(s′,scriptinputs)
2: let iid such that iid ∈ {1, · · · , |scriptinputs|}∧ iid ̸∈⟨⟩ s′.handledInputs if possible;

↪→ otherwise return (⊥,s′)
3: let input := πiid(scriptinputs)
4: let s′.handledInputs := s′.handledInputs+⟨⟩ iid
5: return (input,s′)
6: end function

Algorithm A.11: Function to extract the first script input message matching a specific pattern.

1: function CHOOSEFIRSTINPUTPAT(scriptinputs,pattern)
2: let i such that i = min{ j : π j(scriptinputs)∼ pattern} if possible; otherwise return ⊥
3: return πi(scriptinputs)
4: end function

processes the first message that matches the pattern. Hence, we omit recording the usage of an

input.

PARENTWINDOW. To determine the nonce referencing the parent window in the browser, the

function PARENTWINDOW(tree,docnonce) is used. It takes the term tree, which is the (partly

cleaned) tree of browser windows the script is able to see and the document nonce docnonce,

which is the nonce referencing the current document the script is running in, as input. It outputs

the nonce referencing the window which directly contains in its subwindows the window of the

document referenced by docnonce. If there is no such window (which is the case if the script

runs in a document of a top-level window), PARENTWINDOW returns ⊥.

PARENTDOCNONCE. The function PARENTDOCNONCE(tree,docnonce) determines (simi-

lar to PARENTWINDOW above) the nonce referencing the active document in the parent win-

dow in the browser . It takes the term tree, which is the (partly cleaned) tree of browser windows

the script is able to see and the document nonce docnonce, which is the nonce referencing the

current document the script is running in, as input. It outputs the nonce referencing the active

document in the window which directly contains in its subwindows the window of the docu-

ment referenced by docnonce. If there is no such window (which is the case if the script runs

in a document of a top-level window) or no active document, PARENTDOCNONCE returns

docnonce.

SUBWINDOWS. This function takes a term tree and a document nonce docnonce as input just

as the function above. If docnonce is not a reference to a document contained in tree, then

SUBWINDOWS(tree,docnonce) returns ⟨⟩. Otherwise, let ⟨docnonce, origin, script, scriptstate,

scriptinputs, subwindows, active⟩ denote the subterm of tree corresponding to the document

referred to by docnonce. Then, SUBWINDOWS(tree,docnonce) returns subwindows.
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AUXWINDOW. This function takes a term tree and a document nonce docnonce as input as

above. From all window terms in tree that have the window containing the document identified

by docnonce as their opener, it selects one non-deterministically and returns its nonce. If there is

no such window, it returns the nonce of the window containing docnonce.

AUXDOCNONCE. Similar to AUXWINDOW above, the function AUXDOCNONCE takes a

term tree and a document nonce docnonce as input. From all window terms in tree that have

the window containing the document identified by docnonce as their opener, it selects one non-

deterministically and returns its active document’s nonce. If there is no such window or no active

document, it returns docnonce.

OPENERWINDOW. This function takes a term tree and a document nonce docnonce as input

as above. It returns the window nonce of the opener window of the window that contains the

document identified by docnonce. Recall that the nonce identifying the opener of each window

is stored inside the window term. If no document with nonce docnonce is found in the tree tree

or docnonce is not a top-level window, ♢ is returned.

GETWINDOW. This function takes a term tree and a document nonce docnonce as input as above.

It returns the nonce of the window containing docnonce.

GETORIGIN. To extract the origin of a document, the function GETORIGIN(tree,docnonce) is

used. This function searches for the document with the identifier docnonce in the (cleaned) tree

tree of the browser’s windows and documents. It returns the origin o of the document. If no

document with nonce docnonce is found in the tree tree, ♢ is returned.

GETPARAMETERS. Works exactly as GETORIGIN, but returns the document’s parameters

instead.

A.7. DNS Servers

Definition 60. A DNS server d (in a flat DNS model) is modeled in a straightforward way as an

atomic DY process (Id ,{sd
0},Rd ,sd

0). It has a finite set of addresses Id and its initial (and only)

state sd
0 encodes a mapping from domain names to addresses of the form

sd
0 = ⟨⟨domain1,a1⟩,⟨domain2,a2⟩, . . .⟩ .

DNS queries are answered according to this table (if the requested DNS name cannot be found

in the table, the request is ignored). ⋄

The relation Rd ⊆ (E ×{sd
0})× (2E ×{sd

0}) of d above is defined by Algorithm A.12.
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Algorithm A.12: Relation of a DNS server Rd .

Input: ⟨a, f ,m⟩,s
1: let domain,n such that ⟨DNSResolve,domain,n⟩ ≡ m if possible; otherwise stop {},s
2: if domain ∈ s then
3: let addr := s[domain]
4: let m′ := ⟨DNSResolved,addr,n⟩
5: stop {⟨ f ,a,m′⟩},s
6: end if
7: stop {},s

A.8. Web Systems

The Web infrastructure and Web applications are formalized by what is called a Web system. A

Web system contains, among others, a (possibly infinite) set of DY processes, modeling Web

browsers, Web servers, DNS servers, and attackers (which may corrupt other entities, such as

browsers).

Definition 61. A Web system WS = (W,S ,script,E0) is a tuple with its components defined as

follows:

The first component, W, denotes a system (a set of DY processes) and is partitioned into the

sets Hon, Web, and Net of honest, Web attacker, and network attacker processes, respectively.

Every p ∈Web∪Net is an attacker process for some set of sender addresses A⊆ IPs. For a

Web attacker p ∈Web, we require its set of addresses Ip to be disjoint from the set of addresses

of all other Web attackers and honest processes, i.e., Ip∩ Ip′ = /0 for all p′ ∈ Hon∪Web. Hence,

a Web attacker cannot listen to traffic intended for other processes. Also, we require that A = Ip,

i.e., a Web attacker can only use sender addresses it owns. Conversely, a network attacker may

listen to all addresses (i.e., no restrictions on Ip) and may spoof all addresses (i.e., the set A may

be IPs).

Every p ∈ Hon is a DY process which models either a Web server, a Web browser, or a DNS

server. Just as for Web attackers, we require that p does not spoof sender addresses and that its

set of addresses Ip is disjoint from those of other honest processes and the Web attackers.

The second component, S , is a finite set of scripts such that Ratt ∈ S . The third component,

script, is an injective mapping from S to S, i.e., by script every s ∈ S is assigned its string

representation script(s).

Finally, E0 is an (infinite) sequence of events, containing an infinite number of events of the

form ⟨a,a,TRIGGER⟩ for every a ∈
⋃

p∈W Ip.

A run of WS is a run of W initiated by E0. ⋄
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We now formally state and prove the general application independent security properties of the

Web that have been sketched in Section 2.9.

Let Web = (W ,S ,script,E0) be a Web system. In the following, we write sx = (Sx,Ex) for

the states of a Web system.

Definition 62 (Emitting Events). Given an atomic process p, an event e, and a finite run ρ =

((S0,E0,N0), . . . , (Sn,En,Nn)) or an infinite run ρ = ((S0,E0,N0), . . .) we say that p emits e iff

there is a processing step in ρ of the form

(Si,E i,Ni)−−−→
p→E

(Si+1,E i+1,Ni+1)

for some i≥ 0 and a set of events E with e ∈ E. We also say that p emits m iff e = ⟨x,y,m⟩ for

some addresses x, y. ⋄

Definition 63. We say that a term t is derivably contained in (a term) t ′ for (a set of DY processes)

P (in a processing step si → si+1 of a run ρ = (s0,s1, . . .)) if t is derivable from t ′ with the

knowledge available to P, i.e.,

t ∈ d /0({t ′}∪
⋃
p∈P

Si+1(p))

⋄

Definition 64. We say that a set of processes P leaks a term t (in a processing step si→ si+1)

to a set of processes P′ if there exists a message m that is emitted (in si→ si+1) by some p ∈ P

and t is derivably contained in m for P′ in the processing step si→ si+1. If we omit P′, we define

P′ := W \P. If P is a set with a single element, we omit the set notation. ⋄

Definition 65. We say that an DY process p created a message m (at some point) in a run if m is

derivably contained in a message emitted by p in some processing step and if there is no earlier

processing step where m is derivably contained in a message emitted by some DY process p′. ⋄
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Definition 66. We say that a browser b accepted a message (as a response to some request)

if the browser decrypted the message (if it was an HTTPS message) and called the function

PROCESSRESPONSE, passing the message and the request (see Algorithm A.8). ⋄

Definition 67. We say that an atomic DY process p knows a term t in some state s = (S,E,N) of

a run if it can derive the term from its knowledge, i.e., t ∈ d /0(S(p)). ⋄

Definition 68. We say that a script initiated a request r if a browser triggered the script (in

Line 10 of Algorithm A.7) and the first component of the command output of the script relation

is either HREF, IFRAME, FORM, or XMLHTTPREQUEST such that the browser issues the request r in

the same step as a result. ⋄

For a run ρ = s0,s1, . . . of any Web , we state the following lemmas:

Lemma 1. If in the processing step si→ si+1 of a run ρ of Web an honest browser b (I) emits an

HTTPS request of the form

m = enca(⟨req,k⟩,pub(k′))

(where req is an HTTP request, k is a nonce (symmetric key), and k′ is the private key of some

other DY process u), and (II) in the initial state s0 the private key k′ is only known to u, and (III)

u never leaks k′, then all of the following statements are true:

(1) There is no state of Web where any party except for u knows k′, thus no one except for u

can decrypt req.

(2) If there is a processing step s j→ s j+1 where the browser b leaks k to W \{u,b} there is a

processing step sh→ sh+1 with h < j where u leaks the symmetric key k to W \{u,b} or

the browser is fully corrupted in s j.

(3) The value of the host header in req is the domain that is assigned the public key pub(k′) in

the browsers’ keymapping s0.keymapping (in its initial state).

(4) If b accepts a response (say, m′) to m in a processing step s j→ s j+1 and b is honest in s j

and u did not leak the symmetric key k to W \{u,b} prior to s j, then u created the HTTPS

response m′ to the HTTPS request m, i.e., the nonce of the HTTP request req is not known

to any atomic process p, except for the atomic process b and u.

Proof. (1) follows immediately from the condition. If k′ is initially only known to u and u never

leaks k′, i.e., even with the knowledge of all nonces (except for those of u), k′ can never be
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derived from any network output of u, k′ cannot be known to any other party. Thus, nobody

except for u can derive req from m.

(2) We assume that b leaks k to W \ {u,b} in the processing step s j → s j+1 without u prior

leaking the key k to anyone except for u and b and that the browser is not fully corrupted in s j,

and lead this to a contradiction.

The browser is honest in si. From the definition of the browser b, we see that the key k is

always chosen as a fresh nonce (placeholder ν3 in Lines 65ff. of Algorithm A.9) that is not

used anywhere else. Further, the key is stored in the browser’s state in pendingRequests. The

information from pendingRequests is not extracted or used anywhere else (in particular it is not

accessible by scripts). If the browser becomes closecorrupted prior to s j (and after si), the key

cannot be used anymore (compare Lines 46ff. of Algorithm A.9). Hence, b does not leak k to

any other party in s j (except for u and b). This proves (2).

(3) Per the definition of browsers (Algorithm A.9), a host header is always contained in HTTP

requests by browsers. From Line 72 of Algorithm A.9 we can see that the encryption key for the

request req was chosen using the host header of the message. It is chosen from the keymapping

in the browser’s state, which is never changed during ρ . This proves (3).

(4) An HTTPS response m′ that is accepted by b as a response to m has to be encrypted with

k. The nonce k is stored by the browser in the pendingRequests state information. The browser

only stores freshly chosen nonces there (i.e., the nonces are not used twice, or for other purposes

than sending one specific request). The information cannot be altered afterwards (only deleted)

and cannot be read except when the browser checks incoming messages. The nonce k is only

known to u (which did not leak it to any other party prior to s j) and b (which did not leak it

either, as u did not leak it and b is honest, see (2)). The browser b cannot send responses. This

proves (4).

Corollary 1. In the situation of Lemma 1, as long as u does not leak the symmetric key k to

W \{u,b} and the browser does not become fully corrupted, k is not known to any DY process

p ̸∈ {b,u} (i.e., ∄s′ = (S′,E ′) ∈ ρ: k ∈ dN p(S′(p))).

Lemma 2. If for some si ∈ ρ an honest browser b has a document d in its state Si(b).windows

with the origin ⟨dom,S⟩ where dom ∈ Domain, and Si(b).keyMapping[dom] ≡ pub(k) with

k ∈ N being a private key, and there is only one DY process p that knows the private key k in

all s j, j ≤ i, then b extracted (in Line 45 in Algorithm A.8) the script in that document from an

HTTPS response that was created by p.

Proof. The origin of the document d is set only once: In Line 45 of Algorithm A.8. The values

(domain and protocol) used there stem from the information about the request (say, req) that led
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to loading of d. These values have been stored in pendingRequests between the request and the

response actions. The contents of pendingRequests are indexed by freshly chosen nonces and

can never be altered or overwritten (only deleted when the response to a request arrives). The

information about the request req was added to pendingRequests in Line 71 (or Line 74 which

we can exclude as we will see later) of Algorithm A.9. In particular, the request was an HTTPS

request iff a (symmetric) key was added to the information in pendingRequests. When receiving

the response to req, it is checked against that information and accepted only if it is encrypted

with the proper key and contains the same nonce as the request (say, n). Only then the protocol

part of the origin of the newly created document becomes S. The domain part of the origin (in

our case dom) is taken directly from the pendingRequests and is thus guaranteed to be unaltered.

From Line 72 of Algorithm A.9 we can see that the encryption key for the request req was

actually chosen using the host header of the message which will finally be the value of the

origin of the document d. Since b therefore selects the public key Si(b).keyMapping[dom] =

S0(b).keyMapping[dom] ≡ pub(k) for p (the key mapping cannot be altered during a run), we

can see that req was encrypted using a public key that matches a private key which is only (if

at all) known to p. With Lemma 1 we see that the symmetric encryption key for the response,

k, is only known to b and the respective Web server. The same holds for the nonce n that was

chosen by the browser and included in the request. Thus, no other party than p can encrypt

a response that is accepted by the browser b and which finally defines the script of the newly

created document.

Lemma 3. If in a processing step si → si+1 of a run ρ of Web an honest browser b issues an

HTTP(S) request with the Origin header value ⟨dom,S⟩ where and Si(b).keyMapping[dom] ≡
pub(k) with k ∈N being a private key, and there is only one DY process p that knows the private

key k in all s j, j ≤ i, then that request was initiated by a script that b extracted (in Line 45 in

Algorithm A.8) from an HTTPS response that was created by p.

Proof. First, we can see that the request was initiated by a script: As it contains an origin header,

it must have been a POST request (see the browser definition in Appendix A.6). POST requests

can only be initiated in Lines 55, 79 of Algorithm A.7 and Line 34 of Algorithm A.8. In the latter

instance (Location header redirect), the request contains at least two different origins, therefore

it is impossible to create a request with exactly the origin ⟨dom,S⟩ using a redirect. In the other

two cases (FORM and XMLHTTPRequest), the request was initiated by a script.

The Origin header of the request is defined by the origin of the script’s document. With

Lemma 2 we see that the content of the document, in particular the script, was indeed provided

by p.
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The definitions below complete our description of privacy of Web systems presented in Sec-

tion 3.4.3.

Definition 69 (Web System Command and Schedule). We call a term ζ a Web system command

(or simply, command) if ζ is of the form

⟨i, j,τprocess,cmdswitch,cmdwindow,τscript,url⟩

The components are defined as follows:

• i ∈ N,

• j ∈ N,

• cmdswitch ∈ {1,2,3},

• cmdwindow ∈ N,

• τscript ∈ T /0(Vscript ∪ {x}) with x being a variable and Vscript the set of placeholders for

scripting processess (see Definition 46).

• τprocess ∈ T /0(Vprocess∪{x}) with x being a variable and Vprocess the set of placeholders (see

Definition 22).

• url ∈ URLs with URLs being the set of all valid URLs (see Definition 32).

We call a (finite) sequence σ = ⟨ζ1, . . . ,ζn⟩, with ζ1, . . . ,ζn being Web system commands, a

Web system schedule (or simply, schedule). ⋄

Definition 70 (Induced Processing Step). Let WS = (W,S ,script,E0) be a Web system and

(S,E,N)
⟨a, f ,m⟩→p−−−−−−→

p→Eout
(S′,E ′,N′)
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be a processing step of W (as in Definition 41) with E = (e1,e2, . . .) and

ζ = ⟨i, j,τprocess,cmdswitch,cmdwindow,τscript,url⟩

a Web system command. We say that this processing step is induced by ζ iff

1. ei = ⟨a, f ,m⟩.

2. Under a lexicographic ordering of W, p is the j-th process in W with a ∈ Ip.

3. E ′ = Eout · (e1, . . . ,ei−1,ei+1, . . .).

4. If p is a (Web) attacker process or p is a corrupted browser (i.e., S(p).isCorrupted ̸≡ ⊥),

then Eout = ⟨eout⟩ with ⟨S′(p),eout⟩= τprocess[⟨ei,s⟩/x]↓.

5. If p is an honest browser (i.e., S(p).isCorrupted ≡ ⊥) and m ≡ TRIGGER, the browser

relation behaves as follows and Eout and S′(p) are obtained accordingly:

a) If cmdswitch = script, the browser relation chooses switch = script in Line 9 of

Algorithm A.9 and w in Line 10 of Algorithm A.9 such that w is the cmdwindow-th

window in the tree of browser’s state S(p).windows. If this script is not the attacker

script, the browser (deterministically) executes the script in this window. Otherwise,

in Line 10 of Algorithm A.7, the browser relation chooses the output of the script (of

this window) as outλ = τscript[in/x]↓ with the variable in (deterministically) chosen

in Line 9 of Algorithm A.7.

b) If cmdswitch = urlbar, the browser relation chooses switch = urlbar in Line 9

of Algorithm A.9 and protocol, host, domain, path, parameters in Line 24ff. of

Algorithm A.9 such that url = ⟨URL,protocol,host,path,parameters⟩.

c) If cmdswitch = reload, the browser relation chooses switch = reload in Line 9 of

Algorithm A.9 and w in Line 10 of Algorithm A.9 such that w is the cmdwindow-th

window in the tree of browser’s state S(p).windows. (The browser then starts to

reload the document in this window.)

d) If cmdswitch = forward, the browser relation chooses switch = forward in Line 9

of Algorithm A.9 and w in Line 10 of Algorithm A.9 such that w is the cmdwindow-

th window in the tree of browser’s state S(p).windows. The document history of

that window is then changed such that the subsequent document is marked as the

active document of that window. If there is no subsequent document in the window’s

history, nothing is changed.
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e) If cmdswitch = back, the browser relation chooses switch = back in Line 9 of Algo-

rithm A.9 and w in Line 10 of Algorithm A.9 such that w is the cmdwindow-th window

in the tree of browser’s state S(p).windows. The document history of that window

is then changed such that the previous document is marked as the active document

of that window. If there is no previous document in the window’s history, nothing is

changed.

We write

(S,E,N)
ζ−→ (S′,E ′,N′) .

⋄

Corollary 2. In some cases a command σ = ⟨i, j,τprocess,cmdswitch,cmdwindow,τscript,url⟩ does

not induce a processing step under the configuration (S,E,N) in a Web system: If i > |E|, a pro-

cessing step cannot be induced. The same applies if j does not refer to an existing process. Also,

if the command schedules a TRIGGER message to be delivered to a browser p, cmdswitch ∈ {1,3},
and cmdwindow > |Subwindows(S(p))| (i.e., the command chooses a window of the browser p,

which does not exist), then no processing step can be induced.

Definition 71 (Induced Run). Let WS = (W,S ,script,E0) be a Web system, σ = ⟨ζ1, . . . ,ζn⟩
be a finite Web system schedule, and N0 be an infinite sequence of pairwise disjoint nonces. We

say that a finite run ρ = ((S0,E0,N0), . . . ,(Sn,En,Nn)) of the system W is induced by σ under

nonces N0 iff for all 1≤ i≤ n, ζi induces the processing step

(Si−1,E i−1,Ni−1)
ζi−→ (Si,E i,Ni) .

We denote the set of runs induced by σ under all infinite sequences of pairwise disjoint nonces

N0 by σ(WS). ⋄

Definition 72 (Deterministic DY Process). We call a DY process p = (Ip,Zp,Rp,sp
0) determin-

istic iff the relation Rp is a (partial) function.

We call a script Rscript deterministic iff the relation Rscript is a (partial) function. ⋄

The definition of static equivalence follows the notion of static equivalence by Abadi and

Fournet [AF01].

Definition 73 (Static Equivalence). Let t1, t2 ∈ TN (V ) be two terms with V a set of variables.

We say that t1 and t2 are statically equivalent, written t1 ≈ t2, iff for all terms M, N ∈ T /0({x})
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with x a variable and x ̸∈V , it holds true that

M[t1/x]≡ N[t1/x] ⇔ M[t2/x]≡ N[t2/x].

⋄

Definition 74 (Challenge Browser). Let dr some domain and b(dr) a DY process. We call b(dr)

a challenge browser iff b is defined exactly the same as a browser (as described in Appendix A.6)

with two exceptions: (1) the state contains one more property, namely challenge, which initially

contains the term ⊤. (2) Algorithm A.4 is extended by the following at its very beginning: It is

checked if a message m is addressed to the domain CHALLENGE (which we call the challenger

domain). If m is addressed to this domain and no other message m′ was addressed to this domain

before (i.e., challenge ̸≡ ⊥), then m is changed to be addressed to the domain dr and challenge

is set to ⊥ to recorded that a message was addressed to CHALLENGE. ⋄
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D. Model and Analysis of BrowserID in
Primary Mode

D.1. Step-By-Step Description of BrowserID’s Primary
Mode

We now present additional details of the JavaScript implementation of BrowserID. While the

basic steps have been shown in Section 4.2, we will now again refer to the steps denoted in

Figure 4.3 and provide a step-by-step description. As above, for readability, we focus on the

main login flow without the CIF, and we leave out steps for fetching additional resources (like

JavaScript files) and some less relevant postMessages and XHRs. Figure D.1 depicts the same

flow, but with even more details, such as the communication with the CIF.

We (again) assume that the user uses a “fresh” browser, i.e., the user has not been logged in

before. The user has already opened a document of some RP (RP-Doc) in her browser. RP-Doc

includes a JavaScript file, which provides the BrowserID API. The user is now about to click on

a login button in order to start a BrowserID login.

Phase i . After the user has clicked on the login button, RP-Doc opens a new browser

window, the login dialog (LD) 1 . The document of LD is loaded from LPO 2 . Now, LD sends

a ready postMessage 3 to its opener, which is RP-Doc. RP-Doc then responds by sending a

request postMessage 4 . This postMessage may contain additional information like a name or a

logo of RP-Doc. LD then fetches the so-called session context from LPO using 5 . The session

context contains information about whether the user is already logged in at LPO, which, by our

assumption, is not the case at this point. The session context also contains an XSRF protection

token which will be sent in all subsequent POST requests to LPO. Also, an httpOnly cookie

called browserid_state is set, which contains an LPO session identifier. Now, the user is

prompted to enter her email address (login email address), which she wants to use to log in at

RP 6 . LD sends the login email address to LPO via an XHR 7 , in order to get information about

the IdP the email address belongs to. The information from this so-called support document may

be cached at LPO for further use. LPO extracts the domain part of the login email address

and fetches an information document 8 from a fixed path (/.well-known/browserid) at the
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 Browser
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Figure D.1.: Detailed BrowserID implementation overview (primary mode). (See Page 11 for notation.)
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Figure D.1.: Detailed BrowserID implementation overview (primary mode, cont’d).
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IdP. This document contains the public key of IdP, and two paths, the provisioning path and

the authentication path at IdP. These paths will be used later in the login process by LD. LPO

converts these paths into URLs and sends them in its response 9 to the requesting XHR 7 .

Phase ii . As there is no record about the login email address in the localStorage under the

origin of LPO, the LD now tries to get a UC for this identity. For that to happen, the LD creates

a new iframe, the provisioning iframe (PIF) 10 . The PIF’s document is loaded 11 from the

provisioning URL LD has just received before in 9 . The PIF now interacts with the LD via

postMessages 12 . As the user is currently not logged in, the PIF tells the LD that the user is not

authenticated yet. This also indicates to the LD that the PIF has finished operation. The LD then

closes the PIF 13 .

Phase iii . Now, the LD saves the login email address in the localStorage indexed by a fresh

nonce. This nonce is stored in the sessionStorage to retrieve the email address later from the

localStorage again. Next, the LD navigates itself to the authentication URL it has received in 9 .

The loaded document now interacts with the user and the IdP 14 in order to establish some

authenticated session depending on the actual IdP implementation, which is out of scope of the

BrowserID standard. For example, during this authentication procedure, the IdP may issue some

session cookie.

Phase iv . After the authentication to the IdP has been completed, the authentication docu-

ment navigates the LD to the LD URL again. The LD’s document is fetched again from LPO

and the login process starts over. The following steps are similar to Phase i : The ready and

request postMessages are exchanged and the session context is fetched. As the user has not been

authenticated to LPO yet, the session context still contains the same information as above in 5 .

Now, the user is not prompted to enter her email address again. The email address is fetched from

the localStorage under the index of the nonce stored in the sessionStorage. Now, the address

information is requested again from LPO.

Phase v . As there still is no UC belonging to the login email address in the localStorage,

the PIF is created again. As the user now has established an authenticated session with the IdP,

the PIF asks the LD to generate a fresh key pair. After the LD has generated the key pair 15 ,

it stores the key pair in the localStorage (under the origin of LPO) and sends the public key to

the PIF as a postMessage 16 . The following steps 17 – 19 are not specified in the BrowserID

protocol. Typically, the PIF would send the public key to IdP (via an XHR) 17 . The IdP would

create the UC 18 and send it back to the PIF 19 . The PIF then sends the UC to the LD 20 ,

which stores it in the localStorage. Now, the LD closes the PIF.

Phase vi . The LD is now able to create a CAP, as it has access to a UC and the corresponding

private key in its localStorage. First, LD creates an IA for LPO 21 . The IA and the UC is then

combined to a CAP, which is then sent to LPO in an XHR POST message 22 . LPO is now able
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to verify this CAP with the public key of IdP, which LPO has already fetched and cached before

in 8 . If the CAP is valid, LPO considers its session with the user’s browser to be authenticated

for the email address the UC in the CAP is issued for.

Phase vii . Now, in 23 , the LD fetches a list of email addresses, which LPO considers

to be owned by the user. If the login email address would not appear in this list, LD would

abort the login process. After this, the LD fetches the address information about the login

email address again in 24 . Using this information, LD validates if the UC is signed by the

correct party (primary/secondary IdP). Now, LD generates an IA for the sender’s origin of

the request postMessage 4 (which was repeated in Phase iv ) using the private key from the

localStorage 25 (the IA is generated for the login email address). Also, it is recorded in the

localStorage that the user is now logged in at RP with this email address. The LD then combines

the IA with the UC stored in the localStorage to the CAP, which is then sent to RP-Doc in the

response postMessage 26 .

This concludes the login process that runs in LD. Afterwards, RP-Doc closes LD 27 .

D.2. Sideshow/BigTent OpenID Flow

We will now give concrete examples of an OpenID flow that is started when Sideshow or BigTent

want to authenticate a user via OpenID (as presented in Section 4.2). We will show typical

requests and responses in such a flow and discuss the parameters that are important for the

attacks presented in Section 4.5.1. We focus on Sideshow (and thus, Google), the URLs for

BigTent (with Yahoo) are similar.

D.2.1. OpenID Authentication Request

As we already discussed in Section 4.2, Sideshow maintains a session with the user. Sideshow

issues UCs to a user only if the session is authenticated. This authentication is done via OpenID.

When detecting that a session is not authenticated, Sideshow redirects the user’s browser to the

so-called OpenID endpoint URL of Google/Gmail. This URL may look as follows (line breaks

added for readability):

https://www.google.com/accounts/o8/ud
?openid.mode=checkid_setup
&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0
&openid.ns.ax=http%3A%2F%2Fopenid.net%2Fsrv%2Fax%2F1.0
&openid.ax.mode=fetch_request
&openid.ax.type.email=http%3A%2F%2Faxschema.org%2Fcontact%2Femail
&openid.ax.required=email
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&openid.ns.ui=http%3A%2F%2Fspecs.openid.net%2Fextensions%2Fui%2F1.0
&openid.ui.mode=popup
&openid.identity=
http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select

&openid.claimed_id=
http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select

&openid.return_to=
https%3A%2F%2Fgmail.login.persona.org%2Fauthenticate%2Fverify

&openid.realm=https%3A%2F%2F*.persona.org

In this URL, the parameter openid.ax.type.email encodes that Sideshow requests un-

der the name “email” in the namespace “ax” an attribute of the type http://axschema.org/

contact/email. Per definition of the OpenID attribute exchange schema [HBH07], this denotes

the request for an email address. Note that Google’s OpenID endpoint is (per the OpenID pro-

tocol) not obliged to follow this request and may issue an OpenID assertion without a (signed)

email address.

The parameter openid.return_to contains the URL to which Google redirects the user after

issuing the assertion. The assertion and possibly other information are appended to this URL.

D.2.2. OpenID Authentication Response

After accessing the above OpenID endpoint URL, the user authenticates with Google and con-

firms that Google releases the requested information to Sideshow. Google then creates an OpenID

assertion and appends it to the openid.return_to URL that was contained in the OpenID au-

thentication request. Finally, OpenID redirects the user’s browser to the resulting URL, which

may look as follows:

https://gmail.login.persona.org/authenticate/verify
?openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0
&openid.mode=id_res
&openid.op_endpoint=https%3A%2F%2Fwww.google.com%2Faccounts%2Fo8%2Fud
&openid.response_nonce=2013-09-24T11%3A46%3A11Z479iYHqAdS054A
&openid.return_to=https%3A%2F%2Fgmail.login.persona.org%2Fauthenticate%2Fverify
&openid.assoc_handle=1.AMlYA(...)ubxCOqB
&openid.signed=op_endpoint
%2Cclaimed_id
%2Cidentity
%2Creturn_to
%2Cresponse_nonce
%2Cassoc_handle
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%2Cns.ext1
%2Cext1.mode
%2Cext1.type.email
%2Cext1.value.email

&openid.sig=BIPe1PIwitMp365MUEtd34IJLUs%3D
&openid.identity=
https%3A%2F%2Fwww.google.com%2Faccounts%2Fo8%2Fid%3Fid%3DAItO(...)sLfSiQ

&openid.claimed_id=
https%3A%2F%2Fwww.google.com%2Faccounts%2Fo8%2Fid%3Fid%3DAItO(...)sLfSiQ

&openid.ns.ext1=http%3A%2F%2Fopenid.net%2Fsrv%2Fax%2F1.0
&openid.ext1.mode=fetch_response
&openid.ext1.type.email=http%3A%2F%2Faxschema.org%2Fcontact%2Femail
&openid.ext1.value.email=user%40gmail.com
&openid.ns.ext2=http%3A%2F%2Fspecs.openid.net%2Fextensions%2Fui%2F1.0
&openid.ext2.mode=popup

First note that the namespace “ax” was renamed by Gmail: What was prefixed with openid.ax

in the request is now prefixed with openid.ext1. The parameter openid.signed contains the

names of the parameters that have actually been MACed into the signature given in openid.sig.

Note that the receiver of the assertion can not know the exact renaming performed by Gmail

and must, although the renaming is obvious in this case, rely on the type parameters to determine

the actual contents of the parameters. In this case, openid.ext1.type.email contains the AX

schema type for an email address, saying that openid.ext1.value.email actually contains

the requested email address.

The parameter openid.assoc_handle contains the id of a temporary symmetric key created

and stored at Google that is used for the MAC.

D.2.3. Verification

After receiving the above request, Sideshow can forward all attributes to a verification service

at Google. The URL for this verification is https://www.google.com/accounts/o8/ud?

openid.mode=checkid_authentication (same as in the authentication request, but with a

different openid.mode value). Sideshow appends to this URL all attributes from the authentica-

tion response, i.e., the assertion, except for the openid.mode parameter. Google (only) checks

that the MAC in openid.sig is correct (using the symmetric key stored earlier) and answers

with “true” or “false” accordingly.
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s ∈ S script(s)

Ratt att_script
script_rp_index script_rp_index
script_lpo_cif script_lpo_cif
script_lpo_ld script_lpo_ld
script_idp_pif script_idp_pif
script_idp_ad script_idp_ad

Table D.1.: List of scripts in S and their respective string representations for the primary mode of
BrowserID.

D.3. Model of BrowserID in Primary Mode

We now present full details of our formal model of BrowserID in primary mode that we outlined

in Section 4.4.1. As mentioned, this model incorporates the fixes discussed in Section 4.5.1. We

model the BrowserID system as an SSO Web system (in the sense of Section 3.1). We call a Web

system BIDp = (W p,S ,script,E0) a BrowserID primary mode Web system if it is of the form

outlined in Section 4.4.1 and described in what follows.

Recall that the system W p = Hon∪̇Web∪̇Net contains the Web server for LPO, a finite set B

of Web browsers, a finite set RP of Web servers for the relying parties, and a finite set IDP of

Web servers for the identity providers, with

Hon := B ∪̇RP ∪̇ IDP ∪̇DNS ∪̇ {LPO}  
=:Other

.

For the analysis of authentication and session integrity, we consider a BrowserID primary mode

Web system with one network attacker, i.e., Web := /0, and Net := {attacker}. In this case, DNS

servers are assumed to be dishonest, and hence, are subsumed by attacker. (For the analysis of

privacy, we consider a BrowserID primary mode Web system for privacy analysis, that follows

the description in Section 3.4.3. As privacy in BrowserID is broken beyond repair, we here omit

a formal definition as we cannot formally prove this property.) More details on the processes

in W p are provided below. Table D.1 shows the set of scripts S and their respective string

representations that are defined by the mapping script. The set E0 contains only the trigger

events as specified in Section A.8.

D.3.1. Addresses and Domain Names

The set IPs contains for LPO, attacker, every relying party in RP, every identity provider in

IDP, and every browser in B one address each. By addr we denote the corresponding assignment
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from a process to its address. The set Doms contains one domain for LPO, one for every relying

party in RP, a finite set of domains for every identity provider in IDP, and a finite set of domains

for attacker. Browsers (in B) do not have a domain. By dom we denote the assignments from

atomic processes to sets of Doms. If dom or addr returns a set with only one element, we often

write dom(x) or addr(x) to refer to the element.

All processes in W contain in their initial states all public keys and the private keys of their

respective domains (if any). We define Ip = {addr(p)} for all p ∈ Hon.

D.3.2. Keys and Secrets

The set KTLS contains the keys that will be used for TLS encryption. Let tlskey : Doms→ KTLS

be an injective mapping that assigns a (different) private key to every domain. Atomic processes

are given the private keys for their domain in the following form: For an atomic DY process p

we define

tlskeysp = ⟨{⟨d, tlskey(d)⟩ | d ∈ dom(p)}⟩ .

The set Ksign contains the keys that will be used by IdPs for signing UCs. Let signkey : IdPs→
Ksign be an injective mapping that assigns a (different) private key to every identity provider.

The set Secrets ⊆ N is the set of passwords (secrets) the browsers share with the identity

providers.

We note that while initially only browsers own secrets and identities, the attacker can corrupt

any number of browsers in a run, and hence, can own secrets and identities as well.

D.3.3. Corruption

RPs and IdPs can become corrupted: If they receive the message CORRUPT, they start collecting

all incoming messages in their state and (upon triggering) send out all messages that are derivable

from their state and collected input messages, just like the attacker process. We say that an RP

or IdP is honest if the according part of their state (s.corrupt) is ⊥, and that they are corrupted

otherwise.

Recall that browsers can, as explained in Section 2.5, become corrupted as well.

We are now ready to define the processes in W as well as the scripts in S in more detail.

D.3.4. Attackers

As mentioned, the attacker attacker is modeled to be a network or Web attacker (depending on

whether it is a system with a network attacker or a system for privacy analysis) as specified in

Section 2.4. We allow network attackers to listen to/spoof all available IP addresses, and hence,

183



D. Model and Analysis of BrowserID in Primary Mode

define Iattacker = IPs. Web attackers get an IP address disjoint from other IP addresses just like

any honest process. His initial state is sattacker0 = ⟨attdoms, tlskeys,signkeys⟩, where attdoms is a

sequence of all domains along with the corresponding private keys owned by the attacker, tlskeys

is a sequence of all domains and the corresponding public keys, and signkeys is a sequence

containing all verification keys for all IdPs. Note that the attacker can also corrupt IdPs in order

to obtain valid (private) signing keys.

In a system with a network attacker, all other parties use the attacker as a DNS server.

D.3.5. Browsers

Each b ∈ B is a Web browser as defined in Appendix A.6, with Ib := {addr(b)} being its address.

To define the inital state, first let IDb := ownerOfID−1(b) be the set of all identities of b,

IDb,d := {i | ∃x : i= ⟨x,d⟩ ∈ IDb} be the set of identities of b for a domain d, and SecretDomainsb

:= {d | IDb,d ̸= /0} be the set of all domains that b owns identities for.

Then, the initial state sb
0 is defined as follows: the key mapping maps every domain to its

public (TLS) key, according to the mapping tlskey; the DNS address is addr(attacker); the list

of secrets contains an entry ⟨⟨d,S⟩,s⟩ for each d ∈ SecretDomainsb and s = secretOfID(i) for

some i ∈ IDb,d (s is the same for all i); ids is ⟨IDb⟩; sts is empty.

D.3.6. LPO

LPO is modeled as an atomic DY process (ILPO,ZLPO,RLPO,sLPO0 ) with the IP address ILPO =

{addr(LPO)}. The initial state sLPO0 of LPO contains the private key of its domain, and the

signing keys of all IdPs (LPO does not need the public tls keys of other parties, which is why we

omit them from LPO’s initial state.). The definition of RLPO follows the description of LPO in

Section 4.2 and is provided below.

HTTP responses by LPO can contain strings that represent scripts (script_lpo_cif and

script_lpo_ld). These scripts are defined in Appendix D.3.9 below.

In order to define the set ZLPO of states of LPO, we first define the terms describing the session

context of a session.

Definition 75. A term of the form ⟨ids,xsrfToken⟩ with ids ⊂⟨⟩ ID and xsrfToken ∈ N is called

an LPO session context. We denote the set of all LPO session contexts by LPOSessionCTXs. ⋄

Now, we define the set ZLPO of states of LPO as well as the initial state sLPO0 of LPO.
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Definition 76. A state s ∈ ZLPO of LPO is a term of the form ⟨tlskey, signkeys, sessions⟩ where

tlskey = tlskey(dom(LPO)), signkeys is a mapping of domains to signing keys of the form

signkeys = ⟨{⟨d,pub(signkey(y))⟩ | y ∈ IdPs, d ∈ dom(y)}⟩ ,

and sessions ∈ [N ×LPOSessionCTXs].1

The initial state sLPO0 of LPO is a state of LPO with sLPO0 .sessions= ⟨⟩. ⋄

Example 8. Let k be a signing key for some IdP which owns the domain example.com. A

possible state s of LPO may look like this:

s = ⟨⟨n1, . . . ,nm⟩, tlskey(dom(LPO)), [example.com : pub(k)],sessions⟩

with

sessions = ⟨⟨sessionid1,⟨⟨id′1, . . . , id′l⟩,xsrfToken⟩⟩, . . .⟩

The relation RLPO ⊆ (E ×ZLPO)× (2E ×ZLPO) of LPO is specified in Algorithm D.1. Just

like in Appendix A.6, we describe this relation by a non-deterministic algorithm.

D.3.7. Identity Providers

An identity provider i ∈ IDPs is a Web server modeled as an atomic process (Ii,Zi,Ri,si
0) with

the address Ii := {addr(i)}. Its initial state si
0 contains a list of domains and (private) TLS keys

(see below), a list of users and identites (see below), and a private key for signing UCs. Besides

this, the full state of i further contains a list of used nonces, and information about active sessions.

Sessions are structured as a dictionary: For each session identifier (session id) the dictionary

contains the list of identities for which the session is authenticated.

In the following, we will first define the (initial) state of i formally and afterwards present the

definition of the relation Ri.

To define the “user database” userseti (for the identity provider i), we first define the set

Secretsi =
⋃

j∈IDi

secretOfID( j) ,

the function

IDsofSecret : Secrets→ ID, s ↦→ { j | j ∈ ID , secretOfID( j) = s} ,
1As mentioned before, the state of LPO does not need to contain public keys.
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Algorithm D.1: Relation of LPO RLPO.

Input: ⟨a, f ,m⟩,s
1: let s′ := s
2: let sts := ⟨Strict-Transport-Security,⊤⟩
3: if m≡ TRIGGER then
4: if s′.sessions≡ ⟨⟩ then
5: stop
6: end if
7: let sessionid← {id | id ∈⟨⟩ s′.sessions}
8: let choice← {logout,expire}
9: if choice≡ logout then

10: let s′.sessions[sessionid].ids := ⟨⟩
11: else
12: let s′.sessions := s′.sessions − sessionid
13: end if
14: stop
15: end if
16: let mdec, k such that ⟨mdec,k⟩ ≡ deca(m,s.tlskey)

↪→ if possible; otherwise stop
17: let n, method, path, params, headers, body such that

↪→ ⟨HTTPReq,n,method,dom(LPO),path,params,headers,body⟩ ≡ mdec
↪→ if possible; otherwise stop

18: if method ≡ GET∧path≡ /cif then → Deliver CIF script
19: let scriptinit := ⟨init,⊥,⊥,⊥,⊥,⊥,⊥,⟨⟩,⊥,⊥⟩
20: let m′ := encs(⟨HTTPResp,n,200,⟨sts⟩,⟨script_lpo_cif,scriptinit⟩⟩,k,)
21: stop ⟨⟨ f ,a,m′⟩⟩, s′

22: else if method ≡ GET∧path≡ /ld then → Deliver LD script
23: let scriptinit := ⟨init,⊥,⊥,⊥,⊥,⊥,⟨⟩,⊥,⊥,⊥⟩
24: let m′ := encs(⟨HTTPResp,n,200,⟨sts⟩,⟨script_lpo_ld,scriptinit⟩⟩,k,)
25: stop ⟨⟨ f ,a,m′⟩⟩, s′

26: else if method ≡ GET∧path≡ /ctx then → Deliver context info.
27: let sessionid := headers[Cookie][browserid_state]
28: if sessionid ̸∈⟨⟩ s.sessions then
29: let sessionid := ν1
30: let xsrfToken := ν2
31: let s′.sessions := s′.sessions +⟨⟩ ⟨sessionid,⟨⟨⟩,xsrfToken⟩⟩
32: end if
33: let context := ⟨⊥,s′.sessions[sessionid].xsrfToken⟩
34: if s′.session[sessionid].ids ̸≡ ⟨⟩ then
35: let context.1 := ⊤
36: end if
37: let setCookie := ⟨Set-Cookie,⟨⟨browserid_state,sessionid,⊤,⊤,⊤⟩⟩⟩
38: let headers := ⟨sts,setCookie⟩
39: let m′ := encs(⟨HTTPResp,n,200,headers,context⟩,k)
40: stop ⟨⟨ f ,a,m′⟩⟩, s′

This algorithm is continued on the next page.
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41: else if method ≡ POST∧path≡ /auth then
42: let uc, ia, xsrfToken such that ⟨⟨uc, ia⟩,xsrfToken⟩ ≡ body

↪→ if possible; otherwise stop
43: let sessionid := headers[Cookie][browserid_state]
44: if s′.sessions[sessionid].xsrfToken ̸≡ xsrfToken then
45: stop
46: end if
47: let name, domain, userpubkey such that

↪→ ⟨⟨name,domain⟩,userpubkey⟩ ≡ extractmsg(uc)
↪→ if possible; otherwise stop

48: let id := ⟨name,domain⟩
49: let origin := extractmsg(ia)
50: if checksig(uc,s.signkeys[domain]) ̸≡ ⊤∨ checksig(ia,userpubkey) ̸≡ ⊤

↪→ ∨ origin ̸≡ ⟨s.domain,S⟩ then
51: stop
52: end if
53: if s′.sessions[sessionid].ids≡ ⟨⟩ then
54: if ̸ ∃n ∈ N such that id ∈⟨⟩ s′.idgroups.n then
55: let s′.idgroups := s′.idgroups +⟨⟩ ⟨id⟩
56: end if
57: let n← N such that id ∈⟨⟩ s′.idgroups.n
58: else
59: let n← N such that s′.idgroups.n≡ s′.sessions[sessionid].ids

↪→ if possible; otherwise stop
60: if id ̸∈⟨⟩ s′.idgroups.n then
61: let s′.idgroups.n := s′.idgroups.n +⟨⟩ ⟨name,domain⟩
62: end if
63: end if
64: let s′.sessions[sessionid].ids := s′.idgroups.n
65: let m′ := encs(⟨HTTPResp,n,200,⟨sts⟩,⊤⟩,k)
66: stop ⟨⟨ f ,a,m′⟩⟩, s′

67: end if
68: stop
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and finally

userseti = ⟨{⟨s,⟨IDsofSecret(s)⟩⟩ |s ∈ Secretsi}⟩ .

We also need a term that represents a dictionary that maps domains to (private) TLS keys of

the IdP i. We define tlskeysi = ⟨{⟨d, tlskey(d)⟩ | d ∈ dom(i)}⟩.

Definition 77. A state s ∈ Zi of an IdP i is a term of the form ⟨tlskeys, users, signkey, sessions,

corrupt⟩ where tlskeys = tlskeysi, users = userseti, signkey ∈ N (the key used by the IdP i to

sign UCs), sessions ∈
[
N ×TN

]
, corrupt ∈ TN .

The initial state si
0 of i is the state ⟨⟨⟩, tlskeysi,userseti,signkey(i),⟨⟩,⊥⟩. ⋄

The relation Ri that defines the behavior of the IdP i is defined by Algorithm D.2.

D.3.8. Relying Parties

A relying party r ∈ RP is a Web server modeled as an atomic DY process (Ir,Zr,Rr,sr
0) with

the address Ir := {addr(r)}. Its initial state sr
0 contains its domain, the private key associated

with its domain, the DNS server address, and the verification keys of all IdPs.2 The full state

additionally contains the set of service tokens the RP has issued. The definition of Rr again

follows the description in Section 4.2. RP accepts only HTTPS requests.

We now provide the formal definition of r as an atomic DY process (Ir,Zr,Rr,sr
0). As men-

tioned, we define Ir = {addr(r)}. Next, we define the set Zr of states of r and the initial state sr
0

of r.

Definition 78. A state s ∈ Zr of an RP r is a term of the form

⟨domain, tlskey,signkeys,serviceTokens,corrupt⟩

where domain = dom(r), tlskey = tlskey(dom(r)) the private TLS key for the domain of r,

signkeys= ⟨{⟨d,pub(signkey(y))⟩ | y ∈ IdPs, d ∈ dom(y)}⟩ (same as for LPO), serviceTokens∈
[N ×S], corrupt ∈ TN .

The initial state sr
0 of r is a state of r with sr

0.serviceTokens= ⟨⟩ and sr
0.corrupt=⊥. ⋄

As mentioned earlier, we define the function serviceSessions that extracts service sessions

from an RP’s state as the projection that extracts the subterm serviceTokens.

We specify the relation Rr ⊆ (E ×Zr)× (2E ×Zr) of r in Algorithm D.3.

2We add the IdP verification keys to the initial status (instead of having RPs retrieve them dynamically from the IdP)
in order to reduce the overall complexity.
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Algorithm D.2: Relation of an IdP Ri.

Input: ⟨a, f ,m⟩,s
1: let s′ := s
2: if s′.corrupt ̸≡ ⊥∨m≡ CORRUPT then
3: let s′.corrupt := ⟨⟨a, f ,m⟩,s′.corrupt⟩
4: let m′← dN p(s′)
5: let a′ ← IPs
6: stop ⟨⟨a′,a,m′⟩⟩, s′

7: end if
8: let sts := ⟨Strict-Transport-Security,⊤⟩
9: let mdec, k, k′, inDomain such that

↪→ ⟨mdec,k⟩ ≡ deca(m,k′)∧⟨inDomain,k′⟩ ∈ s.tlskeys
↪→ if possible; otherwise stop

10: let n, method, path, params, headers, body such that
↪→ ⟨HTTPReq,n,method, inDomain,path,params,headers,body⟩ ≡ mdec
↪→ if possible; otherwise stop

11: if method ≡ POST then
12: if path ̸≡ /certreq then → User logs in.
13: let id, secret such that ⟨id,secret⟩ ≡ body

↪→ if possible; otherwise stop
14: if headers ̸≡ ⟨Origin,⟨inDomain,S⟩⟩ then
15: stop
16: end if
17: let ids := s.users[secret]
18: if ids≡ ⟨⟩∨ id ≡ ⟨⟩∨ id ̸∈⟨⟩ ids then → Check id/secret pair.
19: stop
20: end if
21: let sessionid := ν1
22: let s′.sessions[sessionid] := ids
23: let setCookie := ⟨Set-Cookie,⟨⟨sessionid,sessionid,⊤,⊤,⊤⟩⟩⟩
24: let m′ := encs(⟨HTTPResp,n,200,⟨sts,setCookie⟩,⊤⟩,k)
25: stop ⟨⟨ f ,a,m′⟩⟩, s′

26: else → User wants a certificate.
27: let id, pubkey such that ⟨id,pubkey⟩ ≡ body

↪→ if possible; otherwise stop
28: let sessionid := headers[Cookie][sessionid]
29: if id ̸∈⟨⟩ s′.sessions[sessionid] then → Check if user is logged in.
30: stop
31: end if
32: let uc := sig(⟨id,pubkey⟩,s.signkey)
33: let m′ := encs(⟨HTTPResp,n,200,⟨sts⟩,uc⟩,k)
34: stop ⟨⟨ f ,a,m′⟩⟩, s′

35: end if
36: else

This algorithm is continued on the next page.
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37: if path≡ /pif then
38: let m′ := encs(⟨HTTPResp,n,200,⟨sts⟩,⟨script_idp_pif,

↪→ ⟨init,⟨⟩,⟨⟩,⟨⟩,⊥,⊥,⊥⟩⟩⟩,k)
39: else
40: let m′ := encs(⟨HTTPResp,n,200,⟨sts⟩,⟨script_idp_ad,⟨⟩⟩⟩,k)
41: end if
42: stop ⟨⟨ f ,a,m′⟩⟩, s′

43: end if
44: stop

Algorithm D.3: Relation of an RP Rr.

Input: ⟨a, f ,m⟩,s
1: let s′ := s
2: if s′.corrupt ̸≡ ⊥∨m≡ CORRUPT then
3: let s′.corrupt := ⟨⟨a, f ,m⟩,s′.corrupt⟩
4: let m′← dN p(s′)
5: let a′ ← IPs
6: stop ⟨⟨a′,a,m′⟩⟩, s′

7: end if
8: let sts := ⟨Strict-Transport-Security,⊤⟩
9: let mdec, k such that ⟨mdec,k⟩ ≡ deca(m,s.tlskey)

↪→ if possible; otherwise stop
10: let n, method, path, params, headers, body such that

↪→ ⟨HTTPReq,n,method,s.domain,path,params,headers,body⟩ ≡ mdec
↪→ if possible; otherwise stop

11: if method ≡ GET then
12: let scriptinit := ⟨init,⊥,⊥,⊥,⟨⟩,⟨⟩,⊥⟩
13: let m′ := encs(⟨HTTPResp,n,200,⟨sts⟩,⟨script_rp_index,scriptinit⟩⟩,k)
14: stop ⟨⟨ f ,a,m′⟩⟩, s′

15: else if method ≡ POST∧headers≡ ⟨Origin,⟨s.domain,S⟩⟩ then
16: let uc, ia such that ⟨uc, ia⟩ ≡ body if possible; otherwise stop
17: let name, domain, userpubkey such that

↪→ ⟨⟨name,domain⟩,userpubkey⟩ ≡ extractmsg(uc)
↪→ if possible; otherwise stop

18: let id := ⟨name,domain⟩
19: let origin := extractmsg(ia)
20: if checksig(uc,s.signkeys[domain]) ̸≡ ⊤∨ checksig(ia,userpubkey) ̸≡ ⊤∨

↪→ origin ̸≡ ⟨s.domain,S⟩ then
21: stop
22: end if
23: let ntoken := ν1
24: let s′.serviceTokens := s′.serviceTokens +⟨⟩ ⟨ntoken, id⟩
25: let m′ := encs(⟨HTTPResp,n,200,⟨sts⟩,⟨ntoken, id⟩⟩,k)
26: stop ⟨⟨ f ,a,m′⟩⟩, s′

27: end if
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D.3.9. BrowserID Scripts

As already mentioned above, the set S of the Web system BIDp
primary = (W p,S ,script,E0)

consists of the scripts Ratt, script_rp_index, script_lpo_cif , script_lpo_ld, script_idp_pif , and

script_idp_ad with their string representations being defined by script (see Table D.1).

The script Ratt is the attacker script (see Section 2.5). The formal model of the other scripts

follows the description in Appendix D.1.

In what follows, we provide a definition for all honest scripts.

login.persona.org Communication Iframe Script (script_lpo_cif). Recall that a script is a

relation that takes as input a term and outputs a new term. As described in Section 2.5 and

formally specified in Algorithm A.7 (m = TRIGGER, action = 1), the input term is provided by

the browser. It contains the scriptstate and additional information containing all browser state

information the script has access to, such as the input the script has obtained so far via XHRs

and postMessages, information about windows, etc. The browser expects the output term to have

a specific form, as also specified in Section 2.5 and Algorithm A.7. The output term contains,

among other information, the new internal scriptstate.

As for script_lpo_cif , this script models the script run in the CIF, as sketched in Appendix D.1.

We first describe the structure of the internal scriptstate of the script script_lpo_cif .

Definition 79. A scriptstate s of script_lpo_cif is a term of the form

⟨q,requestOrigin, loggedInUser,pause,context,key,uc,handledInputs,refXHRctx,PIFindex⟩

where q ∈ S, requestOrigin ∈ Origins∪ {⊥}, loggedInUser ∈ ID∪ {⟨⟩,⊥}, pause ∈ {⊤,⊥},
context∈ TN , key∈N ∪{⊥}, uc∈ TN , handledInputs⊂⟨⟩N, refXHRctx∈N ∪{⊥}, PIFindex∈
N∪{⊥}. The initial scriptstate initStatecif of script_lpo_cif is the state

⟨init,⊥,⊥,⊥,⊥,⊥,⊥,⟨⟩,⊥,⊥⟩ .

⋄

Before we provide the formal specification of the relation of script_lpo_cif , we present an

informal description that completes the description of scripts provided in Section 4.4.1.

q = init This is the initial state. Its only transition handles no input and outputs a postMessage

cifready to its parent window and transitions to default.

q = default This is the state to which script_lpo_cif always returns to. This state handles

all postMessages the CIF expects to receive from its parent window. If the postMessage
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received was sent from the parent window of the CIF, it behaves as follows, depending on

the first element of the received postMessage:

postMessage loaded The script records the sender’s origin of the received postMessage

as the remote origin in the scriptstate if the scriptstate did not contain any information

about the remote origin yet. Also, an identity, which represents the assumption of the

sender on who it believes to be logged in, is saved in the scriptstate. If the pause flag

in the scriptstate is ⊤ it transitions to the state default. Otherwise, it is checked, if

the current context in the scriptstate is ⊥. If the check is true, the script transitions to

the state fetchContext, or to the state checkAndEmit otherwise.

postMessage dlgRun The script sets the pause flag in the scriptstate to⊤ and transitions

to default.

postMessage dlgCmplt The script sets the pause flag in the scriptstate to ⊥. It then

transitions to the state fetchContext.

postMessage loggedInUser This message has to contain an identity. This identity is

saved in the scriptstate and then the script transitions to default.

postMessage logout The script removes the entry for the RP (recorded in the script-

state) from the localStorage and then transitions to the state sendLogout. If no

remote origin is set in the script’s state, it is now set to the sender’s origin of the

received postMessage.

q = fetchContext In this state, the script sends an XHR to LPO with a GET request to the path

/ctx and then transitions to the state receiveContext.

q = receiveContext In this state, the script expects an XHR response as input containing the

session context. This context is saved as the current context in the scriptstate. The script

transitions to checkAndEmit.

q = checkAndEmit This state lets the script create the provisioning iframe and transition to

startPIF iff (1) some email address is marked as logged in at RP in the localStorage, (2)

if an email address is recorded in the current scriptstate, this email address differs from

the one recorded in the localStorage, and (3) the user is marked as logged in in the current

context. Otherwise, if the email address recorded in the current scriptstate is ⟨⟩, the script

transitions to default, else it transitions to sendLogout.

q = startPIF In this state, the script waits for a postMessage from the PIF containing a ping

message. If such a message is received and the sender’s window and origin match the PIF,

the script sends a pong message back to the PIF and transitions to the state runPIF.
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q = runPIF This is the state in which script_lpo_cif interacts with the PIF. This state han-

dles all postMessages the CIF expects to receive from the latest PIF (as recorded in

PIFindex in its state). If the postMessage received was sent from the PIF’s window and

the PIF’s origin, it behaves as follows, depending on the first element of the postMessage:

postMessage beginProvisioning The script responds with a postMessage to the PIF

containing the email address of the identity which is to authenticate to the relying

party (as recorded in the CIF’s state).

postMessage genKeyPair The script creates a fresh key pair (i.e. the CIF chooses a

fresh nonce) and sends the public key contained in a postMessage to the PIF.

postMessage registerCertificate The script stores the UC received in this postMes-

sage in the CIF’s state and transitions to the state createCAPforRP.

postMessage raiseProvisioningFailure This message indicates to the CIF that no

one is logged in. This information is recorded in the CIF’s state accordingly. The

script transitions to the state sendLogout in which the CIF’s parent window will be

notified that no one is logged in.

q = createCAPforRP In this state, the script creates an IA for the request origin (as recorded in

the scriptstate), combines the IA with the UC to a CAP, and sends the CAP in a postMes-

sage to its parent restricting the receiver to the request origin.

q = sendLogout In this state, the script sends a logout postMessage to the parent document

and then transitions to the default state.

We now specify the relation script_lpo_cif ⊆ TN ×TN of the CIF’s scripting process formally.

Just like all scripts, as explained in Section 2.5 (see also Algorithm A.7 for the formal spec-

ification), the input term this script obtains from the browser contains the cleaned tree of the

browser’s windows and documents tree, the nonce of the current document docnonce, its own

scriptstate scriptstate (as defined in Definition 79), a sequence of all inputs scriptinput (also con-

taining already handled inputs), a dictionary cookies of all accessible cookies of the document’s

domain, the localStorage localStorage belonging to the document’s origin, and the secrets secrets

of the document’s origin. The script returns a new scriptstate s′, a new set of cookies cookies′, a

new localStorage localStorage′, and a term command denoting a command to the browser.

The relation of the script script_lpo_cif is defined in Algorithm D.4.

login.persona.org Login Dialog Script (script_lpo_ld). This script models the LD contents.

Its formal specification, presented next, follows the one presented above for script_lpo_cif .
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Algorithm D.4: Relation of script_lpo_cif .

Input: ⟨tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secrets⟩
1: let s′ := scriptstate
2: let cookies′ := cookies
3: let localStorage′ := localStorage
4: let sessionStorage′ := sessionStorage
5: switch s′.q do
6: case init
7: let command := ⟨POSTMESSAGE, PARENTWINDOW(tree,docnonce),

↪→ ⟨cifready,⟨⟩⟩, ⊥⟩
8: let s′.q := default

9: stop ⟨s′,cookies′, localStorage′,sessionStorage′,command⟩
10: case default
11: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
12: if π1(input)≡ POSTMESSAGE then
13: let senderWindow := π2(input)
14: let senderOrigin := π3(input)
15: let m := π4(input)
16: if senderWindow≡ PARENTWINDOW(tree,docnonce) then
17: switch m do
18: case ⟨loaded, id⟩
19: if s′.requestOrigin≡⊥ then
20: let s′.requestOrigin := senderOrigin
21: end if
22: let s′.loggedInUser := id
23: if s′.pause≡⊤ then
24: stop ⟨s′,cookies′, localStorage′,sessionStorage′,⟨⟩⟩
25: else if s′.context≡⊥ then
26: let s′.q := fetchContext

27: stop ⟨s′,cookies′, localStorage′,sessionStorage′,⟨⟩⟩
28: else
29: let s′.q := checkAndEmit

30: stop ⟨s′,cookies′, localStorage′,sessionStorage′,⟨⟩⟩
31: end if
32: case ⟨dlgRun,⟨⟩⟩
33: let s′.pause := ⊤
34: stop ⟨s′,cookies′, localStorage′,sessionStorage′,⟨⟩⟩
35: case ⟨dlgCmplt,⟨⟩⟩
36: let s′.pause := ⊥
37: let s′.q := fetchContext

38: stop ⟨s′,cookies′, localStorage′,sessionStorage′,⟨⟩⟩
39: case ⟨loggedInUser, id⟩
40: let s′.loggedInUser := id
41: stop ⟨s′,cookies′, localStorage′,sessionStorage′,⟨⟩⟩

This algorithm is continued on the next page.
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42: case ⟨logout,⟨⟩⟩
43: if s′.requestOrigin≡⊥ then
44: let s′.requestOrigin := senderOrigin
45: end if
46: let s′.loggedInUser := ⊥
47: remove the element with key s′.requestOrigin

↪→ from the dictionary localStorage′[siteInfo]
48: let s′.q := sendLogout

49: end if
50: end if
51: case fetchContext
52: let s′.refXHRctx := λ1
53: let command := ⟨XMLHTTPREQUEST,URLLPO

/ctx,GET,⟨⟩,s′.refXHRctx⟩
54: let s′.q := receiveContext

55: stop ⟨s′,cookies′, localStorage′,sessionStorage′,command⟩
56: case receiveContext
57: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
58: if (π1(input)≡ XMLHTTPREQUEST)∧ (π3(input)≡ s′.refXHRctx) then
59: let s′.context := π2(input)
60: let s′.q := checkAndEmit

61: stop ⟨s′,cookies′, localStorage′,sessionStorage′,⟨⟩⟩
62: end if
63: case checkAndEmit
64: let s′.email := localStorage′[siteInfo][s′.requestOrigin]
65: if (s′.email ̸≡ ⟨⟩)

↪→ ∧(s′.loggedInUser /∈ {⟨⟩,⊥}⇒ (s′.loggedInUser ̸≡ s′.email))
↪→ ∧(π1(s′.context)≡⊤) then

66: let s′.q := startPIF

67: let url := ⟨URL,S,π2(s′.email),/pif⟩
68: let s′.PIFindex := |subwindows|+1

→ Index of the next subwindow to be created.
69: let command := ⟨IFRAME,url,_SELF⟩
70: stop ⟨s′,cookies′, localStorage′,sessionStorage′,command⟩
71: else if s′.loggedInUser≡ ⟨⟩ then
72: let s′.q := default

73: stop ⟨s′,cookies′, localStorage′,sessionStorage′,⟨⟩⟩
74: else
75: let s′.q := sendLogout

76: stop ⟨s′,cookies′, localStorage′,sessionStorage′,⟨⟩⟩
77: end if

This algorithm is continued on the next page.

195



D. Model and Analysis of BrowserID in Primary Mode

78: case startPIF
79: let idpOrigin := ⟨π2(s′.email),S⟩
80: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
81: let pifNonce := πs′.PIFindex(subwindows).nonce
82: if π1(input)≡ POSTMESSAGE then
83: let senderWindow := π2(input)
84: let senderOrigin := π3(input)
85: let m := π4(input)
86: if m≡ ping∧ senderWindow≡ pifNonce

↪→ ∧senderOrigin≡ idpOrigin then
87: let command := ⟨POSTMESSAGE,pifNonce,pong, idpOrigin⟩
88: let s′.q := runPIF

89: stop ⟨s′,cookies′, localStorage′,sessionStorage′,command⟩
90: end if
91: end if
92: case runPIF
93: let idpOrigin := ⟨π2(s′.email),S⟩
94: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
95: let pifNonce := πs′.PIFindex(subwindows).nonce
96: if π1(input)≡ POSTMESSAGE then
97: let senderWindow := π2(input)
98: let senderOrigin := π3(input)
99: let m := π4(input)
100: if senderWindow≡ pifNonce∧ senderOrigin≡ idpOrigin then
101: switch π1(m) do
102: case beginProvisioning
103: let jschannel_nonce := π2(m)
104: let command := ⟨POSTMESSAGE, pifNonce,

↪→ ⟨ jschannel_nonce,s′.email⟩, idpOrigin⟩
105: stop ⟨s′,cookies′, localStorage′,sessionStorage′,command⟩
106: case genKeyPair
107: let jschannel_nonce := π2(m)
108: let s′.key := λ2
109: let command := ⟨POSTMESSAGE, pifNonce,

↪→ ⟨ jschannel_nonce,pub(s′.key)⟩, idpOrigin⟩
110: stop ⟨s′,cookies′, localStorage′,sessionStorage′,command⟩
111: case registerCertificate
112: if π1(extractmsg(π2(m)))≡ s′.email∧ s′.email ̸≡ ⟨⟩ then

→ This check is our fix against identity injection.
113: let s′.uc := π2(m)
114: let s′.q := createCAPforRP

115: end if
116: stop ⟨s′,cookies′, localStorage′,sessionStorage′,command⟩
117: case raiseProvisioningFailure
118: let s′.loggedInUser := ⊥
119: let s′.q := sendLogout

120: stop ⟨s′,cookies′, localStorage′,sessionStorage′,command⟩
121: end if
122: end if

This algorithm is continued on the next page.
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123: case createCAPforRP
124: let ia := sig(s′.requestOrigin,s′.key)
125: let cap := ⟨s′.uc, ia⟩
126: let command := ⟨POSTMESSAGE, PARENTWINDOW(tree,docnonce),

↪→ ⟨login,cap⟩, s′.requestOrigin⟩
127: let s′.q := null

128: stop ⟨s′,cookies′, localStorage′,sessionStorage′,command⟩
129: case sendLogout
130: let command := ⟨POSTMESSAGE, PARENTWINDOW(tree,docnonce),

↪→ ⟨logout,⟨⟩⟩, ⊥⟩
131: let s′.q := default

132: stop ⟨s′,cookies′, localStorage′,sessionStorage′,command⟩
133: stop ⟨scriptstate,cookies, localStorage,sessionStorage,⟨⟩⟩

Definition 80. A scriptstate s of script_lpo_ld is a term of the form

⟨q,requestOrigin,context,email,key,uc,handledInputs,refXHRctx,refXHRLPOauth,PIFindex⟩

with q ∈ S, requestOrigin ∈ Origins∪{⊥}, context ∈ TN , email ∈ ID∪{⊥}, key ∈ N ∪{⊥},
uc ∈ TN , handledInputs ⊂⟨⟩ N, refXHRctx,refXHRLPOauth ∈ N ∪{⊥}, PIFindex ∈ N∪{⊥}.
The initial scriptstate initStateld is the state ⟨init,⊥,⊥,⊥,⊥,⊥,⟨⟩,⊥,⊥,⊥⟩. ⋄

We formally specify the relation script_lpo_ld ⊆ TN ×TN of the LD’s scripting process in

Algorithm D.5.

Relying Party Web Page Script (script_rp_index). This script models the default Web page

at a RP. The user usually triggers the login process on this page. In reality, this page has

its own script(s) and includes a script from LPO. In our model, we combine both scripts

into script_rp_index. In particular, this script is responsible for creating the CIF and the LD

iframes/subwindows, whose contents are loaded from LPO.

Definition 81. A scriptstate s of script_rp_index is a term of the form

⟨q,CIFindex,LDindex,dialogRunning,cap,handledInputs,refXHRcap⟩

with q ∈ S, CIFindex ∈ N∪ {⊥}, dialogRunning ∈ {⊤,⊥}, cap ∈ TN , handledInputs ⊂⟨⟩ N,

refXHRcap ∈N ∪{⊥}. We call s the initial scriptstate of script_rp_index iff

s≡ ⟨init,⊥,⊥,⊥,⟨⟩,⟨⟩,⊥⟩ .

⋄
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Algorithm D.5: Relation of script_lpo_ld.

Input: ⟨tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secrets⟩
1: let s′ := scriptstate
2: let cookies′ := cookies
3: let localStorage′ := localStorage
4: let sessionStorage′ := sessionStorage
5: switch s′.q do
6: case init
7: let command := ⟨POSTMESSAGE, OPENERWINDOW(tree,docnonce),

↪→ ⟨ldready,⟨⟩⟩, ⊥⟩
8: let s′.q := start

9: stop ⟨s′,cookies′, localStorage′,sessionStorage′,command⟩
10: case start
11: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
12: if π1(input)≡ POSTMESSAGE then
13: let senderWindow := π2(input)
14: let senderOrigin := π3(input)
15: let m := π4(input)
16: if m≡ ⟨request,⟨⟩⟩∧ senderWindow≡ OPENERWINDOW(tree,docnonce) then
17: let s′.requestOrigin := senderOrigin
18: let s′.refXHRctx := λ1
19: let command := ⟨XMLHTTPREQUEST,URLLPO

/ctx,GET,⟨⟩,s′.refXHRctx⟩
20: let s′.q := receiveContext

21: stop ⟨s′,cookies′, localStorage′,sessionStorage′,command⟩
22: end if
23: end if
24: case receiveContext
25: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
26: if (π1(input)≡ XMLHTTPREQUEST)∧ (π3(input)≡ s′.refXHRctx) then
27: let s′.context := π2(input)
28: let s′.q := startPIF

29: let idpnonce := sessionStorage[idpnonce]
30: if idpnonce≡ ⟨⟩∨ localStorage[idpnonce]≡ ⟨⟩ then
31: let s′.email← ids
32: else
33: let s′.email := localStorage[idpnonce]
34: let sessionStorage[idpnonce] := ⟨⟩
35: end if
36: let url := ⟨URL,S,π2(s′.email),/pif⟩
37: let s′.PIFindex := |subwindows|+1

→ Index of the next subwindow to be created.
38: let command := ⟨IFRAME,url,_SELF⟩
39: stop ⟨s′,cookies′, localStorage′,sessionStorage′,command⟩
40: end if

This algorithm is continued on the next page.
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41: case startPIF
42: let idpOrigin := ⟨π2(s′.email),S⟩
43: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
44: let pifNonce := πs′.PIFindex(subwindows).nonce
45: if π1(input)≡ POSTMESSAGE then
46: let senderWindow := π2(input)
47: let senderOrigin := π3(input)
48: let m := π4(input)
49: if m≡ ping∧ senderWindow≡ pifNonce

↪→ ∧senderOrigin≡ idpOrigin then
50: let command := ⟨POSTMESSAGE,pifNonce,pong, idpOrigin⟩
51: let s′.q := runPIF

52: stop ⟨s′,cookies′, localStorage′,sessionStorage′,command⟩
53: end if
54: end if
55: case runPIF
56: let idpOrigin := ⟨π2(s′.email),S⟩
57: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
58: let pifNonce := πs′.PIFindex(subwindows).nonce
59: if π1(input)≡ POSTMESSAGE then
60: let senderWindow := π2(input)
61: let senderOrigin := π3(input)
62: let m := π4(input)
63: if senderWindow≡ pifNonce∧ senderOrigin≡ idpOrigin then
64: switch π1(m) do
65: case beginProvisioning
66: let jschannel_nonce := π2(m)
67: let command := ⟨POSTMESSAGE, pifNonce,

↪→ ⟨ jschannel_nonce,s′.email⟩, idpOrigin⟩
68: stop ⟨s′,cookies′, localStorage′,sessionStorage′,command⟩
69: case genKeyPair
70: let jschannel_nonce := π2(m)
71: let s′.key := λ2
72: let command := ⟨POSTMESSAGE, pifNonce,

↪→ ⟨ jschannel_nonce,pub(s′.key)⟩, idpOrigin⟩
73: stop ⟨s′,cookies′, localStorage′,sessionStorage′,command⟩
74: case registerCertificate
75: if π1(extractmsg(π2(m)))≡ s′.email∧ s′.email ̸≡ ⟨⟩ then

→ This check is our fix against identity injection.
76: let s′.uc := π2(m)
77: let loggedIn := π1(s′.context)
78: if loggedIn≡⊤ then
79: let s′.q := createCAPforRP

80: end if
81: let s′.q := createCAPforLPO

82: end if
83: stop ⟨s′,cookies′, localStorage′,sessionStorage′,command⟩

This algorithm is continued on the next page.
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84: case raiseProvisioningFailure
85: let idpnonce := λ3
86: let localStorage′[idpnonoce] := s′.email
87: let sessionStorage′[idpnonce] := idpnonce
88: let command := ⟨HREF,⟨URL,S,π2(s′.email),⟨⟩⟩,_SELF⟩
89: stop ⟨s′,cookies′, localStorage′,sessionStorage′,command⟩
90: end if
91: end if
92: case createCAPforLPO
93: let ia := sig(⟨dom(LPO),S⟩,s′.key)
94: let cap := ⟨s′.uc, ia⟩
95: let body := ⟨cap,π2(s′.context)⟩
96: let s′.refXHRLPOauth := λ4
97: let command := ⟨XMLHTTPREQUEST,URLLPO

/auth,POST,body,s′.refXHRLPOauth⟩
98: let s′.q := receiveLPOauthresponse

99: stop ⟨s′,cookies′, localStorage′,sessionStorage′,command⟩
100: case receiveLPOauthresponse
101: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
102: if (π1(input)≡ XMLHTTPREQUEST)∧ (π3(input)≡ s′.refXHRLPOauth)

↪→ ∧π2(input)≡⊤ then
103: let π1(s′.context) := ⊤
104: let s′.q := createCAPforRP

105: stop ⟨s′,cookies′, localStorage′,sessionStorage′,command⟩
106: end if
107: case createCAPforRP
108: let ia := sig(s′.requestOrigin,s′.key)
109: let cap := ⟨s′.uc, ia⟩
110: let command := ⟨POSTMESSAGE, OPENERWINDOW(tree,docnonce),

↪→ ⟨response,cap⟩, s′.requestOrigin⟩
111: let s′.q := null

112: let localStorage′[siteInfo][s′.requestOrigin] := s′.email
113: stop ⟨s′,cookies′, localStorage′,sessionStorage′,command⟩
114: stop ⟨scriptstate,cookies, localStorage,sessionStorage,⟨⟩⟩
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We formally specify the relation script_rp_index⊆ TN ×TN of the RP-Doc’s scripting process

in Algorithm D.6.

In Lines 7–11 and 33–37 the script asks the browser to create iframes. To obtain the window

reference for these iframes, the script first determines the current number of subwindows and

stores it (incremented by 1) in the scriptstate (CIFindex and LDindex, respectively). When

the script is invoked the next time, the iframe the script asked to be created will have been

added to the sequence of subwindows by the browser directly following the previously existing

subwindows. The script can therefore access the iframe by the indexes CIFindex and LDindex,

respectively.

Identity Provider Authentication Dialog Script (script_idp_ad).
Note that script_idp_ad does not read or change its scriptstate. Hence, we omit the definition

of the scriptstate for this script. We define the relation of the script in Algorithm D.7.

Identity Provider Provisioning Iframe Script (script_idp_pif). The set of scriptstates of this

script is defined as follows:

Definition 82. A scriptstate s of script_idp_pif is a term of the form ⟨q, emails, pubkeys, ucs,

provisioningnonces, genkeypairnonces, xhrnonces, handledInputs⟩ with q ∈ S, emails, pubkeys,

ucs ∈ TN , provisioningnonces, genkeypairnonces, xhrnonces ∈ N ∪{⊥}, handledInputs⊂⟨⟩ N.

We call s the initial scriptstate of script_idp_pif iff s≡ ⟨init,⟨⟩,⟨⟩,⟨⟩,⊥,⊥,⊥⟩. ⋄

We define the script’s relation in Algorithm D.8

D.3.10. Important Events

As described in Section 3.2, we define events that (if they occur in a certain processing step)

specify important actions of our SSO protocol.

Definition 83 (Refinement of Definition 5 for BrowserID in Primary Mode: Start of an SSO
Flow). Let BIDp be an BrowserID primary mode Web system. Let ρ be a run of BIDp . Let Q∈ ρ

be a processing step, b a browser, and r an RP. We write started(Q,b,r) iff in Q, the browser b is

triggered and selects to run the script of a document and this script is script_rp_index and the

document is stored in b under a secure origin of r and —when executing the script— in Line 28

of Algorithm D.6 the value openLD is (non-deterministically) chosen. ⋄

Definition 84 (Refinement of Definition 6 for BrowserID in Primary Mode: Selection of an
IdP). Let BIDp be an BrowserID primary mode Web system. Let ρ be a run of BIDp . Let

Q ∈ ρ be a processing step, b a browser, i an IdP, and id some identity with governor(id) = i.
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Algorithm D.6: Relation of script_rp_index.

Input: ⟨tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secrets⟩
1: let s′ := scriptstate
2: let cookies′ := cookies
3: let localStorage′ := localStorage
4: let sessionStorage′ := sessionStorage
5: switch s′.q do
6: case init
7: let command := ⟨IFRAME,URLLPO

/cif,GETWINDOW(tree,docnonce)⟩
8: let s′.q := receiveCIFReady

9: let subwindows := SUBWINDOWS(tree,docnonce)
10: let s′.CIFindex := |subwindows|+1 → Index of the next subwindow to be created.
11: stop ⟨s′,cookies′, localStorage′,sessionStorage′,command⟩
12: case receiveCIFReady
13: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
14: if π1(input)≡ POSTMESSAGE then
15: let senderWindow := π2(input)
16: let senderOrigin := π3(input)
17: let m := π4(input)
18: let subwindows := SUBWINDOWS(tree,docnonce)
19: if (m≡ ⟨cifready,⟨⟩⟩)

↪→ ∧(senderOrigin≡ originLPO)
↪→ ∧(senderWindow≡ πs′.CIFindex(subwindows).nonce) then

20: let id← {⊥,⟨⟩}∪ ID
21: let command := ⟨POSTMESSAGE, πs′.CIFindex(subwindows),

↪→ ⟨loaded, id⟩, originLPO⟩
22: let s′.q := default

23: stop ⟨s′,cookies′, localStorage′,sessionStorage′,command⟩
24: end if
25: end if
26: case default
27: if s′.dialogRunning≡⊥ then
28: let choice← {openLD,handlePM}
29: else
30: let choice := handlePM

31: end if
32: if choice≡ openLD then
33: let s′.dialogRunning := ⊤
34: let command := ⟨HREF,URLLPO

/ld ,_BLANK⟩
35: let s′.ldpointer := w with w being a pointer to the next top-level window to be created

↪→ (extracted from tree)
36: let s′.q := default

37: stop ⟨s′,cookies′, localStorage′,sessionStorage′,command⟩
This algorithm is continued on the next page.
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38: else
39: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
40: if π1(input)≡ POSTMESSAGE then
41: let senderWindow := π2(input)
42: let senderOrigin := π3(input)
43: let m := π4(input)
44: let subwindows := SUBWINDOWS(tree,docnonce)
45: if senderOrigin≡ originLPO then
46: if senderWindow≡ πs′.CIFindex(subwindows).nonce then
47: if π1(m)≡ login then
48: let s′.cap := π2(m)
49: let s′.q := sendCAP

50: stop ⟨s′,cookies′, localStorage′,sessionStorage′,⟨⟩⟩
51: else if π1(m)≡ logout then
52: let s′.q := default

53: stop ⟨s′,cookies′, localStorage′,sessionStorage′,⟨⟩⟩
54: end if
55: else if s′.dialogRunning≡⊤∧ senderWindow≡ w with w being the nonce of

↪→ the window pointed to by s′.ldpointer then
56: if π1(m)≡ ldready then
57: let command := ⟨POSTMESSAGE,

↪→ AUXWINDOW(tree,docnonce), ⟨request,⟨⟩⟩, originLPO⟩
58: let s′.q := default

59: stop⟨s′,cookies′, localStorage′,sessionStorage′,command⟩
60: else if π1(m)≡ response then
61: let s′.dialogRunning := ⊥
62: let s′.cap := π2(m)
63: let command := ⟨CLOSE,AUXWINDOW(tree,docnonce)⟩
64: let s′.q := dlgClosed

65: stop⟨s′,cookies′, localStorage′,sessionStorage′,command⟩
66: end if
67: end if
68: end if
69: end if
70: end if
71: case dlgClosed
72: let subwindows := SUBWINDOWS(tree,docnonce)
73: let id := π1(extractmsg(π1(s′.cap))) → Extract id from CAP.
74: let command := ⟨POSTMESSAGE, πs′.CIFindex(subwindows).nonce,

↪→ ⟨loggedInUser, id⟩, originLPO⟩
75: let s′.q := loggedInUser

76: stop ⟨s′,cookies′, localStorage′,sessionStorage′,command⟩
77: case loggedInUser
78: let subwindows := SUBWINDOWS(tree,docnonce)
79: let command :=

↪→ ⟨POSTMESSAGE,πs′.CIFindex(subwindows).nonce,⟨dlgCmplt,⟨⟩⟩,originLPO⟩
80: let s′.q := sendCAP

81: stop ⟨s′,cookies′, localStorage′,sessionStorage′,command⟩
This algorithm is continued on the next page.
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82: case sendCAP
83: let s′.refXHRcap := λ1
84: let host, protocol such that

↪→ ⟨host, protocol⟩ ≡ GETORIGIN(tree,docnonce)
↪→ if possible; otherwise stop
↪→ ⟨scriptstate, cookies, localStorage, sessionStorage, command⟩

85: let command := ⟨XMLHTTPREQUEST, ⟨URL,protocol,host,/,⟨⟩⟩, POST, s′.cap,
↪→ s′.refXHRcap⟩ → Relay received CAP to RP.

86: let s′.q := receiveServiceToken

87: stop ⟨s′,cookies′, localStorage′,sessionStorage′,command⟩
88: case receiveServiceToken
89: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
90: if (π1(input)≡ XMLHTTPREQUEST)∧ (π3(input)≡ s′.refXHRcap) then
91: let s′.q := default

92: stop ⟨s′,cookies′, localStorage′,sessionStorage′,⟨⟩⟩
93: end if
94: stop ⟨scriptstate,cookies, localStorage,sessionStorage,⟨⟩⟩

Algorithm D.7: Relation of script_idp_ad.

Input: ⟨tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secrets⟩
1: let action← {authenticate,navigate}
2: if action≡ authenticate then
3: let email← ids
4: let secret← secrets
5: let body := ⟨email,secret⟩
6: let host, protocol such that

↪→ ⟨host, protocol⟩ ≡ GETORIGIN(tree,docnonce)
↪→ if possible; otherwise
↪→ stop ⟨scriptstate,cookies, localStorage,sessionStorage,⟨⟩⟩

7: let command :=⟨XMLHTTPREQUEST,⟨URL,protocol,host,/auth,⟨⟩⟩,POST,body,⊥⟩
8: stop ⟨scriptstate,cookies′, localStorage′,sessionStorage′,command⟩
9: else

10: let command := ⟨HREF,⟨URL,S,dom(LPO),/ld,⟨⟩⟩,_SELF⟩
11: stop ⟨scriptstate,cookies′, localStorage′,sessionStorage′,command⟩
12: end if
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Algorithm D.8: Relation of script_idp_pif .

Input: ⟨tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secrets⟩
1: let s′ := scriptstate
2: switch s′.q do
3: case init
4: let command := ⟨POSTMESSAGE, PARENTWINDOW(tree,docnonce),

↪→ ⟨ping,⟨⟩⟩, ⟨dom(LPO), S⟩⟩
5: let s′.q := waiting

6: stop ⟨s′,cookies, localStorage,sessionStorage,command⟩
7: case waiting
8: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
9: let senderWindow := π2(input)

10: let senderOrigin := π3(input)
11: let m := π4(input)
12: if π1(input) ∈ {ping,pong}

↪→ ∧senderWindow≡ PARENTWINDOW(tree,docnonce)
↪→ ∧senderOrigin≡ ⟨dom(LPO),S⟩ then

13: let s′.q := default

14: end if
15: stop ⟨s′,cookies, localStorage,sessionStorage,⟨⟩⟩
16: case default
17: let action← {beginprovisioning, genkeypair, registercert,

↪→ raisefailure, requestuc, handleresponse}
18: switch action do
19: case beginprovisioning
20: let jschannel_nonce := λ1
21: let command := ⟨POSTMESSAGE, PARENTWINDOW(tree,docnonce),

↪→ ⟨beginProvisioning, jschannel_nonce⟩, dom(LPO)⟩
22: let s′.provisioningnonces :=

↪→ s′.provisioningnonces+⟨⟩ jschannel_nonce
23: stop ⟨s′,cookies, localStorage,sessionStorage,command⟩
24: case genkeypair
25: let jschannel_nonce := λ1
26: let command := ⟨POSTMESSAGE, PARENTWINDOW(tree,docnonce),

↪→ ⟨genKeyPair, jschannel_nonce⟩, dom(LPO)⟩
27: let s′.genkeypairnonces :=

↪→ s′.genkeypairnonces+⟨⟩ jschannel_nonce
28: stop ⟨s′,cookies, localStorage,sessionStorage,command⟩
29: case registercert
30: if s′.ucs ̸≡ ⟨⟩ then
31: let uc← s′.ucs
32: let command :=⟨POSTMESSAGE,PARENTWINDOW(tree,docnonce),

↪→ ⟨registerCertificate,uc⟩, dom(LPO)⟩
33: stop ⟨s′,cookies, localStorage,sessionStorage,command⟩
34: end if

This algorithm is continued on the next page.
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35: case raisefailure
36: let command := ⟨POSTMESSAGE, PARENTWINDOW(tree,docnonce),

↪→ ⟨raiseProvisioningFailure,⊥⟩, dom(LPO)⟩
37: stop ⟨s′,cookies, localStorage,sessionStorage,command⟩
38: case requestuc
39: if s′.emails ̸≡ ⟨⟩∧ s′.pubkeys ̸≡ ⟨⟩ then
40: let email← s′.emails
41: let pubkey← s′.pubkeys
42: let body := ⟨email,pubkey⟩
43: let xhrnonce := λ2
44: let s′.xhrnonces := s′.xhrnonces +⟨⟩ xhrnonce
45: let host,protocol such that

↪→ ⟨host,protocol⟩ ≡ GETORIGIN(tree,docnonce)
↪→ if possible; otherwise
↪→ stop ⟨s′,cookies, localStorage,sessionStorage,⟨⟩⟩

46: let command := ⟨XMLHTTPREQUEST,
↪→ ⟨URL,protocol,host,/certreq,⟨⟩⟩,POST,body,xhrnonce⟩

47: stop ⟨s′,cookies, localStorage,sessionStorage,command⟩
48: end if
49: case handleresponse
50: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
51: if π1(input)≡ POSTMESSAGE then
52: let senderWindow := π2(input)
53: let senderOrigin := π3(input)
54: let m := π4(input)
55: if senderWindow≡ PARENTWINDOW(tree,docnonce)

↪→ ∧senderOrigin≡ ⟨dom(LPO),S⟩ then
56: if π1(m) ∈ s′.provisioningnonces then
57: let s′.emails := s′.emails +⟨⟩ π2(m)
58: else if π1(m) ∈ s′.genkeypairnonces then
59: let s′.pubkeys := s′.pubkeys +⟨⟩ π2(m)
60: end if
61: stop ⟨s′,cookies, localStorage,sessionStorage,⟨⟩⟩
62: end if
63: else if π1(input)≡ XMLHTTPREQUEST

↪→ ∧π3(input) ∈ s′.xhrnonces then
64: let s′.ucs := s′.ucs +⟨⟩ π2(input)
65: stop ⟨s′,cookies, localStorage,sessionStorage,⟨⟩⟩
66: end if
67: stop ⟨scriptstate,cookies, localStorage,sessionStorage,⟨⟩⟩
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We write selectedIdP(Q,b, i) iff in Q, the browser b is triggered and selects to run the script

script_lpo_ld in some document and — in that script — in Lines 31ff. of Algorithm D.5, id

is selected from the browser’s identities. ⋄

Definition 85 (Refinement of Definition 7 for BrowserID in Primary Mode: Selection of
an Identity). Let BIDp be an BrowserID primary mode Web system. Let ρ be a run of

BIDp . Let Q ∈ ρ be a processing step, b a browser, i an IdP, and id an identity. We write

selectedID(Q,b, i, id) iff in Q, the browser b is triggered and selects to run (in some document)

the script script_lpo_ld and — in that script — in Lines 31ff. of Algorithm D.5, id is selected

from the browser’s identities. ⋄

Definition 86 (Refinement of Definition 8 for BrowserID in Primary Mode: User is Logged
in at RP). Let BIDp be an BrowserID primary mode Web system. Let ρ be a run of BIDp .

Let Q ∈ ρ be a processing step, b a browser, r an RP, id an identity, and n some term. We

write loggedIn(Q,b,r, id,n) iff in Q, b is triggered, selects a document containing the script

script_rp_index under a secure origin of r and –in that script— in Lines 90ff. of Algo-

rithm D.6 a response to an XHR is processed that contains n in its body, while in the state of

r (before and after Q — note that the state of r cannot be altered during Q), for the subterm

serviceTokens, we have serviceTokens[n]≡ id. ⋄

D.4. Proof of Theorem 1 (Security w.r.t. Authentication)

In order to prove Theorem 1, we have to prove that the BrowserID primary mode Web system

satisfies security w.r.t. authentication (Definition 12).

We assume that the authentication property is not satisfied and prove that this leads to a

contradiction. That is, we make the following assumption: There is a run ρ = s0,s1, . . . of BIDp ,

a state s j = (S j,E j) in ρ , an r ∈ RP that is honest in S j, an RP service token of the form ⟨n, i⟩
recorded in r in the state S j(r) such that ⟨n, i⟩ ∈ dNattacker(S j(attacker)) and the browser b owning

i is not fully corrupted in S j and governor(i) is an honest IdP in S j.

By definition of RPs, for ⟨n, i⟩ there exists a corresponding HTTPS request received by r,

which we call reqcap, and a corresponding response respcap. The request must contain a valid

CAP c and must have been sent by some atomic process p to r. The response must contain ⟨n, i⟩
and it must be encrypted by some symmetric encryption key k sent in reqcap.

In particular, it follows that the request and the response must be of the following form, where

dr ∈ dom(r) is the domain of r, ncap,k ∈N are some nonces, path, params∈ TN , c is some valid
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CAP, and sts is the Strict-Transport-Security header (as in the definition of RP’s relation):

reqcap = enca(⟨⟨HTTPReq,ncap,POST,dr,path,params, [Origin : ⟨dr,S⟩],c⟩,

k⟩,pub(tlskey(dr))) (D.1)

respcap = encs(⟨HTTPResp,ncap,200,⟨sts⟩,⟨n, i⟩⟩,k) (D.2)

Moreover, there must exist a processing step of the following form, where m≤ j, ar ∈ addr(r),

and x is some address:

sm−1
(ar:x:reqcap)→r
−−−−−−−−−−→
r→{(x:ar:respcap)}

sm .

From the assumption and the definition of RPs it follows that c is of the following form:

c = ⟨uc, ia⟩

≡ ⟨sig(⟨i,pub(ku)⟩,ksign),sig(⟨dr,S⟩,ku)⟩

where ku and ksign are some private keys. When we write i = ⟨iname, idomain⟩, we have that:

c≡ ⟨sig(⟨⟨iname, idomain⟩,pub(ku)⟩,ksign),sig(⟨dr,S⟩,ku)⟩ .

As r accepts the CAP c, we know that pub(ksign) ≡ S j(r).signkeys[idomain]. As the sub-

term signkeys of r’s state is never changed, we have S j(r).signkeys = S0(r).signkeys.

With the definition of the initial state of r (See Definition 78), we have that pub(ksign) ≡
S j(r).signkeys[idomain]≡ pub(signkey(dom−1(idomain))).

The private key signkey(dom−1(idomain)) is initially only known to the DY process idp :=

dom−1(idomain) = governor(i). From the assumption we know that idp is an honest IdP (and not

the attacker, a corrupted IdP, or some other DY process). As we can see in Algorithm D.2 (that

defines the behavior of IdPs), the signkey can only be used in Line 4 and in Line 32. We know

that Line 4 cannot be invoked as long as idp is honest, which it is in s j and ever since s0. For

Line 32, we see that the key is not sent out to other processes. In s j, the key can therefore not

have been leaked to any other DY processes.

Knowing that in or before s j, only idp can derive ksign from its knowledge, it is easy to see that

only idp can derive sig(x,ksign) for any x, and in particular, uc.

Now we want to see exactly how idp creates uc and which data it uses in this process.

We have already seen that idp creates the uc in Line 32 of Algorithm D.2. There may be more

than one processing step in ρ where idp outputs uc.
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Lemma 4. For all processing steps of the form

sβ−1
(aidp:x:requc)→idp
−−−−−−−−−−−−→
idp→{(x:aidp:respuc)}

sβ (D.3)

(for some addresses x, aidp with β < j, where respuc is an encrypted HTTP response with the

body ⟨uc⟩) it holds that requc was emitted by b.

Proof. To reach Line 32 of Algorithm D.2, several conditions have to be met for requc: It must

be an encrypted HTTPS POST request with the path /certreq. The body of requc must be

congruent to ⟨i,pub(ku)⟩. The request must contain a cookie with the name sessionid and

some value sessionid. This value must be a valid key for the dictionary s′.sessions and

i ∈⟨⟩ s′.sessions[sessionid] . (D.4)

Initially, s′.sessions is empty. It is only populated in Line 22 of Algorithm D.2. This line

must have been executed in a previous processing step of the following form:

sα−1
(aidp:x:reqauth)→idp
−−−−−−−−−−−−→
idp→{(x:aidp:respauth)}

sα (D.5)

(for some addresses x, aidp with sα < sβ ). In this step, s′.sessions was populated with a new

entry for the session id sessionid.

From Algorithm D.2 we can see that reqauth must meet the following conditions: It must

be an HTTPS POST request, must contain a specific Origin header and its body must con-

tain a pair ⟨iin,secretin⟩ such that the id/password combination matches a combination stored

in Sα−1(idp).users. As we have that Sα−1(idp).users = S0(idp).users and with the initial

definition

S0(idp).users= ⟨{⟨s,⟨IDsofSecret(s)⟩⟩|Secretsi}⟩ (D.6)

we can see that iin ∈ IDsofSecret(secretin). As the list of authenticated ids in the session is then

(in Line 22 of Algorithm D.2) populated with IDsofSecret(secretin) and with (D.4) we have

that i ∈ IDsofSecret(secretin). Now, IDsofSecret assigns the ids to their secrets according to

secretOfID, i.e., it must hold that

secretOfID(i) = secretin . (D.7)

This secret can be owned by at most one browser, and according to the definitions of the initial
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knowledge of the DY processes in D.3, it is initially only known to the owner of the secret

ownerOfSecret(secretin) (see Section D.3.5) and to one specific IdP (see Section D.3.7), in this

case idomain ∈ dom(idp) (because otherwise, idp would not accept this id).

From Algorithm D.2 we can see that the IdP never uses this secret to create messages as long

as it is honest, which it is by precondition.

With (D.7) we see that initially, only ownerOfSecret(secretOfID(i)) = ownerOfID(i) knows

the secret secretin, which, by assumption, is not fully corrupted in s j, and thus, with the request

order given for (D.3) and (D.5) is not fully corrupted in sα . (Once fully corrupted, browsers stay

fully corrupted.)

(*): Honest browsers release secrets only to scripts that are loaded from a specific origin. In

this case, according to the initial state given in Section D.3.5, the secret secretOfID(i) is only

released to scripts from the origin ⟨idomain,S⟩. For any such script (or document), with Lemma 2

and the definition of the browser’s key mapping in Section D.3.5, we can see that any script that

has access to the secret was sent by idp. This DY process is also the governor of i, which is, by

assumption, not corrupted. Therefore, idp can only deliver either the script script_idp_pif or the

script script_idp_ad. We can now check, that both scripts, running in a browser, never send this

secret to any other DY process than idp, and trigger only encrypted requests to do so.

In script_idp_pif (Algorithm D.8), the subterm secret of the state is not used at all; therefore,

the script triggers no outgoing message containing the secret at all.

In script_idp_ad (Algorithm D.7), secret is only used as a part of an HTTP request to the

document’s own origin (which therefore is the origin for which the secret is stored in the browser’s

list of secrets, which therefore must be ⟨idomain,S⟩). The request’s data is not stored in the

scriptstate.

We now know that all entities that have access to secret (the browser b and the IdP idp) never

leak it. As idp never creates any HTTP(S) requests, b must have created reqauth before the

processing step sα−1→ sα .

In this processing step, idp creates a new session id (sessionid). This id is sent out only once (in

Line 25 of Algorithm D.2), which, in our case, is respauth. With Corollary 1 we can see that from

this (encrypted) response respauth, only b can derive the contents, especially the contents of the

Set-Cookie header. As in b, the cookie is stored as a secure, HTTP only cookie, b releases the

contents of this cookie only as a Cookie header to the origin ⟨idomain,S⟩. Given the keymapping

in b’s state, requests to this origin are handled by idp, and with Algorithm D.2 it is easy to see

that the Cookie header is only used for validating the UC request, but is not used anywhere else.

All in all, b and idp do not leak the session id sessionid.

As sessionid is an important part of requc, we can see that this request must have been emitted

by b.
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Lemma 5. The secret key ku was chosen by the browser b from its own nonces, i.e., ku ⊂ Nb.

Proof. First of all, we know that for idp to generate uc, there must be a processing step in ρ of

the form (described in Lemma 4):

sβ−1
(aidp:x:requc)→idp
−−−−−−−−−−−−→
idp→{(x:aidp:respuc)}

sβ (D.8)

(for some addresses x, aidp with β < j, where respuc is an encrypted HTTP response with the

body ⟨uc⟩). For the request requc, the method must be POST and the path component must be

/certreq.

With Lemma 4 we know that requc was emitted by b, which is honest at this point in the

run. With the same arguments as in (*) we can see that either script_idp_pif or the script

script_idp_ad initiated requc.

For script_idp_ad it is easy to see that this script never sends a POST request to idp.

The script script_idp_pif can only send a POST request to /certreq in Line 47 of Algo-

rithm D.8. In this case, the public key is chosen from the subterm pubkeys of the script’s state.

This subterm is only populated in Line 59 of Algorithm D.8. It can only be populated by a

postMessage pm from an immediate parent window and from the origin ⟨dom(LPO),S⟩ (given

how a browser checks and transmits postMessages, see Line 94f. of Algorithm A.7). Further, the

message in pm must be of the form ⟨n,pub(ku)⟩ where n is a nonce that was freshly chosen for a

⟨genKeyPair,n⟩ postMessage in Line 28 of Algorithm D.8.

Given that b’s keymapping assigns the private key of LPO to the domain of LPO and with

Lemma 3 we see that the only scripts that can send such a postMessage are script_lpo_cif and

script_lpo_ld.

In the script script_lpo_cif (Algorithm D.4), postMessages of the form of pm can only be sent

in Line 110 (the message sent in Line 105 would not carry the correct nonce for a response to a

genKeyPair message).

The same holds true for the script script_lpo_ld (Algorithm D.4).

Therefore, the key ku is a nonce that was chosen from the browser’s nonces.

Lemma 6. ku does not leak from b.

Proof. As we have seen above, the key ku was chosen either in the script script_lpo_cif or in the

script script_lpo_ld running in the honest browser b.

In both scripts, any nonce that is chosen from the script’s nonces will not be given to the script

(as part of nonces) by the browser again, thus, the nonce was chosen freshly. Further, the nonce
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is stored in the subterm key of the scriptstate and (besides the derivation of the public key) is

only used to sign IAs.

There are no other scripts running in the origin of ⟨dom(LPO),S⟩. The (honest) browser b

does not leak the scriptstate. Therefore, ku does not leak from b.

With Lemma 4, 5, and 6, we can see that only b knows ku and the attacker cannot know ku.

Therefore, only b can create the ia = sig(⟨dr,S⟩,ku). As ku is only accessible to scripts with

the origin ⟨dom(LPO),S⟩, only the script script_lpo_cif or the script script_lpo_ld can create

sig(⟨dr,S⟩,ku). In both scripts, after creation, ia is sent in postMessage only to scripts that have

the origin for which ia was created (= ⟨dr,S⟩). With Lemma 3 and the definition of relying

parties (see Algorithm D.3) we see, that the only potential receiver is script_rp_index.

After receiving this response postMessage, script_rp_index stores the UC and the IA in the

subterm called cap of its scriptstate (see Algorithm D.6, Line 48). After doing so, this subterm

is read only in Line 73 (where only the identity is extracted) and in Line 85. There, the ia is sent

to r (in the encrypted request reqcap).

The RP r, which is not corrupted, and the browser b do not leak ia. After receiving ia, r

sends the newly created service token ⟨n, i⟩ to b, which ignores it (see Algorithm D.6 Line 91f.).

Therefore, b and r do not leak ⟨n, i⟩.
Therefore, the attacker cannot know ⟨n, i⟩ in S j, i.e., ⟨n, i⟩ ̸∈ dNattacker(S j(attacker)). This is a

contradiction to our assumption. ■

D.5. Proof of Theorem 2 (Security w.r.t. Session Integrity)

In order to prove Theorem 2, we have to proof that the BrowserID primary mode Web system

satisfies security w.r.t. indirect session integrity (Definition 13).

We start from a processing step Qlogin in which the browser is actually logged in and trace

back on the causality chain (the session), i.e., for every processing step in the session, we analyze

all other possible processing steps that can possibly lead to the later processing steps.

To start, we first need to assume that we have an arbitrary processing step in which the browser

gets logged in: Let BIDs a BrowserID primary mode Web system, ρ an arbitrary run of BIDs ,

Qlogin an arbitrary processing step in ρ , b an arbitrary browser of BIDs that is honest in Qlogin, r

an arbitrary RP of BIDs that is honest in Qlogin, and id an arbitrary identity.

To show the main implication of the session integrity property, we now assume that there

exists some n such that loggedIn(Qlogin,b,r, id,n). This means that b is currently processing a

response (say, respCAP) to an XHR in a document under a secure origin of r that contains the

script script_rp_index. We call the document RP-Doc. Further, b has received an HTTP(S)
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response before that contains n in its body. This response must have a corresponding HTTP(S)

request (say, reqCAP) that bears the XHR reference that is stored in the subterm refXHRcap in

the scriptstate. This reference is only ever set in Lines 82ff. of Algorithm D.6. Hence, this

request/response pair must use HTTPS.

We know that reqCAP is a POST request that carries some value cap in its body. The RP r only

processes such a request in Lines 15ff. of Algorithm D.3. There, r checks whether cap is a valid

CAP (the UC must be signed by the governor of the certified identity and the IA must be signed

by the key certified in the UC) and extracts the identity id′ for which the CAP was created. If the

CAP is valid, an entry in the subterm serviceTokens is created such that serviceTokens[n′]≡ id′.

The value of n′ is output inside an HTTPS response, which is respCAP. Hence, we have that

n ≡ n′ and id ≡ id′ (as the subterm serviceTokens in the state of r is never changed, except by

adding entries indexed by a fresh nonce).

Recall that the script script_rp_index is implemented as a state machine with the state

stored in the subterm q of its state. The request reqCAP above is only ever created by this script in

Lines 82ff. (of Algorithm D.6), which are only executed if the state machine is in state sendCAP.

In these lines, the CAP is retrieved from the subterm cap in the scriptstate.

We now continue by analysing in which cases RP-Doc gets into the state sendCAP and how

cap in the scriptstate is set. To reach the state sendCAP, there are only two possibilities:

Lines 77ff. In this case, RP-Doc must have been in state loggedInUser, which is only ever

reached if Lines 71ff. have been processed in an earlier processing step. This state, in turn,

can only be reached if the Lines 60ff. have been processed in an earlier processing step

(say Qrpcap). In these lines, also cap is stored in the state and there cannot be a different

processing step after this processing step (up to Qlogin in which this subterm is changed. In

Qrpcap, the value for cap is taken from a postMessage of the form ⟨response,cap⟩. This

postMessage must have been sent by a document of LPO’s origin.

LPO only ever delivers the scripts script_lpo_cif and script_lpo_ld out of which

only script_lpo_ld ever creates such a postMessage. This postMessage is created in

Line 107 of Algorithm D.5. We call the document in which this step is performed LD-Doc

and the processing step in which this postMessage is created Qsendresponse. Recall that the

script script_lpo_ld is also implemented as a state machine with the state stored in

the subterm q of the scriptstate. In LD-Doc, the postMessage above is only created if

LD-Doc is in the state createCAPforRP and the value of the UC, which is used to create

cap is taken from the subterm uc script’s state. We know from above, that this UC must

be a valid UC for the identity id. The only place where this subterm is actually set (it is

initially ⊥) is in Line 76 of Algorithm D.5. This line can only be reached if LD-Doc is in
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state runPIF. We now trace back the state machine to this state. Recall that we are still

analyzing the state createCAPforRP in our proof. There are only two places from which

LD-Doc can transition to this state: Either Lines 76ff. (in state runPIF) or Lines 100ff.

(in state receiveLPOauthresponse). The latter lines can only be reached if, in LD-Doc,

Lines 92ff. (state createCAPforLPO) have been processed. These lines, however, can

only be reached if Lines 76ff. (in state runPIF) have been processed. Hence, we know

that the identity contained in the UC must match the subterm email of LD-Doc’s state.

We now have to show that the subterm email only ever matches an identity owned by b:

Lemma 7. The value of s′.email in script_lpo_ld is always either one of the browser’s

identities or empty.

Proof. We show this by induction:

Base case: The value of s′.email is initially empty (see initial scriptstate).

Induction step: The value is set only in Lines 31 and 33. In the first case, the identity is

chosen non-deterministically from the browser’s identities ids, which are the identities that

the browser owns (see Section D.3.5).

In the second case, the value of s′.email is taken from the localStorage, with the help of

the key idpnonce that is taken from the sessionStorage. We can now show that what is

retrieved from the localStorage is either empty or a previous value of s′.email:

First, we show that the value of idpnonce, taken from sessionStorage in Line 29, is always a

nonce or empty: The browser’s sessionStorage is separated by origins (and root windows),

and therefore, only scripts under the origin of LPO have read or write access. Thus, the only

two scripts that can possibly write the idpnonce value are script_lpo_cif and script_lpo_ld.

The script script_lpo_cif does not write to sessionStorage. The script script_lpo_ld only

writes to sessionStorage in Line 87. It only writes a fresh nonce (chosen in Line 85).

Therefore, the value of idpnonce is always a nonce (or empty).

As we are already in the second case of the if-statement in Line 30 (we know that Line 33

was executed) idpnonce cannot be empty and must be a nonce.

Now, we can show that localStorage[idpnonce] is either empty or a previous value of

s′.email: The browser’s localStorage is separated by origins, and therefore, only scripts

under the origin of LPO have read or write access. As above, the only two scripts that

can write values to the localStorage are script_lpo_cif and script_lpo_ld. The script

script_lpo_cif does not write to localStorage (it only removes subterms form localStorage

in Line 47). We can thus focus on script_lpo_ld.
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There are two lines where this script writes to the localStorage: Lines 112 and 86. We

can safely ignore the first case, as it does not use a nonce as a key (but the fixed string

siteInfo instead). In the latter case, it writes a value of s′.email.

This concludes the induction.

As we know that the UC must have been issued for id, we know that the value of

the subterm email cannot be empty. Hence, there must have been a processing step

QselectedID before (in ρ) for which we have that selectedID(QselectedID,b,governor(id), id)

and selectedIdP(QselectedID,b,governor(id)). In QselectedID, the script script_lpo_ld

must have been in state receiveContext. Note that the document containing the script

in QselectedID is not necessarily LD-Doc (there exist possible traces in which the window

containing LD-Doc is navigated). Hence, we call this document LD-Doc’.

We know that in LD-Doc’, Lines 10ff. of Algorithm D.5 must have been executed in order

to reach the state receiveContext. In these lines, this state can only be reached if a

postMessage of the form ⟨request,⟨⟩⟩ is processed from the inputs of LD-Doc’. When

processing this postMessage, the value of the subterm requestOrigin of the state of LD-

Doc’ is set. This is the only place in which this subterm is modified (it is initially empty)

and —as the state of LD-Doc’ is changed to receiveContext when this postMessage is

processed— there exist no possible trace in which this instance of LD-Doc’ can ever reach

the state start again. From above, we also know that, when LD-Doc’ is triggered again,

we are in processing step QselectedID. We further know that the CAP above was indeed

issued for r. As the IA contained in the CAP is created for the origin that is stored in the

subterm requestOrigin of LD-Doc and LD-Doc must also have been in state start. We

further know that the value of the subterm requestOrigin must be the origin of the window

that opened the window that contains LD-Doc (analogously LD-Doc’). Hence, LD-Doc

and LD-Doc’ are both top level windows (i.e., not contained in an iframe). Following the

induction in the proof of Lemma 7 above, we know that LD-Doc’ must have been in the

same window tree as LD-Doc; otherwise the content of the sessionStorage is not preserved.

We further know that LD-Doc must have received a postMessage of the form request,⟨⟩
from its opener running a document under some secure origin of r. As we know that this

must be script_rp_index in Line 57 of Algorithm D.6. We call the document this script

is running in RP-Doc’. This script only sends this postMessage to a window it opened

before when processing Lines 34ff. As we know that LD-Doc and LD-Doc’ are located

in the same top-level window, we can conclude that both, LD-Doc and LD-Doc’ received

these postMessages from the same RP-Doc’. Hence, the subterm requestOrigin is set to

the same value in LD-Doc and LD-Doc’. We further know that before RP-Doc’ creates
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such postMessages, it must have selected the value openLD in Line 28 of Algorithm D.6

in some processing step Qstart before (in ρ).

Therefore, we have that ∃o ∈ SSOSessions(ρ,b,r) with Qstart ∈ o and QselectedID ∈ o.

Lines 48ff. In this case, RP-Doc must have been in the state default and must have chosen

to process a postMessage that was sent from a (secure) origin of LPO and from a window

identified by the subterm CIFindex of the script’s state. This subterm is initially ⊥ and

only ever set in Line 7ff., where it is set to the identifier of a freshly created iframe. We

know that the postMessage is of the form ⟨login,cap′⟩. As above, there is only one

script delivered by LPO that creates such a postMessage: script_lpo_cif. We call this

document CIF-Doc here. In this script, such a postMessage is only created in Lines 123ff.

of Algorithm D.4. Analogously to above, the script (again modelled as a state machine,

similar to script_lpo_ld) must be in the state createCAPforRP. Analogously to above

(as the structure of script_lpo_cif is very similar to script_lpo_ld, we can trace the

UC contained in the CAP back to Lines 111ff. of Algorithm D.4 where the identity certified

in the UC is compared to the subterm email in CIF-Doc’s state. This value, however is

only ever set once in this script (it is initially empty) in Line 64 where its value is read

from localStorage under the value of the subterm requestOrigin of CIF-Doc’s state. This

subterm, again, is only ever set once in Line 20, where it is set to the origin of CIF-Doc’s

parent. As we know from above, that the parent is in fact RP-Doc, requestOrigin must

have been set to a secure origin of r.

This part of the localStorage under the (secure) origin of LPO is only ever set in Line 112

of Algorithm D.5 (script_lpo_ld). Hence, we know that script_lpo_ld must have

run exactly as outlined in the other case above (i.e., the user must have completed the

login dialog to log in at r using the very same identity). Therefore, we have that ∃o′ ∈
SSOSessions(ρ,b,r) and there exists a processing step Q′selectedID ∈ o′ for which we have

that selectedID(Q′selectedID,b,governor(id), id
′′′), fulfilling our property for indirect session

integrity.

■
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Secondary Mode

E.1. Step-By-Step Description of BrowserID’s Secondary
Mode

We here provide a detailed description of the BrowserID flow including the LD and the CIF, but

considering only the sIdP mode. As above, we leave out steps for fetching additional resources

(like JavaScript files) and some less relevant postMessages.

As before, we assume that the user uses a “fresh” browser, i.e., the user has not been logged

in before. Figure E.1 shows a sequence diagram of the run. In comparison to the high-level

description with Phases I and II in Section 4.1, a new phase, the Initialization, is shown,

which contains some initialization steps and some steps of the CIF for automatic creation of

CAPs.

Initialization. First, the user opens a web page of an RP (RP-Doc) in her browser 1 . RP-Doc

includes the BrowserID JavaScript from LPO 2 . The JavaScript in RP-Doc then initializes the

BrowserID JavaScript, which first creates a communication iframe (CIF) within RP-Doc 3 . The

content of the CIF is loaded from LPO 4 . When the CIF has been initialized successfully, it

sends a ready postMessage to the BrowserID JavaScript in RP-Doc 5 , which in turn responds

with the loaded postMessage 6 . This message may contain an email address, which we ignore

for now (see below). The CIF saves the sender’s origin of this postMessage, as it identifies the

RP it is working with.1 It then fetches the session context from LPO using XHR 7 . The session

context contains information about whether the user is already logged in at LPO, which, by our

assumption, is not the case at this point. The session context also contains an XSRF protection

token which will be sent in all subsequent POST requests to LPO. Also, an httpOnly cookie

called browserid_state is set, which contains an LPO session identifier. The CIF finishes the

initialization by sending a logout postMessage 8 to RP-Doc, indicating that the browser is

currently not logged in at this RP. (In RP-Doc, this calls a message handler onlogout which RP

may have registered.)

1Note that for postMessages the sender origin cannot be spoofed and is always correct (see [Hic15] for details).
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 Browser

1 GET /GET /

2 GET include.jsGET include.js

3 openopen

4 GET CIFGET CIF

5 readyready

6 loadedloaded

7 GET ctxGET ctx

8 logoutlogout

9 dlgRundlgRun

10 openopen

11 GET LDGET LD

12 readyready

13 requestrequest

14 GET ctxGET ctx

15 POST authPOST auth

17 POST certreqPOST certreq

19 ResponseResponse

21 responseresponse

22 closeclose

23 loggedInUserloggedInUser

24 dlgCmpltdlgCmplt

25 POST verifyPOST verify 26 GET ctxGET ctx

 LPO RP n RP-Doc

n CIF

n LD

16 gen. key pairgen. key pair

18 create UCcreate UC

20 gen. IAgen. IA

n LD

 RP n RP-Doc n CIF  LPO

Figure E.1.: Detailed BrowserID implementation overview (secondary mode). (See Page 11 for notation.)
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Phase I . Now the user starts to log in at RP, typically by clicking on a login button in

RP-Doc, which calls the BrowserID login function. This JavaScript first tells the CIF that it

will now open a login dialog window (LD) by sending the dialog_running postMessage 9 ;

this pauses the CIF, in particular, automatic CAP generation (see below). The BrowserID login

function then opens the LD 10 . Its content is fetched from LPO 11 . When it is fully loaded, it

sends a ready postMessage to the BrowserID JavaScript in RP-Doc 12 , which is answered by

sending a request postMessage back 13 , indicating that the sender’s origin of this postMessage

requests a CAP.

After this request, the dialog fetches the session context at LPO 14 (similar to what the CIF

has done before). As the user is still not logged in, she is now asked to provide an email address

and a password for LPO. These are then sent to LPO by an XHR 15 . If the credentials are

accepted, a new key pair is generated by LD’s JavaScript 16 and the public key along with

the entered email address is sent to LPO 17 in order to get a UC. LPO generates a UC for the

user 18 and sends this UC to LD 19 as a response to the request (see Section 4.1). Moreover,

the key pair and the UC are stored in the localStorage under the origin of LPO.

Phase II . Afterwards, an IA containing the so-called audience (the sender’s origin of the

request postMessage 13 ) and some expiration date is created, signed (with the generated

private key), and combined with the certificate to a CAP 20 . In the localStorage it is recorded

that the user is logged in at RP with the current email address. The CAP and the email address

are now sent back to RP-Doc in a response postMessage 21 . After this, the LD is closed 22 .

The BrowserID JavaScript in RP-Doc informs the CIF that it now thinks that the email address

received in the response postMessage is logged in 23 . Next, it tells the CIF that the LD is now

closed 24 , by which the CIF is awoken from pausing. The CIF then fetches the session context

again 26 (as in 7 ) in order to perform some additional checks (see below).

It is not specified in the BrowserID system how the RP-Doc has to process the CAP received

in step 21 . Typically, as already mentioned in Section 4.1, the RP-Doc would send the CAP

to the RP’s server 25 , which then can verify the CAP. If successful, RP can consider the user

(with the email address mentioned in the CAP) to be logged in and send her some token, the RP

service token (as introduced in Section 4.1).

E.1.1. Additional Checks

We note that when postMessages are sent, the BrowserID system makes certain checks. These

checks are carried out by two different (Mozilla) JavaScript libraries. The communication

between RP-Doc and CIF is realized with the library JSChannel and the communication between

RP-Doc and LD is realized with the library WinChan.
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First recall that postMessages can be sent by providing the receiver’s origin. The browser

ensures that such a postMessage can only be received by a document having the origin the sender

has specified. If the receiver’s origin does not match the one specified by the sender, the sender

receives a JavaScript exception. However, the sender is not required to provide a receiver’s origin,

so any receiver can receive the postMessage. Also, a receiver can check from which window a

postMessage was sent and which origin the sender belongs to.

Now, the CIF only sends or accepts postMessages to or from its parent window (which typically

should be RP-Doc). However, the CIF does not check any origin while receiving postMessages

and does not provide an origin when sending postMessages. When RP-Doc receives a message

it expects to come from CIF, RP-Doc checks if the origin of this message matches LPO and if

the sender’s window is the window of CIF. RP-Doc always provides LPO as the receiver’s origin

when sending messages to the window it believes to contain the CIF.

The LD sends 12 only to its opener (RP-Doc) without providing any receiver’s origin to check.

After this, the LD accepts only one request postMessage 13 and blocks any further incoming

postMessages. The sender’s origin of the request postMessage 13 is used by LD to determine

the receiver’s origin of the response postMessage 21 . LD also fixes the receiver of 21 to be

its opener. When RP-Doc sends the request postMessage 13 to the LD, it sets the receiver’s

origin to be LPO in the postMessage. However, any postMessage RP-Doc expects to be sent by

LD is not checked (see also Section 4.5.1).

During the interaction between RP-Doc and LD, an additional check is set in place at both

parties: If one of both documents is navigated away, the window of LD is closed immediately

(and therefore any process in the LD is aborted).

We also note that step 24 triggers two checks in the CIF: First, the CIF checks the current login

status at LPO, by fetching the session context 26 . Second, the CIF compares the email address

received in 23 to the one that is marked as being logged in at RP in the localStorage (under

the origin of LPO). If in one of the checks the user is considered to be not logged in, a logout

postMessage is sent to RP-Doc (similarly to 8 ). Otherwise, if in the second check a mismatch is

detected, the CIF creates a new CAP according to the information in the localStorage and sends

it as a so-called login postMessage to RP-Doc. Whether this CAP is used by RP-Doc or the one

received in step 21 depends on the way the RP-Doc uses the API provided by BrowserID. One

possibility (which is considered in the BrowserID test implementation) is that RP-Doc relays all

received CAPs to the RP server with an XHR. The RP server, as already mentioned above, would

then verify each CAP it receives and issue an RP service token every time. This is also what is

done in our model of the BrowserID system.
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E.1.2. Automatic CAP Creation

Once a run as described above is completed, an RP-Doc can get CAPs directly during the

Initialization from the CIF: The CIF will automatically issue a fresh CAP and send it to RP-Doc

(in a login postMessage instead of 8 ) iff (1) some email address is marked as logged in at RP

in the localStorage (under the origin LPO), (2) if an email address was provided in the loaded

postMessage 6 , this email address differs from the one recorded in the localStorage, and (3)

the user is logged in at LPO (indicated in 7 ). If necessary, a new key pair is created and a

corresponding new UC is requested at LPO.

E.1.3. LPO Session

As mentioned before, in the initial run LPO establishes a session with the browser by setting a

cookie browserid_state (in step 7 ) on the client-side.

If such a run is started again (possibly with some other RP) with the same browser in an LPO

session in which the user is already logged in at LPO, the user is not asked again by the LD to

provide her credentials. Instead she is presented a list of her email addresses (which is fetched

from LPO and cached in the localStorage) in order to choose one address. Then, she is asked

if she trusts the computer she is using and is given the option to be logged in for one month or

“for this session only” (ephemeral session). However, in any case cookies will be stored for some

time in the browser and will be valid for some time on the LPO server (one hour to 30 days).

E.1.4. Logout

We have to differentiate between two ways of logging out: an RP logout and an LPO logout. An

RP logout is handled by the CIF after it has received a logout postMessage from RP-Doc. The

CIF changes the localStorage (under the origin of LPO) such that no email address is recorded

to be logged in at RP and replies to RP-Doc with a logout postMessage. RP-Doc can run some

callback it may have registered before.

An LPO logout essentially requires to logout at the web site of LPO. The LPO logout removes

all key pairs and certificates from the localStorage and invalidates the session on the LPO server.

E.2. Model of BrowserID in Secondary Mode

In this section, we provide the full BrowserID model for the secondary mode, i.e., the SSO Web

system BIDs = (W s ,S ,script,E0), and its security properties. Again, we note that our model

considers the BrowserID system with the fixes proposed in Section 4.5.1.
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s ∈ S script(s)

Ratt att_script
script_rp_index script_rp_index
script_lpo_cif script_lpo_cif
script_lpo_ld script_lpo_ld

Table E.1.: List of scripts in S and their respective string representations for the secondary mode of
BrowserID.

Recall that the system W p = Hon∪̇Web∪̇Net contains the Web server for LPO, a finite set B

of Web browsers, and a finite set RP of Web servers for the relying parties, with

Hon := B ∪̇RP ∪̇ {LPO}  
=:IDP

∪̇ DNS
= /0

∪̇ Other  
= /0

.

For the analysis of authentication and session integrity, we consider a BrowserID secondary mode

Web system with one network attacker, i.e., Web := /0, and Net := {attacker}. DNS servers are

assumed to be dishonest, and hence, are subsumed by attacker.

Table E.1 shows the set of scripts S and their respective string representations that are defined

by the mapping script. The set E0 contains only the trigger events as specified in Section A.8.

E.2.1. Addresses and Domain Names

Similar to the model of BrowserID in primary mode, the set IPs contains for LPO, attacker,

every relying party in RP, and every browser in B one address each. By addr we denote the

corresponding assignment from a process to its address. The set Doms contains one domain for

LPO, one for every relying party in RP, and a finite set of domains for attacker. Browsers (in B)

do not have a domain.

By addr and dom we denote the assignments from atomic processes to sets of IPs and Doms,

respectively. If dom or addr returns a set with only one element, we often write dom(x) or

addr(x) to refer to the element.

E.2.2. Keys and Secrets

Let tlskey : Doms→ Kprivate be an injective mapping that assigns a private key to every domain.

Atomic processes are given the private keys for their domain in the following form: For an atomic

DY process p we define

tlskeysp = ⟨{⟨d, tlskey(d)⟩ | d ∈ dom(p)}⟩ .
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The set Secrets ⊆ N is the set of passwords (secrets) the browsers share with LPO. Let ID

be the finite set of a email address (IDs) of the form ⟨name,d⟩, with name ∈ S and d ∈ Doms,

registered at LPO. As mentioned in Section 4.4.2, different browsers own disjoint sets of secrets

and different secrets are assigned disjoint sets of identities. Let ownerOfSecret : Secrets→ B

denote the mapping that assigns to each secret the browser that owns this secret. Let secretOfID :

ID→ Secrets denote the mapping that assigns to each identity the secret it belongs to. Now, we

define the mapping ownerOfID : ID→ B, i ↦→ ownerOfSecret(secretOfID(i)), which assigns to

each identity the browser that owns this identity.

As in the primary mode, the attacker initially does not own a secret, but can corrupt any

number of browsers in a run, and hence, get hold of secrets as well.

E.2.3. Corruption

RPs can become corrupted: If they receive the message CORRUPT, they start collecting all in-

coming messages in their state and (upon triggering) send out all messages that are derivable

from their state and collected input messages, just like the attacker process. We say that an RP is

honest if the according part of their state (s.corrupt) is⊥, and that they are corrupted otherwise.

Recall that browsers can, as explained in Section 2.5, become corrupted as well.

E.2.4. Attackers

Attackers are modeled similar as in the primary mode as explained in Appendix D.3.4. In the

secondary mode of BrowserID, we consider only a network attacker as we in this mode do not

analyze privacy as discussed in Section 4.4.2.

We allow the (network) attacker to listen to/spoof all available IP addresses, and hence, define

Iattacker = IPs. His initial state is sattacker0 = ⟨attdoms,pubkeys⟩, where attdoms is a sequence of

all domains along with the corresponding private keys owned by the attacker and pubkeys is a

sequence of all domains and the corresponding public keys. All other parties use the attacker as

a DNS server.

E.2.5. Browsers

Each b ∈ B is a Web browser as defined in Appendix A.6, with Ib := {addr(b)} being its

address and the initial state sb
0 defined as follows: the key mapping maps every domain to its

public key, according to the mapping tlskey; the DNS address is addr(attacker); the secrets are

those owned by b (as defined above) and they are indexed by the origin ⟨dom(LPO),S⟩; sts is

⟨dom(LPO)⟩. (Without the latter, the attacker could trivially inject, by an HTTP response, its

own browserid_state cookie and by this violate the session integrity property.)
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E.2.6. LPO

LPO is a an atomic DY process (ILPO,ZLPO,RLPO,sLPO0 ) with the address ILPO = {addr(LPO)}.
The initial state sLPO0 of LPO contains the private key of its domain, its signing key kLPO, all

secrets in Secrets and the corresponding sequences of IDs. (LPO does not need the public keys

of other parties, which is why we omit them from LPO’s initial state.). HTTP responses by

LPO can contain, besides complex terms (e.g., for XHR responses), strings representing scripts,

namely the script script_LPO_cif run in the CIF and the script script_LPO_ld run in the LD.

These scripts are defined in Appendices E.2.8 and E.2.8, respectively.

LPO maintains client sessions in the same way as LPO in the primary mode of BrowserID as

explained in Section 4.4.1.

HTTPSRequests to LPO LPO answers only to certain requests (listed below). All such

requests have to be over HTTPS. Also, all responses send by LPO contain the STS header

Strict-Transport-Security.

GET /cif. LPO replies to this request by providing the script script_LPO_cif.

GET /ld. LPO replies to this request by providing the script script_LPO_ld.

GET /ctx. LPO replies with a session context. More precisely, LPO first checks if a cookie

browserid_state was sent within this request and if its value identifies a session within

LPO’s state. If such a session exists, LPO responds to such a request with the list of

(authenticated) identities for this session,2 the xsrfToken, and a Set-Cookie header, which

sets the browserid_state cookie. If no cookie browserid_state was sent in the

request, or if the value of the cookie browserid_state does not identify a session within

LPO’s state, LPO first creates a new session. Such a new session contains a fresh nonce as

a session identifier, the empty sequence ⟨⟩ of identities, and a fresh nonce as a xsrfToken.

Once such a session is created, LPO responds as above.

POST /auth. This request is sent to authenticate a session at LPO. A request to this interface

has to contain some secret sec ∈ Secrets in its body. The request also has to contain

the cookie browserid_state which has to refer to some session in the state of LPO.

Moreover, the request has to contain an xsrfToken in its body which has to match the one

recorded in the considered session in LPO’s state. The session recorded in the state of

LPO is then modified to include the sequence of all identities associated with sec. The

response to such a request contains some static acknowledgment.

2In the real implementation, the session context only contains a flag indicating the authentication state of the session.
However, another GET request interface is available to retrieve the list of authenticated identities for the current
session. Here, for simplicity, we right away provide all authenticated identities in the session context.
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POST /certreq. Such a request is sent to LPO in order to request a UC. The request has to

contain an identity and a public key in its body, for which a UC is requested. The request

also has to contain a cookie named browserid_state which has to refer to some session

recorded in the state of LPO. Moreover, the request has to contain an xsrfToken in its body

which matches the xsrfToken in the considered session record in LPO’s state. Also, the

sequence of identities in the considered session recorded in LPO’s state has to contain the

identity provided in the (body of the) request. This identity is then paired with the public

key sent in the request and the resulting pair is then signed with kLPO. In other words, a

UC is created for the identity and the public key provided in the request. Finally, LPO

responds with this UC.

We now define LPO formally as an atomic DY process (ILPO,ZLPO,RLPO,sLPO0 ). As already

mentioned, we define ILPO = {addr(LPO)}.
In order to define the set ZLPO of states of LPO, we repeat the definition of an LPO session

context from the primary mode of BrowserID (see Definition 75).

Definition 87. A term of the form ⟨ids,xsrfToken⟩ with ids ⊂⟨⟩ ID and xsrfToken ∈ N is called

an LPO session context. We denote the set of all LPO session contexts by LPOSessionCTXs. ⋄

Now, we define the set ZLPO of states of LPO as well as the initial state sLPO0 of LPO.

Definition 88. A state s ∈ ZLPO of LPO is a term of the form ⟨tlskey, signkey, sessions, secrets⟩
where tlskey = tlskey(dom(LPO)), signkey = kLPO, sessions ∈ [N ×LPOSessionCTXs], and

secrets∈
[
Secrets×TN

]
is a dictionary which assigns to every secret sec∈ Secrets the sequence

of all identities associated with sec.3

The initial state sLPO0 of LPO is a state of LPO with sLPO0 .sessions= ⟨⟩. ⋄

We specify the relation RLPO ⊆ (E ×ZLPO)× (2E ×ZLPO) of LPO in Algorithm E.1.

E.2.7. Relying Parties

A relying party r ∈ RP is a Web server modeled as an atomic DY process (Ir,Zr,Rr,sr
0) with the

address Ir := {addr(r)}. Its initial state sr
0 contains its domain, the private key associated with

its domain, the public key of LPO, and the set of service token it has provided. The definition of

Rr again follows the description in Appendix E.1. RP only accepts messages sent over HTTPS.

Whenever r receives a GET message, it returns the script script_RP_index (see below) and sets

the Strict-Transport-Security header. If r receives an HTTPS POST message, it checks if

3This is a simplified variant of the “user database” used for IdPs in the primary mode of BrowserID.
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Algorithm E.1: Relation of LPO RLPO.

Input: ⟨a, f ,m⟩,s
1: let s′ := s
2: if m≡ TRIGGER then → Triggers a (non-deterministic) logout or session expiration
3: if s′.sessions ̸≡ ⟨⟩ then
4: let sessionid← {id j|id j ∈ s′.sessions}
5: if sessionid ∈⟨⟩ s′.sessions then
6: let choice← {logout,expire}
7: if choice≡ logout then
8: let session := s′.sessions[sessionid]
9: let session[ids] := ⟨⟩

10: let s′.sessions[sessionid] := session
11: stop {},s′
12: else
13: remove the element with key sessionid from the dictionary s′.sessions
14: stop {},s′
15: end if
16: end if
17: end if
18: else
19: let mdec, k′ such that ⟨mdec,k′⟩ ≡ deca(m,s′.tlskey) if possible; otherwise stop {},s
20: let n, method, path, params, headers, body such that ⟨HTTPReq,n,method,dom(LPO),path,

params,headers,body⟩ ≡ mdec if possible; otherwise stop {},s
21: if method ≡ GET∧path≡ /cif then → Deliver CIF script
22: let m′ :=

encs(⟨HTTPResp,n,200,⟨⟨Strict-Transport-Security,⊤⟩⟩,⟨script_LPO_cif, initStatecif ⟩⟩,k′)
where initStatecif is the initial scriptstate of script_LPO_cif according to Definition 90.

23: let E := {an f ,a,m′}
24: stop E, s′

25: else if method ≡ GET∧path≡ /ld then → Deliver LD script.
26: let m′ :=

encs(⟨HTTPResp,n,200,⟨⟨Strict-Transport-Security,⊤⟩⟩,⟨script_LPO_ld, initStateld⟩⟩,k′)
where initStateld is the initial scriptstate of script_LPO_ld according to Definition 91.

27: let E := {⟨ f ,a,m′⟩}
28: stop E, s′

29: else if method ≡ GET∧path≡ /ctx then → Deliver context information.
30: let sessionid := headers[Cookie][browserid_state]
31: if sessionid ̸∈⟨⟩ s′.sessions then → Create new session if needed.
32: let sessionid := ν1
33: let ids := ⟨⟩
34: let xsrfToken := ν2
35: let s′.sessions := s′.sessions+⟨⟩ ⟨sessionid,⟨ids,xsrfToken⟩⟩
36: end if
37: let result := s′.sessions[sessionid]
38: let headers′ := ⟨⟨Strict-Transport-Security,⊤⟩,

⟨Set-Cookie,⟨⟨browserid_state,⟨sessionid,⊤,⊤,⊤⟩⟩⟩⟩⟩
39: let m′ := encs(⟨HTTPResp,n,200,headers′,result⟩,k′)
40: let E := {⟨ f ,a,m′⟩}
41: stop E, s′

This algorithm is continued on the next page.
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42: else if method ≡ POST∧path≡ /auth then → Authenticate session.
43: let sessionid := headers[Cookie][browserid_state]
44: let secret, xsrfToken such that ⟨secret,xsrfToken⟩ ≡ body if possible; otherwise stop {},s
45: if sessionid ∈⟨⟩ s′.sessions then
46: if secret ∈⟨⟩ s′.secrets∧ s′.sessions[sessionid].xsrfToken≡ xsrfToken then
47: let ids := s′.secrets[secret]
48: let s′.sessions[sessionid].ids := ids
49: let m′ := encs(⟨HTTPResp,n,200,⟨⟨Strict-Transport-Security,⊤⟩⟩,⊤⟩,k′)
50: let E := {⟨ f ,a,m′⟩}
51: stop E, s′

52: end if
53: end if
54: else if method ≡ POST∧path≡ /certreq then → Sign pubkey, deliver UC
55: let sessionid := headers[Cookie][browserid_state]
56: let ids := s′.sessions[sessionid].ids
57: let xsrfToken := s′.sessions[sessionid].xsrfToken
58: let id, pubkey, xsrfToken′ such that ⟨id,pubkey,xsrfToken′⟩ ≡ body if possible;

↪→ otherwise stop {},s
59: if id ∈⟨⟩ ids∧ xsrfToken≡ xsrfToken′ then
60: let uc := sig(⟨id,pubkey⟩,s′.signkey)
61: let m′ := encs(⟨HTTPResp,n,200,⟨⟨Strict-Transport-Security,⊤⟩⟩,uc⟩,k′)
62: let E := {⟨ f ,a,m′⟩)}
63: stop E, s′

64: end if
65: end if
66: end if
67: stop {},s

(1) the message contains a valid CAP for r, and (2) the header of the message contains an Origin

header which only contains a single origin and this origin is r’s domain with HTTPS. If this check

is successful, r responds with a token of the form ⟨n, i⟩ (sent in the body of the response), where

i ∈ ID is the identity for which the CAP was issued and n is a freshly chosen nonce. We call, as

mentioned in Section 4.4.2, ⟨n, i⟩ an RP service session (for id i). As mentioned, r keeps a list of

such tokens in its state. Intuitively, a client in possession of such a token can use the service of r

for identity i (e.g., access data of i at r).

We now provide the formal definition of r as an atomic DY process (Ir,Zr,Rr,sr
0). As men-

tioned, we define Ir = {addr(r)}. Next, we define the set Zr of states of r and the initial state sr
0

of r.

Definition 89. A state s ∈ Zr of an RP r is a term of the form

⟨tlskey,domain,pubkLPO,serviceTokens⟩
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Algorithm E.2: Relation of an RP Rr.

Input: ⟨a, f ,m⟩,s
1: let s′ := s
2: let mdec,k′ such that ⟨mdec,k′⟩ ≡ deca(m,s′.tlskey) if possible; otherwise stop {},s
3: let n, method, path, params, headers, body such that ⟨HTTPReq,n,method,s′.domain,path,params,

headers,body⟩ ≡ mdec if possible; otherwise stop {},s
4: if method ≡ GET then → Deliver RP’s index script
5: let m′ := encs(⟨HTTPResp,n,200,⟨⟨Strict-Transport-Security,⊤⟩⟩,

↪→ ⟨script_RP_index, initStaterp_index⟩⟩,k′) where initStaterp_index is the initial scriptstate of
↪→ script_RP_index according to Definition 92.

6: let E := {⟨ f ,a,m′⟩}
7: stop E, s′

8: else if (method ≡ POST)∧ (headers≡ ⟨⟨Origin,⟨s′.domain,S⟩⟩⟩) then → Check received CAP
9: let uc, ia such that ⟨uc, ia⟩ ≡ body if possible; otherwise stop {},s → Extract UC and IA

10: let i := π1(extractmsg(uc)) → Extract id from UC
11: let pku := π2(extractmsg(uc)) → Extract pubkey from UC
12: let o := extractmsg(ia) → Extract audience from IA
13: if (checksig(uc,s′.pubkLPO)≡⊤)∧ (checksig(ia,pku)≡⊤∧o≡ ⟨s′.domain,S⟩) then
14: let n′ := ν1 → Issue service token
15: let s′.serviceTokens := s′.serviceTokens+ ⟨n′, i⟩
16: let m′ := encs(⟨HTTPResp,n,200,⟨⟩,⟨n′,i⟩⟩,k′)
17: let E := {⟨ f ,a,m′⟩}
18: stop E, s′

19: end if
20: end if
21: stop {}, s

where tlskey = tlskey(dom(r)), domain = dom(r), pubkLPO = pub(tlskey(dom(LPO))), and

serviceTokens ∈ [N ×S].
The initial state sr

0 of r is a state of r with sr
0.serviceTokens= ⟨⟩. ⋄

As for the primary mode, we define the function serviceSessions that extracts service sessions

from an RP’s state as the projection that extracts the subterm serviceTokens.

We specify the relation Rr ⊆ (E ×Zr)× (2E ×Zr) of r in Algorithm E.2.

E.2.8. BrowserID Scripts

As already mentioned in Section 4.4.2, the set S of the Web system BIDs = (W s ,S ,script,E0)

consists of the scripts Ratt, script_RP_index, script_LPO_cif , and script_LPO_ld with string

representations att_script, script_RP_index, script_LPO_cif, and script_LPO_ld (de-

fined by script, see also Table E.1). The script Ratt is the attacker script (see Section 2.4). The

formal model of the latter two scripts follows the description in Appendix E.1 in a straightfor-

ward way. The script script_RP_index defines the script of the RP index page. In reality, this

228



E.2. Model of BrowserID in Secondary Mode

page has its own script(s) and includes a script from LPO. In our model, we combine both scripts

to script_RP_index. In particular, this script is responsible for creating the CIF and the LD

iframes/subwindows, whose content (scripts) are loaded from LPO.

In what follows, the scripts script_RP_index, script_LPO_cif , and script_LPO_ld are defined

formally. We note that the scripts of LPO also make use of localStorage as described below.

LocalStorage Under the Origin of LPO. The localStorage under the origin of LPO used by the

scripts script_LPO_cif and script_LPO_ld is organized in similar, but simplified way as in the

primary mode of BrowserID: the localStorage is a dictionary containing only one entry. This

entry consists of the key siteInfo and (as its value) a dictionary where this dictionary has

origins as keys with identities as values indicating that a certain identity (of the user) is logged

in at the referenced origin. Here is an example a possible localStorage.

Example 9.

⟨⟨siteInfo,⟨⟨⟨domainRP1,S⟩,id1⟩,⟨⟨domainRP2,S⟩,id1⟩,⟨⟨domainRP3,S⟩,id2⟩⟩⟩⟩ (E.1)

This example shows a localStorage under the origin of LPO, indicating that the user is logged in

at domainRP1 and domainRP2 with id1 and at domainRP3 with id2 (using HTTPS).

login.persona.org Communication Iframe Script (script_LPO_cif). This script models the

script run in the CIF, as sketched in Appendix E.1.

We first describe the structure of the internal scriptstate of the script script_LPO_cif .

Definition 90. A scriptstate s of script_LPO_cif is a term of the form

⟨q,parentOrigin, loggedInUser,pause,context,key,handledInputs,refXHRctx,refXHRcert⟩

where q ∈ S, parentOrigin ∈ Origins ∪ {⊥}, loggedInUser ∈ ID ∪ {⟨⟩,⊥}, pause ∈ {⊤,⊥},
context ∈ TN , key ∈N ∪{⊥}, handledInputs⊂⟨⟩ N, refXHRctx,refXHRcert ∈N ∪{⊥}.

The initial state initStatecif of script_LPO_cif is the state ⟨init,⊥,⊥,⊥,⊥,⊥,⟨⟩,⊥,⊥⟩. ⋄

Before we provide the formal specification of the relation that defines the behavior of the script

script_LPO_cif , we present an informal description. The behavior mainly depends on the state

q the script is in.

q = init is the initial state. It’s only transition handles no input and outputs a postMessage

cifready to its parent window and transitions to default.
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q = default is the state to which script_LPO_cif always returns to. This state handles all

postMessages the CIF expects to receive. If the postMessage received was sent from the

parent window of the CIF, it behaves as follows:

postMessage loaded records the sender’s origin of the received postMessage as the

remote origin in the scriptstate. Also, an identity, which represents the assumption

of the sender on who it believes to be logged in, is saved in the scriptstate. If the

pause flag in the scriptstate is ⊤ it transitions to the state default. Otherwise, it is

checked, if the current context in the scriptstate is ⊥. If the check is true, the script

transitions to the state fetchContext, or to the state checkAndEmit otherwise.

postMessage dlgRun sets pause flag in the scriptstate to ⊤ and transitions to default.

postMessage dlgCmplt sets the pause flag in the scriptstate to ⊥. It then transitions to

the state fetchContext.

postMessage loggedInUser has to contain an identity. This identity is saved in the

scriptstate and then the script transitions to default.

postMessage logout removes the entry for the RP (recorded in the scriptstate) from the

localStorage and then transitions to the state sendLogout.

q = fetchContext sends an XHR to LPO with a GET request to the path /ctx and then transi-

tions to the state receiveContext.

q = receiveContext expects an XHR response as input containing the session context. This

context is saved as the current context in the scriptstate. The script transitions to the next

state checkAndEmit.

q = checkAndEmit lets the script transition to requestUC iff (1) some email address is marked

as logged in at RP in the localStorage, (2) if an email address is recorded in the current

scriptstate, this email address differs from the one recorded in the localStorage, and (3)

the user is marked as logged in in the current context. Otherwise, if the email address

recorded in the current scriptstate is ⟨⟩, the script transitions to default, else it transitions

to sendLogout.

q = requestUC creates a new private key (by taking a fresh nonce), stores the key in the script-

state, and sends out an XHR POST request with the identity recorded in the localStorage

for the parent window’s origin and the public key (which can be derived from the private

key) to LPO to get a UC. The script transitions to receiveUC.
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q = receiveUC receives an XHR response (from LPO) containing a UC. It creates an IA for

the parent window’s origin, combines the UC and the IA to a CAP, and sends the CAP as

login postMessage to the parent window. The script then transitions back to the default

state.

q = sendLogout sends a logout postMessage to the parent document and then the script tran-

sitions to the default state.

We now specify the relation script_LPO_cif ⊆ TN ×TN of the CIF’s scripting process for-

mally.

Just like all scripts, as explained in Section 2.5 (see also Algorithm A.7 for the formal spec-

ification), the input term this script obtains from the browser contains the cleaned tree of the

browser’s windows and documents tree, the nonce of the current document docnonce, its own

scriptstate scriptstate (as defined in Definition 90), a sequence of all inputs scriptinput (also con-

taining already handled inputs), a dictionary cookies of all accessible cookies of the document’s

domain, the localStorage localStorage belonging to the document’s origin, and the secrets secrets

of the document’s origin. The script returns a new scriptstate s′, a new set of cookies cookies′, a

new localStorage localStorage′, and a term command denoting a command to the browser.

The relation of the script is defined in Algorithm E.3.

login.persona.org Login Dialog Script (script_LPO_ld).
The script script_LPO_ld models the script that runs in the LD. Its formal specification,

presented next, follows the one presented above for script_LPO_cif .

Definition 91. A scriptstate s of script_LPO_ld is a term of the form ⟨q, requestOrigin, context,

key, handledInputs, refXHRctx, refXHRauth, refXHRcert⟩ with q ∈ S, requestOrigin ∈Origins∪
{⊥}, context∈ TN , key∈N ∪{⊥}, handledInputs⊂⟨⟩ N, refXHRctx,refXHRauth,refXHRcert∈
N ∪{⊥}.

The initial state initStateld is the state ⟨init,⊥,⊥,⊥,⟨⟩,⊥,⊥,⊥⟩. ⋄

Before we provide the formal specification of the relation that defines the behavior of the script

script_LPO_ld, we present an informal description. Again, the behavior mainly depends on the

state q the script is in.

q≡ init is the initial state. Its only transition takes no input and outputs a postMessage

ldready to its parent window and transitions to start.

q≡ start expects a request postMessage. The sender’s origin of this postMessage is recorded

as the requesting origin in the scriptstate. An XHR is sent to LPO with a GET request to

the path /ctx and then the script transitions to the state receiveContext.
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Algorithm E.3: Relation of script_LPO_cif .

Input: ⟨tree,docnonce,scriptstate,scriptinputs,cookies, localStorage,sessionStorage, ids,secrets⟩
1: let s′ := scriptstate
2: let cookies′ := cookies
3: let localStorage′ := localStorage
4: switch s′.q do
5: case init
6: let command := ⟨POSTMESSAGE,PARENTWINDOW(tree,docnonce),⟨cifready,⟨⟩⟩,⊥⟩
7: let s′.q := default

8: stop ⟨s′,cookies′, localStorage′,sessionStorage,command⟩
9: case default

10: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
11: if π1(input)≡ POSTMESSAGE then
12: let senderWindow := π2(input)
13: let senderOrigin := π3(input)
14: let m := π4(input)
15: if senderWindow≡ PARENTWINDOW(tree,docnonce) then
16: switch m do
17: case ⟨loaded, id⟩
18: let s′.parentOrigin := senderOrigin
19: let s′.loggedInUser := id
20: if s′.pause≡⊤ then
21: stop ⟨s′,cookies′, localStorage′,sessionStorage,⟨⟩⟩
22: else if s′.context≡⊥ then
23: let s′.q := fetchContext

24: stop ⟨s′,cookies′, localStorage′,sessionStorage,⟨⟩⟩
25: else
26: let s′.q := checkAndEmit

27: stop ⟨s′,cookies′, localStorage′,sessionStorage,⟨⟩⟩
28: end if
29: case ⟨dlgRun,⟨⟩⟩
30: let s′.pause := ⊤
31: stop ⟨s′,cookies′, localStorage′,sessionStorage,⟨⟩⟩
32: case ⟨dlgCmplt,⟨⟩⟩
33: let s′.pause := ⊥
34: let s′.q := fetchContext

35: stop ⟨s′,cookies′, localStorage′,sessionStorage,⟨⟩⟩
36: case ⟨loggedInUser, id⟩
37: let s′.loggedInUser := id
38: stop ⟨s′,cookies′, localStorage′,sessionStorage,⟨⟩⟩
39: case ⟨logout,⟨⟩⟩
40: end if
41: end if
42: case fetchContext
43: let s′.refXHRctx := λ1
44: let command := ⟨XMLHTTPREQUEST,URLLPO

/ctx,GET,⟨⟩,s′.refXHRctx⟩
45: let s′.q := receiveContext

46: stop ⟨s′,cookies′, localStorage′,sessionStorage,command⟩
This algorithm is continued on the next page.
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47: case receiveContext
48: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
49: if (π1(input)≡ XMLHTTPREQUEST)∧ (π3(input)≡ s′.refXHRctx) then
50: let s′.context := π2(input)
51: let s′.q := checkAndEmit

52: stop ⟨s′,cookies′, localStorage′,sessionStorage,⟨⟩⟩
53: end if
54: case checkAndEmit
55: let lid := localStorage′[siteInfo][s′.parentOrigin]
56: if (lid ̸≡ ⟨⟩) ∧ (s′.loggedInUser /∈ {⟨⟩,⊥} ⇒ (s′.loggedInUser ̸≡ lid)) ∧

(π1(s′.context) ̸≡ ⟨⟩) then
57: let s′.q := requestUC

58: stop ⟨s′,cookies′, localStorage′,sessionStorage,⟨⟩⟩
59: else if s′.loggedInUser≡ ⟨⟩ then
60: let s′.q := default

61: stop ⟨s′,cookies′, localStorage′,sessionStorage,⟨⟩⟩
62: else
63: let s′.q := sendLogout

64: stop ⟨s′,cookies′, localStorage′,sessionStorage,⟨⟩⟩
65: end if
66: case requestUC
67: let id := localStorage′[siteInfo][s′.parentOrigin]
68: let s′.key := λ2
69: let body := ⟨id,pub(s′.key),s′.context.xsrfToken⟩
70: let s′.refXHRcert := λ3
71: let command := ⟨XMLHTTPREQUEST,URLLPO

/certreq,POST,body,s′.refXHRcert⟩
72: let s′.q := receiveUC

73: stop ⟨s′,cookies′, localStorage′,sessionStorage,command⟩
74: case receiveUC
75: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
76: if (π1(input)≡ XMLHTTPREQUEST)∧ (π3(input)≡ s′.refXHRcert) then
77: let uc := π2(input)
78: let ia := sig(s′.parentOrigin,s′.key)
79: let cap := ⟨uc, ia⟩
80: let command :=

⟨POSTMESSAGE,PARENTWINDOW(tree,docnonce),⟨login,cap⟩,s′.parentOrigin⟩
81: let s′.q := default

82: stop ⟨s′,cookies′, localStorage′,sessionStorage,command⟩
83: end if
84: case sendLogout
85: let command := ⟨POSTMESSAGE,PARENTWINDOW(tree,docnonce),⟨logout,⟨⟩⟩,⊥⟩
86: let s′.q := default

87: stop ⟨s′,cookies′, localStorage′,sessionStorage,command⟩
88: stop ⟨scriptstate,cookies, localStorage,sessionStorage,⟨⟩⟩
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q≡ receiveContext expects an XHR response as input containing the session context. This

context is saved as the current context in the scriptstate. If the received context contains

⟨⟩ as the identity list, the script transitions to the state requestAuth. Else, the script

transitions to requestUC.

q≡ requestAuth sends an XHR POST request to LPO with the path /auth containing a

browser’s secret. The script then transitions to the state receiveAuth.

q≡ receiveAuth expects an XHR response as input containing ⊤. The script then sends

an XHR to LPO with a GET request to the path /ctx and then transitions to the state

receiveContext.

q≡ requestUC chooses (non-deterministically) an id, chooses a fresh private key and sends the

id and the public key (corresponding to the private key) as an XHR POST request to LPO

with the path /certreq. The script then transitions to receiveUC

q≡ receiveUC receive UC from LPO, create IA, combine with UC to CAP, record the identity

as logged in at the requester’s origin. Send CAP in postMessage to parent. Go to state

null

q≡ null do nothing.

We formally specify the relation script_LPO_ld ⊆ TN ×TN of the LD’s scripting process in

Algorithm E.4.

Relying Party Web Page Script (script_RP_index).
The script script_RP_index models the script that is run by an RP. Its formal specification,

presented next, follows the one presented for the other scripts above.

Definition 92. A scriptstate s of script_RP_index is a term of the form

⟨q,CIFindex,LDindex,dialogRunning,cap,handledInputs,refXHRcap⟩

with q ∈ S, CIFindex ∈ N∪ {⊥}, dialogRunning ∈ {⊤,⊥}, cap ∈ TN , handledInputs ⊂⟨⟩ N,

refXHRcap ∈N ∪{⊥}.
We call s the initial scriptstate of script_RP_index iff s≡ ⟨init,⊥,⊥,⊥,⟨⟩,⟨⟩,⊥⟩. ⋄

Before we provide the formal specification of the relation that defines the behavior of the script

script_RP_index, we present an informal description. As above, the behavior mainly depends on

the state q the script is in.
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Algorithm E.4: Relation of script_LPO_ld.

Input: ⟨tree,docnonce,scriptstate,scriptinputs,cookies, localStorage,sessionStorage, ids,secrets⟩
1: let s′ := scriptstate
2: let cookies′ := cookies
3: let localStorage′ := localStorage
4: switch s′.q do
5: case init
6: let command := ⟨POSTMESSAGE,OPENERWINDOW(tree,docnonce),⟨ldready,⟨⟩⟩,⊥⟩
7: let s′.q := start

8: stop ⟨s′,cookies′, localStorage′,sessionStorage,command⟩
9: case start

10: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
11: if π1(input)≡ POSTMESSAGE then
12: let senderWindow := π2(input)
13: let senderOrigin := π3(input)
14: let m := π4(input)
15: if m≡ ⟨request,⟨⟩⟩ then
16: let s′.requestOrigin := senderOrigin
17: let s′.refXHRctx := λ1
18: let command := ⟨XMLHTTPREQUEST,URLLPO

/ctx,GET,⟨⟩,s′.refXHRctx⟩
19: let s′.q := receiveContext

20: stop ⟨s′,cookies′, localStorage′,sessionStorage,command⟩
21: end if
22: end if
23: case receiveContext
24: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
25: if (π1(input)≡ XMLHTTPREQUEST)∧ (π3(input)≡ s′.refXHRctx) then
26: let s′.context := π2(input)
27: if π1(s′.context)≡ ⟨⟩ then
28: let s′.q := requestAuth

29: stop ⟨s′,cookies′, localStorage′,sessionStorage,⟨⟩⟩
30: else
31: let s′.q := requestUC

32: stop ⟨s′,cookies′, localStorage′,sessionStorage,⟨⟩⟩
33: end if
34: end if
35: case requestAuth
36: let secret← secrets
37: let body := ⟨secret,s′.context.xsrfToken⟩
38: let s′.refXHRauth := λ2
39: let command := ⟨XMLHTTPREQUEST,URLLPO

/auth,POST,body,s′.refXHRauth⟩
40: let s′.q := receiveContext

41: stop ⟨s′,cookies′, localStorage′,sessionStorage,command⟩
This algorithm is continued on the next page.
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42: case receiveAuth
43: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
44: if (π1(input)≡ XMLHTTPREQUEST)∧ (π3(input)≡ s′.refXHRauth) then
45: if π2(input)≡⊤ then
46: let command := ⟨XMLHTTPREQUEST,URLLPO

/ctx,GET,⟨⟩⟩
47: let s′.q := receiveContext

48: stop ⟨s′,cookies′, localStorage′,sessionStorage,command⟩
49: end if
50: end if
51: case requestUC
52: let id← ids
53: let localStorage′[siteInfo][s′.requestOrigin] := id
54: let s′.key := λ3
55: let body := ⟨id,pub(s′.key),s′.context.xsrfToken⟩
56: let s′.refXHRcert := λ4
57: let command := ⟨XMLHTTPREQUEST,URLLPO

/certreq,POST,body,s′.refXHRcert⟩
58: let s′.q := receiveUC

59: stop ⟨s′,cookies′, localStorage′,sessionStorage,command⟩
60: case receiveUC
61: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
62: if (π1(input)≡ XMLHTTPREQUEST)∧ (π3(input)≡ s′.refXHRcert) then
63: let uc := π2(input)
64: let ia := sig(s′.requestOrigin,s′.key)
65: let cap := ⟨uc, ia⟩
66: let command := ⟨POSTMESSAGE,OPENERWINDOW(tree,docnonce),

↪→ ⟨response,cap⟩,s′.requestOrigin⟩
67: let s′.q := null

68: stop ⟨s′,cookies′, localStorage′,sessionStorage,command⟩
69: end if
70: stop ⟨scriptstate,cookies, localStorage,sessionStorage,⟨⟩⟩
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q≡ init is the initial state. It creates the CIF iframe and then transitions to receiveCIFReady.

q≡ receiveCIFReady expects a cifready postMessage from the CIF iframe with origin of

LPO. It chooses some identity, ⟨⟩, or ⊥ and sends this as a loaded postMessage to the

CIF iframe with receiver’s origin set to the origin of LPO.4 It then transitions to the state

default.

q≡ default chooses non-deterministically between (1) opening the LD subwindow and then

transitions to the same state or (2) handling one of the following postMessages:

postMessage login which has to be sent from the CIF with origin of LPO. Handling

this postMessage stores the CAP (contained in the postMessage) in the scriptstate

and then transitions to the sendCAP state.

postMessage logout which has to be sent from the CIF with origin of LPO. Handling

this postMessage has no effect and results in the same state.

postMessage ldready which can only be handled after the LD has been opened and

before a response postMessage has been received. The ldready postMessage has

to be sent from the origin of LPO. The script sends a request postMessage to the

LD and stays in the default state.

postMessage response which can only be handled after the LD has been opened and

before another response postMessage has been received. The ldready postMes-

sage has to be sent from the origin of LPO. Handling this postMessage stores the

CAP (contained in the postMessage) in the scriptstate, closes the LD, and then tran-

sitions to the dlgClosed state.

q≡ dlgClosed sends a loggedInUser postMessage to the CIF and transitions to the state

loggedInUser.

q≡ loggedInUser sends a dlgCmplt postMessage to the CIF and transitions to the state

sendCAP.

q≡ sendCAP sends the CAP to RP as a POST XHR and then takes receiveServiceToken as

the next state.

q≡ receiveServiceToken receives ⟨n, i⟩ from RP, but does not do anything with it. The

script then transitions to the state default.
4From the point of view of the real scripts running at RP either some id is considered to be logged in (e.g. from

some former “session”), or that no one is considered to be logged in (⟨⟩), or that script_RP_index does not know
if it should consider someone to be logged in (⊥). This is overapproximated here by allowing script_RP_index to
choose non-deterministically between these cases.
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We formally specify the relation script_RP_index⊆ TN ×TN of the RP-Doc’s scripting pro-

cess in Algorithm E.5.

In Lines 6–10 and 32–35 the script asks the browser to create iframes. To obtain the window

reference for these iframes, the script first determines the current number of subwindows and

stores it (incremented by 1) in the scriptstate (CIFindex and LDindex, respectively). When

the script is invoked the next time, the iframe the script asked to be created will have been

added to the sequence of subwindows by the browser directly following the previously existing

subwindows. The script can therefore access the iframe by the indexes CIFindex and LDindex,

respectively.

E.2.9. Important Events

As described in Section 3.2, we define events that (if they occur in a certain processing step)

specify important actions of our SSO protocol.

Definition 93 (Refinement of Definition 5 for BrowserID in Secondary Mode: Start of an
SSO Flow). Let BIDs be an BrowserID secondary mode Web system. Let ρ be a run of BIDs .

Let Q ∈ ρ be a processing step, b a browser, and r an RP. We write started(Q,b,r) iff in

Q, the browser b is triggered and selects to run the script of a document and this script is

script_rp_index and the document is stored in b under a secure origin5 of r and — when

executing the script — in Line 27 of Algorithm E.5 the value openLD is (non-deterministically)

chosen. ⋄

Definition 94 (Refinement of Definition 6 for BrowserID in Secondary Mode: Selection of
an IdP). Let BIDs be an BrowserID secondary mode Web system. Let ρ be a run of BIDs . Let

Q ∈ ρ be a processing step, b a browser, r an RP, and i an IdP. We write selectedIdP(Q,b, i) iff

started(Q,b,r). Note that i is always LPO. ⋄

Definition 95 (Refinement of Definition 7 for BrowserID in Secondary Mode: Selection
of an Identity). Let BIDs be an BrowserID secondary mode Web system. Let ρ be a run

of BIDs . Let Q ∈ ρ be a processing step, b a browser, i an IdP, and id an identity. We

write selectedID(Q,b, i, id) iff in Q, the browser b is triggered and selects to run the script

script_LPO_ld in some document and — in that script — in Lines 51ff. of Algorithm E.4, id

is selected from the browser’s identities. ⋄
5Note that we assume a secure origin of RP here as — similar to reality — we cannot have any integrity of scripts

and their states under an insecure origin.
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Algorithm E.5: Relation of script_RP_index.

Input: ⟨tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secrets⟩
1: let s′ := scriptstate
2: let cookies′ := cookies
3: let localStorage′ := localStorage
4: switch s′.q do
5: case init
6: let command := ⟨IFRAME,URLLPO

/cif,GETWINDOW(tree,docnonce)⟩
7: let s′.q := receiveCIFReady

8: let subwindows := SUBWINDOWS(tree,docnonce)
9: let s′.CIFindex := |subwindows|+1 → Index of the next subwindow to be created.

10: stop ⟨s′,cookies′, localStorage′,sessionStorage,command⟩
11: case receiveCIFReady
12: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
13: if π1(input)≡ POSTMESSAGE then
14: let senderWindow := π2(input)
15: let senderOrigin := π3(input)
16: let m := π4(input)
17: let subwindows := SUBWINDOWS(tree,docnonce)
18: if (m≡ ⟨cifready,⟨⟩⟩)

↪→ ∧(senderOrigin≡ originLPO)
↪→ ∧(senderWindow≡ πs′.CIFindex(subwindows).nonce) then

19: let id← {⊥,⟨⟩}∪ ID
20: let command := ⟨POSTMESSAGE, πs′.CIFindex(subwindows),

↪→ ⟨loaded, id⟩, originLPO⟩
21: let s′.q := default

22: stop ⟨s′,cookies′, localStorage′,sessionStorage,command⟩
23: end if
24: end if
25: case default
26: if s′.dialogRunning≡⊥ then
27: let choice← {openLD,handlePM}
28: else
29: let choice := handlePM

30: end if
31: if choice≡ openLD then
32: let s′.dialogRunning := ⊤
33: let command := ⟨HREF,URLLPO

/ld ,_BLANK⟩
34: let s′.q := default

35: stop ⟨s′,cookies′, localStorage′,sessionStorage,command⟩
This algorithm is continued on the next page.
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36: else
37: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
38: if π1(input)≡ POSTMESSAGE then
39: let senderWindow := π2(input)
40: let senderOrigin := π3(input)
41: let m := π4(input)
42: let subwindows := SUBWINDOWS(tree,docnonce)
43: if senderOrigin≡ originLPO then
44: if senderWindow≡ πs′.CIFindex(subwindows).nonce then
45: if π1(m)≡ login then
46: let s′.cap := π2(m)
47: let s′.q := sendCAP

48: stop ⟨s′,cookies′, localStorage′,sessionStorage,⟨⟩⟩
49: else if π1(m)≡ logout then
50: let s′.q := default

51: stop ⟨s′,cookies′, localStorage′,sessionStorage,⟨⟩⟩
52: end if
53: else if s′.dialogRunning≡⊤ then
54: if π1(m)≡ ldready then
55: let command := ⟨POSTMESSAGE,

↪→ AUXWINDOW(tree,docnonce), ⟨request,⟨⟩⟩, originLPO⟩
56: let s′.q := default

57: stop ⟨s′,cookies′, localStorage′,sessionStorage,command⟩
58: else if π1(m)≡ response then
59: let s′.dialogRunning := ⊥
60: let s′.cap := π2(m)
61: let command := ⟨CLOSE,AUXWINDOW(tree,docnonce)⟩
62: let s′.q := dlgClosed

63: stop ⟨s′,cookies′, localStorage′,sessionStorage,command⟩
64: end if
65: end if
66: end if
67: end if
68: end if
69: case dlgClosed
70: let subwindows := SUBWINDOWS(tree,docnonce)
71: let id := π1(extractmsg(π1(s′.cap))) → Extract id from CAP.
72: let command := ⟨POSTMESSAGE, πs′.CIFindex(subwindows).nonce,

↪→ ⟨loggedInUser, id⟩, originLPO⟩
73: let s′.q := loggedInUser

74: stop ⟨s′,cookies′, localStorage′,sessionStorage,command⟩
75: case loggedInUser
76: let subwindows := SUBWINDOWS(tree,docnonce)
77: let command :=

↪→ ⟨POSTMESSAGE,πs′.CIFindex(subwindows).nonce,⟨dlgCmplt,⟨⟩⟩,originLPO⟩
78: let s′.q := sendCAP

79: stop ⟨s′,cookies′, localStorage′,sessionStorage,command⟩
This algorithm is continued on the next page.
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80: case sendCAP
81: let s′.refXHRcap := λ1
82: let host, protocol such that

↪→ ⟨host, protocol⟩ ≡ GETORIGIN(tree,docnonce)
↪→ if possible; otherwise stop
↪→ ⟨scriptstate, cookies, localStorage, sessionStorage, command⟩

83: let command := ⟨XMLHTTPREQUEST, ⟨URL,protocol,host,/,⟨⟩⟩, POST, s′.cap,
↪→ s′.refXHRcap⟩ → Relay received CAP to RP.

84: let s′.q := receiveServiceToken

85: stop ⟨s′,cookies′, localStorage′,sessionStorage,command⟩
86: case receiveServiceToken
87: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
88: if (π1(input)≡ XMLHTTPREQUEST)∧ (π3(input)≡ s′.refXHRcap) then
89: let s′.q := default

90: stop ⟨s′,cookies′, localStorage′,sessionStorage,⟨⟩⟩
91: end if
92: stop ⟨scriptstate,cookies, localStorage,sessionStorage,⟨⟩⟩

Definition 96 (Refinement of Definition 8 for BrowserID in Secondary Mode: User is
Logged in at RP). Let BIDs be an BrowserID secondary mode Web system. Let ρ be a run

of BIDs . Let Q ∈ ρ be a processing step, b a browser, r an RP, id an identity, and n some

term. We write loggedIn(Q,b,r, id,n) iff in Q, b is triggered, selects a document containing the

script script_rp_index under a secure origin of r and — in that script — in Lines 88ff. of

Algorithm E.5 a response to an XHR is processed that contains n in its body, while in the state

of r (before and after Q — note that the state of r cannot be altered during Q), for the subterm

serviceTokens, we have serviceTokens[n]≡ id. ⋄

E.3. Proof of Theorem 3 (Security w.r.t. Authentication)

In order to prove Theorem 3, we have to prove that the BrowserID secondary mode web system

satisfies security w.r.t. authentication (Definition 12).

We assume that the authentication property is not satisfied and prove that this leads to a

contradiction. That is, we make the following assumption (*): There is a run ρ = s0,s1, . . . of

BIDs , a state s j = (S j,E j) in ρ , an r ∈ RP, an RP service token of the form ⟨n, i⟩ recorded in r

in the state S j(r) such that ⟨n, i⟩ ∈ dNattacker(S j(attacker)) and the browser owning i is not fully

corrupted in S j.

Without loss of generality, we may assume that ρ also satisfies the following:

(**) Whenever a browser becomes corrupted (i.e., either FULLCORRUPT or CLOSECORRUPT) in

a processing step leading to some state sl in ρ , this browser is triggered immediately afterwards

again (in the processing step leading to sl+1) and sends the full state of the web browser to the
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attacker process attacker, which then receives this knowledge in state sl+2. Afterwards, this

browser is not triggered anymore.

(***) For every term enca(t,k′) for some t ∈ TN , k′ ∈N that is a subterm of the output of a

transition of Ratt but not of the input, i.e., Ratt has created enca(t,k′) by itself, Ratt has sent an

HTTP message containing t (unencrypted) to some d ∈ dom(attacker) before.

If there is a run that satisfies (*), it is easy to turn this run into a run that satisfies both (*) and

(**). This is because an attacker who obtains the state of the browser can simulate the browser

himself. Moreover, it is easy to turn a run that satisfies (*) and (**) but not (***) into a run that

satisfies all three properties by adding the necessary requests from the script Ratt.

Given (*), by definition of RPs, for ⟨n, i⟩ there exists a corresponding HTTPS request received

by r, which we call reqcap, and a corresponding response respcap. The request must contain a

valid CAP c and must have been sent by some atomic process p to r. The response must contain

⟨n, i⟩ and it must be encrypted by some symmetric encryption key k sent in reqcap.

In particular, it follows that the request and the response must be of the following form, where

dr = dom(r) is the domain of r, ncap,k ∈N are some nonces, c is some valid CAP, and sts is the

Strict-Transport-Security header:

reqcap = enca(⟨⟨HTTPReq,ncap,POST,dr,/,⟨⟩, [Origin : ⟨dr,S⟩],c⟩,k⟩,pub(tlskey(dr))) ,

(E.2)

respcap = encs(⟨HTTPResp,ncap,200,⟨sts⟩,⟨n, i⟩⟩,k) . (E.3)

Moreover, there must exist a processing step of the following form where m≤ j, ar ∈ addr(r),

and x is some address:

sm−1
(ar:x:reqcap)→r
−−−−−−−−−−→
r→{(x:ar:respcap)}

sm .

From the assumption and the definition of RPs it follows that c is issued for dr (otherwise, RP

would not accept the CAP, see Line 13 of Algorithm E.2). The nonce n in ⟨n, i⟩ is chosen freshly

and from RPs nonces Nr. It is not used again by r afterwards.

We assume that s j is the first state in ρ where ⟨n, i⟩ ∈ dNattacker(S j(attacker)) (i.e., there is no

j′ < j, ⟨n, i⟩ ∈ dNattacker(S j′(attacker))).

We note that, by definition of attacker processes, the attacker never discards any information,

i.e., t ∈ dNattacker(Su(attacker)) implies t ∈ dNattacker(Su+1(attacker)) for every term t and u ∈ N.

To conclude the proof, we now first prove several lemmas.

Lemma 8. In a run ρ of BIDs , if LPO sends a browserid_state cookie in a Set-Cookie

header in an HTTPS response to an HTTPS request emitted by a browser b, there is no state in
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the run where the browser is honest and the attacker can derive the cookie value from its own

knowledge.

Proof. We can see that the browser is honest when sending the request (otherwise, it would not

do so, (**)). With Lemma 1 and as in the proof for Lemma 2 we see that the sender of the request

to LPO (say, req) is the same as the receiver, namely browser b. As the message is transferred

over HTTPS, the attacker cannot read the cookie from the response.

The browserid_state cookie is sent to b as an httpOnly secure session cookie (compare

Line 38 in Algorithm E.1). When the response arrives at b, the cookie is transferred to the

cookie store (Line 4 of Algorithm A.8) which is indexed by domains. The cookie information

can be accessed by scripts (Line 3 of Algorithm A.7) and can be added to requests (Line 5 of

Algorithm A.4). As the browserid_state cookie is an httpOnly cookie we can rule out the first

case. In the second case, the cookie can only be added to requests to the origin ⟨dom(LPO),S⟩,
as the cookie is marked as secure (as defined in Line 5 in Algorithm A.4). These properties hold

as long as the browser is not corrupted.

As a last step, we have to rule out that LPO or the browser use a cookie value that is known to

the attacker via some other way. We will see that any cookie value was initially chosen by LPO.

First, we can see that the cookie value was either in the browser’s knowledge before it received

the browserid_state header or that it was chosen freshly by LPO. The only line where LPO

sets the cookie is in Line 38 of Algorithm E.1. From the lines before, it is easy to see that the

session value that finally becomes the cookie value was either provided as a cookie in the request

or is chosen from the set of unused nonces. In Lemma 10 we see that any value that is contained

in a request sent by an honest browser to LPO was initially chosen by LPO.

We see that the attacker cannot know the cookie value as long as the browser stays honest,

which proves the lemma.

Lemma 9. In every state s = (S,E) of run ρ of BIDs , for every xsrfToken of an LPO session

and its session ID sessionid, if xsrfToken ∈ dNattacker(S(attacker)), then we have that sessionid ∈
dNattacker(S(attacker)), i.e., an attacker can only know an xsrfToken value for an LPO session if

he knows the session ID browserid_state of that session.

Proof. The xsrfToken is chosen by LPO (Line 34 in Algorithm E.1). If LPO receives a POST

request with the path /ctx that contains a browserid_state cookie containing a sessionid

that is in its list of valid sessions, it returns xsrfToken as part of the response. If LPO receives a

request to the same URL without a valid session ID, it creates a new session and returns sessionid

as well as a freshly chosen xsrfToken in the response. For other requests (to other URLs, etc.)

xsrfToken is not a part of the response at all.
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The xsrfToken is only transferred over HTTPS: LPO only reacts to HTTPS requests (Line 20

of Algorithm E.1) and the request that is sent from the browser to LPO to retrieve xsrfToken is

explicitly sent over HTTPS (Line 44 of Algorithm E.3 or Line 18 of Algorithm E.4). Thus, if

an honest browser sends a request to LPO, the attacker cannot read the response if the browser

stays honest (Lemma 1). If the browser becomes corrupted later, the attacker learns the sessionid

and the xsrfToken at the same time. The LPO script that has access to xsrfToken in the browser’s

state does not sent out this part of the state to origins other than LPO’s (see Algorithm E.3

and Algorithm E.4) and the xsrfToken is stored only temporarily in the scriptstate (as part of

the context, see Line 50 in Algorithm E.3 and Line 26 in Algorithm E.4), such that it is never

released when the browser is honest or closecorrupted.

We can see that the attacker knows sessionid whenever he knows xsrfToken, which proves the

lemma.

Lemma 10. In a run ρ of BIDs , for any HTTPS request req that is emitted by an honest browser

b and that is encrypted with the public key of LPO, if there is a Cookie header in req containing

a cookie with the name browserid_state, then there is an HTTPS response that was emitted

by LPO previously in the run and that was accepted by b. In this response, a Set-Cookie header

was sent with the name browserid_state and the same value as the browserid_state cookie

in req.

Proof. The cookie that is sent in req was taken from the cookie list that is stored in the browser

state (see Algorithm A.4). Cookies are stored per-domain, i.e., dom(LPO) in this case. Adding

a cookie to this list can be achieved by adding a Set-Cookie to a response on a request to

dom(LPO) or by setting the cookie from a script in a document with the origin ⟨dom(LPO),x⟩
where x∈{P,S}. The domain dom(LPO) is part of the sts list in honest browsers (see Section 2.5)

thus the browser b never contacts the insecure origin ⟨dom(LPO),P⟩. Thus, responses and scripts

can only be received from the origin ⟨dom(LPO),S⟩ (see Lemma 1 Property (4) and Lemma 2).

The LPO scripts script_LPO_cif and script_LPO_ld do not set cookies, thus the only possible

way that a cookie can be stored in the browser’s list of cookies is when LPO adds a Set-Cookie

header to a HTTPS response. Obviously, this header has to have the same value as the cookie

that is finally returned to the server. This proves the lemma.

Lemma 11. In a run ρ of BIDs , if an honest browser b emits a request reqauth that is received by

LPO and leads to the authentication6 of an LPO session identified by the sessionid sessionid, then

the identity i, for which the session was authenticated, is owned by b, i.e., i ∈ ownerOfID−1(b).

6See Appendix E.2.6 for an explanation on the authentication at LPO.
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Proof. For authentication, a request of the following form has to be received by LPO:

reqauth = enca(⟨⟨HTTPReq,n2,POST,dom(LPO),/auth,⟨⟩,

⟨[Cookie : [browserid_state : sessionid], . . . ]⟩,

⟨s,xsrfToken⟩,⟩,k′′⟩,pub(tlskey(dom(LPO)))) (E.4)

The request reqauth contains the secret s and the xsrfToken that, by definition of LPO, is stored

at LPO along with sessionid. In an honest browser (which b is), this request can only be caused

by a script (or through a redirection, which again would require a script to initiate the request in

the first place). There are three scripts that can issue such a request: the attacker script and both

LPO scripts. In the latter case, the LPO scripts will provide the browser secret as s and hence,

authenticate for an identity owned by the browser. In the former case, the attacker script needs

to know xsrfToken. Hence, by Lemma 9 he needs to know sessionid. However, the sessionid

value does not leak from the honest browser b (Lemma 8) and cannot be set by the attacker

(Lemma 10). Hence, the attacker cannot know sessionid, and hence, by Lemma 9 he cannot

know xsrfToken, and hence, reqauth cannot have been initiated by the attacker script.

Lemma 12. In a run ρ of BIDs if either script_LPO_cif or script_LPO_ld were loaded into

a document with HTTPS origin and are used to create a CAP c, i.e., if c is contained in a

postMessage that is sent in Line 82 of Algorithm E.3 or in Line 68 of Algorithm E.4, then the

origin for which c is issued is the origin of the script that receives this postMessage.

Proof. Looking at the case when script_LPO_cif issues the CAP in Line 80 of Algorithm E.3,

the origin for which the IA is issued in this case is determined by the element s′.parentOrigin

of the scriptstate. This element is only written to in Line 18 of Algorithm E.3. Its value is the

sender origin of the postMessage requesting the CAP. The very same value determines the only

allowed receiver origin of the postMessage that returns the CAP (Line 80). With a very similar

argument (different line numbers), we can see that the statement for script_LPO_ld holds true as

well.

Lemma 13. In a run ρ of BIDs , if a CAP c = ⟨uc, ia⟩ is sent by script_RP_index (Line 85

of Algorithm E.5) running in an honest browser b ∈ B in a document with origin ⟨dr,S⟩ as

an HTTP(S) message to an RP r ∈ RP, where dr = dom(r), uc = sig(⟨i,pub(ku)⟩,kLPO), and

ia = sig(o,k′u), then all of the following statements are true:

1. c is a valid CAP. In particular, ku = k′u.
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2. uc was created by LPO and transferred to script_RP_index in a postMessage by a script of

LPO running in b (either script_LPO_ld, postMessage sent in Line 82 of Algorithm E.4 or

script_LPO_cif , postMessage sent in Line 68 of Algorithm E.3) loaded into a document

with the origin ⟨dom(LPO),S⟩.

3. ia contains the origin o = ⟨dr,S⟩ .

4. ku is not known to any atomic DY process except for b, as long as b is not fullycorrupted.

5. uc is issued for an identity i ∈ ownerOfID−1(b) .

Proof. As we know that the message is sent from the origin ⟨dr,S⟩, we know that the script

script_RP_index was loaded over an HTTPS origin (see Lemma 3). Its script state cannot be

manipulated by scripts loaded from a different origin (see Algorithms A.2 and A.7).

The only transitions of the script script_RP_index which can send out a request to r are the ones

starting out from state scriptstate.q = sendCAP (Line 80 of Algorithm E.5). These transitions

take the CAP c from scriptstate.cap. The only transitions before which could have written

something into this place in the scriptstate are the ones where scriptstate.q= default (Line 25)

when handling a postMessage from origin LPO (we can overapproximate here by ignoring all

other side restrictions of this transition, e.g. having scriptstate.dialogRunning = ⊤). This

means that the CAP c was sent by a script with origin LPO. Since origin LPO is also an HTTPS

origin, the script must have been sent by LPO (Lemma 2).

The postMessage that was received by script_RP_index is checked to be a sequence with the

first element being login or response. Such postMessages are issued by LPO only in Line 80

of Algorithm E.3 (script_LPO_cif ) and in Line 66 of Algorithm E.4 (script_LPO_ld). In both

cases, ia is signed using the private key ku that is taken from the respective scriptstate. This

element of the scriptstate is only written to once, and with a freshly chosen nonce (Line 68 of

Algorithm E.3 and Line 54 of Algorithm E.4, respectively). In both cases, starting in the state

requestUC, an XHR to LPO is sent to have pub(ku) signed by LPO. From the response to this

request, uc is extracted. The request is always sent over HTTPS to LPO. Lemma 1, in particular

Property (4), applies. Therefore, we see that uc was actually sent by LPO.

In the definition of LPO (Line 60 of Algorithm E.1) we see that LPO only sends out freshly

created uc’s. LPO only issues valid UCs (if any). Once returned to the script script_LPO_cif or

script_LPO_ld, the UC is combined with an IA and sent to script_RP_index (which is determined

by the sender of the initial CAP request and its origin). This script sends the CAP to r. Thus, the

CAP that is sent is always valid, which proves (1). Further, the UC was always created by LPO,

proving (2).
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Property (3) follows immediately from the above observations (i.e., the script script_LPO_cif

or script_LPO_ld was loaded over HTTPS and is used to create the CAP) and Lemma 12.

To prove (4), we observe that the key ku is always chosen freshly and that it is stored only in

the scriptstate. It is not sent to any party, not even LPO. The key therefore cannot leak as long as

the browser is not fullycorrupted (if it becomes closecorrupted, the key is removed together with

the document’s state). This proves (4).

Property (5) follows immediately with the observations in the proof of Property (2) and

Lemma 11.

Lemma 14. If in a run ρ of BIDs an IA ia for an origin ⟨dr,S⟩ where dr ∈ dom(RP) is signed

in the scripts script_LPO_ld or script_LPO_cif in an honest browser b, and these scripts were

loaded over HTTPS from LPO, then at most b and the RP r = dom−1(dr) know ia.

Proof. The scripts script_LPO_ld and script_LPO_cif send the ia to the parent or opener win-

dow (respectively) using a postMessage. For this postMessage, the only allowed receiver origin

is the same as the origin for which ia was issued, so in our case ⟨dr,S⟩ (see proof for Lemma 13

Property (3)). The script script_RP_index, which thus must be the receiver, sends the complete

CAP (containing ia) to RP using HTTPS. The RP discards the CAP after checking it. The CAP

and especially ia therefore cannot leak.

Lemma 15. In a run ρ of BIDs , if LPO creates a message containing a UC uc for an identity i of

a browser b, then there is no state in the run ρ where b is honest and attacker knows the private

key ku corresponding to the public key pub(ku) that was signed in uc.

Proof. First, it is easy to see that the Lines 60–63 in Algorithm E.1 have to be used in the

transition to create uc: At no other point in the definition of LPO uc is created or emitted. From

Line 54 and following it is easy to see that a request of the following form has to be sent to LPO

in order to create uc:

requc = enca(⟨⟨HTTPReq,n1,POST,dom(LPO),/certreq,⟨⟩,

⟨[Cookie : [browserid_state : sessionid], . . . ]⟩,

⟨i,pub(ku),xsrfToken⟩⟩,k′′⟩, pub(tlskey(dom(LPO)))) (E.5)

We can see that this message is encrypted with pub(tlskey(dom(LPO))) and thus the attacker

cannot decrypt it. There are now two cases:

• The attacker knows k′′: In this case, we can see with Lemma 1 that no honest browser

has created requc. As RP, LPO, and dishonest browsers do not emit requests in general,
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only the attacker can have created this request. For this, he needs to know xsrfToken and

sessionid.

The attacker could use a sessionid value that was first issued to a browser that was honest

when requc was created or to some other party (a dishonest browser or himself).

The first case can be ruled out, as the attacker cannot know the sessionid value (Lemma 8).

In the second case, he cannot create a message that leads to the authentication of the

session himself (which would require knowledge of the secret for identity i) and he cannot

force the owner browser of i to authenticate the session (Lemma 11).

• The attacker does not know k′′: In this case, the request was not created by the attacker.

As above, RP, LPO and dishonest browsers do not create requests. Thus, this request

was created by an honest browser (“honest” in the state when requc was created) and an

honest script in that browser (with a dishonest script, the attacker would need to know

xsrfToken, which he does not according to Lemma 9 and Lemma 8). If an honest script,

i.e., script_LPO_cif or script_LPO_ld, is used, the attacker does not learn ku (Lemma 13

Property (4)).

As we can see, in both cases the attacker does not learn ku, which proves the statement.

Lemma 16. If in a run ρ of BIDs a browser b created the request reqcap defined in (E.2), then (i)

reqcap was sent from the script script_RP_index that was loaded over an HTTPS origin from r

while the browser was honest or (ii) reqcap was encrypted by the attacker script while the browser

was honest and the attacker knows the CAP c and the symmetric key k.

Proof. We can see that if the browser is dishonest, it did encrypt reqcap while it was still honest:

With assumption (**) we can see that dishonest browsers only send their state to the attacker.

Thus, the encrypted message must have been in the state of the browser before corruption. So

for both (i) and (ii) we know that the browser was honest.

In an honest browser, the browser itself can create encrypted requests (when an HTTPS request

is sent) and scripts can create encrypted requests (by assembling and encrypting the message in

the script relation).

In the former case (HTTPS request), which corresponds to statement (i) of the lemma, we see

by Lemma 3 that the script that initiated reqcap was actually loaded from r using HTTPS (r is the

owner of dr), and that it was not altered by any other party.

In the latter case (script encrypted request), which corresponds to statement (ii) in the lemma,

we see that the honest scripts do not encrypt messages and thus, the attacker script is the only

248



E.3. Proof of Theorem 3 (Security w.r.t. Authentication)

script that can do so. To do so, the script needs to know every component of reqcap before the

encryption, in particular k and c. These have been sent to the attacker before the encryption

according to (***). Thus, the attacker must know k and c before.

Let m be the message that was passed to attacker leading to s j for some addresses x and y

(with s j as defined in (*)). That is:

s j−1
(x:y:m)→attacker−−−−−−−−−−→ s j .

By our assumption, we know that

⟨n, i⟩ ̸∈ dNattacker(S j−1(attacker))

and that

⟨n, i⟩ ∈ dNattacker(S j−1(attacker),m) .

We now distinguish two cases: (i) The attacker does not know k in s j (i.e., cannot derive k in

state s j). (ii) The attacker can derive k in s j. In both cases we lead (*) to a contradiction.

The attacker does not know k in s j.
We now assume that k ̸∈ dNattacker(S j(attacker)), i.e., the attacker does not know k in s j. In

particular, we have that k ̸∈ dNattacker(S j−1(attacker)).

We distinguish between the kind of atomic processes that potentially have created reqcap. In

all cases, we arrive at a contradiction.

• The browser that owns i created reqcap: By Lemma 16 it follows that the browser was

honest when encrypting reqcap, and reqcap was initiated by script_RP_index, which was

delivered over HTTPS from r. Note that we can rule out case (ii) in the lemma, as the

attacker does not know k.

This script initiated reqcap and it is easy to see that this script (or no script at all) receives

the corresponding response: From the browser definition, we see that XHR responses

are delivered to the document with the same nonce as the document that initiated the

request (Line 56 in Algorithm A.8). Other documents have no access to the data from this

document, except for same-origin documents (this is ensured by the Clean function that

is used in Line 2 of Algorithm A.7 and by the GETWINDOW function (Algorithm A.2)

that determines the windows which can be manipulated by other scripts). However, other

same-origin documents can only contain the script script_RP_index (this is the only script

that RP sends, and with Lemma 2 we see that other same-origin documents cannot have
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been sent by the attacker). Other manipulations to the window of the document (e.g.,

navigating the window away) change the active document in the window (Algorithm A.8)

and could only prevent the script from receiving the response.

From Algorithm E.5 it is easy to see that after ⟨n, i⟩ is delivered back to script_RP_index

after respcap was received, nothing happens with ⟨n, i⟩: If the browser is uncorrupted, only

same-origin scripts have access to it (as shown above), but there are no scripts which use

the information. The information can therefore not leak to the attacker. If the browser is

closecorrupted before receiving respcap, the attacker cannot derive ⟨n, i⟩ from its informa-

tion, as the decryption key is lost. If the browser is closecorrupted after receiving respcap,

by definition of close-corruption, ⟨n, i⟩ is removed from the browser’s state before the

browser can be controlled by the adversary. By the assumption in (*), the browser cannot

be fullycorrupted at any point in the run. Hence, in contradiction to (*), the attacker cannot

obtain ⟨n, i⟩.

• A browser that does not own i created reqcap: In this case, it still holds that the browser

was honest when encrypting reqcap and the script script_RP_index created the request and

was loaded over HTTPS (Lemma 16). With Lemma 3 and Lemma 13, in particular Proper-

ties (2) and (5), we see that the RP script only initiates HTTPS requests containing CAPs

that have been created by LPO and for an identity of the browser. This is in contradiction

to the fact that i is not owned by the browser but reqcap contains a CAP for i. Hence, reqcap

cannot have been created by this browser.

• RPs or LPO created reqcap: As per their definitions (Algorithms E.1 and E.2), they do not

initiate or create HTTP(S) requests.

• The attacker process created reqcap: It is clear that any atomic process that created reqcap

needs to know k. It follows, by our assumption that the attacker cannot derive k, that the

attacker has not created reqcap.

The attacker knows k in s j.
As above, we distinguish between the kind of atomic processes that potentially have created

the request reqcap. We will see that the attacker needs to know the CAP c to learn ⟨n, i⟩.

• The browser that owns i created reqcap: By our assumption (*), this browser cannot be

fully corrupted in the run. By Lemma 16, it follows in the case (i) that script_RP_index

sent the request and that k cannot be known by the attacker (with Lemma 1, Property (2))

and hence, the browser cannot have created reqcap. In the case (ii) it follows that the

attacker needs to know the CAP c in order to create the request.
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• A browser not owning i created reqcap: By Lemma 16, we see that the browser was honest

while encrypting reqcap and (i) that script_RP_index sent the request. With Lemma 13

Property (5) we see that the browser cannot have created reqcap because it only creates

requests for its own identities. In the case of (ii) we see that, again, the attacker has to

know the cap c in order to create the request.

• RPs or LPO created reqcap: As per their definitions (Algorithms E.1 and E.2), they do not

emit HTTP requests.

• The attacker process created reqcap: It is clear that any atomic process that created reqcap

needs to know c.

As we can see, the attacker needs to know c = ⟨uc, ia⟩ before he is able to create reqcap. With

Lemma 15 we know that the attacker cannot request uc itself with the identity i, and thus, he

cannot know the key ku that was signed in uc. Neither can any browser other than b know ku,

otherwise the attacker could corrupt this browser and learn ku. The key ku is needed to create

ia, therefore only in b the identity assertion ia can be created, and it can only be created by

script_LPO_cif or script_LPO_ld (LPO checks the origin of the request for uc, and only the

script that sends uc knows ku). With Lemma 14 we see that the attacker cannot learn ia.

Hence we can see that the attacker cannot know the CAP c that he needs in order to to create

reqcap. In particular, he cannot know the key k that was used to encrypt the response respcap, in

contradiction to the assumption that the attacker knows k. ■

E.4. Proof of Theorem 4 (Security w.r.t. Session Integrity)

Similar to the primary mode, in order to prove Theorem 4, we have to proof that the BrowserID

secondary mode web system satisfies security w.r.t. indirect session integrity (Definition 13).

We start from a processing step Qlogin in which the browser is actually logged in and trace

back on the causality chain (the session), i.e., for every processing step in the session, we analyze

all other possible processing steps that can possibly lead to the later processing steps.

To start, we first need to assume that we have an arbitrary processing step in which the browser

gets logged in: Let BIDs a BrowserID secondary mode web system, ρ an arbitrary run of BIDs ,

Qlogin an arbitrary processing step in ρ , b an arbitrary browser of BIDs that is honest in Qlogin, r

an arbitrary RP of BIDs that is honest in Qlogin, and id an arbitrary identity.

To show the main implication of the session integrity property, we now assume that there

exists some n such that loggedIn(Qlogin,b,r, id,n). This means that b is currently processing a

response (say, respCAP) to an XHR in a document under a secure origin of r that contains the
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script script_rp_index. We call the document RP-Doc. Further, b has received an HTTP(S)

response before that contains n in its body. This response must have a corresponding HTTP(S)

request (say, reqCAP) that bears the XHR reference that is stored in the subterm refXHRcap in

the scriptstate. This reference is only ever set in Lines 80ff. of Algorithm E.5. Hence, this

request/response pair must use HTTPS.

We know that reqCAP is a POST request that carries some value cap in its body. The RP r

only processes such a request in Lines 8ff. of Algorithm E.2. There, r checks whether cap is a

valid CAP (the UC must be signed by LPO and the IA must be signed by the key certified in the

UC) and extracts the identity id′ for which the CAP was created. If the CAP is valid, an entry in

the subterm serviceTokens is created such that serviceTokens[n′]≡ id′. The value of n′ is output

inside an HTTPS response, which is respCAP. Hence, we have that n ≡ n′ and id ≡ id′ (as the

subterm serviceTokens in the state of r is never changed, except by adding entries indexed by a

fresh nonce).

Recall that the script script_rp_index is implemented as a state machine with the state

stored in the subterm q of its state. The request reqCAP above is only ever created by this script in

Lines 80ff. (of Algorithm E.5), which are only executed if the state machine is in state sendCAP.

In these lines, the CAP is retrieved from the subterm cap in the scriptstate.

We now continue by analysing in which cases RP-Doc gets into the state sendCAP and how

cap in the scriptstate is set. To reach the state sendCAP, there are only two possibilities:

Lines 75ff. In this case, RP-Doc must have been in state loggedInUser, which is only ever

reached if Lines 69ff. have been processed in an earlier processing step. This state, in turn,

can only be reached if the Lines 58ff. have been processed in an earlier processing step

(say Qrpcap). In these lines, also cap is stored in the state and there cannot be a different

processing step after this processing step (up to Qlogin in which this subterm is changed. In

Qrpcap, the value for cap is taken from a postMessage of the form ⟨response,cap⟩. This

postMessage must have been sent by a document of LPO’s origin.

LPO only ever delivers the scripts script_LPO_cif and script_LPO_ld out of which

only script_LPO_ld ever creates such a postMessage. This postMessage is created in

Line 66 of Algorithm E.4. We call the document in which this step is performed LD-Doc

and the processing step in which this postMessage is created Qsendresponse. Recall that the

script script_LPO_ld is also implemented as a state machine with the state stored in the

subterm q of the scriptstate. In LD-Doc, the postMessage above is only created if LD-Doc

is in the state receiveUC and a response to an XHR is processed that is referenced by the

value contained in the subterm refXHRcert of the LD-Doc’s state. The value of refXHRcert

is only set in Lines 51ff., where an XHR is is created. This part of the script is also the only
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place in which LD-Doc is set to the state receiveUC. We call the processing step in which

this part of the script is processed QselectedID. Also note that refXHRcert is set to a fresh

nonce. Hence, there can only be one XHR of which the response is processed in the state

receiveUC. We call the request and response of this XHR (from b’s perspective) reqUC

and respUC, respectively. This XHR is sent as a POST request to the (secure) origin of LPO

and the path certreq. The body is of the form ⟨id′′,pub(s′.key),s′.context.xsrfToken⟩.
The value for id′′ is chosen non-deterministically from ids. Hence, we have for the process-

ing step QselectedID that selectedID(QselectedID,b,LPO, id′′) and that id′′ is in fact an identity

that is owned by b.

We know that reqUC is processed at LPO in Lines 54ff. of Algorithm E.1 and that LPO

creates the corresponding response respUC. At this place at LPO, the value for the UC uc

is created for the identity id′′ and the body of the response is set to uc. Hence, at LD-Doc,

in processing step Qsendresponse, in Line 79 of Algorithm E.3, the cap is created using this

exact value of uc. As cap is passed on to r (see tracing above), and r uses id′′ to determine

the identity for the service session, we have that id ≡ id′′.

We now further trace back our run ρ to the user’s selection to actually start the login.

We have that the subterm dialogRunning of RP-Doc’s state must be ⊤ in Qrpcap. There

is only one place in the script script_rp_index at which this subterm is set to ⊤. (In

its initial state, this subterm is always ⊥.) This change is performed in Line 32 of Al-

gorithm E.5. We call the processing step in which this selection is done Qstart. We have

that in Qstart, the script of RP-Doc must have chosen the value openLD in Line 27. Hence,

we have that started(Qstart,b,r) and as LPO is the only IdP in the secondary mode, we

have that selectedIdP(Qstart,b,LPO) and there cannot be any other Q′, i′ ̸= LPO with

selectedIdP(Q′,b, i′).

Therefore, we have that ∃o ∈ SSOSessions(ρ,b,r) with Qstart ∈ o and QselectedID ∈ o.

Lines 46ff. In this case, RP-Doc must have been in the state default and must have chosen

to process a postMessage that was sent from a (secure) origin of LPO and from a window

identified by the subterm CIFindex of the scriptstate. This subterm is initially ⊥ and

only ever set in Line 6ff., where it is set to the identifier of a freshly created iframe. We

know that the postMessage is of the form ⟨login,cap′⟩. As above, there is only one

script delivered by LPO that creates such a postMessage: script_LPO_cif. We call this

document CIF-Doc here. In this script, such a postMessage is only created in Lines 80ff.

of Algorithm E.3. Analogously to above, the script (again modelled as a state machine,

similar to script_LPO_ld) must be in the state receiveUC and is processing a response

to an XHR that is identified by the reference stored in the subterm refXHRcert of the
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scriptstate. This reference is only set in Lines 66ff., which is also the only place where

the state can transition to receiveUC. Analogously to above, a UC is requested at LPO

for some identity id′′′. The value for id′′′ is taken from the localStorage under the index

of this document’s parent origin. The parent of CIF-Doc, however, is RP-Doc in this

case. Therefore, the value of id′′′ is stored under some secure origin of r. This part of the

localStorage under the (secure) origin of LPO is only ever set in Line 53 of Algorithm E.4.

We now know, that script_LPO_ld must have run with the same secure origin of r (stored

in the subterm requestOrigin in its state). This subterm is only ever set in Line 16 of

Algorithm E.4 (note that the scriptstate does not return to the state start, hence, this line

is only executed at most once for one instance of the document). There, it is set to the origin

of the sender of a postMessage of the form ⟨request,⟨⟩⟩. Hence, a document containing

script_rp_index under the secure origin of r as above must have sent this postMessage.

This is only done in Lines 16ff. of Algorithm E.5. This line can only be reached if the

subterm dialogRunning of this scriptstate is ⊤. With the same reasoning as above (i.e.,

the user must have completed the LD), we have that there exists a processing step Q′login

with started(Qlogin,b,r) forming an SSO session o′, there exists a Q′selectedID ∈ o′ with

selectedID(Q′selectedID,b,LPO, id′′′), fulfilling our property for indirect session integrity.

■
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F.1. Formal Model of SPRESSO

We here complete our formal model of SPRESSO outlined in Section 5.3. For our analysis

regarding our authentication and privacy properties below, we will further restrict this generic

model to suit the setting of the respective analysis.

We model SPRESSO as an SSO Web system (in the sense of Section 3.1). We call an SSO

Web system SWS = (W sp,S ,script,E0) an SPRESSO Web system if it is of the form described

in what follows.

Recall that the system W sp = Hon∪̇Web∪̇Net consists of Web attacker processes (in Web),

network attacker processes (in Net), a finite set FWD (= Other) of forwarders, a finite set

B of Web browsers, a finite set RP of Web servers for the relying parties, a finite set IDP

of Web servers for the identity providers, and a finite set DNS of DNS servers, with Hon :=

B∪̇RP∪̇IDP∪̇DNS∪̇FWD. More details on the processes in W sp are provided below. Figure F.1

shows the set of scripts S and their respective string representations that are defined by the

mapping script. The set E0 contains only the trigger events as specified in Appendix A.8.

We will now define the DY processes in SWS and their addresses, domain names, and secrets

in more detail. The scripts are defined in detail in Appendix F.1.10.

F.1.1. Addresses and Domain Names

The set IPs contains for every Web attacker in Web, every network attacker in Net, every relying

party in RP, every identity provider in IDP, every forwarder in FWD, every DNS server in DNS,

and every browser in B a finite set of addresses each. By addr we denote the corresponding

assignment from a process to its address. The set Doms contains a finite set of domains for every

forwarder FWD, every relying party in RP, every identity provider in IDP, every Web attacker

in Web, and every network attacker in Net. Browsers (in B) and DNS servers (in DNS) do not

have a domain.

By addr and dom we denote the assignments from atomic processes to sets of IPs and Doms,

respectively.
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s ∈ S script(s)

Ratt att_script
script_rp script_rp
script_idp script_idp
script_fwd script_fwd

Table F.1.: List of scripts in S and their respective string representations for SPRESSO.

F.1.2. Keys and Secrets

The set KTLS contains the keys that will be used for TLS encryption. Let tlskey : Doms→ KTLS

be an injective mapping that assigns a (different) private key to every domain. Atomic processes

are given the private keys for their domain in the following form: For an atomic DY process p

we define

tlskeysp = ⟨{⟨d, tlskey(d)⟩ | d ∈ dom(p)}⟩ .

The set Ksign contains the keys that will be used by IdPs for signing IAs. Let signkey : IdPs→
Ksign be an injective mapping that assigns a (different) private key to every identity provider.

The set Secrets is the set of passwords (secrets) the browsers share with the identity providers.

F.1.3. Corruption

RPs and IdPs can become corrupted: If they receive the message CORRUPT, they start collecting

all incoming messages in their state and (upon triggering) send out all messages that are derivable

from their state and collected input messages, just like the attacker process. We say that an RP or

an IdP is honest if the according part of their state (s.corrupt) is ⊥, and that they are corrupted

otherwise.

We are now ready to define the processes in W as well as the scripts in S in more detail.

F.1.4. Attackers

Each wa ∈ Web is a Web attacker and each na ∈ Net is modeled to be a network attacker

as specified in Appendix A.8. The initial state of each (Web or network) attacker a is sa
0 =

⟨attdoms, tlskeys,signkeys⟩, where attdoms is a sequence of all domains along with the corre-

sponding private keys owned by wa, tlskeys is a sequence of all domains and the corresponding

public keys, and signkeys is a sequence containing all verification keys for all IdPs. Web attackers

are given an IP address (disjoint from IP address of other processes) and network attackers are

allowed to listen to/spoof all available IP addresses, and hence, we define Ina = IPs as usual.
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Note that in a setting with a network attacker, all other parties use the attacker as a DNS

server. In a system for privacy analysis, however, certain processes use an honest DNS server

(see Section F.1.12 below).

F.1.5. Browsers

Each b ∈ B is a Web browser as defined in Appendix A.6, with Ib := addr(b) being its addresses.

To define the inital state, first let IDb := ownerOfID−1(b) be the set of all IDs of b, IDb,d :=

{i | ∃x : i = ⟨x,d⟩ ∈ IDb} be the set of IDs of b for a domain d, and SecretDomainsb := {d |
IDb,d ̸= /0} be the set of all domains that b owns identities for.

Then, the initial state sb
0 is defined as follows: the key mapping maps every domain to its

public (tls) key, according to the mapping tlskey; the DNS address is addr(p) with p ∈W sp; the

list of secrets contains an entry ⟨⟨d,S⟩,s⟩ for each d ∈ SecretDomainsb and s = secretOfID(i)

for some i ∈ IDb,d (s is the same for all i); ids is ⟨IDb⟩; sts is empty.

F.1.6. Identity Providers

An identity provider i ∈ IdPs is a Web server modeled as an atomic process (Ii,Zi,Ri,si
0) with

the addresses Ii := addr(i). Its initial state si
0 contains a list of its domains and (private) TLS

keys, a list of users and identites, and a private key for signing IAs. Besides this, the full state of

i further contains a list of used nonces, and information about active sessions.

Similar to IdPs in BrowserID’s primary mode, we will a term that represents the “user database”

of the IdP i. We will call this term userseti. This database defines, which secret is valid for which

identity. It is encoded as a mapping of identities to secrets. For example, if the secret secret1 is

valid for the identites id1and the secret secret2 is valid for the identity id2, the userseti looks as

follows:

userseti = [id1:secret1, id2:secret2]

We define userseti as userseti = ⟨{⟨u,secretOfID(u)⟩ |u ∈ IDi}⟩.

Definition 97. A state s ∈ Zi of an IdP i is a term of the form ⟨tlskeys, users, signkey, sessions,

corrupt⟩ where tlskeys = tlskeysi, users = userseti, signkey ∈ N (the key used by the IdP i to

sign UCs), sessions ∈
[
N ×TN

]
, corrupt ∈ TN .

An initial state si
0 of i is a state of the form ⟨tlskeysi,userseti,signkey(i),⟨⟩,⊥⟩. ⋄

The relation Ri that defines the behavior of the IdP i is defined in Algorithm F.1.
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Algorithm F.1: Relation of an IdP Ri.

Input: ⟨a, f ,m⟩,s
1: let s′ := s
2: if s′.corrupt ̸≡ ⊥∨m≡ CORRUPT then
3: let s′.corrupt := ⟨⟨a, f ,m⟩,s′.corrupt⟩
4: let m′← dV (s′)
5: let a′ ← IPs
6: stop ⟨⟨a′,a,m′⟩⟩, s′

7: end if
8: let mdec, k, k′, inDomain such that

↪→ ⟨mdec,k⟩ ≡ deca(m,k′)∧⟨inDomain,k′⟩ ∈ s.tlskeys
↪→ if possible; otherwise stop

9: let n, method, path, parameters, headers, body such that
↪→ ⟨HTTPReq,n,method, inDomain,path,parameters,headers,body⟩ ≡ mdec
↪→ if possible; otherwise stop

10: if path≡ /.well-known/spresso-info then → Serve support document.
11: let wkDoc := ⟨⟨signkey,pub(s′.signkey)⟩⟩
12: let m′ := encs(⟨HTTPResp,n,200,⟨⟩,wkDoc⟩,k)
13: stop ⟨⟨ f ,a,m′⟩⟩, s′

14: else if path≡ /.well-known/spresso-login then → Serve login dialog.
15: let sessionid := headers[Cookie][sessionid]
16: let email := s′.sessions[sessionid]
17: let m′ := encs(⟨HTTPResp,n,200,⟨⟩,⟨script_idp,⟨start,email,⟨⟩⟩⟩⟩,k)

→ Initial scriptstate of script_idp (defined below).
18: stop ⟨⟨ f ,a,m′⟩⟩, s′

19: else if path≡ /sign∧method ≡ POST then → Serve signing request.
20: let sessionid := headers[Cookie][sessionid]
21: let loggedInAs := s′.sessions[sessionid]
22: if body[email] ̸≡ loggedInAs∧body[password] ̸≡ s′.userset[body[email]] then
23: stop
24: end if
25: let ia := sig(⟨body[tag],body[email],body[FWDDomain]⟩,s′.signkey)
26: let sessionid := ν8
27: let s′.sessions[sessionid] := body[email]
28: let setCookie := ⟨Set-Cookie,⟨⟨sessionid,sessionid,⊤,⊤,⊤⟩⟩⟩
29: let m′ := encs(⟨HTTPResp,n,200,⟨setCookie⟩, ia⟩,k)
30: stop ⟨⟨ f ,a,m′⟩⟩, s′

31: end if
32: stop
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F.1.7. Relying Parties

A relying party r ∈ RP is a Web server modeled as an atomic DY process (Ir,Zr,Rr,sr
0) with

the addresses Ir := addr(r). Its initial state sr
0 contains its domains, the private keys associated

with its domains, the DNS server address, and the domain name of a forwarder. The full state

additionally contains the sets of service tokens and login session identifiers the RP has issued.

RP only accepts HTTPS requests.

RP manages two kinds of sessions: The login sessions, which are only used during the login

phase of a user, and the service sessions. Recall that service sessions allow a user to use RP’s

services. The ultimate goal of a login flow is to establish such a service session.

If r receives a corrupt message, it becomes corrupt and acts like the attacker from then on.

We now provide the formal definition of r as an atomic DY process (Ir,Zr,Rr,sr
0). As men-

tioned, we define Ir = addr(r). Next, we define the set Zr of states of r and the initial state sr
0 of

r.

Definition 98. A login session record is a term of the form ⟨email,rpNonce, iaKey, tag⟩ with

email ∈ ID and rpNonce, iaKey, tag ∈N . ⋄

Definition 99. A state s ∈ Zr of an RP r is a term of the form ⟨DNSAddress, FWDDomain,

keyMapping, tlskeys, pendingDNS, pendingRequests, loginSessions, serviceTokens, wkCache,

corrupt⟩ where DNSAddress ∈ IPs, FWDDomain ∈ Doms, keyMapping ∈ [S×N ], tlskeys =

tlskeysr, pendingDNS ∈
[
N ×TN

]
, pendingRequests ∈

[
N ×TN

]
, serviceTokens ∈ [N × ID],

loginSessions ∈
[
N ×TN

]
is a dictionary of login session records, wkCache ∈

[
S×TN

]
,

corrupt ∈ TN .

The initial state sr
0 of r is a state of r with sr

0.serviceTokens = sr
0.loginSessions =

sr
0.wkCache = ⟨⟩, sr

0.corrupt = ⊥, and sr
0.keyMapping is the same as the keymapping for

browsers above. ⋄

As for BrowserID, we define the function serviceSessions that extracts service sessions from

an RP’s state as the projection that extracts the subterm serviceTokens.

We now specify the relation Rr. For readability, we define the relation Rr of RPs in Algo-

rithm F.3 and the function SENDSTARTLOGINRESPONSE in Algorithm F.2 that can be called

in Rr at two different points depending on the content of wkCache.

F.1.8. Forwarders

We define forwarders formally as atomic DY processes fwd = (Ifwd,Zfwd,Rfwd,sfwd
0 ). As already

mentioned, we define Ifwd = addr(fwd) with the set of states Zfwd consisting of only the initial
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Algorithm F.2: Function for RPs to send a response to a startLogin XHR.

1: function SENDSTARTLOGINRESPONSE(a, f , k, n, email, inDomain, s′)
2: let rpNonce := ν1
3: let tagKey := ν2
4: let iaKey := ν3
5: let loginSessionToken := ν4
6: let tag := encs(⟨inDomain,rpNonce⟩, tagKey)
7: let s′.loginSessions[loginSessionToken] := ⟨email,rpNonce, iaKey, tag⟩
8: let domain := email.domain
9: let params := ⟨⟨email,email⟩,⟨tag, tag⟩,⟨iaKey, iaKey⟩,⟨FWDDomain,s′.FWDDomain⟩⟩

10: let loginURL := ⟨URL,S,domain,/.well-known/spresso-login,params⟩
11: let body := ⟨⟨tagKey, tagKey⟩,⟨loginSessionToken, loginSessionToken⟩,

↪→ ⟨FWDDomain,s′.FWDDomain⟩,⟨loginURL, loginURL⟩⟩
12: let m′ := encs(⟨HTTPResp,n,200,⟨⟨ReferrerPolicy,no-referrer⟩⟩,body⟩,k)
13: stop ⟨⟨ f ,a,m′⟩⟩, s′

14: end function

Algorithm F.3: Relation of an RP Rr.

Input: ⟨a, f ,m⟩,s
1: if s′.corrupt ̸≡ ⊥∨m≡ CORRUPT then
2: let s′.corrupt := ⟨⟨a, f ,m⟩,s′.corrupt⟩
3: let m′← dV (s′)
4: let a′ ← IPs
5: stop ⟨⟨a′,a,m′⟩⟩, s′

6: end if
7: if ∃⟨reference,request,key, f ⟩ ∈⟨⟩ s′.pendingRequests

↪→ such that π1(decs(m,key))≡ HTTPResp then → Encrypted HTTP response
8: let m′ := decs(m,key)
9: if m′.nonce ̸≡ request.nonce then

10: stop
11: end if
12: remove ⟨reference,request,key, f ⟩ from s′.pendingRequests
13: let a′, f ′, k, n, email, inDomain such that ⟨a′, f ′,k,n,email, inDomain⟩ ≡ reference if possible;

↪→ otherwise stop
14: let s′.wkCache[request.host] := m′.body
15: SENDSTARTLOGINRESPONSE(a′, f ′, k, n, email, inDomain, s′)
16: else if m ∈ DNSResponses then → Successful DNS response
17: if m.nonce ̸∈ s.pendingDNS∨m.result ̸∈ IPs∨m.domain ̸≡ π2(s.pendingDNS).host then
18: stop
19: end if
20: let ⟨reference,message⟩ := s.pendingDNS[m.nonce]
21: let s′.pendingRequests := s′.pendingRequests

↪→ +⟨⟩ ⟨reference, message, ν5, m.result⟩
22: let message := enca(⟨message,ν5⟩,s′.keyMapping [message.host])
23: let s′.pendingDNS := s′.pendingDNS−m.nonce
24: stop ⟨⟨m.result,a,message⟩⟩, s′

This algorithm is continued on the next page.
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25: else → Handle HTTP requests
26: let mdec, k, k′, inDomain such that

↪→ ⟨mdec,k⟩ ≡ deca(m,k′)∧⟨inDomain,k′⟩ ∈ s.tlskeys
↪→ if possible; otherwise stop

27: let n, method, path, parameters, headers, body such that
↪→ ⟨HTTPReq,n,method, inDomain,path,parameters,headers,body⟩ ≡ mdec
↪→ if possible; otherwise stop

28: if path≡ / then → Serve index page.
29: let m′ := encs(⟨HTTPResp,n,200,⟨⟩,⟨script_rp, initStaterp⟩⟩,k)

→ Initial state defined for script_rp (below).
30: stop ⟨⟨ f ,a,m′⟩⟩, s′

31: else if path≡ /startLogin∧method ≡ POST then → Serve start login request.
32: if body ̸∈ ids then
33: stop
34: end if
35: let domain := body.domain
36: if domain ∈ s.wkCache then
37: SENDSTARTLOGINRESPONSE(a, f , k, n, body, inDomain, s′)
38: else
39: let message := ⟨HTTPReq,ν6,GET,domain,/.well-known/spresso-info,⟨⟩,⟨⟩,⟨⟩⟩
40: let s′.pendingDNS[ν7] := ⟨⟨a, f ,k,n,body, inDomain⟩,message⟩
41: stop ⟨⟨s′.DNSaddress,a,⟨DNSResolve,domain,ν7⟩⟩⟩, s′

42: end if
43: else if path≡ /login∧method ≡ POST then → Serve login request.
44: if headers[Origin] ̸≡ ⟨inDomain,S⟩∨body[loginSessionToken]≡ ⟨⟩ then
45: stop
46: end if
47: let loginSession := s′.loginSessions[body[loginSessionToken]]
48: if loginSession≡ ⟨⟩ then
49: stop
50: end if
51: let s′.loginSessions := s′.loginSessions−body[loginSessionToken]
52: let ia := decs(body[eia], loginSession.iaKey)
53: let e := ⟨loginSession.tag, loginSession.email,s′.FWDDomain⟩
54: let signkey := s′.wkCache[loginSession.email.domain][signkey]
55: if checksig(ia,signkey)≡⊥∨ e ̸≡ extractmsg(ia) then
56: stop
57: end if
58: let serviceTokenNonce := ν8
59: let serviceToken := ⟨serviceTokenNonce, loginSession.email⟩
60: let s′.serviceTokens := s′.serviceTokens +⟨⟩ serviceToken
61: let m′ := encs(⟨HTTPResp,n,200,⟨⟨ReferrerPolicy,no-referrer⟩⟩,serviceToken⟩,k)
62: stop ⟨⟨ f ,a,m′⟩⟩, s′

63: end if
64: end if
65: stop
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Algorithm F.4: Relation of an FWD Rfwd.

Input: ⟨a, f ,m⟩,s
1: let mdec, k, k′, inDomain such that

↪→ ⟨mdec,k⟩ ≡ deca(m,k′)∧⟨inDomain,k′⟩ ∈ s
↪→ if possible; otherwise stop

2: let n, method, path, parameters, headers, body such that
↪→ ⟨HTTPReq,n,method, inDomain,path,parameters,headers,body⟩ ≡ mdec
↪→ if possible; otherwise stop

3: let m′ := encs(⟨HTTPResp,n,200,⟨⟩,⟨script_fwd,⟨⟩⟩⟩,k)
4: stop ⟨⟨ f ,a,m′⟩⟩,s

state sfwd
0 = tlskeysfwd, i.e., the initial state contains only the private keys of the forwarder’s

domains. A forwarder responds to any HTTPS request with script_fwd and its initial state,

which is empty.

We specify the relation Rfwd of FWDs in Algorithm F.4.

F.1.9. DNS Servers

As already outlined above, DNS servers are modeled as generic DNS servers presented in Ap-

pendix A.7. Their (static) state is set according to the allocation of domain names to IP addresses.

DNS servers may not become corrupted.

F.1.10. SPRESSO Scripts

As already mentioned above, the set S of the Web system SWS = (W sp,S ,script,E0) consists

of the scripts Ratt, script_rp, script_idp, and script_fwd, with their string representations being

defined by script (see Table F.1).

In what follows, the scripts script_rp, script_idp, and script_fwd are defined formally.

Relying Party Index Page (script_rp). We first describe the structure of the internal scriptstate

of the script script_rp.

Definition 100. A scriptstate s of script_rp is a term of the form

⟨q, loginSessionToken,refXHR, tagKey,FWDDomain⟩

where q ∈ S, loginSessionToken, refXHR, tagKey ∈N ∪{⊥}, FWDDomain ∈ TN .

The initial scriptstate initStaterp of script_rp is ⟨start,⊥,⊥,⊥,⊥⟩. ⋄

We specify the relation script_rp formally in Algorithm F.5.

262



F.1. Formal Model of SPRESSO

Algorithm F.5: Relation of script_rp.

Input: ⟨tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secret⟩
1: let s′ := scriptstate
2: let command := ⟨⟩
3: let origin := GETORIGIN(tree,docnonce)
4: switch s′.q do
5: case start
6: let s′.email← ids
7: let s′.refXHR := λ1
8: let command := ⟨XMLHTTPREQUEST,URLorigin.domain

/startLogin ,POST,s
′.email,s′.refXHR⟩

9: let s′.q := expectStartLoginResponse

10: case expectStartLoginResponse
11: let pattern := ⟨XMLHTTPREQUEST,∗,s′.refXHR⟩
12: let input := CHOOSEFIRSTINPUTPAT(scriptinputs,pattern)
13: if input ̸≡ ⊥ then
14: let s′.loginSessionToken := π2(input)[loginSessionToken]
15: let s′.tagKey := π2(input)[tagKey]
16: let s′.FWDDomain := π2(input)[FWDDomain]
17: let loginURL := π2(input)[loginURL]
18: let command := ⟨HREF, loginURL,_BLANK,⟨⟩⟩
19: let s′.q := expectFWDReady

20: end if
21: case expectFWDReady
22: let fwdWindowNonce := SUBWINDOWS(tree, AUXDOCNONCE(tree, docnonce)).1.nonce
23: let pattern := ⟨POSTMESSAGE, fwdWindowNonce,⟨s′.FWDDomain,S⟩,ready⟩
24: let input := CHOOSEFIRSTINPUTPAT(scriptinputs,pattern)
25: if input ̸≡ ⊥ then
26: let command := ⟨POSTMESSAGE, fwdWindowNonce, ⟨tagKey, tagKey⟩,

↪→ ⟨s′.FWDDomain,S⟩⟩
27: let s′.q := expectEIA

28: end if
29: case expectEIA
30: let fwdWindowNonce := SUBWINDOWS(tree, AUXDOCNONCE(tree, docnonce)).1.nonce
31: let pattern := ⟨POSTMESSAGE, fwdWindowNonce,⟨s′.FWDDomain,S⟩,⟨eia,∗⟩⟩
32: let input := CHOOSEFIRSTINPUTPAT(scriptinputs,pattern)
33: if input ̸≡ ⊥ then
34: let eia := π2(π4(input))
35: let s′.refXHR := λ1
36: let body := ⟨⟨eia,eia⟩,⟨loginSessionToken,s′.loginSessionToken⟩⟩
37: let command := ⟨XMLHTTPREQUEST,URLorigin.domain

/login ,POST,body,s′.refXHR⟩
38: let s′.q := expectServiceToken

39: end if
40: stop ⟨s′,cookies, localStorage,sessionStorage,command⟩
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Algorithm F.6: Relation of script_idp.

Input: ⟨tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage,
↪→ ids, secret⟩
1: let s′ := scriptstate
2: let command := ⟨⟩
3: let origin := GETORIGIN(tree,docnonce)
4: switch s′.q do
5: case start
6: let email := GETPARAMETERS(tree,docnonce)[email]
7: let tag := GETPARAMETERS(tree,docnonce)[tag]
8: let FWDDomain := GETPARAMETERS(tree,docnonce)[FWDDomain]
9: let body := ⟨⟨email,email⟩,⟨password,secret⟩,⟨tag, tag⟩,⟨FWDDomain,FWDDomain⟩⟩

10: let command := ⟨XMLHTTPREQUEST,URLorigin.domain
/sign ,POST,body,⊥⟩

11: let s′.q := expectIA

12: case expectIA
13: let pattern := ⟨XMLHTTPREQUEST,∗,∗⟩
14: let input := CHOOSEFIRSTINPUTPAT(scriptinputs,pattern)
15: if input ̸≡ ⊥ then
16: let iaKey := GETPARAMETERS(tree,docnonce)[iaKey]
17: let FWDDomain := GETPARAMETERS(tree,docnonce)[FWDDomain]
18: let tag := GETPARAMETERS(tree,docnonce)[tag]
19: let eia := encs(π2(input), iaKey)
20: let url := ⟨URL,S,FWDDomain,/,⟨⟨tag, tag⟩,⟨eia,eia⟩⟩⟩
21: let command := ⟨IFRAME,url,_SELF⟩
22: let s′.q := stop

23: end if
24: stop ⟨s′,cookies, localStorage,sessionStorage,command⟩

Login Dialog Script (script_idp). This script models the contents of the login dialog.

Definition 101. A scriptstate s of script_idp is a term of the form ⟨q, email⟩ with q ∈ S, email ∈
ID∪{⟨⟩} ∈ T . We call the scriptstate s an initial scriptstate of script_idp iff s∼ ⟨start,∗⟩. ⋄

We formally specify the relation script_idp of the LD’s scripting process in Algorithm F.6.

Forwarder Script (script_fwd). This script models the contents of the forwarder iframe.

Definition 102. A scriptstate s of script_fwd is a term of the form q with q ∈ S. We call s the

initial scriptstate of script_fwd iff s≡ start. ⋄

We formally specify the relation script_fwd of the FWD’s scripting process in Algorithm F.7.
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Algorithm F.7: Relation of script_fwd.

Input: ⟨tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secret⟩
1: let s′ := scriptstate
2: let command := ⟨⟩
3: let target := OPENERWINDOW(tree,PARENTDOCNONCE(tree,docnonce))

→ Determine the opener of the parent window
4: switch s′.q do
5: case start
6: let command := ⟨POSTMESSAGE, target, ready, ⊥⟩

→ Prepare a postMessage to the opener of the parent window to indicate that the forwarder
script is ready.

7: let s′.q := expectTagKey →Modify the scriptstate such that q is set to expectTagKey.
8: case expectTagKey
9: let pattern := ⟨POSTMESSAGE, target,∗,⟨tagKey,∗⟩⟩

10: let input := CHOOSEFIRSTINPUTPAT(scriptinputs,pattern)
→ Take the first input for the script that matches the pattern above (a postMessage that was

sent from the parent’s opener and contains a dictionary with the dictionary key tagKey).
11: if input ̸≡ ⊥ then
12: let tagKey := π2(π4(input)) → Extract tagKey from the input.
13: let tag := GETPARAMETERS(tree,docnonce)[tag]

→ Extract tag from the URL parameters of this script’s document.
14: let eia := GETPARAMETERS(tree,docnonce)[eia]

→ Extract eia from the URL parameters of this script’s document.
15: let rpOrigin := ⟨decs(tag, tagKey).1,S⟩

→ Decrypt tag using tagKey to extract the RP’s origin.
16: let command := ⟨POSTMESSAGE, target,⟨eia,eia⟩,rpOrigin⟩

→ Prepare a postMessage that is sent to the parent’s opener such that this receiving
document must have the origin of RP and that contains the eia.

17: let s′.q := stop →Modify the scriptstate such that q is set to stop.
18: end if
19: stop ⟨s′,cookies, localStorage,sessionStorage,command⟩
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F.1.11. Important Events

As described in Section 3.2, we define events that (if they occur in a certain processing step)

specify important actions of our SSO protocol.

Definition 103 (Refinement of Definition 5 for SPRESSO: Start of an SSO Flow). Let SWS
be an SPRESSO Web system. Let ρ be a run of SWS . Let Q ∈ ρ be a processing step, b a

browser, and r an RP. We write started(Q,b,r) iff in Q, the browser b is triggered and selects

to run the script of a document and this script is script_rp and the document is stored in b

under a secure origin1 of r and —when executing the script— Lines 6ff. of Algorithm F.5 are

executed. ⋄

Note that script_rp is implemented as a state machine with the current state stored in the

subterm q of the script’s state. The initial value for q is start.

Definition 104 (Refinement of Definition 6 for SPRESSO: Selection of an IdP). Let SWS
be an SPRESSO Web system. Let ρ be a run of SWS . Let Q ∈ ρ be a processing step, b a

browser, r an RP, and i an IdP. We write selectedIdP(Q,b, i) iff started(Q,b,r) and in Line 6 of

Algorithm F.5 some identity id′ with governor(id′) = i was selected. ⋄

Definition 105 (Refinement of Definition 7 for SPRESSO: Selection of an Identity). Let SWS
be an SPRESSO Web system. Let ρ be a run of SWS . Let Q∈ ρ be a processing step, b a browser,

r an RP, i an IdP, and id an identity. We write selectedID(Q,b, i, id) iff started(Q,b,r) and in

Line 6 of Algorithm F.5 the value id was selected. ⋄

Definition 106 (Refinement of Definition 8 for SPRESSO: User is Logged in at RP). Let

SWS be an SPRESSO Web system. Let ρ be a run of SWS . Let Q ∈ ρ be a processing step,

b a browser, r an RP, id an identity, and n some term. We write loggedIn(Q,b,r, id,n) iff in Q,

(1) b receives a HTTPS response with n as its body, (2) b processes this response such that b

adds n to the scriptinputs of some document with the script script_rp under a secure origin

of r as a response to an XHR in the state of b, and (3) in the state of r (before and after Q

— note that the state of r cannot be altered during Q), for the subterm serviceTokens, we have

serviceTokens[n]≡ id. ⋄

1As for BrowserID, we assume a secure origin of RP here as —similar to reality— we cannot have any integrity of
scripts and their states under an insecure origin.
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F.1.12. SPRESSO Web System for Privacy Analysis

As mentioned above, for privacy analysis, we here refine the definition of an SPRESSO Web

system.

Definition 107 (SPRESSO Web System for Privacy Analysis). Let SWS = (W sp,S ,script,E0)

be an SPRESSO Web system with W sp =Hon∪Web∪Net, Hon=B∪RP∪ IDP∪FWD∪DNS
(as described above), RP = {r1,r2}, FWD = {fwd}, DNS = {dns}, r1 and r2 two (honest)

relying parties, fwd an honest forwarder, dns an honest DNS server. Let attacker ∈Web be

some Web attacker. Let dr be a domain of r1 or r2 and b(dr) a challenge browser. Let Hon′ :=

{b(dr)}∪RP∪FWD∪DNS, Web′ := Web, and Net′ := /0 (i.e., there is no network attacker).

Let W sp ′ := Hon′∪Web′∪Net′. Let S ′ := S \ {script_idp} and script′ be accordingly. We

call SWS priv
(dr) = (W sp ′,S ′,script′,E0,attacker) an SPRESSO web system for privacy analysis

iff the domain fwddomain is the only domain assigned to fwd, the domain dr1 the only domain

assigned to r1, and dr2 the only domain assigned to r2. Both, r1 and r2 are configured to use

the forwarder fwd, i.e., in their state FWDdomain is set to fwddomain. The browser b(dr) owns

exactly one email address and this email address is governed by some attacker. All honest

parties (in Hon) are not corruptible, i.e., they ignore any CORRUPT message. Identity providers

are assumed to be dishonest, and hence, are subsumed by the Web attackers (which govern all

identities). In the initial state sb
0 of the (only) browser in W sp ′ and in the initial states sr1

0 , sr2
0 of

both relying parties, the DNS address is addr(dns). Further, wkCache in the initial states sr1
0 , sr2

0

is equal and contains a public key for each domain registered in the DNS server (i.e., the relying

parties already know some public key to verify SPRESSO identity assertions from all domains

known in the system and they do not have to fetch them from IdP). ⋄

As all parties in an SPRESSO Web system for privacy analysis are either Web attackers,

browsers, or deterministic processes and all scripting processes are either the attacker script

or deterministic, it is easy to see that in SPRESSO Web systems for privacy analysis with

configuration (S,E,N) a command ζ induces at most one processing step. We further note

that, under a given infinite sequence of nonces N0, all schedules σ induce at most one run

ρ = ((S0,E0,N0), . . . ,(Si,E i,Ni), . . . ,(S|σ |,E |σ |,N|σ |)) as all of its commands induce at most

one processing step for the i-th configuration.

F.2. Proof of Theorem 5 (Security w.r.t. Authentication)

Before we prove Theorem 5, we show some general properties of the SWS auth.
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Let SWS auth
= (W sp,S ,script,E0) be an SPRESSO Web system with a network attacker. In

the following, we write sx = (Sx,Ex,Nx) for the states of a web system.

Definition 108. In a similar fashion to Definition 66, we say that an RP r accepted a message (as

a response to some request) if the RP decrypted the message (RPs can only accept HTTPS mes-

sages) and added the message’s body to the wkCache in its state (i.e., Line 14 of Algorithm F.3

was called). ⋄

For a run ρ = (s0,s1, . . .) of SWS auth, we state the following lemmas:

Lemma 17. If in the processing step si→ si+1 of a run ρ of SWS auth an honest relying party r

(I) emits an HTTPS request of the form

m = enca(⟨req,k⟩,pub(k′))

(where req is an HTTP request, k is a nonce (symmetric key), and k′ is the private key of some

other DY process u), and (II) in the initial state s0 the private key k′ is only known to u, and (III)

u never leaks k′, then all of the following statements are true:

1. There is no state of SWS auth where any party except for u knows k′, thus no one except for

u can decrypt req.

2. If there is a processing step s j → s j+1 where the RP r leaks k to W sp \ {u,r} there is a

processing step sh→ sh+1 with h < j where u leaks the symmetric key k to W sp \{u,r}
or r is corrupted in s j.

3. The value of the host header in req is the domain that is assigned the public key pub(k′) in

RP’s keymapping s0.keyMapping (in its initial state).

4. If r accepts a response (say, m′) to m in a processing step s j → s j+1 and r is honest in s j

and u did not leak the symmetric key k to W sp \{u,r} prior to s j, then either u or r created

the HTTPS response m′ to the HTTPS request m, in particular, the nonce of the HTTP

request req is not known to any atomic process p, except for the atomic DY processes r

and u.

Proof. (1) follows immediately from the condition. If k′ is initially only known to u and u never

leaks k′, i.e., even with the knowledge of all nonces (except for those of u), k′ can never be

derived from any network output of u, k′ cannot be known to any other party. Thus, nobody

except for u can derive req from m.
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(2) We assume that r leaks k to W sp \{u,r} in the processing step s j→ s j+1 without u prior

leaking the key k to anyone except for u and r and that the RP is not fully corrupted in s j, and

lead this to a contradiction.

The RP is honest in si. From the definition of the RP, we see that the key k is always a

fresh nonce that is not used anywhere else. Further, the key is stored in pendingRequests. The

information from pendingRequests is not extracted or used anywhere else, except when handling

the received messages, where it is only checked against. Hence, r does not leak k to any other

party in s j (except for u and r). This proves (2).

(3) Per the definition of RPs (Algorithm F.3), a host header is always contained in HTTP

requests by RPs. From Line 22 of Algorithm F.3 we can see that the encryption key for the

request req was chosen using the host header of the message. It is chosen from the keyMapping

in RP’s state, which is never changed during ρ . This proves (3).

(4) An HTTPS response m′ that is accepted by r as a response to m has to be encrypted with

k. The nonce k is stored by the RP in the pendingRequests state information. The RP only

stores freshly chosen nonces there (i.e., the nonces are not used twice, or for other purposes than

sending one specific request). The information cannot be altered afterwards (only deleted) and

cannot be read except when the RP checks incoming messages. The nonce k is only known to u

(which did not leak it to any other party prior to s j) and r (which did not leak it either, as u did

not leak it and r is honest, see (2)). This proves (4).

Lemma 18. For every honest relying party r ∈ RP, every s ∈ ρ , every term ⟨host,wkDoc⟩ ∈⟨⟩

S(r).wkCache it holds that wkDoc[signkey] ≡ pub(signkey(dom−1(host))) if dom−1(host) is

an honest IdP.

Proof. First, we can see that (in an honest RP) S(r).wkCache can only be populated in Line 14

(of Algorithm F.3). There, the body of a received message m′ is written to S(r).wkCache. From

Line 7 we can see that m′ is the response to a HTTPS message that was sent by r. Only in

Lines 39ff., r can assemble (and later sent) such requests.

All such requests are sent to the path /.well-known/spresso-info. As the original request

was stored in pendingRequests, in Line 14, we know that request.host is the domain the

original request was encrypted for and finally sent to.

With the condition of this lemma we see that dom−1(request.host) is an honest IdP, say,

p. Lemma 17 applies here. As r emits HTTPS requests only for the well-known fixed path

/.well-known/spresso-info and does not emit an HTTPS response for such an HTTPS re-

quest, we can see that p created the HTTPS response, and it was not altered by any other

party. In Algorithm F.1 we can see that an honest IdP responds to requests to the well-known

path /.well-known/spresso-info in Line 10ff. Here, p constructs a document wkDoc and
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sends this document in the body of the HTTPS response. This document is of the following

form: ⟨⟨signkey,pub(s′.signkey)⟩⟩. The term s′.signkey is defined in Definition 97 to be

signkey(p) and is never changed in Algorithm F.1.

Therefore, a pairing of the form ⟨request.host,x⟩ with

x[signkey]≡ pub(signkey(dom−1(request.host)))

is stored in S(r).wkCache. As this applies to all pairings in S(r).wkCache, this proves the lemma.

Definition 109. For every service token ⟨n, i⟩ we define a service token response for ⟨n, i⟩ to be

an HTTPS response where the value n is contained in the body of the message. A service token

request for ⟨n, i⟩ is an HTTPS request that triggered the service token response for ⟨n, i⟩. ⋄

Lemma 19. In a run ρ of SWS auth, for every state s j ∈ ρ , every RP r ∈ RP that is honest in s j,

every ⟨n, i⟩ ∈⟨⟩ S j(r).serviceTokens, the following properties hold:

1. There exists exactly one l′ < j such that there exists a processing step in ρ of the form

sl′
e′→r−−−−−−−−→

r→⟨⟨a′, f ′,m′⟩⟩
sl′+1

with e′ being some events, a′ and f ′ being addresses and m′ being a service token response

for ⟨n, i⟩.

2. There exists exactly one l < j such that there exists a processing step in ρ of the form

sl
⟨a, f ,m⟩→r−−−−−−→

r→e
sl+1

with e being some events, a and f being addresses and m being a service token request for

⟨n, i⟩.

3. The processing steps from (1) and (2) are the same, i.e., l = l′.

4. The service token request for ⟨n, i⟩, m in (2), is an HTTPS message of the following form:

enca(⟨⟨HTTPReq,nreq,POST,dr,/login,x,h,b⟩,k⟩,pub(tlskey(dr)))

for dr ∈ dom(r), some terms x, h, nreq, and a dictionary b such that

b[eia]≡ encs(sig(⟨tag, i,S(r).FWDDomain⟩,ksign), iaKey)
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with

tag≡ encs(⟨dr,nrp⟩, tagKey),

i≡ Sl(r).loginSessions[b[loginSessionToken]].email,

tag≡ Sl(r).loginSessions[b[loginSessionToken]].tag,

iaKey≡ Sl(r).loginSessions[b[loginSessionToken]].iaKey

for some nonces nrp, and ksign.

5. If the governor of i is an honest IdP, we have that ksign = signkey(governor(i)).

Proof. (1). The service token nonce n of service tokens ⟨n, i⟩ ∈⟨⟩ S j(r).serviceTokens can

only be contained in a response that is assembled in Lines 43ff of Algorithm F.3. The n is

freshly chosen in Line 58, stored (along with the identity i) to S j(r).serviceTokens (actually to

Sq(r).serviceTokens for some q≤ j) in Line 60 and sent out in the service token response in

Line 61f. The service tokens stored in S j(r).serviceTokens are not used or altered anywhere

else. Therefore, each service token nonce is sent in exactly one (service token) response.

(2). From Line 43 of Algorithm F.3 it is easy to see that each service token response is triggered

by exactly one request.

(3). Follows immediately from (2).

(4). The basic form of the encrypted HTTPS request, the host header, and the usage of the correct

encryption key are enforced by Lines 26f. The path component is checked to be /login and the

method component is checked to be POST in Line 43. The values of b[eia], i, tag, and iaKey are

checked in Lines 52ff.

(5). In Line 55, the term ia is checked to be signed with the signature key stored in Sq(r).wkCache

indexed under the domain of the email address i (for some q≤ j). With Lemma 18, we can see

that for the domain of the email address i this signature key is signkey(dom−1(i.domain)). With

dom−1(i.domain) = governor(i) we can see that ia must have been signed with the signature

key of the honest IdP that governs the email address i. Further, in the same line, the contents of

the signature, including the tag, are checked.

We now show that Theorem 5 holds true. We want to show that every SPRESSO web system

is secure w.r.t. authentication and therefore assume that there exists an SPRESSO web system

that is not secure. We will lead this to a contradication and thereby show that all SPRESSO web

systems are secure w.r.t. authentication.

In detail, we assume: There exists an SPRESSO web system SWS auth, a run ρ of SWS auth,

a state s j = (S j,E j,N j) in ρ , a RP r ∈ RP that is honest in S j with S0(r).FWDDomain being
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a domain of an FWD that is honest in S j, an RP service token of the form ⟨n, i⟩ recorded in

S j(r).serviceTokens and derivable from the attackers knowledge in S j (i.e., the term ⟨n, i⟩ is

in d /0(S j(attacker))), and the browser b owning i is not fully corrupted and governor(i) is an

honest IdP (in S j).

We now proceed to to proof that this is a contradiction. First, we can see that for ⟨n, i⟩ and

s j, the conditions in Lemma 19 are fulfilled, i.e., a service token request m and a service token

response m′ to/from r exist, and m′ is of form shown in Lemma 19 (4). Let I := governor(i).

We know that I is an honest IdP. As such, it never leaks its signing key (see Algorithm F.1).

Therefore, the signed subterm ia := sig(⟨tag, i,S(r).FWDDomain⟩,signkey(I)) had to be created

by the IdP I. An (honest) IdP creates signatures only in Line 25 of Algorithm F.1.

Lemma 20. Under the assumption above, only the browser b can issue a request (say, mcert) that

triggers the IdP I to create the signed term ia. The request mcert was sent by b over HTTPS using

I’s public HTTPS key.

Proof. We have to consider two cases for the request mcert:

(A). First, if the user is not logged in with the identity i at I (i.e., the browser b has no session

cookie that carries a nonce which is a session id at I for which the identitiy i is marked as being

logged in, compare Line 22 of Algorithm F.1), then the request has to carry (in the request body)

the password matching the identity i (secretOfID(i)). This secret is only known to b initially.

Depending on the corruption status of b, we can now have two cases:

a) If b is honest in s j, it has not sent the secret to any party except over HTTPS to I (as defined

in the definition of browsers).

b) If b is close-corrupted, it has not sent it to any other party while it was honest (case a).

When becoming close-corrupted, it discarded the secret.

I.e., the secret has been sent only to I over HTTPS or to nobody at all. The IdP I cannot send it

to any other party. Therefore we know that only the browser b can send the request mcert in this

case.

(B). Second, if the user is logged in for the identity i at I, the browser provides a session id to

I that refers to a logged in session at I. This session id can only be retrieved from I by logging

in, i.e., case (A) applies, in particular, b has to provide the proper secret, which only itself and I

know (see above). The session id is sent to b in the form of a cookie, which is set to secure (i.e.,

it is only sent back to I over HTTPS, and therefore not derivable by the attacker)and httpOnly

(i.e., it is not accessible by any scripts). The browser b sends the cookie only to I. The IdP I

never sends the session id to any other party than b. The session id therefore only leaks to b and
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I, and never to the attacker. Hence, the browser b is the only atomic DY process which can send

the request mcert in this case.

We can see that in both cases, the request was sent by b using HTTPS and I’s public key: If the

browser would intend to sent the request without encryption, the request would not contain the

password in case (A) or the cookie in case (B). The browser always uses the “correct” encryption

key for any domain (as defined in SWS auth).

As the request mcert is sent over HTTPS, it cannot be altered or read by any other party.

In particular, it is easy to see that at the point in the run where mcert was sent, b was honest

(otherwise, it would have had no knowledge of the secret anymore).

Lemma 21. In the browser b, the request mcert was triggered by script_idp loaded from the origin

⟨d,S⟩ for some d ∈ dom(I).

Proof. First, ⟨d,S⟩ for some d ∈ dom(I) is the only origin from which a script has access to the

secret secretOfID(i) for the identity i (as defined in Appendix F.1.5).

With the general properties defined in Appendix B and the definition of Identity Providers in

Appendix F.1.6, in particular their property that they only send out one script, script_idp, we can

see that this is the only script that can trigger a request containing the secret.

Lemma 22. In the browser b, the script script_idp receives the response to the request mcert (and

no other script), and at this point, the browser is still honest.

Proof. From the definition of browser corruption, we can see that the browser b discards any

information about pending requests in its state when it becomes close-corrupted, in particular

any TLS keys. It can therefore not decrypt the response if it becomes close-corrupted before

receiving the response.

The remainder follows from the general properties defined in Appendix B.

We now know that only the script script_idp received the response containing the IA. For the

following lemmas, we will assume that the browser b is honest. In the other case (the browser is

close-corrupted), the IA ia and any information about pending HTTPS requests (in particular, any

decryption keys) would be discarded from the browser’s state (as seen in the proof for Lemma 22).

This would be a contradiction to the assumption (which requires that the IA arrived at the RP).

Lemma 23. After receiving ia, script_idp forwards the ia only to an FWD that is honest (in s j,

and therefore, also at any earlier point in the run) and a document script_fwd that was loaded

from this FWD over HTTPS.
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Proof. We know that the browser b is either close-corrupted (in which case the ia would be

discarded as it is only stored in the window structure, or, more precisely, the scriptstates inside

the window structure of the browser, which are removed when the browser becomes close-

corrupted) or it is honest. In the latter case, script_idp (defined in Algorithm F.6) opens an

iframe from the FWDDomain that was given to it by RP. It always uses HTTPS for this request.

We can see that script_idp forwards the ia to the domain stored in the variable FWDDomain

(Line 20 of Algorithm F.6). This variable is set five lines earlier with the value taken from the

parameters of the current document. While we cannot know the actual value of the parameter

FWDDomain yet, we know that this parameter does not change (in the browser definition, it is

only set once, when the document is loaded). We can also see that the very same parameter was

sent to I in Line 10 as the value for the FWD domain that was then signed by I in the ia. As we

know the value of the FWD origin in the ia (it is S(r).FWDDomain), we know that the domain to

which the ia is forwarded is the same.

From our assumption, we know that S(r).FWDDomain is the origin of an honest FWD in s j.

It is contacted over HTTPS, so the general properties defined in Appendix B apply. According

to the definition of forwarders (Algorithm F.4), they only respond with script_fwd. The ia is

therefore only forwarded to the FWD and its script script_fwd.

Lemma 24. The script script_fwd forwards the ia only to the script script_rp loaded from the

origin ⟨dr,S⟩.

Proof. The script script_idp that runs in the honest browser b forwards the (then encrypted) IA

along with the tag to script_fwd. From the definition of the IdP script (Algorithm F.6) it is clear

that the tag that is forwarded along with the encrypted IA is the same that was signed by the IdP.

This script (Algorithm F.4) tries to decrypt the tag (once it receives a matching key) and sends

a postMessage containing the encrypted IA to the domain contained in the tag, which is dr.

The protocol part of the origin is HTTPS. The only document that r delivers and which

receives postMessages is script_rp, and this therefore is the only script that can receive this

postMessage.

Lemma 25. From the RP document, the EIA is only sent to the RP r and over HTTPS.

Proof. This follows immediately from the definition of script_rp (see Algorithm F.5, in particular

Line 37 in conjunction with Line 3) and the fact that the RP document must have been loaded

from the origin ⟨dr,S⟩ (as shown above).
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With Lemmas 22–25 we see that the ia, once it was signed by I, was transferred only to r, the

browser b, and to an honest forwarder. It cannot be known to the attacker or any corrupted party,

as none of the listed parties leak it to any corrupted party or the attacker.

Now, for ⟨n, i⟩ to be created and recorded in S j(r), a message m as shown above has to be

created and sent. This can only be done with knowledge of eia. From their definitions, we can

see that neither I, r nor any forwarder create such a message, with the only option left being

b. If b sends such a request, it is the only party able to read the response (see general security

properties in Appendix B) and it will not do anything with the contents of the response (see

Algorithm F.5), in particular not leak it to the attacker or any corrupted party.

This is a contradication to the assumption, where we assumed that ⟨n, i⟩ ∈ d /0(S j(attacker)).

This shows every SWS auth is secure w.r.t. authentication.

■

F.3. Proof of Theorem 6 (Security w.r.t. Session Integrity)

Let SWS auth
= (W sp,S ,script,E0) be an SPRESSO Web system with a network attacker. In the

following, we write sx = (Sx,Ex,Nx) for the states of a web system.

Let ρ be a run of SWS auth. Let b a browser, r an RP, id an identity, and n some term, such

that Q ∈ ρ be a processing step with loggedIn(Q,b,r, id,n), r being honest in Qlogin, and b being

honest in Qlogin.

We know (by definition of loggedIn) that n is indeed a service token for the identity id at r.

Applying Lemma 19 (1–4), we call the request corresponding to the service session ⟨n, id⟩
(the request that causes the RP to create a service session/service token) m and its response m′,

and (as in Lemma 19 (2)) we refer to the state of SWS auth in the run ρ where r processes m by sl .

Lemma 26. The request m was sent by script_rp loaded from the origin ⟨dr,S⟩ where dr is some

domain of r.

Proof. In Algorithm F.3, Line 44, RP checks the presence of the Origin header and its value.

If the request m was initiated by a document from a different origin than ⟨dr,S⟩, the (honest)

browser b would have added an Origin header that would not pass this test (or no Origin header

at all), according to the browser definition. The script script_rp is the only script that the honest

party r sends as a response and that sends a request to r. Hence, m must have been sent by

script_rp loaded from the origin ⟨dr,S⟩.
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Lemma 27. The request m contains a nonce loginSessionToken in its body such that

Sl(r).loginSessions[loginSessionToken].email≡ id′

and b owns id′, i.e., ownerOfID(id′) = b.

Proof. With Lemma 26 we know that the request was sent by script_rp. In Algorithm F.5

defining script_rp, in Line 36, the body of the request m is assembled (and this is the only line

where this script sends a request that contains the same path as m). The login session token is

taken from the scriptstate (loginSessionToken). This part of the state is initially set to ⊥ and is

only changed in Line 14. There, it is taken from the response to the start login XHR issued in

Line 8 (the request and response are coupled using refXHR which is tracked in the scriptstate). In

Line 6, the script selects one of the browser’s identities (which are the identities that the browser

owns, by the definition of browsers in Appendix F.1.5). This identity is then used in the start

login XHR.

When receiving this request (which is an HTTPS message, and therefore, cannot be altered nor

read by the attacker), ultimatively, the function SENDSTARTLOGINRESPONSE (Algorithm F.2)

is called. There are two cases how this function can be called (see Line 36 of Algorithm F.3):

• If the well-know cache of r already contains an entry for the host contained in the email

address, SENDSTARTLOGINRESPONSE is called immediately with the email address

contained in the request’s body.

• Else, the email address in the request’s body is stored, together with the request’s HTTP

nonce, the HTTPS encryption key and other data, in the subterm pendingDNS of r’s

state. From there, it is later moved to pendingRequests (Line 21). Finally, in Line 15,

SENDSTARTLOGINRESPONSE is called.

After SENDSTARTLOGINRESPONSE is called, a new loginSessionToken is chosen and in the

dictionary Sx(r).loginSessions[loginSessionToken] the email address (along with other data)

is stored (for some x).

The loginSessionToken is then sent as a response to m, in particular, it is encrypted with the

symmetric key k contained in the request. In the first case listed above, the k is immediately

retrieved from the request. Otherwise, the relationship between k and the email address is

preserved in any case: If the receiver can decrypt the response to m, it sent the email address id′

in the request.

As explained above, script_rp takes the loginSessionToken from the response body and stores

it in its state to later use it in the request m. Therefore the start login XHR described above must
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have taken place before m, i.e., x < l.

The entries in the dictionary loginSessions can not be altered and only be removed when a

service token request with the corresponding value of loginSessionToken is processed. As each

loginSessionToken is not leaked to any other party except r, we know that

Sl(r).loginSessions[loginSessionToken].email≡ id′ .

As shown above, due to the way id′ is selected by the script, b owns id′.

With Lemma 27, we can now show that id = id′: In Line 59 of Algorithm F.3, the service token

is assembled. In particular, id is chosen to be Sl(r).loginSessions[loginSessionToken].email,

and therefore id = id′ and b owns id. From the proof of Lemma 27 and the definition of script_rp

we further know that the login session token must have been requested for id by script_rp in

Line 8 in processing step, say Qstart and that script_rp only ever sends out such a request once

(following the definition of the state machine of script_rp). Hence, we have that there exists o ∈
SSOSession(ρ,b,r) with started(Qstart,b,r) ∈ o, selectedIdP(Qstart,b, i), selectedID(Q,b, i, id),

and Qlogin ∈ o. ■

F.4. Proof of Theorem 7 (Privacy)

Here, we define an equivalence relation between configurations. Recall that for privacy analysis,

we consider two SSO systems that are exactly the same up to the challenge domain set in one

challenge browser (which is part of both systems). We show that for both systems there exists no

processing step (induced by the same, but arbitrary schedule) which breaks (static) equivalence

between the configurations of both SSO systems.

F.4.1. Definition of Equivalent Configurations

Let SWS priv
1 = (W sp

1,S ,script,E0,attacker) and SWS priv
2 = (W sp

2,S ,script,E0,attacker) be

SPRESSO Web systems for privacy analysis. Let (S1,E1,N1) be a configuration of SWS priv
1 and

(S2,E2,N2) be a configuration of SWS priv
2 .

Definition 110 (Proto-Tags). We call a term of the form encs(⟨y,n⟩,k) with the variable y as a

placeholder for a domain, and n and k some nonces a proto-tag. ⋄

Definition 111 (Term Equivalence up to Proto-Tags). Let θ = {a1, . . . ,al} be a finite set of

proto-tags. Let t and t ′ be terms. We call t1 and t2 term-equivalent under a set of proto-tags
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θ iff there exists a term τ ∈ TN ({x1, . . . ,xl}) such that t1 = (τ[a1/x1, . . . ,al/xl])[dr1/y] and

t2 = (τ[a1/x1, . . . ,al/xl])[dr2/y]. We write t1 ⇌θ t2.

We say that two finite sets of terms D and D′ are term-equivalent under a set of proto-tags θ

iff |D|= |D′| and, given a lexicographic ordering of the elements in D of the form (d1, . . . ,d|D|)

and the elements in D′ of the form (d′1, . . . ,d|D′|), we have that for all i ∈ {1, . . . , |D|}: di ⇌θ d′i .

We then write D ⇌θ D′. ⋄

Definition 112 (Equivalence of (and Invariants for) HTTP Requests). Let m1 and m2 be

(potentially encrypted) HTTP requests and θ = {a1, . . . ,al} be a finite set of proto-tags. We call

m1 and m2 δ -equivalent under a set of proto-tags θ iff m1 ⇌θ m2 or all subterms are equal with

the following exceptions:

1. the Host value and the Origin/Referer headers in both requests are the same except that the

domain dr1 in m1 can be replaced by dr2 in m2,

2. the HTTP body g1 of m1 and the HTTP body g2 of m2 are (I) term-equivalent under θ , (II)

for j ∈ {1,2} if g j[eia]∼ encs(sig(⟨encs(⟨dr j,∗⟩,∗),∗,fwddomain⟩,∗),∗) and the origin

(HTTP header) of HTTP message in m j is ⟨dr j,S⟩ then the receiver of this message is r j,

and (III) if g1 contains a dictionary key loginSessionToken then there exists an l′ ∈ L

such that g1[loginSessionToken]≡ l′, and

3. if m1 is an encrypted HTTP request then and only then m2 is an encrypted HTTP request

and the keys used to encrypt the requests have to be the correct keys for dr1 and dr2

respectively.

We write m1 ≏θ m2.

⋄

Definition 113 (Extracting Entries from Login Sessions). Let t1, t2 be dictionaries over N and

TN , θ be a finite set of proto-tags, and d a domain. We call t1 and t2 η-equivalent iff t2 can be

constructed from t1 as follows: For every proto-tag a ∈ θ , we remove the entry identified by the

dictionary key i for which it holds that π4(t1[i])≡ a[d/y], if any. We denote the set of removed

entries by D. We write t1 ⊵θ
d (t2,D). ⋄

Definition 114 (Login Session Tokens for Proto Tags). Let a be a proto-tag, S1 and S2 be states

of SPRESSO Web systems for privacy analysis, and l a nonce. We call l a login session token for

the proto-tag a, written l ∈ loginSessionTokens(a,S1,S2) iff for any i ∈ {1,2} and any j ∈ {1,2}
we have that π4(Si(r j).loginSessions[l]) = a[dr j/y]. ⋄
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Definition 115 (Equivalence of (and Invariants for) States). Let θ be a set of proto-tags and

H be a set of nonces. Let K := {k | ∃n : encs(⟨y,n⟩,k) ∈ θ}. We call S1 and S2 γ-equivalent

under (θ ,H)iff the following conditions are met:

1. S1(fwd) = S2(fwd), and

2. S1(dns) = S2(dns), and

3. S1(r1) equals S2(r1) except for the subterms pendingDNS, loginSessions and serviceTokens,

and

4. S1(r2) equals S2(r2) except for the subterms pendingDNS, loginSessions and serviceTokens,

and

5. for two sets of terms D and D′: S1(r1).loginSessions⊵θ
dr1

(S2(r1).loginSessions,D),

S2(r2).loginSessions⊵θ
dr2

(S1(r2).loginSessions,D′), and D ⇌θ D′, and

6. for all entries x in the subterms pendingDNS of S1(r1), S1(r2), S2(r1), and S1(r2) it holds

true that π2(x).host is not a domain name known to the DNS server, and

7. the subterms pendingRequest of S1(r1), S1(r2), S2(r1), and S2(r2) are ⟨⟩, and

8. the subterm wkCache of S1(r1), S1(r2), S2(r1), and S2(r2) are equal and contain a public

key for each domain registered in the DNS server, and

9. ∀k ∈ K: k ̸∈ d /0(
⋃

i∈{1,2}, A∈Web∪Net∪{dns,fwd} Si(A))

10. for each attacker A: S1(A)⇌θ S2(A), and

11. for all a ∈ θ and all attackers A we have that ∄ l ∈ loginSessionTokens(a,S1,S2) such that

l is a subterm of S1(A) or S2(A).

12. S1(b1) equals S2(b2) except for for the subterms challenge, pendingDNS, pendingRequests,

and windows and we have that

a) S1(b1).challenge= dr1∧S2(b2).challenge= dr2 or

S1(b1).challenge= S2(b2).challenge=⊥, and

b) |S1(b1).pendingDNS|= |S2(b2).pendingDNS|=: j, for all i ∈ {1, . . . , j},
q1 := πi(S1(b1).pendingDNS), q2 := πi(S2(b2).pendingDNS) we have that π1(q1) =

π1(q2) ∈N and for v1 := π2(q1) and v2 := π2(q2):

i. π1(v1) = π1(v2), and
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ii. π3(v1) = π3(v2), and

iii. π1(v1) is either a term of the form ⟨REQ,x⟩ or a term of the form ⟨XHR,x,y⟩ with

x ∈N a nonce and y ∈N ∪{⊥} a nonce or ⊥, and

iv. if π2(v1).host= dr1∧π2(v2).host= dr2,

then π2(v1)≏θ π2(v2) ∧ π2(v1).nonce ∈ H,

else π2(v1)⇌θ π2(v2) ∧ π2(v1).nonce ̸∈H ∧ ∄ l ∈ L such that l is a subterm of

π2(v1),

and

c) |S1(b1).pendingRequests|= |S2(b2).pendingRequests|=: j, for all i∈{1, . . . , j},
v1 := πi(S1(b1).pendingRequests), v2 := πi(S2(b2).pendingRequests) we have

that

i. π1(v1) = π1(v2), and

ii. π3(v1) = π3(v2), and

iii. π1(v1) is either a term of the form ⟨REQ,x⟩ or a term of the form ⟨XHR,x,y⟩ with

x ∈N a nonce and y ∈N ∪{⊥} a nonce or ⊥, and

iv. if π2(v1).host= dr1∧π2(v2).host= dr2,

then π2(v1) ≏θ π2(v2) ∧ π2(v1).nonce ∈ H ∧ π4(v1) ∈ addr(r1) ∧ π4(v2) ∈
addr(r2),

else π2(v1)⇌θ π2(v2) ∧ π2(v1).nonce ̸∈ H ∧ π4(v1) = π4(v2) ∧ ∄ l ∈ L such

that l is a subterm of π2(v1),

and

d) there is no k ∈ K such that

k ∈ dN \{k}({S1(b1).pendingRequests,S2(b2).pendingRequests,

S1(b1).pendingDNS,S2(b2).pendingDNS})

(i.e., k cannot be derived from these terms by any party unless it knows k), and

e) S1(b1).windows equals S2(b2).windows with the exception of the subterms location,

referrer, scriptstate, and scriptinputs of some document terms pointed to by

Docs+(S1(b1)) = Docs+(S2(b2)) =: J. For all j ∈ J we have that:
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i. there is no k ∈ K such that

k ∈ dN \{k}({S1(b1). j.location,S2(b2). j.location,

S1(b1). j.referrer,S2(b2). j.referrer})

ii. if S1(b1). j.origin ∈ {⟨dr1,S⟩,⟨dr2,S⟩} then

A. S1(b1). j.script≡ script_rp, and

B. S1(b1). j.headers[ReferrerPolicy]≡ noreferrer, and

C. S1(b1). j.location and S2(b2). j.location are term-equivalent under θ

except for the host part, which is either equal or dr1 in b1 and dr2 in b2, and

D. S1(b1). j.referrer and S2(b2). j.referrer are term-equivalent under θ ,

and

E. S1(b1). j.scriptstate⇌θ S2(b2). j.scriptstate and if ∃ l ∈ L such that

l is a subterm of S1(b1). j.scriptstate, then S1(b1). j.location.host≡
dr1 and S2(b2). j.location.host≡ dr2, and

F. for p ∈ {

⟨XMLHTTPREQUEST,∗,∗⟩,

⟨POSTMESSAGE,∗,⟨fwddomain,S⟩,ready⟩,

⟨POSTMESSAGE,∗,⟨fwddomain,S⟩,⟨eia,∗⟩⟩

} we have S1(b1). j.scriptinputs| p ⇌θ S2(b2). j.scriptinputs| p, and

G. if ∃ l ∈ L such that l is a subterm of S1(b1). j.scriptinputs, then

S1(b1). j.location.host≡ dr1 and S2(b2). j.location.host≡ dr2, and

H. ∀k ∈ K: k is not contained in any subterm of S1(b1). j.scriptstate except

for S1(b1). j.scriptstate.tagKey, and

• S1(b1). j.origin ̸≡ ⟨dr1,S⟩
=⇒ k ̸≡ S1(b1). j.scriptstate.tagKey, and

• S1(b1). j.origin ̸≡ ⟨dr1,S⟩
=⇒ k ̸∈ d /0(S1(b1). j.scriptinputs), and

• S2(b2). j.origin ̸≡ ⟨dr2,S⟩
=⇒ k ̸≡ S2(b2). j.scriptstate.tagKey, and
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• S2(b2). j.origin ̸≡ ⟨dr2,S⟩
=⇒ k ̸∈ d /0(S2(b2). j.scriptinputs), and

iii. if S1(b1). j.origin= ⟨fwddomain,S⟩ then

A. S1(b1). j.script≡ script_fwd, and

B. S1(b1). j.location⇌θ S2(b2). j.location, and

C. S1(b1). j.scriptstate⇌θ S2(b2). j.scriptstate, and

D. for p= ⟨POSTMESSAGE,∗,∗,⟨tagKey,∗⟩⟩, x1 = S1(b1). j.scriptinputs| p,

and x2 = S2(b2). j.scriptinputs| p we have that for all i ∈ {1, . . . , |x|}:

• π2(πi(x1))⇌θ π2(πi(x2)), and

• π1(π3(πi(x1)))⇌θ π1(π3(πi(x2))) or

π1(π3(πi(x1))) = dr1∧π1(π3(πi(x2))) = dr2, and

• π2(π3(πi(x1)))⇌θ π2(π3(πi(x2))), and

• π4(πi(x1))⇌θ π4(πi(x2)), and

iv. if S1(b1). j.origin ̸∈ {⟨dr1,S⟩,⟨dr2,S⟩,⟨fwddomain,S⟩} then

A. S1(b1). j.location⇌θ S2(b2). j.location, and

B. S1(b1). j.referrer⇌θ S2(b2). j.referrer, and

C. S1(b1). j.scriptstate⇌θ S2(b2). j.scriptstate, and

D. S1(b1). j.scriptinputs⇌θ S2(b2). j.scriptinputs, and

E. there is no k ∈ K such that

k ∈ dN \{k}({S1(b1). j.scriptstate,S1(b1). j.scriptinputs}), and

F. ∄ l ∈ L such that l is a subterm of S1(b1). j.scriptstate or of

S1(b1). j.scriptinputs, and

f) for x ∈ {cookies,localStorage,sessionStorage,sts} we have that

S1(b1).x ⇌θ S2(b2).x .

For the domains dr1 and dr2 there are no entries in the subterms x.

⋄
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Definition 116 (Equivalence of (and Invariants for) Events). Let θ be a set of proto-tags, L be

a set of login session tokens, H be a set of nonces, and K := {k | ∃n : encs(⟨y,n⟩,k)∈ θ}. We call

E1 = (e(1)1 ,e(1)2 . . .) and E2 = (e(2)1 ,e(2)2 . . .) β -equivalent under (θ ,L,H)iff all of the following

conditions are satisfied for every i ∈ N:

1. One of the following conditions holds true:

a) e(1)i ⇌θ e(2)i and if e(1)i contains an HTTP(S) message (i.e., HTTP(S) request or

HTTP(S) response), then the HTTP nonce of this HTTP(S) message is not contained

in H,or

b) e(1)i is a DNS request from b1 to dns for dr1 and e(2)i is a DNS request from b2 to dns

for dr2, or

c) e(1)i and e(2)i are both DNS requests from any party except dns addressed to dns for a

domain unknown to the DNS server, or

d) e(1)i is a DNS response from dns to b1 for a DNS request for dr1 and e(2)i is a DNS

response from dns to b2 for a DNS request for dr2, or

e) e(1)i is an HTTP request m1 from b1 to r1 and e(2)i is an HTTP request m2 from b2 to

r2, m1 ≏θ m2, and both requests are unencrypted or encrypted (i.e., m1 and m2 are

the content of the encryption) and m1.nonce ∈ H, or

f) e(1)i is an HTTP(S) response from r1 to b1 and e(2)i is an HTTP(S) response from r2 to

b2, and their HTTP messages m1 (contained in e(1)i ) and m2 (contained in e(1)i ) are the

same except for the HTTP body g1 := m1.body and the HTTP body g2 := m2.body

which have to be g1 ⇌θ g2 and m1.nonce ∈ H and if g1 contains a dictionary key

loginSessionToken then there exists an l′ ∈ L such that

g1[loginSessionToken]≡ l′ .

2. If there exists l ∈ L such that l is a subterm of e(1)i or e(2)i then we have that e(1)i is a message

from b1 to r1 and e(2)i is a message from b2 to r2 or we have that e(1)i is a message from r1

to b1 and e(2)i is a message from r2 to b2.

3. If there exists k ∈ K such that k ∈ dN \{k}({e
(1)
i ,e(2)i }) then e(1)i is an HTTP(S) response

from r1 to b1 and eq(2)
i is an HTTP(S) response from r2 to b2 and the bodies of both HTTP

messages are of the form ⟨⟨tagKey,k⟩,∗,∗,∗⟩.

4. If e(1)i or e(2)i is an encrypted HTTP response with body g from fwd, then π1(g) is

script_fwd.
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5. If e(1)i or e(2)i is an HTTP(S) response with body g from a relying party, then it contains

a ReferrerPolicy header with value noreferrer, but does not contain any Location,

Strict-Transport-Security or Set-Cookie header and if π1(g) is a string representing

a script, then π1(g) is script_rp.

6. Neither e(1)i nor e(2)i are DNS responses from dns for domains unknown to the DNS server.

7. If e(1)i or e(2)i is an unencrypted HTTP response, then the message was sent by some

attacker.

⋄

Definition 117 (Equivalence of (and Invariants for) Configurations). We call (S1,E1,N1) and

(S2,E2,N2) α-equivalent iff there exists a set of proto-tags θ and a set of nonces H such that

S1 and S2 are γ-equivalent under (θ ,H), E1 and E2 are β -equivalent under (θ ,L,H) for L :=⋃
a∈θ loginSessionTokens(a,S1,S2), and N1 = N2. ⋄

F.4.2. Privacy Proof

We here prove Theorem 7.

Let SWS priv
= (W sp,S ,script,E0,attacker) be an SPRESSO Web system for privacy analysis.

To prove Theorem 7, we have to show that the SPRESSO Web systems SWS priv
1 and SWS priv

2 are

indistinguishable (according to Definition 17), where SWS priv
1 and SWS priv

2 are defined as follows:

Let SWS priv
1 = (W sp

1,S ,script,E0,attacker) and SWS priv
2 = (W sp

2,S ,script,E0,attacker) with

b1 := b(dr1) ∈W sp
1 and b2 := b(dr2) ∈W sp

2 challenge browsers. Further, we require W sp \
{b}= W sp

1 \{b1}= W sp
2 \{b2}. We denote the following processes in SWS priv:

dns denotes the honest DNS server,

fwd denotes the honest forwarder with domain fwddomain,

r1 denotes the honest relying party with domain dr1, and

r2 denotes the honest relying party with domain dr2.

Following Definition 15, to show the indistinguishability of SWS priv
1 and SWS priv

2 we show

that they are indistinguishable under all schedules σ . For this, we first note that for all σ , there is

only one run induced by each σ (as our Web system, when scheduled, is deterministic). We now

proceed to show that for all schedules σ = (ζ1,ζ2, . . .), iff σ induces a run σ(SWS priv
1 ) there

exists a run σ(SWS priv
2 ) such that σ(SWS priv

1 )≈ σ(SWS priv
2 ).
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We now show that if two configurations are α-equivalent, then the view of the attacker is

statically equivalent.

Lemma 28. Let (S1,E1,N1) and (S2,E2,N2) be two α-equivalent configurations. Then we have

that S1(attacker)≈ S2(attacker).

Proof. From the α-equivalence of (S1,E1,N1) and (S2,E2,N2) it follows that S1(attacker)⇌θ

S2(attacker). From Condition 9 for γ-equivalence it follows that {k | ∃n : encs(⟨y,n⟩,k) ∈ θ}∩
d /0(

⋃
i∈{1,2}, A∈Web∪Net} Si(A)) (i.e., the attacker does not know any keys for the tags contained

in its view), and therefore it is easy to see that the views are statically equivalent.

We now show that σ(SWS priv
1 )≈ σ(SWS priv

2 ) by induction over the length of σ . We first, in

Lemma 29, show that α-equivalence (and therefore, indistinguishability of the views of attacker)

holds for the initial configurations of SWS priv
1 and SWS priv

2 . We then, in Lemma 30, show that

for each configuration induced by a processing step in ζ , α-equivalence still holds true.

Lemma 29. The initial configurations (S0
1,E

0,N0) of SWS priv
1 and (S0

2,E
0,N0) of SWS priv

2 are

α-equivalent.

Proof. We now have to show that there exists a set of proto-tags θ and a set of nonces H such that

S0
1 and S0

2 are γ-equivalent under (θ ,H), E0
1 = E0 and E0

2 = E0 are β -equivalent under (θ ,L,H)

with L :=
⋃

a∈θ loginSessionTokens(a,S1,S2), and N0
1 = N0

2 = N0.

Let θ = H = L = /0. Obviously, both latter conditions are true. For all parties p ∈W sp
1 \{b1},

it is clear that S0
1(p) = S0

2(p). Also the states S0
1(b1) and S0

2(b2) are equal. Therefore, all

conditions of Definition 115 are fulfilled. Hence, the initial configurations are α-equivalent.

Lemma 30. Let (S1,E1,N1) and (S2,E2,N2) be two α-equivalent configurations of SWS priv
1 and

SWS priv
2 , respectively. Let ζ = ⟨ci,cp,τprocess,cmdswitch,cmdwindow,τscript,url⟩ be a Web system

command. Then, ζ induces a processing step in either both configurations or in none. In the

latter case, let (S′1,E
′
1,N

′
1) and (S′2,E

′
2,N

′
2) be configurations induced by ζ such that

(S1,E1,N1)
ζ−→ (S′1,E

′
1,N

′
1) and (S2,E2,N2)

ζ−→ (S′2,E
′
2,N

′
2) .

Then, (S′1,E
′
1,N

′
1) and (S′2,E

′
2,N

′
2) are α-equivalent.

Proof. Let θ be a set of proto-tags and H be a set of nonces for which α-equivalence of

(S1,E1,N1) and (S2,E2,N2) holds and let L :=
⋃

a∈θ loginSessionTokens(a,S1,S2), K := {k |
∃n : encs(⟨y,n⟩,k) ∈ θ}.
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To induce a processing step, the ci-th message from E1 or E2, respectively, is selected. Follow-

ing Definition 116, we denote these messages by e(1)i or e(2)i , respectively. We now differentiate

between the receivers of the messages.

We first note that due to the α-equivalence, ζ either induces a processing step in both con-

figurations or in none. We have to analyze the conditions stated in Corollary 2: The number of

waiting events is the same in both configurations, and therefore, (ci > |E1|) ⇐⇒ (ci > |E2|).
Further, the set of processes is the same (except for the browsers, which are exchanged but have

the same IP addresses). Also, we have no processes that share IP addresses within each system.

Therefore, if cp ̸= 1 then it refers to no process in both runs (and no processing step can be

induced). As we show below, if e(1)i is delivered to b1 then and only then e(2)i is delivered to b2.

Additionally, the window structure in both browsers is the same, and therefore, cmdwindow either

refers to a window that exists in both configurations or in none. There are no other cases that

induce no processing step in either system.

We denote the induced processing steps by

(S1,E1,N1)
⟨a1, f1,m1⟩→p1−−−−−−−−→

p1→E(1)
out

(S′1,E
′
1,N

′
1) and

(S2,E2,N2)
⟨a2, f2,m2⟩→p2−−−−−−−−→

p2→E(2)
out

(S′2,E
′
2,N

′
2) .

Case p1 = fwd:. We know that one of the cases of Case 1 of Definition 116 must apply for e(1)i

and e(2)i . Out of these cases only Case 1a applies. Hence, p2 = fwd.

In the forwarder relation (Algorithm F.4), either Lines 3f. are executed in both processing

steps or in none. It is easy to see that E(1)
out ⇌θ E(2)

out (containing at most one event). For this new

event all cases of Definition 116 except for Cases 2 and 1 hold trivially true.

(*): As both events are static except for IP addresses, the HTTP nonce, and the HTTPS key,

there is no k contained in the input messages or in the state of fwd (except potentially in tags,

from where it cannot be extracted), and the output messages are sent to f1 or f2, respectively,

they cannot contain any l ∈ L or k ∈ K. Hence, Case 2 of Definition 116 holds true.

Both output events are constructed exactly the same out of their respective input events and

Case 1a applies for the output events.

Therefore, E ′1 and E ′2 are β -equivalent under (θ ,H,L). As there are no changes to any state,

we have that S′1 and S′2 are γ-equivalent under (θ ,H). No new nonces are chosen, hence, N1 =

N′1 = N2 = N′2.

Case p1 = dns:. In this case, only Cases 1a, 1b and 1c of Definition 116 can apply. Hence,

p2 = dns. We note that (*) applies analogously in all cases.
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In the first case, it is easy to see that E(1)
out ⇌θ E(2)

out . In the second case, it is easy to see that the

DNS server only outputs empty events in both processing steps. In the third case, E(1)
out and E(2)

out

are such that Case 1d of Definition 116 applies.

Therefore, E ′1 and E ′2 are β -equivalent under (θ ,H,L) in all three cases. As there are no

changes to any state in all cases, we have that S′1 and S′2 are γ-equivalent under (θ ,H). No new

nonces are chosen, hence, N1 = N′1 = N2 = N′2.

Case p1 = r1:. First, we consider cases that can never happen or are ignored in both processing

steps. After this, we distinct several cases of HTTPS requests.

If e(1) is a DNS response, we know that e(1)i ⇌θ e(2)i , which implies p2 = r1. Only DNS

responses from dns are processed by a relying party, other DNS responses are dropped without

any state change. As the state of a relying party fulfills Condition 6 of Definition 115 (RPs only

query domains unknown to dns) and both e(1)i and e(2)i fulfill Condition 6 of Definition 116 (there

are no DNS responses from dns about domains unknown to dns), we have a contradiction. Hence,

e(1)i cannot be a DNS response.

If e(1) is an HTTP response, we know that e(1)i ⇌θ e(2)i , which implies p2 = r1. From Condi-

tion 7 of Definition 115, we know that relying parties always drop HTTP responses (without any

state change).

If e(1)i is any other message that is not a (properly) encrypted HTTP request, we have that

e(1)i ⇌θ e(2)i , which implies p2 = r1. The relying party drops such messages in both processing

steps (without any state change).

For the following, we note that a relying party never sends unencrypted HTTP responses.

There are three possible types of HTTP requests that are accepted by r1 in Algorithm F.3:

• path = / (index page), Line 28,

• path = /startLogin (start a login), Line 31, and

• path = /login (login), Line 43.

From the cases in Definition 116, only two can possibly apply here: Case 1a and Case 1e. For

both cases, we will now analyze each of the HTTP requests listed above separately.

Definition 116, Case 1a: e(1)i ⇌θ e(2)i . This case implies p2 = r1 = p1. As we see below, for the

output events E(1)
out and E(2)

out (if any) only Case 1a of Definition 116 applies. This implies that

the output events may not contain any HTTP nonce contained in H. As we know that the HTTP

nonce of the incoming HTTP requests is not contained in H and the output HTTP responses (if

any) of the RP reuses the same HTTP nonce, the nonce of the HTTP responses cannot be in H.

• path = /. In this case, the same output event is produced, i.e. E(1)
out = E(2)

out , and Condition 5

of Definition 116 holds true. Also, (*) applies. The remaining conditions are trivially
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fulfilled and E ′1 and E ′2 are β -equivalent under (θ ,H,L). As there are no changes to any

state, we have that S′1 and S′2 are γ-equivalent under (θ ,H). No new nonces are chosen,

hence, N1 = N′1 = N2 = N′2.

• path = /startLogin. The domains of the email addresses in both message bodies are

either equivalent and registered to the DNS server (and hence, wkCache contains a public

key for this domain), or they are not contained in wkCache (in both, S1(r1) and S2(r1)).

If they are unknown (i.e., not contained in wkCache), they are not registered in the DNS

server. Nonetheless, in this case a DNS request is sent to dns. Then, the terms E(1)
out and E(2)

out

contain a request matching Case 1a of Definition 116. As E(1)
out and E(2)

out are constructed

such that besides IP addresses, a string, and a nonce, they only contain a term derived

from the input events. In particular, they contain no k ∈ K or l ∈ L (**): As Condition 2

of Definition 116 applies for the input events, i.e., they do not contain a subterm l ∈ L, the

same condition also applies for the output events. Thus, E ′1 and E ′2 are β -equivalent under

(θ ,H,L). The states S′1(r1) is equal to S1(r1) up to the subterm pendingDNS, and S′2(r1) is

equal to S2(r1) up to the subterm pendingDNS. The subterm pendingDNS only contains a

new entry for a domain unknown to the DNS server. Hence, Condition 6 of Definition 115

holds. Thus, we have that S′1 and S′2 are γ-equivalent under (θ ,H). Exactly one nonce is

chosen in both processing steps, and therefore N′1 = N′2.

If the domains of the email addresses are valid and registered in wkCache, then the function

SENDSTARTLOGINRESPONSE is called. In both processing steps, a tag is constructed

exactly the same. The same HTTP response (which does not contain a k ∈ K or a l ∈ L)

is put in both E(1)
out and E(2)

out . The first element of the response’s body is not a string and

therefore Condition 5 of Definition 116 holds true. The tag is only created on r1 in both

runs and hence, θ does not have to be altered. Analogously to (**) we have that E ′1 and

E ′2 are β -equivalent under (θ ,H,L). The subterm loginSessions of the state of r1 is

extended exactly the same. Thus, we have that S′1 and S′2 are γ-equivalent under (θ ,H). In

both processing steps exactly four nonces are chosen, and we have that N′1 = N′2.

• path = /login. This case can be handled analogously to the previous case with two

exceptions:

(A) First, there are two additional checks, the first in Line 44 of Algorithm F.3 and the

second in Line 55. We have to show that both checks each either simultaneously succeed

or fail in both cases.

For the first check, it is easy to see that this follows from m1 ⇌θ m2.

As we have that m1 ⇌θ m2, and in particular eia1 := body1[eia]⇌θ body2[eia] =: eia2,
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both, eia1 and eia2 have the same structure. If this structure does not match the expected

structure (see Line 52f.), the checks in both processing steps fail.

If r1 accepts the identity assertion, then we have that the tag, the email address and the

forwarder domain must be equal in m1 and m2 as

S1(r1).loginSessions[body1[loginSessionToken]]

= S2(r1).loginSessions[body2[loginSessionToken]] .

Hence, r1 either accepts in both processing steps or in none.

(B) If r1 accepts, i.e., it does not stop with an empty message, then r2 accepts. A nonce is

chosen exactly the same in both processing steps. Hence, we have that N′1 = N′2.

Definition 116, Case 1e: e(1)i is an HTTP(S) request from b1 to r1 and e(2)i is an HTTP(S) request

from b2 to r2. This case implies p2 = r2.

We note that Condition 5 of Definition 116 holds for the same reasons as in the previous case.

As the response is always addressed to the IP address of b1 or b2, respectively, Condition 5 of

Definition 116 is fulfilled.

As we see below, for the output events E(1)
out and E(2)

out (if any) only Case 1f of Definition 116

applies. This implies that the output events must contain an HTTP nonce contained in H. As we

know that the HTTP nonce of the incoming HTTP requests is contained in H and the output HTTP

responses (if any) of the RP reuses the same HTTP nonce, the nonce of the HTTP responses is

in H.

• path = /. In this case, the output events produced (containing no l ∈ L or k ∈ K result in

E ′1 and E ′2 being β -equivalent under (θ ,H,L) according to Definition 116, Case 1f. As

there are no changes to any state, we have that S′1 and S′2 are γ-equivalent under (θ ,H).

No new nonces are chosen, hence, N1 = N′1 = N2 = N′2.

• path = /startLogin. As above, both email addresses in the input events are either

equivalent and their domain (say, domain) is known to the relying parties, or both email

address domains are unknown. The latter case is analogue to above.

Otherwise, wkCache, then SENDSTARTLOGINRESPONSE is called. In both processing

steps, a tag is constructed the same up to the RP domain dr1 or dr2, respectively.

In both processing steps, an HTTP response is created. We denote the HTTP response
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generated by r1 as m′1 and the one generated by r2 as m′2. We then have that

m′1 = encs(⟨HTTPResp,n,200,⟨⟩,g1⟩,k)

m′2 = encs(⟨HTTPResp,n,200,⟨⟩,g2⟩,k)

with

g1 = ⟨⟨tagKey,ν2⟩,⟨loginSessionToken,ν4⟩,⟨FWDDomain,S1(r1).FWDDomain⟩,

⟨loginURL, loginURL1⟩⟩

g2 = ⟨⟨tagKey,ν2⟩,⟨loginSessionToken,ν4⟩,⟨FWDDomain,S2(r2).FWDDomain⟩,

⟨loginURL, loginURL2⟩⟩

with

loginURL1 = ⟨URL,S,domain,/.well-known/spresso-login,params1⟩

loginURL2 = ⟨URL,S,domain,/.well-known/spresso-login,params2⟩

with

params1 = ⟨⟨email,email⟩,⟨tag, tag1⟩,⟨iaKey,ν3⟩,

⟨FWDDomain,S1(r1).FWDDomain⟩⟩

params2 = ⟨⟨email,email⟩,⟨tag, tag2⟩,⟨iaKey,ν3⟩,

⟨FWDDomain,S2(r2).FWDDomain⟩⟩

with

tag1 = encs(⟨dr1,ν1⟩,ν2)

tag2 = encs(⟨dr2,ν1⟩,ν2)

Obviously, m′1 equals m′2 up to tag1 and tag2. For N1 = N2 = (n1,n2, . . .), we set θ ′ =

θ ∪ {encs(⟨y,n1⟩,n2)}, N′1 = N′2 = (n5, . . .) (as exactly four nonces are chosen in both

processing steps), and L′ = L∪{n4}. We have that tag1 ⇌θ ′ tag2 and hence, m′1 ⇌theta′

m′2. The receiver of both messages is the browser b1 or b2, respectively. Obviously, it

holds that L′ =
⋃

a∈θ ′ loginSessionTokens(a,S
′
1,S
′
2) and there exists an l′ ∈ L′ such that

g1[loginSessionToken]≡ l′. As Conditions 1f and 3 of Definition 116 hold, E ′1 and E ′2
are β -equivalent under (θ ′,H,L′). The subterm loginSessions of S1(r1) is extended
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exactly the same as the subterm loginSessions of S2(r2). Thus, we have that S′1 and S′2
are γ-equivalent under (θ ′,H). (As mentioned above, in both processing steps exactly four

nonces are chosen, and we have that N′1 = N′2.)

• path = /login.

This case can be handled analogously to the previous case with two exceptions:

(A) First, there are two additional checks, the first in Line 44 of Algorithm F.3 checks the

origin header and the second in Line 55 checks the identity assertion.

As we know that m1 ≏θ m2, we have that if the first check fails in r1 then and only then it

fails in r2. The same holds true for the second check.

If r1 accepts the identity assertion, then we have that the email address must be equal in

m1 and m2 as

S1(r1).loginSessions[body1[loginSessionToken]]

=S2(r1).loginSessions[body2[loginSessionToken]] .

and we have that the identity assertion in g1 is valid for r1, i.e., signed correctly and

contains a tag for dr1, and thus, the identity assertion in g2 is valid for r2. Hence, r1 and r2

either accept in both processing steps or in none.

(B) If r1 accepts, i.e., it does not stop with an empty message, we know that r2 accepts. A

nonce is chosen exactly the same in both processing steps. Hence, we have that N′1 = N′2.

Case p1 = r2:. This case is analogue to the case p1 = r1 above. Note that the Case 1e of

Definition 116 cannot occur by definition.

Case p1 = b1:. =⇒ p2 = b2

We now do a case distinction over the types of messages a browser can receive.

DNS response For the input events either Condition 1a of Definition 116 or Condition 1d

apply. Therefore, the DNS request/response nonces in both events are equivalent up to RP

domains under a set of proto-tags θ . From Condition 12b of Definition 115, we know that

for a given nonce, there is either an entry in the dictionary pendingDNS in both browsers

or in none. There are no entries under keys that are not nonces. Hence, both browsers

either continue processing the incoming DNS response or stop with no state change and

no output events in Line 67 of Algorithm A.9. Further, we note that the resolved address

contained in the DNS response has to be an IP address.
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From Condition 12b of Definition 115, we know that the protocol in both stored HTTP

requests is the same. Therefore, the browsers either both choose a nonce (for HTTPS

request) or none.

There can now be two cases: (I) The IP addresses in both DNS responses are the same or

(II) the IP address in m1 is an IP address of r1 and the IP address in m2 is an IP address

of r2. In both cases, the pending requests of the respective browsers are amended in such

a way that they fulfill Condition 12c (as they fulfilled Condition 12b, which is essentially

the same for HTTP(S) requests).

For E(1)
out and E(2)

out , we have that in Case (I) E(1)
out ⇌θ E(2)

out and hence Condition 1a of

Definition 116 is fulfilled. In Case (II), the output messages fulfill Condition 1e.

From Condition 2 of Definition 116, we know that no l ∈ L is contained in the DNS

responses. Further, we know from Condition 1d of Definition 116 that if the IP addresses

in the DNS responses differ, then they are responses for dr1 and dr2, respectively. From

Condition 12b of Definition 115, we know that only requests (prepared) for dr1 and dr2,

respectively, may contain a subterm l ∈ L. Hence, Condition 2 of Definition 115 holds

true.

We also have that no k∈K is contained in the response (with Condition 3 of Definition 115).

There is also no k ∈ K contained in the browser’s pending HTTP requests, and therefore,

there is none in the output events.

We have that S′1 and S′2 are γ-equivalent under (θ ,H), E ′1 and E ′2 are β -equivalent under

(θ ,H,L), N′1 = N′2, and thus, the new configurations are α-equivalent.

HTTP response In this case, it is clear that the HTTP(s) response nonce, which has to match

the nonce in the browser’s pendingRequests, is either the same in both messages m1 and

m2 or it contains a tag. If it contains a tag (with Condition 12c of Definition 115) or if it

contains a nonce that is not in pendingRequests (which contains the same nonces for

both browsers), both browsers stop and do not output anything or change their state.

We can now distinguish between two cases: In both browsers, (I) the reference that is stored

along with the HTTP nonce is a reference for a “normal” HTTP(S) request (the reference

is a term of the form ⟨REQ,x⟩ with x being a nonce used as a window reference), or (II) the

reference is a reference for an XHR (the reference is a term of the form ⟨XHR,x,y⟩ with x

being a nonce used as a window reference and y some term chosen by the script that sent

the request). From Condition 12c of Definition 115 it is easy to see that no other cases are

possible (in particular, the reference in both browsers is the same).

(I) In Case (I), we can distinguish between the following two cases:
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a) The HTTP nonce in m1 is in H: In this case, only Case 1f of Definition 116

can apply. We therefore have that there is no Location, Set-Cookie or Strict-

Transport-Security header in the response, and that the responses m1 and m2 are

equal up to proto-tags in θ . From Case 12c of Definition 115 we have that in

both browsers b1 and b2 the encryption keys stored in pendingRequests are

the same, that the expected sender in e(1)i is r1 and in e(2)i is r2.

With this, we observe that both browsers either accept and successfully decrypt

the messages and call the function PROCESSRESPONSE, or both browsers

stop with not state change and no output event (in which case the α-equivalence

is given trivially). In particular we note that the expected sender in both cases

matches precisely the sender the message has (compare Case 1f of Defini-

tion 116).

In PROCESSRESPONSE, we see that no changes in the browsers’ cookies are

performed (as no cookies are in the response), the sts subterm is not changed,

and no redirection is performed (as no Location header is present).

Now, new documents are created in each browser. These have the form

⟨ν7, location,referrer,script,scriptstate,⟨⟩,⟨⟩,⊤⟩

with

location = ⟨URL,protocol,host,path,parameters⟩ .

Here, script, scriptstate are the same and protocol, path, parameters are taken

from the requests, which means that these subterms are equal or term-equivalent

up to proto-tags θ according to Case 12c of Definition 115. The host and the

referrer are the same in both states up to exchange of domains, which can be dr1

in b1 and dr2 in b2.

We note that if k ∈ K, then the request will not be of the correct form to be

parsed into a document in the browser, and both browsers stop with an empty

output and no state change.

The browser now attaches these newly created documents to its window tree,

and we have to check that the Condition 12e of Definition 115 is satisfied.

As we have that both incoming messages were encrypted messages (see Case 7

of Definition 116) and both messages come from r1 and r2, respectively, and

therefore script is script_rp (see Case 5 of Definition 116) we have to check
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Condition 12(e)ii of Definition 115 in particular.

The scriptstate is initially equal and may contain a subterm l ∈ L (as we know

from HTTP nonce in m1 being in H that the host of this document is dr1 in

b1 and dr2 in b2), and the script inputs are empty. The document’s referer is

constructed from the referer header of the request, which is term-equivalent up

to θ in both cases (note that for dr1 and dr2, we have that their Referrer Policies

always prevent this header to be set, see Case 12(e)iiB of Definition 115).

To sum up, γ-equivalence under (θ ,H) is preserved. α-equivalence is preserved

as no output event is generated and the exact same number of nonces are chosen.

b) The HTTP nonce in m1 is not in H: In this case we have that e(1)i ⇌θ e(2)i

(Case 1a of Definition 116), and that the HTTP nonces, senders, encryption keys

(if any) and original requests in the pending requests of both browsers are either

equal or equivalent up to proto-tags θ . There can be no k ∈ K as a subterm

(except in tags) of the input.

With this, we observe that both browsers either accept and successfully decrypt

the messages and call the function PROCESSRESPONSE, or both browsers

stop with no state change and no output event (in which case the α-equivalence

is given trivially). In particular we note that the expected sender in both cases

matches precisely the sender of the message (as it is equal).

If there is a Set-Cookie header in one of the responses, a new entry in the cookies

of each browsers is created (which obviously is term-equivalent up to θ , and

therefore is in compliance with the requirements for γ-equivalence). The same

holds true for any Strict-Transport-Security headers.

Now, if there is a Location header in m1 (and therefore also in m2), a new request

is generated and stored under the pending DNS requests, and a DNS request

is sent out. The new HTTP(S) requests contains the method, body, and Origin

header of the original request (which were equivalent up to proto-tags θ ), where

the Origin header is amended by the host and protocol of the original request.

Also, we know from e(1)i ⇌θ e(2)i that neither event may contain a subterm l ∈ L

or k ∈ K. Hence, the transferred (initial) scriptstate (or a request generated by a

Location header, see below) cannot contain a subterm l ∈ L or k ∈ K.

Now, assuming that the domain in the Location header was not CHALLENGE, then

the new request is term-equivalent under θ between both browsers. A new DNS

request is generated (which conforms to Condition 1a of Definition 115). It is
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sent out and the HTTP request is stored in the pending DNS requests of each

browser. It is clear that in this case, the conditions for γ-equivalence under (θ ,H)

(in particular, Condition 12b) and β -equivalence under (θ ,H,L) are satisfied.

The same number of nonces is chosen. Altogether, α-equivalence is given.

If, however, the domain is CHALLENGE (and the browser has not started a request

to CHALLENGE before; in this case the browser would behave as above), then

the domain is dr1 in b1 and dr2 in b2. In particular, in the resulting requests,

the Host header is exchanged in this way. For alpha equivalence to hold for

the new configuration, we have H ′ = H ∪ {n}, where n is the nonce chosen

for the HTTP(S) request. A new DNS request is generated (which in this case

conforms to Condition 1b of Definition 115). Therefore, we have γ-equivalence

under (θ ,H ′) and β -equivalence under (θ ,H ′,L). The same number of nonces

is chosen, and we indeed have α-equivalence.

If there is no Location header in m1 (and therefore none in m2), a new document

is constructed just as in the case when the nonce in m1 is in H.

The scriptstate is initially equal, and the script inputs are empty. The document’s

referer is constructed from the referer header of the request, which is equal in

both cases (up to proto-tags in θ ).

To sum up, γ-equivalence under (θ ,H) is preserved in this case as well. α-

equivalence is preserved as no output event is generated and the exact same

number of nonces are chosen.

(II) In Case (II), i.e., the response is a response to an XHR, we have that reference is

a tupel, say, reference = ⟨XHR,docnonce,xhrref ⟩, and we again distinguish between

the two cases as above:

a) The HTTP nonce in m1 is in H: In this case, only Case 1f of Definition 116

can apply. We therefore have that there is no Location, Set-Cookie or Strict-

Transport-Security header in the response, and that the responses m1 and m2 are

equal up to proto-tags in θ . From Case 12c of Definition 115 we have that in

both browsers b1 and b2 the encryption keys stored in pendingRequests are

the same and that the expected sender in e(1)i is r1 and in e(2)i is r2.

With this, we observe that both browsers either accept and successfully decrypt

the messages and call the function PROCESSRESPONSE, or both browsers

stop with not state change and no output event (in which case the α-equivalence

is given trivially). In particular we note that the expected sender in both cases
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matches precisely the sender of the message (compare Case 1f of Definition 116).

In PROCESSRESPONSE, we see that no changes in the browsers’ cookies are

performed (as no cookies are in the response), the sts subterm is not changed,

and no redirection is performed (as no Location header is present).

A new input is constructed for the document that is identified by docnonce. We

note that such a document exists either in both browsers or in none (in which,

again, both browsers stop with no output or state change). As the input events

may contain a subterm l ∈ L (as we know from HTTP nonce in m1 being in

H that the host of this document is dr1 in b1 and dr2 in b2), the constructed

scriptinput may also contain a subterm l ∈ L. The same holds true for keys

k ∈ K.

For j ∈ {1,2}, we have that the scriptinput term for the document in b j is

⟨XMLHTTPREQUEST,gj.body,xhrref ⟩, where g j is the HTTP body of m j. With

g1 ⇌θ g2 and xhrref ∈N ∪{⊥}, it is easy to see that the resulting scriptinput

term of the document is term-equivalent under proto-tags θ (as it was before).

This satisfies γ-equivalence on the new browser state.

No output event is generated, and no nonces are chosen. Therefore we have

α-equivalence on the new configuration.

b) The HTTP nonce in m1 is not in H: In this case we have that e(1)i ⇌θ e(2)i

(Case 1a of Definition 116), and that the HTTP nonces, senders, encryption keys

(if any) and original requests in the pending requests of both browsers are either

equal or equivalent up to proto-tags θ .

With this, we observe that both browsers either accept and successfully decrypt

the messages and call the function PROCESSRESPONSE, or both browsers

stop with not state change and no output event (in which case the α-equivalence

is given trivially). In particular we note that the expected sender in both cases

matches precisely the sender the message has (as it is equal).

If there is a Set-Cookie header in one of the responses, a new entry in the cookies

of each browsers is created (which obviously is term-equivalent up to θ , and

therefore is in compliance with the requirements for γ-equivalence). The same

holds true for any Strict-Transport-Security headers.

Now, if there is a Location header in m1 (and therefore also in m2), both browsers

stop with not state change and no output event (in which case the α-equivalence

is given trivially), as XHR cannot be redirected in the browser.
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If there is no Location header in m1 (and therefore none in m2), a new input is

constructed for the document that is identified by docnonce. We note that such a

document exists either in both browsers or in none. For j ∈ {1,2}, we have that

the scriptinput for the document in b j is ⟨XMLHTTPREQUEST,gj.body,xhrref ⟩,
where g j is the HTTP body of m j. With e(1)i ⇌θ e(2)i (which may not contain a

subterm l ∈ L or k ∈ K), it is easy to see that the resulting scriptinput term of the

document is term-equivalent under proto-tags θ (as it was before). This satisfies

γ-equivalence on the new browser state.

No output event is generated, and no nonces are chosen. Therefore we have

α-equivalence on the new configuration.

TRIGGER We now distinguish between the possible values for cmdswitch.

script (trigger script): In this case, the script in the window indexed by cmdwindow is

triggered. Let j be a pointer to that window.

We first note that such a window exists in b1 iff the window exists in b2 and that

S1(b1). j.script ≡ S2(b2). j.script. We now distinguish between the following

cases, which cover all possible states of the windows/documents:

1. S1(b1). j.origin ∈ {⟨dr1,S⟩,⟨dr2,S⟩}.

In this case, it immediately follows from Case 12(e)iiA of Definition 115 that

S1(b1). j.script≡ script_rp.

Similar to the following scripts, the main distinction in this script is between the

script’s internal states (named q). With the term-equivalence under proto-tags

θ we have that either S1(b1). j.scriptstate.q = S2(b2). j.scriptstate.q or

the scriptstate contains a tag and is therefore in an illegal state (in which case

the script will stop without producing output or changing its state).

We can therefore now distinguish between the possible values of the states of

the script S1(b1). j.scriptstate.q= S2(b2). j.scriptstate.q:

start: In this case, the script chooses one nonce in both processing steps and

creates an XHR addressed to its own origin, which is in both cases either (a)

equal and ⟨dr1,S⟩ or ⟨dr2,S⟩ or it is (b) ⟨dr1,S⟩ in b1 and ⟨dr2,S⟩ in b2. The

path is the (static) string /startLogin. The script saves the freshly chosen

nonce (referencing the XHR) and a (static) value for q in its scriptstate. We

note that if a k ∈ K is contained in the scriptstate, it is never sent out in this

state.
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In Case (a), we have that the command is term-equivalent under proto-tags

θ and hence, the browser emits a DNS request which is term-equivalent,

and appends the XHR in pendingDNS. Hence, we have γ-equivalence under

(θ ,H) for the new states, β -equivalence under (θ ,H,L) for the new events,

and α-equivalence for the new configuration.

In Case (b), we have that the prepared HTTP request is δ -equivalent under

θ , and is added to pendingDNS in the browser’s state, we set H ′ := H∪{n}
with n being the nonce that the browser chooses for λ1. The browser emits

a DNS request that fulfills Condition 1b of Definition 116. Therefore, we

have γ-equivalence under (θ ,H ′) for the new states. As the request added

to pendingDNS in the browser’s state fulfills Condition 12b, we have β -

equivalence under (θ ,H ′,L) for the new events, and α-equivalence for the

new configuration.

expectStartLoginResponse: In this case, the script retrieves the result of an

XHR from scriptinputs that matches the reference contained in scriptstate.

From Condition 12(e)ii of Definition 115 we know that all results from

XHRs in scriptinput are term-equivalent up to θ and that scriptstate is term-

equivalent up to θ . Hence, in both browsers, both scripts stop with an empty

command or both continue as they successfully retrieved such an XHR.

The script always outputs the same command to the browser: it commands to

navigate a new window to a URL that is taken as an unaltered subterm from

scriptinput. Hence, the URLs used in both cases are also term-equivalent

up to θ .

We have to distinguish between to cases: Either the origin of the document

is (i) equal in b1 and b2, or (ii) the origin is ⟨dr1,S⟩ in b1 and ⟨dr2,S⟩ in

b2. In the first case (i), no subterm l ∈ L is contained in scriptinput and

hence, no such subterm is contained in the URL that the script outputs. In

the second case (ii), however, we have that such a subterm may be contained

in scriptinput.

In Case (i) we also have that no k ∈K is written into scriptstate.tagKey.

Otherwise, a k ∈ K may be written there. In no case, a k ∈ K is contained

in the output event or generated HTTP request (as scriptstate.tagKey

is not used to create such event or request).

The output events of both browsers are either a DNS request that is equal
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in (i) or a DNS request that matches Condition 1b of Definition 116. In any

case, as the HTTP request that is generated (and then stored in pendingDNS)

contains neither an Origin nor a Referer header, they are term-equivalent

under θ if the domain of this HTTP request is not CHALLENGE2 and δ -

equivalent otherwise.

In both cases (challenged or not), we have that E(1)
out ⇌θ E(2)

out and hence

Condition 1a of Definition 116 is fulfilled, or the output messages fulfill

Condition 1e.

We now have that S′1 and S′2 are γ-equivalent under (θ ,H), E ′1 and E ′2 are

β -equivalent under (θ ,H,L), and as exactly the same number of nonces is

chosen, we have that the new configuration is α-equivalent.

expectFWDReady: In this case, the script retrieves the result of a postMes-

sage from scriptinputs. As we know that the scriptstates are term-equivalent

up to θ , i.e., S1(b1). j.scriptstate⇌θ S2(b2). j.scriptstate, and that

for all matching postMessages that they also have to be term-equivalent up

to θ and that the window structure is equal in both browsers, we have that

either the same postMessage is retrieved from scriptinputs or none in both

browsers.

The script now constructs a postMessage that is sent to exactly the same

window in both browsers and that requires that the receiver origin has to

be ⟨fwddomain,S⟩ The postMessage is only sent to this origin, we have

that γ-equivalence cannot be violated even if a k ∈ K is contained in the

postMessage (as there are no constraints concerning K in the script inputs

of this origin).

We now have that S′1 and S′2 are γ-equivalent under (θ ,H), E ′1 and E ′2 are

β -equivalent under (θ ,H,L), and as exactly the same number of nonces is

chosen, we have that the new configuration is α-equivalent.

expectEIA: In this case, the script retrieves the result of a postMessage from

scriptinputs. As we know that the scriptstates are term-equivalent up to

θ , i.e., S1(b1). j.scriptstate⇌θ S2(b2). j.scriptstate, and that for all

matching postMessages that they also have to be term-equivalent up to θ and

that the window structure is equal in both browsers, we have that either the

same postMessage is retrieved from scriptinputs or none in both browsers.

2This also applies when the browser challenged before, i.e., challenge in the browser’s state is ⊥.
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The script chooses one nonce in both processing steps and creates an XHR

addressed to its own origin, which is in both cases either (a) equal and

⟨dr1,S⟩ or ⟨midr2,S⟩ or it is (b) ⟨dr1,S⟩ in b1 and ⟨midr2,S⟩ in b2. The

path is the (static) string /login. The script saves the freshly chosen nonce

(referencing the XHR) and a (static) value for q in its scriptstate.

In Case (a), we have that the command is term-equivalent under proto-tags

θ and hence, the browser emits a DNS request which is term-equivalent,

and appends the XHR in pendingDNS. Hence, we have γ-equivalence under

(θ ,H) for the new states, β -equivalence under (θ ,H,L) for the new events,

and α-equivalence for the new configuration.

For Case (b), we note that for j ∈ {1,2}, the body g j of the prepared HTTP

request may contain an (encrypted) identity assertion such that

g j[eia]∼ encs(sig(⟨encs(⟨dr j,∗⟩,∗),∗,fwddomain⟩,∗),∗) .

As the receiver of this message is always determined to be dr j (in b j) and the

Origin header is set accordingly, we have that the prepared HTTP request

is δ -equivalent under θ . The (prepared) request is added to pendingDNS

in the browser’s state, we set H ′ := H ∪{n} with n being the nonce that

the browser chooses for λ1. The browser emits a DNS request that fulfills

Condition 1b of Definition 116. In no case is a k ∈ K, which can only be

stored in scriptstate.tagKey used to construct either output events or

state changes. Therefore, we have γ-equivalence under (θ ,H ′) for the new

states. As the request added to pendingDNS in the browser’s state fulfills

Condition 12b, we have β -equivalence under (θ ,H ′,L) for the new events,

and α-equivalence for the new configuration.

2. S1(b1). j.origin= ⟨fwddomain,S⟩.

It immediately follows that S1(b1). j.script≡ script_fwd in this case.

As above, we have that either the scriptstates are term-equivalent up to θ , i.e.,

S1(b1). j.scriptstate.q = S2(b2). j.scriptstate.q, or the scriptstate con-

tains a tag and is therefore in an illegal state (in which case the script will

stop without producing output or changing its state).

With the equivalence of the window structures we have that the target variable

in the algorithm of script_fwd in both runs points to a window containing the

same script in both runs.
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We can now distinguish between the possible values of the states of the script

S1(b1). j.scriptstate.q= S2(b2). j.scriptstate.q:

start In this case, a postMessage with exactly the same contents is sent to the

same window. We therefore trivially have γ-equivalence under (θ ,H) on

the states in this case. No output events are generated, and no nonces are

used. Therefore, α-equivalence holds on the new states.

expectTagKey In this case, for any change in the state to occur, a postMessage

containing some term under the (dictionary) key tagKey sent from exactly

the same window has to be in scriptinputs. From Condition 12(e)iii of

Definition 115 we know that in scriptinputs either such a postMessage exists

in both browsers or in none.

As the tag contained in the postMessages is term-equivalent under proto-tags

theta, we have that the RP domain inside the tag is either the same in both

processing steps or dr1 in b1 and dr2 in b2. Additionally, eia (if contained

in the URL parameters in the location of the script) is term-equivalent under

proto-tags theta. It follows that the resulting postMessage, which contains

eia, is either delivered to the receiver (which is either equal in both browsers

or dr1 in b1 and dr2 in b2). Additionally, no k ∈ K can be contained in the

eia, as it is taken from the document’s location. In any case, the resulting

browser states are γ-equivalent under (θ ,H).

As no output events are produced, we have that E ′1 and E ′2 are β -equivalent

under (θ ,H,L). As exactly the same number of nonces are chosen (in

fact, no nonces are chosen), we have that the resulting configuration is α-

equivalent.

3. S1(b1). j.origin ̸∈ {⟨dr1,S⟩,⟨dr2,S⟩,⟨fwddomain,S⟩}.

Here, we assumte that the script in this case is the the attacker script Ratt, as it

subsumes all other scripts.

We first observe, that its “view”, i.e., the input terms it gets from the browser, is

term-equivalent up to proto-tags θ between (the scripts running in) S1(b1) and

S2(b2). From the equivalence definition of states (Definition 115) we can see

that:

• The window tree has the same structure in both processing steps. All win-

dow terms are equal (up to their documents subterm). All same-origin

documents contain only subterms that are term-equivalent up to θ (again,
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up to their subwindows subterms). All non-same-origin documents become

limited documents and therefore are equal (up to the subwindows, limited

documents only contain the subwindows and the document nonce).

• The subterms cookies, localStorage, sessionStorage, scriptstate,

and scriptinputs are term-equivalent up to θ .

• The subterms ids and secrets are equal.

• There is not k ∈ K as a subterm (except as keys for tags) in this view. We

therefore have that no such term can be contained in the output command

of the script, or in the new scriptstate.

As the input of the script as a whole is term-equivalent up to θ , does not con-

tain any placeholders in Vscript, and does not contain a key for any tag in θ ,

we have that the output of the script, i.e., scriptstate′, cookies′, localStorage′,

sessionStorage′, command′, must be term-equivalent up to proto-tags θ (in par-

ticular, the same number of nonces is replaced in both output terms in both

processing steps). Note that the first element of the command output must be

equal between the two browsers (as it must be string) or otherwise the browsers

will ignore the command in both processing steps.

Analogously, we see that the input does not contain any subterm l ∈ L.

We can now distinguish the possible commands the script can output (again, all

parameters for these commands must be term-equivalent under θ ):

a) Empty or invalid command: In this case, the browser outputs no message

and its state is not changed. α-equivalence is therefore trivially given.

b) ⟨HREF,url,hrefwindow,noreferrer⟩: Here, the browser calls the function

GETNAVIGABLEWINDOW to determine the window in which the docu-

ment will be loaded. Due to the synchronous window structure between the

two browsers, the result will be the same in both processing steps (which

may include creating a new window with a new nonce).

Now, a new HTTP(S) request is assembled from the URL. A Referer header

is added to the request from the document’s current location (which is

term-equivalent under θ ) and given to the SEND function. There, if the

host part of the URL is CHALLENGE, it will be replaced by dr1 in b1 and

by dr2 in b2. (In this case, the α-equivalence in the following holds for

H ′ := H ∪{n}, where n is the nonce of the generated HTTP request. Oth-

erwise, it holds for H ′ := H.). Afterwards, for domains that are in the sts
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subterm of the browser’s state, the request will be rewritten to HTTPS. Any

cookies for the domain in the requests are added. Note that both latter steps

never apply to requests to dr1 or dr2 as per definition, there are no entries

for these domains in sts and cookies.The requests, which are δ -equivalent

under θ are added to the pending DNS requests and fulfill Condition 12b of

Definition 115. A DNS request is created in accordance with Condition 1b

or Condition 1a of Definition 116. The same number of nonce is chosen in

both processing steps, and therefore α-equivalence holds.

c) ⟨IFRAME,url,window⟩ This case is completely parallel to Case 3b.

d) ⟨FORM,url,method,data,hrefwindow⟩ This case is parallel to Case 3b, ex-

cept that an Origin header is added. Its properties are the same as those of

the Referer header in Case 3b.

e) ⟨SETSCRIPT,window,script⟩ In this case, the same document is manipu-

lated in both processing steps in the same way. Note that only same-origin

documents, i.e., attacker documents, can be manipulated. No output event

is generated, and no nonces are chosen. α-equivalence is given trivially.

f) ⟨SETSCRIPTSTATE,window,scriptstate⟩ This case is parallel to Case 3e.

g) ⟨XMLHTTPREQUEST,url,method,data,xhrreference⟩ This case is parallel to

Case 3b with the addition of the Origin header (see Case 3d) and the addition

of a reference parameter, which is transferred into pendingDNS inside the

browser (xhrreference). Therefore, for γ-equivalence, it is important to

note that this reference can only be a nonce (and therefore is equal in both

processing steps). Otherwise, the browser stops in both processing steps.

h) ⟨BACK,window⟩, ⟨FORWARD,window⟩, and ⟨CLOSE,window⟩ If the script

outputs one of these commands, in both processing steps, the browsers will

be manipulated in exactly the same way. No output events are generated,

and no nonces are chosen.

i) ⟨POSTMESSAGE,window,message,origin⟩ In this case, a term containing

message (term-equivalent under θ ) is added to a document’s scriptinput

term. If the origin is ⊥, the same term will be added to the same document

in both processing steps. Otherwise, the term may only be added to one

document (if, for example, the origin is ⟨dr1,S⟩ and the target documents

in both browsers have the domain dr1 and dr2, respectively). In this case,

however, the equivalence defined on the scriptinputs is preserved. This
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would only be possible for script_rp and only if the sender origin was

⟨fwddomain,S⟩.

urlbar (navigate to URL): In this case, a new window is opened in the browser and a

document is loaded from url.

The states of both browsers are changed in the same way except if the domain of the

URL is CHALLENGE. In both cases, a new (at this point empty) window is created and

appended the windows subterm of the browsers. This subterm is therefore changed

in exactly the same way.

A new HTTP request is created and appended to pendingDNS. The generated re-

quests in both processing steps can only differ in the host part iff the domain is

CHALLENGE. In this case, in b1 the domain is replaced by dr1 and in b2 by dr2 and

the α-equivalence in the following holds for H ′ := H{n}, where n is the nonce of

the generated HTTP request. In both cases, the Condition 12b of Definition 115 is

satisfied.

The request cannot contain any l ∈ L or k ∈ K.

The generated DNS requests are equivalent under Condition 1b or Condition 1a of

Definition 116.

In both processing steps, three nonces are chosen.

Therefore, we have α-equivalence for (S′1,E
′
1,N

′
1) and (S′2,E

′
2,N

′
2).

reload (reload document): Here, an existing document is retrieved from its original

location again. From the definition of γ-equivalence under (θ ,H) we can see that

whatever document is reloaded, its location is either (I) term-equivalent under θ , or

(II) it is term-equivalent under θ except for the domain, which is dr1 in b1 and dr2 in

b2.

We note that in either case, the requests are constructed from the location and referrer

properties of the document that is to be reloaded, and therefore, cannot contain any

k ∈ K.

In Case (I), we note that the domain cannot be CHALLENGE. If the document is

reloaded, the same DNS request is issued in both browsers (therefore, β -equivalence

under (θ ,H,L) is given), and an entry is added to the pending DNS messages such

that we have γ-equivalence under (θ ,H). The same number of nonces is chosen in

both runs, and we have α-equivalence.

Case (II) is similar, but we have H ′ := H ∪{n}, where n is the nonce of the HTTP
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request that is added to the pending DNS entries. Then we have γ-equivalence under

(θ ,H ′). Again, the same number of nonces is chosen and we have α-equivalence.

forward (navigate window forward) and back (navigate window backward):
In both cases, the state of b1 and b2 are modified in exactly the same way, i.e., only the

information about which document is active in some window is modified. Therefore,

we have α-equivalence for (S′1,E
′
1,N

′
1) and (S′2,E

′
2,N

′
2).

Other Any other message is discarded by the browsers without any change to state or output

events.

Case p1 is some attacker:.

Here, only Case 1a from Definition 116 can apply to the input events, i.e., the input events

are term-equivalent under proto-tags θ . This implies that the message was delivered to the

same attacker process in both processing steps. Let A be that attacker process. With Case 10

of Definition 115 we have that S1(A)⇌θ S2(A) and with Case 9 and Case 3 of Definition 116

it follows immediately that the attacker cannot decrypt any of the tags in θ in its knowledge.

Further, in the attackers state there are no variables (from Vprocess).

With the output term being a fixed term (with variables) τprocess ∈ TN ({x}∪Vprocess) and x be-

ing S1(A) or S2(A), respectively, and there is no subterm l ∈ L contained in either S1(A) or S2(A)

(Condition 11 of Definition 115), it is easy to see that the output events are β -equivalent under θ ,

i.e., E(1)
out ⇌θ E(2)

out , there are not k ∈ K contained in the output events (except as encryption keys

for tags) and the used nonces are the same, i.e., N′1 = N′2. The new state of the attacker in both

processing steps consists of the input events, the output events, and the former state of the event,

and, as such, is β -equivalent under proto-tags θ . Therefore we have α-equivalence on the new

configurations.

This proves Theorem 7. ■
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