
ByteCode 2013

Field-Sensitive
Unreachability and Non-Cyclicity Analysis

Enrico Scapin and Fausto Spoto
Department of Computer Science, University of Verona, Italy
scapin@uni-trier.de, fausto.spoto@univr.it

Abstract

Field-sensitive static analyses of object-oriented code use approximations of the computational states where
fields are taken into account, for better precision. This article presents a novel and sound definite analysis of
Java bytecode that states two strictly related properties: field-sensitive unreachability between program vari-
ables and field-sensitive non-cyclicity of program variables. The latter exploits the former for better precision.
We build a data-flow analysis based on constraint graphs, whose nodes are program points and whose arcs
propagate information according to the semantics of each bytecode instruction. We follow abstract interpreta-
tion both to approximate the concrete semantics and to prove our results formally correct. Our analysis has been
designed with the goal of improving client analyses such as termination analysis, asserting the non-cyclicity
of variables w.r.t. specific fields.

Keywords: Static Analysis, Data-Flow Analysis, Constraint-Based Analysis, Field-Sensitive Analysis,
Abstract Interpretation.

1 Introduction

Static analysis builds compile-time approximations of the set of values, states or
behaviours arising dynamically, at run-time i.e., during the execution of a com-
puter program. This is important to improve the quality of software by detecting
illegal operations, such as divisions by zero or dereferences of null, erroneous ex-
ecutions, such as infinite loops, or security flaws, such as unwanted disclosure of
information. In order to make static analysis computable, we follow abstract inter-
pretation [1] here, a framework that lets one define a static analysis from the formal
specification of the property of interest and of the semantics of the language.

In modern object-oriented languages such as Java, a typical problem related to
the verification of real, large software programs is how the dynamic allocation of
objects shapes the heap: namely, objects can be instantiated on demand and refer-
ence other objects through fields, that can be updated at run-time. There are several

mailto:scapin@uni-trier.de
mailto:fausto.spoto@univr.it


Scapin and Spoto

articles in literature describing memory-related properties and providing pointer
analyses that statically determine approximations of the possible run-time values
of a pointer [3]. Shape analysis [10] builds the possible shapes that data structures
might assume at run-time; aliasing analysis [6] determines which variables point to
the same location; sharing analysis [13] infers which variables are bound to over-
lapping data structures; reachability analysis [7] looks for paths between locations
and non-cyclicity analysis [9] spots variables bound to non-cyclical data. In this
context, we present here a definite data-flow analysis for field-sensitive unreacha-
bility and non-cyclicity. Namely, we build an under-approximation of the program
fields that are not used in any path between two variables or in a cycle bound to
a variable, respectively. Under-approximations in the context of abstract interpre-
tation have been studied in [12] through predicate transformers where the abstract
transition function is a sound postcondition transformer of the state-transition func-
tion. A field-sensitive pointer analysis has been developed in [8], with a constraint-
based approach as ours but not for object-oriented languages with dynamic memory
allocation; instead, C and fields of structures are considered. Furthermore they ex-
tended a set constraint language and an inference system to model each field as
a separate variable. Here instead, unreachability and non-cyclicity specify which
fields cannot be used to establish the property. The work most related to ours is [2],
that introduces an acyclicity analysis as the reduced product of abstract domains
for reachability and cyclicity, over a semantics similar to ours. They highlight that
cyclicity supports reachability i.e., one can exploit unreachability information to
improve non-cyclicity analysis. The main difference with our work is that we com-
pute the fields not involved in reachability or cyclicity, getting higher precision.
Furthermore, we have provided formal correctness proofs for the propagation rules
of each bytecode instruction and method call, including its side-effects (see [11]).

Our analysis is designed with the goal of improving client analyses of the Julia
analyzer for Java and Android bytecode (www.juliasoft.com). Namely, its termi-
nation checker finds method calls that might diverge at run-time, through the path-
length property [15] i.e., an estimation of the maximal length of a path of pointers
rooted at each given program variable. For the Java instruction x = x.next, Julia
estimates the path-length of x; in the original definition, it is decreasing only if it
is possible to assert the non-cyclicity of x. With the analysis of this article, we
can now assert it more precisely, by considering the accessed field: the path-length
decreases if next belongs to the set of non-cyclical fields Fx for variable x.

2 Operational Semantics

We present here a formal operational semantics of Java bytecode, inspired by the
standard informal semantics [4]. It has been first introduced in [14] and more
widely explained in [11]. Java bytecode are the instructions executed by the Java
Virtual Machine (JVM). Our formalization is at bytecode level for reasons al-

2

http://www.juliasoft.com


Scapin and Spoto

ready highlighted in [5]: it is more faithful, as it analyzes code that is actually
executed; it enables the analysis of programs whose source code is not avail-
able; it lacks complexities such as inner classes and name resolution; the analyzer
can be applied to all the many programming languages that compile to the JVM.

class Element{

private Object value;

private Element prec , next;

public Element(Object value){

this.value=value;

}

public Element(Object value ,

Element prec){

this.value=value;

this.prec=prec;

prec.next=this;

}

}

Fig. 1: Our example

For simplicity, we assume that the only primitive
type is int and reference types are classes with in-
stance fields and methods only. Julia handles other
Java types, fields and methods. We analyze bytecode
preprocessed into a Control Flow Graph (CFG), a
directed graph of basic blocks, with no jumps inside
the blocks. Fig. 2 shows it for the second construc-
tor from Fig. 1. Exception handlers start at a catch.
A conditional, virtual method call, or selection of an
exception handler is a block with many subsequent

blocks, starting with filtering bytecodes such as excp_isK for exception handlers.

Definition 2.1 [Classes, Type environment, State] The set of classes K of a pro-
gram is partially ordered w.r.t. the subclass relation ≤. A type is an element of
T = {int} ∪ K, ordered by the extension of ≤ with int ≤ int. A class κ ∈ K has fields
κ.f : t i.e., field f of type t ∈ T defined in κ. By letting F(κ) = {κ′.f : t′ | κ ≤ κ′} be
the fields defined in κ or in any of its superclasses, we define the set of all fields
F =

⋃
κ∈K F(κ). A class κ has methods κ.m(t) : t (method m, defined in κ, with

arguments of type t, returning a value of type t ∈ T ∪ {void}).
V is the set of variables, divided in L = {l0, . . . , lm} (local variables) and

S = {s0, . . . , sn} (stack variables). A type environment is a function τ : V → T,
whose domain is written dom(τ). The set of all type environments is T . A value
is an element of Z ∪ L ∪ {null}, where L is an infinite set of memory locations.
A state over τ ∈ T is a pair 〈〈l ‖ s〉, µ〉: l is an array of values for the local vari-
ables in dom(τ); s is a stack of values for the stack variables in dom(τ), that grows
leftwards; µ is a memory that binds locations to objects. We often use another rep-
resentation: 〈ρ, µ〉, where an environment ρ maps each lk ∈ L to its value l [k ] and
each sk ∈ S to its value s[k ]. An object o has class o.κ and an internal environment
o.φ that maps every field κ′.f : t′ into its value (o.φ)(κ′.f : t′). The set of states is Ξ.
We write Ξτ when we want to fix the type environment τ.

call java.lang.Object.〈init〉() : void

load 0 Element
load 1 Object

putfield Element.value : Object

load 0 Element
load 2 Element

putfield Element.prec : Element

load 2 Element
load 0 Element

putfield Element.next : Element

return void

catch
throw java.lang.Throwable

Fig. 2: A CFG

The semantics of an instruction ins is a
partial map ins : Στ → Στ′ from initial to
final states. Number and type of local vari-
ables and stack elements at its start are speci-
fied by τ. The denotational semantics of each
bytecode instruction and the transition rules
of our Java bytecode small-step operational
semantics are given and explained in [11].

3



Scapin and Spoto

3 Field-Sensitive Properties

We formalize here field-sensitive unreachability and non-cyclicity [11].

Definition 3.1 [Locations reachable from a variable [7]] Let τ ∈ T . The set of lo-
cations reachable from a ∈ dom(τ) in a state σ = 〈ρ, µ〉 ∈ Στ is Lσ(a)=

⋃
i≥0 Li

σ(a),
where Li

σ(a) are the locations reachable from a in at most i steps: Li
σ(a) = {ρ(a)}∩L

if i = 0, and Li
σ(a) = Li−1

σ (a) ∪⋃
`∈Li−1

σ (a)(rng(µ(`).φ) ∩ L) if i > 0.

Definition 3.2 [Path between Variables] Let τ ∈ T , σ = 〈ρ, µ〉 ∈ Στ, a, b ∈ dom(τ)
and ρ(a), ρ(b) ∈ dom(µ) ⊆ L. We define a path P from a to b in σ as an n-tuple
〈κ1.f1 : t1, . . . , κn .fn : tn〉 ⊆ F such that ∃`1, . . . , `n+1 ∈ dom(µ). `1 = ρ(a), `n+1 =

ρ(b) ∧ ∀i = 1, . . . , n. (µ(`i ).φ)(κi .fi : ti ) = `i+1. We denote it by a  P
σ b.

Hence, a path from a to b is a tuple of fields starting at location ρ(a) and reach-
ing location ρ(b) by following the fields in the tuple.

Definition 3.3 [Field-Sensitive Unreachability among Variables] Let τ ∈ T , σ =

〈ρ, µ〉 ∈ Στ, F ⊆ F and a, b ∈ dom(τ). If, for each path from a to b the fields in F
are not in the path, i.e., if ∀P ⊆ F

(
a  P

σ b =⇒ P∩ F = ∅
)
, then we write a 6 F

σ b.

Definition 3.4 [Field-Sensitive Non-Cyclicity] Let τ ∈ T , σ = 〈ρ, µ〉 ∈ Στ, F ⊆ F
and a ∈ dom(τ). If, for each cycle reachable from a, the fields in F are not in the

cycle, i.e., if ∀` ∈ Lσ(a),∀P ⊆ F
(
` P

µ ` ⇒ P∩ F = ∅
)
, then we write a  

6�

F
σ .

4 Constraint-based Fields-Sensitive Analysis

We define here an abstract interpretation of the concrete semantics introduced in
Section 2 w.r.t. the two properties introduced in Section 3. This will be an actual
static analysis algorithm for interprocedural, whole-program analysis.

Definition 4.1 [Concrete and Abstract Domain] Given a type environment τ ∈ T ,
we define the concrete lattice over τ as Cτ = 〈℘(Στ),⊆〉 and the abstract lattice over
τ as Aτ = 〈URτ ∪ NCτ,⊇〉 i.e., the union of two sets: URτ = ℘(dom(τ) × dom(τ) ×
℘(F )) and NCτ = ℘(dom(τ) × ℘(F )). The former is the powerset of the product
between the set of ordered pairs of variables v ,w ∈ dom(τ) and the powerset of
the program fields F ⊆ F . Its elements are written as v 6 Fw . The latter is the
powerset of the product between the set of variables v ∈ dom(τ) and the powerset
of the program fields F ⊆ F . Its elements are written as v  

6�

F .

An abstract element I ∈ Aτ represents those concrete states in Στ whose un-
reachability and non-cyclicity information is under-approximated by the tokens in
I . Thus, we induce a definite unreachability and non-cyclicity analysis w.r.t. an
under-approximation of the set of program fields.

4



Scapin and Spoto

Definition 4.2 [Concretization map] Let τ ∈ T and I ∈ Aτ. We define the con-
cretization map γτ : Aτ → Cτ in such a way that γτ(I ) is

{
σ ∈ Στ

∣∣∣∣
(
∀a 6 Fb ∈ I ,∃F ′ ⊆ F .a 6 F ′

σ b ∧ F ⊆ F ′
)
∧

(
∀c  

6�

F∈ I ,∃F ′ ⊆ F .c  

6�

F ′
σ ∧F ⊆ F ′

) }

This map is co-additive in [11] and hence Aτ and Cτ are an abstract and concrete
domain and γτ is the concretization map of a Galois connection [1] between them.

ex
ce
pt
io
n

exit

node Anode C
catch

node 16
exception@〈init〉

node B
store 1 Element

node 13
exit@〈init〉

call Element.〈init〉(Object,Element) : void

node 1
load 0 Element

node 2
call java.lang.Object.〈init〉() : void

node 3
load 0 Element

node 4
load 1 Object

node 5
putfield Element.value : Object

node 6
load 0 Element

node 7
load 2 Element

node 8
putfield Element.prec : Element

node 9
load 2 Element

node 10
load 0 Element

node 11
putfield Element.next : Element

node 12
return void

node 14
catch

node 15
throw java.lang.Throwable

]10

#15 ]11

]3

#15

]11

]7

]3

]3

]6

]3

]3

]6

]3

]3

]6

]8

]9

]14

]14

]14

Fig. 3: The ACG of the CFG in Fig. 2

Our analysis is constraint-based, in
the sense that it builds an Abstract
Constraint Graph (ACG, see Fig-
ure 3) from the program under anal-
ysis.

Definition 4.3 [ACG] Let P be the
program under analysis (i.e., a con-
trol flow graph of basic blocks for
each method or constructor). The
Abstract Constraint Graph (ACG)
of P is a directed graph 〈V ,E 〉
(nodes, arcs) where: i) V contains
a node ins , for every bytecode in-
struction ins of P ; ii) V contains
nodes exit@m and exception@m for

each method or constructor m in P ,
and these nodes correspond to the
normal and exceptional end of m;

iii) E contains directed arcs from a source to a sink, reflecting, in abstract terms,
the effects of the concrete semantics over the unreachability and non-cyclicity in-
formation; iv) for every arc in E , there is a propagation rule Π#i , i.e., a function
over Aτ, from the information at its source(s) to the information at its sink. Its exact
definition depends on ins, since each bytecode instruction has different effects on
unreachability and non-cyclicity. The arcs in E are built from P as follows. We
assume that τ and τ′ are the static type information at and immediately after the
execution of a bytecode ins, respectively. Furthermore, we assume that τ contains
j stack elements and i local variables. We define the propagation rules as a tuple of
functions {Π#1, . . . ,Π#n}, where, if i identifies the Java bytecode instructions that
we consider, then Π#i is the propagation rule for that instruction. [11] discusses
different types of arcs depending on the bytecode instructions that they link and
defines each propagation rule: sequential arcs, final arcs, parameter passing arcs,
exceptional arcs, side-effects arcs and return value arcs.

Each propagation rule Π is proved formally correct in [11] by using the
standard technique of abstract interpretation: namely, by letting ins be a byte-
code instruction, Π a propagation rule and I ∈ Aτ, we have proved the

5



Scapin and Spoto

soundness of Π by showing that ins (γτ (I )) ⊆ γτ (Π (I )) i.e., that for each
x 6 Fy ∈ Π(I ) we have a state σ′ such that x 6 F ′

σ′ y ∧ F ⊆ F ′ and for each

z  

6�

F∈ Π(I ) we have another state σ′ such that z  

6�

F ′
σ′ y ∧ F ⊆ F ′.

λI .

a 6 
Fb ∈ I

∣∣∣∣∣∣
a , b < {sj−1, sj−2}∧(〈a , sj−2〉 <MRτ ∨ 〈sj−1, b〉 <MRτ)



∪


a 6 F ′b

∣∣∣∣∣∣∣∣∣∣

1. a , b < {sj−1, sj−2} ∧ 〈a , sj−2〉, 〈sj−1, b〉 ∈ MRτ
2. a 6 Fab b, a 6 Fa2sj−2, sj−1 6 F1b b ∈ I
3. F ′ = {Fab ∩ Fa2 ∩ F1b} \ {κ.f : t}



∪
c  

6�

F∈ I
∣∣∣∣∣∣
c < {sj−1, sj−2}∧
〈c, sj−1〉, 〈c, sj−2〉 <MRτ



∪


c  

6�

F ′

∣∣∣∣∣∣∣∣∣∣∣

1. c < {sj−1, sj−2} ∧ 〈sj−1, sj−2〉 <MRτ
2. 〈c, sj−2〉 ∈ MRτ ∨ 〈c, sj−1〉 ∈ MRτ
3. c  

6�

Fc , sj−1  

6�

Fj1∈ I ∧ F ′ = Fc ∩ Fj1



∪



c  

6�

F ′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1. c < {sj−1, sj−2} ∧ 〈sj−1, sj−2〉 ∈ MRτ
2. 〈c, sj−1〉 ∈ MRτ ∨ 〈c, sj−2〉 ∈ MRτ
3. sj−1 6 F12sj−2, c  

6�

Fc , sj−1  

6�

Fj1∈ I
4. F ′ =

{
Fc ∩ Fj1 ∩ F12

} \ {κ.f : t}



Fig. 4: The prop. rule for putfield

We report only the rule re-
lated to the putfield (Fig-
ure 4) since its execu-
tion changes dynamically
the paths between loca-
tions and is hence signif-
icant for our heap-related
properties. We note that we
have heavily used the re-
sult of a preliminary reach-
ability static analysis among
pairs of variables to im-
prove the precision: the set
MRτ contains all pairs of
variables such that the for-
mer might reach the latter at
the putfield. The rule, start-
ing from a node correspond-

ing to putfield, states, in the first and third sets, that unreachability and non-cyclicity
information of the pairs of variables that do not reach or are not reached by the top-
most two values of the stack remains unchanged. Instead, if a pair of variables 〈a, b〉
is such that the former may reach sj−2 and the latter may be reached from sj−1, then
the putfield might create new paths between the two locations bound to these two
variables. Hence the set of fields that define the unreachability information between
a and b must be consistent both with the unreachability information of a 6 Fa2sj−2

and sj−1 6 F1bb. Furthermore, since putfield links sj−2 with sj−1 through κ.f : t, that
field must be deleted from any set of unreachability information of pairs of vari-
ables such as 〈a, b〉, as shown in the second set. For non-cyclicity, we distinguish if
sj−1 may reach sj−2 or not i.e., if the putfield will create or not a new cycle in mem-
ory between the locations. If sj−1 may not reach sj−2, then no new cycle is created.
However, since sj−2 gets linked to sj−1, all variables that may reach sj−2 will be able
to reach sj−1 and hence their non-cyclicity information Fc must take into account
also the non-cyclicity information of sj−1, as shown in the fourth set. On the other
hand, if sj−1 may reach sj−2, then a new cycle could be created. Thus we delete the
fields that might belong to that cycle: this information is provided by unreachabil-
ity since we know which fields are not in a path from sj−1 to sj−2 i.e., F12 such that
sj−1 6 F12sj−2 ∈ I . The resulting set is then: F ′ =

{
Fc ∩ Fj1 ∩ F12

} \ {κ.f : t}. Hence,
unreachability information between two variables is crucial in order to correctly
assert the non-cyclicity property.

6



Scapin and Spoto

Example 4.4 Consider nodes 11, 12 from Figure 3, and suppose that the unreach-
ability and non-cyclicity information at node 11 is
I11 = {l0 6 F {l0, s1}, l0 6 {El.prec,El.next}l1, l0 6 {El.value,El.next}{l2, s0}, l1 6 F {l0, l1, l2, s0, s1}, l2 6 F {l0, l1, l2, s0, s1},
s0 6 F {l0, l1, l2, s0, s1}, s1 6 F {l0, s1}, s1 6 {El.prec,El.next}l1, s1 6 {El.value,El.next}{l2, s0}, {l0, l1, l2, s0, s1} 

6�F }

where l0 = s1 = this, l1 = value, l2 = s0 = prec and F =

{El.value,El.prec,El.next}: El is an abbreviation for Element. In order to build
I12, we apply the propagation rule for putfield, since s0 is linked to s1 by the field
El.next . That application leads to the set:

I12 = {l0 6 F l0, l0 6 {El.prec,El.next}l1,l0 6 {El.value,El.next}l2, l1 6 F {l0, l1, l2},
l2 6 F {l1, l2}, l2 6 {El.value,El.prec}l0, l1  

6�F , {l0, l2} 

6�{El.value}}
We note that field El.next is no more inside the set of fields associated to the pair
〈l2, l0〉. This is because 〈l2, s0〉, 〈s1, l0〉 ∈ MRτ11

and hence their set of fields changes
according to the second set of Figure 4: Fl2,l0 = {Fl2,l0 ∩ Fl2,s0 ∩ Fs1,l0} \ {El.next} =

{El.value,El.prec}. Moreover, also the non-cyclicity tokens for l0 and l2 changed,
because a new cycle might be formed by executing this putfield. Indeed, since
〈l2, s0〉, 〈l0, s1〉, 〈s1, s0〉 ∈ MRτ11

, the rule modifies the non-cyclicity information of
l2 and l0 and, hence, both the operation and the result are the same. We show it only
for l2, the latter being the same: Fl2 = {Fl2 ∩ Fl0 ∩ Fs1,s0} \ {El.next} = {El.value}.
We note that, as shown in Figure 1, during the execution of the second constructor
a new cycle between the two location bound to this and prec is actually built since
this is linked to prec through field El.prec, while prec is linked to this through
field El.next . Hence fields El.prec and El.next set up a path P = {El.prec,El.next}
such that ρ(this) P ρ(this) and, respectively, ρ(prec) P ρ(prec). According to
Definition 3.4, they must not be in Fthis = Fl0 nor in Fprec = Fl2 .

Definition 4.5 [Field-Sensitive Unreachability and Non-Cyclicity Analysis] A so-
lution of an ACG is an assignment of an element Jn ∈ Aτ to each node n of the
ACG, where τ is the type environment associated to n, such that the propagation
rules Π of the arcs is satisfied i.e., for every arc from n1, . . . , nk to n ′ the condition
Π

(
Jn1 , . . . , Jnk

) ⊇ Jn ′ holds. The unreachability and non-cyclicity analysis of the
program is the maximal solution i.e., the maximal fixpoint, of its ACG w.r.t. ⊇.

In [11] we have also proved the soundness of the whole analysis w.r.t. the small-
step operational semantics for Java bytecode previously explained: given an execu-
tion leading to a basic block ins in a state σ and letting Iins be the approximation
of our properties at the correspondent node, we have proved that σ ∈ γ(Iins).

5 Conclusion

We have introduced and formalized a provably sound constraint-based field-
sensitive unreachability and non-cyclicity analysis for Java bytecode. The work
more similar similar to ours is the static analysis introduced in [2]. The main differ-

7



Scapin and Spoto

ences are that we provide specific information about the set of fields that cannot be
used for reachability or cyclicity and that we deal directly with low-level Java byte-
code, whereas they use a high-level language (pros and cons are explained in [5]).
A conclusion of our investigation is that, in order to achieve a precise analysis
for low-level code, we need finer domains and pre-processed information deriving
from other static analyses. In this analysis we do not see any advantage with the use
of a high-level representation instead of bytecode, since the main problem are field
updates and the propagation of side effects, that are equally difficult to analyze, for
both low and high level languages. Our domain is a refinement of reachability and
non-cyclicity as introduced in [7] and [9], respectively; on the other hand, we ex-
ploit pre-processed information for possible sharing, possible reachability (MRτ)
and definite aliasing analyses, for better precision.

References

[1] Cousot, P. and Cousot, R., Abstract interpretation: A Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints, In: Proceedings of the 4th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages (POPL ’77).

[2] Genaim, S. and Zanardini D., Reachability-based Acyclicity Analysis by Abstract Interpretation, In: The
Computing Research Repository (CoRR’12).

[3] Hind, M., Pointer Analysis: Haven’t We Solved This Problem Yet?, In: Proceedings of the 1st Program
Analysis for Software Tools and Engineering (PASTE’01).

[4] Lindholm, T. and Yellin, F., The Java Virtual Machine Specification, Java series. Addison- Wesley, 1999.

[5] Logozzo, F. and Fähndrich, M., On the Relative Completeness of Bytecode Analysis Versus Source Code
Analysis, In: Proceedings of the Joint European Conferences on Theory and Practice of Software 17th
international conference on Compiler construction (CC’08/ETAPS’08).

[6] Nikolić, Ð. and Spoto, F., Definite Expression Aliasing Analysis for Java Bytecode, In: Proceedings of the
9th International Colloquium on Theoretical Aspects of Computing (ICTAC’12).

[7] Nikolić, Ð. and Spoto, F., Reachability Analysis of Program Variables, In: Proceedings of the 6th
International Joint Conference on Automated Reasoning (IJCAR’12).

[8] Pearce, David J. and Kelly, Paul H. J. and Hankin, Chris, Efficient Field-Sensitive Pointer Analysis for C,
In: Proceedings of the 5th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools
and engineering, (PASTE ’04).

[9] Rossignoli, S. and Spoto, F., Detecting Non-Cyclicity by Abstract Compilation into Boolean Functions,
In: Proceedings of the 7th international conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI’06).

[10] Sagiv, M. and Reps, T. and Wilhelm, R., Parametric Shape Analysis via 3-Valued Logic, In: ACM Trans.
Program. Lang. Syst., 2002.

[11] Scapin, E. and Spoto, F., Field-Sensitive Unreachability and Non-Cyclicity Analysis, http://www.
infsec.uni-trier.de/data/scapin/ScapinUnreachNonCyclicAnalysis.pdf

[12] Schmidt, D. A., Underapproximating Predicate Transformers, In: Proceedings of the 13th international
conference on Static Analysis (SAS’06).

[13] Secci, S. and Spoto F., Pair-Sharing Analysis of Object-Oriented Programs, In: Proceedings of the 12th
SAS, London, UK (2005).

[14] Spoto, F. and Ernst, M. D., Inference of Field Initialization, In: Proceedings of the 33rd ICSE. ACM,
Waikiki, Honolulu, USA (2011).

[15] Spoto, F. and Mesnard, F. and Payet, É., A Termination Analyzer for Java Bytecode Based on Path-Length,
In: ACM Trans. on Programming Languages and Systems (2010).

8

http://www.infsec.uni-trier.de/data/scapin/ScapinUnreachNonCyclicAnalysis.pdf
http://www.infsec.uni-trier.de/data/scapin/ScapinUnreachNonCyclicAnalysis.pdf

	Introduction
	Operational Semantics
	Field-Sensitive Properties
	Constraint-based Fields-Sensitive Analysis
	Conclusion
	References

