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Abstract. In [11], a framework has been proposed which allows tools that can
check noninterference properties but a priori cannot deal with cryptography (prob-
abilities and polynomially bounded adversaries) to establish cryptographic indis-
tinguishability properties, such as privacy properties, for Java programs.
As for checking noninterference, many program analysis tools can only deal with
closed Java programs. The systems to be analyzed are, however, often open: they
interact with a network or use some libraries which are not necessarily trusted
and, hence, are not part of the code to be analyzed. Therefore, as part of the
framework, a proof technique was proposed to reduce the problem of checking
noninterference in an open system to checking noninterference for a single (al-
most) closed system.
In this work, we extend the syntax and semantics of Jinja+, the language the
framework is stated for, with java-interfaces, abstract classes, and strings. Con-
sequently, we show that, except for the proof technique for noninterference in
open systems, all definitions and results of the framework carry out easily to the
extended language. Nonetheless, regarding the proof technique, non-trivial mod-
ifications have been required in order to model the exchange of data between the
system and the environment, when also strings are involved.

1 Introduction

In [11], Küsters, Truderung, and Graf considered the problem of establishing security
guarantees – in particular, computational indistinguishability – for Java-like programs
that use cryptographic primitives, for instance public key encryption. They proposed
a framework, called “The CVJ Framework” (Cryptographic Verification of Java pro-
grams), which allows tools that can check standard noninterference properties [4, 17]
but a priori cannot deal with cryptography, specifically probabilities and polynomially
bounded adversary, to establish cryptographic indistinguishability properties, such as
privacy properties. In particular, two systems S1 and S2 are defined to be computation-
ally indistinguishable if no probabilistic polynomially bounded environment is able to
distinguish, with more than negligible probability, whether it interacts with S1 or S2.

The framework combines techniques from program analysis and cryptography, more
specifically, universal composability [3, 16, 8, 13], a well-established approach for the
modular security analysis of cryptographic protocols. The crucial problem in this sce-
nario is that existing program analysis tools for noninterference can not deal with cryp-
tography since they do not consider probabilities of events or do not model the com-
mon adversary model in cryptography, i.e., the polynomially bounded adversary. They



indeed prove security properties with respect to unbounded adversary: for instance if
a message is encrypted and the ciphertext is given to the adversary, the tools consider
this to be an illegal information flow (unless the ciphertext is declassified [19, 18, 14]),
because a computational unbounded adversary could decrypt the message.

The approach is then to first check noninterference properties for the Java program
to be analyzed where cryptographic operation (such as encryption) are performed within
so-called ideal functionalities. Ideal functionalities trace out the operational behavior
of communication protocols where party can exchange data in a perfect, ideal setting
in such a way that they all achieve the desired protocol outcome. Techniques from
simulation-based security [2, 16, 8, 9] are used to prove security of real cryptographic
protocols by comparing it with their corresponding ideal functionalities: a real protocol
R realizes and ideal protocol F if there exists a simulator S such that R and S ·F are
computational indistinguishable. What it is relevant with respect to the framework is
that such functionalities typically provide guarantees even in face of unbounded adver-
saries and can often be formulated without probabilistic operation. Hence, tools that a
priori can not deal with cryptography can carry out analyses of noninterference proper-
ties without risk of false positives due to the use of cryptographic primitives.

At the core of the CVJ framework, there are results linking the notion of (termin-
ation-insensitive) noninterference [17] with the notion of cryptographic indistinguisha-
bility: in order to assert that two systems using cryptographic operations are computa-
tional indistinguishable, it is enough to show that these systems are noninterferent when
the cryptographic operations are replaced by their corresponding ideal functionalities.
That is, noninterference of a system using ideal cryptographic functionalities implies
computational indistinguishability of the system using their realizations.

The theorems proved within the CVJ framework are very general in that they guar-
antee that any ideal functionality can be replaced by its realization. In particular, they
are not tailored to specific cryptographic operations. However, to make the framework
directly applicable to a wide range of cryptographic software, i.e., software that uses
cryptographic operations (such as asymmetric and symmetric encryption, digital sig-
natures, MACs, etc.), it is necessary to provide a rich set of ideal functionalities along
with their realizations written in Java.

In [11] only an ideal functionality for public-key encryption has been proposed and
it has been shown that it can be realized by any IND-CCA2-secure public-key encryp-
tion scheme, a standard security notion for such schemes (see, e.g., [1]). This functional-
ity does not support reasoning about corruption and also it does not support a public-key
infrastructure (PKI). Therefore, in [10], the CVJ framework has been further instanti-
ated with more suitable ideal functionalities which commonly occur in cryptographic
applications and to provide realizations of these functionalities based on standard cryp-
tographic assumptions: while so far similar functionalities have been considered in the
cryptographic literature only based on Turing machine models (see, e.g., [16, 3, 12]),
now they has been directly typed out in Java in such a way that these functionalities can
actually be used to analyze Java programs. In particular, in [10] have been proposed
ideal functionalities for public-key encryption, digital signature (both supporting static
corruption and a public-key infrastructure), private symmetric encryption, and nonce
generation. Furthermore, it has been shown that these functionalities can be realized
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using standard cryptographic schemes and assumptions: more concretely, IND-CCA2-
secure public-key encryption schemes for public-key encryption and private symmetric
encryption, whereas UF-CMA-secure for digital signature and freshness for nonce gen-
eration.

I-noninterference. As to checking non-interference, many program analysis tools can
only deal with closed Java programs. The systems to be analyzed are, however, of-
ten open: they interact with a network or use some libraries which are not necessarily
trusted and, hence, are not part of the code to be analyzed; instead, they are considered
as part of the environment, with unspecified behavior. Therefore, [11] intruduces the
notion of noninterference in an open system (a.k.a I-noninterference), i.e., in a system
not completely defined: An open system S is noninterferent if for each environment
E this system can be composed with, the resulting close system S ·E is also noninter-
ferent. As part of the framework, a proof technique was also proposed to reduce the
problem of checking noninterference in an open system to checking noninterference
for a single (almost) closed system. Technically, this result shows how to construct, for
an open system S, a family of environments Ẽ~u parametrized by an input sequence ~u,
such that S is noninterferent if and only if S composed with Ẽ~u is noninterferent for all
~u. Importantly, the latter property can be verified using existing tools for program anal-
ysis. These techniques have been used in all the case studies related to the framework
so far, including in the verification of a deployed cloud storage system [10] making use
of all the cryptographic primitives listed above, but they are rather general, and hence,
relevant beyond these case studies.

Our contribution. The framework is formulated for a language called Jinja+ and is
proven w.r.t. the formal semantics of this language. Jinja+ is a Java-like language that
extends the language Jinja [7] with, among others, arrays, the type byte, and the abort

primitive. In this work, we further extend its syntax and semantics with: (a) java-
interfaces, (b) abstract classes, (c) strings. Except for one result (discussed below), all
definitions and results of the framework carry out easily to the extended language. That
is, the new types of values and the new rules of the augmented small-step semantics do
not affect the proofs in a significant way.

One result, however, namely the proof of reducing the problem of noninterference
in an open system to checking noninterference for a single (almost) closed system,
required non-trivial modifications to model the exchange of data between the system
and the environment when also strings are involved. In particular, the exchange of data
through string references introduces subtle changes in the original result and, techni-
cally, invalidates the main assumption the result is based on, i.e., the separation between
the state of the system and the state of the environment. Therefore, we extend the con-
struction of Ẽ~u to handle exchange of string references. Furthermore, relying on the fact
that the Java (Jinja+) strings are immutable, we relax the state separation assumption
and adopt the proof in a non-trivial way to work with the new (relaxed) assumption.

Based on this premise, we then reshaped the proof technique for proving noninter-
ference in open systems taking into account string references, too.

Structure of the paper. The language Jinja+ is introduced and extended in Section 2.
In Section 3, the CVJ framework is briefly explained, highlighting the section related
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to noninterference in open systems. In Section 4, we extend the proof technique for
proving I-noninterference: after recalling the result already stated in [11] for primitive
types, we extend this result to the communication through strings and we rearrange the
communication through simple objects, arrays, and exceptions more accurately and in
accord with the aforementioned extension. The proof of the main result can be found in
Appendix A.2, as long as the full small-step semantics of Jinja+ (Appendix B).

2 Jinja+: A Java-like language

The CVJ framework is stated for a Java-like language which we call Jinja+. Jinja+
is based on Jinja [7] and extends this language with some additional features that are
useful or needed in the context of our framework.

Jinja+ covers a rich subset of Java, including (java-)interfaces, abstract and concrete
classes, inheritance, (static and non-static) fields and methods, the primitive types int,
boolean, and byte (with the usual operators for these types), strings, arrays, exceptions,
and field/method access modifiers, such as public, private, and protected. Among
the features of Java that are not covered by Jinja+ are: concurrency and reflection.

We now present the syntax and the semantics of Jinja+.

2.1 Syntax

As already mentioned, the subset of Java we consider is based on the language Jinja
[7]. Expressions in Jinja are constructed recursively and include: (a) creation of a new
object, (b) casting, (c) literal values (constants) of types boolean and int, (d) null, (e) bi-
nary operations, (f) variable access and variable assignment, (g) field access and field
assignment, (h) method call, (i) blocks with locally declared variables, (j) sequential
composition, (k) conditional expressions, (l) while loop, (m) exception throwing and
catching. As a basis of the formal results of the CVJ framework, in [11] Jinja has been
extended with: (a) the primitive type byte with natural conversions from and to int,
(b) arrays, (c) abort primitive, (d) static fields (with the restriction that they can be
initialized by literals only), (e) static methods, (f) access modifier for classes, fields,
and methods (such as private, protected, and public), (g) final classes (classes that
cannot be extended), (h) the throws clause of a method declaration.

For completeness, we now recall these extensions as they have been presented in
[11]. Then, in the next subsection, we further develop the language.

In what follows, by a program we will mean a complete program (one that is syn-
tactically correct and can be executed). We assume that a program contains a unique
static method main (declared in exactly one class); this method is the first to be called
in a run. By a system we will mean a set of classes which is syntactically correct (can
be compiled), but possibly incomplete (i.e., it can use not defined classes). In particular,
a system can be extended to a (complete) program.

Jinja comes equipped with a type system and a notion of well-typed programs. We
follow the convention of [11], where only well-typed programs are considered.

Primitive types. The Jinja language, as specified in [7], offers only boolean and integer
primitive types. For our purpose, we find it useful to also include type byte with natural
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conversions from and to int. Also, the set of operators on primitive types is extended
to include the standard Java operators (such as multiplication). This extensions can be
done in very straightforward way and, thus, we skip its detailed description.

Arrays. We will consider only one-dimensional arrays (an extension to multi-dimensional
arrays is then quite straightforward; moreover multi-dimensional arrays can be simu-
lated by nested arrays). To extend the Jinja language with one-dimensional arrays, we
adopt the approach of [15].

First, we extend the set of types to include array types of the form τ[], where τ is
a type. Next, we extend the set of expressions by: (a) creation of new array: new τ[e],
where e is an expression (that is supposed to evaluate to an integer denoting the size of
the array) and τ is a type, (b) array access: e1[e2], (c) array length access: e.length,
and (d) array assignment: e1[e2] := e3.

For this extension, following [15], we redefine a heap to be a map from references
to objects, where an object is either an object instance, as defined above, or an array.
An array is a triple consisting of its component type, its length l, and a table mapping
{0, . . . , l−1} to values.

Extending (small-step) semantic rules to deal with arrays is quite straightforward.

The abort primitive. Expression abort, when evaluated, causes the program to stop.
(Technically this expression cannot be reduced and causes the program execution to get
stuck.)

Static methods and fields. Fields and methods can be declared as static. However,
as can be seen below, to keep the semantics of the language simple, we impose some
restrictions on initializers of static fields.

A static method does not require an object to be invoked. The syntax of static
method call is C.f(args), where C is the name of a class that provides f. Extending
Jinja with with static methods is straightforward. The rule for static method invoca-
tion is very similar to the one for non-static method invocation: the difference is that
the variable this is not added to the context (block) within which the method body is
executed (a static method cannot reference non-static fields and methods).

We assume that static fields can be initialized only with literals (constants) of appro-
priate types. If there is no explicit initializer, then a static variable is initialized with the
default value of its type. For example, while static int x = 7 and static int[] t are
valid declarations, the declaration static A a = new A() and static int y = A.foo()

are not. Extending Jinja with static fields requires only a very little overhead: for a
static field f declared in class C we introduce a global variable C.f (note that names
of this form do not interfere with names of local variables and method parameters).
These global variables are initialized before actual program (expression) is executed, as
described in the definition of a run below.

Dealing with more general static initializers is not difficult in principle, but it would
require a precise—and quite complicated—model of the initialisation process, the com-
plication we want to avoid.

Access modifiers, final classes, and throws clauses. As for java-interfaces and ab-
stract classes, for these three extensions we assume that they are provided by a compiler
that, first, ensures that the policies expressed by access modifiers, the final modifier, and
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Throws clauses are respected and then produces pure Jinja+ code (without access mod-
ifiers, the final modifier, and throws clauses). In the similar manner we can deal with
constructors: a program using constructors can be easily translated to one without con-
structors (where creation and initialisation of an object is split into two separate steps).

Exceptions. A method declaration can contain a throws clause in which classes of
exceptions that can be propagated by the method are listed. Such a clause can be omit-
ted, in which case the above mentioned list is considered empty. When the meaning of
throws clauses is considered, standard subtyping rules are applied (if class A is listed
in such a clause, then the method can propagate exceptions of class A or any subclass
of A).

As mentioned, we assume that the compiler (or a static verifier) statically checks
whether the program complies with throws clauses.

Unlike in Java, however, we can assume without loss of generality that all excep-
tions must be declared in a throws clause if they are propagated by a method (in the
Java terminology, we can say that all exceptions are checked). This will give us more
control on the information which is passed between program components.

We consider the following hierarchy of standard (system) exceptions. In the root
of this hierarchy we place (empty) class Exception. We require that only object of
this class (and its subclasses) can be used as exceptions. Class SystemException, also
empty, is a subclas of class Exception, and is a base class for the following system
exceptions (exceptions which are not thrown explicitly, but may occur in result of some
standard operations on expressions):
ArrayStoreException — trown to indicate an attempt to store an object of the wrong

type into an array,
IndexOutOfBoundsException — thrown to indicate that an array has been indexed

with an index being out of range,
NegativeArraySizeException — thrown to indicate an attempt to create an array with

negative size,
NullPointerException — thrown if the null reference is used when an object is re-

quired,
ClassCastException — thrown to indicate an illegal cast.

We will assume that the above classes are predefined, and can be used in any program.
We notice that exceptions, which are already part of Jinja, are particularly critical for
the security properties we are interested in because they provide an additional way
information can be transfered from one part of the program to another.

2.2 A further extension: java-interfaces, abstract classes, and strings.

Starting from the aforementioned extension, we further develop the language including:
a) java-interfaces, b) abstract classes, c) strings. We notice that the concept of java-
interface follows the abstract type that is indeed used to specify interfaces in Java: it is
not to be confused with the concept of interface presented in the CVJ framework (see
Section 3).

We now present the abstract syntax of a Jinja+ system and then we describe the
above-mentioned extensions. A system or a program is a triple of three lists: a list of

6



java-interface declarations, a list of abstract class declarations and a list of concrete
class declarations. Each declaration consists of the name of the java-interface/class and
the java-interface/class itself. An java-interface consists of a list of its direct superinter-
faces (optionally), a list of its constant declarations, and a list of method signatures. A
constant declaration consists of a type, a constant name and a literal of the appropriate
type (the value of the constant). A method signature consists of the method name, the
formal parameter names and types, and the result type. An abstract class consists of
the name of its direct superclass (optionally), a list of the implemented java-interfaces
(optionally), a list of field declarations, a list of method signatures (commonly called
abstract methods) and a list of method declarations. A field declaration consists of a
type and a field name. A method declaration consists in a method signature and in an
expression (the method body). Note that there is no return statement, as a method
body is an expression; the value of such an expression is returned by the method. A
concrete class is defined as an abstract class without the list of method signatures, i.e.,
all methods contain the body. In the above definitions we assume that different syntactic
categories (java-interfaces, classes, constants, fields and methods) have different names.

Java-Interfaces and Abstract Classes. We assume that java-interfaces and abstract
classes are provided by a compiler that, first, ensures that the policies expressed by
these clauses are respected (e.g., a concrete class implementing an inferface indeed
implements all its methods) and then produces Jinja+ code without them. Regarding
the Jinja+ rule (see Appendix B), we extend the convention used in [7] that symbols C
and D denote (concrete or abstract) classes to denoting java-interfaces, too. According
to this convention, there are a few changes in the interpretation of the expressions and
predicates of the smallstep semantics rules:

– In the expression new C corresponding to the creation of a new object we assume
that a compiler already enforced C to be a concrete class. On the other hand side,
we require that the predicate P ` C has-fields FDT s used in the object creation
rule (Rule 16) collects information about the fields both in the class and in the
java-interface hierarchy.

– In the expression Cast C now C can be either a (concrete or abstract) class or an
java-interface. Therefore, we extend the meaning of the predicate P`D�∗ C (used
in rules 17, 18, 31, 39 and 40): It means D is a subclass of C if C is a class, whereas
D implements C if C is an java-interface.

– In the expression e.F{D} (field access) D can now be either the class or the java-
interface where F is declared (in the latter case F is defined as a constant). On the
other hand side, in the expression e.F{D} := e2 (field assignment) D can only be
the (abstract or concrete) class where F is declared. However, the rules where these
expressions are evaluated (Rule 3 and 4) remain unchanged.

– In the expression try e1 catch (C V ) e2 we assume that a compiler already enforced
C to be a concrete class (which must extend the class T hrowable). Therefore in
rules 39 and 40, the predicate P ` D �∗ C is indeed always interpreted as D is a
subclass of C.

– The predicate P ` C sees M : T s→ T = (pns, body) in D, used in the rule 24
is supposed to look up for the method declaration of M in the class hierarchy and

7



therefore now also in abstract classes but obviously not in the java-interfaces (since
they contain only method signatures).

The interpretation of the other expressions and rules remain the same as in [7].

Strings. We extend the language Jinja [7] with strings. We introduce a new value litS
detoning a string literal, i.e., a quoted sequence of characters representing a string value
within the source code. In the heap, we represent a string as a pair consisting on an array
of the characters in the string literal and its length. The extension of the (small-step)
semantic rules to deal with strings is quite straightforward and can be found in Figure
13 of Appendix B.

2.3 Semantics

Following [7], we briefly sketch the small-step semantics of Jinja. The full set of rules,
including those for Jinja+ (see the next subsection) can be found in Appendix B.

A state is a pair of heap and a store. A store is a partial map from variable names
to values. A heap is a partial map from references (addresses) to object instances. An
object instance is a pair consisting of a class name and a field table, and a field table is
a map from field names (which include the class where a field is defined) to values.

The small-step semantics of Jinja is given as a set of rules of the form P ` 〈e,s〉 →
〈e′,s′〉, describing a single step of the program execution (reduction of an expression).
We will call 〈e,s〉 (〈e′,s′〉) a configuration. In this rule, P is a program in the context
of which the evaluation is carried out, e and e′ are expressions and s and s′ are states.
Such a rule says that, given a program P and a state s, an expression e can be reduced in
one step to e′, changing the state to s′. In the following, we will sometimes write (e,s)
instead of 〈e,s〉.

We assume that Jinja+ programs have unbounded memory. The reason for this mod-
eling choice is that Jinja+ is used to formulate a framework for the cryptographic ver-
ification of Java-like programs, where the formal foundation for the security notions
adopted are based on asymptotic security. This kind of security definitions only makes
sense if the memory is not bounded, since the security parameter grows indefinitely;
see Section 3 and, foremost, [11] for the details.

Randomized programs. So far, we have considered deterministic programs. We will
also need to consider randomized programs in our framework. For this purpose, Jinja+
programs may use the primitive randomBit() that returns a random bit each time it is
used. Jinja+ programs that do not make use of randomBit() are (called) deterministic,
and otherwise, they are called randomized.

Runs of Jinja+ programs. As already mentioned, the full set of rules of the small-step
semantics of Jinja+ can be found in Appendix B. Based on this small-step semantics,
we now define runs of Jinja+ programs.

Definition 1. A run of a deterministic program P is a sequence of configurations ob-
tained using the (small-step) Jinja+ semantics from the initial configuration of the form
〈e0,(h0, l0)〉, where e0 = C.main(), for C being the (unique) class where main is de-
fined, h0 = /0 is the empty heap, l0 is the store mapping the static (global) variables
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to their initial values (if the initial value for a static variable is not specified in the
program, the default initial value for its type is used).

A randomized program induces a distribution of runs in the obvious way. Formally,
such a program is a random variable from the set {0,1}ω of infinite bit strings into the
set of runs (of deterministic programs), with the usual probability space over {0,1}ω ,
where one infinite bit string determines the outcome of randomBit(), and hence, induces
exactly one run.

We note that all references appearing in each configuration 〈e,(l,h)〉 are in the do-
main of the heap h. This is because at the beginning of the run we have h0 = /0 and every
time a new object is created, this object and its reference are added to the heap of the
state, as described by rules 16, 62, 71, 72 and 76 of Jinja+.

The small-step semantics of Jinja+ provides a natural measure for the length of a run
of a program, and hence, the runtime of a program. The length of a run of a deterministic
program is the number of steps taken using the rules of the small-step semantics. For a
run r of a program P containing some subprogram S (a subset of classes of P), we define
the number of steps performed by S or the number of steps performed in the code of S in
the expected way. To define this notion, we keep track of the origin of (sub)expressions,
i.e., the class they come from. If a rule is applied on a (sub)expression that originates
from the class C, we label this step with C and count this as a step performed in C (see
Appendix B for details).

3 The CVJ Framework

We briefly recall the CVJ framework (Cryptographic Verification of Java programs)
which has been introduced in [11] and extended in [10].

In order to establish cryptographic indistinguishability properties for a Java pro-
gram, by the CVJ framework it suffices to prove that the program enjoys a (standard)
noninterference property when the cryptographic operations are replaced by so-called
ideal functionalities, which in our case will model cryptographic primitives, such as en-
cryption and digital signatures. The CVJ framework then ensures that the Java program
enjoys the desired cryptographic indistinguishability properties when the ideal func-
tionalities are replaced by their realizations, i.e., the actual cryptographic operations.
Since ideal functionalities often do not involve probabilistic operations and are secure
even for unbounded adversaries, the noninterference properties can be verified by tools
that a priori cannot deal with cryptography (probabilities, polynomially bounded ad-
versaries). Without the ideal functionalities, the tools would, for example, consider a
secret message that is sent encrypted over a network controlled by the adversary to be
an information leakage, because an unbounded adversary can break the encryption.

While in [11] the CVJ framework only supports a basic version of public-key en-
cryption, in [10] this framework has been further instantiated to support public-key en-
cryption and digital signatures, both with corruption and a public-key infrastructure, as
well as (private) symmetric encryption and nonce generation. Since these cryptographic
primitives are very common in security-critical applications, these extensions make the
framework much more widely applicable.
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The extension of Jinja+ with java-interfaces and abstract classes does not affect
any of the definitions and theorems presented in [11] since, as already explained in
subsection 2.1, we assume a compiler ensures their policies and then produces a Jinja+
code without them. On the other hand side, the extension of Jinja+ with strings demands
an adaptation of the prooftechnique for proving I-noninterference: the code of ẼIE

~u has
to be enriched with two more static methods in order to handle the communication
through strings, too.

The definitions and theorems stated below are somewhat simplified and informal,
but should suffice to grasp the essence of the framework. We refer the reader to [11] for
full details.

Indistinguishability. An interface I (not to be confused with the concept of java-
interfaces presented in the Jinja+ language) is defined like a (Jinja+) system but where
(i) all private fields and private methods are dropped and (ii) method bodies as well as
static field initializers are dropped. A system S implements an interface I, written S : I,
if I is a subinterface of the public interface of S, i.e. the interface obtained from S by
dropping method bodies, initializers of static fields, private fields, and private methods.
We say that a system S uses an interface I, written I ` S, if, besides its own classes,
S uses at most classes/methods/fields declared in I. We write I0 ` S : I1 for I0 ` S and
S : I1. We also say that two interfaces are disjoint if the sets of class names declared in
these interfaces are disjoint.

For two systems S and T we denote by S · T the composition of S and T which,
formally, is the union of (declarations in) S and T . Clearly, for the composition to make
sense, we require that there are no name clashes in the declarations of S and T . Of
course, S may use classes/methods/fields provided in the public interface of T , and vice
versa.

A system E is called an environment if it declares a distinct private static variable
result of type boolean with initial value false. Given a system S : I, we call E an
I-environment for S if there exists an interface IE disjoint from I such that IE ` S : I and
I ` E : IE . Note that E ·S is a complete program. The value of the variable result at the
end of the run of E ·S is called the output of the program E ·S; the output is false for
infinite runs. If E ·S is a deterministic program, we write E ·S true if the output of
E ·S is true. If E ·S is a randomized program, we write Prob{E ·S true} to denote
the probability that the output of E ·S is true.

We assume that all systems have access to a security parameter (modeled as a public
static variable of a class SP). We denote by P(η) a program P running with security
parameter η .

To define computational equivalence and computational indistinguishability be-
tween (probabilistic) systems, we consider systems that run in (probabilistic) polyno-
mial time in the security parameter. We omit the details of the runtime notions used in
the CVJ framework here, but note that the runtimes of systems and environments are
defined in such a way that their composition results in polynomially bounded programs.
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Let P1 and P2 be (complete, possibly probabilistic) programs. We say that P1 and
P2 are computationally equivalent, written P1 ≡comp P2, if |Prob{P1(η) true}−
Prob{P2(η) true}| is a negligible function in the security parameter η .1

Let S1 and S2 be probabilistic polynomially bounded systems. Then S1 and S2 are
computationally indistinguishable w.r.t. I, written S1 ≈I

comp S2, if S1 : I, S2 : I, both
systems use the same interface, and for every polynomially bounded I-environment E
for S1 (and hence, S2) we have that E ·S1 ≡comp E ·S2.

Simulatability and Universal Composition. We now define what it means for a sys-
tem to realize another system, in the spirit of universal composability, a well-established
approach in cryptography. Security is defined by an ideal system F (also called an ideal
functionality), which, for instance, models ideal encryption, signatures, MACs, key ex-
change, or secure message transmission. A real system R (also called a real protocol)
realizes F if there exists a simulator S such that no polynomially bounded environment
can distinguish between R and S ·F . The simulator tries to make S ·F look like R for the
environment (see the subsequent sections for examples).

More formally, let F and R be probabilistic polynomially bounded systems which
implement the same interface Iout and use the same interface IE , except that in addition
F may use some interface IS provided by a simulator. Then, we say that R realizes F
w.r.t. Iout , written R≤Iout F or simply R≤ F , if there exists a probabilistic polynomially
bounded system S (the simulator) such that R ≈Iout

comp S ·F . As shown in [11], ≤ is
reflexive and transitive.

A main advantage of defining security of real systems by the realization relation ≤
is that systems can be analyzed and designed in a modular way: The following theorem
implies that it suffices to prove security for the systems R0 and R1 separately in order to
obtain security of the composed system R0 ·R1.

Theorem 1 (Composition Theorem (simplified) [11]). Let I0 and I1 be disjoint inter-
faces and let R0, F0, R1, and F1 be probabilistic polynomially bounded systems such
that R0 ≤I0 F0 and R1 ≤I1 F1. Then, R0 ·R1 ≤I0∪I1 F0 ·F1, where I0 ∪ I1 is the union of
the class, method and field names declared in I0 and I1.

The proof of this Theorem can be found in [11].

Noninterference. The (standard) noninterference notion for confidentiality [4] requires
the absence of information flow from high to low variables within a program. Here, we
define noninterference for a deterministic (Jinja+) program P with some static vari-
ables ~x of primitive types that are labeled as high. Also, some other static variables of
primitive types are labeled as low. We say that P[~x] is a program with high variables~x
(and low variables). By P[~a] we denote the program P where the high variables ~x are
initialized with values~a and the low variables are initialized as specified in P.

Now, noninterference for a deterministic program is defined as follows: Let P[~x]
be a program with high variables. Then, P[~x] has the noninterference property if the
following holds: for all ~a1 and ~a2 (of appropriate type), if P[~a1] and P[~a2] terminate,

1 As usual, a function f from the natural numbers to the real numbers is negligible, if for every
c > 0 there exists η0 such that f (η)≤ 1

ηc for all η > η0.
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then at the end of their runs, the values of the low variables are the same. Note that this
defines termination-insensitive noninterference.

The above notion of noninterference deals with complete programs (closed sys-
tems). This notion is generalized to open systems as follows.

Definition 2 (Noninterference in an open system [11]). Let I be an interface and let
S[~x] be a (not necessarily closed) deterministic system with a security parameter, S : I,
and high and low variables. Then, S[~x] is I-noninterferent if for every deterministic I-
environment E for S[~x] and every security parameter η noninterference holds for the
system E ·S[~x](η), where, for convenience, the variable result declared in E is consid-
ered to be a low variable.

Note that here neither E nor S are required to be polynomially bounded.
Tools for checking noninterference often consider only a single closed program.

However, I-noninterference is a property of a potentially open system S[~x], which is
composed with an arbitrary I-environment. Therefore, in [11] a technique has been
developed which reduces the problem of checking I-noninterferent to checking nonin-
terference for a single (almost) closed system. More specifically, it was shown that to
prove I-noninterference for a system S[~x] with IE ` S : I it suffices to consider a single
environment ẼI,IE

~u (or Ẽ~u, for short) only, which is parameterized by a sequence ~u of
values. The output produced by Ẽ~u to S[~x] is determined by ~u and is independent of
the input it gets from S[~x]. To keep Ẽ~u simple, the analysis technique assumes some
restrictions on interfaces between S[~x] and E. In particular, S[~x] and E should interact
only through primitive types, arrays, exceptions, and simple objects. Moreover, E is not
allowed to call methods of S directly (formally, we require I to be /0). However, since S
can call methods of E, this is not an essential limitation.

Theorem 2 (simplified, [11]). Let S[~x] be a deterministic program with a restricted
interface to its environment, as mentioned above, and let I = /0. Then, I-noninterference
holds for S[~x] if and only if for all sequences~u noninterference holds for Ẽ~u ·S[~x].

Automatic analysis tools, such as Joana [6, 5], often ignore or can ignore specific values
encoded in a program, such as an input sequence ~u. Hence, such an analysis of E~u ·
S[~x] implies noninterference for all sequences ~u, and by the theorem, this implies I-
noninterference for S[~x]. An extended and revisited version of this theorem is presented
in Section 4.

From I-Noninterference to Computational Indistinguishability. The central theo-
rem that immediately follows from (the more general) results proven within the CVJ
framework is the following.

Theorem 3 (simplified, [11]). Let I and J be disjoint interfaces. Let F, R, P[~x] be
systems such that R≤J F, P[~x] ·F is deterministic, and P[~x] ·F : I (and hence, P[~x] ·R : I).
Now, if P[~x] ·F is I-noninterferent, then, for all~a1 and~a2 (of appropriate type), we have
that P[~a1] ·R ≈I

comp P[~a2] ·R.

The intuition and the typical use of this theorem is that the cryptographic operations
that P needs to perform are carried out using the system R (e.g., a cryptographic li-
brary). The theorem now says that to prove cryptographic privacy of the secret inputs
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(∀ ~a1, ~a2: P[~a1] ·R ≈J
comp P[~a2] ·R) it suffices to prove I-noninterference for P[~x] ·F ,

i.e., the system where R is replaced by the ideal counterpart F (the ideal cryptographic
library). The ideal functionality F , which in our case will model cryptographic primi-
tives in an ideal way, can typically be formulated without probabilistic operations and
also the ideal primitives specified by F will be secure even in presence of unbounded
adversaries. Therefore, the system P[~x] ·F can be analyzed by standard tools that a priori
cannot deal with cryptography (probabilities and polynomially bounded adversaries).

As mentioned before, F relies on the interface IE ∪ IS (which, for example, might
include an interface to a network library) provided by the environment and the simula-
tor, respectively. This means that when checking noninterference for the system P[~x] ·F
the code implementing this library does not have to be analyzed. Being provided by
the environment/simulator, it is considered completely untrusted and the security of
P[~x] ·F does not depend on it. In other words, P[~x] ·F provides noninterference for all
implementations of the interface. Similarly, R relies on the interface IE provided by the
environment. Hence, P[~x] ·R enjoys computational indistinguishability for all imple-
mentations of IE . This has two advantages: i) one obtains very strong security guaran-
tees and ii) the code to be analyzed in order to establish noninterference/computational
indistinguishability is kept small, considering the fact that libraries tend to be very big.

4 Extending the Proof Technique for proving I-Noninterference

In [11], a proof technique has been introduced for proving (termination-insensitive)
non-interference for open systems, i.e., systems not completely defined (e.g., programs
whose external libraries have been stripped off). Technically, it has been show that in or-
der to check non-interference for open systems according to Definition 2 it is sufficient
to consider only a very restricted class of environments, rather than all environments.
The input these environments give to the system they interact with is fixed for every
environment and does not depend on the output the environment got from the system.
In fact, the environments in this class are all almost identical, they only differ in the
input sequence they use. Now, the analysis a tool performs often ignores or can ignore
specific values encoded in the program, such as the input sequence. So, if such an anal-
ysis establishes non-interference for a system and a fixed environment in the considered
class, then this implies that non-interference holds for all environments in this class. By
this proof technique, it then follows that non-interference holds for all environments, as
required by Definition 2.

A simple and a non trivial case studies have been presented in [11] and [10] respec-
tively, with the aim to demostrate that using our proof techniques, the tool Joana, which
is designed to check non-interference for closed systems, can now deal with (a relevant
class of) open systems as well.

We now first recall the proof technique when only pure data (primitive types) is
exchanged between the system and the environment as it has been presented in [11].
Then, we extend the proof technique to the case where the communication takes place
through strings, simple objects, arrays, and exceptions.
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4.1 Communication through Primitive Types Only

In this section, we assume that a system S communicates with an environment E only
through static functions with primitive types. More precisely, we consider programs S
such that (1) method main is defined in S and (2) IE ` S, for some interface IE , where
all methods are static, use primitive types only (for simplicity of presentation we will
consider only the type int), and have empty throws clause. We will consider indistin-
guishability w.r.t. the empty interface (i.e. environments we consider do not directly call
S). The above assumptions will allow us to show, in the proof of Theorem 4, that E and
S do not share any references: their states are in this sense disjoint.

We now define the class of environments mentioned at the beginning of this section.
We then show that to establish I-non-interference, it is enough to consider only those
environments (see Theorem 4).

For a finite sequence ~u = u1, . . . ,un of values of type int, we denote by ẼIE
~u the

following system. The environment ẼIE
~u contains two static methods: untrustedOutput

and untrustedInput, as specified in Figure 1. For the sake of the discussion, let S be
the system the environment ẼIE

~u interacts with. (Note that the definition of ẼIE
~u is in-

dependent of a specific S. It only depends on IE .) As we will see below, the method
untrustedOutput gets all data passed by S to ẼIE

~u . The method untrustedInput deter-
mines what the environment passes on to S.

More specifically. the method untrustedInput returns consecutive values of~u and,
after the last element of ~u has been returned, it returns 0. Note that the consecutive
values returned by this method are hardwired in line 9 (determined by ~u) and do not
depend on any input to ẼIE

~u .
The method untrustedOutput, depending on the values given by

untrustedInput(), either ignores its argument or compares its value to the next
integer it obtains, again, from untrustedInput() and stores the result of this compari-
son in the (low) variable result. The intuition is the following: untrustedOutput gets,
as we will see below, all the data the environment gets from S. If the two instances
of S, S[~a1] and S[~a2], which the environment tries to distinguish, behave differently,
then there must be some point where the environment gets different data from the
two systems in the corresponding runs, i.e., untrustedOutput will be invoked with
different values for x, say the values x takes at this point are b1 and b2, respectively.
By choosing an appropriate ~u, this can be detected by untrustedOutput: ~u should be
defined in such a way that the method untrustedInput() returns 1 at this point and
that the value untrustedInput() returns next equals b1, say (b2 would also work).
Then, in the run of the environment with S[~a1] the variable result will be assigned
1 and in the run with S[~a2] it will be assigned 0. Hence, the environment successfully
distinguished S[~a1] and S[~a2].

Finally, for every method declaration m in IE , the system ẼIE
~u contains the imple-

mentation of m as illustrated by the example in Figure 2. As we can see, the defined
method forwards all its input data to untrustedOutput and lets untrustedInput deter-
mine the returned value.

This completes the definition of ẼIE
~u . The next theorem (see Appendix A.1 for the

proof) states that, to prove I-non-interference, it is enough to consider only environ-
ments ẼIE

~u for all~u. In this way we need to study only (almost) closed systems, namely
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1 class Node {

2 int value;

3 Node next;

4 Node(int v, Node n) { value = v; next = n; }

5 }

6 private static Node list = null;

7 private static boolean listInitialized = false;

8 private static Node initialValue()

9 { return new Node(u1, new Node(u2, ...)); }

10 static public int untrustedInput() {

11 if (!listInitialized)

12 { list = initialValue(); listInitialized = true; }

13 if (list==null) return 0;

14 int tmp = list.value;

15 list = list.next;

16 return tmp;

17 }

18 static public void untrustedOutput(int x) {

19 if (untrustedInput()!=0) {

20 result = (x==untrustedInput());

21 abort();

22 }

23 }

Fig. 1. Implementation of untrustedInput, untrustedOutput in Ẽ~u. We assume that class Node
not used anywhere else.

24 static public int foo(int x) {

25 untrustedOutput(FOO_ID);

26 untrustedOutput(x);

27 return untrustedInput();

28 }

Fig. 2. ẼIE
~u : the implementation of a method of IE with the signature

static public int foo(int x), where FOO_ID is an integer constant serving as the identifier
of this method (we assign a different identifier to every method).
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systems that differ in only one expression (line 9). As discussed at the beginning of
this section, this restriction is often sufficient for tools are designed to deal with closed
systems only.

Theorem 4. Let IE be an interfaces with only static methods of primitive argument and
return types as introduced above. Let S be a system with high and low variables such
that main is defined in S and IE ` S. Then, I-non-interference, for I = /0, holds for S if
and only if for all sequences~u as above non-interference holds for ẼIE

u ·S.

The proof of this theorem, as long as all the necessary lemmas to demonstrate it, is
recalled from [11] in Appendix A.1.

4.2 Communication through Strings, Simple Objects, Arrays, and Exceptions

The result stated in Theorem 4 has been extended in [11] to cover some cases, where E
and S exchange information not only through values of primitive types, but also through
simple objects, arrays, and throwing exceptions. We now further extend it with strings.
We recall that we consider programs S such that (1) method main is defined in S,
(2) IE ` S, for some interface IE , where all methods are static and uses only the data
types listed above, and (3) I = /0, that is, we consider indistinguishability w.r.t. the empty
interface (i.e. environments do not directly call S).

Strings. We model the exchange of references of type String by extending the en-
vironment ẼIE

~u with two other static methods presented in Figure 3: The method
untrustedOutputString gets all string references passed by S to ẼIE

~u , whereas the
method untrustedInputString determines which string the environment passes on to
S. We notice that these methods rely on untrustedOutput and untrustedInput defined
for primitive types and, hence, the sequence ~u = u1, . . . ,un remain the same as defined
in Section 4.1.

More specifically, the method untrustedInputString, depending on
untrustedInput, either returns a new string (built also calling untrustedInput

for each character) or it returns one of the strings previously exchanged between
the systems. In particular, each new string returned to S is previously added to a list
stringList containing all the strings exchanged between the two systems so far.

The method untrustedOutputString, besides adding its string argument to
stringList, forwards to untrustedOutput its length, then each one of its characters, and,
finally, the result of the comparison for reference equality between its string argument
and each element in stringList.

The intuition is the following: if two instances of S, S[~a1] and S[~a2], which the
environment tries to distinguish behave differently, then there must be a point in the
two runs where the environment gets either two strings with different values or two
strings whose references were already been exchanged before (more precisely, at least
one of them), but in different points of the two runs. In the former case, it must be
that either the length or at least one character of the two strings is different. In the
latter case, there must exist two elements at the same position in stringList, whose
comparison with the two strings the environment received give different results. In any
case, untrustedOutput will be invoked with different values, say the value x takes at
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1 class NodeList {

2 public class Node {

3 public String entry;

4 public Node next;

5 public Node(String entry) {

6 this.entry = entry;

7 this.next=null;

8 }

9 public Node head, last;

10 public void add(String entry) {

11 Node newEntry=new Node(entry);

12 if (head==null) head=last=newEntry;

13 else {last.next=newEntry; last=newEntry;}

14 }

15 }

16 private static NodeList stringList = null;

17 static public String untrustedInputString() {

18 int choice = untrustedInput();

19 if(choice==1){

20 int l=untrustedInput(); String s="";

21 for(int i=0; i<l; i++)

22 s += (char) untrustedInput();

23 if(stringList==null) stringList = new NodeList();

24 stringList.add(s);

25 return s;

26 } else if(choice==2){

27 if(stringList==null) return "";

28 for(NodeList.Node node=stringList.head; node!=null;

29 node=node.next)

30 if(untrustedInput()==1) return node.entry;

31 }

32 return "";

33 }

34 static void untrustedOutputString(String s) {

35 if(stringList==null)

36 stringList = new NodeList();

37 // values comparison

38 untrustedOutput(s.length());

39 for (int i = 0; i < s.length(); i++)

40 untrustedOutput(s.charAt(i));

41 // references comparison

42 for(NodeList.Node node=stringList.head; node!=null;

43 node=node.next)

44 untrustedOutput(s==node.entry ? 1:0);

45 stringList.add(s);

46 }

Fig. 3. Implementation of untrustedInputString and untrustedOutputString in Ẽ~u. We notice
that these methods rely on methods untrustedInput and untrustedOutput presented in Figure
1. We assume that class NodeList is not used anywhere else.
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this point are b1 and b2, respectively. As for primitive types, by choosing an appropriate
~u, this can be detected by untrustedOutput:~u should be defined in such a way that the
method untrustedInput returns 1 at this point and that the value untrustedInput()

returns next equals b1, say (b2 would also work). Then, in the run of the environment
with S[~a1] the variable result will be assigned 1 and in the run with S[~a2] it will be
assigned 0. Hence, the environment successfully distinguished S[~a1] and S[~a2].

Methods of IE dealing with strings are implemented as the corresponding methods
dealing with primitive values: the arguments are forwarded to untrustedOut putString,
whereas untrustedInputString determines the returned value.

Simple Objects, Arrays, and Exceptions. In case of communication through simple
objects (as introduced below), arrays (either of primitive types, or of strings), and ex-
ceptions, some restrictions have to be imposed on IE and on the program S.

29 public static byte[] untrustedInputMessage() {

30 int len = untrustedInput();

31 if (len<0) return null;

32 byte[] returnval = new byte[len];

33 for (int i = 0; i < len; i++)

34 returnval[i] = (byte) untrustedInput();

35 return returnval;

36 }

37 public static void untrustedOutputMessage(byte[] t) {

38 untrustedOutput(t.length);

39 for (int i = 0; i < t.length; i++) {

40 untrustedOutput(t[i]);

41 }

42 }

Fig. 4. Implementation of untrustedInputMessage and untrustedOutputMessage in Ẽ~u. We no-
tice that these methods rely on methods untrustedInput and untrustedOutput presented in
Figure 1.

Nevertheless, before introducing these restrinctions, we want to highlight a partic-
ular data type essential in the CVJ framework: byte array. This data tpye is used in
all the cryptographic operations and the transmission of all data among parties, e.g.,
a client and a server. Therefore, we extended the environment with two other meth-
ods presented in Figure 4: The method untrustedOutputMessage gets all byte arrays
passed by S to ẼIE

~u , whereas untrustedInputMessage determines which byte array the
environment passes on to S. As for strings, these methods rely on untrustedInput and
untrustedOutput, respectively, to construct the byte array which has to be returned and
to try to distinguish whether two instances of S behave differently.

However, we notice that some restrictions have to be imposed on the system S ex-
changing byte arrays with the environment. These restrictions guarantee that, although
references are exchanged between E and S, the communication resembles exchange of
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1 class T extends Exception {};

2 class T1 extends T {};

3 class T2 extends T {};

4 class D { int y; String w; byte[] v; }

5 class Foo {

6 static public String[] foo(int x, String s, byte[] b, D obj) throws T {

7 // consume the input:

8 untrustedOutput(0x100); // foo id

9 untrustedOutput(x);

10 untrustedOutputString(s);

11 untrustedOutputMessage(b);

12 untrustedOutput(obj.hashCode());

13 untrustedOutput(obj.y);

14 untrustedOutputString(obj.w);

15 untrustedOutputMessage(obj.v);

16 // decide whether to throw some exceptions:

17 if (untrustedInput()==0) throw new T1();

18 if (untrustedInput()==0) throw new T2();

19 // determine the object to return:

20 int length=untrustedInput();

21 String[] retStr = new String[length];

22 for(int i=0; i<length; ++i)

23 retStr[i]=untrustedInputString();

24 return retStr;

25 }

26 }

Fig. 5. Ẽ~u: the implementation of the class Foo in IE with only a method whose signa-
ture is static public String[] foo(int x, String s, byte[] t, D obj) throws T, and
where T, T1, T2, and D are classes in IE , too. We assume that in Jinja+ (as in Java) each object has
an unique identifier provided by the method hashCode.
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pure data. More precisely, our result works for the following class of systems S. Let the
method main be defined in S and let IE be the minimal interface such that IE ` S. The
assumptions which have to be imposed on IE are:

E.1. Fields of classes in IE are non-static and either of primitive types, or strings,
or simple objects, or arrays of primitive types. Simple objects denote objects of
classes defined in IE .

E.2. Methods of classes in IE are static. Their arguments and return values may be
either of primitive types, or strings, or simple objects, or arrays of primitive types.

E.3. Exceptions thrown by methods of classes in IE are either standard system excep-
tions or exceptions defined in IE .

Let us notice that this only restricts the way S uses the environment; an environ-
ment that implements the interface IE can have arbitrary fields, methods, and excep-
tions. For such environments we can construct a fixed ẼIE

~u such that is enough to
consider only these systems (for all ~u). This system consists of the static methods
untrustedInput and untrustedOutput for primitive types, untrustedInputString

and untrustedOutputString for values of type String, untrustedInputMessage and
untrustedOutputMessage for values of type byte[], and, for every class C of IE , of
the declaration of C with the implementation of its (static) methods as in the example
given in Figure 5. This example illustrates the case when either an exception or an array
of strings is, respectively, thrown or returned. In particular, in the former case a fresh
exception is created and then thrown (e.g., line 17), whereas in the latter case a fresh
array is created (line 21), its elements are filled by untrustedInputString and, finally,
it is returned.

On the other hand side, the assumptions which have to be imposed on S are the
following:

S.1. Whenever a simple object or an array (i.e. the reference to a simple object or to
an array, respectively) is passed to the environment, this reference is not used by
S afterwards. This property can be easily guaranteed by a syntactical restriction to
pass only fresh copies of these reference to the environment.

S.2. Whenever a method of IE returns a reference r different from string, the system S is
only allowed to immediately produce a fresh copy of r and not to use r afterwards.

S.3. For every try-catch statement in S of the form

try { ... } catch (C r) { B }

if C or a subclass of C is listed in the throws clause of some method in IE (and
thus this statement may potentially catch an exception thrown by E), then again S is
only allowed to immediately produce a fresh copy of r and not to use r afterwards.

Fresh copies of simple objects and arrays may be provided by support methods which
accept as argument the reference of the object to be cloned and return a new object
of the same type, where either each field, in case of simple objects, or each element,
in case of arrays, has been cloned. An example of these methods is given in Figure 6,
where copies of byte arrays, arrays of strings, and simple objects (whose classes have
been defined in Figure 5), have to be produced according to the restrictions discussed
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1 static byte[] copyOf(byte[] b){

2 if (b==null) return null;

3 byte[] copy = new byte[b.length];

4 for (int i = 0; i < b.length; i++)

5 copy[i] = b[i];

6 return copy;

7 }

8 static String[] copyOf(String[] s){

9 if (s==null) return null;

10 String[] copy = new String[s.length];

11 for (int i = 0; i < s.length; i++)

12 copy[i] = s[i];

13 return copy;

14 }

15 static D copyOf(D obj){

16 if (obj==null) return null;

17 D copyObj = new D();

18 copyObj.y = obj.y;

19 copyObj.w = obj.w;

20 copyObj.v = copyOf(obj.v);

21 return copyObj;

22 }

23 static T copyOf(T e){

24 if (e==null) return null;

25 if (e instanceof T1) return new T1();

26 if (e instanceof T2) return new T2();

27 return new T();

28 }

29 void bar(){

30 int x=89; byte[] b={0x50,0x6f,0x6d,0x65};

31 String s="The Magic Words are ";

32 D obj = new D(); obj.y=144;

33 obj.w="Squeamish Ossifrage";

34 obj.v=new byte[]{0x72,0x61,0x6e,0x63,0x65};

35 String[] retObj;

36 try{

37 retObj = copyOf(Foo.foo(x, s, copyOf(b), copyOf(obj)));

38 } catch (T excp) {

39 T myExcp=copyOf(excp);

40 myExcp.printStackTrace();

41 }

42 }

Fig. 6. The implementation of the method bar in the system S calling the method foo of the class
Foo in IE . We notice that in the argument vector of foo a fresh copy of the byte array is passed to
the environment. Moreover, both the exception, possibly thrown by foo, and the returned object
are immediately cloned and not used afterwards.
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above. Moreover, the example illustrates the method bar in the system S calling the
method foo in the environment E (see Figure 5). Each argument except from primitive
values and strings is cloned before being passed to foo and both the returned object
and the exception possibly thrown by the method are immediately cloned and not used
afterwards.

We now state the main result of this paper: The following theorem is a generalisation
of Theorem 4 to the richer family of programs considered in this section.

Theorem 5. Let IE be as above and S be a system defined as above with high and low
variables such that main is defined in S. Then, I-non-interference, for I = /0, holds for S
if and only if for all sequences~u as above non-interference holds for ẼIE

u ·S.

The proof of this theorem, as long as all the necessary lemmas to demonstrate it, are
stated in Appendix A.2.
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A A Proof Technique for Noninterference in Open Systems

A.1 Proof of Theorem 4

For completeness, we now repeat the proof of Theorem 4 as presented in the appendix
of [11].

Let IE and S be like in the theorem. Let /0 ` E : IE be an environment for S. We start
with some definition that will be useful in the proof.

Below, we consider systems E ·S such that the run of E ·S is finite. We assume that
E and S do not use the abort primitive (this assumptions simplifies some notation, but
is not crucial; the proof without this assumption is similar).

Let ρ be the run of the system E · S. Let (e,s) and (e′,s′) be configurations in this
run. We write (e,s) ∼ (e′,s′) if these configurations are equal up to references (ad-
dresses) remapping, i.e. if there exist a bijection f from references to references that
( f (e), f (s)) = (e′,s′), where f (e) and f (s) applies f to every reference in e and, re-
spectively, in s. In the analogous way we define relation s∼ s′ on states.

Let s = (h, l) be a state. By s|E = (h|E , l|E) we denote the part of the state that is
accessible from E through the static variables that E uses. Formally, we leave in the
domain of l|E only those static variables of l that E can access; we leave in the domain
of h|E only those references that can be reached from those static variables, where a
reference can be reached from l|E if (i) it is stored in one of the variables of l|E or (ii) it
is stored in an object that can be reached from l|E .

In the analogous way we define s|S.
We can split the run ρ into segments

A1,B1,A2 . . . ,Bk−1,Ak

such that:
– Every Ai is a sequence of states (sub-run) where code of S is executed (formally tran-

sitions within Ak are labeled by names of classes from S). Moreover, every Ai except
for the last one ends with a state of the form (ei[Ci.mi(~ai)],si) where the subexpres-
sion Ci.mi(~ai) is about to be rewritten (with Ci defined in E). We will denote the tuple
(Ci,mi,~ai) by xi.

– Every Bi is a sequence of states where code of E is executed. It begins with
(ei[{e′i}Ci ],si), where {e′i}Ci is the block obtained by the static method call rule ap-
plied to Ci.mi(~ai) (it depends only on Ci, mi, and ~ai), and ends with (ei[{yi}Ci ], ti),
where yi is a value (that is return by this method).

We will represent such a run as

ρ = A1[s1,x1]B1[t1,y1]A2[s2,x2] . . .Bk−1[tk−1,yk−1]Ak

The square brackets, intuitively, contain all the information that is passed between S
and E. We will write Aρ

i to denote Ai, and similarly for Ai, Bi, xi, yi, si, and ti when it is
necessary to make it explicit which run we consider.

The following result states, so called, state separation of E and S: for a representa-
tion of a run as above, Bi does not change the part of the state that can be reached from
S and, similarly, Ai does not change the part of the state that can be reached by E.
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Lemma 1. We have:

1. si|S = ti|S,
2. ti|E = si+1|E .

Intuitively, this lemma holds true, because E and S do not exchange references (they
exchange only primitive values) and do not share any static variables.

Because of this state separation, we can obtain the following two results. The first
one states that the state of E (the part of the state that E can access) and the values that
E returns depend solely on the input it explicitly gets from S by method calls (recall
that the values passed by such calls are, by our assumption, of primitive types only).

Lemma 2. Let S, S′ and E be like in the theorem. Let ρ be the run of E ·S and ρ ′ be the
run of E ·S′. If

xρ

1 = xρ ′

1 , . . . ,xρ

k = xρ ′

k ,

then
tρ

k |E ∼ tρ ′

k |E and yρ

k = yρ ′

k .

Conversely, the state of S and the values it provides to E, solely depend on the values
that E returns to S:

Lemma 3. Let S, E and E ′ be like in the theorem. Let ρ be the run of E · S and ρ ′ be
the run of E ′ ·S. If

yρ

1 = yρ ′

1 , . . . ,yρ

k = yρ ′

k ,

then
sρ

k+1|S ∼ sρ ′

k+1|S and xρ

k+1 = xρ ′

k+1

Proof of Theorem 4. Implication from left to right is obvious. So let us assume that,
I-non-interference does not hold for S. It means that there exists an I-environment E for
S such that non-interference does not hold for E · S. This, in turn, means that there are
valid ~a1 and ~a2 such that the run ρ of E ·S[a1] and the run ρ ′ of E ·S[a1] give different
results (i.e. both runs are finite and the final value of result is different).

In the following, we only consider the case where the number of blocks Bi in both
runs is the same (the other case can be handled in a similar way).

As the value of result in a state s is part of s|E , we conclude from Lemma 2, that
there exists an index k such that xρ

k 6= xρ ′

k . Let k be the first such index. Note that yρ

i = yρ ′

i
for i ∈ {1, . . . ,k−1}. Let us assume that the first argument in the call described by xρ

k

has value z which is different than the value z′ of the first argument in xρ ′

k (for the other
cases the proof is very similar).

We define now a sequence~u as the sequence containing only zeros with the follow-
ing exceptions:

– In the system Ẽ~u · S[ai], the consecutive (k− 1) values that methods of Ẽ~u return to
S[ai] are determined by some subsequence up1 , . . . ,upk . Therefore we set upi = yi for
i ∈ {1, . . . ,k− 1} (that is, the values returned in Ẽ~u · S[ai] coincide with the values
returned in E ·S[ai]).
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– Let l be the integer such that ul decides whether to test the first arguments in Bk-th
block (then this argument is compared to ul+1 to determine the result). We set ul to 1
and ul+1 to z (as defined above). Note that l /∈ {p1, . . . , pk−1}.

– As mentioned, for all remaining i we set ui = 0.

Now, to complete the proof it is enough to show that Ẽ~u · S[a1] and Ẽ~u · S[a2] give
different results.

Let σ be the run of the system Ẽ~u ·S[a1] and σ ′ be the run of the system Ẽ~u ·S[a2].
As, by the definition of ~u, we know that yρ

i = yρ ′

i = yσ
i = yσ ′

i for i ∈ {1, . . . ,k−1}, we

can use Lemma 3 to obtain xσ
k = xρ

k and xσ ′
k = xρ ′

k . Therefore, the first argument in xσ
k is

z and it is different that the first argument in xσ ′
k . Therefore, by the definition of~u (more

precisely, by the values of ul and ul+1 the variable result is set to true in Ẽ~u · S[a1]
and to false in Ẽ~u · S[a2], after which both systems terminate (the abort is executed
immediately after the assignment). Hence, these systems give different results, which
completes the proof.

A.2 Proof of Theorem 5

The proof of Theorem 5 is quite similar to the proof of Theorem 4. The main difference
is in the communication through strings, where indeed string references are exchanged,
leading E and S to share part of their state. However, since strings are immutable objects,
i.e., their internal state can not be modified after their creation, the part of the shared
state of a system can not be modified by the other one. On the other hand side, the
assumptions E.1-E.3 and S.1-S.3, respectively on the interface IE and on the system S,
guarantee that—even if, technically, some references are exchanged between E and S—
the communication between them is, effectively, as if only pure values were exchanged.

We firstly (re)introduce the notation used in the previous section in order to better
clarify it w.r.t the communication, besides through primitive types, also through strings,
simple objects, arrays, and exception. Let IE and S be as in the Theorem 5. Let /0 ` E : IE
be an environment for S. We represent the run ρ of E ·S as:

ρ = A1[s1,x1]B1[t1,y1]A2[s2,x2] . . .Bn−1[tn−1,yn−1]An[sn,xn],

where the square brackets contain all the information that is passed between the two
systems.

Thanks to the restrictions S.1 and S.2 regarding simple objects and arrays, we can
assume that, other than to produce a fresh copy of them, E and S only share string
references. We can then define the components of ρ in the following way:

– si is the state of the run at the end of the segment Ai, i.e., where the code of S is
executed.

– xi = (Ci,mi,~ai) is a tuple denoting the call of the method mi of the class Ci defined
in E with arguments ~ai. The arguments vector ~ai records primitive types, strings,
values of arrays of primitive types (not the references of these arrays though), or
values of simple objects (but, again, not their references), that is collections of all
values of the fields of objects whose classes are defined in IE .
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– ti is the state of the run at the end of the Bi segment, i.e., where the code of E is
executed.

– yi is the value returned by the method Ci.mi of E to S. Again, yi may be a primitive
value, a string, or a value either of an array (of primitive types), or of a simple
object.

Furthermore, given a state s, let s|S be the part of s the system S can access and, similarly,
let s|E be the part of s accessible by the environment E.

The following Lemma is an extension of a result, so called, state separation of E
and S introduced in [11]: intuitively, for a representation of a run as above, Bi does not
change the part of the state that can be reached from S and, similarly, Ai does not change
the part of the state that can be reached from E.

Lemma 4. Let S and E be two systems like in Theorem 5 and whose run ρ is defined
as above. Then, for each i ∈ {1, . . . ,n−1} we have:

1. si|S = ti|S,
2. ti|E = si+1|E .

Proof. (Sketch) The first statement asserts that the part of the state accessible by S is,
at the end of each segment Ai of the run, equal to the part of the state accessible by S
at the end of the following segment Bi. Similarly, the second statement asserts that the
part of the state accessible by E is, at the end of each segment Bi of the run, equal to the
part of the state accessible by E at the end of the following segment Ai+1.

Altought formally simple objects, arrays, and exceptions are passed between the
system S and the environment E, in Section 4.2 we imposed some restrictions which
guarantee that the communication between S and E actually resembles exchange only
of primitive values or string references. In particular, imposing that only fresh copies of
references (different from strings) are passed to the enviorment and that every reference
r (different from string) the environment returns to the system is immediately cloned
and not used afterwards allows us to immediately conclude that E and S do not share
none of this kind of references. Therefore, we can assume the systems E and S exchange
only primitive values or string references.

Since in Jinja+ (as in Java) data is passed by value, both primitive values and string
references are copied when they are exchanged between these systems. However, while
if only primitive values are exchanged the part of the state accessible by E is disjoint to
the part of the state accesible by S, in case strings are passed too, the system receiving
their references is able to access also to a part of the state accessible from the other
system. Nevertheless, since in Jinja+ (and in Java too) string objects are immutable
and without any field, the system which receives their reference can not modify them.
Therefore, in any case, at the end of each segment of the run, the part of the state
accessible by the system whose code is going to be executed in the next segment has
remained unchanged as it was at the beginning the last segment.

Because of this state separation, we can obtain two lemmas asserting that the part
of the state accessible by each system and the values this system, at the end of each
segment of its run, pass to the other one depend solely on the values exchanged between
them so far.
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Let us first introduce some notation and definitions. Let ρ and ρ̂ be the runs of two
systems, for example E ·S and E · Ŝ. As already introduced before, xi/x̂i and yi/ŷi denote,
respectively, the calls of the method mi of the class Ci defined in E with arguments~ai/~a′i
and the values returned by them. We remember that they both record either primitive
values or string references.

Let f : R̂→ R be a bijection from R̂ to R, where R̂ and R are subsets of the set of all
string references, such that for each r̂ and r such that f (r̂) = r, their string values are
the same. We denote it as r∼ f r̂. We extend the domain of f to expressions, states, con-
figurations, and tuples xi/x̂i. We do it, in the standard way, by structural isomorphism.
That is, for example, e ∼ f ê holds if and only if e and ê are (syntactically) equal, up
to references occurring as their corresponding subexpressions which need to be in the
relation ∼ f , too. On the other hand side, for primitive values v/v̂, we write v ∼ f v̂, if
simply v = v̂.

Let f : R̂ f →R f and f ′ : R̂ f ′→R f ′ be two congruences. We say that f ′ is compatible
with f if for each r ∈ R̂ f ∩ R̂ f ′ , we have f (r) = f ′(r). Furthermore, we say that f ′ is an
extension of f (or, alternatively, f is a restriction of f ′) if f ′ is compatible with f , and,
in particular, R̂ f ⊆ R̂ f ′ .

Lemma 5. Let S1, S2 be two systems like the system S in Theorem 5 and let E be an
I-environment for both S1 and S2. Let ρ be the run of E ·S1 and ρ̂ be the run of E ·S2. If
there exists a bijection f : R̂ f → R f , where R̂ f and R f denote the sets of all references
in {x̂1, . . . , x̂k, ŷ1, . . . , ŷk−1} and in {x1, . . . ,xk,y1, . . . ,yk−1} respectively, such that

x1 ∼ f x̂1, . . . ,xk ∼ f x̂k and y1 ∼ f ŷ1, . . . ,yk−1 ∼ f ŷk−1,

then, there exists a bijection f ′ : R̂ f ′ → R f ′ , where R̂ f ′ and R f ′ denote the sets of refer-
ences in the domains of the heaps of t̂k|E and tk|E respectively, such that

tk|E ∼ f ′ t̂k|E and yk ∼ f ′ ŷk,

where f ′ is compatible with f .

Proof. By the premise of the lemma we know that there exists a bijection f such that
for each i∈ {1, . . . ,k}we have xi ∼ f x̂i and for each j ∈ {1, . . . ,k−1}we have y j ∼ f ŷ j.
By the inductive hypothesis, we can assert that if there exists a bijection g : R̂g → Rg
such that for each i ∈ {1, . . . ,k− 1} we have xi ∼g x̂i and for each j ∈ {1, . . . ,k− 2}
we have y j ∼g ŷ j, then there exists a bijection g′ : R̂g′ → Rg′ , compatible with g,
such that tk−1|E ∼g′ t̂k−1|E and yk−1 ∼g′ ŷk−1. We define the function g as a restric-
tion of f , where R̂g and Rg denote all references in {x̂1, . . . , x̂k−1, ŷ1, . . . , ŷk−2} and
{x1, . . . ,xk−1,y1, . . . ,yk−2}, respectively. Then, we also have the function g′ as above
where R̂g′ and Rg′ denote the sets of references in the domains of the heaps of t̂k|E and
tk|E , respectively. Moreover, as by Lemma 4 tk−1|E = sk|E and t̂k−1|E = ŝk|E , we can
assert sk|E ∼g′ ŝk|E .

We want to show that g′ is compatible with f . We will prove that for each â in
R̂g′ ∩ R̂ f , â is in R̂g too. Then, since f is an extension of g, we have f (â) = g(â) and,
since g is compatible with g′, f (â) = g(â) = g′(â), i.e., f and g′ are compatible. The
only references which may be in R̂ f ∩ R̂g′ but not in R̂g are those that are in x̂k. Let â be
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a reference of the method call denoted by x̂k which is also in R̂g′ . Then, by the defintion
of R̂g′ , â is in the domain of the heap of t̂k−1|E = ŝk|E . In particular, if â is ŷk−1, by the
definition of f and g′, we have f (ŷk−1) = yk−1 = g′(ŷk−1). Otherwise we notice that,
as â is part of x̂k, â is also in the domain of the heap of ŝk|S. Since all references in the
domain of the heap of ŝk were uniquely created in a (previous) point of the run ρ̂ and
since in the domains of the heap of ŝk|E and ŝk|S there are only those references that
can be reached by E and S respectively, â must have been created by one of the two
systems and then passed to the other one either in a previous method call x̂1, . . . , x̂k−1 or
in a value ŷ1, . . . , ŷk−2 previously returned. That is, by the definition of g, â is in R̂g too.

The segments Bk and B̂k start with (ez[{e′k}Ck ],sk) and (êz[{ê′k}Ck ], ŝk) respec-
tively, where {ek}Ck /{ê′k}Ck are the blocks obtained by the static method call rule
(Rule 61 of Jinja+) applied to the call described by xk/x̂k. In particular, {e′k}Ck =
{V1 : T1, . . . ,Vn : Tn;V1 := a1, . . . ,Vn := an;e}Ck and {ê′k}Ck = {V1 : T1, . . . ,Vn : Tn;V1 :=
â1, . . . ,Vn := ân;e}Ck , where for each j ∈ {1, . . . , l} we have a j ∼ f â j and e is the
body of the method mk of E. Then, since f and g′ are compatible, we can assert
({e′k}Ck ,sk|E)∼h ({ê′k}Ck , ŝk|E) for a bijection h : {â1, . . . , ân}∪ R̂g′→{a1, . . . ,an}∪Rg′

defined in the following way: (i) h(r) = f (r) if r ∈ {â1, . . . , ân}; (ii) h(r) = g′(r) if
r ∈ R̂g′ \{â1, . . . , ân}. That is, h maps references in x̂k to references in xk and references
in the heap of ŝk|E to references in the heap of sk|E . We notice that h is compatible with
both f and g′, and therefore also with g.

As applicability of no Jinja+ rule depends on the particular value of references and
as the blocks {e′k}Ck /{ê′k}Ck are syntactically the same up to the references in their initial
assignments, the rules applied in these blocks depend solely on e. Let

(e0,u0)→ (e1,u1)→ ·· · → (el ,ul),

be the segment Bk where its expressions are cut off from the set of classes belonging
to S and where only the part of the state that E can modify is taken into account. In
particular, (e0,u0) = ({e′k}Ck ,sk|E) and (el ,ul) = ({yk}Ck , tk|E). Let

(ê0, û0)→ (ê1, û1)→ ·· · → (êl , ûl),

be the segment B̂k pruned in the same way as Bk, where (ê0, û0) = ({ê′k}Ck , ŝk|E) and
(êl , ûl) = ({ŷk}Ck , t̂k|E).

We show that for each pair of configurations q j/q̂ j in the two (sub-)runs defined
above, there exists a bijection h j : R̂ j → R j such that qi = (e j,s j)∼h j (ê j, ŝ j) = q̂ j and
such that h j is a extension of the bijection h j−1 among (e j−1,s j−1) and (ê j−1, ŝ j−1). We
do it by induction on the number of steps of execution.

Base case: j = 0. As we know ({e′k}Ck ,sk|E)∼h ({ê′k}Ck , ŝk|E), we have h0 = h.
Inductive Step: Let us assume, by the inductive hypothesis, that there exists a

bijection h j : R̂ j→ R j for 0 < j < n such that (e j,u j)∼h j (ê j, û j) and such that h j is an
extension of h j−1. Since (e j,u j)→ (e j+1,u j+1) and (ê j, û j)→ (ê j+1, û j+1), we prove
that there exists a bijection h j+1 : R̂ j+1→ R j+1 such that (e j+1,u j+1)∼h j+1 (ê j+1, û j+1)

and R̂ j ⊆ R̂ j+1. We distinguish four cases depending on the behavior of the Jinja+ rule
applied in the j-th step of computation:

a) The effect of the rule on the state is directly inherited from the reduction step of a
subexpression in the hypotheses the rule (this case holds for all the subexpression
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reduction rules of Jinja+). In this case, there exist two subexpressions e and ê of
the expressions e j and ê j respectively, whose reduction step directly determines the
states u j+1/û j+1. Since h j is defined by structural isomorphism, (e,u j) and (ê, û j) are
under the bijection h j too. By the inductive hyphothesis, the configurations resulting
from the reduction step of the subexpressions e/ê are under a bijection h j+1 which
extends h j. Hence, since h j+1 is also defined by structural isomorphism, we can
assert that the configurations (e j+1,u j+1) and (ê j+1, û j+1) are under the bijection
h j+1, too.

b) The rule creates a new reference in the state of computations (Rules 16, 62, 71, 72,
76 of Jinja+). In this case, in (e j+1,u j+1) and (ê j+1, û j+1) occur two fresh references
a and â unused in u j and û j, respectively. Since, by the inductive hypothesis, h j is
an extension of h0 = h, and, by the definition of h, dom(h) is the union of references
in x̂k with references in the heap of û0 = ŝk|E , then dom(h j) differs from dom(h0)
solely in the set of references which have been created in the segment B̂k so far, i.e.,
which are in the heap of û j but not in the heap of û0. Therefore, if â is not in the
heap of û j, then it is not even in dom(h j) = R̂ j. We can then extend the bijection h j to
another bijection h j+1 in the following way: (i) R̂ j+1 = R̂ j∪{â}; (ii) ∀r∈ R̂ j,h j(r)=
h j+1(r); (iii) a = h j+1(â). Since all the other references remain unchanged, we can
conclude (e j+1,u j+1)∼h j+1 (ê j+1, û j+1).

c) The rules update an entry in the state of computations (Rule 20 of Jinja+ performs
an update on the store, whereas Rules 23 and 68 perform an update on the heap). In
these (three) rules, the expressions e j and ê j are reduced to e j+1 and ê j+1 by trim-
ming the updating value off. Therefore, since no new references occur in e j+1/ê j+1,
we have e j+1 ∼h j ê j+1. Furthermore, the states u j/û j are updated with values which
are in e j/ê j and hence, in case these values are references, already under the bijec-
tion h j. Therefore, the entries updated remain under the same bijection h j, by which
we can conclude (e j+1,u j+1)∼h j+1 (ê j+1, û j+1), where h j+1 = h j.

d) The rule leaves the state of the configurations unchanged: this case holds for all
the expression reduction rules and all the exception propagation rules of Jinja+ not
mentioned in the previous two items. Here, if in e j+1/ê j+1 occur new references, they
must have been in u j/û j and therefore under the bijection h j. (This case could for
example happen in the field access rule, Rule 22, if the field is not of primitive type.)
We can then assert e j+1 ∼h j ê j+1. Moreover, since their states remain unchanged,
we can conclude (e j+1,u j+1)∼h j+1 (ê j+1, û j+1), where h j+1 = h j.

Therefore, since in each step j of these two runs the configurations are under a bijection
h j extending the initial bijection h0 = h, at the end of the segments Bk/B̂k there exists
a bijection hl , which extends h, such that ({yk}Ck , tk|E) ∼hl ({ŷk}Ck , t̂k|E). We can then
set f ′ = hl to obtain tk|E ∼ f ′ t̂k|E and yk ∼ f ′ ŷk.

In order to conclude the proof, we have to show that f ′ is compatible with f . The bi-
jection f ′ is an extension of h which is compatible with f . That is, f ′ is also compatible
with f .

Lemma 6. Let S be like in Theorem 5 and let E1 and E2 be two I-environments for S.
Let ρ be the run of E1 ·S and ρ̂ be the run of E2 ·S. If there exists a bijection f : R̂ f →
R f , where R̂ f and R f denote the sets of all references in {x̂1, . . . , x̂k, ŷ1, . . . , ŷk} and in
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{x1, . . . ,xk,y1, . . . ,yk} respectively, such that

x1 ∼ f x̂1, . . . ,xk ∼ f x̂k and y1 ∼ f ŷ1, . . . ,yk ∼ f ŷk,

then, there exists a bijection f ′ : R̂ f ′ → R f ′ , where R̂ f ′ and R f ′ denote the sets of refer-
ences in the domains of the heaps of ŝk+1|S and sk+1|S respectively, such that

sk+1|S ∼ f ′ ŝk+1|S and xk+1 ∼ f ′ x̂k+1,

where f ′ is compatible with f .

Proof. (Sketch) The proof of this Lemma is somewhat complementary to the proof of
Lemma 5: the segments Ak+1/Âk+1 we are considering now are two sequences of n
configurations of S pairwise equal, up to those references which have been exchanged
with E1 and E2 so far and which are, by the hypothesis of the lemma, under the bijection
f .

By following the same inductive reasoning as in the proof of the other lemma, there
exist two bijections g and g′ such that, respectively, g is defined as a restriction of
f to the domain containing all references in {x̂1, . . . , x̂k+1, ŷ1, . . . , ŷk+1} and g′ maps
references in the domain of the heap of ŝk|S = t̂k|S to references in the domain of the heap
of sk|S = tk|E . Therefore, we can assert that the two initial configurations (ez, tk)/(êz, t̂k)
of the segments Ak+1/Âk+1, pruned from the part of the state not accessible from S, are
under a bijection h defined, as in the other lemma, piecewise by f and g′. (Bijections f
and g′ are compatible since all references in R̂ f ∩ R̂g′ are in the domain of g too; see the
corresponding reasoning in the proof of Lemma 5 for details.)

As applicability of no Jinja+ rule depends on the particular value of refer-
ences, the same rule is applied in each step of Ak+1 and Âk+1. Therefore, by in-
duction on the number of steps we can assert that, at the end of the two segments,
there exists a bijection f ′, compatible with f , among their final (pruned) config-
urations, (ez+n[Ck+1.mk+1(~ak+1)],sk+1|S) and (êz+n[Ck+1.mk+1(~a′k+1)], ŝk+1|S), where
(Ck+1,mk+1,~ak+1) = xk+1 and (Ck+1,mk+1,~a′k+1) = x̂k+1, respectively. (Again, see the
final part of the proof of Lemma 5 for details.)

We can now prove the main theorem of our extension. Thanks to the assumptions on
the components of the run ρ , we remind that only primitives values and string references
are exchanged between S and E.

Proof of Theorem 5. Implication from left to right is obvious. So let us assume that,
I-non-interference does not hold for S. It means that there exists an I-environment E for
S such that non-interference does not hold for E ·S, i.e., there are valid ~a1 and ~a2 such
that the run ρ of E ·S[~a1] and the run ρ̂ of E ·S[~a2] give different results.

We can define a sequence ~u such that the system Ẽ~u behaves exactly like E and it
is therefore able to distinguish between S[~a1] and S[~a2]. Since the value of result in
a state s is part of s|E , we conclude from Lemma 5, that there exists an index k such
that xρ

k and xρ̂

k are not under a bijection. Let k be the first such index. Note that, from
Lemma 5, we also know xρ

i ∼ f xρ̂

i and yρ

i ∼ f yρ̂

i for i∈ {1, . . . ,k−1} and for a bijection
f . Let us assume that what breaks the bijection are the first arguments zρ and zρ̂ in the
calls described by xρ

k and xρ̂

k , respectively (for the other cases the proof is very similar).
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We can now define the sequence ~u which determines the behavior of Ẽ~u as a se-
quence containing only zeros with the following exceptions:

– For each primitive value vi that E returns to S[~a1], let l be the index such that ul is
the element of ~u determining the i-th primitive value that Ẽ~u returns to S[~a1]. We
then set ul = vi.

– Each string reference ri that E returns to S[~a1] can be either a reference already
exchanged between E and S[~a1] before or a freshly exchanged one. In the system
Ẽ~u ·S[~a1], let p be the integer such that up decides whether to return a freshly created
string or a string stored in stringList.
If ri is a freshly exchanged reference, we set up to 1, up+1 to the length of ri and each
u j for j ∈ {p+2, . . . , p+ |ri|+1} to the integer corresponding to the ( j− p−2)-th
character of ri. Otherwise, if ri was already exchanged before the last segment of
execution of E, let assume this reference is the j-th element of stringList. We set
up to 2 and up+ j to 1.

– The arguments zρ and zρ̂ brake the bijection either because their values are different
or because they point to different references in s|E . In the system Ẽ~u · S[~a1], if zρ

and zρ̂ are primitive values, then let q be the integer such that uq decides whether to
test these arguments (they are then compared to uq+1 to determine the result). We
set uq = 1 and uq+1 = zρ .
On the other hand side, if zρ and zρ̂ are string references, we distinguish the fol-
lowing three cases: (1) If the two string values have different lengths, let l be the
integer such that ul decides whether to test their lengths. We then set ul to 1 and
ul+1 to the length of zρ . (2) Otherwise, if the two string values differ from at least
one character, let p be the integer such that up decides whether to test the j-th char-
acter of zρ , the first one which differs from the j-th character of zρ̂ . We set up to
1 and up+1 to the integer corresponding to the j-th character of zρ . (3) Finally, if
there exists (at least) an element of stringList whose reference comparison with
zρ gives a different result to the reference comparison with zρ̂ , let q be the integer
such that uq decides whether to test the result of the comparison between zρ /zρ̂ and
the aforementioned element of stringList. We set both uq and uq+1 to 1.

– As mentioned, for all remaining i we set ui = 0.

In order to complete the proof, it is enough to show that Ẽ~u ·S[~a1] and Ẽ~u ·S[~a2] give
different results.

Let σ be the run of the system Ẽ~u · S[~a1] and σ̂ be the run of the system Ẽ~u · S[~a2].
Therefore, by the definition of~u, we have that there exist two bijections g and h such that
xρ

i ∼g xσ
i , yρ

i ∼g yσ
i and xρ̂

i ∼h xσ̂
i , yρ̂

i ∼h yσ̂
i for i ∈ {1, . . . ,k−1}. Then, by Lemma 6,

there exist two bijections g′ and h′, compatible with g and h respectively, such that
xρ

k ∼g′ xσ
k and xρ̂

k ∼h′ xσ̂
k : In particular, zρ = g′(zσ ) and zρ̂ = h′(zσ̂ ). Since, by the con-

struction of Ẽ~u, we know that there not exists a bijection f such that zρ = f (zρ̂), then
there not exists neither a bijection f ′ such that zσ = f ′(zσ̂ ). In fact, if the bijection f ′

existed, it should be defined as f ′ = (g′)−1 ◦ f ◦ h′, i.e., the composition of the inverse
of g′ with (the nonexistent) f , composed with h′. We can then conclude that zσ and zσ̂

are not under a bijection either. Therefore, by the definition of~u, the variable result is
set to true in Ẽ~u · S[~a1] and to false in Ẽ~u · S[~a2], after which both systems terminate
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(the abort is executed immediately after the assignment). Hence, these systems give
different results, which completes the proof.

B Rules of Jinja+

In this section we summarize all the rules of Jinja+. We start with rules of Jinja, follow-
ing [7] (see this paper for the details on the used symbols). In particular, the syntactical
convention used in these rules is that an application of a function f to an argument a
is denoted by f a. The rules assume a function binop that provides semantics for op-
erations on atomic types. The exact definition of this function depends on the maximal
size of integers that we consider (recall that we consider different variants of semantics
for different size of integers given by intsize(η) where η is the security parameter).

There are two points where our presentation rules diverge from the ones of [7]. First,
as we assume unbounded memory, we do not have rules which throw OutOfMemoryError

(and we assume that (new-Addr h) is never None). Second, we added labels to rules.
These labels allow us to count the number of steps performed within (by) a given class
or subsystem. A label D in a step

〈e,s〉 D→ 〈e′,s′〉

means, informally, that the step was executed by the code of class D. More precisely, the
expression that was selected to be reduced by an elementary rule comes from a method
of D. We use the label − if the origin of the reduced expression is not known (because,
at that point, the context of this expression is not known; typically this empty label is
overwritten by a subexpression reduction rule for blocks, that is rules (8)–(10)).

To define labeling of transitions, labels are also added to blocks that are obtained
from the method call rule (a block is labeled by the name of the class from which
the body of the method comes). Then, the labels of transitions are, roughly speaking,
inherited from the innermost block within which the reduction takes place.

Now, for the run of a program P with a subsystem S, we say that a step 〈s1,e1〉
D→

〈s2,e2〉 is performed by S and write 〈s1,e1〉
S→〈s2,e2〉, if D is the name of a class defined

in S.

Subexpression reduction rules (Figure 7) describe the order in which subexpressions
are evaluated. The relation [→] it the extension of → to expression list (· is the list
constructor).

Expression reduction rules (Figure 8) are applied when the subexpressions are suffi-
ciently reduced. In the rule for method invocation, the required nested block structure
is built with the help of the auxiliary function blocks:

blocksC([], [], [],e) = e

blocksC(V ·V s,T ·T s,v · vs,e) =

= {V : T ; V :=v; blocksC(V s,T s,vs,e)}C

(where · is the list constructor and [] denotes the empty list).

33



Exceptional reduction and exception propagation rules (Figure 9 and 10) describe how
exception are thrown and propagated.

Note that we do not have a rule reducing abort. That means that, if this expression is
to be reduced, the execution gets stuck.

B.1 Rules of Jinja+

In this section we present additional rules of Jinja+. Theres rules concern static method
invocation, arrays, and strings. The rules are given in Figure 11, 12, and 13.
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P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈Cast C e,s〉 `→ 〈Cast C e′,s′〉
(1)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈V := e,s〉 `→ 〈V := e′,s′〉
(2)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈e.F{D},s〉 `→ 〈e′.F{D},s′〉
(3)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈e.F{D} := e2,s〉
`→ 〈e′.F{D} := e2,s′〉

(4)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈Val v.F{D} := e,s〉 `→ 〈Val v.F{D} := e′,s′〉
(5)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈e� bop� e2,s〉
`→ 〈e′� bop� e2,s′〉

(6)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈Val v1� bop� e,s〉 `→ 〈Val v1� bop� e′,s′〉
(7)

P ` 〈e,(h, l(V := None))〉 `→ 〈e′,(h′, l′)〉 l′ V = None ¬ assigned V e

P ` 〈{V : T ;e}D,(h, l)〉
f (l,D)→ 〈{V : T ;e′}D,(h′, l′(V := l V ))〉

(8)

P ` 〈e,(h, l(V := None))〉 `→ 〈e′,(h′, l′)〉 l′ V = v ¬ assigned V e

P ` 〈{V : T ;e}D,(h, l)〉
f (l,D)→ 〈{V : T ; V := Val v;e′}D,(h′, l′(V := l V ))〉

(9)

P ` 〈e,(h, l(V := v))〉 `→ 〈e′,(h′, l′)〉 l′ V = v′

P ` 〈{V : T ;V := Val v;e}D,(h, l)〉
f (l,D)→ 〈{V : T ; V := Val v′;e′}D,(h′, l′(V := l V ))〉

(10)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈e.M(es),s〉 `→ 〈e′.M(es),s′〉
(11)

P ` 〈es,s〉 [ `→] 〈es′,s′〉

P ` 〈Val v.M(es),s〉 `→ 〈Val v.M(es′),s′〉
(12)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈e;e2,s〉
`→ 〈e′;e2,s′〉

(13)

P ` 〈e,s〉 `→ 〈e′,s′〉
P ` 〈if (e) e1 else e2,s〉 → 〈if (e′) e1 else e2,s′〉

(14)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈e · es,s〉 [ `→] 〈e′ · es,s′〉

P ` 〈es,s〉 [ `→] 〈es′,s′〉

P ` 〈Val v · es,s〉 [ `→] 〈Val v · es′,s′〉
(15)

Fig. 7. Subexpression reduction rules. We define g(`,D) = D, if `=−; otherwise g(`,D) = `.
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new-Addr h = a P `C has-fields FDT s

P ` 〈new C,(h, l)〉 −→ 〈addr a,(h(a 7→ (C, init-fields FDT s)), l)〉
(16)

hp s a = (D, f s) P ` D�∗ C

P ` 〈Cast C (addr a),s〉 −→ 〈addr a,s〉
(17)

P ` 〈Cast C null,s〉 −→ 〈null,s〉 (18)

lcl s V = v

P ` 〈Var V,s〉 −→ 〈Val v,s〉
(19)

P ` 〈V := Val v,(h, l)〉 −→ 〈unit,(h, l(V 7→ v))〉 (20)

binop (bop,v1,v2) = v

P ` 〈Val v1� bop� Val v2,s〉
−→ 〈Val v,s〉

(21)

hp s a = (C, f s) f s(F,D) = v

P ` 〈addr a.F{D},s〉 −→ 〈Val v,s〉
(22)

hp a = (C, f s)

P ` 〈addr a.F{D} := Val v,(h, l)〉 −→ 〈unit,(h(a 7→ (C, f s((F,D) 7→ v))), l)〉
(23)

hp s a = (C, f s) P ` C sees M : T s→ T = (pns, body) in D |vs|= |pns| |T s|= |pns|
P ` 〈addr a.M(map Val vs),s〉 −→ 〈blocksD(this · pns, Class D ·T s, addr a · vs, body),s〉

(24)

P ` 〈{V : T ; Val u}D,s〉
D→ 〈Val u,s〉 (25)

P ` 〈{V : T ; V := Val v; Val u}D,s〉
D→ 〈Val u,s〉 (26)

P ` 〈Val v; e2,s〉
−→ 〈e2,s〉 (27)

P ` 〈if(true) e1 else e2,s〉
−→ 〈e1,s〉 (28)

P ` 〈if( f alse) e1 else e2,s〉
−→ 〈e2,s〉 (29)

P ` 〈while(b) c,s〉 −→ 〈if(b) (c; while(b) c) else unit,s〉 (30)

Fig. 8. Expression reduction
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hp s a = (D, f s) ¬ P ` D�∗ C

P ` 〈Cast C(addr a),s〉 −→ 〈THROW ClassCastException, s〉
(31)

P ` 〈null.F{D},s〉 −→ 〈THROW NullPointerException, s〉 (32)

P ` 〈null.F{D} := Val v,s〉 −→ 〈THROW NullPointerException, s〉 (33)

P ` 〈null.M(map Val vs),s〉 −→ 〈THROW NullPointerException, s〉 (34)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈throw e,s〉 `→ 〈throw e′,s′〉
(35)

P ` 〈throw null,s〉 −→ 〈THROW NullPointerException,s〉 (36)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈try e catch (C V ) e2,s〉
`→ 〈try e′ catch (C V ) e2,s′〉

(37)

P ` 〈try Val v catch (C V ) e2,s〉
−→ 〈Val v,s〉 (38)

hp s a = (D, f s) P ` D �∗ C

P ` 〈try Throw a catch (C V ) e2,s〉
−→ 〈{V : Class C; V := addr a; e2},s〉

(39)

hp s a = (D, f s) ¬ P ` D �∗ C

P ` 〈try Throw a catch (C V ) e2,s〉
−→ 〈Throw a,s〉

(40)

Fig. 9. Exceptional expression reduction
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P ` 〈Cast C (throw e),s〉 −→ 〈throw e,s〉 (41)

P ` 〈V := throw e,s〉 −→ 〈throw e,s〉 (42)

P ` 〈throw e.F{D},s〉 −→ 〈throw e,s〉 (43)

P ` 〈throw e.F{D} := e2,s〉
−→ 〈throw e,s〉 (44)

P ` 〈Val v.F{D} := throw e,s〉 −→ 〈throw e,s〉 (45)

P ` 〈throw e � bop� e2,s〉
−→ 〈throw e,s〉 (46)

P ` 〈Val v1 � bop� throw e,s〉 −→ 〈throw e,s〉 (47)

P ` 〈{V : T ; Throw a}D,s〉
D→ 〈Throw a,s〉 (48)

P ` 〈{V : T ;V := Val v; Throw a}D,s〉
D→ 〈Throw a,s〉 (49)

P ` 〈throw e.M(es),s〉 −→ 〈throw e,s〉 (50)

P ` 〈Val v.M(map Val vs @ (throw e · es′)),s〉 −→ 〈throw e,s〉 (51)

P ` 〈throw e; e2,s〉
−→ 〈throw e,s〉 (52)

P ` 〈if(throw e) e1 else e2,s〉
−→ 〈throw e,s〉 (53)

P ` 〈throw(throw e),s〉 −→ 〈throw e,s〉 (54)

Fig. 10. Exception propagation
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P ` 〈es,s〉 [ `→] 〈es′,s′〉

P ` 〈D.M(es),s〉 `→ 〈D.M(es′),s′〉
(55)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈e[e2], s〉 `→ 〈e′[e2], s′〉
(56)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈(Val v)[e], s〉 `→ 〈(Val v)[e′], s′〉
(57)

P ` 〈D.M(map Val vs @ (throw e · es′)),s〉 −→ 〈throw e,s〉 (58)

P ` 〈(throw e)[e′],s〉 −→ 〈throw e,s〉 (59)

P ` 〈e′[throw e],s〉 −→ 〈throw e,s〉 (60)

Fig. 11. Subexpression reduction and exception propagation rules for Jinja+.
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P ` D has-static M : T s→ T = (pns, body) |vs|= |pns| |T s|= |pns|
P ` 〈D.M(map Val vs),s〉 −→ 〈blocksD(pns,T s,vs, body),s〉

(61)

n≥ 0, new-Addr h = a

P ` 〈new τ[intg(n)], (h, l)〉 −→ 〈addr a,(h(a 7→ initArr(τ,n)), l)〉
(62)

P ` 〈null[intg(n)],s〉 −→ 〈THROW NullPointerException, s〉 (63)

n < 0

P ` 〈new τ[intg(n)], (h, l)〉 −→ 〈THROW NegativeArraySizeException, (h, l)〉
(64)

h a = (τ,m, t), 0≤ n < m, h t(n) = v

P ` 〈(addr a)[intg n], (h, l)〉 −→ 〈Val v, (h, l)〉
(65)

h a = (τ,m, t), ¬(0≤ n < m),

P ` 〈(addr a)[intg n], (h, l)〉 −→ 〈THROW IndexOutOfBoundsException, (h, l)〉
(66)

h a = (τ,m, t),

P ` 〈(addr a).lenght, (h, l)〉 −→ 〈intg m, (h, l)〉
(67)

h a = (τ,m, t), 0≤ n < m, isOfType(v,τ), t ′ = arrayUpdate(t,n,v)

P ` 〈(addr a)[intg n] := Val v, (h, l)〉 −→ 〈unit, (h(a 7→ (τ,m, t ′)), l)〉
(68)

h a = (τ,m, t), ¬(0≤ n < m),

P ` 〈(addr a)[intg n] := Val v, (h, l)〉 −→ 〈THROW IndexOutOfBoundsException, (h, l)〉
(69)

h a = (τ,m, t), 0≤ n < m, ¬isOfType(v,τ),

P ` 〈(addr a)[intg n] := Val v, (h, l)〉 −→ 〈THROW ArrayStoreException, (h, l)〉
(70)

Fig. 12. (Exceptional) expression reduction rules for Jinja+, where: Function initArr(τ,n) returns
an array of length n with elements initialized to the default value of type τ . Expression P `
D has-static M : T s→ T = (pbs,body) means that in program P, class D contains declaration
of static method M with argument types T s, return type T , formal arguments pbs, and the body
body.
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new-Addr h = a

P ` 〈litS str, 〈h, l〉〉 −→ 〈addr a,〈h(a 7→ initString(str)), l〉〉
(71)

h(a1) = (ch1,m1), h(a2) = (ch2,m2), new-Addr h = a3, ch3 = concat(ch1,ch2)

P ` 〈(addr a1)+(addr a2),〈h, l〉
−→ 〈(addr a3),〈h(a3 7→ (ch3,m1 +m2)), l〉〉〉

(72)

h(a) = (ch,m)

P ` 〈(addr a).lenght(), 〈h, l〉〉 −→ 〈intg m,〈h, l〉〉
(73)

h(a) = (ch,m), 0≤ n < m, ch[n] = c

P ` 〈(addr a).charAt(intg n),〈h, l〉〉 −→ 〈char c,〈h, l〉〉
(74)

h(a) = (ch,m), ¬(0≤ n < m)

P ` 〈(addr a).charAt(intg n),〈h, l〉〉 −→ 〈THROW IndexOutOfBoundsException,〈h, l〉〉
(75)

h(a) = (ch,m), new-Addr h = a′

P ` 〈(addr a).getBytes(),〈h, l〉〉 −→ 〈addr a′,〈h(a 7→ encodeToByte(ch,m), l〉〉
(76)

Fig. 13. (Exceptional) expression reduction rules for the String data type, where: Function
initString(str) returns a pair of an array ch containing the charachers of the string literal str
and its length m. Function concat(ch1,ch2) creates a new array of characters where the latter ar-
ray ch2 is concatenated to the former one ch1. Function encodeToByte(ch,m) converts the string
(ch,m) in a new array of bytes.
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