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Abstract

In recent years, lattice-based secure multi-party computation (MPC) has seen a rise in popularity and is used more and more
in large scale applications like privacy-preserving cloud computing, electronic voting, or auctions. Many of these applications
come with the following high security requirements: a computation result should be publicly verifiable, with everyone being able
to identify a malicious party and hold it accountable, and a malicious party should not be able to corrupt the computation, force a
protocol restart, or block honest parties or an honest third-party (client) that provided private inputs from receiving a correct result.
The protocol should guarantee verifiability and accountability even if all protocol parties are malicious. While some protocols
address one or two of these often essential security features, we present the first publicly verifiable and accountable, and (up to a
threshold) robust SPDZ-like MPC protocol without restart. We propose protocols for accountable and robust online, offline, and
setup computations. We adapt and partly extend the lattice-based commitment scheme by Baum et al. (SCN 2018) as well as
other primitives like ZKPs. For the underlying commitment scheme and the underlying BGV encryption scheme we determine
ideal parameters. We give a performance evaluation of our protocols and compare them to state-of-the-art protocols both with and
without our target security features: public accountability, public verifiability and robustness.

An extended abstract of this paper appeared in the Proceedings of the 2022 IEEE Symposium on Security and Privacy [1].
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I. INTRODUCTION

In recent years, secure multi-party computation (MPC) has
evolved from a theoretical concept to a technology with more
and more industrial scale applications including, for example,
complex machine learning (ML) tasks [2]–[7]. One major
contribution to this success are efficient two-phase protocols
like SPDZ [8], [9] and “SPDZ-like” protocols [7], [10]–[21]
which consist of an input-independent offline phase and a
highly efficient input-dependent online phase.1 Most of these
protocols provide security with abort (the output is correct or
the protocol aborts without output), often even with a dishonest
majority.

While in many situations this is sufficient, applications
following the client-server model generally require stronger
security properties. In client-server applications, servers are
responsible for running the MPC protocol and clients provide
inputs to and receive outputs from the servers such that
individual servers do not learn the inputs and, depending on
the application, also not the outputs. Many important real-
life applications follow this client-server model, e.g., auctions
[22], [23], e-voting protocols [24], [25], and cloud services
for privacy preserving computation [18], [26]–[28] – including
ML tasks [2], [6], [29]–[31]. These client-server applications
often require publicly identifiable abort [12], [15], [32]: it
must be possible to verify whether the outputs of the servers
are correct2 and, if the result is not correct and hence the
protocol aborts, then one must be able to identify at least one
misbehaving server that can be held accountable for causing
the abort. Here “public” means that not just the servers running
the MPC protocol, but rather everyone, including clients and
external parties, can verify the results and hold misbehaving
servers accountable. This not only allows clients and external
parties to trust the final output (e.g., the result of an election or
an auction) but, when coupled with a financial or contractual
penalty [39], [40], serves as a strong incentive for malicious
servers to honestly follow the protocol instead of causing
aborts. Unlike in the traditional (non-client-server) setting,
where at least one honest MPC participant is assumed, publicly
identifiable abort should still hold true even if all servers are
malicious since clients might not trust any of the servers. In
what follows, we call a security notion strong if it holds even
in this setting. To the best of our knowledge, the SPDZ-like
protocol of Cunningham et al. [15] is the only efficient two-
phase protocol with strong publicly identifiable abort.

If only a certain (small) fraction of participants of an
MPC protocol is corrupted, then it is desirable to prevent
the malicious parties from causing an abort in the first place,
rather than merely blaming them after the fact (if too many
parties are corrupted, it is generally impossible to prevent an
abort [41]). This property is called robustness or guaranteed
output delivery [33], [42]–[52] which is a highly useful
property both in traditional and client-server applications. For
example, a single malicious server should not be able to

1We use ”SPDZ-like” to refer to protocols that improve and/or extend the
SPDZ protocol.

2This property is called public/universal verifiability [11], [33]–[37] and is
implied by publicly identifiable abort [38].

prevent the computation of the winner of an election or the
result of an auction. Since a number of misbehaving parties
above the threshold can still cause aborts even for robust
protocols, (strong) publicly identifiable abort still serves as
a desirable backup security mechanism. This mechanism can
even be strengthened as follows: In case of an abort, one
should identify not just a single but at least a number of
malicious parties that is needed to cause an abort, i.e., more
than the threshold. Also, even if a protocol did not abort, one
might still be able to identify some misbehaving parties that
tried but failed to undermine robustness. In what follows, we
use the term (strong) public accountability [38] to refer to this
strengthened notion of (strong) publicly identifiable abort.

Clearly, both (strong) public accountability and robustness
are often highly desirable security properties. Yet the combi-
nation of both properties has not been considered for efficient
two-phase protocols so far (cf. Table I; note that SPDZ-like
protocols are only a subset of the two-phase protocols we
examined). The protocol that probably comes closest is Cun-
ningham et al. [15] which is a SPDZ-like protocol with strong
publicly identifiable abort. A straightforward method to add
robustness to such a protocol is to restart the whole protocol
without the previously misbehaving parties whenever a result
does not verify [14], [32], [53]. But this method is actually
insecure in certain application contexts such as auctions, since
an adversary can see the betting behavior of other parties in
previous (aborted) rounds and adapt their strategy accordingly
(cf. Section VIII and [14]). It seems however possible to
combine Cunningham et al.’s protocol securely with a more
advanced method of this iteration technique, namely the so-
called best-of-both-worlds (BoBW) protocols [51], [54]. These
best-of-both-worlds protocols add robustness to an MPC pro-
tocol with identifiable abort by iterating the MPC protocol,
while also adding another layer of secret-sharing to prevent the
security issues caused by the straightforward approach, i.e., the
adversary no longer learns the result of aborted runs. While
the BoBW protocols [51], [54] consider only non-publicly
identifiable abort in a traditional setting (non-client-server),
using the same approach should likely also preserve strong
publicly identifiable abort or even strong public accountability
(in the client-server setting) while adding robustness. However,
using such an iteration technique comes with serious down-
sides. Firstly, in the presence of misbehaving parties there is a
drastic loss of performance (runtime, network communication,
and communication rounds) by a factor of up to O(n) if one
malicious server is identified in each round, where n is the
number of participants/servers. Most importantly, since the
material generated in the offline phase of Cunningham et al.
depends on the set of participants and since this set changes
with each protocol iteration, also costly offline material has to
be re-generated multiple times during the online phase if an
abort happens there.3 Secondly, clients have to be involved in
each re-run of the protocol to provide new inputs, which is
unacceptable in many applications such as elections where a
rerun would erode trust into the election system.

3Alternatively, one would have to generate offline material O(2n) times
during the offline phase to prepare for all possible subsets of parties.



TABLE I
SECURITY PROPERTIES OF RELATED TWO-PHASE PROTOCOLS

Protocol Publicly verifiablea Publicly id. aborta Robust

mostb − − −/+
[11], [55] + − −

[56] + − +
[12], [32] ◦ ◦ −

[15] + + −
[51] should work for and inherit properties of any

MPC protocol with identifiable abort
+c

[54] +c

ours + + +

a + indicates a strong property that holds even when all MPC partici-
pants/servers are corrupted, whereas ◦ holds only for partial corruption.

b Including, e.g., SPDZ [8], [9], most SPDZ-like protocols [13], [16], [19]–
[21], protocols with (non-public) identifiable abort [14], [53], etc.

c Restarts or runs multiple parallel instances of the (inner) MPC protocol.

In summary, while it seems possible to make MPC protocols
with (strong) publicly identifiable abort or even (strong) public
accountability robust by iterating/restarting the protocol, and
hence, combine identifiable abort and robustness, this comes
with severe performance penalties, and most importantly, is
simply unacceptable for several client-server applications.

Our Contribution. Our goal therefore is to obtain the first
efficient two-phase protocol that combines strong accountabil-
ity and robustness while avoiding the downsides of protocol
iteration. The protocol should provide efficiency comparable
to other efficient two-phase protocols and full support for
deployment in the client-server setting.

We propose the first MPC protocol that meets all of the
above goals and prove its security. Our protocol is SPDZ-
like and can therefore benefit from future improvements to
the components and primitives used in this class of protocols.
The protocol consists of three main subprotocols, namely a
setup, an offline, and an online protocol. We follow a holistic
approach where we design and analyze publicly accountable
and robust (sub-)protocols for all three components, unlike
many other works (e.g. [11], [12], [15], [32]) which often
consider the setup component to be out of scope and which
assume that the keys and other setup components are already
distributed at the start of the protocol. In doing so, we had to
adapt almost all (and even extend some) components used in
standard protocols like SPDZ [8] or the state-of-the-art lattice-
based commitment scheme by Baum et al. [57], to realize
an accountable and robust protocol, guarantee security in our
extended setup, and remain reasonably efficient.

The core idea of our protocol is to extend traditional SPDZ-
like protocols to support threshold secret-sharing and make
them compatible with a suitable homomorphic commitment
scheme. The commitments then allow external parties to verify
the correctness of the computations of every individual server
without learning any confidential information. The threshold
secret-sharing scheme allows us to obtain robustness without
iterating the protocol. Specifically, the threshold t determines
the number of parties that are needed to reconstruct shares,
and hence, if up to n− t parties are malicious, the remaining
set of parties can still reconstruct shares and continue the

MPC protocol. Note that there is a tradeoff between privacy
and robustness since t malicious parties could break privacy.
For instance, in an election4 a (small) subset of malicious
parties, say n − t = n/3, should (and with our protocol
will) not be able to abort the election and force a rerun.
Furthermore, as long as there are less than t = 2n/3 corrupted
parties,5 the privacy of the voters is guaranteed. Note that this
trade-off does not affect the necessity for public verifiability
or accountability: A voter or any external observer must be
confident that the result is correct in all cases, no matter how
many compute parties are corrupted.

A priori there are several homomorphic commitment
schemes that might be considered for building a suitable
protocol. Indeed, Cunningham et al. [15] achieve publicly
identifiable abort in a SPDZ-like protocol by using Pedersen
commitments. However, in this work we chose a lattice-based
commitment scheme since it offers better synergy with the
lattice-based BGV encryption scheme [58] used by SPDZ
in the offline phase (see Section VII) and offers additional
advantages for the offline phase and setup (Section V-B and
Appendix B). There is also the prospect of making our scheme
future-proof. Indeed, since we use lattice-based primitives
and avoid rewinding in our proofs, we expect our protocol
(possibly after small modifications) to be post-quantum secure;
we, however, leave a detailed analysis of this aspect to future
work.

While the general ideas of our protocol seem natural,
constructing a workable protocol that combines lattice-based
commitments with a robust secret-sharing scheme while re-
taining efficiency of the underlying SPDZ structure required
us to tackle a number of challenges and to avoid pitfalls
of straightforward approaches. Often, these direct approaches
cause a subtle loss of security or lead to increased parameter
sizes as well as a drastic loss in performance. Throughout the
paper, we highlight where and why a straightforward approach
either does not work or leads to a suboptimal protocol, thereby
providing insights also beyond our protocol. We then propose
solutions as well as optimizations that address these issues.
As part of this, we develop several new constructions and
techniques, some of which are interesting also in their own
right, e.g.: i) We propose a modification to the state-of-the-
art commitment scheme by Baum et al. [57] which allows for
improving its homomorphic properties without increasing the
underlying plaintext space (cf. Section VI and Appendix E).
ii) By using the additional commitments we construct more
efficient zero-knowledge proofs for verified ciphertext multi-
plication, key generation, and decryption (cf. Section V-B1
and Appendix B). iii) We design a computationally secure
online phase that significantly increases the performance
compared to a more straightforward information-theoretically
hiding approach (cf. Section V-A).

4We note that there are also many other aspects and security properties
that have to be taken into account to obtain a secure e-voting system, such
as coercion resistance in high-stakes elections. Our MPC protocol therefore
does not serve as a ready to use election system on its own. It can, however,
be used, e.g., to instantiate the MPC component of Ordinos [25] to obtain an
end-to-end verifiable tally-hiding voting system for lower-stakes elections.

5Corrupted parties include malicious and honest-but-curious parties.



To demonstrate the efficiency of our protocol, we perform
a quantitative analysis of the parameters used in our pro-
tocol. As part of this analysis, we provide deeper insights
in the combination of BGV with classical Pedersen com-
mitments as compared to our lattice-based scheme, which
yields smaller BGV parameters. We analyze parameters for
a variant of zero-knowledge proof aggregation (combining
classical and rejection sampling methods) for non-interactive
zero-knowledge proofs (NIZKPs). To our knowledge, this is
the first concrete and detailed analysis of this technique in a
SPDZ-like setting which also provides new insights into other
existing protocols of this class. Based on our analysis, we
evaluate the concrete efficiency and practicality of our MPC
protocol. To our knowledge, this is the first time that concrete
bandwidths or benchmarks of a (SPDZ-like) protocol with
publicly identifiable abort have been computed. Our results
show that, with reasonably more communication, memory and
runtime compared to plain SPDZ, it is possible to also obtain
public accountability (and hence, publicly identifiable abort as
well as public verifiability) and robustness.
In summary, we make the following contributions:
- The first two-phase MPC protocol with strong public ac-

countability and robustness without restarts (cf. Sections III
to V). Our protocol has asymptotic and concrete complexity
comparable to other state-of-the-art SPDZ-like protocols
with weaker properties (cf. Sections VIII and IX).

- A quantitative analysis of secure parameters as well as
benchmarks for our protocol which illustrates the practi-
cality of our protocol and provides insights that might be
useful also for related SPDZ-like protocols (cf. Sections VII
and IX).

- We further propose improvements of primitives and subpro-
tocols which are of independent interest, e.g., a generalized
version of the lattice-based commitment scheme by Baum
et al. [57] (cf. Section VI), new ways to handle lattice-
based commitments efficiently (in a SPDZ-like context;
cf. Section V), and an accountable multiplication protocol
for BGV ciphertexts (cf. Section V-B1).

II. NOTATION

Let p be an odd prime and Fp be the corresponding prime
field. As usual Zq is the ring of integers modulo q ∈ N≥2.
We use R := Z[X]/Φm(X) to denote integer polynomials
modulo the m-th cyclotomic polynomial Φm. To simplify
notation we restrict ourselves to m = 2N a power of 2 and
hence Φm(X) = XN + 1. Furthermore, we define Rp to be
R with coefficients modulo p

(
we use representatives from

{−(p − 1)/2, . . . , (p − 1)/2}
)
. Elements of R and Rp can

also be seen as N -tuples of Z and Zp, respectively. This also
induces the standard Lk-norm for k ∈ {1, 2, . . . ,∞} of R by
taking the respective norm of the coefficient vector.

We use lowercase bold and uppercase bold letters for vectors
and matrices, e.g. x,M. We write x[i] and M[i, j] to index the
i-th and (i, j)-th element of vectors and matrices, respectively,
where indices start from zero. The n×m zero-matrix will be
denoted by 0n×m; the n × n identity-matrix by In. We use
x←$ U(S) to say that x is sampled uniformly at random from
a set S. Dσ is used instead of U if x is sampled from a discrete

Gaussian distribution with standard deviation σ (definition
in Appendix E). We write x←$ A(. . . ) if x is sampled by
running a probabilistic algorithm A.

We use Pi ∈ P := {P1, . . . ,Pn} to identify a compute
party, i.e., a server in the client-server terminology. We use
C ⊆ P for the set of statically corrupted (compute) parties
and H := P \ C for the set of honest (compute) parties. Input
parties (which can be clients, servers, or a mixture of both)
are denoted with Ii ∈ I where we identify one input party
with one input. Input parties can also be statically corrupted;
all of our results are independent of the exact set of corrupted
input parties.

We consider arithmetic circuits f , where I is the number
of inputs (i.e., |I| = I). A circuit consists of addition and
multiplication gates, where inputs and outputs of gates are
identified by unique identifiers (“idx”). A valid circuit can
be deterministically traversed such that every identifier is set
only once (as external input or the output of some gate) and,
whenever a circuit needs to be computed, then the identifiers
used as inputs are already defined.

We write [x]i to denote the share of party Pi (obtained
by secret-sharing the value x). We consider Shamir secret-
sharing where a share [x]i := fx(i) = x +

∑t−1
l=1 i

l · cl is the
evaluation of a polynomial fx with constant term x and the
remaining coefficients cl sampled uniformly at random. This is
a t-out-of-n secret-sharing scheme, i.e., t shares are sufficient
to reconstruct x. We also use full-threshold (or “additive”)
secret-sharing, which is defined as x =

∑n
i=1 xi for a secret

x and shares xi. We explicitly mention whenever we use this
n-out-of-n scheme; otherwise, we use Shamir secret-sharing.

As many SPDZ-like protocols, e.g., [7]–[9], [16], [17],
[21], we use the BGV encryption scheme [58]. Specifically,
we use an instantiation that is somewhat homomorphic, i.e.,
allows for addition and up to one multiplication of (plain-
texts in) ciphertexts. We present details of BGV, as far as
needed, while describing the setup and offline phases of our
protocol (cf. Section V-B and Appendices A-B and B). We
refer to the commitment scheme of Baum et al. [57] as
BDLOP scheme in what follows and give a detailed descrip-
tion in Section VI. Enck(x) denotes a ciphertext of x con-
structed with randomness RE(x) and Compar(x,RC(x))

(
or

just Compar(x)
)

denotes a commitment for x with randomness
RC(x). Hence, (x,RC(x)) is the decommitment/opening for
Com(x). Verifypar is the corresponding verification algorithm.
We omit the public key k and the commitment parameters par
if they are clear from the context. To simplify notation, we
define additions of commitments and public (plaintext) values
as Com(x) + c := Com(x) + Com(c, 0). Additionally, we
define > to be an “invalid” commitment for which every linear
operation yields > (e.g., >+ c = >) and Verify( · , · ,>) = 0.
Consequently, we also define ZKPs (such as in Fig. 5, Line 12)
to always fail verification if statements for > are proven.

III. OVERVIEW

As mentioned in the introduction, our protocol builds on
and extends SPDZ. In particular, it also consists of an of-
fline and online phase, where the former computes correlated
randomness for the latter. We present our protocol in such



a way that it can be understood without prior knowledge of
SPDZ. However, a short summary of SPDZ is given in Ap-
pendix A-A. We want the inputs of our protocol to be (BGV)
ciphertexts, i.e., clients/input parties can simply encrypt their
secret inputs and then provide the resulting ciphertexts to
the servers/compute parties of our protocol.6 The servers first
transform the ciphertext into a secret-sharing and then use
SPDZ-like techniques to compute an arithmetic circuit on
those shares. Then they recombine shares to compute outputs.
For simplicity of presentation, we consider the case where
outputs are public, i.e., may be revealed to everyone. One can
use standard masking techniques to reveal private outputs only
to a specific party (for completeness we describe this extension
in Appendix G); all our results carry over. We use bulletin
boards to publish data just as almost all other protocols with
public verifiability/accountability, e.g., [11], [12], [15], [32].
While it might be desirable to not handle all communication
through bulletin boards (to improve efficiency), bulletin boards
seem to be necessary so that communication is transparent for
all parties, importantly, including verifiers.

Online Phase: Like other SPDZ-like protocols, we can
compute any arithmetic circuit with a linear secret-sharing
scheme by utilizing Beaver’s technique [59] (we explain
this later in Section V-A). Our online phase becomes robust
by using a threshold secret-sharing scheme (with the men-
tioned tradeoff for privacy). To get accountability, we add
publicly known commitments for each party’s shares. With
this, everyone can check if the parties computed results and
intermediate results correctly by verifying the decommitments
on the bulletin board. We describe the resulting protocol for
the online phase in Section V-A.

There are two main hurdles in designing this online proto-
col: Firstly, we have to transform the initial ciphertexts into
shares, including commitments on those shares, in a publicly
accountable manner. Secondly, adding a lattice-based commit-
ment scheme to SPDZ introduces several new challenges (in
the security proofs and in practice). For example, it needs
to offer a sufficient homomorphic structure to support the
Beaver multiplication sub-step for circuits of practical sizes.
As it turns out, existing lattice-based schemes do not provide
all properties required by our protocol simultaneously. In
Section VI, we therefore modify the state-of-the-art BDLOP
scheme. Our modification improves the homomorphic prop-
erties of BDLOP (both to support larger arithmetic circuits
and to make multiplications with Beaver triples secure in the
first place), which is of independent interest. Additionally,
we show (in Section VII) that we can drastically reduce the
amount of data communicated in the online phase (for this and
similar commitment schemes) by replacing the information-
theoretically secure online phase with a computationally se-
cure one.

Offline Phase: The online phase relies on correctly gen-
erated correlated randomness from the offline phase, which
therefore also needs to be publicly accountable and robust.
We propose a protocol for the offline phase in Section V-B

6Our construction aims for simple setup on the client side and to allow
synergy effects in settings like e-voting (see Appendix G-D). Focusing on
other goals might lead to a different protocol design.
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Fig. 1. Security guarantees of our protocol. Public accountability is in-
dicated with “A” (recall that this also implies public verifiability), robust-
ness/guaranteed output delivery with “R”, and full privacy with “P”.

that uses published NIZKPs to show correctness of the critical
steps. There are various hurdles we had to overcome in order
to develop this protocol, e.g., the protocol has to allow for a
simulation-based MPC security proof, requires NIZKPs that
also work for our modified commitment scheme, and needs to
retain a high efficiency even with several additional NIZKPs.
To achieve good efficiency, we employ state-of-the-art NIZKPs
utilizing commitments for verified ciphertext multiplication,
key generation and decryption. We construct our protocol in a
suitable way to keep (encryption and commitment) parameters
small and support additional features, e.g. robustness. Fur-
thermore, for certain other NIZKPs employed by our offline
protocol (e.g., the one for showing correct encryption), we use
a variant of ZKP aggregation that combines classical aggre-
gation [60] and rejection sampling [61] to improve efficiency.
We evaluate and compare this technique in terms of resulting
parameter sizes in Section VII. As mentioned, this is the first
concrete analysis of this technique in a SPDZ-like protocol and
thereby provides insights that are also useful within this wider
class of protocols. We further propose a new multiplication
algorithm for BGV ciphertexts (cf. Section V-B1) which is
adapted to the specific constructions used in our protocols and
which can be used to bootstrap the distributed key generation
algorithm (see below) from the linear homomorphic version
of BGV. This accountable multiplication algorithm is likely to
prove useful as a component for protocols beyond ours.

Setup Components: The offline phase requires a distributed
key generation and a distributed decryption protocol. While
these components are often considered out of scope, in our
case it is crucial that they are also publicly accountable. We
therefore provide publicly accountable robust algorithms for
both components in Appendix B. A major challenge was to
find solutions which avoid the problems that can be caused
by the Shamir secret-sharing scheme. For example, naive
solutions might not achieve robust decryption or can introduce
a cubic factor in the runtime of decryption.

Security Properties: Fig. 1 summarizes the security prop-
erties that our protocol (including all of the above-mentioned
sub-protocols) achieves depending on the number of corrupted
compute parties/servers |C| ≤ n and the threshold 1 ≤ t ≤ n
of parties that can decrypt/recombine shares. These results
hold independently of the number of corrupted external input
parties, where by external we mean that the input party is not
a compute party/server, i.e., it is a pure client. The parameter t
can be fine tuned depending on the application to offer better



privacy or better robustness. We emphasize that even in those
cases where privacy and/or robustness no longer hold, our
protocol still provides public accountability and thereby public
verifiability, including the case that all compute parties/servers
are malicious.

Next, we first summarize our security model along with the
central security properties (Section IV) and then present our
protocol (Section V).

IV. SECURITY MODEL

In this section we define our security properties: robustness
in Definition 1 and public accountability in Definition 2.
We will prove the security of our protocols in the universal
composability (UC) [62]–[67] setting, i.e., our protocols are
indistinguishable from idealized protocols (functionalities) that
naturally satisfy our security properties. We also use several
functionalities to model setup assumptions: All communica-
tion is handled through a bulletin board modelled by FBB
and FCRS,FRO,FPKI are used to model sampling from a
common reference string (CRS), a random oracle, and a public
key infrastructure, respectively.Note that one can reduce our
setup assumptions to only requiring FRO and FBB as one can
construct the other functionalities from these. FCRS can be
implemented with a call to FRO and FPKI can be implemented
by a simple protocol that lets all parties publish their public
keys on the (authenticated) bulletin board.

Our protocols should achieve strong public accountability
and robustness. That is, for such a protocol Π, we additionally
consider a judge J – a polynomial time algorithm with access
to a transcript of all public information (e.g., the bulletin board
communication and the CRS) – that has two outputs: A set of
parties that are blamed for misbehavior and an overall protocol
output, which can be ⊥ (i.e., “abort”) if a run cannot be
verified. This output is called a verdict. Using the judge, the
security properties are defined as follows:

Definition 1 (Robustness). Let 1 ≤ t ≤ n be a threshold
parameter. Let f be a circuit with inputs x. We call Π t-robust
if J outputs a correct result (in particular, no abort) with
overwhelming probability (over all protocols runs of Π, with
polynomially bounded environments E) whenever |P \ C| ≥ t.

Definition 2 (Public Accountability). Let f be a circuit with
inputs x. A t-robust protocol Π is called publicly accountable
if the following holds (except with negligible probability over
all protocols runs of Π, with polynomially bounded environ-
ments E): i) J outputs M ⊆ C ⊆ P (i.e., no honest party is
falsely blamed). ii) If J outputs y, it is correct, i.e., y = f(x).
iii) If J outputs abort, then |M| > n− t.

Since we are working in the UC setting, we specify three
ideal functionalities, one each for the setup, offline, and online
protocols, that meet both the standard properties such as
privacy as well as the additional ones from Definitions 1
and 2 by definition. Any real protocol that realizes such an
ideal functionality then has all of these properties as well. We
provide the ideal functionality for the online phase in Fig. 2

1 Prepare (once): On input (prep) by each Pi ∈ P:
2 Send (prep) to adversary A and receive

(M, β) ∈ V (cf. Eq. (1)).
3 Input (once): On input (input, xj) by each Ij ∈ I

and input (input) by each Pi ∈ P:
4 Get xj for corrupted Ij from A (overriding the input

xj). Pack all xj into x.
5 if β = ok then
6 Send (input) to A. If |C| ≥ t, also send x.
7 Receive (M′, β′) ∈ V from A with M′ ⊇M

(overriding the previous values of M and β).
8 Compute (once): On input (comp, f) by each Pi ∈ P:
9 if β = ok then

10 Compute the result y := f(x).
11 Send (comp,y) to A.
12 Receive (M′′, β′′) ∈ V from A with M′′ ⊇M

(overriding the previous values of M and β).
13 if β = ok then reply M,y to Pi.
14 reply M,⊥ to Pi.
15 Audit: On input (audit,comp, f) by J :
16 if β = ok then reply M,y else reply M,⊥.

Fig. 2. Online functionality Fonline.

with the other ones available in in Figs. 13 and 14. The set of
possible verdicts

V = {A ⊆ C, b ∈ B | (b = abort)⇒ |A| > n− t} (1)

with B = {ok,abort} is used to define the ideal functional-
ities. With this, the functionalities only accepts messages from
the adversary that identify enough malicious parties to justify
the abort of a t-robust protocol.

In our descriptions we add the modifier “(once)” to some
phases of functionalities and protocols to say that this phase
is run once and subsequent calls to it are ignored. Phases are
strictly ordered, i.e., in Fig. 4, the preprocessing comes before
the input phase, which comes before the compute phase.

Remark 1. Observe that the definitions of robustness and
public accountability cover a general setup, including SPDZ-
like protocols but also realizations with less phases or re-
alizations that further subdivide phases. Further extensions,
like the support for private outputs can be done by standard
techniques (the parties compute f ′(x, ri) = f(x) + ri where
party Pi has an additional input ri and is thus able to compute
f(x) while no other party can do so).

V. OUR ACCOUNTABLE ROBUST PROTOCOL

We now describe our accountable and robust MPC protocol
and prove its security. The focus in this section will be on
the online protocol (Section V-A) and the offline protocol
(Section V-B). We present the setup protocol in Appendix B.
All three protocols are accountable and robust. The respective
security proofs can be found in Section V-A and in Ap-
pendix D.



〈x〉i + 〈y〉i := ([x]i + [y]i,RC([x]i) + RC([y]i),Com([x]1) + Com([y]1), . . .,Com([x]n) + Com([y]1)) (2)
〈x〉i + c := ([x]i + c, RC([x]i), Com([x]1) + c, . . ., Com([x]n) + c) (3)
c · 〈x〉i := (c · [x]i, c · RC([x]i), c · Com([x]1), . . ., c · Com([x]n)) (4)

Fig. 3. Linear operations on views (for public constant values c). Subtraction works analogously to addition.

A. Accountable Robust Online Phase

The online phase of our protocol is depicted in Fig. 4. It
uses Foffline for the offline phase (main properties are discussed
later; we provide a realization in Section V-B). Additionally
FCRS is used to sample the commitment parameters par from
the common reference string (CRS), and FBB (bulletin board)
is used for all communication.

To perform efficient computations in the online phase,
the offline phase prepares correlated randomness in advance
following Beaver’s classical approach [59]. A view of a shared
value x is

〈x〉i := ([x]i,RC([x]i),Com([x]1), . . . ,Com([x]n))

for each party Pi with Compar([x]j ,RC([x]j)) = Com([x]j)
for all parties Pj , i.e., parties hold commitments to shares
of all parties and decommitments for their own share. The
shares are computed with a t-out-of-n secret-sharing scheme
(t parties are required to reconstruct the secret). We also define
a public view 〈x〉audit used by the judge J , consisting of only
the commitments. For linear secret-sharing schemes, linear
operations on views are done as in (2) to (4) (cf. Fig. 3).7

The offline phase has to produce views for random r,a, b
and c = a · b. As mentioned, the initial inputs are given in
the form of BGV ciphertexts, i.e., Enc(xi), Ii ∈ I, which
allows external clients to easily provide secret inputs to our
protocol. For more details on BGV encryption scheme see also
Appendix A-B.

We use an accountable and robust subroutine that we
developed for our offline protocol to (privately) compute a
vector of masked inputs m := x−r from the list of encrypted
inputs. This allows us to transform ciphertexts into secret-
sharings in an accountable manner, solving one of the main
tasks in designing the online protocol.

Now, let us explain Πonline. After invoking the offline phase
to get the initial views and after processing the inputs, the
input-independent views 〈r〉i can now be used to get views for
the inputs. One can compute these views as 〈x〉i := 〈r〉i+m.
Note that at this point, an initial set of malicious parties might
have already been identified by Foffline while computing the
initial views or while computing m from the inputs.

Similarly, the provided multiplication triples 〈a〉i, 〈b〉i, 〈c〉i
can be used in the online phase. They are used to multiply
with only linear operations as follows:

〈x · y〉i := 〈c〉i + u · 〈a〉i + v · 〈b〉i + u · v (5)

7With Shamir secret-sharing, addition of shares and public values is done by
adding the value to the share of each party. For the much-used full-threshold
secret-sharing, it should be only added to the share of a single party.

for values x and y that should be multiplied. u := x− b, v :=
y − a are opened values (described below). Further linear
operations (additions, subtractions, and multiplications with
publicly known constants) are done locally on views. Hence,
our lattice-based commitment scheme has to provide a level
of additive homomorphic structure that not only supports the
above multiplication but more generally is suitable for practi-
cal circuit sizes that contain large numbers of additions (and
multiplications). Note that the multiplicative depth of the cir-
cuit is not relevant for the commitment scheme but rather the
maximal amount of linear operations between multiplication.
This is because Beaver multiplication “resets” commitments
as can be seen in (5) (the commitments of 〈x · y〉i are a linear
combination of commitments of 〈a〉i, 〈b〉i, 〈c〉i, i.e., “fresh”
commitments from the preprocessing). The chosen BDLOP
scheme, which fits our (other) requirements best, does not
satisfy this requirement, since it loses its security properties
after just one Beaver multiplication. We discuss and solve this
issue by proposing a generalization of BDLOP in Section VI.

The only operation left for the online phase is opening
views, which is required for multiplications

(
u and v above

are results of the openings for 〈x− b〉i and 〈y − a〉i
)

and for
obtaining the final outputs of the circuit. To open a view, every
party Pi publishes the decommitment/opening contained in
their view and other parties Pj check if the decommitment
verifies w.r.t. the locally computed commitment for Pi in
Pj’s view. Shares for parties that could not provide valid
decommitments (or were identified by the offline phase as
malicious) are ignored in the reconstruction. Note that all
operations in an arithmetic circuit become linear if we realize
multiplications as in (5). Hence the commitments for every
opening can be computed locally (from the view provided by
the offline functionality and the already opened and verified
intermediate results).

SPDZ-like protocols that already use commitments, like the
protocols of Baum et al. [11] or Cunningham et al. [15],
usually follow the straightforward approach of handling all
openings the same way, i.e., openings during multiplication
and openings of outputs are simply decommitted. We decided
to treat final outputs differently in order to achieve better
performance (see Section IX). In our protocol (see Fig. 5),
parties pick new commitments for their final shares and
prove in zero-knowledge that these and the (publicly known)
commitments in other parties’ views commit to the same share.
Then, the resulting new views with these commitments are
opened. This way, we do not require perfectly/statistically
hiding commitments and equivocation for commitments to
prove security of the online phase as in the related protocols
[11], [15]. There, equivocation is necessary for the simulation-



1 Prepare (once): On input (prep) by each Pi ∈ P:
2 Parties setup commitment parameters par via FCRS.
3 Parties send (prep, par) to Foffline and get the (ini-

tial) set of malicious parties M, sufficient input
views 〈r〉i and triples 〈a〉i, 〈b〉i, 〈c〉i.

4 if Foffline outputs ⊥ then abort.
5 Input (once): On input (input, xj) by each Ij ∈ I

and input (input) by each Pi ∈ P:
6 The parties forward their inputs to Foffline and each

Pi gets M′ and masks m. M′ is added to Pi’s M.
7 if m = ⊥ then abort.
8 Input views are computed as 〈x〉i := 〈r〉i + m.
9 Compute (once): On input (comp, f) by each Pi ∈ P:

10 Assign the identifiers idx for inputs of f to 〈x〉i.
11 foreach gate g ∈ f in topological order do
12 case g is linear do
13 Compute g locally as in Fig. 3.
14 case (mul, idx, idy, idz) do
15 Get the next triple 〈a〉i, 〈b〉i, 〈c〉i.
16 〈u〉i := 〈x〉i − 〈b〉i and 〈v〉i := 〈y〉i − 〈a〉i.
17 Open 〈u〉i and 〈v〉i with Open (cf. Fig. 5).
18 〈z〉i := 〈c〉i + u · 〈a〉i + v · 〈b〉i + u · v.
19 case (output, l, idx) do
20 xl := OpenOutput(〈x〉i) (cf. Fig. 5).
21 Pack all outputs xl of output-gates into y.
22 reply M,y.
23 Audit: On input (audit,comp, f) by J :
24 Obtain par via FCRS.
25 Send (audit,prep, par) to Foffline to obtain M, t

and reply M,⊥ if t = ⊥.
26 Send (audit,input) to Foffline to obtain M′,m,

add M′ to M, and reply M,⊥ if m = ⊥.
27 Unpack t to 〈r〉audit, 〈a〉audit, 〈b〉audit, 〈c〉audit.
28 Define input views as 〈x〉audit := 〈r〉audit + m and

assign the identifiers idx for inputs of f to 〈x〉audit.
29 foreach gate g ∈ f in topological order do
30 case g is linear do
31 Compute g locally as in Fig. 3 while only

considering operations on commitments.
32 case (mul, idx, idy, idz) do
33 Get the next triple 〈a〉audit, 〈b〉audit, 〈c〉audit.
34 〈u〉audit := 〈x〉audit − 〈b〉audit and

〈v〉audit := 〈y〉audit − 〈a〉audit.
35 Open 〈u〉audit and 〈v〉audit with Open while

only retrieving and verifying data. Return
M,⊥ where parties in Fig. 5 would abort.

36 〈z〉audit := 〈c〉audit +u·〈a〉audit +v ·〈b〉audit +u·v.
37 case (output, l, idx) do
38 xl := OpenOutput(〈x〉i) (cf. Fig. 5 with

the same changes as described above).
39 Pack all outputs xl of output-gates into y.
40 reply M,y.

Fig. 4. Online protocol Πonline.

1 macro Open(〈v〉i,M′ = ∅):
2 Send [v]i and RC([v]i) to FBB.
3 Retrieve [v]j and RC([v]j) from other Pj ∈ P .
4 Add all Pj to M′ and to M for which

Verify([v]j ,RC([v]j),Com([v]j)) = 0.
5 if |P \M′| < t then abort.
6 Reconstruct v while ignoring shares of Pj ∈M′.
7 return v.
8 macro OpenOutput(〈v〉i):
9 Commit to [v]i to get Com([w]i).

10 Prove in ZK that Com([v]i) and Com([w]i) contain
the same plaintext. Let the NIZKP be zi.

11 Send zi to FBB and retrieve zj from other Pj ∈ P .
12 Add all Pj to a new set M′ and to M where

verification of zj failed.
13 return Open(〈w〉i,M′).

Fig. 5. Opening subprotocols for Πonline (cf. Fig. 4) at Pi ∈ P .

based security proof and the perfect/statistical hiding property
is needed so the simulator can equivocate to every possible
plaintext. Instead, we can use commitments that are com-
putationally hiding and computationally binding with tighter
commitment parameters (more in Sections VII and IX and Ap-
pendix I). No longer requiring equivocation and statistically
hiding commitments is the main factor why our performance
can be substantially better. To illustrate this advantage, we can
construct a protocol version Πequiv that uses the same openings
for multiplications and outputs (and thus requires equivoca-
tion).8 The two versions are then compared in Section IX. A
security proof of Πequiv is included in Appendix D-A. Note that
using ZKPs for all openings would only increase the amount
of data that needs to be communicated without being necessary
to securely realize the online phase.

Any (external) auditor J can recompute the above opera-
tions on commitments and openings (i.e., everything except for
operations directly performed on the individual secret shares
[x]i of each party, or the respective randomness). It blames
any party that did not provide a valid opening. This provides
accountability because malicious parties can alter the output
only by providing an incorrect share during an opening phase
(i.e., during multiplication or while opening the final output).
By the binding property of the commitment scheme or the
soundness of the ZKPs, this would be detected. Formally we
obtain:

Theorem 1. The protocol Πonline is a publicly account-
able t-robust MPC protocol for arithmetic circuit evaluation.
That is, Πonline UC-realizes the functionality Fonline in the
(Foffline,FCRS,FRO,FBB)-hybrid model under the assumption
that the used homomorphic commitment scheme is computa-
tionally binding and hiding, were we use the programmable
random oracle model.

8Πequiv is mostly equivalent to Πonline but Open is used instead of
OpenOutput for the outputs in Line 20 of Fig. 4. The parameters of
the commitment scheme, however, will be vastly different as discussed in
Section IX.



Proof (Sketch). The proof can be split in two parts, depending
on the number of corrupted parties. If |C| ≥ t, the proof
is trivial as the simulator gets all necessary data from the
functionality. Note that accountability is still given, even if
all parties are corrupted, as the commitment parameters are
sampled from the CRS and an adversary is unable to break
the commitments or the ZKPs.

For |C| < t, the simulator sets up a local simulation
of the offline phase, samples commitment parameters and
picks random data for all honest input parties. Controlling the
simulation allows it to extract data for corrupted parties.

Up until the final openings, the simulation and a real
protocol instance are indistinguishable because only random
data is communicated ((shares of) uniformly random masked
values and decommitments with randomness chosen as in the
protocol). For the final openings of the outputs, the simulator
first gets the outputs from the functionality. With knowledge
of the shares of corrupted parties (which can be computed
locally by the simulator), shares for the honest parties can
be chosen in a way that reconstructs the same outputs as
given by the functionality. Afterwards, the required ZKP can
be faked for honest parties utilizing the random oracle. The
final decommitments are then distributed equally to the ones
in the protocol as they are constructed in the same way (fresh
randomness and shares that reconstruct to the outputs). Finally
the simulator collects all corrupted parties for which messages
failed verification in M and sets β := abort if the compu-
tation in the simulation aborted, or sets β := ok otherwise.
The simulator sends (M, β) to Fonline and Fonline provides
the final output. For the complete proof, see Appendix D-A.
There, we also show how one can guarantee security of the
straightforward construction Πequiv that utilizes statistically
hiding commitments and trapdoors for equivocation. An added
difficulty there (compared to [11], [15]) is that the distribution
of the final decommitments might reveal that we are in a
simulation since decommitments using a trapdoor and the
decommitments of linear combinations of views (as in the
protocol) have differently distributed randomness.

Remark 2. Our proof shows that every party in our protocol
that sends a message which cannot be verified is identified and
blamed by our judge J , and that corrupted parties can only
prevent a correct output by sending such a message. Hence,
in our protocol every corrupted party that tries to manipulate
the output is identified and blamed, even if the protocol does
not actually abort. This is a stronger security property than
formally required by Definition 2, which only requires that the
judge outputs a sufficiently large number of corrupted parties,
not everyone, and only if the protocol aborts. We note that
it does not seem possible to formalize this stronger security
property via a general ideal functionality. Such a functionality
is not aware of whether a corrupted party actually misbehaves
or still follows the protocol honestly since this is part of the
simulation within the simulator.

B. Accountable Robust Offline Phase

As described above, the offline protocol (see Fig. 6) has
to produce views of random values, views of Beaver triples,

and a masked input m, all in an accountable and robust
way. It uses FCRS to compute a second set of commitment
parameters par′ to commit to (components of) ciphertexts,
encryption randomness, and commitment randomness (of par-
commitments). Commitments and commitment randomness
w.r.t. par′ is denoted with Com′( · ) and R′C( · ), respectively.
Commitments with this second parameter set need different
properties than the ones that use par – they need to be statis-
tically binding (and computationally hiding) so the simulator
in our simulation-based proof can extract decommitments of
corrupted parties. Other papers [11], [15] accomplish this
by reuse of the BGV encryption scheme. In our situation,
however, certain values that we want to be able to extract, e.g.,
randomness for commitments, might be larger than the plain-
text space of BGV, so encryption might not correctly recover
these values. We address this by using the same commitment
scheme with different parameters par′ that has a sufficiently
large input space to commit to the above mentioned values.
We present the specific scheme in Section VI.

We obtain and leverage several synergy effects due to these
commitments (using both par and par′). Firstly, using lattice-
based commitments (with par) we can consistently associate
a ciphertext and a commitment to the same plaintext, to create
so-called “committing ciphertexts”, since both the encryption
scheme and the commitment scheme can be constructed on the
same plaintext space Rp. In contrast, a commitment scheme on
Fp will result in N commitments per ciphertext (at least if used
naively on the coefficients of the plaintext); generally schemes
on other plaintext spaces than BGV will need a suitable
transformation that would still have to guarantee our security
properties. These “committing ciphertexts” allow more natural
descriptions and ZKPs. The same can be said for commitments
with par′. Secondly, the use of par-commitments allows us to
choose BGV parameters that are independent of the parameters
of the commitment scheme (cf. Section VII). Lastly, we can
use the par′-commitments to make ZKPs more efficient (cf.
Section V-B1).

Another primitive used in the offline phase is the setup
component FPK for accountable threshold cryptography (in
particular, this is also robust; its realization is presented in
Appendix B), i.e., computing parties can compute a public
key k and can perform distributed decryption together. When
we say “decryption” in what follows, we mean this kind of
decryption where parties that misbehave during any decryption
are detected and the protocol aborts if too many parties mis-
behaved, considering the misbehavior during this decryption.

To get the necessary views, we have to generate shares
and commitments thereof. The commitments should be public,
with decommitments known only to a single party. We achieve
this by using a (linear) homomorphic encryption scheme
to construct (ciphertexts of) shares. If enough parties are
honest (exactly when there are not enough corrupted parties
to decrypt ciphertexts on their own), the shared values will be
uniformly random values as honest parties contribute uniform
randomness. With each party producing its own “committing
ciphertext” (a ciphertext and a commitment for the same
plaintext), we can construct views from these ciphertext shares.
Note that each party needs to prove correctness for these



1 macro Decrypt(Enc(x)):
2 Decrypt with FPK to get the decryption x and M′

for this decryption. Add M′ to each Pi’s M.
3 if x = ⊥ then abort else return x.
4 Prepare (once): On input (prep, par) by each Pi ∈ P:
5 Parties setup commitment parameters par′ via FCRS.
6 Parties setup a key k via FPK and get a set M.
7 if k = ⊥ then abort.
8 Sample coefficients Wi ←$ U(R

(I+3·M)×t
p ) to (later)

construct shares and masks yi ←
$ U(RI+3·M

p ).
9 Encrypt these value to get Enc(Wi),Enc(yi).

10 Commit to yi with RC(yi) to get Com(yi).
11 Commit to the decommitments yi,RC(yi) with par′

to get Com′(yi),Com′(RC(yi)).
12 Prove Line 9 to 11 in ZK. Let the NIZKP be zi.
13 Send zi to FBB and retrieve zj for other Pj ∈ P .
14 Add Pj to a new set M′ and to M where

verification of zj failed.
15 Use Com(yj) = > for Pj ∈M′ and combine

coefficients to Enc(W) :=
∑
Pj∈P\M′ Enc(Wj).

16 foreach Pj ∈ P \M′ do
17 Define the encrypted share of v = W[ · , 0] as

Enc([v]j) :=
∑t−1
l=0 j

l · Enc(W)[ · , l].
18 mj := Decrypt(Enc(yj)− Enc([v]j)).
19 Construct the view 〈v〉i := (yi −mi,RC(yi),

Com(y1)−m1, . . . ,Com(yn)−mn).
20 Split 〈v〉i and Enc(v) in parts of size I,M,M,M

to get views and ciphertexts for r,a, b, and d.
21 Compute Enc(c) with SHE or Multiply (Fig. 7).
22 〈c〉i := 〈d〉i + Decrypt(Enc(c)− Enc(d)).
23 reply M, 〈r〉i, 〈a〉i, 〈b〉i, 〈c〉i to Pi.
24 Input (once): On input (input, xj) by each Ij ∈ I

and input (input) by each Pi ∈ P:
25 Each Ij audits Foffline and FPK. Ij also gets key k.
26 if Foffline outputs ⊥ then abort.
27 Each Ij sends Enck(xj) and a proof that the

encryption is well-formed to FBB.
28 Each Pi retrieves Enc(xj) from FBB.
29 Replace malformed inputs with zero-ciphertexts.
30 Pack all Enc(xj) into Enc(x).
31 reply M,m := Decrypt(Enc(x)−Enc(r)) to Pi.
32 Audit: On input (audit,prep, par) by J :
33 Perform the Prepare phase on public data.
34 Audit: On input (audit,input) from J :
35 Perform the Prepare and Input phases on public

data.

Fig. 6. Offline protocol Πoffline.

committing ciphertexts in order to safely construct the views.
More specifically, given a committing ciphertext, i.e.,

Enc(yj) and Com(yj) for plaintext yj of party Pj , and an
encrypted share Enc([v]j) (we describe below how this can
be obtained), we can get mj := yj − [v]j from decrypting
Enc(yj) − Enc([v]j). Then, we have Com(yj) − mj =
Com([v]j), while letting Pj compute [v]j := yj − mj and
RC([v]j) := RC(yj) where RC(yj) was used to compute
Com(yj). This gets us views 〈v〉i for all Pi and is enough to
generate the required views for r,a, b (for the inputs and parts
of the triples). As this requires a well-formed commitment
from party Pj , we cannot use Com(yj) and thus Com([v]j)
if the ZKP for committing ciphertexts did not verify. We use
> instead for Pj , making sure that shares of this party are not
used in the online phase (as openings will always fail).

For the above to work, everyone (also external parties
who later verify the computation) has to know the encrypted
shares Enc([v]i). This requires a different construction in our
case with Shamir secret-sharing compared to the standard
case of full-threshold secret-sharing. We can utilize the linear
homomorphic property of the encryption scheme to first let
each party Pi construct a matrix Enc(Wi) of ciphertexts with
t columns. The number of rows corresponds to the number of
views we want to produce in the offline phase (we assume this
or an upper bound for this is known when the offline phase is
executed). Adding them up (for parties that could prove correct
encryption for their Enc(Wi)) to Enc(W) :=

∑
i Enc(Wi)

makes sure that we get ciphertexts for uniformly random
plaintexts, provided not too many parties are corrupted (or they
could decrypt alone, know the plaintexts of others, and adjust
their own ciphertexts accordingly). This matrix of ciphertexts
can be used to construct ciphertexts of shares in the following
way: Enc([v]i) :=

∑t−1
l=0 i

l · Enc(w)[ · , l]. This is a share of
Enc(v) := Enc(W)[ · , 0], which is known to everyone (by
having only communication through FBB).

Lattice-based cryptographic primitives like the BGV en-
cryption scheme (cf. Appendix A-B) use “noise” to hide the
content of a message. If the noise becomes too big then
the message can no longer be recovered. Moreover, BDLOP
commitments require “small” randomness for decommitments
(without a bound on the randomness, commitments are not
binding). In our protocols we use ZKPs to prove that com-
mitting ciphertext and (normal) ciphertexts were constructed
correctly and in particular, that their noise is acceptably small.
Since homomorphic operations usually increase the noise, a
small initial noise allows us to perform more homomorphic
operations on the instances that are proven correct. For lattice-
based primitives, this also means that the contained “noise”
is small (to allow for more homomorphic operations on the
instances that are proven correct). To increase efficiency, a
standard way to do these proofs is to use a classical aggrega-
tion technique [60] but this comes with an additional noise
growth (“slack”) from the ZKPs that is exponential in the
(statistical) security parameter η. Instead, we chose to combine
this with rejection sampling [61]9 which decreases the slack

9This possibility was already mentioned in [68], [69] but, to our knowledge,
was not used before. We show in Section VII that it can improve parameters in
certain settings and formalize the construction for our use-case in Appendix F.



by approximately a factor of 2η . While this does not solve the
problem of exponential slack, the potential decreases in noise
for both ciphertexts and commitments gives improvements
where other ZK techniques are not applicable (see Appendix F
for more details and Section VII for an evaluation).

Alternatively, one might consider using approximate ZKPs,
i.e., proofs where only approximate relations are proven (e.g.,
for BDLOP [57]). Approximate ZKPs usually come with a
comparably small slack. However, they have worse homo-
morphic properties than the exact ZKPs, which makes them
inapplicable in our setup.

One aspect of the offline phase is still open: generating the
final component of multiplication triples. Assuming we have
an additional view 〈d〉i and ciphertexts Enc(d),Enc(c) =
Enc(a · b), we can do something similar to the view generation
and compute 〈d〉i + e = 〈c〉i where e is the decryption of
Enc(c)−Enc(d). Getting the ciphertext Enc(c) can be done in
two ways for our protocol. First, as we already have ciphertexts
Enc(a),Enc(b) from generating the views for a and b, we
can get Enc(c) by using the somewhat homomorphic nature
of the encryption scheme. The second, more elaborate, way
is to use a special ciphertext multiplication protocol. We give
a new construction of such a protocol in Fig. 7 (described in
Section V-B1). This is useful if the encryption scheme does
not support ciphertext multiplications natively (if one wants
to adapt our protocol to other encryption schemes) or, more
importantly, to bootstrap our key generation. We describe this
in Appendix B. We note that our MPC protocol is currently
the only (efficient) accountable and robust MPC protocol that
can be used for bootstrapping key generation.

We finally note that, as described in Section V-A, we use
some subroutines of the offline protocol within the input phase
of the online protocol. This has the advantage that we can re-
use the encryption scheme from the offline phase for providing
encrypted inputs. To get the value m = x − r needed in
the online phase, we can simply compute it as the decryption
of Enc(x) − Enc(r) for a ciphertext Enc(x) of the inputs.
Supporting encrypted inputs is a feature that is very useful for
future deployment in a wide range of client-server settings,
e.g., in e-voting where voters/clients often provide their votes
in the form of ciphertexts. For the specific application of
e-voting, we describe several extensions of our protocol in
Appendix G-D. These allow us, e.g., to enforce additional
constraints on inputs and to reduce the number of inputs our
protocol has to process.

Theorem 2. The protocol Πoffline is a publicly account-
able and t-robust preprocessing protocol (w.r.t. Πonline).
That is, Πoffline UC-realizes the functionality Foffline in the
(FPK,FCRS,FRO,FBB)-hybrid model under the assumption
that the used homomorphic encryption scheme is CPA-secure
and that the homomorphic commitment schemes are binding
and hiding,10 were we use the programmable random oracle
model.

The proof of this theorem can be found in Appendix D-B.

10Commitments using the commitment parameters par need to be binding
and hiding as for the online phase and commitments with par′ need to be
statistically binding and computationally hiding.

1) Linear Ciphertext Multiplication: While the above con-
struction using somewhat homomorphic encryption (SHE) is
enough for an accountable and robust offline phase, we also
support an optional subprotocol for ciphertext multiplication
(and thus triple generation) that uses only the linearly homo-
morphic variant of the BGV scheme. The already mentioned
benefit of using this for the key generation is expanded
upon in Appendix B. The subprotocol (pictured in Fig. 7)
works in the spirit of Overdrive’s LowGear protocol [16] (or
BDOZ [10]): We construct the ciphertext for c by multiplying
shares of a with the ciphertext of b and add noise. However,
in our construction we can use the distributed decryption
and the homomorphic commitment scheme to make it more
efficient and accountable. We prove the correctness of our new
multiplication protocol.

As a first step, the protocol in Fig. 7 computes ciphertexts
for [a]i ·Enc(b)+Enck(0, r), i.e., multiplications of shares of
a with ciphertexts of b plus noise Enck(0, r) (with additional
randomness r = (v, e)

T). We call this process re-encryption
since we get a new ciphertext for the plaintext [a]i · b. The
results of our re-encryption can then be combined with Rec
(the algorithm to reconstruct a secret from shares; recall, this
is a weighted sum of t ciphertexts with coefficients in Fp).
By the linear homomorphic properties of BGV (multiplying
[a]i with a ciphertext is a linear operation), we get that the
result is a ciphertext for c = a · b. Obviously, we should
only use ciphertexts that are constructed in such a way or the
result might be wrong. By only requiring t correctly multiplied
ciphertexts, we get robustness. To get accountability, we use
ZKPs again.

With this novel construction, we can utilize efficient ZKPs.
As most parts are already committed to (for the simulator in
the security proof), we only have to additionally commit to the
encryption randomness (and the re-encryption result that will
be decommitted immediately). Proving correct commitments
for the encryption randomness is done in an aggregated way
using the mentioned ZKP aggregation technique; it can be
done ahead-of-time for all multiplications. The efficient proofs
of linear relations [57], [70] for the commitment scheme
(discussed in Section VI) make sure that we can prove the
correctness of the whole multiplication and re-encryption
operation in a single one-shot proof. This improves on, e.g.,
BDOZ [10], where η proofs with one-bit challenges have to
be combined to get a soundness error that is negligible in
η. Selective failure attacks as in [10], [16] are not possible
as the ZKPs in our protocol make sure that the ciphertexts
that are actually used (and decrypted) later are in a valid
range. Additionally, only masked ciphertexts are decrypted,
so no extra randomness has to be added in the re-encryption,
and this is a public (distributed) decryption instead of letting
parties decrypt their own shares of c. See Section VII for more
details on the differences (w.r.t. parameter sizes) when using
this LHE multiplication or SHE BGV directly. The way we get
the key material to support these versions of BGV is discussed
in Appendix B.



1 macro Multiply: // to multiply BGV ciphertexts Enc(a) and Enc(b) using only LHE
2 Let y′j ,m

′
j be the subset of yj ,mj used to construct 〈a〉j .

3 Set views with par′: [a]i := y′i −m′i, R′C([a]i) := R′C(y′i), and Com′([a]j) := Com′(y′j)−m′j for Pj ∈ P \M′.
4 Generate re-encryption randomness (vi, ei)←$ Dσv (RMq )×Dσe(R

M
q )2.

5 Compute re-encrypted share of product
Enc([c]i) := [a]i · Enc(b) + Enck(0, (vi, ei)

T
) =

(
[a]i · Enc(b)[0] + k[1] · vi + p · ei[0]
[a]i · Enc(b)[1] + k[0] · vi + p · ei[1]

)
.

6 Commit to vi, ei,Enc([c]i) with par′.
7 Let Com′(vi),Com′(ei),Com′(Enc([c]i)) be the resulting commitments.
8 Prove Line 5 to 7 in ZK. Let the NIZKP be zi.
9 Send zi and the decommitment for Com′(Enc([c]i)) to FBB. Retrieve zj and the decommitment for other Pj ∈ P .

10 Add Pj to M and M′ if verification of zj failed or Verifypar′(Enc([c]j),R
′
C(Enc([c]j)),Com′(Enc([c]j)) = 0.

11 return Enc(c) := Rec(Enc([c]1), . . . ,Enc([c]n)) using Fp-coefficients while ignoring shares of Pj ∈M′.
Fig. 7. Multiplication subprotocol for Πoffline (cf. Fig. 6) at Pi ∈ P .

VI. LATTICE-BASED COMMITMENTS

Our protocol requires a suitable homomorphic commit-
ment scheme. As we will see in Section VII, the Pedersen
commitment scheme that is used in related works [11], [15]
does not combine very well with BGV encryption, i.e., it
requires increasing the modulus of the underlying plaintext
space and thereby negatively impacts performance. To address
this mismatch (and to get a fully lattice-based protocol), we
propose using lattice-based commitments instead.

There exists a wide variety of lattice-based commitment
schemes, e.g., [57], [71]–[74]. The overall best suited scheme
appears to be the BDLOP commitment scheme [57], which
offers efficient zero-knowledge proofs for our offline phase
and can be instantiated, using different parameters, to be
either statistically hiding or statistically binding as required
by our offline and online phases (cf. Section V). However,
we cannot use BDLOP directly since it offers only limited
homomorphic properties. In what follows, we first recall
BDLOP and then propose a modification that improves the
homomorphic property to be sufficient for our protocol while
keeping the modulus of the plaintext space small (as opposed
to Pedersen commitments).

The BDLOP scheme is based on the Module-Short Integer
Solution (M-SIS) and Module-Learning With Errors (M-LWE)
problems [58], [75]. The (public) commitment parameters con-
sist of two matrices A0 := ( Id1 A′0 ) and A1 := ( 01×d1 I1 A′1 )

where A′0 ∈ R
d1×(1+d2)
p and A′1 ∈ R1×d2

p are uniformly
random sub-matrices. With par := (A0,A1), we can define the
commitment procedure for x ∈ Rp with small randomness r
as

Compar(x, r) := c =

(
c[0]
c[1]

)
=

(
A0 · r
A1 · r + x

)
(mod p),

while verification Verify(x, r, c) checks if Com(x, r) = c and
‖r[i]‖ ≤ Br, 0 ≤ i < d2 + d1 + 1.11 Generally, Br should
not be too large as otherwise the underlying M-SIS problem
becomes easy and the scheme is no longer binding. This can be

11In the computationally secure case, r is sampled uniformly at random
with L∞-norm at most Br . For statistically binding (and extractable) commit-
ments, r is sampled from Dσr (Rd2+d1+1). The latter also induces a bound
Br ≥ σr ·

√
2 ·N on the L2-norm of r[i] with overwhelming probability in

N .

prevented by increasing the modulus p and thereby increasing
the hardness of the M-SIS problem. Further information on
zero-knowledge proofs and the already mentioned approximate
commitments is provided in Appendix E.

Homomorphic operations increase the randomness/noise of
the resulting commitment. To allow for more operations, one
can increase the bound Br. E.g., using 2 · Br allows for
decommitting to Com(x1, r1) + Com(x2, r2) with x1 + x2
and r1 + r2. However, using Beaver triples for multiplication
as in our protocol requires a homomorphic computation of
d := u · a+ v · b+ c for commitments a, b, c, d and uniformly
random u, v ∈ Rp. The multiplication with u, v introduces a
factor p into the noise of d, i.e., the noise of d is upper bounded
by at least Br ·(1+p) where Br is the bound for a, b, c (cf. [57]
for more details on the norm estimates).12 For practical choices
of Br (or σr), this bound allows trivially decommitting d to
arbitrary values, i.e., d is not binding. Increasing the modulus
p does not solve this problem since the upper bound of the
noise of d also linearly depends on p. We explain this issue
in more detail in Appendix E.

Intuitively, to solve the issue we have to use two inde-
pendent moduli for (the noise of) a, b, c, d and the (masked)
values u, v. This would allow us to increase the modulus of
the commitments without also increasing the noise bound of
d (which then only depends on the now independent modulus
of u, v) such that d can become binding. However, for Beaver
multiplication to hide the inputs of the commitments, we need
that the modulus used for the plaintexts in a, b, c, d is the same
as the modulus for u, v. We thus propose a modification of the
above scheme that uses two different moduli for commitments.
That is, for the randomness r and the first component c[0] we
use a modulus p′ that is an integer multiple of the prime p,
while all message-related components (i.e., c[1] = A1 · r+ x)
are modulo p.13 For the scheme with the above modifications,
we get the following theorem.

12Depending on the norm one is considering, additional factors of, for
example,

√
N (for the L2-norm) or N (for the L∞-norm) appear in front of

p.
13This idea is similar to [70], but [70] considers the case of two primes

with p′ < p. In contrast, we consider and argue security of the case p | p′.
We further note that our scheme, by supporting non-primes p′, comes with
the added benefit of enabling more efficient implementations by splitting p′
into multiple smaller primes [76].



Theorem 3 (Generalization of BDLOP). The BDLOP com-
mitment scheme with the above generalization is binding and
hiding. The strength of the binding property (computationally
or statistically) is based on the hardness of M-SIS. The strength
of the hiding property (computationally or statistically) is
based on the hardness of M-LWE.

In Appendix E, we provide full details of our construction,
show that security of our construction can still be reduced
to the M-SIS and M-LWE assumptions, and that only p′, but
not p, needs to be increased to improve the binding property.
Hence, we can simply increase p′ to a level such that the
results d of our Beaver multiplication (with the verification
bound Br ·(1+p)) can be verified but are still binding. Observe
that the plaintexts in this construction indeed remain hidden
in Beaver multiplication since they use the same modulus p
as the masked plaintexts u, v.

Note that our construction is not only useful for Beaver
multiplications. More generally, it can be used to improve
the homomorphic properties of the commitment scheme by
changing p′ without changing/affecting the modulus p of the
plaintext space, which is unlike for the original commitment.
Hence, one can simply increase p′ to support a larger number
of homomorphic additions (e.g., to the level required by cir-
cuits for our MPC protocol) without affecting other primitives
that use the same plaintext space (such as the BGV scheme
in our protocol). Thus, our construction might also be useful
for other protocols and even in contexts outside of MPC.

To be suitable for simulation-based MPC security proofs,
the above commitment scheme additionally requires trapdoors
for the simulator to equivocate and extract messages from the
above commitment scheme. Note that, due to our construction
for opening outputs in the online phase, we only need the
second property, i.e., to be able to extract messages. However,
we will additionally provided a protocol Πequiv that uses
equivocation like some of the related work, e.g. [11], [15],
and compare the two approaches in Section IX. We add
such trapdoors by following and adapting the construction
of Damgård et al. [77] to the generalized variant of BDLOP
(cf. Appendix E for full details). In our protocol we use our
modification of BDLOP to commit to values in Rp during
the online phase. To commit to values from Rq in the offline
phase, where the modulus of the input space is already much
bigger and, in particular, no Beaver multiplications are re-
quired, we can simply use the original scheme (with trapdoors
added as in [77], [78]). We denote the public commitment
parameters of this second instance by par′.

VII. PARAMETERS

To illustrate and judge practicality of our protocol, here
we compute the necessary parameters for the BGV encryp-
tion scheme and the (generalized) commitment scheme of
Section VI. The asymptotic and concrete complexity of our
protocol is analyzed in Section VIII. Our methodology is
described in Appendix I.

BGV Parameters: The main parameter that determines
practicality of the BGV scheme is the ciphertext modulus
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Fig. 8. Comparison of BGV parameters against TopGear, LowGear, and SPDZ
for log p = 64 (top) and log p = 128 (bottom). Parameters are essentially
independent of the choice of t and n, with the above values being for n =
t = 2. E.g., for η = 80 and log p = 64, increasing n = t from 2 to an
extreme value of 4096 increases log q only by relatively few bits from 529
to 584.

q.14 We have computed the parameters for an LHE and an
SHE version of our protocol, with the results shown in Fig. 8.
As parameters for other efficient two-phase protocols with
(publicly) identifiable abort are not available, we instead use
the BGV parameters of LowGear [16] and TopGear [17]
(two recent very efficient protocols without identifiable abort)
in addition to classical SPDZ [8], [9] as a baseline for a
comparison of our parameters. As can be seen from this
comparison, the additional zero-knowledge proofs of correct
decryption used to obtain public accountability of our protocol
result in somewhat larger parameters. However, the parameters
are still in a practical range that is rather close to those highly
efficient protocols. Also, the parameters show a near identical
slope, suggesting that our protocol adds only a “constant”
overhead compared to current SPDZ-like protocols.

Recall that our offline phase combines zero-knowledge
proof aggregation [60] with rejection sampling [61]. To eval-
uate the benefits of this techniques also for other SPDZ-
like protocols, we have also computed the BGV parameters
of a theoretical version of our protocol without proofs of
correct decryption. The resulting protocol is denoted by “agg.
+ rej.”. Our evaluation allows for the first time to estimate
the advantage of this combined technique if employed in
other (non-accountable) SPDZ-like protocols. To summarize,
for the bigger plaintext space (log p = 128) the combined
aggregation technique yields slightly tighter parameters than

14While N also depends on the security parameter η, changing N does not
affect the combined size of ciphertexts (an increase of N allows for encrypting
more plaintexts within each ciphertext). We thus concentrate on q.
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Fig. 9. Comparison of BGV parameters against Cunningham et al. [15] with
elliptic curve (EC) and quadratic residue (QR) Pedersen commitments.

TopGear and classical SPDZ. We suspect that this is even
more pronounced for larger plaintext sizes, which might make
this technique worth considering also for other SPDZ-like
protocols that cannot use techniques employed in TopGear
(aggregating proofs over all parties; this prevents identifying
individual misbehaving parties) to decrease parameters.

We have also computed the BGV parameters necessary to
use our construction with Pedersen commitments (based on
elliptic curves or quadratic residues; as suggested by Cun-
ningham et al. [15]) instead of our lattice-based commitment
scheme, see Fig. 9. The comparison shows that the choice
of a lattice-based commitment scheme indeed synergizes with
the lattice-based BGV encryption scheme, leading to lower
parameters. Note that, due to our modification to the commit-
ment scheme (cf. Section VI), we can improve the binding
property and the homomorphic properties of our scheme
without affecting the plaintext size. That is, we can actually
use a plaintext space with constant size independent of the
security parameter (blue and orange line), further improving
the resulting BGV parameters.

BDLOP Parameters: Since the commitment parameters
are not completely circuit independent (p′ depends on the
number of homomorphic operations required by the circuit as
illustrated in Section VI), we also had to estimate the number
of commitment operations in the online phase. For this, we
chose ResNet152 [79] as example of a non-trivial circuit.

To summarize Table II, we achieve small (or even minimal)
dimensional parameters d2, d1 for commitments. Furthermore,
the modulus p′ remains at practical sizes and increase only
moderately in η and p (N and q are the same as for, and thus
determined by, the BGV scheme; additionally, in Appendix I,
we show that changing N can have negative effects on the
efficiency of BDLOP). Notably, by our modification to the
commitment scheme (Section VI), the modulus p′ used for
commitments in the particularly critical online phase can be
chosen to be the product of multiple machine-word-sized
primes, which makes very efficient implementations possible
[76]. Also note that for commitments with par′, we do not
need to increase the modulus of the commitment scheme and
can use the BGV modulus q. We also computed parameters
for the generalized commitment scheme but with equivocation.
The results can be found in Appendix I and the impact on our
protocol’s performance is analyzed in Section IX. Altogether,

TABLE II
COMMITMENT PARAMETERS FOR Rp AND Rq

for Rp with par for Rq with par′

log p η N log ha d2 d1 log p′ d2 d1 log q

32 40 16384 59 1 1 120 2 1 352
32 64 16384 59 1 1 134 2 2 416
32 80 16384 59 1 1 142 2 2 458
32 128 32768 60 1 1 170 1 1 589
64 40 16384 91 1 1 152 2 2 418
64 64 16384 91 1 1 166 2 2 480
64 80 32768 92 1 1 176 1 1 530
64 128 32768 92 1 1 202 1 1 653
128 40 32768 156 1 1 218 1 1 553
128 64 32768 156 1 1 232 1 1 616
128 80 32768 156 1 1 240 2 2 658
128 128 32768 156 1 1 266 2 2 780
a homomorphic factor, i.e., the longest chain of linear operations while

evaluating ResNet152 is equivalent to summing up h fresh commitments

our analysis shows that our parameters are well within the
realm needed for complex applications.

VIII. DISCUSSION AND COMPARISON

As already discussed in the introduction (cf. Table I), to the
best of our knowledge the combination of publicly identifiable
abort (or, more generally, public accountability) and robustness
has not been considered for efficient two-phase protocols. The
protocol that comes closest to this goal is a combination
of Cunningham et al.’s protocol [15], which is a SPDZ-
like protocol that offers strong publicly identifiable abort,
with a best-of-both-worlds protocol [51], [54] that provides
robustness. While not formally proven,15 this combination,
which we denote by BoBW[15], likely provides strong publicly
identifiable abort (and also strong public accountability) while
additionally being robust.

Let us first discuss why simply restarting the protocol is
not enough (and constructions as in [51], [54] are needed).
The usual notion of security with abort involves an ideal
functionality that models the real protocol. There, in almost
all cases, the adversary learns the output of the protocol in
case of an abort (or even gets to know the output and has
then the chance to cause an abort based on this knowledge).
With this knowledge, the subsequent protocol runs could be
influenced. An example where this gets very apparent is in
auctions. Knowing the auction result (possible only the winner;
other settings might include the highest bid as well), an
adversary can easily abort the auction and use a higher bid
in the next run. As already mentioned, restarting the protocol
is also simply undesirable in the client-server context, e.g., in
e-voting, where it implies re-running the election. With this in
mind, we continue with the comparison of our protocol and
BoBW[15].

Table III provides an overview of the properties of our
protocol, BoBW protocols [51], [54], and Cunningham et al.’s
protocol [15], where the properties of BoBW[15] can be derived
from the combination of [51], [54] and [15]. The table shows
the number of corrupted parties that are needed to break

15[51], [54] consider and give proofs for the traditional non-client-server
setting where at least one participant is honest.



TABLE III
COMPARISON OF MPC PROTOCOLS

ours [51], [54]a [15] [12] [32]

Pub. acc. + Π + + +
Strong prop. + Π + − −
Priv. thresh. t max{t, n− |M|}b n n n
Abort thresh. n− t+ 1 n− t+ 1 1 1 1
Online com.c n · |f | n ·Π n · |f | n2 · |f | n2 · |f |
Online cmp.d n · |f | n ·Π n · |f | n2 · |f | n2 · |f |
Online rnd. |f | n ·Π |f | |f | 1
Offline com.c n2 · |f | Πoff n · |f | n3 · |f | n2 · |f |
a Internally restart resp. run in parallel up to O(n) instances of another

protocol. Most properties depend on the underlying protocol, denoted by
the placeholder Π. Πoff denotes the offline phase of Π. For complexities,
Π denotes the combined complexity of both the online and the offline
phase. In case of [54], certain protocols allow for reducing the online
complexity from Π to Πon by performing (some) additional steps in the
offline phase. But this optimization is not applicable for [15].

b M is the set of parties that caused an abort and thus a restart.
c Number of broadcasts / stores on the bulletin board in O-notation; |f |

denotes the number of multiplication resp. AND gates in a circuit f .
d Operations per party in O-notation; |f | denotes the number of addition

and multiplication resp. XOR and AND gates.

privacy and robustness. We also indicate whether the protocols
provide accountability (resp. publicly identifiable abort) and
whether this property is strong, i.e., still holds even if all
protocol participants/servers are malicious. We further give the
asymptotic complexity for the overall communication during
online and offline phases, for the number of communication
rounds during the online phase, and for the computations of
the online phase. In what follows, we discuss the differences
between our protocol and BoBW[15] in detail.

Comparison of Properties: The security properties and
thresholds of our protocol and BoBW[15] are mostly identical,
except that the privacy property of BoBW[15] can tolerate a
larger number of corrupted parties in certain cases, namely
if the set of parties M that have caused an abort is small
(observe that this is therefore not a static bound but rather
depends on a specific run). Note that, in situations where one
expects only a very small number of parties to try to abort the
protocol (due to the deterrence factor of accountability coupled
with strong contractual or financial incentives), one generally
would choose a large threshold t, in which case there is only
a small potential difference.

The advantage in terms of privacy of BoBW[15] comes at
the cost of using protocol iteration, which not only negatively
impacts performance (see below) but also makes BoBW[15]
unsuitable for certain client-server applications. In contrast,
our protocol avoids protocol iteration entirely. It is therefore
the first and only efficient two-phase protocol with public
accountability and robustness that is suitable even for client-
server applications where clients cannot be expected to deal
with the downsides of protocol iteration.

Asymptotic Performance Comparison: In terms of asymp-
totic communication, computation, and round complexity, our
protocol outperforms BoBW[15] (at least) by a factor of O(n)
in all aspects except for offline communication, where we
require an additional factor of O(n). More specifically, we
achieve the same online complexity as Cunningham et al.

but manage to additionally provide robustness while avoiding
the iteration technique used by the best-of-both-world proto-
cols [51], [54]. Hence, in the optimal situation for BoBW[15]
where no malicious parties cause an abort and thus the
online phase of BoBW[15] requires just a single iteration of
Cunningham et al.’s protocol, both BoBW[15] and our protocol
have identical online complexity. However, the performance
of the online phase of BoBW[15] progressively deteriorates
with every abort. Notably, each rerun of [15] due to an abort
requires first rerunning the entire (expensive) offline phase
within the online phase of BoBW[15], which is impractical.16

In contrast, our protocol retains the same level of efficiency
independently of the number of malicious parties trying to
cause aborts and without rerunning its offline phase within
the online phase.

Above, we have compared our protocol with the only other
protocol that might provide both public accountability and
robustness. Next, we compare our protocol with other two-
phase protocols to show that our protocol achieves the desired
security while also retaining the advantages of the underlying
SPDZ-like structure.

Table III provides a comparison of our protocol with three
efficient two-phase protocols that offer public accountability
but no robustness [12], [15], [32]. Compared to these pro-
tocols, we achieve identical or better asymptotic complexity,
except for the online round complexity of Baum et al.’s
protocol [32] and, as mentioned, the offline communication
complexity of Cunningham et al.’s protocol [15], which are
better. Note that [12], [32] do not achieve strong publicly
identifiable abort (cf. Table I) and are based on primitives
whose security breaks down entirely if all servers are corrupted
(e.g., information theoretic signatures). So they cannot be
adapted to the fully corrupted case without redesigning the
entire protocols.

More generally, even when compared to highly-efficient
SPDZ-like protocols without public accountability such as [7]–
[10], [13], [16], [17], [20], [21], our protocol still manages to
achieve comparable asymptotic complexity. The main differ-
ence lies in the concrete computational overhead introduced by
the commitments used for accountability, whereas the simple
field operations and information theoretic MACs used by
most SPDZ-like protocols are computationally less costly in
practice. We discuss the concrete performance of our protocol
next.

IX. CONCRETE EVALUATION

We compare the concrete performance of our protocol
to SPDZ, a state-of-the-art protocol without our additional
security properties, and Cunningham et al.’s protocol [15].
The comparison with [15] serves as an approximation of the
so far theoretical BoBW[15], discussed in Section VIII: The
online phase of [15] (without performing lazy verification of
commitments) is essentially the online phase of BoBW[15] in
an ideal case, i.e., without restarts. The combination of several

16It might be possible to precompute the offline phase of [15] for all subsets
of parties, but this introduces an additional factor ofO(2n) to the offline phase
of BoBW[15].
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Fig. 10. Runtime for evaluating “network A” [2], [80] (118016 addition
and 118272 multiplication gates, with batch size b = N = 32768; see
Appendix J) in the online phase and runtime of the offline phase to prepare
the necessary Beaver triples. Timings are amortized for an evaluation in the
following setting: n = 3; t = 2; log p = 128; single-threaded computation
(AMD EPYC 7443 CPU); bandwidth limited to 1 Gbit s−1; statistical and
computational security parameters are 40 bit and 128 bit, respectively.

offline and online phases of [15] (including verification for
aborted online phases) corresponds to BoBW[15] with restarts.

We have experimentally evaluated the runtime of all pro-
tocols for a concrete setting, where a small neural network
(“network A” as in MP-SPDZ [80], [81], introduced by
Mohassel and Zhang [2]) is evaluated N times on a batch
of separate inputs. Such batch processing can fully utilize the
N slots available in BDLOP commitments. A discussion on
amortizing the cost of commitments if we do use batches of
size N can be found in Appendix K. The precise setting and
resulting benchmarks for all protocols are given in Fig. 10 with
more details available in Appendix J. These benchmarks were
obtained using our own implementations of all protocols to en-
sure a fair comparison. More specifically, for the online phase

TABLE IV
ONLINE COMMUNICATION COST (IN BITS) PER PARTY AND

MULTIPLICATION

ours Πequiv
a

log p η SPDZ unopt. opt.b unopt. opt.b [15]c

64 40 128 1040 722 3608 3020 1008
64 64 128 1124 722 3860 3128 1008
64 80 –c 1184 728 4100 3260 1008
64 128 –c 1340 728 4604 3476 1008
128 40 256 1564 1240 5092 4504 1008
128 64 256 1648 1240 5344 4600 1008
128 80 256 1696 1240 5512 4672 1008
128 128 256 1852 1240 6016 4888 1008

a with trapdoor for equivocation (cf. Section V-A)
b considering that one can avoid sending all bits of bounded randomness
c Using Curve25519 to get a computational security level of 128 bit restricts

our choice of p. Therefore, log p = 252 in all cases.
d not secure with statistical security η as MAC error is 2/p
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Fig. 11. Offline communication cost per party and multiplication. The solid
line for our protocol is for t = n, the dashed line is for t = bn/2c+ 1.

we have implemented and benchmarked the circuit evaluation,
including verification for our protocol and [15]. For the offline
phase, we have implemented and performed microbenchmarks
that we then extrapolate to approximate the overall runtime.
We have validated these approximations by verifying that,
for SPDZ, they yield similar results as prior benchmarks
obtained for the widespread MP-SPDZ implementation. This
validation as well as full details of our experimental setup,
further benchmark results, and additional discussions of our
results can be found in Appendix J.

To summarize key findings, the overhead of the additional
security properties offered by our protocol compared to basic
SPDZ is a factor between 20 (0 ms network delay) to 11
(100 ms network delay) in the online phase. While the online
phase of [15] (i.e., BoBW[15] without restarts) is faster than
our protocol as long as no error occurs and hence no lazy
verification is performed, the online phase of [15] becomes
slower than ours if a misbehaving party needs to be identified
(cf. red dot in Fig. 10(a)). If [15] is then restarted after
such an error (i.e., BoBW[15]), which requires rerunning the
offline phase, then the difference is even more pronounced (cf.
Fig. 10(c) for one restart).

The concrete communication cost per multiplication gate
and party for our protocol, SPDZ, and [15] is given in
Table IV and Fig. 11. For the specific setting considered
in Fig. 10, this results in an amortized communication cost



per party and neural network evaluation in the online phase
of 17.48 MiB for our protocol, 3.61 MiB for SPDZ, and
14.21 MiB for [15]. For the corresponding offline phases
(to prepare a single evaluation of the neural network), the
amortized concrete communication cost is 2.58 GiB, 897 MiB,
and 3.48 GiB, respectively. Additionally, we show the online
communication cost of Πequiv in Table IV—the variant of our
protocol that uses equivocal BDLOP commitments. Not only
is more communication required for this variant, initial tests
also indicate that this variant is about 4 times slower than our
protocol in the online phase, which is why we omit a full
runtime analysis. The NIZKPs added in the output phase of
our protocol to avoid equivocation account for less than 0.02 %
of the overall online runtime shown in Fig. 10(a).

We note that we use the parameters from Section VII for the
BDLOP commitments, which were computed to be sufficient
for a much larger arithmetic circuit. While these parameters
could be decreased for the smaller “network A” to further
improve performance of our protocol, we nevertheless used
those parameters to show that the runtime overhead due to
parameter size is practical also for larger circuits. For [15],
we use Curve25519-based commitments to reach the same
computational security level of 128 bit. The statistical security
parameter is set to η = 40 for all protocols (as in, e.g., [8],
[16], [17]).

Altogether, our protocol performs significantly better than
(so-far theoretical) BoBW[15] in a malicious setting while
offering the same security guarantees and while being ap-
plicable even when restarts are not an option, e.g., because
inputs cannot be provided repeatedly. The additional security
properties of our protocol over basic SPDZ still come at a
cost, but the resulting performance remains practical relative
to other approaches (with weaker security properties).
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APPENDIX A
PRELIMINARIES

For completeness, we present the most important prelimi-
naries for our protocols in this section – including SPDZ and
the BGV encryption scheme. A description of the BDLOP
commitment scheme can be found in Section VI.

A. SPDZ

The SPDZ protocol by Damgård et al. [8] has given rise a to
a line of efficient MPC protocols in the dishonest majority set-
ting (see [82] for an overview). It computes arbitrary functions
that are representable as arithmetic circuits by separating the
secure computation in a very efficient online phase and a more
demanding but input-independent offline phase. The latter is
also function-independent in the sense that only the size of
the circuit (number of multiplications and inputs) has to be
known in the offline phase.

In most SPDZ-like protocols, the online phase uses a com-
bination of full-threshold secret-sharing and so-called informa-
tion theoretic MACs. This combination results in authenticated
shares JxKi = ([x]i, [α · x]i) for MAC key α. Linear opera-
tions on these authenticated shares can be computed locally
(without communication) and very efficiently as the used
secret-sharing scheme is linear. Multiplications of shares are
computed with Beaver’s technique [59] (analogously to (5)):
Jx · yKi := JcKi+u·JaKi+v ·JbKi+u·v is computed to multiply
JxKi and JyKi. This requires triples JaKi, JbKi, JcKi = Ja · bKi
and opened values u := x − b, v := y − a. For this and final
outputs, shares have to be opened, i.e., all parties get to know
x for JxKi. In the protocol, this means that all parties publish
their shares [x]i. The MACs [α · x]i can be used to verify all
opened shares in an aggregated way at the end of the online
phase [9].

To use Beaver’s technique, the above precomputed triples
JaKi, JbKi, JcKi. Ensuring that a and b are uniformly random,
makes Beaver’s technique perfectly private (as only Jx− bKi
and Jy − aKi are opened and this masks x and y perfectly).
The correlated randomness (c = a · b) implies correctness and
verifiability (as MACs allow us to verify openings of linear
combinations of authenticated shares and all operations are
now linear).

Several ways to compute these triples have been proposed,
e.g., MASCOT [13] uses an OT-based offline phase, Over-
drive [16] and TopGear [17] compute triples with the linear
homomorphic BGV encryption scheme (improving on original
use of BGV in SPDZ [8], [9]).

These building blocks (linear authenticated secret-sharing,
Beaver’s technique, and a secure way to compute triples)
allow for the evaluation of arbitrary arithmetic circuits in a
dishonest majority setting. Most of the computation and all
expensive cryptographic primitives are moved to the offline
phase, leaving only a very efficient linear online phase.

B. BGV

To better describe our protocol based on LHE BGV in
Section V-B1, we summarize the most important details of
the BGV encryption scheme [58] here. We use the version of
BGV without modulus switching. This is easier to present and
analyze. Additionally, Keller et al. [16] show little difference
when comparing parameter sizes for SPDZ without modulus
switching [8] and SPDZ with modulus switching [9]. However,
our analysis can be adjusted for other variants of BGV in a
straightforward way.

The public key k := (k[0], k[1]) = (k[0], k[0]·s+p·ε) ∈ R2
q

(for a different prime q > p) is constructed from a private

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf?__blob=publicationFile&v=6
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key s ∈ Rq and small noise ε ∈ Rq sampled from Dσs and
Dσε , respectively, while k[0] is sampled uniformly at random.
Encryption of a plaintext x ∈ Rp is then defined as

Enck(x, (v, e)
T
) :=

(
k[1] · v + p · e[0] + x
k[0] · v + p · e[1]

)
(mod q)

with encryption randomness (v, e) ∈ Rq × R2
q sampled from

Dσv and Dσe , respectively.17 The second component k[1]
of the public key and both components of the ciphertext
(bar the addition of x) form Ring-LWE samples. Thus, the
private key stays hidden due to the hardness of Ring-LWE
and the plaintext x is hidden because we mask it with a value
from a distribution that is indistinguishable from random. By
construction we get that (Enc(x)[0] − s · Enc(x)[1]) mod p
recovers x.

The above description of BGV is linear homomorphic as we
can add up ciphertexts (component-wise) to get a ciphertext
that encrypts the sum of the plaintexts (of the summed up ci-
phertexts). BGV can also be used as a somewhat homomorphic
encryption (SHE) scheme. For this, we define a ciphertext to
be an element of R3

q instead of R2
q with encryption defined as

above but with the third component as zero. Two ciphertexts
with zero third components can be multiplied as

Enc(x) · Enc(y) = a · b :=

 a[0] · b[0]
a[1] · b[0] + a[0] · b[1]

−a[1] · b[1]

 .

Decryption of Enc(x) = c is now (c[0]−s·c[1]−s2 ·c[2]) mod
p. For unmultiplied ciphertexts, this is exactly the decryption
of LHE BGV.

APPENDIX B
ACCOUNTABLE ROBUST SETUP PHASE

Our setup requires the generation of commitment param-
eters (for the online and offline phases) and a threshold
public key (PK) cryptosystem (for the offline phase). The
commitment keys can be produced by a standard CRS (or
random oracle) functionality (as in [11], [15]). For public
key cryptography, we present a robust and accountable pro-
tocol based on Asharov et al.’s work [83]—but again, we
benefit of the capabilities of current commitment schemes
(discussed in Section VI) and get a more efficient protocol.
We do this for the linear homomorphic version of the BGV
encryption scheme, while the extension to SHE BGV (and
related schemes) is straightforward.

To describe the protocol, we first describe the standard
(non-threshold) BGV key generation in more detail. The key
generation for the version of BGV we use needs to pick a small
private key s ∈ Rq and additional randomness e ∈ Rq from

17There is an additional third zero-component of the encryption used for
SHE BGV; for LHE BGV, this can be omitted.

discrete Gaussian distributions Dσs , Dσε .
18 With these (and a

uniformly random a ∈ Rq), the public key k := (a, a·s+p·ε) is
constructed, while s can be used to decrypt. For SHE BGV we
have Decs((c[0], c[1], c[2])

T
) := c[0]−s·c[1]−s2 ·c[2] mod p –

the last component can be ignored for LHE applications. We
briefly describe our protocol for distributed key generation
and threshold decryption. The protocol ΠPK itself with the
respective functionality can be found in Appendix C.

We note that the use of Shamir secret-sharing in combina-
tion with lattice cryptography comes with many potential pit-
falls in the setup phase, particularly for naive implementations.
For example, a main concern with lattice-based encryption is
the so-called noise that we want to keep small. Using standard
masking techniques for distributed decryption [8], [9], [16],
[17] introduces unpredictable noise increase and makes de-
cryption impossible. Techniques that avoid this unpredictable
behavior can still increase the decryption noise by a factor of
about O((n!)3) and would lead to a comparable increase of q
[85]. Natural alternative techniques (pre-agreeing on shares of
decryption masks) would instead increase the communication
complexity of each decryption to O(n2 · t). By building on
Asharov et al.’s protocol [83], we are able to avoid the above
issues. Additionally, our construction provides better efficiency
by utilizing commitments and better NIZKPs. We proceed with
a description of our construction in what follows.

In the key generation protocol, we first fix a part of the
public key (for simplicity, a is sampled from the CRS) and
then, every party constructs their own private key si and public
key ki := (a, bi) = (a, a ·si+p ·εi). The si will then be a full-
threshold secret-sharing of the private key that corresponds to
k := (a,

∑
i bi). Letting the parties prove in ZK that si, εi

are short and that bi was defined correctly, we are guaranteed
to get a valid BGV key. Observe that this requires that only
correctly constructed bi are used in the definition of k. In
particular, this includes proving shortness of si, εi. We can do
this by extending recent range proof constructions [86] from
Zq to Rq (see Appendix F for details). This new alternative
construction could be of independent interest.

By now we have no robustness yet as all private key shares
si are needed for decryption. However, we can add robustness
by requiring each party to additionally share its secret key si
with Shamir secret-sharing, i.e., letting party Pi produce [si]j
for all Pj , solves this. Now, the parties can publicly reconstruct
si of a malicious or uncooperative party,19 or abort if that is
no longer possible. For threshold decryption, the parties then
have si as a private key share (their own share and shares for
corrupted parties that are publicly reconstructed as mentioned
above). A decryption share di is defined as p ·ri−si · c[1] and

18In other works, s is picked from a slightly different sub-Gaussian
distribution along the lines of [84]: Each coefficient of s is sampled randomly
from {−1, 0, 1} under the constraint that s has a Hamming weight of a fixed
value, for example, 128. Also the encryption randomness (cf. Section V-B1)
can be chosen differently. Setting all distributions to be the same is easier to
present and analyze – also the original formulation of BGV uses the same
discrete Gaussian distribution for s, ε, v, e [58]. The parameters we get are
not influenced by this. For the exposition, we use different standard deviations
(σs, σε, etc.).

19If a party Pi does not provide sharings for si, obviously bi should not
be part of k.



1 Store: On input (store, t, x) by party Pi ∈ P ∪ I:
2 if (Pi, tag, ) is stored then reply ⊥.
3 Send (store,Pi, x) to adversary A.
4 Wait to receive ok from A.
5 Store (Pi, tag, x).
6 reply ok.
7 Load: On input (load,Pj , tag) by any party:
8 Wait until (Pj , tag, x) is stored (as in Line 5).
9 reply x.

Fig. 12. Bulletin board functionality FBB.

the decryption result is x = c[0] +
∑
i di mod p, as in, e.g.,

[8], [9], [16], [17]. Here p · ri is the usual noise to hide si
(and also s). Also, the proof that bi, [si]j , di are correct boils
down to efficient proofs of linear relations on commitments,
while commitments for [si]j also make sure that publicly
reconstructing missing shares is done correctly.

Until now, we only talked about key generation for LHE
BGV. For SHE BGV, we need additional terms that depend on
s2 (either as described for the decryption above or for modulus
switching, e.g., in [8], [58]). For the former, this would also
include commitments and decommitments. A natural way to
do this is to run our complete protocol (using LHE multipli-
cation in Πoffline as in Section V-B1) to get the data needed to
run SHE BGV. This is similar to the core idea of using MPC
to generate BGV keys by Rotaru et al. [87]. However, as we
want a (strong) accountable setup, our protocol is the only
(efficient) protocol that can be used for this purpose. This is
because other protocols with identifiable abort, such as [12],
[15], [32], do not provide strong public accountability and/or
use SHE BGV themselves. After having a key generation like
this, doing decryption is simply a matter of adding additional
terms to the decryption shares (or for BGV with modulus
switching, nothing has to be done here). In sum, we get the
following theorem.

Theorem 4. The protocol ΠPK is a publicly accountable
and t-robust protocol for BGV key generation and distributed
decryption. That is, ΠPK UC-realizes the functionality FPK in
the (FBB,FCRS,FRO,FPKI)-hybrid model under the assump-
tion that the used commitment scheme is statistically binding
and computationally hiding, were we use the programmable
random oracle model.

The proof of this theorem can be found in Appendix D-C.

APPENDIX C
FUNCTIONALITIES AND PROTOCOLS

We provide the remaining protocols and functionalities that
were left out in the main part. This includes

• Fig. 12 for the functionality of the bulletin board,
• Fig. 13 for the functionality of the offline phase, and
• Figs. 14 and 15 for protocol and functionality of the key

generation and distributed decryption.

1 Prepare (once): On input (prep, par) by each Pi ∈ P:
2 Send par to the A and receive (M, β) ∈ V .
3 if β = abort then reply M,⊥ to Pi.
4 if |C| < t then
5 Pick r,a, b randomly and set c := a · b.
6 Pick shares [r]j , [a]j , [b]j , [c]j for all Pj .
7 Compute commitments for all honest shares.
8 Send shares for corrupted parties Pj and

commitments for honest parties to A.
9 else

10 Send (shares) to A.
11 Let the adversary pick r,a, b, and c := a · b.
12 Let A also pick shares for all parties.
13 Compute commitments for all honest shares.
14 Send commitments for honest parties to A.
15 Receive (M′, β′) ∈ V with M′ ⊇M (overriding the

previous values of M and β), commitments, and
decommitments for corrupted parties Pj .

16 Set the commitments of parties with invalid
decommitments to >. Also add these parties to M
and M′.

17 if β = abort then reply M,⊥ to Pi.
18 else reply M, 〈r〉i, 〈a〉i, 〈b〉i, 〈c〉i to Pi.
19 Input (once): On input (input, xj) by each Ij ∈ I

and input (input) by each Pi ∈ P:
20 Get xj for corrupted Ij from A (overriding the input

xi).
21 Pack all xj into x.
22 if β = ok then
23 if |C| ≥ t then Send (input,x) to A.
24 else Send (mask,m := x− r) to A.
25 Receive (M′′, β′′) ∈ V with M′′ ⊇M

(overriding the previous values of M and β).
26 if β = ok then reply M,m to Pj .
27 reply M,⊥ to Pj .
28 Audit: On input (audit,prep, par) by J :
29 if β′ 6= ok then reply M′,⊥.
30 else reply M′, 〈r〉audit, 〈a〉audit, 〈b〉audit, 〈c〉audit.
31 Audit: On input (audit,input) by J :
32 if β′′ = ok then reply M′′,m else reply M′′,⊥.

Fig. 13. Offline functionality Foffline.

APPENDIX D
SECURITY PROOFS

The games in Figs. 16 to 18 are a vital part of the security
proofs for our protocols. More precisely, we can use the fact
that the advantage of an adversary (suitably defined as the
absolute difference of the probabilities between winning in
case of b = 0 and b = 1, i.e., the advantage compared to
guessing b) is negligible for CPA-secure encryption schemes
and computationally hiding commitment schemes.

Theorem 5 (Random Sum Decryption Indistinguishability).
The the real world (b = 1) and the random world (b = 0)
of Fig. 16 are indistinguishable for a CPA-secure encryption
scheme.



1 Generation (once): On input (gen) by each party Pi ∈ P:
2 Sample part of the public key a←$ U(Rq).
3 Pick si, εi, and bi := a · si + p · εi accordingly for honest Pi ∈ H.
4 if |C| < t then
5 Send a, bi for honest parties Pi to the adversary A and receive (M, β) ∈ V and sj , εj for corrupted parties

Pj ∈ C.
6 else
7 Send a, si, εi, bi for honest parties Pi to A and receive (M, β) ∈ V and sj , εj for corrupted parties Pj ∈ C.
8 Add Pj ∈ C to M if sj or εj have larger norms than expected.
9 Set private key s :=

∑
Pi∈P\M si and set ε :=

∑
Pi∈P\M εi.

10 if β = ok then Set public key k := (a, b) = (a, a · s+ p · ε) else k := ⊥.
11 reply M, k to Pi ∈ P .
12 Decryption: On input (dec,Enc(x)) by each party Pi ∈ P:
13 if β = ok then
14 Send x := Decs(Enc(x)) to A.
15 Receive (MEnc(x), βEnc(x)) ∈ V with MEnc(x) ⊇M (overriding the previous values of M and β).
16 if β = ok then reply M,x to Pi.
17 reply M,⊥ to Pi.
18 Audit: On input (audit,gen) by J :
19 Let M′ be M at the end of the Generation phase.
20 reply M′, k.
21 Audit: On input (audit,dec,Enc(x)) by J :
22 if MEnc(x) was sent by A then
23 Decrypt x := Decs(Enc(x)).
24 if βEnc(x) = ok then reply MEnc(x),x else reply MEnc(x),⊥.
25 else reply M,⊥.

Fig. 14. Public key functionality FPK.

Theorem 6 (Random Sum Decommitment Indistinguishabil-
ity). The the real world (b = 1) and the random world (b = 0)
of Fig. 17 are indistinguishable for a computationally hiding
commitment scheme and a zero-knowledge proof of sum.

Theorem 7 (Random Zero-Knowledge Decommitment Indis-
tinguishability). The the real world (b = 1) and the random
world (b = 0) of Fig. 18 are indistinguishable for a compu-
tationally hiding commitment scheme and a zero-knowledge
proof of equal plaintexts.

Proof of Theorem 6. For this, we can transform the game for
the real world to the random world. If we start with the
real world, we can rewrite the expressions of y and z to
picking z randomly and setting y := z − x. This is only
syntactical. Next, we can replace the zero-knowledge proof
by a simulated proof. This is (statistically) indistinguishable
by the zero-knowledge property of the proof. In the last step,
we replace y again by picking it uniformly at random and
and we also replace the zero-knowledge proof simulator by
the algorithm that constructs fake proofs. The latter one is
no change for the zero-knowledge proofs we consider (the
simulator and proof faking algorithm are the same). The other
change is indistinguishable as replacing a commitment for a
fixed value with one for a random value is exactly the “real-
or-random” formulation of the hiding property. In total, the
difference of the games is exactly the advantage for the hiding
game and the difference between a real and a simulated zero-
knowledge proof. Both are negligible.

Remark 3. We did the proof for Theorem 6 (Fig. 17) but
a similar proof is possible for Theorem 5 (Fig. 16). Also,
changing the games for other linear functions than a plain sum
is straightforward. The distribution for y (and consequently z)
does not have to be a uniform distribution as well. This is used
in some security proofs in this paper.

Similarly, indistinguishability in Theorem 7 (Fig. 18) can
be proven by replacing the ZKP for b = 1 with its simulation.
Again, the simulation of the proof and the algorithm for
generating a fake proof are identical, leaving us with a game
that is equivalent to the real-or-random formulation of the
hiding property.

Remark 4. In our protocols, we only con-
tinue to use the equivalent of z and x (not
Enc(y),Com(y),Enc(z),Com(z)). This ensures that we can
actually use this security game. If, for example, Enc(y) was
decrypted later, the one could distinguish between the real
and the random world. Also, strong simulation soundness
is guaranteed with Fiat-Shamir (even in the post-quantum
setting) [88]. This makes sure than adversaries cannot forge
fake proofs, even after seeing fake proofs as in Fig. 17.

Remark 5. Note that in the games, the adversary has to
pick their decommitment first, whereas in the protocols and
functionalities, the adversary can wait until seeing data from
other parties. We can switch this because of the NIZKPs are
proofs of knowledge in the classical setting and simulation-
sound extractable [89] in the quantum setting. This means,



1 Generation (once): On input (gen) by each Pi ∈ P , each Pi does:
2 Use FCRS to get a ∈ Rq and a commitment key par′.
3 Pick si, εi as in the BGV key generation; Set bi := a · si + p · εi.
4 Pick sufficiently many decryption masks ri of (canonical) L∞-norm larger by a factor of 2η/p than the noise of

decryption without masks.
5 Pick shares [si]j for all parties Pj ∈ P .
6 Commit to si, εi, bi, [si]j , ri with par′.
7 Encrypt [si]j and the respective randomness under Pj’s public key (for other parties Pj ∈ P).
8 Prove in ZK that

• si, εi, ri are in the right range,
• bi is computed from si, εi in the right way,
• [si]j are shares for si, and
• the encryptions are correct.

9 Send the proof, bi, and its randomness to FBB and receive data from all other parties Pj ∈ P .
10 Add Pj to a set M if the proof failed or their decommitment is not valid.
11 Initialize a second set M′ := ∅.
12 Decrypt own shares [sj ]i and the respective randomness.
13 Set b :=

∑
Pj∈P\M bj .

14 if |P \M| ≥ t then reply M, (a, b) else reply M,⊥ to Pi.
15 Decryption: On input (dec,Enc(x)) by each Pi ∈ P , each Pi does:
16 Compute di := p · ri − si · Enc(x)[1] for the next unused subset of ri.
17 Commit to di and prove in ZK that it is correctly computed from si, ri.
18 Send the proof, di, and its randomness to the bulletin board and receive data from all other parties Pj ∈ P .
19 Add Pj to a set M′′ if the proof failed or their decommitment is not valid.
20 while M′′ \ (M′ ∪M) 6= ∅ do // There are new malicious parties
21 M′′ ←M′′ \ (M′ ∪M).
22 Send [sj ]i and its randomness to FBB for all Pj ∈M′′ and receive data from all other parties.
23 Add M′′ to M′.
24 Override the set M′′ with the parties that provided invalid decommitments in Line 22 (or did not respond).
25 if |P \ (M∪M′ ∪M′′)| < t then abort.
26 foreach Pj ∈M′ do
27 Reconstruct sj := Rec([sj ]1, . . . , [sj ]n) while ignoring shares that are not available.
28 Set default values dj := −sj · Enc(x)[1].
29 Compute x := Enc(x)[0] +

∑
Pj∈P\M dj mod p.

30 reply M∪M′,x to Pi.
31 Audit: On input (audit,gen) by J :
32 Perform the Generation phase on public data.
33 Audit: On input (audit,dec,Enc(x)) by J :
34 Perform the Generation and Decryption phases on public data.

Fig. 15. Public key protocol ΠPK.

if the adversary’s ciphertext or commitment would depend on
the ones of other parties, it would break the security of the
scheme (the CPA-security or the hiding property). Conversely,
it does not depend on them and the order can be switched.

A. Proof of Theorem 1

Proof. We consider two separate cases for the proof: |C| <
t and |C| ≥ t. In the first case, the simulator S does the
following.

In the Prepare phase:

1) The commitment parameters par are chosen. The simu-
lated FCRS is programmed to output this.

2) The Prepare phase of Foffline is simulated.
3) S keeps track of 〈r〉i, 〈a〉i, 〈b〉i, 〈c〉i for each Pi ∈ P .

4) Malicious parties of Foffline are forwarded to Fonline (as
well as β = abort if the offline phase aborted).

In the Input phase:

1) The Input phase of Foffline is simulated with dummy
inputs (e.g., zero or random values) for honest input
parties.

2) The inputs xj of corrupted input parties Pj are revealed
to S by the simulated instance Foffline as S is in full
control of it.

3) The corrupted inputs are forwarded to Fonline.
4) m[i] is chosen uniformly at random for inputs of honest

parties Pi and as m[j] := xj − r[j] for corrupted input
parties Pj .



1 ( , k)←$ KeyGen(1η). // for encryption
2 (x, r, state)←$ F (1η, k).
3 b←$ U({0, 1}).
4 y ←$ U(Rp).
5 Pick valid encryption randomness s.
6 Enc(y) := Enck(y, s).
7 if b = 1 then
8 z := x+ y.
9 else

10 z ←$ U(Rp).
11 b′ ←$ G(1η, state,Enc(y), z).
12 if b = b′ and (x, r) is in the valid range for encryption

then
13 return 1. // A = (F,G) wins
14 else
15 return 0. // A = (F,G) looses

Fig. 16. Random sum decryption.

1 par←$ KeyGen(1η). // for committing
2 (x, r, state)←$ F (1η, par).
3 b←$ U({0, 1}).
4 y ←$ U(Rp).
5 Pick valid commitment randomness s, t.
6 Com(y) := Compar(y, s).
7 if b = 1 then
8 z := x+ y.
9 Com(z) := Compar(z, t).

10 Generate a commitment proof zk for z = x+ y.
11 else
12 z ←$ U(Rp).
13 Com(z) := Compar(z, t).
14 Generate a fake commitment proof zk for z = x+ y.
15 b′ ←$ G(1η, state, zk,Com(y),Com(z), z, t).
16 if b = b′ and (x, r) is in the valid range for committing

then
17 return 1. // A = (F,G) wins
18 else
19 return 0. // A = (F,G) looses

Fig. 17. Random sum decommitment.

5) Malicious parties of the Input phase of Foffline are for-
warded to Fonline.

In the Compute phase:
1) Fonline sends the result y of the computation to S.
2) The circuit evaluation is simulated with the available data

except for output-gates. Recall that these correspond to
outputs of the protocol. For the circuit evaluation, the
“honest” views of corrupted parties (what they would
compute if they were honest) are computed as well.

3) At an gate (output, l, idx), we have access to 〈x〉j for
all corrupted parties Pj as if they were honest. Pick
the shares [x]i of honest Pi in a way that the shares
reconstruct to y[l]. Commit to the shares of honest parties.
Fake the ZKP for honest parties to prove that the newly
generated commitment for these shares corresponds to the

1 par←$ KeyGen(1η). // for committing
2 (x, state)←$ F (1η, par).
3 b←$ U({0, 1}).
4 Pick valid commitment randomness r, r′.
5 c′ := Compar(x, r

′).
6 if b = 1 then
7 c := Compar(x, r).
8 Generate a commitment proof zk for c = c′

(w.r.t. plaintexts).
9 else

10 z ←$ U(Rp).
11 c := Compar(z, r).
12 Generate a fake commitment proof zk for c = c′

(w.r.t. plaintexts).
13 b′ ←$ G(1η, state, zk, c, c′, r′).
14 if b = b′ then
15 return 1. // A = (F,G) wins
16 else
17 return 0. // A = (F,G) looses

Fig. 18. Random zero-knowledge decommitment.

commitments of honest output shares (computed in the
simulation with the wrong inputs, available to all parties).
Use these shares and the new commitment randomness
for honest parties in the simulation of the final Open-call.

4) Collect all parties that revealed invalid commitments or
NIZKPs in a set M and send it to Fonline.

Aborts and the Audit phase are handled accordingly (the
value β sent to Fonline is abort is the protocol aborts in the
simulation and ok otherwise):

1) If an honest party Pi aborts during Prepare, the Input
and Compute phases are skipped and in the Audit phase
we get the output ⊥ and the malicious parties of Prepare
are returned.

2) If there is an abort in the Input phase, the Compute phase
is skipped and Audit returns ⊥ and the malicious parties
of the Prepare and Input phases.

3) If there is an abort in the Compute phase, Audit returns
⊥ and all malicious parties up to the abort.

4) If no abort happened, the result of the Compute and
malicious parties of all phases are returned in Audit.

Note that honest parties are never added to a set of malicious
parties as they do not misbehave in Fonline (except for faking
ZKPs which cannot be detected by Theorem 7; more on that
later) and can always reveal the right decommitments (as long
as they did not abort; then they would also not be required
to give these). On the other hand, misbehaving parties are
always detected with overwhelming probability. This is by-
design for Foffline and follows from the binding property of
the commitment scheme, similarly to [11], [15]. Additionally,
we use the soundness of the used NIZKP.

The simulation and a real protocol execution are indistin-
guishable (along the lines of [11], [15]) by taking into account
that Foffline produces shares for a value r that is uniformly
distributed and unknown to the adversary. This means the
value m provided by S is distributed exactly as the one



in a real protocol execution. Additionally, no information of
the shares [x]i or shared values x can be gained from the
commitments that are part of 〈x〉j (because of the hiding
property of the commitment scheme) or the opened auxillary
values during multiplication (as the triples are random and
unknown to the adversary by Foffline’s design). For the latter,
the plaintexts in the decommitments are distributed uniformly
at random (the shares reconstruct to a uniformly random value)
and the randomness is distributed the same in the protocol and
the simulation (as only different plaintext-related values are
used for the inputs). Only outputs of the protocol might reveal
that not the right inputs were used for honest parties, but S can
construct ZKPs and final decommitments that are consistent
with commitments and the circuit evaluation on real inputs.
By Theorem 7, an adversary cannot distinguish that one of
the commitments in the ZKP has a different plaintext than the
other (otherwise, they could win the security game which is
equivalent to breaking the hiding property of the commitment
scheme).

Simulating the high corruption (t ≤ |C| < n) or full
corruption (|C| = n) case is rather trivial. The functionality
gives the simulator the necessary information for honest input
parties, so the protocol can be fully simulated. Additionally,
the simulator can extract data for corrupted parties to give to
Fonline just as before. Malicious parties can still be detected
in the simulation (even with full corruption) and this can be
forwarded to Fonline at the required points in the protocol
execution.

Remark 6. For the version of the protocol with computa-
tionally binding and statistically hiding commitments (Πequiv),
the security proofs also works in the lines of [11], [15] but
different properties of the lattice-based commitments have to
be considered. The added difficulty is that the distribution of
the noise in the decommitments might reveal that a trapdoor
was used.

To circumvent this, the simulator acts as follows. It con-
siders the linearized arithmetic circuit (by replacing all
multiplication gates by the linear operations and openings
corresponding to the use of Beaver triples). In this circuit,
the outputs are results of linear functions in the inputs and
Beaver triples. Let y = f(x1, . . . , xl) be one such function.
The simulator can solve this for the xj (a solution exists
as an honest protocol instance would have computed y from
such xj). Now, it can use the “honest” shares of corrupted
parties (shares that are computed as if the party was honest)
to find shares for honest parties [xj ]i that would reconstruct
to the xj . It can also use the trapdoor to get randomness
for the corresponding share commitments. Computing the
decommitments for the honest parties is now simply a matter
of evaluating the linear function on these intermediate de-
commitments. The distribution is now as required because the
intermediate values can be decommitted with the trapdoor (by
construction in an indistinguishable way) and the final value is
now computed as a linear function as in the protocol. Finally,
the commitment key with trapdoor and a real commitment key
are indistinguishable as in [77] (see also Appendix E).

Remark 7. Conversely to [11], [15], we can directly base the

fact that the adversary cannot decommit to wrong shares on
the M-SIS problem (with our used commitment scheme; see
Appendix E). This allows us to further reduce the commitment
parameters and is necessary for proving security of the final
ZKPs of the online phase and the corresponding decom-
mitments. By chosing the bounds for valid decommitments
minimally small, i.e., to the maximum bounds for honest
parties, we can do a proof similar to the one of Theorem 8. As
we deal with exact decommitments, we set the approximation
factors to one and consider two types of decommitments.
Firstly, the decommitment the adversary “knows” (extracted
by the simulator and proven with an aggregated ZKP) and,
secondly, the decommitment revealed in the protocol. Let the
first be (x, r) with ‖r‖∞ ≤ h · Bagg and the second one be
(x′, r′) with ‖r′‖∞ ≤ h·Br.20 The resulting bound relevant for
the M-SIS problem is then h ·(Bagg +Br) instead of 2 ·h ·Bagg
that we would get for the binding property. Note that Br = 1
can be used (as we do) and Bagg is exponentially larger than
Br. Also, note that we use the L∞-norm here instead of the
L2-norm used in Theorem 8.

Similarly, to prove that an adversary cannot cheat in the
final zero-knowledge proof of commitments with equal plain-
texts, we again reduce this to the M-SIS problem. Let the
NIZKP relation be for knowing approximate decommitments
(x, r, e) and (x, r′, e) for commitments c, c′ with Compar(e ·
x, r) = e · c and Compar(e · x, r′) = e · c′ with ‖r‖∞ ≤ Beq,
‖r′‖∞ ≤ B′eq, and e ∈ C̄. Also, let B′agg be a bound for
the L2-norm of the above mentioned aggregated proofs. Then,
cheating would break M-SIS with bound 2

√
κ · h ·B′agg +Beq.

The final M-SIS instance of relevance is used to prove that
the decommitments after the above ZKP are not broken. For
this, M-SIS with bounds B′eq+2κ·Br has to be a hard problem.

B. Proof of Theorem 2
Here, we present the proof of Theorem 2 for Πoffline realizing
Foffline.

Proof. Again (as for Theorem 1), we construct a simulator
S in cases dependent on the number of corrupted parties. If
|C| < t, we define S to do the following.

In the Prepare phase:
1) Receive (prep, par) from Foffline.
2) Simulate key generation in the Prepare phase, while also

keeping track of the private key for decryption. Let the
simulated FPK output this key.

3) Generate a commitment key par′ with an extractable
trapdoor and let the simulated FCRS return this key.

4) Send the set M that is returned by the simulated FPK to
Foffline.

5) Receive shares [r]j , [a]j , [b]j , [c]j for corrupted parties
Pj and Com([r]i),Com([a]i),Com([b]i),Com([c]i) for
honest Pi from Foffline.

6) Pick m uniformly at random. This will be used instead
of the decryption of Enc(c)− Enc(d).

7) For honest Pi and v ∈ {r,a, b}, pick mi uniformly at
random. Set Com(yi) := Com([v]i)+mi. For the mask
yi that is used for d, set Com(yi) := Com([c]i)+mi−

20h is a factor depending on the number of linear homomorphic operations.



m. This makes sure that Com([v]i) = Com(yi) −mi

and Com([c]i) = Com([d]i)+m = Com(yi)−mi+m.
8) Simulate the preprocessing further until all masks yj have

published proofs. Use the trapdoor for par′ to get the
shares and commitment randomness (for the masks yj)
for corrupted Pj . Corrupted parties with invalid proofs
can be simply ignored in the following steps as we do
not compute anything for them in the protocol (except
setting their commitments to >). For honest parties Pi,
use the ZK simulator to produce accepted proofs for the
commitments Com(yi). For the latter, also pick cipher-
texts Enc(yi) for uniformly random plaintexts. These are
also used in the simulated proof of committing ciphertexts
(for a wrong statement as the simulator does not know
the decommitment of Com(yi) and thus is unlikely to
have a matching plaintext for Enc(yi)).

9) For corrupted Pj and v ∈ {r,a, b}, set mj := yj− [v]j .
For the mask yi that is used for d, set mj := yj −
[v]j + m. Compute the decommitments for the shares
of corrupted parties from these values and the extracted
decommitments of Com(yj).

10) Continue the simulation and use mi,mj ,m for the
respective decryptions. With this, the simulator sets the
shares in the simulation to the share that it got from the
functionality.

11) If SHE is not used, pick [a]i for honest parties Pi
randomly and compute the rest of the protocol in Fig. 7
normally. Use the ZK simulator to produce accepted
proofs. Otherwise, multiply the ciphertexts with SHE.

12) Continue with the last step and do the decryption of
Enc(c)− Enc(d) as mentioned above (use m).

13) Collect all parties that failed to produce some ZK proof
or were revealed by FPK inM and send this set of parties
to Foffline (together with the commitments for corrupted
parties and their extracted decommitments).

In the Input phase:
1) Simulate the Input by picking dummy values for honest

input parties.
2) Extract the inputs of corrupted input parties with the

private key of the simulated functionality FPK.
3) If corrupted input parties fail to prove that their input is

well-formed, override their (extracted) inputs with 0.
4) Send the inputs of corrupted parties to Foffline.
5) Receive m from Foffline and use it as output of the

simulated FPK (for the decryption of Enc(x)−Enc(r)).
Note, this is a different value than the ones used in the
Prepare phase (also called “m”).

6) Forward the malicious parties of this decryption to Foffline.
Again, aborts during the protocol are handled accordingly.

Once an honest party aborts in the simulation, the set of
malicious parties is handed over to the functionality, which
triggers the same abort-behavior (i.e., if the Input phase will
be skipped if it did not already happen and ⊥ is returned
instead of computed values).

Proving indistinguishability for the offline phase will be
more elaborate than for the online phase. Firstly, the key
generation (using FPK and FCRS) can be perfectly simulated

while giving no indication that the simulator knows the respec-
tive trapdoors (private key of the encryption and commitment
trapdoor). Next, no information can be obtained from the
commitments and ciphertexts before any decryption takes
place. This is due to the zero-knowledge property of the proofs
and the security of the schemes. Additionally, the fact that the
NIZKPs are proofs of knowledge guarantees that ciphertexts
and commitments for corrupted parties do not depend on
the ones of honest parties. Furthermore, the corrupted parties
cannot prove wrong statements (even if there were simulated
proofs of wrong statements) due to simulation soundness.
Thus, the combined ciphertexts Enc(W) are distributed uni-
formly at random. This makes the values mi and mj in the
simulation indistinguishable from the real decryptions (using
Theorem 5; if some could distinguish these cases, one would
win in the security game and thus break CPA-security).

The faked proofs of multiplication cannot be detected by
an adversary (using Theorem 6; similarly to using Theorem 5
above) as re-encryptions of [a]i · Enc(b) and Enc(u) for
arbitrary u are indistinguishable (here we use an adapted ver-
sion of Theorem 6 that uses multiplication and re-encryption
instead of a plain sum and re-encryption indistinguishability
(implied by by CPA-security) instead of indistinguishability of
uniformly random values). Again, simulation soundness makes
sure that the adversary does not prove wrong statements (even
in the presence of fake proofs).

The final decryption of the Prepare phase gives no indica-
tion that the ciphertexts in the simulation are inconsistent with
the plaintexts and commitments (again, using Theorem 5). The
same can be said for the decryption in the Input phase, too.
Here, we also use the fact that the ciphertexts of dummy values
(for honest parties in the simulation) give no information about
the contained plaintexts and the decryption result is distributed
uniformly at random.

In the high (or full) corruption case, we can again argue
that the simulator lets the adversary control the simulation
fully (except for the functionalities which still have some
constraints). The values expected by the functionality Foffline
are then either known (for honest parties) or can be extracted
(for corrupted parties). Finally, we note that the adversary
cannot break the commitment scheme or the guarantees of
the ZK proofs, even if all parties are corrupted. In the full
corruption case, we have to make sure that the simulator only
identifies malicious parties until an honest party (or an auditor)
would abort and send this set M to Foffline as this is the
behavior of auditors in the real protocol.

In above proof, we used Theorem 5 and Theorem 6 in
the following way. Firstly, Theorem 5 was used for every
decryption. This has several reasons.

• We picked ciphertexts for honest parties but the ci-
phertexts for shares Enc([v]i) in the protocol do not
correspond to the shares picked by the functionality (as
these are not all known). Luckily, the shares of the



corrupted parties are distributed uniformly at random.21

This allows us to use the theorem, as also in the real or
simulated protocol execution some parts of the sum (the
share can be interpreted as a sum of values) are picked
uniformly at random – the parts of honest parties. There
are enough distinct terms in the sum picked by honest
parties to play the role of “y” in the theorem.

• For honest parties, we can use a similar reasoning but this
time, the maskings of the honest parties play the role of
“y” in the theorem.

• The decryption of Enc(c)−Enc(d) can also be replaced
(without giving a hint that not the actual Enc(c) is
decrypted) as d is a ciphertext for a still unknown random
value.

• The same can be said for the final decryption in the Input
phase as r is unknown and random, and not the real
inputs are used for Enc(x) (but x is part of the value m
that we get from the functionality).

Theorem 6 is only used if we do ciphertext multiplication
without SHE. For faking that we do not know Enc(yi)
for honest Pi, we can use the simulator to construct zero-
knowledge proofs for wrong statements. In the multiplication,
we have to compute [a]i · Enc(b) + Enck(0, (v, e)

T
). As

we use commitments to prove that the values are correctly
multiplied and summed up, we can fake the proof. The
decommitment (of the multiplication and re-encryption) does
not reveal information about the fact that we did not use the
real share as re-encryptions of two values (the one we actually
decommitted to and the expected one) are indistinguishable
by CPA-security. Finally, we do not care that the resulting
ciphertext (after applying Rec) is not for a · b as the above
mentioned Theorem 5 is used and we do not give the real
decryption of the ciphertexts computed in Fig. 7.

Note that using r and d in decryptions might seem like
a contradiction to Remark 4 where we state that we do not
use the “random” part (i.e., y in Fig. 16) in the rest of our
protocol. To see that this is not the case, recall that we are
looking at the case of less than t corruptions in the security
proof when we use Theorem 5. There are then also less than t
shares for corrupted parties where we use the theorem for (for
honest parties, there will always be a fresh random masking,
so they do not have to be considered further). Each share uses
exactly t coefficients, each containing a summand of at least
one honest parties. This means that we can “use up” one of
the non-constant coefficients22 for the shares and the constant
coefficient (either r or d) is still random and unknown and can
be used for another application of Theorem 5.

C. Proof of Theorem 4

Here, we present the proof of Theorem 4 for ΠPK realizing
FPK.

21Instead of picking coefficients of a polynomial, the shares for corrupted
parties could have been picked uniformly at random and other shares are
constructed by interpolating the polynomial (or one random polynomial if it
is not uniquely defined by the shares) that intersects these shares.

22i.e., one that is multiplied with jl with l 6= 0 for party Pj

Proof. As in our other proofs, we distinguish between high
and low corruption for our simulator S. For |C| < t, we have
the following.

In the Generation phase:
1) Use a from FPK as part of the CRS and also program a

commitment key par′ for which S knows an extraction
trapdoor.

2) Let each honest party pick their si, εi as in the protocol.
Pick random values [si]j from honest parties Pi for
corrupted parties Pj . Also pick the decryption masks.
Create a commitment for bi from FPK. Fake the proof of
sum to decommit to the bi from the functionality.

3) Extract the values for corrupted parties with the trapdoor.
4) Send the required values to the functionality. Note that

the public key is then the same in the simulation and
the functionality. Additionally, the privatekey s (in the
functionality) is the sum of the sj by corrupted parties
(known to the simulator) and the si by honest parties
(unknown to the simulator). Let s′ be the private key in
the simulation (derived from the corrupted sj and the
random values picked for simulated honest parties). The
simulator knows shares of s′ for all parties, as well as
shares for the decryption masks r.

In the Decryption phase:
1) Get the decryption x from FPK.
2) Given a ciphertext c = (c[0], c[1]), the simulator can

compute the values yj := rj − sj · c[1] for corrupted
parties Pj .

3) Set yi for honest Pi to satisfy x − c[0] =
∑
Pj∈C yj +∑

Pi∈H yi − p · r. Here, each yi is a randomly chosen
such that its norm is a factor of 2η larger than the standard
decryption noise. r can then be arbitrary but is smaller
than n times this bound. Note that the shares yi are
picked to be consistent with the shares corrupted parties
– even if the values rj is replaced with the default value
of zero. For honest parties, the zero-knowledge proofs
can be faked in a way that these yi are accepted without
knowing the shares si picked by the functionality.

The simulation and real protocol differ for si and yi for
honest Pi. For the first, we can use Theorem 6 to show
that it is unnoticeable that the honest bi are not actually
computed from the si in the simulation. Here, we use that
bi is indistinguishable from random by the hardness of the
R-LWE problem, i.e., it is also indistinguishable from another
R-LWE sample.

The decryption obviously gives the right result (modulo
p) but we also have to argue indistinguishability. Again, the
adversary cannot see that the simulator gave a value that is
not the sum as in the protocol. For this, we use Theorem 6
while noticing that the noise bound in the decryption is
indistinguishable in the simulation and the protocol. In the
protocol, this bound B is determined by ri and the noise
bound without it, i.e., the noise bound of the ciphertext to
be decrypted, Bc. In other words, B = (2η + 1) · Bc. In
the simulation, the bound on yi is exactly the bound on ri
in the protocol, i.e., B = 2η · Bc. As the distributions are
statistically indistinguishable by the choice of r (the bound



on r is exponentially larger than Bc), this cannot be detected
when we apply Theorem 6 again.

Finally, one can rather trivially show again that the ma-
licious parties are always detected and aborts are handled
correctly. Also, for high and full corruption the proof can be
done without any large difficulties.

Remark 8. Note that we only use FPKI (for a public key infras-
tructure) to provide public keys for all parties to everyone. We
do not need to extract anything from ciphertexts that use these
keys as the values we are interested in are also extractable
with the commitment scheme. Additionally, we know that the
encryptions are consistent with the commitments because of
the used zero-knowledge proofs.

Remark 9. If we consider the SHE BGV key generation we
get the required security (in particular, accountability and
robustness) from the properties of Πonline that we use in this
case to generate the necessary keys (and commitments needed
for accountable BGV decryption with these SHE keys).

APPENDIX E
LATTICE-BASED COMMITMENTS (CONTINUED)

Let us start with giving the definition of the discrete
Gaussian distribution. It is defined by

Dσ(S) : x 7→ gσ(x)∑
y∈S gσ(y)

with gσ : x 7→ exp(−‖x‖22/2σ2) and standard deviation σ.
With the fact that

Pr
[
‖x‖2 > σ ·

√
2 · d

∣∣∣ x←$ Dσ(Zd)
]

(6)

is negligible in d (e.g., from [61], [90]) and by identifying
ZN with R, we get a bound Bσ for sampling elements of R
(and Rp) with Gaussians (the right-hand-side of the inequality
in (6)). This will be used later to define relevant bounds for
the commitment scheme. We now proceed with details the
problems that we base the security of commitments on and on
our generalization of Baum et al.’s [57] BDLOP commitment
scheme.

A. Lattice Problems

Many recent cryptographic primitives are based on the
hardness of lattice problems. Most notably, many primitives
are based on the Learning With Errors (LWE) and Short
Integer Solution (SIS) problems which are at least as hard
to solve as certain worst-case lattice problems [91], [92].
Ring [93], [94] and module [58], [75] variants of LWE and
SIS (R-LWE, R-SIS, M-LWE, and M-SIS, respectively) were
proposed and analyzed – enabling more efficient cryptographic
primitives.

We present problems equivalent to M-LWE and M-SIS from
Baum et al. [57]. The security of the commitment scheme is
based on these.

Definition 3 (Module-Learning With Errors). The advantage
of an adversary A for (decision) M-LWE(Rp, n,m, dist) is
defined as∣∣∣∣∣Pr

[
b = 1

∣∣∣∣∣ A←$ U(Rn×mp );y ←$ dist(Rn+mp );

u←
(
In A

)
· y; b←$ A(A,u)

]
−

Pr
[
b = 1

∣∣ A←$ U(Rn×mp );u←$ U(Rnp ); b←$ A(A,u)
]∣∣∣∣∣,

i.e., A has to distinguish a random u from ( In A ) · y where
y is picked according to the distribution dist.

Definition 4 (Module-Short Integer Solution). The advantage
of an adversary A for (search) M-SIS(Rp, n,m, norm, B) is
defined as

Pr


(
In A

)
· y = 0;

n+m−1∧
i=0

norm(y[i]) ≤ B

∣∣∣∣∣∣∣
A←$ U(Rn×mp );

y ←$ A(A);

y 6= 0

 ,
i.e., A has to find a norm-short non-zero vector y ∈ Rn+mp

that is a root of the linear function f : x 7→ ( In A ) · x.

By now there is a wide variety of lattice-based commit-
ment schemes, for example the already mentioned paper by
Baum et al. [57], the schemes of [71]–[74], or lattice-based
encryption schemes that could be used as commitments (as
done by Spini and Fehr [14] with BGV). However, finding a
suitable commitment scheme is again not as simple as using
just any arbitrary lattice-based commitment scheme. Some
schemes cannot be used since they are perfectly binding (and
thus not suitable for a variant of our protocol with equivo-
cation; this includes lattice-based encryption schemes), only
support a small number of homomorphic operations, and/or
have constraints on the plaintexts (e.g., supporting only short
messages) [74]. Another point is that efficient zero-knowledge
proofs for commitments are indispensable for an efficient
offline phase, ruling out [71], [72]. Finally, there is a need for
two different types of security for the online and offline phases
(in particular, computationally secure in the online phase and
perfectly/statistically binding in the offline phase; or even
perfectly/statistically hiding and perfectly/statistically binding,
respectively, if we would use equivocation in the online phase),
as we already described. Overall best suited seems to be the
scheme of Baum et al. [57] which we described in Section VI.
Now, we proceed to give more details on our generalization,
mentioned there as well.

B. Details on Our Generalization of BDLOP

Recall the BDLOP commitment scheme of Baum et al. [57]
and our generalization from Section VI. One detail we left
out was approximate decommitments. Such a decommitment
would use the adapted verification Verifypar(x, r, e, c) that
checks Compar(e ·x, r) = e ·c (and also the already mentioned
range checks on r). The element e can be from C̄ := {a− b |
a, b ∈ C; a 6= b} with C := {a ∈ R | ‖a‖∞ = 1; ‖a‖1 = κ}
and is used to get a relaxed decommitment with more efficient
zero-knowledge proofs. κ is chosen so |C| ≥ 2η for a
statistical security of η and one has to take care that elements



of C̄ are invertible in Rp (by setting N and p accordingly
[57]). An honest party can always use e = 1 with x and r
(used to create a commitment) in a decommitment.

Our adaption of the BDLOP commitment scheme to support
multiple moduli is straightforward. As we consider a larger
modulus p′ for the parts where del Pino et al. [70] use a smaller
one, we cannot reuse their proofs. Nevertheless, we can simply
redo the security proofs of Baum et al. with two moduli and
use the fact that p′ is a multiple of p, i.e., a uniform distribution
w.r.t. p′ is also uniformly random for p. We get that the binding
and hiding properties depend on the hardness of M-SIS and
M-LWE in the larger modulus p′ – the M-SIS(Rp′ , d1, d2 +
d1 + 1, ‖ · ‖2, 4 ·

√
N · κ ·Bς) and M-LWE(Rp′ , 1 + d1, d2 +

d1+1, Dσr ) problems to be exact. ς is the Gaussian parameter
obtained from Theorem 10 when considering the bound of
c · r for c ∈ C and r sampled from Dσr (R

d2+d1+1
p′ ). This is

for fresh commitments. For commitments after homomorphic
operations, one has to increase Bς accordingly. Additionally,
we require the challenges to be invertible in Rp. In more detail,
we get the following.

Theorem 8. The above commitment scheme is binding. The
strength of the binding property is based on the hardness of
M-SIS(Rp′ , d1, d2 + d1 + 1, ‖ · ‖2, 4 ·

√
N · κ ·Bς).

Proof. Given an instance A0 of the M-SIS problem and an
adversary Abinding for the binding property, we show how to
construct an adversary ASIS on the SIS problem. We proceed
just as in [57].

We do this by letting ASIS pick A1 just as in the parameter
generation and gives (A0,A1) toAbinding.Abinding answers with
((c[0], c[1])

T
, x, r, e, x′, r′, e′). If both (x, r, e) and (x′, r′, e′)

are valid decommitments for c with x 6= x′, we have

e · c[0] = A0 · r (7a)
e · c[1] = A1 · r + e · x (7b)
e′ · c[0] = A0 · r′ (7c)
e′ · c[1] = A1 · r′ + e′ · x′ (7d)

Equations (7b) and (7d) lead to

0 ≡ A1 · (e · r′ − e′ · r) + e · e′ · (x′ − x) (mod p)

As x′ 6= x, we have that x′ − x 6≡ 0 (mod p). Additionally,
e and e′ are invertible in Rp. This implies e · r′ − e′ · r 6≡ 0
(mod p). The same is true modulo p′. Equations (7a) and (7c)
imply

0 ≡ A0 · (e · r′ − e′ · r) (mod p′)

With the above observation that the difference of the com-
mitment randomness is non-zero, we get a solution for the
M-SIS(Rp′ , d1, d2 + d1 + 1, ‖ · ‖2, 4 ·

√
N · κ ·Bς) problem as

we know that ‖r[i]‖, ‖r′[i]‖ ≤ Bς and ‖e‖, ‖e′‖ ≤ 2 ·
√
κ.

Theorem 9. The above commitment scheme is hiding. The
strength of the hiding property is based on the hardness of
M-LWE(Rp′ , 1 + d1, d2 + d1 + 1, Dσr ).

Proof. Given an instance (B, t) of the problem and an adver-
sary Ahiding for the hiding property, we show how to construct

an adversary ALWE on the M-LWE problem. We proceed just
as in [57].

Fist, we pick R uniformly at random from Rd1×1p′ and send

A0 =
(
Id1 R

)
· B

A1 =
(
01×d1 I1

)
· B

to Ahiding. As an answer, we get x0 and x1. ALWE picks a bit
b uniformly at random and computes

c[0] =
(
Id1 R

)
· t

c[1] =
(
01×d1 I1

)
· t+ xb

This is sent to Ahiding, who answers with b′. ALWE outputs 1
if b = b′ and 0 otherwise.

Now, we show that the construction of Baum et al. still
works. First, write

B =

(
Id1 0d1×1 B′0

01×d1 I1 B′1

)
where the entries of B′i are picked uniformly at random from
Rp′ . This leads to

A0 =
(
Id1 R B′0 + R · B′1

)
A1 =

(
01×d1 I1 B′1

)
For A0 to be distributed as in the parameter generation, we
need R and B′0 + R · B1 to be distributed uniformly in Rp′ .
Both are random as R and B′0 are uniformly distributed. For
A1, we need that B′1 is randomly distributed over Rp. We
get this, because B′1 is random over Rp′ and because p′ is a
multiple of p.

The rest of the proof is exactly the same as in [57]: If t
is uniformly random, c is random as well. This implies that
the value of b′ is independent of x, i.e., Pr [b = b′] = 1/2.
If t = B · r for a short commitment randomness r, c is a
valid commitment for x. Now, Pr [b = b′] = 1/2 + ε for the
advantage ε of Ahiding. The advantage of ALWE (for the M-
LWE problem) is then at least the advantage of Ahiding (for
the hiding game).

Similarly, one can show that the ZKPs for knowing decom-
mitments and for linear relations of Baum et al. [57] still work.

For the security proofs of our protocols, we also need
trapdoors for the BDLOP commitment scheme. We need two
flavors of trapdoors: extractable and equivocal ones. Equivocal
trapdoors for this commitment scheme were recently used
by Damgård et al. [77] and we use the same approach.
Same as Damgård et al., we use the results of Micciancio
and Peikert [78] – but we need to construct both types of
trapdoors. The extractable trapdoors are for Rq commitments
(i.e., without our adjustments to the commitment scheme)
and we can adapt the results of [78, Section 3.3] to do the
following. A trapdoor as described in [78, Section 3.2] is
constructed for A′0. With this, r can be extracted from A0 · r
(the first part of a commitment). This value of r can then also
be used to compute x from the second part of a commitment.
For the extractable trapdoor, it is important that
• A′0 is distributed uniformly at random (as in a normal key

generation),



• M-SIS is statistically hard (so there will be only one
message that can be extracted for each commitment), and

• M-LWE is computationally hard (so commitments do not
leak information about the committed messages).

We can use the same approach as Damgård et al. [77] to
achieve the first point: We use [76, Corollary 4.2] to determine
the parameter for the Gaussian. The second point is covered
in the original BDLOP paper by Baum et al.. We consider all
points in our parameter search in Section VII.

We want to use equivocal trapdoors for our adapted version
of the commitment scheme. For this, we adapt the results of
[78, Section 3.4] and Damgård et al. to construct a trapdoor
for all of par. For the trapdoor, we consider the commitment
key completely modulo p′ (A1 can be reduced modulo p later).
This means, we can use the technique of Damgård et al. “as
is”. We need to consider the following.

• par is distributed as in a normal key generation but
modulo p′ (using [76, Corollary 4.2]). Then, par will be
distributed correctly in Rd1p′ ×Rp as well.

• The scheme is statistically hiding. For this, we also make
sure that multiplying Gaussian commitment randomness
with par is uniformly distributed modulo p′ (again, using
[76, Corollary 4.2]).

• M-SIS is computationally hard (so the commitment
scheme is binding).

In our search in Section VII, we do not use this kind of
trapdoor. Instead, we use a modified protocol to open the
outputs of the protocol. Nevertheless, we compare the results
of our presented protocol with the alternative version utiliz-
ing equivocal commitments in Section IX. Additionally, the
alternative set of parameters can be found in Appendix I.

C. Problems with Beaver Multiplication

As hinted in Section VI, Beaver multiplication is problem-
atic with the original version of BDLOP. We show how one
can break the binding property for a commitments after the
multiplication. Recall that we computed a bound of at least
p ·Br for the randomness of commitments in Section VI. For
the L2-norm, the bound is larger than

√
N · p. In particular,

all elements of Rp trivially fulfill this. If we consider the
original version of the commitment scheme with modulus p,
this means that the range check on the randomness can be
factually omitted when verifying a decommitment.

Let

c =

(
Id1 A′0

01×d1 I1 A′1

)
· r +

(
0
x

)
= A · r +

(
0
x

)
be a commitment for an arbitrary plaintext x. A second de-
commitment (x′, r′) can be obtained by solving the following
system of linear equations for r′

c−
(

0
x′

)
= A · r′

This might not be possible for all choices of x, x′, r, r′ but one
can find such values with non-negligible probability, winning
the binding game.

APPENDIX F
ZERO-KNOWLEDGE PROOFS

To make our offline phase secure, we use zero-knowledge
proofs. Σ-protocols are used with the Fiat-Shamir transform
to generate non-interactive zero-knowledge proofs (NIZKPs)
that everyone can verify. We furthermore refer to Unruh [88]
for a discussion of Σ-protocols in the post-quantum setting. To
prove the correctness of the encryption and the commitment
for the same plaintext we use a combination of rejection
sampling [61] and the aggregation technique of [60].

Additionally, zero-knowledge proofs that only involve com-
mitments can be made very efficient – without aggregation
techniques for the BDLOP scheme. We use this to prove
correct committing [57], as well as products [86] and linear
relations using commitments [57], [70]. The latter two are
combined to get range proofs in an accountable encryption
scheme key generation.

Zero-knowledge proofs are used in two settings that were
not described yet (how to prove plaintext-ciphertext multipli-
cations was discussed in Section V-B1 and the proofs used in
the online phase are straight adaptions of the ones for linear
relations [57]). The first is range proofs for the BGV key
generation. Secondly, we prove many committing ciphertexts
statements (and other aggregated proofs) in the offline phase.
Both are discussed in the next sections.

A. Range Proofs

To get range proofs for Rq , we combine the existing
NIZKPs [57], [70], [86] in the following way.

1) A value x ∈ Rq is split in its bits b, b[i] ∈ {0, 1}N . The
negated bits b̄ are computed.

2) A product proof [86] is used to prove b · b̄ = 0.
3) The generalized sum proof [70] (as a generalization of the

proof by Baum et al. [57]) is used to prove b+(b̄−1) =
0 ⇔ b̄ = 1 − b. The generalization allows us to prove
this sum for the extended commitments from the product
proof (the commitment key for the product proof has a
third matrix A2 similar to A1).

4) A proof of sum [57], [70] is used to prove x =
∑l−1
i=0 2i ·

b[i]− 2l · b[k].

Note that we do not try to prove the length of a single integer
and pack it in the coefficients of an Rq element as in [86].
Instead, we want to prove a bound on ‖x‖∞. As in [86], the
steps 2 and 3 prove that b[i] has binary coefficients. Step 4 then
implies ‖x‖∞ ≤ 2l. We do not want to introduce any slack
in these range proofs to give a key generation protocol that
can also be used in applications where tighter parameters are
needed. As the key generation is done only once in the offline
phase, we opted for this kind of construction. Non-power-of-
two bounds could be supported by adding more terms.

B. Aggregated Proofs

The adapted zero-knowledge proofs we use are based on
rejection sampling [61] and classical aggregation [60].



1 function RejectionSample(Z,B, σ, ρ):
2 u←$ U([0, 1)).

3 if u > 1
ρ · exp

(
−2〈Z,B〉+‖B‖2

2·σ2

)
then

4 return 0.
5 else
6 return 1.
7 function Sample(ρ):
8 u←$ U([0, 1)).
9 if u > 1

ρ then
10 return 0.
11 else
12 return 1.
13 macro P (A, σ, ρ):
14 B←$ A().
15 Y←$ Dσ(Zn×m).
16 Z := B + Y.
17 if RejectionSample(Z,B, σ, ρ) then
18 return B,Z.
19 else
20 abort.
21 macro S(A, σ, ρ):
22 B←$ A().
23 Z←$ Dσ(Zn×m).
24 if Sample(ρ) then
25 return B,Z.
26 else
27 abort.

Fig. 19. Rejection sampling.

Theorem 10 (Rejection Sampling [61]23). The distribution of
subprotocols P and S in Fig. 19 is within statistical distance
of 2−100. This requires σ ≥ 12

ln ρ · ‖B‖ for all B←$ A().

We do not get proofs that have a slack as small as the one
obtained by Baum et al. [95], but their proof also does not
prove exact relations but one that is off by a factor of two
(i.e., for the ring case, it proves As = 2t instead of As = t).

Other techniques are possible as well – and give a smaller
slack than our approach – but they also have some downsides.
The approach of [68] uses a cut-and-choose technique which
we want to avoid as this was identified to be impractical by
Keller et al. [16]. Cramer et al. [69] need to amortize over
many instances (η2 or η3/2) to be efficient. The work by del
Pino and Lyubashevsky [96] builds upon [68], [69] to reduce
the large number of instances required by Cramer et al. [69]
but it is still a cut-and-choose proof. Another reason why
we opted for the classical aggregation technique [60] is its
simplicity and use in other protocols. This should make it
straightforward to implement our adaptions to it if our MPC
protocol is to be implemented.

We do not claim that our approach is a new idea – in
fact, it was mentioned in [68], [69] that one can construct
a zero-knowledge proof in such a way – but it was not
formalized, to our knowledge. Additionally, we get reasonably

23with the notation of [95]

good parameters, even with the exponential slack (as seen in
Section VII and Appendix I).

Also note that the operations for the combination of re-
jection sampling and classical aggregation are the same. The
runtime can increase as parts of the proof have to be repeated
but also the aggregation in SPDZ [8] has a probability of
repeating the proof: With probability 1/32 the proof has to
be discarded.

To present this technique, we show it for committing cipher-
texts, i.e., the cases where a party has to prove that a ciphertext
and a commitment were produced for the same plaintext.
The same can be used for only proving that ciphertexts were
correctly computed by the parts that are not needed. Similarly,
we use it to prove that the re-encryption randomness in Fig. 7
and the decryption masks in Fig. 15 are for plaintexts with the
appropriately sampled distribution.

The matrix Mc is constructed as in [8], [60]. Mc ∈
{0, 1}µ×η is defined as c[i−j] at position (i, j) for 0 ≤ i−j <
η and zero otherwise. This allows us to solve for the secrets
in the knowledge extractor. The parameters ς are obtained
from Theorem 10, the construction of Mc, and bounds on the
witnesses (the exact relation is given in the following proof).

Theorem 11. The protocol of Fig. 20 is a Σ-protocol as in
[88, Definition 6].

Proof. Completeness: This is quite trivial and follows from
the linearity of the commitment and encryption schemes.

Unpredictable commitments: Obviously, picking commit-
ments (in the sense of Σ-protocols) as in the protocol does
not produce collisions, except with low probability.

Honest-verifier zero-knowledge: The simulator of the Σ-
protocol can pick the z values according to the Gaussian
distributions of the respective ys. Also c can be picked as in
the protocol. The commitments (in the sense of Σ-protocols)
can be solved for with these values. The distance between this
simulation and a real protocol execution is the same as for P
and S in Theorem 10.

Statistical soundness: Here, we show statistical special
soundness (which implies statistical soundness). Given two
accepting transcripts with the same commitment (in the sense
of Σ-protocols) and different challenges, an extractor can
regain witnesses (messages and randomness) for the inputs of
the Σ-protocol. Let z and z′ be the responses of the transcripts
(this is done for all z-value pairs, e.g., zx and z′x) and c, c′ the
challenges. As in [8], we can get a witness from conceptually
computing (Mc′ − Mc)−1 · (z′ − z). The special structure
of the matrices allows one to do the multiplication with the
inverse in two steps. Two triangle matrices in Mc′−Mc can be
identified to solve for the first and second half of the witness,
respectively. In the worst case, 2η/2 additions of entries of
z′ − z are used to compute an entry of the witness. This
means, the norm of the witness can be bound by 2η/2 · 2 ·Bς
for the respective bound Bς on z and z′. We get ς from
Theorem 10 and set ς := 12

ln ρ · η ·Bσ , i.e., it is the parameter
of the Gaussian obtained from the rejection sampling theorem
where the bound in the theorem is η · Bσ . The latter is the
bound on the terms z−y in the Σ-protocol. Bσ is the bound
on the respective witness and the factor of η comes from the



input for Pverifier: k, par, par′,
Enc(x),Com(x),Com′(x),Com′(r)

input for Pprover : (additionally) x,v, e, r, r′x, r
′
r s.t.

Enck(x, (v, e)
T
) = Enc(x),

Compar(x, r) = Com(x),
Compar′(x, r

′
x) = Com′(x),

Compar′(r, r
′
r) = Com′(r)

1 Commitment: The prover Pprover does:
2 Let µ := 2 · η − 1.
3 yx ←

$ Dςx(Rµ).
4 yr ←

$ Dςr (R
µ)d2+d1+1.

5 yv,e ←
$ Dςv (Rµ)×Dςe(R

µ)×Dςe(R
µ).

6 yr′,x ←
$ Dςr′ (R

µ)d2+d1+1.
7 yr′,r ←

$ Dςr′ (R
µ)d2+d1+1.

8 ax,Enc := Enck(yx,yv,e).
9 ax,Com := Compar(yx,yr).

10 ax,Com′ := Compar′(yx,yr′,x).
11 ar,Com′ := Compar′(yr,yr′,r).
12 send ax,Enc ,ax,Com ,ax,Com′ ,ar,Com′

13 Challenge: The verifier Pverifier does:
14 c←$ U({0, 1}η).
15 send c.
16 Response: The prover Pprover does:
17 zx := yx + Mc · x.
18 zr := yr + Mc · r.
19 zv,e := yv,e + Mc · (v, e)

T.
20 zr′,x := yr′ + Mc · r′x.
21 zr′,r := yr′ + Mc · r′r.
22 Do rejection sampling:

if ¬RejectionSample(zx,Mc · x, ςx, ρ) ∨ · · · ∨
¬RejectionSample(zr′,r,Mc · r′r, ςr′ , ρ) then

23 abort. // and repeat the proof
24 send zx, zr, zv,e, zr′,x, zr′,r.
25 Verification: The Verifier Pverifier does:
26 Check that Enck(zx, zv,e) = Enc(x) + Mc · ax,Enc ,

Compar(zx, zr) = Com(x) + Mc · ax,Com ,
Compar′(zx, zr′,x) = Com′(x) + Mc · ax,Com′ ,
Compar′(zr, zr′,r) = Com′(r) + Mc · ar,Com′ .

27 Check that ‖zx‖ ≤ Bςx , ‖zr[i]‖ ≤ Bςr ,
‖zv,e[0]‖ ≤ Bςv , ‖zv,e[1]‖ ≤ Bςe , ‖zv,e[2]‖ ≤ Bςe ,
‖zr′,x[i]‖ ≤ Bςr′ , and ‖zr′,r[i]‖ ≤ Bςr′ for
0 ≤ i < d2 + d1 + 1.

28 if any check failed then return 0 else return 1.

Fig. 20. Σ-protocol for committing ciphertexts.

multiplication with Mc. Instead of Bσx , we convert the L∞-
norm on x (i.e., (p− 1)/2) into a L2-norm (we upper-bound
it with an L2-norm of

√
N · (p− 1)/2 [57]).

The commitments (in the sense of Σ-protocols) and the
linearity of the schemes imply that the extracted values are
witnesses for the relation.

Unique responses: The right-hand side of the checks in the
verification phase of Fig. 20 depends only the commitments
(in the sense of Σ-protocols), challenge and public inputs
of the protocol. For the verification to succeed for multiple

responses, the prover would have to break the binding property
of the commitment schemes. The encryption can be seen as
an perfectly binding commitment.

Remark 10. Completeness and unpredictable responses imply
that the Fiat-Shamir transform of the protocol is complete w.r.t.
quantum adversaries [88, Lemma 13]. Adding honest-verifier
zero-knowledge implies zero-knowledge for the transformed
protocol [88, Theorem 14].

Statistical soundness implies soundness after the trans-
form [88, Theorem 15]. This and unique responses implies
simulation-soundness [88, Theorem 17].

With the extractability we get from letting the protocol sim-
ulator know the private key and trapdoor to the commitment
scheme with key par′, we get that the transformed Σ-protocol
is strongly simulation-sound extractable [89, Theorem 25],
i.e., we have soundness, even if the adversaries sees fake
proofs from a simulator and also extractability in presence
of a simulator [89].

Remark 11. By the general rejection sampling theorem [61],
we get that the overall probability to get an output from the
ZKP (no abort) is the probabilities of not aborting in all calls
to RejectionSample, i.e., (1/ρ)l, or statistically close to
that, for l rejection samplings.

APPENDIX G
USABILITY IMPROVEMENTS

There a few aspects, one could solve differently in our
protocols. Some are outlined here, including a way to sup-
port private inputs, larger circuits, and doing less work for
verifications (under certain assumptions).

A. Private Outputs
The mentioned online protocol only supports public outputs.

Private outputs can be modelled with the existing protocol as
well. For this, a party that should receive a private output y
picks an additional input r uniformly at random. The circuit
is modelled to (secretly) compute and output z := y + r. The
party can then easily compute y as z − r after the protocol.
Correctness of z (and therefore of y) is guaranteed by the
existing protocol.

B. Handling Many Homomorphic Commitments
Obviously, using lattice-based commitments does not allow

us to do arbitrary many additions (opposed to, for example, the
Pedersen commitment scheme in [11], [15]). A straightforward
way to support a circuit is to estimate an upper bound on
the number of additions needed and use this in the parameter
search. This is done in Section VII. One can also inject no-ops
in the circuit to keep the noise small.

As the noise in commitments resets after multiplications,
one could multiply by one. For this, 〈x〉i := 〈c〉i + (x − b) ·
〈a〉i + (1 − a) · 〈b〉i + (x − b) · (1 − a) could be computed
by using a multiplication triple. This means, x− b and 1− a
are opened in the protocol. Both do not leak any information
about x if the preprocessing was correct (and not too many
parties are corrupted).

Alternatively, one could add zero. With 〈x〉i := 〈r〉i + (x−
r), one can refresh commitments similarly to adjusting shares



for the inputs of the protocol. Here, we only need more random
views 〈r〉i instead of more complex triples, only one value
(x − r) has to be opened, and less operations are needed to
adjust the view.

Additionally, we can assume that many operations will
reset the commitment noise if they are implemented like
Beaver triples. Examples are matrix multiplications and con-
volutions [7].

When computing the parameters, one has to consider the
slack added from the zero-knowledge proofs. While this might
be smaller than the number of additions (cf. Table II), it is still
plays a role in the parameter search and cannot be avoided
with the above techniques. Instead, one has to lower the slack
introduced by the zero-knowledge proofs.

C. Delayed Verification

In the online phase, the parties could first compute the
whole circuit without checking the commitments (while still
decommitting at every output-gate). For his, one could
use hyper-invertible Van der Monde matrices to reconstruct
correctly if less than t shares are inconsistent [49], [97]. An
error correction in this way is less efficient in O-notation
(dependent on n) than checking each commitment but only
field operations are required, which might make this variant
more efficient in practice for certain settings (expensive to
verify commitments and not too many parties).

Obviously, if too many parties are corrupted, we might not
get the correct result. However, at the end (or as external
auditor), one can still check the commitments – possibly in an
aggregated fashion by checking random linear combinations.

Another possibility to reduce the verification overhead is
the following. Consider that only checks of the form

Verify
(∑

l

al · [xl]j︸ ︷︷ ︸
:=[z]j

sent by Pj

,
∑
l

al · RC([xl]j)︸ ︷︷ ︸
:=RC([z]j)

sent by Pj

,
∑
l

al · Com([xl]j)︸ ︷︷ ︸
computed by Pi

)

have to be done by Pi for each Pj . This is because the use
of Beaver triples creates a circuit with only linear operations.
Instead, one could do an aggregated check

Verify
( n∑
j=1

[z]j ,

n∑
j=1

RC([z]j),
∑
l

al ·
n∑
j=1

Com([xl]j)

)
where Com(x′l) :=

∑n
j=1 Com([xl]j) can be computed first,

so only one commitment for each xl has to be kept in memory
instead of n commitments. Note that, in general, x′l 6= xl as
we use Shamir secret-sharing instead of full-threshold secret-
sharing. Otherwise, this is similar to the technique of Baum
et al. [11] where commitments for the shared secrets (not the
shares) are used to get verifiability. We have the commitments
for shares and can go back to the individual checks if the
aggregated check fails. Unfortunately, one might have to go all
the way back and recompute the whole circuit if the aggregated
check fails. This makes this technique more suitable if cheating
is unlikely (otherwise, one has more verification overhead).
It could be used to only get public verifiability as well (as
in [11]).

TABLE V
COMPARISON OF BGV PARAMETERS AGAINST [15] WITH
ELLIPTIC CURVE (EC) AND QUADRATIC RESIDUE (QR)

PEDERSEN COMMITMENTS

oursa oursb oursc [15] EC [15] QR

η′ log q log q log q log p log q log p log q

60 353 417 410 120 537 700 1705
70 352 418 428 140 577 1000 2314
100 354 417 490 200 697 1900 4121
128 353 417 553 256 809 3200 –
192 353 417 681 384 1073 7900 –
a log p = 32, b log p = 64, c log p = η′

D. Adaptions for E-Voting

The protocols as presented above are able to handle e-voting
by interpreting each voter as an input party. This comes with
a high number of decryptions to bring the encrypted votes
into the online phase. This seems unnecessary if the votes are
summed up anyways. In these cases, one could slightly modify
the protocol to reduce the number of decryptions needed for
the inputs.

For simplicity, we assume each voter encrypts the vote for
each candidate (e.g., a one if a candidate is voted for or a zero
otherwise) in the slots of the ciphertext-vote. This means there
will be one ciphertext for each voter. The first step of voting
is to add up the votes for each candidate. This can now be
done by simply adding up all (valid) encrypted votes. Now,
only one ciphertext has to be decrypted.

To bring this in a form that is comparable to the presented
protocol, we introduce a dummy input party. This party does
not give a valid input (i.e., it does not have to exist) and the
default ciphertext that is picked if this party does not give a
valid input is set to the sum of all (valid) voters’ ciphertexts
(instead of taking a encryption of zero as in the above protocol
description). This can be computed by all parties as the
ciphertexts are published on the bulletin board. For the MPC
protocol, the voters are not considered further as actual input
parties. The function that the MPC protocol computes has to
be stripped of the vote aggregation that already happened.
The functionality needs only a minor adjustment: While, the
voters would directly give their votes to the functionality and
the function that the functionality computes still includes the
aggregation of votes, it also has to check the inputs for validity.
This validity check is added to the NIZKPs the voters have to
publish (in the protocol).

Finally, one has to recheck (and potentially adjust) the
parameter analysis for the encryption scheme. With a similar
approach, other linear function-preprocessing can be done.
This is especially useful if the number of inputs to the MPC
protocol is reduced in this way (as in the example of e-voting).
If the encryption scheme supports (a limited number of) non-
linear operations, these could be performed as well.

APPENDIX H
PROBLEMS WITH PEDERSEN COMMITMENTS

The protocol by Cunningham et al. [15] (and Baum
et al. [11]) use Pedersen commitments to detect cheating in



the online phase. From an efficiency point-of-view, this seems
to be suboptimal as the plaintext space (or p) has to be large
enough to make the commitments secure. Small values of p
already lead to an insecure protocol if a SPDZ-MACs is used
for verification but solutions to make small fields still secure
were developed [19], [98]. Building Pedersen commitments
from quadratic residues as suggested by Cunningham et al. is
highly impractical because of the required size of p needed to
make the scheme secure. Basing the commitments on elliptic
curves will drastically reduce the required size of p but it still
depends on the computational security parameter (log p ≈ 2·η′
will be required [99]).

One could argue that the security of the commitment scheme
is only important in the online phase and by extension only for
a short time. This is because once the protocol is finished, only
the hiding property of the commitment scheme is important
and Pedersen commitments are perfectly hiding. We argue
that having lower security of commitments for this reason is
not always acceptable. Firstly, in a high-stakes computation
(national elections or certain auctions), a malicious actor might
have the incentive to invest in the computational power to
influence the result of the computation. If the malicious actor
manages to forge decommitments, their outcome would be
backed by a publicly verifiable computation and nobody could
extract evidence from the computation that they cheated.

Another argument can be made if the time between the
offline and online phase is not short. In this case, a malicious
actor knows a random share [r]i that will be adjusted to fit
another party’s input. They also know a commitment for this
share. If they now manage to produce a decommitment for the
same commitment but with the decommitment [r′]i := [r]i−c,
they could use this (undetectedly) in the protocol and influence
another party’s input, as the value used in the protocol would
be reduced by the same offset c (as full-threshold secret-
sharing is used by Cunningham et al.; Shamir secret-sharing
could be attacked similarly). In an auction, this could be
used to reduce other parties’ bids and increase the chances
of winning.

The last two arguments made clear, why (at least in certain
situations), weakly binding commitments are not acceptable.
To achieve high security with Pedersen commitments, the
plaintext space has to increase with the security level which
leads to inefficiencies in other parts of the protocol. Table V
shows our computations for the required BGV parameters
for the offline phase of Cunningham et al.’s protocol if one
would use Pedersen commitments based on elliptic curves or
quadratic residues. We also included numbers for our protocol
for two fixed sizes of p (as our protocol security does not
depend on the size of p) and also the case where the size of p
equals the security parameter η′. Our scheme can always use
a smaller ciphertext modulus and this will make the offline
phase more efficient. Additionally, the table shows that even
for low security levels (e.g., 60 bit), using quadratic residues
for Pedersen commitments requires parameters that are beyond
practical limits (and even higher than ours for the highest
security levels considered).

TABLE VI
COMPARISON OF BGV PARAMETERS (log q) AGAINST TOPGEAR

[17], LOWGEAR [16], AND SPDZ [8], [9]

ours ours ours
η log p (SHE) (LHE) (SHE)a [17] [16] [8], [9]

40 64 416 473 349 301 199 330
64 64 480 544 398 – 224 378
80 64 530 584 432 381 – –

128 64 652 707 535 471 – –
40 128 554 672 478 491 327 526
64 128 617 735 532 – 352 572
80 128 658 776 566 571 – –

128 128 782 898 664 671 418 700
a aggregation [60] and rejection sampling [61] with SHE and no zero-

knowledge proof of correct decryption

TABLE VII
COMMITMENT PARAMETERS par FOR Rp

log p η N log h d2 d1 log p′ Br

32 40 16384 59 1 1 120 1
32 64 16384 59 1 1 134 1
32 80 16384 59 1 1 142 1
32 128 32768 60 1 1 170 1
64 40 16384 91 1 1 152 1
64 64 16384 91 1 1 166 1
64 80 32768 92 1 1 176 1
64 128 32768 92 1 1 202 1
128 40 32768 156 1 1 218 1
128 64 32768 156 1 1 232 1
128 80 32768 156 1 1 240 1
128 128 32768 156 1 1 266 1

APPENDIX I
PARAMETERS (CONTINUED)

We use a statistical security of 40 bit and a computational
security level of 128 bit in our parameter search in Section VII,
unless stated otherwise. Also, if we do not give results for
both, we consider the variant of our protocol with somewhat
homomorphic encryption (and not with linear homomorphic
encryption).

For getting the BGV parameters, we use a technique to
assess the security level of various parameter sizes that is
similar to [9], [84] but we consider the worst-case bounds
for elements that are distributed w.r.t. Gaussian distributions

TABLE VIII
EQUIVOCAL COMMITMENT PARAMETERS par FOR Rp

log p η N log h d2 d1 log p′ log σr

32 40 16384 59 4 1 236 119
32 64 16384 59 4 1 258 128
32 80 16384 59 4 1 272 134
32 128 32768 60 4 1 320 155
64 40 16384 91 4 1 290 141
64 64 16384 91 4 1 311 149
64 80 32768 92 4 1 331 159
64 128 32768 92 4 1 373 176

128 40 32768 156 4 1 403 188
128 64 32768 156 4 1 424 196
128 80 32768 156 4 1 438 202
128 128 32768 156 4 1 480 219



TABLE IX
COMMITMENT PARAMETERS par′ FOR Rq

log p η N d2 d1 log q σr

32 40 16384 2 1 352 291

32 64 16384 2 2 416 278

32 80 16384 2 2 458 288

32 128 32768 1 1 589 1
64 40 16384 2 2 418 278

64 64 16384 2 2 480 293

64 80 32768 1 1 530 1
64 128 32768 1 1 653 1
128 40 32768 1 1 553 1
128 64 32768 1 1 616 1
128 80 32768 2 2 658 2136

128 128 32768 2 2 780 2167
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Fig. 21. Amortized total size of commitments for Rp. Dashed lines consider
that one can avoid sending/storing all bits of randomness with a bounded
norm.

TABLE X
PARAMETERS AND AMORTIZED TOTAL SIZE OF COMMITMENTS

FOR Rp

log p N log h d2 d1 log p′ sizea sizea,b

32 1024 55 6 5 117 2053 1381
32 2048 56 3 3 112 1184 834
32 4096 57 2 1 159 859 479
32 8192 58 1 1 117 532 376
32 16384 59 1 1 119 540 384
32 32768 60 1 1 122 552 390
32 65536 61 1 1 124 560 398
64 1024 87 8 6 163 3551 2501
64 2048 88 4 4 152 2104 1582
64 4096 89 2 2 153 1199 914
64 8192 90 1 1 149 724 568
64 16384 91 1 1 151 732 576
64 32768 92 1 1 154 744 582
64 65536 93 1 1 156 752 590

128 2048 152 7 4 280 4736 3272
128 4096 153 4 2 281 2785 1938
128 8192 154 2 1 276 1636 1176
128 16384 155 1 1 215 1116 960
128 32768 156 1 1 218 1128 966
128 65536 157 1 1 221 1140 975

a the amortized total size, i.e., the size of a (x,RC(x),Com(x))-
tuple divided by N in bit

b considering that one can avoid sending/storing all bits of ran-
domness with a bounded norm
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Fig. 22. Comparison of BGV parameters against TopGear [17].

TABLE XI
COMPARISON OF BGV PARAMETERS (log q)

AGAINST TOPGEAR [17]

ours ours oursa TopGear
log p (SHE) (LHE) (SHE) [17]

32 354 375 284 –
64 418 472 349 301
96 482 577 414 –
128 552 673 477 491
160 616 767 546 –
192 680 863 610 –
224 745 961 675 –
256 810 1064 739 –
288 872 1160 803 –
320 936 1255 866 –

a aggregation [60] and rejection sampling [61]
with SHE and no zero-knowledge proof of
correct decryption

(instead of average-case bounds).
We chose the parameters for BDLOP scheme by searching

for the combination that achieves a required security level (we
fixed the computational security, while varying the statistical
security parameter η, e.g., used for zero-knowledge proofs)
while minimizing the total size of a plaintext-randomness-
commitment tuple. By optimizing for the size of this combined
tuple, we avoid favoring one aspect over others. To obtain
our results for commitment parameters, which are given in
Table II, we used the LWE Estimator [100], [101]24 with
cost models from [102], [103] to estimate the hardness of M-
LWE. Additionally, we used results from the literature [100],
[104], [105] to estimate the hardness of M-SIS. We also
made sure that the constraints for the trapdoors are met (see
Appendix E).

As mentioned, we use ResNet [79], [106] as an example
application to estimate how many homomorphic operations
on commitments are needed; more specifically ResNet152
V2 [79], [107], a non-trivial arithmetic circuit for the real-
world application of machine learning for image classification.

For rejection sampling, we used the parameter ρ = 100/99,
i.e., there is a 1 % chance of an abort in the rejection sampling
theorem (the protocol does not abort then, the proof is simply
repeated). The values for Fig. 8 can be found in Table VI –
the ones for Fig. 9 in Table V. Tables VII and IX are extended

24We also used [101] to double-check the security of the BGV parameters
(to verify that we achieve the 128 bit security we aimed for).
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Fig. 23. Architecture of “network A” [2], [80]. The shape of the input and
(intermediate) feature tensors is given above each tensor. b represents the batch
size. Dashed boxes represent the network layers (dense layers, nonlinearities).

versions of Table II. To compute the values, a computational
security level of 128 bit was used for BGV. All BGV-related
standard deviations were set to a value of 3.2. The values
in Table V for Cunningham et al. [15] were produced with
our techniques as they did not specify details on the zero-
knowledge proofs or distributed decryption. Security levels for
elliptic curves and quadratic residues were taken from [99,
Table 3.2].

Figure 21 (with values in Table X) highlights another
reasoning why we want to use larger values of N for the
commitment scheme (except for a synergy with BGV). As can
be seen, the amortized size (that we optimize the parameters
for) is much larger for low values of N . When picking N as
for BGV, the size is also (nearly) minimized.

Table VIII show the commitment parameters for our proto-
col when we utilize statistically hiding commitments with a
trapdoor for equivocation. As already mentioned in Section IX,
these are much larger than the ones in the computationally
secure variant (seen in Table VII) that we use in our protocol.

Figure 22 and Table XI make us believe that our way of
combining classical aggregation [60] and rejection sampling
[61] or zero-knowledge proofs might lead to smaller BGV
parameters than TopGear [17] for larger plaintext sizes. The
relation of log p and log q seems linear for all protocols. For
TopGear, the incline seems to be more steep, leading us to
suspect benefits for our approach with even larger sizes of p.
The results of our computations for η = 40 are shown here.
For η = 80 and η = 128, this behavior is the same (for the
values of log p that we have data from [17]).

APPENDIX J
BENCHMARKS

To compare the runtime of our protocol to SPDZ and
BoBW[15], we implemented a benchmark that emulates the
online and offline phase. For the offline phase, we run all parts
of the triple generation (except sacrificing for SPDZ, i.e., we
assume that sacrificing is free; additionally, preparation for
inputs is not considered here) and the core operations in the
online phase (we leave out the input phase for all protocols
but the output phase is implemented for our protocol’s online
phase, where this entails NIZKPs unlike in the other protocols;
MAC checks for the other protocols are considered to be free,
i.e., not implemented). The runtime of the benchmarks for the
offline phase are then extrapolated to get as many triples as

multiplications needed for the circuit we consider in the online
phase. The results of this are shown in Fig. 10(b). Further parts
where our benchmark differs from a full implementation is
that we use broadcast channels instead of a bulletin board and
sampling of randomness was changed to uniformly random
sampling to simplify the implementation. The latter does
not effect the runtime behavior of the protocols we want to
compare. For the online phase, we evaluate the arithmetic core
of “network A” (see Fig. 23; we use b = N as batch size to
fully utilize the slots of the BDLOP commitments; packing
methods and individual slot manipulation, used for (fully)
homomorphic encryption schemes, with the BDLOP scheme
can be investigated in future work). The final argmax layer is
left out as the operations there are not purely arithmetic. Also,
we compute the circuit over integers (modulo p) instead of
floating-point or fixed-point numbers.25 Operations in argmax
layers and for fixed-point numbers require similar types of
preprocessed data (e.g., (authenticated) shares of bits; besides
Beaver triples) and are out of scope for our evaluation.

The runtime for SPDZ and [15] without verification in the
online phase is for evaluating the whole arithmetic circuit of
“network A”, while the other results for the online phase were
extrapolated from a smaller circuit (i.e., by computing 4 dot
products instead of 128 dot products for the first two dense
layers and multiplying the runtime for these layers by 32;
note that the size of vectors considered for the dot products is
not scaled down). For [15] with verification of commitments,
we only ran the protocol once (as seen in Fig. 10(a)) as the
benchmarks (even with a smaller circuit and only a single dot
product for the first two dense layers) took too long to try it
with all delays. Therefore, Fig. 10(c) uses these results for all
delays for BoBW[15] with restarts. Other experiments were run
twice and runtime shown here is the average over the runs of
all parties. Also, the results shown in Fig. 10(c) for BoBW[15]
with restarts consist of runtime results of an online run with
verified commitments (as discussed above) plus the runtime
of an online and offline phase with two parties.

Our implementation is based on MP-SPDZ [80], [81] and
uses mostly existing building blocks (for arithmetic and com-
munication), i.e., one can expect the results of our micro
benchmark to translate to a full implementation of our protocol
in MP-SPDZ. Indeed, comparing, for example, the results
from Fig. 10(b) to test runs with MP-SPDZ show that the
runtime is comparable (our implementation for SPDZ is at
most 46 % slower in the offline phase which we attribute to
the optimization effort put into MP-SPDZ’s implementation).
The online runtime of our implementation for SPDZ is even
closer to the one of MP-SPDZ; our amortized runtime is even
around 16 % less than the runtime obtained by running SPDZ
in MP-SPDZ (when evaluating “network A” once, i.e., without
batching).

We ran our benchmark on a single server (AMD EPYC

25Computing the circuit with fixed-point numbers (which is more common
than floating-point computation in MPC; e.g., as in [6]) amounts to computing
the circuit with integers and normalizing intermediate results. The latter can
be done by combining multiplications and fixed-point truncation to a single
operation—in the same number of rounds as computations as over integers
with only slightly more (local) operations per multiplication.
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Fig. 24. Amortized offline runtime without restarts in the same settings as in
Fig. 10 with 0 ms delay and varying number of parties. t = bn/2c+ 1.

7443 CPU, 24 cores, 2.85 GHz, 512 GB RAM) to get the
presented results. All experiments were done on a single
machine running the code for all parties, utilizing a single
thread per party for the computations and additional threads
for communication. We emulate the network behavior with the
netem functionality. The network delay was varied between
0 ms and 100 ms in steps of 20 ms. Additionally, the band-
width was limited such that each party can send data with at
most 1 Gbit (on average). We varied the network delay (i.e.,
the latency) to simulate different settings where our protocol
might be deployed. Low latency with only a few milliseconds
delay corresponds to a LAN setting where parties are located
closely together, while a delay of 50 ms corresponds to the
WAN setting evaluated, for example, in other works [13], [16].
A higher latency of around 100 ms can be observed when
communication happens at a global scale.

Discussion: As can be seen in Figs. 10(a) and 10(b),
our protocol is significantly faster than [15] when verifying
commitments in the online phase and in the offline phase.
This can be attributed (for the most part) to the efficiency of
the BDLOP commitment scheme compared to (elliptic curve)
Pedersen commitments.26

For the online phase, one can see that the overhead of
Cunningham et al. to SPDZ in communication corresponds
almost exactly to the runtime overhead. When one has to
consider additional verification (either for our protocol or
for Cunningham et al. when there is an abort), the cost
of verifying commitments can be clearly seen to affect the
runtime. Therefore, communication volume cannot be used as
the sole indicator for (online) performance. For the offline
phase, our communication cost (per party) increases linearly
with the number of parties as discussed in Section VIII where
we analyze the asymptotic performance of our protocol. In
concrete settings however, the offline communication cost of
our protocol can be even lower than the one for Cunningham
et al., as can be seen in Fig. 11, as we do not have to compute
SPDZ-like MACs and benefit from smaller BGV parameters
(as discussed in Section VII). Figure 24 shows the offline
runtime with varying number of parties. Due to the lower
overhead of BDLOP commitments, our protocol seems to

26As shown in Section VII, using Pedersen commitments based on quadratic
residues would increase the BGV parameters for the offline phase significantly
and probably only slow [15] down even more.
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Fig. 25. Runtime for evaluating “network A” in the same setting as in Fig. 10.
Crosses indicate the runtime in a setting without network restrictions (i.e., no
delay and no bandwidth limitation to 1 Gbit s−1).
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Fig. 26. Relative runtime for evaluating “network A” in the same setting as
in Fig. 10. Time is given as a factor relative to SPDZ. Crosses indicate the
relative runtime in a setting without network restrictions (i.e., no delay and
no bandwidth limitation to 1 Gbit s−1).



TABLE XII
AMORTIZED ONLINE RUNTIME (IN SECONDS)

bandwidth delay ours SPDZ [15] [15] w. verif.

unlimited 0 ms 1.62259 0.04717 0.16373 –
1 Gbit s−1 0 ms 2.04747 0.10459 0.39622 86.07595
1 Gbit s−1 20 ms 2.19651 0.12601 0.48117 –
1 Gbit s−1 40 ms 2.33357 0.14945 0.56918 –
1 Gbit s−1 60 ms 2.66247 0.19699 0.75792 –
1 Gbit s−1 80 ms 3.00954 0.24645 0.95213 –
1 Gbit s−1 100 ms 3.35027 0.29578 1.14991 –

TABLE XIII
AMORTIZED OFFLINE RUNTIME (IN SECONDS)

bandwidth delay ours SPDZ [15]

unlimited 0 ms 229.77221 86.11039 1214.40580
1 Gbit s−1 0 ms 305.12318 102.72793 1300.30141
1 Gbit s−1 20 ms 336.59046 108.25358 1341.79869
1 Gbit s−1 40 ms 358.84045 115.92891 1373.21379
1 Gbit s−1 60 ms 423.00867 129.77403 1445.12607
1 Gbit s−1 80 ms 484.82885 144.34507 1521.79973
1 Gbit s−1 100 ms 549.74075 159.50490 1599.97578

scale better than [15] and we expect that we outperform [15]
even beyond the point where Fig. 11 indicates that we have
to communicate more than [15] (obviously, not for arbitrary
values of n as our asymptotic offline performance is worse
than for [15]). We did not simulate the protocols for more
than 4 parties as this would exceed the resources available to
us (on the machine that the benchmarks were performed on;
when running all parties on the same machine).

Figures 25 and 26 give additional context for the results
presented in Fig. 10. Both contain results for unconstrained
network settings to judge the purely computational overhead
of our protocol. Figure 26 shows runtime relative to SPDZ
to make the overhead of our protocol and [15] more visible.
Note that in a multi-threaded real-world application one would
compute and verify commitments of all other parties in parallel
and the purely computational overhead should stay closer to
the overhead with only a single other party (i.e., n = 2).
Finally, Tables XII to XV contain the data used to generate
Figs. 10, 24 and 25.

APPENDIX K
AMORTIZING COMMITMENT COSTS

As done in our benchmarks (cf. Section IX and Appendix J),
one can easily amortize the overhead of BDLOP commitment
(i.e., computational cost and communication cost) by batch
processing multiple instances of the same circuit (on different

TABLE XIV
AMORTIZED OFFLINE RUNTIME (IN SECONDS) WITH VARYING NUMBER

OF PARTIES

bandwidth delay n ours SPDZ [15]

1 Gbit s−1 0 ms 2 213.15502 89.17087 904.13490
1 Gbit s−1 0 ms 3 305.12318 102.72793 1300.30141
1 Gbit s−1 0 ms 4 450.49692 117.22009 1730.67614

inputs). This is done in our evaluation and seems possible
in the client-server setting where the evaluation of the same
circuit is offered to many clients (e.g., “machine learning
as a service”). If it is unreasonable for some applications
to amortize N instances of a computation, there are several
approaches that can be taken. Note that SPDZ or protocols
using, for example, Pedersen commitments do not have to
consider the problems discussed here as they use MACs
and/or commitments for individual values (not as with BDLOP
where there is one commitment for multiple values, one
in each “slot”). In the unlikely case of not being able to
perform any amortization of the commitment cost, naively
using our approach would lead to an additional overhead of
factor N , as most of the slots are then unused but have to
be computed/verified to get the security guarantees that are
backed by BDLOP commitments. Instead, we advise to use
one or both of the following two optimization.

A simple first improvement is to reduce N for BDLOP
while keeping it untouched for BGV. The influence of chang-
ing N for BDLOP, while keeping the target (computational
and statistical) security level constant, can be seen in Fig. 21.
Lower values of N usually imply larger parameters for BD-
LOP and thus the computational cost and communication cost
per slot (of the commitment scheme) increases. However, the
overhead of unused slots is generally greater than the increased
cost from lower values of N (for the values of N that we
examined).

Another optimization is to combine multiple operations
by packing techniques—widely used for FHE schemes (e.g.,
[7], [84], [108]). Consider the following example based on
“network A” as arithmetic circuit. The second dense layer of
the network has 128 inputs and 128 outputs. The computation
in this layer can be performed as 128 dot products of vectors
with 128 elements each. The inputs can be packed in a single
commitment with at least 128 · 128 slots; the same can be
done for the weights that the inputs should be multiplied with.
These two commitments can then be multiplied (with Beaver
multiplication in the online phase) to get all pair-wise products
needed for the dot products. Now, one can use masking
and rotating of slots (local operations on commitments that
do not need interaction) to add up the right slots for the
final computation of the dot product. Like this, one can
combine many independent operations in as few commitments
as possible—with only added local communication overhead
and without increasing the number of communication rounds.
The concrete overhead depends on the arithmetic circuit and
the choice of N . Also one has to examine which types of
operations are compatible as-is with BDLOP and judge their
concrete influence on the noise (and therefore parameters),
as well as the concrete computational complexity. Combining
this technique with the previously mentioned approach, for
“network A”, we could lower N from 215 to 214 = 128·128 to
fully utilize all slots in the mentioned dense layer. In this case,
one would even reduce the cost per slot slightly (cf. Table X).



TABLE XV
AMORTIZED ONLINE RUNTIME (IN SECONDS) WITH RESTARTS

BoBW[15] without restart BoBW[15] with 1 restart

delay oursa [15] without verif.a [15] w. verif.a [15] offlineb [15] without verif.b total

0 ms 2.04747 0.39622 86.07595 904.13490 0.25188 990.46273
20 ms 2.19651 0.48117 – 963.88134 0.34963 1050.30692
40 ms 2.33357 0.56918 – 1022.92169 0.53913 1109.53677
60 ms 2.66247 0.75792 – 1094.17075 0.73880 1180.98550
80 ms 3.00954 0.95213 – 1185.46989 0.93789 1272.48373

100 ms 3.35027 1.14991 – 1272.00691 1.13415 1359.21701
a n = 3, b n = 2
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