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ABSTRACT
Some of the most efficient protocols for Multi-Party Computation

(MPC) follow a two-phase approach where correlated randomness,

in particular Beaver triples, is generated in the offline phase and

then used to speed up the online phase. Recently, more complex

correlations have been introduced to optimize certain operations

even further, such asmatrix triples formatrixmultiplications. In this

paper, our goal is to improve the efficiency of the triple generation

in general and in particular for classical field values as well as

matrix operations. To this end, we modify the Overdrive LowGear

protocol to remove the costly sacrificing step and therewith reduce

the round complexity and the bandwidth. We extend the state-of-

the-art MP-SPDZ implementation with our new protocols and show

that the new offline phase outperforms state-of-the-art protocols

for the generation of Beaver triples and matrix triples. For example,

we save 33 % in bandwidth compared to Overdrive LowGear.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols.

KEYWORDS
Multi-party computation; implementation

ACM Reference Format:
Pascal Reisert, Marc Rivinius, Toomas Krips, and Ralf Küsters. 2023. Over-

drive LowGear 2.0: Reduced-Bandwidth MPC without Sacrifice. In ACM
ASIA Conference on Computer and Communications Security (ASIA CCS
’23), July 10–14, 2023, Melbourne, VIC, Australia. ACM, New York, NY, USA,

15 pages. https://doi.org/10.1145/3579856.3582809

1 INTRODUCTION
Multi-Party Computation (MPC) allows several parties to compute

an arithmetic circuit on private inputs without revealing informa-

tion about the inputs apart from the result. Modern two-phase
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protocols, like SPDZ [19] and related protocols [18, 30, 31], consist

of an offline phase, where (structured) random data, classically in

the form of Beaver triples [3], is precomputed, and an online phase,

where the precomputed data is used to compute the desired output

from the private inputs. This general design principle allows par-

ties to speed up the online phase considerably. A reasonably less

efficient offline phase is usually considered acceptable since pre-

processing can start well before the input data becomes available.

Efficiency in these types of two-phase protocols and generally in

MPC protocols heavily depends on the number of communication

rounds needed and the bandwidth, i.e. the amount of data that has

to be sent. Local computation times are often considered less rele-

vant for real-world applications as long as hardware requirements,

e.g. memory requirements, do not get out of hand. Apart from their

effect on the overall runtime of an MPC scheme, communication

costs, memory requirements, and bandwidth also contribute to the

incurring (financial) costs when the scheme is actually deployed,

e.g. on commercial cloud infrastructure. For SPDZ-like protocols,

bandwidth currently is most expensive given the high prices for

outgoing traffic.

SPDZ and its variants are state-of-the-art actively secure pro-

tocols. As long as at least one MPC party is honest, i.e. even if an

adversary controls all but one honest party and deviates arbitrarily

from the protocol, the adversary cannot gain any information on the

honest party’s inputs. Furthermore, the honest party is guaranteed

that an output is correct—if not, the protocol aborts.
1

ML Applications. The high security guarantees as well as the

steadily improving efficiency of SPDZ-like protocols in recent years

has led to a growing interest in using MPC in industrial grade ap-

plication like privacy-preserving cloud computing and Machine

Learning (ML) [20, 36, 45, 46]. ML usually requires a large amount

of diversified data, often more than a single company can contribute.

MPC offers a solution for distrustful industry competitors to train

and evaluate an ML model without revealing private input data,

which could for example contain business secrets or costumer data

protected by law. While some applications like large ML training

algorithms are still out of reach of current MPC protocols, evaluat-

ing neural networks or secure decision trees has been performed

successfully in reasonable time [16, 27, 37, 41, 43, 44]. The large

1
Both properties, i.e. privacy and correctness, are guaranteed with overwhelming

probability in the security parameter.
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application potential of MPC inML has also led to targeted improve-

ments of the underlying MPC protocols themselves. One focus of

these optimizations are operations that often occur in ML tasks, like

matrix multiplications or tensor convolutions, and have therefore,

a large impact on the performance of an ML algorithm.

Beaver Triples and Matrix Triples. Classically in the SPDZ

framework, matrix multiplications (and similarly convolutions) are

reduced to a series of sums and multiplications in the underlying fi-

nite field𝐾 = F𝑝𝑑 , e.g. for𝑋 = (𝑥𝑖 𝑗 ) ∈ 𝐾𝑢×𝑣 and𝑌 = (𝑦 𝑗𝑘 ) ∈ 𝐾𝑣×𝑤
one gets 𝑍 = 𝑋 · 𝑌 = (𝑧𝑖𝑘 ) ∈ 𝐾𝑢×𝑤 as 𝑧𝑖𝑘 =

∑𝑣
𝑗=1 𝑥𝑖 𝑗𝑦 𝑗𝑘—a sum

over 𝑣 multiplications in 𝐾 . To perform these multiplication in a

secure way, SPDZ uses classical Beaver triples, i.e. shared random

triples (𝑎, 𝑏, 𝑐) with 𝑎𝑏 = 𝑐 , which are used to mask the inputs

𝑥𝑖 𝑗 , 𝑦 𝑗𝑘 and compute a secure field multiplication. For a product of

a𝑢×𝑣 and a 𝑣 ×𝑤 matrix, this leads to𝑢𝑣𝑤 Beaver triples and there-

with to much more (shared) masks than inputs. An easy solution

to this overproduction of correlated random data was presented by

[37] for a semi-honest MPC protocol. Namely, the parties directly

construct a shared random matrix triple (𝐴, 𝐵,𝐶) with 𝐶 = 𝐴𝐵 as

a matrix product in the offline phase and use this matrix triple to

mask 𝑋,𝑌 and compute 𝑍 = 𝑋𝑌 . This approach then only needs

an equivalent of 𝑢𝑣 + 𝑣𝑤 + 𝑢𝑤 field elements in the online phase.

Furthermore, [37] showed that matrix triples can be produced by a

linear homomorphic encryption scheme in the offline phase. This

construction was still only passively-secure and instantiated with

the cryptosystems of Paillier [40] or Damgard-Geisler-Kroigaard

[17], rather than a lattice-based cryptosystem as in SPDZ. A transfer

to an actively secure protocol compatible with the SPDZ frame-

work is, in fact, possible—as we show as a byproduct of our work.

In particular, this seems very promising, as Overdrive LowGear

[31] – the fastest SPDZ-like protocol (for a small number of parties)

– is also based on the linear homomorphic properties of the BGV

encryption scheme [9]. Unfortunately, the resulting lattice-based ac-

tively secure version of [37] is not the most efficient way to produce

higher-structured randomness like matrix triples.

In fact, the first and currently best actively secure matrix triple

generation protocol appeared in [11] and is based on the levelled

homomorphic structure of BFV [8, 21]. The protocol reaches a very

low bandwidth per generated matrix triple and is therewith not

only significantly faster than a naive application of Overdrive with

Beaver triples, but also faster than the before mentioned lattice-

based linear homomorphic approach (along the lines of [37]). While

most of the improvements compared to Overdrive are certainly

based on the use of matrix triples instead of Beaver triples, [11]

gains an additional advantage by using suitable matrix packing

techniques and by avoiding a costly sacrificing technique inherent

in all SPDZ-like protocols since SPDZ [19] itself. To this end, the

BFV ciphertext modulus is extended significantly to support a larger

number of homomorphic multiplications. The negative effect of

this extension is compensated by removing the need for sacrificing.

Our Approach. The success of [11] leads to the question, whether

(for matrix triples or even more general) lattice-based linear homo-

morphic encryption should be abandoned and replaced by a levelled

homomorphic approach as in [11] or whether there is a better linear

homomorphic solution. In this paper we show that the latter is the

case by constructing a new linear homomorphic offline phase that,

e.g. outperforms [11] for matrix triples by approximately 39 % in

bandwidth and 62 % in runtime in the 2-party setup.

Our new offline phase is based on the following easy exchange

protocol between two parties 𝑃1 and 𝑃2, just as [31, 37]: 𝑃1 has 𝑎 and

sends Enc
pk

1

(𝑎) to 𝑃2 for Enc a suitable homomorphic (asymmetric)

encryption scheme and pk
1
the public key of 𝑃1. 𝑃2 has pk

1
, 𝑏,

computes Enc(𝑐1) = Enc
pk

1

(𝑎)𝑏 − Enc
pk

1

(𝑟 ) for some random

element 𝑟 and sends Enc(𝑐1) to 𝑃1. 𝑃1 can decrypt this to 𝑐1 = 𝑎𝑏−𝑟
since the encryption scheme is linear homomorphic.

2
As 𝑃2 knows

𝑐2 = 𝑟 , the two parties have a sharing of 𝑐 = 𝑎𝑏 = 𝑐1 + 𝑐2. This
pairwise routine can be easily extended to construct a sharing of

𝑐 = 𝑎𝑏 from shares of 𝑎 and 𝑏 in an 𝑛-party protocol, i.e. to construct

a shared structure random triple (𝑎, 𝑏, 𝑐) where each party 𝑃𝑖 holds

a share [𝑎]𝑖 , [𝑏]𝑖 , [𝑐]𝑖 of (𝑎, 𝑏, 𝑐). If 𝑎, 𝑏 are field values, we get a

classical Beaver triple. If they are matrices, one gets a matrix triple.
Now in order to reach active security (as in [31]), triple shares

are authenticated, i.e. each party 𝑃𝑖 receives additional shares [𝛼𝑎]𝑖 ,
[𝛼𝑏]𝑖 , [𝛼𝑐]𝑖 for some secret 𝛼 . It can be shown that an adversary

that deviates from the protocol will cause a protocol abort with

overwhelming probability in the security parameter as long as he

does not know 𝛼 . However, he can change the shares or corrupted

parties after the pairwise production—but before the authentication.

In this way, he can get correctly authenticated shares which no

longer add up to 𝑐 = 𝑎𝑏. In order to prevent this misbehavior, [31]

(and all SPDZ-like protocols) use a sacrificing step. This sacrificing

step results in a bandwidth overhead of 80% to 100% depending

on the actual sacrificing protocol. We avoid this sacrificing step

by intertwining the pairwise multiplication protocol and the au-

thentication. In this way, the adversary no longer has the choice to

enter different values into the authentication and the integrity of

the triple is guaranteed without further sacrificing. Together with

some further optimizations of the pairwise protocol itself we reduce

the bandwidth compared to Overdrive [31] generally by 33 %.

We also extend the general approach to evaluate bilinear opera-

tion (e.g., matrix multiplications) to allow for even more efficient

computations of special (matrix) operations. Notably, this includes

𝑚𝑚 (squaring of matrices) and𝑚𝑚T
(e.g., inner products) for ma-

trices 𝑚. The corresponding reduced online phase only needs a

structured pair instead of a triple—our bandwidth advantage in

these cases is consequentially in the online phase around 33%, a

suitably constructed offline saves around 50 % bandwidth.

Furthermore, our offline protocols reduce the number of com-

munication rounds per (batch of) triples produced from 3 down to

2. The effect of our round reduction becomes the more significant

the slower the connection becomes, e.g. given a large geographical

distance between compute parties. Please note that apart from a

correspondingly smaller runtime, the lower traffic will also result

in smaller monetary costs if the MPC protocols runs paid clouds.

We have implemented our new protocols as an extension to

the MP-SPDZ framework [29]. It therefore contains all subpro-

tocols already available in MP-SPDZ, including key generation,

offline/online protocols (unless replaced by our optimized versions),

the zero-knowledge proofs (ZKPs) from [31] and [2], MAC checks,

and so on. In particular, it is compatible with MP-SPDZ based

2
Please see Section 3 for details on the sharing scheme and the linear homomorphic

property. Appendix A repeats the BGV scheme used in SPDZ like protocols like ours.
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cloud platforms like Carbyne Stack [12]. Our implementation will

profit from future improvements of MP-SPDZ [29]. We compare

our protocols to a state-of-the-art Beaver triple based protocol [31]

(Overdrive LowGear) for generic field operations, matrix operations

and sample ML algorithms. We further run our triple production

protocol against the best known matrix triple generation protocol

[11]. Our benchmarks confirm our theoretical advantage.

Contributions.
- We present a new offline phase based on linear homomorphic

encryption that reduces the bandwidth and number of communi-

cations rounds compared to the state-of-the-art MPC protocol

for a small number of parties – Overdrive LowGear [31] – by

around 33%. We prove security of the new protocols.

- We develop new offline and online protocols for specialized oper-

ations like matrix squares and inner products. The offline band-

width advantage in the case of computations in a field compared

to [31] is then even 50%.

- We apply our results to the production of matrix triples to save

39% in bandwidth in a 2-party setup compared to the best known

matrix triple production in [11]. For specialized operations, this

advantage is between 55% and 62%.

- We modify and extend the MP-SPDZ implementation [29] with

the before mentioned protocols. We give benchmarks for generic

field and matrix operations and benchmarks for Machine Learn-

ing applications. We compare our results to state-of-the-art MPC

solutions like [31] (including improved TopGear zero-knowledge

proofs [2]) and [11]. Our evaluation results confirm the theoreti-

cal predictions, e.g. in our ML benchmarks we save 28 %-74 % in

runtime and 57 %-66 % bandwidth on average against Overdrive;

we save 62 % in runtime against [11] for matrix operations and

58 % in bandwidth for ResNet-50 in the 2-party setup.
3

2 RELATEDWORK
We place our work in a series of SPDZ-like protocols, e.g. [2, 11, 18,

19, 30, 31] (see also [38]). Therefore, we concentrate our discussion

on recent progress applicable to SPDZ-like papers, rather than

classical theoretical results like [1, 3, 4, 13, 24].

In addition to the already mentioned development of secure

matrix operations for MPC discussed in Section 1, first small opti-

mizations of the Beaver triple-based online phase in SPDZ already

appeared in [18], where square pairs are used to improve the squar-

ing of secret shared values—we extend this optimization to higher-

dimensional operations. This original idea has been picked up by

Morton Dahl who describes in [15] a variety of generalized struc-

tured randomness that can improve the online phase. In particular,

Dahl presents matrix triples and convolution triples, which have

also been discussed in [37] in the passively secure domain. Matrix

(and convolution) triples have since then seen further attention

and are by now available as part of the actively secure protocol

[11]. As mentioned before, the actively secure triple production in

[11] relies on leveled homomorphic BFV encryption scheme [8, 21]

together with classical packing methods like in [25, 28, 34]. Due to

the large impact of matrix operations on the overall performance

of ML algorithms, the secure evaluation of matrix products has

a natural application in privacy-preserving ML ([11, 37]). Recent

3
Note that for more than 2 parties, [11] provides no runtimes or implementation.

progress in the field of privacy-preserving ML with MPC include,

e.g., [16, 27, 41, 43–46].

Finally, note that with a pseudo-random generator, as, e.g., in [6],

structured randomness can be produced with only a small amount

of initial communication. Special solutions exist on a theoretical

level for other structured random data like matrix triples [7], too.

3 PRELIMINARIES
In this work, we will generally work over a commutative ring 𝑅

and 𝑅-modules𝑀 . All rings are assumed to be unitary.

Since we focus on MPC in the dishonest majority setting, we use

a classical additive secret-sharing, denoted by [·] on 𝑅-modules. A

secret𝑚 in an𝑅-module𝑀 is then shared among𝑛 parties 𝑃1, . . . , 𝑃𝑛
such that𝑚 =

∑𝑛
𝑖=1 [𝑚]𝑖 where [𝑚]𝑖 is the share of party 𝑃𝑖 . All

shares are needed to reconstruct a secret and 𝑛 − 1 or less shares
do not reveal any information. This secret sharing scheme is 𝑅-

linear, i.e., we can set [𝑚 +𝑚′]𝑖 B [𝑚]𝑖 + [𝑚′]𝑖 , [𝑟𝑚]𝑖 B 𝑟 · [𝑚]𝑖 ,
[𝑚 +𝑐]𝑖 B [𝑚]𝑖 +𝛿𝑖1 ·𝑐 for shared values𝑚,𝑚′ ∈ 𝑀 and a publicly

known constants 𝑟 ∈ 𝑅, 𝑐 ∈ 𝑀 , where 𝛿𝑖 𝑗 is the Kronecker delta. To

open (or reconstruct) a secret-shared value, parties simply broadcast

their shares and compute the sum of all shares.

In SPDZ and related protocols, shares are additionally authenti-

cated to verify the outputs of the protocol using a MAC key [18, 19].

The MAC key 𝛼 ∈ 𝑅 is shared in the preprocessing phase. El-

ements 𝑚 of an 𝑅-module 𝑀 (e.g. like protocol inputs or struc-

tured randomness) are authenticated in the offline phase by adding

a sharing of 𝛼𝑚. We use ⟦𝑚⟧ = ( [𝑚], [𝛼𝑚]) to denote the au-

thenticated shares of𝑚 and ⟦𝒎⟧ = (⟦𝑚1⟧, . . . , ⟦𝑚𝑘⟧) for a tuple
𝒎 = (𝑚1, . . . ,𝑚𝑘 ). Linear operations on authenticated shares are

a trivial extension of linear operations on shares with except for

⟦𝑚 + 𝑐⟧𝑖 B ( [𝑚 + 𝑐]𝑖 , [𝛼𝑚]𝑖 + 𝑐 · [𝛼]𝑖 ). In slight abuse of nota-

tion we write [𝑚]𝑖 ∈ 𝑀 if each share [𝑚]𝑖 is an element of𝑀 and

analogously for authenticated shares.

A MAC check enables parties to verify the integrity of previously

opened shares (cf. [18, 19] or Protocol 7). The soundness of the MAC

check is proportional to 1/|𝑅 |, e.g. 2/|F𝑝𝑑 | in [19], can be aggregated
over many opened values, and does not reveal the MAC key [18].

We chose 𝑅 such that 1/|𝑅 | is negligible in the security parameter.

When we analyze the theoretical performance of our protocols,

bandwidth is measured in the number of ring elements sent. Analo-

gously, the size of the structured randomness needed in the online

phase, i.e. the tuple/triple size, is the number of ring elements

contained in the triple/tuple which have to be provided by the of-

fline phase. The round complexity of a protocol is the number of

communication rounds. One communication round consists of all

information that can be sent in parallel. In particular, if in a proto-

col party 𝑃1 has to wait for a message from 𝑃2 before 𝑃1 can send

her message, the protocol has round complexity 2. We note that

the opening phase in actively secure SPDZ-like protocols comes

with an additional invocation of a MAC check, which can be amor-

tized for all openings in the online phase and does therefore not

significantly influence the round complexity.

Finally, we use the UC model [10] to prove our schemes secure

against malicious, static adversaries, except for proofs of knowledge

where we allow rewinding to extract inputs from the adversary to

avoid sending additional ciphertexts. The same limited UC model

is also used in SPDZ-like protocols like Overdrive [31].
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4 THE ONLINE PHASE
In this section, we first describe the general construction used

to evaluate bilinear authenticated operations in the online phase.

The most prominent example of these operations is classical (au-

thenticated) multiplication in a finite field. However, the general

construction also works for matrix products and tensor convolu-

tions (cf. [11, 37]). We therefore present the online multiplication

protocol in a universal form for modules over commutative rings—

however, we mostly use the protocol for vector spaces over finite

fields. Furthermore, we discuss special cases of this construction

that occur if certain constraints are satisfied.

Abstract Form of Bilinear Evaluation. Let 𝑅 be a commutative

ring and 𝑀,𝑀′, 𝑀′′ 𝑅-modules together with a bilinear map · :
𝑀 × 𝑀′ → 𝑀′′, (𝑚,𝑚′) ↦→ 𝑚 ·𝑚′ C 𝑚𝑚′.4 In the online phase

each party 𝑃𝑖 gets shares ⟦𝑚⟧𝑖 , ⟦𝑚′⟧𝑖 of 𝑚,𝑚′ and the parties

want to compute ⟦𝑚𝑚′⟧ together. To this end, one extends the

previously known classical constructions from Beaver [3] used in

[19] and more recent results from [5] or [11] on bilinear triples.
5

In these protocols it is common that the parties 𝑃1, . . . , 𝑃𝑛 have

access to structured random data provided by the offline phase in

the form of a shared tuple. The tuple usually contains shared input

masks ⟦𝑎⟧ and ⟦𝑎′⟧ for uniformly random 𝑎 ∈ 𝑀 , 𝑎′ ∈ 𝑀′. The
parties then locally compute ⟦𝑚 − 𝑎⟧𝑖 and ⟦𝑚′ − 𝑎′⟧𝑖 and publish

their share. After this initial round of communication, each party

can locally add up the shares to get𝑚 − 𝑎 ∈ 𝑀 and𝑚′ − 𝑎′ ∈ 𝑀′.
As long as the masks 𝑎, 𝑎′ are not known to any party, the inputs

𝑚,𝑚′ are hidden information theoretically.

The random triple contains a further shared entry ⟦𝑎𝑎′⟧ which
depends on the masks 𝑎 and 𝑎′. Overall we have the shared triple

(⟦𝑎⟧, ⟦𝑎′⟧, ⟦𝑎𝑎′⟧) ∈ 𝑀×𝑀′×𝑀′′ which can be used by the parties
to compute a share of𝑚𝑚′ as follows:

⟦𝑚𝑚′⟧𝑖 = (𝑚 − 𝑎)⟦𝑚′⟧𝑖 + ⟦𝑎⟧𝑖 (𝑚′ − 𝑎′) + ⟦𝑎𝑎′⟧𝑖 (1)

The correctness of this construction follows from the definition.

Note in particular, that in the second componentwe use𝑅-bilinearity

to get

∑𝑛
𝑖=1 (𝑚 − 𝑎) [𝛼𝑚′]𝑖 = (𝑚 − 𝑎) · (𝛼𝑚′) = 𝛼 ((𝑚 − 𝑎)𝑚′).

Remark 1. While this construction works in general for applica-
tions in maliciously secure MPC, the orbits of the 𝑅-actions should not
become too small. E.g. for 𝑀 = 𝑀′ = 𝑀′′, and the trivial 𝑅-actions,
i.e., 𝑟 ·𝑚 =𝑚, we get independence of the MAC key and hence trivially
not malicious security.

Remark 2. Note that by local operations, the parties can locally
create any linear term in𝑀 and𝑀′. Thus, any quadratic term in the
inputs𝑚,𝑚′ can be created with a shared triple (⟦𝑎⟧, ⟦𝑎′⟧, ⟦𝑎𝑎′⟧)
in one round of communication.

Special Tuples. In some applications, the different spaces𝑀 and

𝑀′ obey certain constraints. One exceptionally useful case is when

𝑀 and𝑀′ admit an 𝑅-linear map 𝜙 : 𝑀 → 𝑀′. Then we only need

the structured pair (⟦𝑎⟧, ⟦𝑎𝜙 (𝑎)⟧) ∈ 𝑀 ×𝑀′′ to compute𝑚𝜙 (𝑚)
for any𝑚 ∈ 𝑀—we call this kind of structured randomness special

tuples/pairs. The corresponding protocol reduces to

⟦𝑚𝜙 (𝑚)⟧𝑖 = (𝑚 − 𝑎)𝜙 (⟦𝑚⟧𝑖 ) + ⟦𝑎⟧𝑖𝜙 (𝑚 − 𝑎)+⟦𝑎𝜙 (𝑎)⟧𝑖 . (2)

4 · refers here to an arbitrary bilinear map and not a specific product in a field.

5
[5] interprets (finitely-generated) abelian groups as Z-modules.

where 𝜙 (⟦𝑚⟧𝑖 ) B (𝜙 ( [𝑚]𝑖 ), 𝜙 ( [𝛼𝑚]𝑖 )).

Example 1. The most simple example is that of squares in a field
F𝑝𝑑 introduced in [18]. In this case, choose 𝑅 = F𝑝𝑑 = 𝑀 = 𝑀′ = 𝑀′′,
where 𝑅 acts by field multiplication. Choosing𝜙 = id𝑅 , (2) can be used
to compute the square of a shared value. In the field case, 𝜙 = id𝑅 is up
to some scalar multiplication the only possible homomorphism of the
underlying additive groups. While 𝜙 = 𝑧 · id𝑅, 𝑧 ∈ Z can theoretically
be used to compute ⟦𝑧𝑚2⟧, it is much more practical to compute ⟦𝑚2⟧
and multiply the constant 𝑧 locally.

The previous example trivially extends to 𝑅-matrices in 𝑀 =

𝑅𝑢×𝑣, 𝑀′ = 𝑅𝑣×𝑤 , 𝑀′′ = 𝑅𝑢×𝑣 for some dimensions 𝑢, 𝑣,𝑤 ∈ N≥1
with the natural 𝑅-scalar multiplication in the matrix rings. For 𝜙 =

id𝑅 (and hence 𝑢 = 𝑣 = 𝑤 ), we get matrix squares. However, in this

higher dimensional case there are more possible choices for 𝜙 , i.e.

𝜙 ∈ Hom𝑅 (𝑅𝑢×𝑣, 𝑅𝑣×𝑤) ≃ 𝑅𝑢𝑣
2𝑤

(as 𝑅-modules). When we recall

that by local computations we can also construct any linear term in

the matrix entries locally, we see that a pair (𝑎, 𝑎𝜙 (𝑎)) ∈ 𝑀 ×𝑀′′ is
in fact enough to compute any quadratic term in the matrix entries.

One particularly nice application exists for𝑤 = 𝑢 and𝜙 (𝑚) =𝑚T

for𝑚 ∈ 𝑀 = 𝑅𝑢×𝑣 . In this case, (2) computes𝑚𝑚T
, i.e. the standard

(non-degenerated) bilinear form ⟨𝑚𝑖 ,𝑚 𝑗 ⟩ B 𝑚𝑖𝑚
T
𝑗
evaluated on the

rows𝑚1, . . . ,𝑚𝑢 of𝑀 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑢. Even more, for any sym-

metric matrix𝐻 ∈ 𝑅𝑣×𝑣 and𝜙 (𝑚) = 𝐻𝑚T
we get the corresponding

non-degenerated symmetric bilinear form ⟨𝑚𝑖 ,𝑚 𝑗 ⟩𝐻 =𝑚𝑖𝐻𝑚
T
𝑗
. In

the case of 𝑢 = 1, we only need a tuple of size 𝑣 + 1 to compute an

inner product. Over R one gets scalar products and𝑚𝑚T
or𝑚T𝑚,

respectively, is called Gram matrix. In particular, this special pairs

can be used to compute scalar products and norms on fixed-point

representations of real-valued data. The analogous construction

works for scalar products and norms over C.

Remark 3. We concentrate in this paper on matrix squares and
inner products, since the resulting special tuples for matrices are par-
ticularly interesting and have to our knowledge not been introduced.
Since constraints must preserve 𝑅-linearity to apply (2) in an MPC pro-
tocol, other special setups can usually be reduced to tuples (𝑎, 𝜙 (𝑎)).

Now that we have seen how to evaluate bilinear maps with

bilinear triple (⟦𝑎⟧, ⟦𝑎′⟧, ⟦𝑎𝑎′⟧) and special products of the form

𝑚𝜙 (𝑚) with special pairs (⟦𝑎⟧, ⟦𝑎𝜙 (𝑎)⟧) in the online phase, we

have to explain how this structured randomness can be produced

efficiently in the offline phase next.

5 THE OFFLINE PHASE
In this section we explain how to construct the randomness con-

sumed in the online phase of Section 4 in an actively secure offline

phase for generic bilinear triples and special tuples. In particular,

this section provides an offline phase to generate classical Beaver

triples and squares, matrix triples and special matrix pairs, but also

other forms of correlated randomness, like e.g. triples for tensor con-

volutions. For matrix triples we introduce additional optimizations

in Section 6.

We base our triple construction on the linear homomorphic prop-

erties of the BGV encryption scheme, like in [31]. Consequentially,

our starting point is the LowGear protocol [31] which is still con-

sidered the state-of-the art SPDZ-like protocol for a low number
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Πreturn

𝑃 𝑗 has input (Enc
pk𝑖
(𝑎), (𝑏1, 𝑟1), . . . , (𝑏𝑙 , 𝑟𝑙 )) with (𝑏𝑘 , 𝑟𝑘 ) ∈

𝐴𝜆𝑝 ×𝐴
𝜇
𝑝 for 1 ≤ 𝑘 ≤ 𝑙 for some 𝑙 ∈ N≥1.

1. 𝑃 𝑗 sends Encpk𝑖 (𝑎)𝑏𝑘 − Enc
𝜒

pk𝑖
(𝑟𝑘 ) to 𝑃𝑖 for 1 ≤ 𝑘 ≤ 𝑙 .

2. 𝑃𝑖 decrypts this to get 𝑑𝑘 = 𝑎𝑏𝑘 − 𝑟𝑘 for 1 ≤ 𝑘 ≤ 𝑙 .

Protocol 1: Pairwise return protocol.

of compute parties, e.g. 𝑛 = 2 or 3. We consider a recent variant

of this protocol with the more efficient zero-knowledge proofs in-

troduced in [2]. We ultimately improve the triple production in

[31] by intertwining the triple production and the authentication

of the produced triples in one protocol. This allows us to avoid the

sacrificing step common in SPDZ-like protocols like [31].

For this section we choose 𝑅 = F𝑝𝑑 a finite field.
6
Let Φ𝑚 ∈ Z[𝑋 ]

be the𝑚-th cyclotomic polynomial of degree 𝑁 = 𝜑 (𝑚). Let 𝐴 =

Z[𝑋 ]/(Φ𝑚) the ring of integers of the algebraic number fieldQ(𝜁𝑚)
for 𝜁𝑚 a primitive𝑚-th root of unity, e.g. 𝜁𝑚 = exp(2𝜋𝑖/𝑚) ∈ C.
Let 𝑝 be a prime and 𝑑 the order of 𝑝 in Z∗𝑚 . Then Φ𝑚 mod𝑝 is

the product of 𝑠 = 𝑁 /𝑑 irreducible polynomials 𝑓1, . . . , 𝑓𝑠 such that

𝐴𝑝 B F𝑝 [𝑋 ]/(Φ𝑚 mod𝑝) ≃ Z[𝑋 ]/(Φ𝑚, 𝑝) ≃
>𝑠

𝑗=1 F𝑝 [𝑋 ]/(𝑓𝑗 ) ≃>𝑠
𝑗=1 F𝑝𝑑 . We consider elements𝑚 ∈ 𝐴𝑝 as 𝑠 = 𝑁 /𝑑-dimensional

vectors (𝑚mod 𝑓𝑗 )𝑠𝑗=1.
7
This allows to use SIMD (Single Instruction

Multiple Data) operations, e.g. we can evaluate an F𝑝𝑑 -bilinear

operation · : 𝑀 ×𝑀′ → 𝑀′′ in the online phase for𝑀 = F𝜅
𝑝𝑑
, 𝑀′ =

F𝜆
𝑝𝑑
, 𝑀′′ = F𝜇

𝑝𝑑
on 𝑠 pairs simultaneously. In more detail, we get

the natural induced bilinear map

𝑀𝑠 × (𝑀′)𝑠 → (𝑀′′)𝑠 , ((𝑚 𝑗 )𝑠𝑗=1, (𝑚
′
𝑗 )
𝑠
𝑗=1) ↦→ (𝑚 𝑗𝑚

′
𝑗 )
𝑠
𝑗=1 .

Since 𝑀𝑠 = 𝐴𝜅𝑝 , (𝑀′)𝑠 = 𝐴𝜆𝑝 , (𝑀′′)𝑠 = 𝐴
𝜇
𝑝 this is a bilinear map

𝐴𝜅𝑝 ×𝐴𝜆𝑝 → 𝐴
𝜇
𝑝 . Now we can use the BGV [9] encryption scheme

on the plaintext space 𝐴𝑝 to securely evaluate this bilinear map

and hence to evaluate 𝑠 F𝑝𝑑 -bilinear operations𝑀 ×𝑀′ → 𝑀′′.

The CPA-secure BGV [9] encryption scheme (Enc𝜃
pk
,Dec𝑠𝑘 ) on

𝐴𝑝 is common in SPDZ-like protocols [19, 31], where 𝜃 denotes the

distribution from which the encryption randomness is chosen. The

ciphertext space is 𝐴2

𝑞 with 𝐴𝑞 B Z[𝑋 ]/(Φ𝑚, 𝑞) for some natural

number 𝑞 and 𝑝 ∤ 𝑞. We will usually drop the 𝜃 if we sample from

the standard distribution used in [31] (cf. Appendix A). However,

as in [31] we will occasionally sample from a larger distribution

𝜒 , i.e. set 𝜃 = 𝜒—the exact form of this distribution 𝜒 depends

on how the encryption scheme is employed. Most importantly for

our applications the BGV scheme is linearly homomorphic (for

suitably chosen parameters and suitable 𝜒), i.e. Dec
sk
(Enc

pk
(𝑟 )𝑟 ′ +

Enc
𝜒

pk
(𝑟 ′′)) = 𝑟𝑟 ′+𝑟 ′′ for 𝑟, 𝑟 ′, 𝑟 ′′ ∈ 𝐴𝑝 .8 For example Enc

pk
(𝑎)𝑏𝑘−

6
An extension to base rings 𝑅 = Z

2
𝜈 similar to [14, 39] seems possible. To check

compatibility with modified MAC checks and packing methods over Z
2
𝜈 is however

out of scope of this paper.

7
See Appendix A for further details.

8
Lattice-based encryption schemes like BGV usually do not have the homomorphic

property unconditionally, i.e. applying several linear transformations on ciphertexts

without intermediate decryption might lead to a wrong decryption results. By a correct

parameter choice, we will ensure that this does not happen in our protocols (cf. Secion

6 and Section 7) for the discussed use cases.

Πpair

𝑃𝑖 has input [𝑎]𝑖 ∈ 𝐴𝜅𝑝 , 𝑃 𝑗 has input ( [𝑏𝑘 ] 𝑗 )1≤𝑘≤𝑙 ∈ (𝐴𝜆𝑝 )𝑙 for
some 𝑙 ∈ N≥1.
1. 𝑃𝑖 sends Encpk𝑖 ( [𝑎]𝑖 ) to 𝑃 𝑗 using FZKP (cf. Protocol 10).

2. 𝑃 𝑗 samples (𝑟𝑖 𝑗𝑘 )1≤𝑘≤𝑙 ∈ (𝐴
𝜇
𝑝 )𝑙 and invokes Πreturn with

input (Enc
pk𝑖
( [𝑎]𝑖 ), ( [𝑏𝑘 ]𝑖 , 𝑟𝑖 𝑗𝑘 )1≤𝑘≤𝑙 ) and 𝑃𝑖 receives 𝑑𝑖 𝑗𝑘 .

Protocol 2: Pairwise multiplication protocol in [31].

Enc
𝜒

pk
(𝑟𝑘 ) in Protocol 1 uses the standard distribution from [31] for

the encryption of 𝑎 and a larger distribution 𝜒 for the encryption

of 𝑟𝑘 (see also Remark 5 for further details on the distributions).

Furthermore, 𝜒 depends on the operations to be evaluated. For

example, if we use the encryption scheme with matrix operations

the distribution must be chosen differently than for simple field

operations—we will determine the exact size for matrix operations

in Section 6 to guarantee the same security level as in [31]. For

more details on the encryption scheme, see the reference literature

or Appendix A. We remark that our construction does not rely on

the specifics of this BGV-type encryption scheme and should be

applicable for other linearly homomorphic encryption schemes.

When we work over finite-dimensional free 𝐴𝑝 -modules 𝐴𝜅𝑝 we

apply the encryption scheme on 𝐴𝑝 component-wise.

Finally we also use several ideal functionalities which mostly

coincide with those in [31]—these are included in Appendix E.

5.1 Classical Triple Production with Sacrificing
Wewill first present the classical triple production from [31]. For the

triple production we assume that the parties 𝑃1, . . . , 𝑃𝑛 alreadywent

through a setup phase such that 𝑃𝑖 possesses the following data: Her

own private keys sk𝑖 , sk
′
𝑖 , her own share [𝛼]𝑖 of the MAC key, the

public keys
9
of all parties pk𝑗 , pk

′
𝑗 for all 1 ≤ 𝑗 ≤ 𝑛, and encryptions

of all MAC key shares Enc
pk
′
𝑗
( [𝜶 ] 𝑗 ) with [𝜶 ] 𝑗 B ( [𝛼] 𝑗 , . . . , [𝛼] 𝑗 ),

and [𝛼] 𝑗 ∈ 𝐴𝑝 for all 1 ≤ 𝑗 ≤ 𝑛. Possible realizations of a secure
setup phase are discussed, e.g. in [18] or [42].

The classical triple production ΠLowGear in Overdrive LowGear

is given in Protocol 9.
10

We subdivided the original protocol [31, Fig.

7] into two (sub)protocols 1 and 2 in order to reuse these two pair-

wise subroutines in our new protocols later. Recall that to compute

𝑐1 = 𝑎𝑏1 = (∑𝑛𝑖=1 [𝑎]𝑖 ) (∑𝑛𝑗=1 [𝑏1] 𝑗 ) it is enough to compute each

summand [𝑎]𝑖 [𝑏1] 𝑗 . Πpair does just that, i.e. for two parties 𝑃𝑖 with

[𝑎]𝑖 and 𝑃 𝑗 with [𝑏1] 𝑗 the protocol outputs a (2-party) sharing of
[𝑎]𝑖 [𝑏1] 𝑗 . By using a zero-knowledge functionality FZKP (cf. [31]

or Protocol 10) for BGV ciphertexts, Πpair furthermore guarantees

that the parties know suitable plaintexts [𝑎]𝑖 and that the cipher-

text noise stays small enough and can be masked securely. If all

pairs of parties run this subroutine Πpair all mixed terms [𝑎]𝑖 [𝑏1] 𝑗
can be constructed and then added as in ΠLowGear, step 3, to get a

9
We require the same security guarantees from the setup phase as [31], e.g. for pk =

(𝑎,𝑏 ) ∈ 𝐴2

𝑞 , 𝑎 sufficiently random for all parties. As in [29] we do not use seperate

keys for each pair of parties. The security proofs of [31] still hold. We use the second

key pk
′
mostly for the MAC keys for security reasons (cf. Appendix E, security proof).

10
Note that original LowGear only considered Beaver triples, i.e. 𝜅 = 𝜆 = 𝜇 = 1.
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Π
reduced

𝑃 𝑗 has input Encpk𝑖 ( [𝑎]𝑖 ), Encpk𝑖 ( [𝑏]𝑖 ), ( [𝑎] 𝑗 , [𝑏] 𝑗 , 𝑟𝑖 𝑗 ) ∈ 𝐴
𝜅
𝑝 ×

𝐴𝜆𝑝 ×𝐴
𝜇
𝑝 .

1. 𝑃 𝑗 sends Encpk𝑖 ( [𝑎]𝑖 ) [𝑏] 𝑗 + [𝑎] 𝑗 Encpk𝑖 ( [𝑏]𝑖 ) − Enc
𝜒 ′

pk𝑖
(𝑟𝑖 𝑗 )

to 𝑃𝑖 (cf. Remark 5 for details on 𝜒 ′).
2. 𝑃𝑖 decrypts this to get 𝑑𝑖 𝑗 = [𝑎]𝑖 [𝑏] 𝑗 + [𝑎] 𝑗 [𝑏]𝑖 − 𝑟𝑖 𝑗 .

Protocol 3: Reduced return protocol.

sharing of the product 𝑐1 = 𝑎𝑏1. Overall, ΠLowGear outputs an au-

thenticated 5-tuple (⟦𝑎⟧𝑗 , ⟦𝑏1⟧𝑗 , ⟦𝑐1⟧𝑗 , ⟦𝑏2⟧𝑗 , ⟦𝑐2⟧𝑗 ) in 𝐴𝑝 such

that 𝑐1 = 𝑎𝑏1 and 𝑐2 = 𝑎𝑏2.

Unfortunately, malicious parties can easily manipulate the prod-

uct entries 𝑐1, 𝑐2 before authentication, i.e. a malicious party 𝑃 𝑗 sim-

ply modifies his shares to [𝑎] 𝑗 , [𝑏1] 𝑗 , [𝑐1] 𝑗 + Δ1, [𝑏2] 𝑗 , [𝑐2] 𝑗 + Δ2.

Now the parties hold a sharing of (𝑎, 𝑏1, 𝑐1 +Δ1, 𝑏2, 𝑐2 +Δ2). The au-
thentication subprotocol in step 4 of ΠLowGear will authenticate this

tuple to (⟦𝑎⟧𝑗 , ⟦𝑏1⟧𝑗 , ⟦𝑐1 + Δ1⟧𝑗 , ⟦𝑏2⟧𝑗 , ⟦𝑐2 + Δ2⟧𝑗 ). In particular,

the MAC checks in the online phase cannot detect this modifica-

tion. To prevent against this kind of attack, the parties have to run

an additional sacrificing step. The usual sacrificing step is, e.g., de-

scribed in [18] and also given in Appendix B. As a result, if the check

goes through, the parties get one triple (⟦𝑎⟧, ⟦𝑏1⟧, ⟦𝑐1⟧) such that

with overwhelming probability 𝑐1 = 𝑎𝑏1. The sacrificing step is

the reason why we have to generate the other two entries 𝑏2, 𝑐2 in

the first place. After the sacrificing, these cannot be used anymore

(without compromising the security of the protocol), which creates

a significant overhead no longer necessary in our protocol.

5.2 Reduced Communication Protocol
Before we present our new offline protocol in the next subsection,

we first discuss how the parties can use all available information to

reduce the bandwidth in the pairwise subprotocol Πpair.

Namely, if in Πreturn (Protocol 1), 𝑃 𝑗 has access to not only

Enc
pk𝑖
( [𝑎]𝑖 ) and ( [𝑏] 𝑗 , 𝑟𝑖 𝑗 ) but also to Encpk𝑖 ( [𝑏]𝑖 ), [𝑎] 𝑗 then they

can return Enc
pk𝑖
( [𝑎]𝑖 ) [𝑏] 𝑗+[𝑎] 𝑗 Encpk𝑖 ( [𝑏]𝑖 )−Enc

𝜒 ′

pk𝑖
(𝑟𝑖 𝑗 ) which

decrypts to [𝑎]𝑖 [𝑏] 𝑗 + [𝑎] 𝑗 [𝑏]𝑖 −𝑟𝑖 𝑗 . Note that we use a different dis-
tribution 𝜒 ′ (instead of 𝜒 inΠreturn) tomask sumsEnc

pk𝑖
( [𝑎]𝑖 ) [𝑏] 𝑗+

[𝑎] 𝑗 Encpk𝑖 ( [𝑏]𝑖 )—wewill discuss choices for 𝜒, 𝜒
′
inmore detail in

Remark 5. Since we use the pairwise protocol to compute the mixed

terms [𝑎]𝑖 [𝑏] 𝑗 + [𝑎] 𝑗 [𝑏]𝑖 in the sum 𝑎𝑏 = (∑𝑛𝑖=1 [𝑎]𝑖 ) (∑𝑛𝑗=1 [𝑏] 𝑗 ),
the parties can use this fact to reduce from two invocations of the

pairwise subprotocol – each party acts once as sender and once

as receiver – down to one invocation, where one party 𝑃𝑖 pro-

vides Enc
pk𝑖
( [𝑎]𝑖 ) and Enc

pk𝑖
( [𝑏]𝑖 ) and the other one returns an

encryption of [𝑎]𝑖 [𝑏] 𝑗 + [𝑎] 𝑗 [𝑏]𝑖 − 𝑟𝑖 𝑗 .
In more detail: Let offset← 𝑗 − 𝑖mod𝑛. Note that 𝑆 = {(𝑖, 𝑗) ∈

{0, . . . , 𝑛 − 1}2 : (0 < 2 · offset < 𝑛) ∨(2 · offset = 𝑛 ∧ 𝑗 > 𝑖)} has
exactly 𝑛(𝑛 − 1)/2 elements. Moreover, if (𝑖, 𝑗) ∈ 𝑆 than ( 𝑗, 𝑖) ∉ 𝑆 ,
i.e. for each (𝑖, 𝑗) with 𝑖 ≠ 𝑗 either (𝑖, 𝑗) ∈ 𝑆 or ( 𝑗, 𝑖) ∈ 𝑆 . Now
each pair (𝑃𝑖 , 𝑃 𝑗 ) with (𝑖, 𝑗) ∈ 𝑆 runs a pairwise protocol Πreduced

(Protocol 3) such that 𝑃𝑖 receives 𝑑𝑖 𝑗 = [𝑎]𝑖 [𝑏] 𝑗 + [𝑎] 𝑗 [𝑏]𝑖 −𝑟𝑖 𝑗 and
𝑃 𝑗 receives 𝑟𝑖 𝑗 . Oberve that each [𝑎]𝑘 [𝑏]𝑘 ′ for any 0 ≤ 𝑘, 𝑘′ < 𝑛

occurs exactly once in one of the 𝑑𝑖 𝑗 for (𝑖, 𝑗) ∈ 𝑆 . Locally 𝑃𝑖

Π
red-pair

𝑃𝑖 has input [𝑎]𝑖 ∈ 𝐴𝜅𝑝 , [𝑏]𝑖 ∈ 𝐴𝜆𝑝 , 𝑃 𝑗 has input [𝑎] 𝑗 ∈ 𝐴𝜅𝑝 , [𝑏] 𝑗 ∈
𝐴𝜆𝑝 .

1. 𝑃𝑖 sends Encpk𝑖 ( [𝑎]𝑖 ), Encpk𝑖 ( [𝑏]𝑖 ) to 𝑃 𝑗 using FZKP.
2. 𝑃 𝑗 samples 𝑟𝑖 𝑗 ∈ 𝐴𝑝 and invokes Π

reduced
with input

(Enc
pk𝑖
( [𝑎]𝑖 ), Encpk𝑖 ( [𝑏]𝑖 ), [𝑎] 𝑗 , [𝑏] 𝑗 , 𝑟𝑖 𝑗 ). 𝑃𝑖 receives 𝑑𝑖 𝑗 .

Protocol 4: Reduced pairwise protocol.

Π
Triple

Generate. 𝑃𝑖 has input [𝜶 ]𝑖 , Encpk′𝑗 ( [𝜶 ] 𝑗 ) for all 1 ≤ 𝑗 ≤ 𝑛.

1. 𝑃𝑖 samples [𝑎]𝑖 ∈ 𝐴𝜅𝑝 , [𝑏]𝑖 ∈ 𝐴𝜆𝑝 .
2. Each (ordered) pair (𝑃𝑖 , 𝑃 𝑗 ) invokes Πpair, Step 2, where 𝑃 𝑗

inputs (Enc
pk
′
𝑖
( [𝜶 ]𝑖 ), [𝑏] 𝑗 ). 𝑃𝑖 receives 𝑑𝑖 𝑗 . 𝑃 𝑗 gets 𝑟𝑖 𝑗 .

3. The results are locally combined by 𝑃𝑖 to ⟦𝑏⟧𝑖 .
4. Each (ordered) pair (𝑃𝑖 , 𝑃 𝑗 ) invokes Πpair where 𝑃𝑖 has input

[𝑎]𝑖 and 𝑃 𝑗 has input [𝛼] 𝑗 , [𝑏] 𝑗 , [𝛼𝑏] 𝑗 . 𝑃𝑖 gets 𝑑𝑖 𝑗𝑘 , 𝑃 𝑗 gets
𝑟𝑖 𝑗𝑘 for 𝑘 = 1, 2, 3.

5. 𝑃𝑖 locally combines the outputs to get (⟦𝑎⟧, ⟦𝑏⟧, ⟦𝑐⟧) ∈ 𝐴𝜅𝑝×
𝐴𝜆𝑝 ×𝐴

𝜇
𝑝 .

Check. Each party 𝑃𝑖 samples [𝑦0]𝑖 ∈ 𝑅. The parties invoke

F⟦·⟧ to authenticate 𝑦0 =
∑𝑛
𝑖=1 [𝑦0]𝑖 . Each party receives ⟦𝑦0⟧𝑖 .

To check the MACs of 𝑙 (components of) triple entries ⟦𝑦𝑘⟧, 1 ≤
𝑘 ≤ 𝑙 , the parties use F

random
to generate 𝑡 ∈ 𝑅𝑙 . 𝑃𝑖 opens

[𝑧]𝑖 = [𝑦0]𝑖 +
∑𝑙
𝑘=1

𝑡𝑘 [𝑦𝑘 ]𝑖 . The parties run F⟦·⟧.Check with

input 𝑧 =
∑𝑛
𝑖=1 [𝑧]𝑖 . If the check fails, abort.

Triple. The parties invoke Generate and receive 𝑠 triples

(⟦𝑎⟧, ⟦𝑏⟧, ⟦𝑐⟧) ∈ 𝐴𝜅𝑝 × 𝐴𝜆𝑝 × 𝐴
𝜇
𝑝 . The parties invoke Check

on these triples. They store the 𝑠 authenticated triples if the

check succeeds.

Protocol 5: New LowGear-type Protocol.

combines the outputs of the different pairwise protocols to 𝑒𝑖 =

[𝑎]𝑖 [𝑏]𝑖 +
∑
𝑗 :(𝑖, 𝑗 ) ∈𝑆 𝑑𝑖 𝑗 , 𝑓𝑖 =

∑
𝑗 :(𝑖, 𝑗 ) ∈𝑆 𝑟𝑖 𝑗 and [𝑐]𝑖 = [𝑎𝑏]𝑖 = 𝑒𝑖 + 𝑓𝑖 .

As expected, we have 𝑐 = 𝑎𝑏.

This reduced pairwise protocol has a clear bandwidth advantage

if both Enc
pk𝑖
( [𝑎]𝑖 ) and Enc

pk𝑖
( [𝑏]𝑖 ) are already available to the

second party 𝑃 𝑗 , e.g. since they have been sent (and verified) in

another subprotocol. For example, this is the case when 𝑎 = 𝑏 and

can be used to compute a sharing of 𝑎2 (cf. Π
Special

in Protocol 11).

If one encryption is not yet available and has to be provided

additionally by party 𝑃𝑖 , the situation is far less clear and often

the standard Protocol 1 is still the best choice, since to send a new

ciphertext alsomeans to invoke a usually expensive zero-knowledge

proof to realize FZKP. We will discuss this issue in more detail once

our new protocol Π
Triple

has been established (cf. Remark 4).

5.3 Triple Production without Sacrificing
Our new offline protocol is presented as Π

Triple
in Protocol 5. In

contrast to ΠLowGear we construct the MAC share of 𝑐 = 𝑎𝑏 not

from 𝑐 itself but we use 𝑎 and 𝛼𝑏, i.e. 𝛼𝑐 = 𝑎(𝛼𝑏). By this changed

authentication of the third triple entry 𝑐 , we avoid the attack which
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required previous protocols to add the sacrificing technique. Ma-

licious parties can no longer enter a modified 𝑐 into the authenti-

cation step, since the authentication and multiplication are now

intertwined. In particular, each party has to commit to her share of

𝑎 and her share of 𝛼𝑏 before 𝑐 and 𝛼𝑐 are constructed—if a party

modifies his shares of 𝑎 (or 𝛼𝑏) after Enc
pk𝑖
( [𝑎]𝑖 ) was sent in step

4 of Π
Triple

, he also must change 𝛼𝑎 (or 𝑏) suitably.11 As long as

he does not know the MAC key he will fail to do so (with over-

whelming probability)—the MAC check then fails and the overall

protocol aborts. The MACs are checked in Π
Triple

. Check in the

usual way on field values. This means Generate outputs 𝑠 triples
(⟦𝑎𝜈⟧, ⟦𝑏𝜈⟧, ⟦𝑐𝜈⟧) ∈ 𝑅𝜅 × 𝑅𝜆 × 𝑅𝜇 for 1 ≤ 𝜈 ≤ 𝑠 . Now the new

variable 𝑦𝑘 runs through all components of the ⟦𝑎𝜈⟧, ⟦𝑏𝜈⟧, ⟦𝑐𝜈⟧,
e.g. ⟦𝑎𝜈⟧ = (⟦𝑎𝜈𝜂⟧) for 1 ≤ 𝜂 ≤ 𝜅 has the components [𝑎𝜈𝜂 ] ∈ 𝑅.
The MAC check then takes an arbitrary linear combination of the

𝑦𝑘 and adds a secret mask𝑦0 ∈ 𝑅 such that no information is leaked

when the linear combination 𝑧 = [𝑦0] +
∑𝑙
𝑘=1

𝑡𝑘 [𝑦𝑘 ] is opened. The
opened value 𝑧 is checked with the standard functionality F⟦·⟧ from
[31]. F⟦·⟧ (cf. Protocol 15) is the standard MPC functionality from

[31] that allows one to input values, perform local computations,

and receive (verified) outputs. F⟦·⟧ can be realized by applying the

input protocol Π⟦·⟧ from [31] suitably, e.g. component-wise for

every 𝐴𝑝 -valued component of an input. We will prove security

and privacy of Π
Triple

below.

Remark 4 (Variants). In Π
Triple

(cf. Protocol 5), the reduced com-
munication protocol Π

reduced
is not used. An alternative protocol is

included asΠ
Triple-2

(Protocol 12). Namely, the parties do not only send
Enc

pk𝑖
( [𝑎]𝑖 ) as in ΠTriple

, but party 𝑃𝑖 also sends Encpk𝑖 ( [𝑏]𝑖 ) to 𝑃 𝑗
in the case (0 < 2 offset < 𝑛) ∨ (2 offset = 𝑛∧ 𝑗 > 𝑖). It is not hard to
see that with a reduced return protocol as in Π

reduced
the parties can

then produce ⟦𝑏⟧ and [𝑐]. For [𝛼𝑎], [𝛼𝑐] the parties still need to run
a full return protocol as in Step 4 of Π

Triple
with inputs Enc

pk𝑖
( [𝑎]𝑖 )

and [𝛼] 𝑗 , [𝛼𝑏] 𝑗 . Since the reduced return protocol is now used 2 times
this reduces the communication by 1 ciphertext. However, the addi-
tional Enc

pk𝑖
( [𝑏]𝑖 ) to be provided by 𝑃𝑖 , adds half a ciphertext (per

pair of parties) which has to be verified with a zero-knowledge proof.
Using the a zero-knowledge proof from [2, 19, 31] requires another
half ciphertext plus some plaintexts, i.e. overall Π

Triple-2
has slightly

larger bandwidth than Π
Triple

. Furthermore, Π
Triple-2

needs one more
round of communication. We will therefore stick with Protocol 5 and
also run our evaluation with Π

Triple
. Nevertheless, Π

Triple-2
might

be of some interest in cases where only a small number of triples is
produced. Namely, the zero-knowledge proofs usually amortize over
several ciphertexts.12 If only a small number of triples and therewith
a small number of Enc

pk𝑖
( [𝑎]𝑖 ) has to be verified, one invocation

of the zero-knowledge proof is enough to prove Enc
pk𝑖
( [𝑎]𝑖 ) and

Enc
pk𝑖
( [𝑏]𝑖 ) simultaneously. Without additional costs for the ZKP,

Π
Triple-2

retains a slight advantage of half a ciphertext over Π
Triple

(per pair of parties).

Theoretical Performance. In Table 1 we give a short comparison

of our new protocols to Overdrive’s LowGear protocol [31]. To

11
In Appendix E we shortly repeat the standard argument, why sending Enc

pk𝑖
( [𝑎]𝑖 )

results in the same [𝑎]𝑖 being authenticated in step 4.

12
For our benchmarks we use (comparable to [29]) a TopGear zero-knowledge proof

with amortization over 6 ciphertexts.

Table 1: Comparison of triple production.Bandwidth in number

of ciphertexts send per ordered pair (𝑃𝑖 , 𝑃 𝑗 ), 𝑖 ≠ 𝑗 . Ciphertext sizes

may variate slightly between the different protocols (cf. Remark 5).

Approach Comm. Rounds Bandwidth

Π
Triple

(Protocol 5) 2 5 (+1)

Π
Triple-2

(Protocol 12) 3 4.5 (+1.5)

Π
Special

(Protocol 11) 3 3.5 (+1)

Π
Special-2

(Protocol 14) 2 3.5 (+1)

ΠLowGear (Protocol 9, [31]) 3 8 (+1)

simplify the comparison, we present the number of ciphertexts

sent. The number in brackets denotes the number of additional

ciphertexts sent in a TopGear-style ZKP [2]. Please note that in

this ZKP an amortized amount of two plaintexts per ciphertext

verification are sent additionally. Due to the small size of a plaintext

in 𝐴𝑝 compared to a ciphertext in 𝐴2

𝑞 (for our applications with

𝑝 ≪ 𝑞) we did not include the plaintexts in the comparison. The

same holds for plaintexts sent during the MAC checks and the

sacrificing protocol. Moreover, we remark that ciphertexts in the

different protocols can be of different modulus 𝑞 due to security

considerations. However, the difference is small, i.e. protocols that

use the reduced pairwise protocol need a one bit larger 𝑞 due to

the larger noise 𝜒 ′. Furthermore, the ciphertext modulus depends

on 𝐴𝜅𝑝 , 𝐴
𝜆
𝑝 , 𝐴

𝜇
𝑝—more details for the special case of matrices can be

found in Section 6.

Finally, please note that in the round count in Table 1 we already

parallelized steps that do not depend on each other. E.g., Step 2 and

Step 1 of Πpair (as part of Step 4) can be run in parallel in Π
Triple

,

which reduces the number of communication rounds from 3 down

to 2. As a result, we see that our new protocols have the same or a

smaller round complexity and come with a significant bandwidth

reduction of around 33% compared to LowGear in the generic case

and up to 50% for special operations.

Proof of Correct Multiplication.We have to check that an adver-

sary can not tamper with the input of Step 4 of Π
Triple

(cf. Protocol

5). The security of [31] then guarantees that the outputs are correct,

i.e. on input 𝑎, 𝑏′, 𝑏′′, Step 6 will output ⟦𝑎⟧, ⟦𝑏⟧, ( [𝑎𝑏′], [𝑎𝑏′′]).
More formally, we have the following security game:

Security Game. The challenger C samples 𝛼 ∈ 𝑅. The adversary
A sends 𝛿, 𝛿 ′,Δ,Δ′ to C. C checks whether 𝛼 (𝑎(𝑏 + 𝛿) + Δ) =

𝑎(𝛼𝑏+𝛿 ′)+Δ′, i.e. whether the MAC check succeeds. The adversary

wins if the check goes through and 𝑎𝛿 + Δ ≠ 0, i.e. if 𝑎𝑏 ≠ 𝑐 for

(⟦𝑎⟧, ⟦𝑏⟧, ⟦𝑐⟧) the produced shared triple. We claim that A wins

the game with probability smaller or equal
1

|𝑅 | .
Proof.We first note that the check by C is equivalent to 𝛼 (𝑎𝛿 +

Δ) = 𝑎𝛿 ′ +Δ′. Now ifA chooses 𝑎𝛿 +Δ = 0 he looses. IfA chooses

𝑎𝛿 +Δ ≠ 0 then he only wins if 𝛼 = 𝛿 ′𝑎+Δ′
𝛿𝑎+Δ . The probability for this

case is
1

|𝑅 |1 since A has no information on the uniformly sampled

MAC key 𝛼 . Thus, the probability that the adversary wins the game

is bounded by
1

|𝑅 | . □

Please note that the argument directly extends (as in [19, 30]) to

the linear combination used in Check of Π
Triple

.
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Remark 5 (Ciphertext Noise Size). For privacy we require that
𝜒 and 𝜒 ′ in Π

Triple
and Π

Special
(or subprotocols thereof) are chosen

such that Enc𝜒
pk𝑖
(𝑟 ) and Enc

pk𝑖
( [𝑎]𝑖 ) [𝑏] 𝑗 − Enc𝜒

pk𝑖
(𝑟𝑖 𝑗 ) are statisti-

cally indistinguishable (w.r.t. the security parameter sec) for every
valid output Enc𝜒

pk𝑖
( [𝑎]𝑖 ) of F𝑍𝐾𝑃 and any [𝑏] 𝑗 ∈ 𝐴𝜆𝑝 and 𝑟, 𝑟𝑖 𝑗 sam-

pled uniformly from 𝐴
𝜇
𝑝 . If slack is the slack of the zero-knowledge

proof, we get ∥ [𝑎]𝑖 ∥∞ ≤ 𝑝
2
slack where ∥ · ∥∞ denotes the largest

absolute value among all polynomial coefficients in any entry of
𝑎 ∈ 𝐴𝑞 .13 In particular, in the case 𝑅 = F𝑝𝑑 the indistinguishability is
guaranteed if we choose the encryption noise 𝜒 in Enc

𝜒

pk𝑖
by a factor

2
sec𝑝 slack larger than the encryption noise in Enc

pk𝑖
. Furthermore,

𝜒 ′ must be twice the size of 𝜒 in the reduced protocol Π
red-pair

to com-
pensate the additional sum Enc( [𝑎]𝑖 ) [𝑏] 𝑗 + [𝑎] 𝑗 Enc( [𝑏]𝑖 ). From
now on, we will only use 𝜒, 𝜒 ′ which guarantee security as described
above. Section 6 will present the concrete values necessary for matrix
rings over 𝐴𝑝 .

Theorem 5.1. Π
Triple

implements F
Triple

in the (F⟦·⟧, Frand)-
hybrid model with at least one honest party.

Proof. We use the simulator S
Triple

from Protocol 13, which re-

places all inputs by honest parties with the value 0 and then runs the

Generate and Check part of Π
Triple

honestly. Since by assumption

Enc
pk𝑖
( [𝑎]𝑖 ) [𝑏 𝑗 ] − Enc

𝜒

pk𝑖
(𝑟𝑖 𝑗 ) ≈ −Enc𝜒

pk𝑖
(𝑟 ′
𝑖 𝑗
) for 𝑟𝑖 𝑗 , 𝑟 ′𝑖 𝑗 ← 𝐴

𝜇
𝑝

uniformely, the adversary cannot distinguish the real and ideal

world instances of Πreturn. Note that by FZKP, he still needs to

provide an encryption Enc
pk𝑖
( [𝑎]𝑖 ) for a sufficiently small input

[𝑎]𝑖 ∈ 𝐴𝑞 , i.e., ∥ [𝑎]𝑖 ∥∞ ≤ 𝑝
2
· slack, such that the indistinguishabil-

ity is guaranteed. Furthermore, the adversary cannot distinguish

Enc
pk𝑖
( [𝑎]𝑖 ) for a share [𝑎]𝑖 in the real world from Enc

pk𝑖
(0) by

the CPA-security of the encryption scheme. Moreover, observe that

[𝑧]𝑖 is distributed randomly, since 𝑦0 is random.

Now the adversary is commited to (the sum of) his shares by

the MAC check and the simulator can retrieve the (sum of the)

inputs by the rewinding step. Hence, S can adapt the dummy

shares ( [𝑎]𝑖 , [𝛼𝑎]𝑖 , [ ˜𝑏]𝑖 , [𝛼 ˜𝑏]𝑖 , [𝑐]𝑖 , [𝛼𝑐]𝑖 ) of honest parties 𝑖 ∈ 𝐻
used in Generate to correct shares for the random outputs 𝑎, 𝑏, 𝑐

from F
Triple

. More precisely, for 𝑎 =
∑𝑛
𝑖=1 [𝑎]𝑖 , ˜𝑏 =

∑𝑛
𝑖=1 [ ˜𝑏]𝑖 , 𝑐 =∑𝑛

𝑖=1 [𝑐]𝑖 , the output ofGenerate and 𝑖0 ∈ 𝐻 set ⟦𝑎⟧𝑖 = ⟦𝑎⟧𝑖 , ⟦𝑏⟧𝑖 =
⟦ ˜𝑏⟧𝑖 , ⟦𝑐⟧𝑖 = ⟦𝑐⟧𝑖 for all 𝑖 ≠ 𝑖0 and [𝑎]𝑖0 = [𝑎]0 + 𝑎 − 𝑎, [𝑏]𝑖0 =

[ ˜𝑏]0 +𝑏 − ˜𝑏, [𝑐]𝑖0 = [𝑐]0 + 𝑐 − 𝑐 . Since S has access to the MAC key

𝛼 , S futher sets [𝛼𝑎]𝑖0 = [𝛼𝑎]0 + 𝛼 (𝑎 − 𝑎), [𝛼𝑏]𝑖0 = [𝛼 ˜𝑏]0 + 𝛼 (𝑏 −
˜𝑏), [𝛼𝑐]𝑖0 = [𝛼𝑐]0 + 𝛼 (𝑐 − 𝑐). □

Remark 6. Please also note that we do not prove security of the
subroutines Πpair or Πreturn but of the complete protocol Π

Triple
. In

particular, Π
Triple

is not the composition of these subroutines in the
UC sense. However, the whole protocol Π

Triple
has been proven secure

above and can be composed with other UC secure protocols, e.g. the
secure online protocol from [19], within our limited UC framework.

Modifications for Special Tuples. For the production of special

tuples, one can further optimize Π
Triple

. As before in Section 4

13
More details on the norm are included e.g. in [19]. Here, (𝑎𝑙 )1≤𝑙≤𝜅 ∈ 𝐴𝜅

𝑞 and

∥𝑎∥∞ = max1≤𝑙≤𝜅 ∥𝑎𝑙 ∥∞ where 𝑎𝑙 is identified with
∑𝑁 −1

𝑗=0 𝑎𝑙 𝑗𝑋
𝑗 ∈ F𝑞 [𝑋 ]/(Φ𝑚 )

and ∥𝑎𝑙 ∥∞ = max0≤ 𝑗<𝑁 |𝑎𝑙 𝑗 | .

we assume that Enc
pk𝑖

is 𝑅-linear and 𝜙 : 𝑀 → 𝑀′ is a 𝑅-linear

map, i.e. can be represented as 𝜙 (∑𝑘𝑖=1 𝑟𝑖𝑚𝑖 ) = ∑𝑘
𝑖=1 𝑟𝑖

∑𝑙
𝑗=1 𝜙𝑖 𝑗𝑚 𝑗

for some 𝜙𝑖 𝑗 ∈ 𝑅 and a basis 𝑚𝑖 of the finite-dimensional free

𝑅-module 𝑀 . Again we get an induced 𝑅-linear map 𝐴𝜅𝑝 → 𝐴𝜆𝑝
which we denote in slight abuse of notation also by 𝜙 . Then a

party 𝑃 𝑗 that is in possession of Enc
pk𝑖
( [𝑎]𝑖 ) can locally compute

𝜙 (Enc
pk𝑖
( [𝑎]𝑖 )) = Enc

pk𝑖
(𝜙 ( [𝑎]𝑖 )). Thus, the parties can use the

reduced protocol Π
red-pair

to compute [𝑎𝜙 (𝑎)]. The detailed proto-

col Π
Special

is included as Protocol 11—please note that Steps 3 and

4 can be run in parallel to reduce the number of communication

rounds. The theoretical advantage for the generation of special

pairs can be found in Table 1. The security of Π
Special

can be proven

analogously to the proof of Theorem 5.1. Please also note that, sim-

ilar to Remark 4, other combinations of the subprotocols might be

considered. One example is given as Π
Special-2

in Protocol 14, with

its theoretical performance given in Table 1.

6 MATRIX TRIPLES
Besides improving the performance of Overdrive itself, another

focus of this paper is to optimize MPC protocols for bilinear op-

erations on higher-dimensional 𝑅-modules (which are in our case

usually vector spaces over finite fields) and not only for field ele-

ments. We concentrate onmatrix triples but note that similar results

will also hold more general, e.g. for tensor convolutions.

Let 𝑀 = 𝑅𝑢×𝑣, 𝑀′ = 𝑅𝑣×𝑤 and 𝑀′′ = 𝑅𝑢×𝑤 where the bi-

linear map 𝑀 × 𝑀′ → 𝑀′′ is the usual matrix multiplication.

Over the plaintext space we get the induced matrix multiplication

𝐴𝑢×𝑣𝑝 × 𝐴𝑣×𝑤𝑝 → 𝐴𝑢×𝑤𝑝 , i.e. in the general notation from Section

5 𝜅 = 𝑢 × 𝑣, 𝜆 = 𝑣 ×𝑤, 𝜇 = 𝑢 ×𝑤 . Recall that the security of our

protocol relies on the indistinguishability of ciphertexts Enc
𝜒

pk𝑖
(𝑟 )

and Enc
pk𝑖
( [𝑎]𝑖 ) [𝑏] 𝑗 −Enc𝜒

pk𝑖
(𝑟𝑖 𝑗 ) where 𝑟, 𝑟𝑖 𝑗 ← 𝐴𝑢×𝑤𝑝 . Since the

matrix multiplication [𝑎]𝑖 [𝑏] 𝑗 is defined by a sum over 𝑣 products

of field elements, we choose 𝜒 𝑣-times larger than in the field case.

In more detail: Let 𝑎 = (𝑎𝜈𝜂 )𝜈𝜂 ∈ 𝐴𝑢×𝑣𝑝 and 𝑏 = (𝑏𝜂𝜋 )𝜂𝜋 ∈
𝐴𝑣×𝑤𝑝 . FZKP guarantees that ∥𝑎𝜈𝜂 ∥∞ ≤ 𝑝

2
slack. Hence,

∥∑𝑣
𝜈=1 𝑎𝜈𝜂𝑏𝜂𝜋 ∥∞ ≤ 𝑣

𝑝2

4
slack. In particular, these terms can be

up to a factor 𝑣 larger than simple multiplication in 𝐴𝑝 . Thus, we

also have to increase the encryption noise suitably. We choose 𝜒

2
sec𝑝 slack ·𝑣 times larger than normal encryption noise in Enc and

therewith a factor 𝑣 larger than necessary for simple field multi-

plications (cf. [31]). 𝜒 ′ must be adapted accordingly, i.e. a factor 2

larger than 𝜒 . Please note that the size of 𝜒 and 𝜒 ′, respectively,
does affect the ciphertext modulus 𝑞. However, the ciphertext mod-

ulus increases only by 𝑣 compared to field multiplication, e.g for

usual matrix sizes like 𝑣 = 1024 one needs a log
2
(𝑣) = 10 bit longer

ciphertext modulus. In particular, if we apply our protocol to matri-

ces, our ciphertexts are slightly larger than those used in [31]. The

effect on the bandwidth comparison (cf. Table 1) is minor.

For special matrix operations like matrix squares 𝜙 = id𝑀

(𝑢 = 𝑣 = 𝑤) Π
Special

(or variations therof like Π
Special-2

) should be

used depending on the setup, i.e. for a strict bandwidth restriction

one uses the bandwidth optimized protocol Π
Special

, for setup with

high network delays one decreases the number of communication

rounds withΠ
Special-2

. In some setups the properties of𝜙 and 𝑥𝜙 (𝑥),
respectively, allow further optimizations. E.g. for matrices of scalar
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products, i.e. the case 𝜙 (𝑥) = 𝑥T (𝑢 = 𝑤 ), 𝑥𝜙 (𝑥) is a symmetric

𝑢 ×𝑢 matrix. Hence, it is enough to return the
𝑢 (𝑢+1)

2
entries above

and on the diagonal to compute the upper part of 𝑎𝜙 (𝑎). Then each

party can locally recover the remaining
𝑢 (𝑢−1)

2
entries below the

diagonal. Hence, the bandwidth can be reduced in Steps 3 and 5 of

Π
Special

and similiarly in Π
Special-2

. Compared to classical matrix

triples where we need a bandwidth of 3𝑢𝑣 + 𝑣𝑤 + 2𝑢𝑤 = 4𝑢𝑣 + 2𝑢2
modulus 𝑞 ciphertexts, with specialized pairs for 𝜙 (𝑥) = 𝑥T one

only needs ≈ 3𝑢𝑣 + 0.75𝑢𝑤 = 3𝑢𝑣 + 0.75𝑢2 ciphertexts per pair of
parties—the later ciphertexts are one bit longer.

Packing methods. As already recognized in previous work in [37]

and [11] our paper shows again that matrix triples have a clear band-

width advantage compared to the generic Beaver triples approach,

where for each of the 𝑢𝑣𝑤 products that occur in a 𝑢 × 𝑣 times

𝑢 ×𝑤 matrix multiplication one Beaver triple has to be created and

later consumed in the online phase. Furthermore, the lattice based

BGV ciphertexts allow for producing a larger number of (matrix)

triples, namely 𝑠 = 𝑁 /𝑑 in one round of our protocol. While this is

an advantage for many real world use cases, for some applications

only a small number of matrix triples is needed. Additionally, the

production of a larger number of matrix triples can lead to memory

issues on small machines. While this problem exists for all kinds

of triples and in particular for Beaver triples produced in [31], for

large dimensional matrices it is more pressing. We therefore use

the well-known packing method from [25] to pack one dimension

of the matrix into the slots of the ciphertext, i.e. we only produce

𝑠/𝑢 matrix triples at once. For details and alternatives see App. C.

We remark that the packing becomes particularly efficient for the

production of matrix triples with Π
Triple

since matrix multiplication

can then be soley based on plaintext manipulations of the [𝑏]𝑖 . For
special matrix pairs in order to use the reduced pairwise protocols

the parties must also be able to manipulate ciphertexts which is

slightly less efficient and requires some additional key switching

material. Again, details can be found in Appendix C.

Finally, note that since ciphertexts are usually verified by the

ZKPs in batches, we also pack the second matrix dimension into

these batches. E.g. if the ZKP amortizes as in [31] over 40 ciphertexts

(for sec = 40) and the parties want to compute 10×10matrix triples

they should run 4 instances of Π
Triple

in parallel and use only one

invocation of the ZKP to verify all 40 ciphertexts Enc( [𝑎]𝑖 ). The
effect of this packing is less significant for larger matrix dimensions

or smaller ZKP amortization.

Table 2: ResNet-50.We compare the effect of matrix triples and

ReLUs on the 2-party evaluation of ResNet-50 based on benchmarks.

Protocol Matrix Mult. ReLUs Overall

[11] 51GB 1007GB 1058GB

Ours 31 GB 413GB 444 GB

7 IMPLEMENTATION AND EVALUATION
To illustrate the practicality of our approach, we have implemented

our protocols in the MP-SPDZ framework [29] and run several

Table 3: Benchmarks for secure matrix multiplication of
square matrices. Timings for LowGear [31] and [11] are taken

from [11]. All experiments are for 𝑛 = 2 parties. Our experiments

emulate the network settings of the experiments in [11]: LAN set-

ting with 10ms network delay and 5Gbit s
−1

network bandwidth,

and WAN setting with 35ms delay and 320Mbit s
−1

bandwidth.

Network Matrix Dims. LowGear [11] Ours

128 × 128 128 s 36.1 s 8.54 s

256 × 256 900 s 214.5 s 64.1 s

LAN 384 × 384 46.8min 653.6 s 216.3 s

512 × 512 105min 24.5min 500.0 s

1024 × 1024 735min 173min 67.1 min

128 × 128 24.6min 38.15 s 9.13 s

256 × 256 172.8min 222.6 s 67.3 s

WAN 384 × 384 540min 672 s 221.1 s

512 × 512 20.2 h 25min 509.5 s

1024 × 1024 141.1 h 175.1min 67.4 min

benchmarks. This includes implementations of Π
Triple

for matrices

of arbitrary size and field elements, Π
Special

for matrix squares and

Gram matrices—both of arbitrary size, as well as the new online

protocols for special matrix tuples. As a result, we have fully usable

implementations of MPC protocols for the online phase, the offline

phase, and the full protocol (online and offline phase combined).

Please note that the total runtime is dominated by the triple/pair

generation and hence benchmarks of the full protocol are only

slightly larger than the actual offline runtime. Therefore, we only

benchmark the online phase and the full protocol (with the excep-

tion of offline-only benchmarks for the throughput in Table 8). Our

implementation is available at [33].

We compare our results to the MP-SPDZ implementations of

Overdrive LowGear, as well as the implementation of [11]. As far as

we can see, the currently available implementation of [11] does not

include an implementation to benchmark all parts of their protocol—

only the homomorphic multiplication of (encrypted) matrices can

be benchmarked. Therefore, we compare our implementation only

to the numbers given in [11].

Setup. In all our benchmarks we use a prime 𝑝 of size 128 bits,

𝑁 = 8132 and 𝑝 = 1mod 2𝑁 , i.e. Φ𝑚 decomposes mod 𝑝 into

linear factors. We can in particular process 𝑁 = 8192 F𝑝 -elements

with one plaintext or ciphertext, respectively. Furthermore, we

use TopGear [2] zero-knowledge proof with 𝑉 = 12 and 𝑈 = 6

to get soundness security of more than 128 bits. Overall we have

computational security of at least 128 bits. As default in [29] we use

statistical security parameter 40. We choose a ciphertext modulus of

383 bits to guarantee the computational security as well as correct

decryption in all our protocols. We run [29] with the same setup

(which is the default for its LowGear implementation). Note that

[11] uses a slightly larger 𝑉 = 16 given their larger cyclotomic

polynomial with 𝑁 = 32768.

We ran the benchmarks on two different computers: PC 1 (AMD

EPYC 7443, 512GB RAM) for Tables 3, 4, 5, 6, 7 and PC 2 (Intel i7-

10700K, 80GB RAM) for Tables 8, 9, 10. For better comparability we

ran all our benchmarks on a single core. Please note however, that
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our triple production can be parallelized completely, i.e. we expect

that the throughput increases linearly in the number of threads

used. To simulate realistic MPC settings, we ran all our benchmarks

for no delay and no imposed bandwidth restriction (on a single

machine), with a network delay of 10ms/bandwidth restriction

5Gbit/s (LAN setup) and with a network delay of 35ms/bandwidth

rate restriction 320Mbit/s.
Remark 7. All benchmarks in this section are in a 2-party setup

to stay comparable with the reference literature. For [11] only bench-
mark for the 2-party setup are available. Our comparison against
Overdrive [31] presented here in the 2-party case directly transfers to
more than two parties since both protocols are based on a pairwise
subprotocol and scale linearly in the number of pairs. We remark that
our implementation can be run (just as the LowGear implementation
in MP-SPDZ) with an arbitrary number of parties.

Comparison for Matrix Triples. [11] sends around 15.41MB per

party for the generation of one (𝑢, 𝑣,𝑤) = (128, 128, 128) matrix

triple. This number is slightly higher than originally claimed by the

authors, since in their theoretical analysis (Equation (10) of [11])

two ciphertexts are missing (2 ciphertexts equivalent to 4𝐴𝑞 ele-

ments in step 2 of the matrix production in Fig. 1 and 4𝐴𝑞-elements

from the distributed decryption lead to 8𝐴𝑞-elements instead of 6.)

At the same time, our bandwidth amounts to around 9.44MB per

(128, 128, 128) matrix triple per party in a 2-party setup. Hence in

the 2-party setup our protocol has around 39 % less bandwidth. As

can be seen from our benchmarks in Table 3 we even have a larger

runtime advantage against [11], i.e. in average by around 62 %. As

mentioned before, there is currently no data available for more than

two parties for [11]. We expect however, that as usual for pairwise

protocols, the levelled homomorphic approach [11], which is linear

in the number of parties 𝑛, will outperform our protocol for large 𝑛.

To stay comparable to [11] we shortly discuss the effect of our

new protocols on an private interference of ResNet-50 [26]. As in

[11] we rewrite the convolutions as matrix multiplications—we

provide more details in Appendix D. As a result one gets 3298

multiplications of 128× 128matrices. Additionally, we compare the

effect of our protocol on the 9,608,704 ReLUs of ResNet-50. Each

ReLU requires 122 Beaver triples and some shared bits that have

a minor impact on the bandwidth. We remark that ReLU layers

(just like other types of layers, e.g. batch normalization, pooling

layers) are implemented in [29]. Since for [11] only data on the

convolutions and the ReLUs is available, we also restrict to these two

layers for this paragraph. In the next paragraph, we then provide

benchmark for small ML algorithms which consist of different type

layers (including convolutions, dense layers and ReLUs). The result

of the comparison with [11] on ResNet-50 can be seen in Table 2.

We assumed 6.874 64 kbit per Beaver triple (cf. Table 8).

Special Matrix Pairs. The Tables 5 and 7 compare the runtime and

bandwidth costs for an online matrix multiplication with classical

LowGear, our matrix triples based online phase and for the reduced

online phase with special pairs. The Tables 4 and 6 contain the cor-

responding complete protocol including the triple/pair production.

For the special pair benchmarks we used our implementation of

transpose pairs for multiplications 𝐴𝐴T
, which performs better in

the offline phase due to specific further optimizations. For com-

pleteness, we also added the bandwidth benchmarks for squares

Table 4: Benchmarks for secure special matrix operations of
square matrices. We use the same network settings as in Table 3.

The “local” setting corresponds to running the code of the parties

on the same machine without any network delay or bandwidth

restrictions. Timings are amortized over 8192 tuples. For LowGear,

we ran normal matrix multiplication as no special matrix operations

are available in SPDZ.

Net- Matrix Ours Ours

work Dims. LowGear (Mult.) (Special)

Local

2 × 2 1.12ms 249.36 µs 152.04 µs

4 × 4 6.57ms 820.06 µs 550.15 µs

8 × 8 47.90ms 4.14 ms 2.65 ms

16 × 16 375.76ms 22.96 ms 15.11 ms

32 × 32 2.98 s 151.77 ms 98.13 ms

64 × 64 23.68 s 1.08 s 693.15 ms

LAN

2 × 2 22.38ms 20.60 ms 20.49ms

4 × 4 33.49ms 21.25 ms 20.92 ms

8 × 8 123.62ms 24.83 ms 23.11ms

16 × 16 825.47ms 45.05 ms 36.38 ms

32 × 32 6.19 s 180.26 ms 124.93 ms

64 × 64 49.07 s 1.12 s 724.89 ms

WAN

2 × 2 75.90ms 70.91 ms 70.73 ms

4 × 4 104.37ms 72.04 ms 71.41 ms

8 × 8 323.95ms 77.72 ms 74.57 ms

16 × 16 2.01 s 104.89 ms 91.61 ms

32 × 32 15.33 s 267.52 ms 193.45 ms

64 × 64 121.72 s 1.34 s 864.30 ms

in the offline phase to show that matrix transpose pairs have the

expected advantage of around 16 % (cf. Section 6).

We see that although special matrix pairs have a clear band-

width advantage the effect of the reduced bandwidth on the overall

runtime is covered for small matrix dimensions by the network

delay in a realistic LAN or WAN setup. Due to the higher number

of communication rounds in Π
Special

compared to Π
Triple

, special

matrix pairs might be slightly slower. However, depending on the

setup, a minimally slower runtime can be acceptable given the large

bandwidth advantage, e.g. if higher bandwidth comes with higher

costs in cloud computing.

Comparison to Generic LowGear. We also compared our pro-

tocol to generic Overdrive in Table 8. The comparison confirms

the theoretical advantage of our protocols for generic field opera-

tions. Please note that the throughput is lower than in the original

[31] paper since we only use a single core instead of 8 threads in

[31]. As mentioned before the triple generation can be completely

parallelized such that with 8 threads our protocol will produce

approximately 8 times as many triples per second.

Machine Learning. Finally we provide benchmarks for ML ap-

plication. We therefore use 4 benchmark programs available in

MP-SPDZ. These programs combine different ML layers to reflect

different architecture common in dense and convolutional network:

- Benchmark Net A contains the following layers in this order:

Dense, Square, Dense, Square, Dense, Argmax.
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Table 5: Benchmarks for secure special matrix operations of
square matrices in the online phase. We use the same network

settings as in Table 4. Timings are amortized over 100 multipli-

cations. For LowGear, we ran normal matrix multiplication as no

special matrix operations are available in SPDZ.

Net- Matrix Ours Ours

work Dims. LowGear (Mult.) (Special)

Local

2 × 2 26.24 µs 19.68 µs 16.53 µs

4 × 4 52.36 µs 23.58 µs 24.18 µs

8 × 8 288.21 µs 62.86 µs 53.92 µs

16 × 16 2.07ms 318.36 µs 284.71 µs

32 × 32 16.14ms 2.20ms 2.04ms

64 × 64 127.96ms 16.37ms 15.43ms

LAN

2 × 2 20.60ms 20.59ms 20.58ms

4 × 4 20.63ms 20.58ms 20.61ms

8 × 8 20.93ms 20.64ms 20.64ms

16 × 16 24.82ms 20.95ms 20.96ms

32 × 32 45.69ms 23.40ms 23.12ms

64 × 64 265.53ms 39.41ms 38.04ms

WAN

2 × 2 71.83ms 71.87ms 71.95ms

4 × 4 71.96ms 71.85ms 71.85ms

8 × 8 73.02ms 71.98ms 71.91ms

16 × 16 85.16ms 72.64ms 72.41ms

32 × 32 158.84ms 76.30ms 75.26ms

64 × 64 842.21ms 102.36ms 96.06ms

Table 6: Bandwidth measurements for secure special matrix
operations of square matrices. The measurements were taken

in the experiments for Table 4, i.e. in the same setting. Bandwidth

is given as average per party.

Matrix Ours Ours Ours

Dims. LowGear (Mult.) (Transp.) (Square)

2 × 2 14.66 kB 3.59 kB 2.03 kB 2.18 kB

4 × 4 88.47 kB 11.27 kB 6.69 kB 7.55 kB

8 × 8 650.11 kB 45.06 kB 25.03 kB 29.06 kB

16 × 16 5.09MB 161.82 kB 97.81 kB 115.09 kB

32 × 32 40.45MB 647.28 kB 387.78 kB 459.21 kB

64 × 64 323.17MB 2.52 MB 1.55 MB 1.84 MB

- Benchmark Net B contains the following layers in this order: 2𝑑

Convolution, MaxPool, ReLU, 2𝑑 Convolution, MaxPool, ReLU,

Dense, ReLU, Dense, Argmax.

- Benchmark Net C has layers as B but with different dimensions.

- Benchmark Net D contains the following layers in this order: 2𝑑

Convolution, ReLU, Dense, ReLU, Dense, Argmax.

For further specifics on the layers, e.g. number of inputs, we refer

to the corresponding programs available in our implementation.

The results of our evaluation for our protocol as well as Overdrive

LowGear are included in Table 10 for the online phase and Table 9

for the overall protocol. Recall that we realize the convolution layers

by matrix multiplications as [11] (cf. Appendix D). Furthermore, the

matrix operations in the dense layers use matrix triples. If Beaver

triples are used, e.g. in ReLU Layers, we use Π
Triple

for field values.

Table 7: Bandwidth measurements for secure special matrix
operations of square matrices in the online phase. The mea-

surements were taken in the experiments for Table 5, i.e. in the

same setting. Bandwidth is given as average per party.

Matrix Ours Ours

Dims. LowGear (Mult.) (Special)

2 × 2 257.36 B 129.36 B 65.36 B

4 × 4 2.05 kB 513.36 B 257.36 B

8 × 8 16.39 kB 2.05 kB 1.03 kB

16 × 16 131.07 kB 8.19 kB 4.10 kB

32 × 32 1.05MB 32.77 kB 16.39 kB

64 × 64 8.39MB 131.07 kB 65.54 kB

Table 8: Bandwidth per triple and throughput

Protocol sec = 40 sec = 64 sec = 128

LowGear

10 283 triple/s 8454 triple/s 6840 triple/s
14.133 kbit/triple 15.950 kbit/triple 17.767 kbit/triple

Ours

25778 triple/s 21382 triple/s 17012 triple/s
6.875 kbit/triple 7.783 kbit/triple 8.691 kbit/triple

Table 9: Benchmarks for secure ML inference.We use the same

network settings as in Table 3. ML model names (A–D) designate

the neural networks in [32, 44] (with the implementation included

in [29]).

Protocol Model Local LAN WAN

LowGear

A 15.65 s 36.76 s 99.25 s

B 252.31 s 10.06min 28.50min

C 7.88min 20.01min 49.01min

D 32.57 s 79.45 s 201.35 s

Ours

A 5.17 s 9.69 s 22.53 s

B 95.18 s 184.45 s 7.56min

C 156.24 s 292.46 s 11.59min

D 12.43 s 24.75 s 56.21 s

Protocol A B C D

LowGear 439.90MB 7.09GB 13.68GB 920.01MB

Ours 141.47MB 2.72GB 4.27GB 361.62MB

In the online phase we have an average advantage in runtime of

28 %, in the offline phase we are in average approximately a factor

of 3.80 faster. On average, the bandwidth in our protocol is reduced

by a factor of 2.35 in the online phase and 2.95 in the offline phase.

In summary, we have seen that the newly presented protocols

and our implementation improve significantly in runtime and band-

width over Overdrive LowGear, which is the most efficient MPC

protocols for generic field operations for a low number parties, as

well as [11], the best known protocol for matrix triple generation.

Our sample ML inference benchmarks further show the application

potential of our protocols.
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Table 10: Online benchmarks for secure ML inference.We use

the same network settings as in Table 3. ML model names (A–D)

designate the neural networks in [32, 44] (with the implementation

included in [29]).

Protocol Model Local LAN WAN

LowGear

A 0.121 s 1.378 s 4.421 s

B 0.733 s 6.471 s 20.573 s

C 1.847 s 10.555 s 34.080 s

D 0.159 s 1.770 s 5.441 s

Ours

A 0.070 s 1.002 s 3.416 s

B 0.526 s 5.201 s 16.059 s

C 0.358 s 7.479 s 23.000 s

D 0.107 s 1.291 s 4.298 s

Protocol A B C D

LowGear 9.524MB 80.969MB 209.219MB 13.346MB

Ours 5.768MB 40.652MB 77.754MB 8.925MB
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A THE BGV ENCRYPTION SCHEME
In the offline phase we use the [9] cryptosystem (Enc

pk
,Dec

sk
).14

Wewill stick closely to its use in [19], [18] or [31] in order to be able

to compare our approach for the construction of matrix triples with

the state of the art protocols. We will describe the cryptosystem

on some base ring 𝐴𝑝—the extension to 𝐴𝑝 -modules 𝐴𝑘𝑝 is as usual

entrywise.

We choose a message space 𝐴𝑝 B F𝑝 [𝑋 ]/(Φ𝑚 mod𝑝) for a𝑚-

th cyclotomic polynomial Φ𝑚 ∈ Z[𝑋 ] of degree 𝑁 = 𝜑 (𝑚) and
𝑝 a prime. Note that 𝐴𝑝 ≃

>𝑠
𝑗=1 F𝑝𝑑 for 𝑝 of order 𝑑 modulo 𝑚

and 𝑠 = 𝑁 /𝑑 . Please recall that Φ𝑚 decomposes into 𝑠 degree 𝑑

(pairwise prime) irreducible polynomials over F𝑝 then. Let 𝑝 ∤ 𝑞
and embed 𝐴𝑝 into 𝐴𝑞 = (Z/𝑞Z) [𝑋 ]/Φ𝑚 in the usual way, i.e.

identify 𝑓 =
∑𝑁
𝑗=0 𝑓𝑗𝑋

𝑗 ∈ 𝐴𝑝 with

∑𝑁
𝑗=0 𝑔 𝑗𝑋

𝑗
and 𝑔 𝑗 = 𝑓𝑗 mod𝑝

if 𝑓𝑗 ≤ 𝑝/2 and 𝑔 𝑗 = 𝑓𝑗 mod 𝑝 − 𝑝 for 𝑓𝑗 > 𝑝/2 where 𝑓𝑗 mod𝑝

denotes the representative of 𝑓𝑗 ∈ F𝑝 in {0, . . . , 𝑝 − 1} under the
natural quotient map Z→ F𝑝 ≃ Z/𝑝Z. Furthermore note that Z𝑞
naturally embeds (as a set) in Z and Q and that Q[𝑋 ]/Φ𝑚 embeds

under the canonical embedding into C𝑁 .
We consider the following distributions on 𝐿 = 𝐴𝑝 or 𝐿 = 𝐴𝑞 :

- U(𝐿) is the uniform distribution on𝑀 .

- D𝜎 (𝐿) the discrete Gaussian distribution of variance 𝜎2 on 𝐿.

- ZO
1/2 = (U({−1, 0}) ∗ U({0, 1}))𝑁 .15

- HWTℎ = U({𝑥 ∈ {0,±1}𝑁 |∑𝑁𝑗=1 |𝑥 𝑗 | ≥ ℎ}).16
Key Generation. Take sk←HWTℎ, 𝑎 ← 𝐴𝑞, 𝑒 ← 𝐷𝜎 (𝐴𝑞). Set
𝑏 ← sk𝑎 + 𝑝𝑒 and pk← (𝑎, 𝑏).
Encryption. Let𝑚 ∈ 𝐴𝑝 be a message. Sample 𝑣 ←ZO

1/2, 𝑒0 →
𝜒, 𝑒1 ← 𝐷𝜎 (𝐴𝑞) and set Enc

pk
(𝑚) = (𝑐0, 𝑐1) with 𝑐0 = 𝑏𝑣 + 𝑝𝑒0 +

𝑚 ∈ 𝐴𝑞 and 𝑐1 = 𝑎𝑣 + 𝑝𝑒1 ∈ 𝐴𝑞 .
Decryption. Decrypt (𝑐0, 𝑐1) ∈ 𝐴2

𝑞 using sk by (𝑐0 − sk 𝑐1mod𝑞)
mod 𝑝 . Correct decryption is guaranteed for 𝑝𝑒0 +𝑚 − sk𝑝𝑒1 < 𝑞.

Classically 𝜒 = 𝐷𝜎 (𝐴𝑞). For larger encryption noise adapt 𝜎 ac-

cordingly, i.e. for log
2
𝑣 = 10 times larger encryption noise, sample

from 𝜒 = 𝐷10𝜎 (𝐴𝑞). For other parameter choice, e.g. 𝜎, 𝑝, sec we

use the same values as in [31]. If 𝑞 is the ciphertext modulus in [31]

then 𝑞′ = 𝑞 + log
2
(𝑣) + 1 is the ciphertext modulus needed for 𝑣 × 𝑣

matrix multiplications (cf. Section 5 for the theoretical discussion).

B CLASSICAL SACRIFICING AND MAC
CHECK

We present the optimized sacrificing technique ΠSac used in [31]

(cf. Protocol 6). We also include the classical MacCheck ΠMC from

[18] in Protocol 7.

C PACKING METHODS FOR MATRICES
In this appendix we first repeat the diagonal packing method for

matrices presented in [34] and [25].

Let 𝑠 = 𝑁 /𝑑 be the number of plaintext slots and 𝑟 = ⌊𝑠/𝑢⌋.
For 0 ≤ 𝑡 < 𝑟 let 𝐴𝑟 = (𝑎𝑡,𝑖 𝑗 ) ∈ 𝑅𝑢×𝑣, 𝐵𝑟 = (𝑏𝑡, 𝑗𝑘 ) ∈ 𝑅𝑣×𝑤 ,𝐶𝑡 =

14
For a precise overview of the algebraic and number theoretic background you may

consult [35].

15𝑥 = (𝑥𝑖 )𝑖 ∈ {−1, 0, 1}𝑁 and 𝑥𝑖 = 𝑥𝑖− + 𝑥𝑖+ with 𝑥𝑖± uniformly from {±1, 0}.
16
[23] uses ℎ = 64, Overdrive [31] adds sec for enhanced CPA-security, i.e. chooses

ℎ′ = ℎ+sec. We will stick with the Overdrive convention. sec is the security parameter,

e.g. sec = 40 or sec = 128.

ΠSac

𝑃𝑖 has input [𝑎]𝑖 ∈ 𝐴𝜅𝑝 , [𝑏1]𝑖 , [𝑏2]𝑖 ∈ 𝐴𝜆𝑝 , [𝑐1]𝑖 , [𝑐2]𝑖 ∈ 𝐴
𝜇
𝑝 .

1. Call F
random

to generate 𝑟 ∈ 𝑅.
2. Call F⟦·⟧ . LinearCombination. Each party 𝑃𝑖 receives to

⟦𝜌⟧𝑖 ← 𝑟⟦𝑏1⟧ − ⟦𝑏2⟧. Open 𝜌 with F⟦·⟧ .Open
3. Open 𝜏 ← 𝑟𝑐1 − 𝑐2 − 𝜌𝑎 with F⟦·⟧ .Open. Abort if 𝜏 ≠ 0.

4. Call F⟦·⟧ .Check on all opened values, abort if any check

fails.

Protocol 6: Sacrificing in [31].

ΠMC

Every party 𝑃𝑖 has ⟦𝑦 𝑗⟧𝑖 = ( [𝑦 𝑗 ]𝑖 , [𝛼𝑦 𝑗 ]𝑖 , [𝛼]𝑖 ), 1 ≤ 𝑗 ≤ 𝑙 .

𝑦 = (𝑦1, . . . , 𝑦𝑙 ) ∈ 𝑅𝑙 is public and has to be checked. Denote

[𝛼𝑦]𝑖 B ( [𝛼𝑦1]𝑖 , . . . , [𝛼𝑦𝑙 ]𝑖 ).
1. The parties sample a random 𝑟 ∈ 𝑅𝑙 .
2. Each 𝑃𝑖 sets [𝜎]𝑖 = 𝑟𝑡 ( [𝛼𝑦]𝑖 − [𝛼]𝑖𝑦) for 𝑟𝑡 transpose of 𝑟 .
3. Each 𝑃𝑖 uses Fcommit to commit to her share [𝜎]𝑖 .
4. After each party has committed, call Fcommit to open [𝜎]𝑖 .
5. If

∑𝑛
𝑖=1 [𝜎]𝑖 ≠ 0 then abort.

Protocol 7: MAC Check in [18].

𝐴𝑡𝐵𝑡 = (𝑐𝑡,𝑖𝑘 ) ∈ 𝑅𝑢×𝑤 where 0 ≤ 𝑖 < 𝑢, 0 ≤ 𝑗 < 𝑣, 0 ≤ 𝑘 <

𝑤 . Let 𝑎𝑡, 𝑗 = (𝑎𝑡,𝑖,𝑖+𝑗 mod 𝑣)𝑖 ∈ 𝑅𝑢 , i.e. (secondary) diagonals of
𝐴. Write 𝑎𝑡, 𝑗 for fixed 𝑗 into the plaintext slots of some plain-

text 𝒂 𝑗 ∈ 𝑅𝑠 , i.e. 𝒂 𝑗 = (𝑎⌊𝑙/𝑢 ⌋,𝑙 mod𝑢,(𝑙 mod𝑢+𝑗 ) mod 𝑣)𝑙 ∈ 𝑅𝑠 for

0 ≤ 𝑙 < 𝑠 . Encrypt 𝒂 𝑗 with the usual BGV encryption scheme to

and Enc
pk
(𝒂 𝑗 ). Furthermore, let 𝑏𝑡, 𝑗,𝑘 = (𝑏𝑡,𝑖+𝑗 mod 𝑣,𝑘 )𝑖 ∈ 𝑅𝑢 and

𝒃 𝑗 = (𝑏 ⌊𝑙/𝑢 ⌋,(𝑙 mod𝑢+𝑗 ) mod 𝑣,𝑘 )𝑙 ∈ 𝑅𝑠 , i.e. we rotated the 𝑘-th col-

umn by 𝑗 entries. Then the (𝑡𝑢+𝑖)-th slot of∑𝑣
𝑗=1 Encpk (𝒂 𝑗 )𝒃 𝑗,𝑘 de-

crypts to 𝑐𝑡,𝑖,𝑘 =
∑𝑣
𝑗=1 𝑎𝑡,𝑖,𝑖+𝑗 mod 𝑣𝑏𝑡,𝑖+𝑗 mod 𝑣,𝑘 since the encryption

scheme is linearly homomorphic. Hence we can use this packing

technique to produce 𝑟 matrix products with 𝑣𝑘 ciphertext-plaintext

multiplications and 𝑣 plaintext rotations. We use this packing in

our implementation of Π
Triple

.

In Π
Special

and Π
Special-2

we have to compute terms Enc
pk
(𝐴)𝐵+

𝐴 Enc
pk
(𝐵). Unfortunately, the previous packing method cannot

trivially be applied to this setup, since now we have to rotate ci-

phertexts slots of Enc
pk
(𝐵). [22] showed that this is in fact possi-

ble for our cyclotomic ring, since the action of the Galois group

GalQ (Q[𝜁𝑚]) for a primitive 𝑚-th root 𝜁 rotates the ciphertext

slots.
17

Unfortunately, this rotation applied to a plaintext (𝑐0, 𝑐1) ∈
𝑀2

𝑞 also shifts the secret key, i.e. GalQ (Q[𝜁𝑚]) acts as 𝑋 ↦→ 𝑋𝑔

for some 𝑔 ∈ (Z/𝑚Z)∗ and hence 𝑐1 is rotated to sk(𝑋𝑔)𝑣 (𝑋𝑔) +
𝑤 (𝑋𝑔)𝑝 . [23] solved this problem with their key switching algo-

rithm, i.e. as part of the public key a party also provides a suitably

formed term𝑊 such that sk𝑊 (sk(𝑋𝑔)𝑣 (𝑋𝑔) +𝑤 (𝑋𝑔)𝑝)mod𝑞 =

sk(𝑋𝑔)𝑣 (𝑋𝑔) + 𝜈𝑝 mod𝑞 for a suitably small 𝜈 that allows decryp-

tion. Of course,𝑊 cannot leak information on the secret key sk.

Given that key switching protocol, we can after each ciphertext

rotation, rotate the second component of the ciphertext back by𝑊

17
More precisely, representatives in GalQ (Q[𝜁𝑚 ] ) of GalQ (Q[𝜁𝑚 ] )/⟨Frob𝑝𝑛 ⟩

(since the (generalized) Frobenius automorphism Frob𝑝𝑛 actually preserves the slots).
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F
Triple

On input (Triple, id𝑎, id𝑏 , id𝑐 ) sample 𝑎 ← 𝑀,𝑏 ← 𝑀′ and store
(Val[id𝑎],Val[id𝑏 ],Val[id𝑐 ]) = (𝑎, 𝑏, 𝑐) where 𝑐 = 𝑎𝑏 ∈ 𝑀′′.

Protocol 8: Triple Generation.

ΠLowGear

𝑃𝑖 has input [𝜶 ]𝑖 ∈ 𝐴𝑝 , Encpk′𝑗 ( [𝜶 ] 𝑗 ) for all 1 ≤ 𝑗 ≤ 𝑛.
1. Each party 𝑃𝑖 samples uniformly [𝑎]𝑖 , [𝑏]𝑖 , [𝑏′]𝑖 ∈ 𝐴𝑝 .
2. Each (ordered) pair of parties (𝑃𝑖 , 𝑃 𝑗 ) runs Πpair where 𝑃𝑖

has input [𝑎]𝑖 and 𝑃 𝑗 has input [𝑏] 𝑗 , [𝑏′] 𝑗 . 𝑃𝑖 gets 𝑑𝑖 𝑗 and
𝑑′
𝑖 𝑗
. 𝑃 𝑗 gets 𝑟𝑖 𝑗 and 𝑟

′
𝑖 𝑗
.

3. 𝑃𝑖 locally sets 𝑓𝑖 B
∑
𝑗 :𝑗≠𝑖 𝑟 𝑗𝑖 , 𝑓

′
𝑖
B

∑
𝑗 :𝑗≠𝑖 𝑟

′
𝑗𝑖
and 𝑒𝑖 B

[𝑎]𝑖 [𝑏]𝑖 +
∑
𝑗≠𝑖 𝑑𝑖 𝑗 , 𝑒

′
𝑖
B [𝑎]𝑖 [𝑏]𝑖 +

∑
𝑗≠𝑖 𝑑

′
𝑖 𝑗
, which are com-

bined to [𝑐]𝑖 = [𝑎𝑏]𝑖 B 𝑒𝑖 + 𝑓𝑖 , [𝑐′]𝑖 = [𝑎𝑏′]𝑖 B 𝑒′
𝑖
+ 𝑓 ′

𝑖
.

4. Each (ordered) pair (𝑃𝑖 , 𝑃 𝑗 ) invokes Πpair, Step 2, where

Enc
pk
′
𝑖
( [𝜶 ]𝑖 ) is provided by the preprocessing and 𝑃 𝑗 inputs

[𝑎] 𝑗 , [𝑏] 𝑗 , [𝑐] 𝑗 , [𝑏′] 𝑗 , [𝑐′] 𝑗 . 𝑃𝑖 receives 𝑑𝑖 𝑗𝑘 for 𝑘 = 1, . . . , 5.

𝑃 𝑗 gets 𝑟𝑖 𝑗𝑘 for 𝑘 = 1, . . . , 5.

5. The results are locally combined as in Step 2. Each party

receives (⟦𝑎⟧𝑖 , ⟦𝑏⟧𝑖 , ⟦𝑐⟧𝑖 , ⟦𝑏′⟧𝑖 , ⟦𝑐′⟧𝑖 ).

Protocol 9: Triple production in [31].

and we remain a ciphertext for sk. The resulting ciphertexts for the

same key sk can than be summed up homomorphically as before.

Remark 8. Please note that other packings might be advantageous
for certain matrix dimensions 𝑢, 𝑣,𝑤 . E.g. if we pack rows (𝑎𝑖,𝑘+𝑗 ) 𝑗
of a matrix 𝐴 and diagonals 𝑏𝑘+𝑗,𝑘 then we get vectors of length 𝑤
and hence can process 𝑠/𝑤 matrices in one go. Depending on 𝑠 mod𝑢,
𝑤 mod𝑢 this might lead to less unused slots.

D CONVOLUTIONS
An often-used operation in ML are (tensor) convolutions. One way

to securely realize a 2D convolution of an input tensor𝐴 ∈ 𝑅ℎ×𝑤×𝑐
and a kernel 𝐵 ∈ 𝑅𝑐′×ℎ′×𝑤′×𝑐 is by representing the convolution

as matrix multiplication. This is done, for example, in [11] to get

the result

𝑅ℎ×𝑤×𝑐
′
∋ 𝐶𝑖, 𝑗,𝑘 ′ =

ℎ′∑︁
𝑖′=1

𝑤′∑︁
𝑗 ′=1

𝑐∑︁
𝑘=1

𝐴𝑖+𝛿𝑖′ , 𝑗+𝛿 𝑗 ′ ,𝑘 · 𝐵𝑘 ′,𝑖′, 𝑗 ′,𝑘

with a single matrix multiplication for 𝛿𝑖′ = 𝑖′ − ⌊ℎ′/2⌋, 𝛿 𝑗 ′ =

𝑗 ′ − ⌊𝑤 ′/2⌋, 𝐴𝑖, 𝑗,𝑘 B 0 if (𝑖, 𝑗) ∉ {1, . . . , ℎ} × {1, . . . ,𝑤}. For this,
we can define a ℎ𝑤 × ℎ′𝑤 ′𝑐 matrix 𝑋,𝑋 (𝑖, 𝑗 ),(𝑖′, 𝑗 ′,𝑘 ) = 𝐴𝑖+𝛿𝑖′ , 𝑗+𝛿 𝑗 ′ ,𝑘
and a ℎ′𝑤 ′𝑠 × 𝑠′ matrix 𝑌,𝑌(𝑖′, 𝑗 ′,𝑘 ),𝑘 ′ = 𝐵𝑘 ′,𝑖′, 𝑗 ′,𝑘 . Here, (𝑖, 𝑗) uses
the canonical mapping of {1, . . . , ℎ} × {1, . . . ,𝑤} to {1, . . . , ℎ𝑤} and
(𝑖′, 𝑗 ′, 𝑘) analogously. We then have 𝐶𝑖, 𝑗,𝑘 ′ = (𝑋 · 𝑌 ) (𝑖, 𝑗 ),𝑘 ′ . We

implemented convolutions for the networks in Section 7 like this

in MP-SPDZ. Different approaches to compute convolutions with

homomorphic encryption exists (e.g. [27]) and could be compared

to the matrix-based approach in future work.

FZKP
On input (ZKP, pk𝑖 , slack) from two parties 𝑃𝑖 , 𝑃 𝑗 the following

can happen repeatedly:

1. 𝑃𝑖 inputs 𝑥 ∈ 𝐴𝑝 .
2. If 𝑃𝑖 is honest 𝑃 𝑗 receives Encpk𝑖 (𝑥). Otherwise 𝑃𝑖 receive

Enc
′
pk𝑖
(𝑥) where Enc′ has noise at most slack-times as much

as regular encryption.

3. The adversary can abort any time.

Protocol 10: Zero-Knowledge Proof of Plaintext Knowledge.

Π
Special

Generate. Let 𝜙 : 𝐴𝜅𝑝 → 𝐴𝜆𝑝 be an 𝑅-linear map. 𝑃𝑖 has input

[𝜶 ]𝑖 for all 1 ≤ 𝑗 ≤ 𝑛.
1. 𝑃𝑖 samples [𝑎]𝑖 ∈ 𝐴𝜅𝑝 .
2. Each (ordered) pair (𝑃𝑖 , 𝑃 𝑗 ) invokes Πpair, Step 1, where 𝑃𝑖

inputs Enc
pk𝑖
( [𝑎]𝑖 ). 𝑃 𝑗 locally computes Enc

pk𝑖
(𝜙 ( [𝑎]𝑖 )).

3. Let offset = 𝑗 − 𝑖mod𝑛. If (0 < 2 offset < 𝑛) ∨ (2 offset =
𝑛 ∧ 𝑗 > 𝑖) the parties (𝑃𝑖 , 𝑃 𝑗 ) run Π

red-pair
, Step 2, where

𝑃 𝑗 inputs Encpk𝑖 ( [𝑎]𝑖 ), Encpk𝑖 (𝜙 ( [𝑎]𝑖 )), 𝜙 ( [𝑎] 𝑗 ), [𝑎] 𝑗 . 𝑃𝑖 re-
ceive 𝑑𝑖 𝑗 . 𝑃 𝑗 gets 𝑟𝑖 𝑗 .

4. Each (ordered) pair (𝑃𝑖 , 𝑃 𝑗 ) invokes Πpair, Step 2, where 𝑃 𝑗

inputs (Enc
pk𝑖
( [𝑎]𝑖 ), [𝜶 ] 𝑗 ). 𝑃𝑖 receive ˜𝑑𝑖 𝑗 . 𝑃 𝑗 gets 𝑟𝑖 𝑗 .

5. Each (ordered) pair (𝑃𝑖 , 𝑃 𝑗 ) invokes Πpair, Step 2, where 𝑃 𝑗

inputs (Enc
pk𝑖
( [𝜙 (𝑎)]𝑖 ), [𝛼𝑎] 𝑗 ). 𝑃𝑖 receives ˆ𝑑𝑖 𝑗 . 𝑃 𝑗 gets 𝑟𝑖 𝑗 .

6. 𝑃𝑖 locally combines the outputs to get (⟦𝑎⟧, ⟦𝑎𝜙 (𝑎)⟧) ∈ 𝐴𝜅𝑝×
𝐴
𝜇
𝑝 .

Check. Each party 𝑃𝑖 uses Frandom to sample [𝑦0]𝑖 ∈ 𝑀 . The

parties emulate F⟦·⟧ to authenticate 𝑦0 =
∑𝑛
𝑖=1 [𝑦0]𝑖 . Each party

receives ⟦𝑦0⟧𝑖 . To check the MACs of 𝑙 (components of) pair

entries ⟦𝑦𝑘⟧, 1 ≤ 𝑘 ≤ 𝑙 , the parties use F
random

to generate

𝑡 ∈ 𝑅𝑙 . 𝑃𝑖 opens [𝑧]𝑖 = [𝑦0]𝑖 +
∑𝑙
𝑘=1

𝑡𝑘 [𝑦𝑘 ]𝑖 . The parties run

F⟦·⟧.Check with input 𝑧 =
∑𝑛
𝑖=1 [𝑧]𝑖 . If the check fails, abort.

Triple. The parties invoke Generate and receive 𝑠 pairs

(⟦𝑎⟧, ⟦𝑎𝜙 (𝑎)⟧) ∈ 𝐴𝜅𝑝 ×𝐴
𝜇
𝑝 . The parties invoke Check on these

pairs. They store the 𝑠 authenticated pairs if the check succeeds.

Protocol 11: Protocol for Special Tuples.

E FUNCTIONALITIES
This appendix contains the additional protocols discussed in Section

5. Also, the simulator for the proof of Theorem 5.1 can be found

in Protocol 13. We additionally added ideal functionalities for our

protocols which coincide mostly (and intentionally) with those of

[31]. The functionalities F
random

outputs the same random element

to all parties; the functionality Fcommit is a simple commitment

functionality as presented in [18]. Both F
random

and Fcommit can

be implemented as in [18]. F
Triple

outputs a bilinear triple.

Finally, we also include a short proof why sending Enc
pk𝑖
( [𝑎]1)

in step 4 of Π
Triple

forces parties to authenticate the same [𝑎]1 later
in the same step:
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ΠTriple-2

Generate. 𝑃𝑖 has input [𝜶 ]𝑖 , Encpk′𝑗 ( [𝜶 ] 𝑗 ) for all 1 ≤ 𝑗 ≤ 𝑛.
1. 𝑃𝑖 samples [𝑎]𝑖 ∈ 𝐴𝜅

𝑝 , [𝑏 ]𝑖 ∈ 𝐴𝜆
𝑝 .

2. 𝑃𝑖 sends Encpk′𝑖 ( [𝑎]𝑖 ) invoking FZKP.
3. Let offset = 𝑗 − 𝑖 mod𝑛. If (0 < 2 offset < 𝑛) ∨ (2 offset =

𝑛 ∧ 𝑗 > 𝑖 ) the parties (𝑃𝑖 , 𝑃 𝑗 ) run:
a. 𝑃𝑖 sends Encpk′𝑖 ( [𝑏 ]𝑖 ) invoking FZKP.
b. Πred-pair, Step 2, where 𝑃 𝑗 inputs Enc

pk
′
𝑖
( [𝑏 ]𝑖 ) ,

Enc
pk
′
𝑖
( [𝜶 ]𝑖 ), 𝑏 𝑗 , 𝛼 𝑗 . 𝑃𝑖 gets 𝑑

′
𝑖 𝑗 . 𝑃 𝑗 gets 𝑟

′
𝑖 𝑗 .

c. Πred-pair, Step 2, where 𝑃 𝑗 inputs Enc
pk
′
𝑖
( [𝑎]𝑖 ) ,

Enc
pk
′
𝑖
( [𝑏 ]𝑖 ), 𝑎 𝑗 , 𝑏 𝑗 . 𝑃𝑖 gets 𝑑𝑖 𝑗 . 𝑃 𝑗 gets 𝑟𝑖 𝑗 .

4. The results are locally combined by 𝑃𝑖 to ⟦𝑎⟧𝑖 , ⟦𝑏⟧𝑖 , [𝑐 ]𝑖 .
5. Each (ordered) pair (𝑃𝑖 , 𝑃 𝑗 ) invokes Πpair, Step 2, where 𝑃 𝑗 in-

puts (Enc
pk
′
𝑖
( [𝑎]𝑖 ), [𝜶 ] 𝑗 , [𝛼𝑏 ] 𝑗 ) . 𝑃𝑖 gets 𝑑𝑖 𝑗𝑘 . 𝑃 𝑗 gets 𝑟𝑖 𝑗𝑘 for

𝑘 = 1, 2.

6. 𝑃𝑖 combines the outputs to (⟦𝑎⟧, ⟦𝑏⟧, ⟦𝑐⟧) ∈ 𝐴𝜅
𝑝 × 𝐴𝜆

𝑝 × 𝐴
𝜇
𝑝 .

Check. Invoke ΠTriple.Check.

Triple. Invoke ΠTriple.Triple.

Protocol 12: New LowGear-type Protocol.

STriple
𝐻 = {𝑖 ∈ {1, . . . , 𝑁 } : 𝑃𝑖 is honest} be the set of honest parties.
Generate.
1. For each (𝑖, 𝑗 ) run Πpair, Step 2 with

- if 𝑗 ∈ 𝐻 input (Enc
pk
′
𝑖
( [𝜶 ]𝑖 ), 0) . Set [ ˜𝑏 ] 𝑗 B 0.

For each 𝑖 ∈ 𝐻 receive and store 𝑑𝑖 𝑗 . For each 𝑗 ∈ 𝐻 store 𝑟𝑖 𝑗 .

2. For each 𝑖 ∈ 𝐻 locally combine the results to [𝛼 ˜𝑏 ]𝑖 .
3. For each (𝑖, 𝑗 ) run Πpair with:

- if 𝑖 ∈ 𝐻 input [�̃�]𝑖 B 0.

- if 𝑗 ∈ 𝐻 input (0, [𝛼 ˜𝑏 ] 𝑗 ) .
Store the outputs 𝑑𝑖 𝑗𝑘 for 𝑖 ∈ 𝐻 , and 𝑟𝑖 𝑗𝑘 for 𝑘 = 1, 2 and 𝑗 ∈ 𝐻 .

Store all ciphertexts Encpk𝑖
( [�̃�]𝑖 ) for all parties 1 ≤ 𝑖 ≤ 𝑛.

4. For each (𝑖, 𝑗 ) run Πpair, Step 2 with:

- if 𝑗 ∈ 𝐻 input (Encpk𝑖 ( [�̃�]𝑖 ),𝜶 𝑗 ) .
If 𝑖 ∈ 𝐻 receive and store

˜𝑑𝑖 𝑗 . If 𝑗 ∈ 𝐻 store 𝑟𝑖 𝑗 .

5. If 𝑖 ∈ 𝐻 combine the outputs to (⟦�̃�⟧𝑗 , ⟦ ˜𝑏⟧𝑗 , ⟦𝑐⟧𝑗 ) .
Check.
1. Use Frandom to sample [𝑦0 ]𝑖 ∈ 𝑅 for each 𝑖 ∈ 𝐻 . Emulate F⟦·⟧

to authenticate 𝑦0 =
∑𝑛

𝑖=1 [𝑦0 ]𝑖 . Store ⟦𝑦0⟧𝑖 for each 𝑖 ∈ 𝐻 .

2. Emulate Frandom to generate 𝑡 ∈ 𝑅𝑙 . Send [𝑧 ]𝑖 = [𝑦0 ]𝑖 +∑𝑙
𝑘=1 𝑡𝑘 [𝑦𝑘 ]𝑖 to the adversary for all 𝑖 ∈ 𝐻 . Receive [𝑧 ] 𝑗

from the adversary for all 𝑗 ∉ 𝐻 . Run F⟦·⟧.Check with input

𝑧 =
∑𝑛

𝑖=1 [𝑧 ]𝑖 . If the check fails, abort.

3. Rewind the adversary for random 𝑡 ∈ 𝑅𝑙 to reconstruct∑
𝑗∉𝐻 [𝑦𝑘 ] 𝑗 for each 1 ≤ 𝑘 ≤ 𝑙 .

Triple. Invoke Generate and receive 𝑠 triples (⟦�̃� 𝑗⟧, ⟦ ˜𝑏 𝑗⟧, ⟦𝑐 𝑗⟧) ∈
𝐴𝜅
𝑝 ×𝐴𝜆

𝑝 ×𝐴
𝜇
𝑝 for 1 ≤ 𝑗 ≤ 𝑠 . InvokeCheck on these triples. For each

1 ≤ 𝑗 ≤ 𝑠 emulate FTriple to receive (𝑎 𝑗 , 𝑏 𝑗 , 𝑐 𝑗 ) ∈ 𝐴𝜅
𝑝 ×𝐴𝜆

𝑝 ×𝐴
𝜇
𝑝 with

𝑎 𝑗𝑏 𝑗 = 𝑐 𝑗 . Adapt the shares (⟦𝑎 𝑗⟧𝑖 , ⟦𝑏 𝑗⟧𝑖 , ⟦𝑐 𝑗⟧𝑖 ) of honest parties
𝑖 ∈ 𝐻 suitably (given the shares from adversarial parties determined

by rewinding inCheck). Store the 𝑠 authenticated triples if the check
succeeds, else abort.

Protocol 13: Simulator for Π
Triple

.

ΠSpecial-2

Generate. 𝑃𝑖 has input [𝜶 ]𝑖 , Encpk′𝑗 ( [𝜶 ] 𝑗 ) for all 1 ≤ 𝑗 ≤ 𝑛.
1. 𝑃𝑖 samples [𝑎]𝑖 ∈ 𝐴𝜅

𝑝 .

2. Each (ordered) pair (𝑃𝑖 , 𝑃 𝑗 ) invokes Πpair, Step 2, where 𝑃 𝑗 in-

puts (Enc
pk
′
𝑖
( [𝜶 ]𝑖 ), [𝑎] 𝑗 ) . 𝑃𝑖 receives 𝑑𝑖 𝑗 . 𝑃 𝑗 has 𝑟𝑖 𝑗 .

3. The results are locally combined by 𝑃𝑖 to [𝛼𝑎]𝑖 .
4. Let offset = 𝑗−𝑖 mod𝑛. If (0 < 2 offset < 𝑛)∨(2 offset = 𝑛∧ 𝑗 >
𝑖 ) the parties (𝑃𝑖 , 𝑃 𝑗 ) runs Πred-pair, where 𝑃𝑖 inputs [𝑎]𝑖 and
𝑃 𝑗 inputs𝜙 ( [𝑎] 𝑗 ), [𝑎] 𝑗 , and Encpk𝑖 (𝜙 ( [𝑎]𝑖 ) ) computed locally

after Step 1. 𝑃𝑖 receive 𝑑𝑖 𝑗 . 𝑃 𝑗 has 𝑟𝑖 𝑗 .

5. Each (ordered) pair (𝑃𝑖 , 𝑃 𝑗 ) invokes Πpair, Step 2, where 𝑃 𝑗 in-

puts (Encpk𝑖 ( [𝜙 (𝑎) ]𝑖 ), [𝛼𝑎] 𝑗 ) . 𝑃𝑖 receives ˆ𝑑𝑖 𝑗 . 𝑃 𝑗 has 𝑟𝑖 𝑗 .

6. 𝑃𝑖 combines the outputs to (⟦𝑎⟧, ⟦𝑎𝜙 (𝑎)⟧) ∈ 𝐴𝜅
𝑝 × 𝐴

𝜇
𝑝 .

Check. Run ΠSpecial.Check.

Triple. Run ΠSpecial.Generate.

Protocol 14: Alternative Protocol for Special Tuples.

F⟦·⟧
The dictionary Val keeps track of authenticated values. For

simplicity entries of Val cannot be changed. Val is indexed by

Val .Keys. Entries of Val are elements of 𝑅.

Input. On input (Input, id1, . . . , id𝑚, 𝑥1, . . . , 𝑥𝑚, 𝑃𝑖 ) from 𝑃𝑖 and

(Input, id1, . . . , id𝑚, 𝑃 𝑗 ) from all other parties, set Val[id𝑗 ] ← 𝑋 𝑗
for all 1 ≤ 𝑗 ≤ 𝑚.

Linear Combination.Given (LC, idLC, (id𝑗 )1≤ 𝑗≤𝑚, (𝑎 𝑗 )0≤ 𝑗≤𝑚)

for 𝑎 𝑗 ∈ 𝑅 from all parties with id𝑗 ∈ Val .Keys for all 1 ≤ 𝑗 ≤ 𝑚,

set Val[idLC] = 𝑎0 +
∑𝑚
𝑗=1 𝑎 𝑗 Val[id𝑗 ].

Open. If (Open, id) from all parties, send Val[id] to Adv. After

receiving 𝑋 from Adv return 𝑋 to all parties.

Check. Given (Check, (id𝑗 )1≤ 𝑗≤𝑚, (𝑥 𝑗 )1≤ 𝑗≤𝑚) from all parties,

if Adv sends Ok and Val[id𝑗 ] = 𝑥 𝑗 for all 1 ≤ 𝑗 ≤ 𝑚, send Ok to

everyone. Else abort ⊥.
Abort. On input ⊥ from Adv, send ⊥ to all parties.

Protocol 15: Input Functionality.

Security Game for Authentication. The challenger C samples

[𝑎]1, [𝛼]1, 𝑟12 and sends an encryption Encpk
1

( [𝑎]1) under her pub-
lic key to the adversaryA.A sends Enc

pk
2

( [𝑎]2) with FZKP (under
his public key), and additionally Enc

pk
1

( [𝑎]1) ( [𝛼]2 + 𝛿2) − 𝑟21. C
returns Enc

pk
1

( [𝑎]2) [𝛼]1−𝑟12. Set 𝑎 = [𝑎]1 + [𝑎]2, 𝛼 = [𝛼]1 + [𝛼]2.
ThenA has to provide 𝛿1 ≠ 0,Δ such that 𝛼𝑎+[𝑎]1𝛿2+Δ = 𝛼 (𝑎+𝛿).
Note that this challenge is equivalent to finding 𝛿1 ≠ 0, 𝛿2,Δ such

that 𝛼𝛿1 = [𝑎]1𝛿2 + Δ, i.e. to guessing 𝛼 correctly, which has proba-

bility
1

|𝑅 | . Also note that A has no information on [𝑎]1 (and hence

on 𝑎) by the CPA-security of the encryption scheme; he has no

information on a Enc
pk
(𝛼1) (with pk instead of pk

′
); he has no in-

formation on [𝛼]1 (and hence on𝛼) by the information-theoretically

secure masking with 𝑟12.
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