
Verifiable Computing in Avionics for Assuring
Computer-Integrity without Replication

Johannes Reinhart∗, Bastian Luettig∗, Nicolas Huber†, Julian Liedtke† and Bjoern Annighoefer∗
ORCID: 0000-0002-3512-5220, 0000-0002-9358-1611, 0000-0001-6905-3571, 0000-0002-8289-4970, 0000-0002-1268-0862

∗Institute of Aircraft Systems, University of Stuttgart
†Institute of Information Security, University of Stuttgart

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1109/DASC58513.2023.10311290

Abstract—Safety-critical digital systems such as Fly-by-wire
control have demanding integrity and availability requirements
which significantly exceed the occurrence rates of random
hardware faults observed in digital computers. As a result,
system designers need to employ reliable fault detection and
mitigation techniques. Until now, the only method to achieve
sufficiently reliable fault detection for systems that can cause
hazardous or catastrophic events, is to replicate computer lanes
and detect faults by comparing outputs. However, this comes with
a large overhead in development cost, computing resources and
additional requirements towards the application. We propose to
apply a novel cryptographic technique to reliably detect faults
and thereby assure integrity of avionics computers: Succinct
Non-Interactive Arguments of Knowledge allow components to
quickly verify computations without repeating the computation.
We present a novel concept for building high-integrity avionics
systems and set up a laboratory demonstrator for a simplified
pitch control system. Our major results include the successful
demonstration of the first self-proving and self-verifying cyber-
physical system in a laboratory environment.

Index Terms—Fault Detection, Integrity, Safety, Succinct Non-
Interactive Argument of Knowledge, Systems Architectures, Ver-
ifiable Computing

I. INTRODUCTION

Avionics systems whose failures can lead to hazardous or
catastrophic events have challenging integrity and availability
requirements. The European Aviation Safety Agency demands
catastrophic failure conditions to be extremely improbable for
large civil aircraft (CS 25.1309), which translates to 10−9 h−1.
Complex aviation computers can fail due to random hard-
ware faults at rates of about 10−4 h−1 to 10−5 h−1: During
operation, the A310 slat-flap computer had a failure rate of
8 × 10−5 h−1 [1], for the design phase of the Boeing Fly-
By-Wire programme, a failure rate of 5 × 10−5 h−1 was
assumed [2] and the Common Remote Data Concentrators
in the Airbus A350 achieve failure rates of 10−5 h−1. In
order to satisfy the much lower required failure rates, system
designers need to employ reliable fault detection and mitiga-
tion techniques. Standard methods for fault detection within
a single computer lane include memory access checking,
watchdog timers, checksum-based information redundancy or
range and reasonableness checking [2], [3]. However, fault
detection within a single lane covers only about 95% [4]

This work was supported by the Terra Incognita Programme of the
University of Stuttgart.

of all faults. This level of integrity is not sufficient for
safety-critical systems. Until now, the only method to achieve
sufficiently reliable fault detection is to replicate computer
lanes and detect faults by comparing outputs of computer
pairs [4], [5], triples [6] or quadruples [7]. Unfortunately,
replicating computer lanes comes with a large overhead in de-
velopment cost, resources and additional requirements towards
the application. It usually requires replica management that
includes ensuring synchronicity and data reconciliation among
the computer lanes [3]. There are more efficient fault tolerance
techniques for simple functions, but they usually come with
the disadvantage of imprecise monitoring limits and therefore
high numbers of false positives.

We propose to apply a novel technique from the fields
of cryptography to reliably detect faults and thereby assure
integrity of avionics computers: Verifiable Computing [8]
allows computations to be checked for correctness without
requiring the computation to be carried out twice. This method
became practical only about ten years ago, when the Pepper
Project [9], Pinocchio [10] and TinyRAM [11], [12] emerged
as the first practically usable implementations of such systems.
A refinement of the original Pinocchio protocol by Groth [13]
is considered the state of the art system in terms of verification
speed. Newer systems include Bulletproofs [14], Ligero [15],
STARK [16], Plonk [17], and Halo [18].

Our contributions are the introduction of a new concept
using Verifiable Computing for building avionics systems with
high integrity requirements. Compared to current systems,
they will not require computer lanes to be replicated and,
therefore, might be lighter and easier to develop. The new
form for proving correctness comes with actual dissimilarity
compared to standard monitoring implementations. Further-
more, we present a laboratory demonstrator representing a
pitch control system as a proof-of-concept.

The remaining parts of the paper are structured as follows:
In Section II, we introduce related work. In section III,
we present a detailed description of our concept and the
involved algorithms. Section IV shows how we implemented
the concept, which tools we used and what modifications we
applied to existing methods. In section V, we present our
proof-of-concept laboratory demonstrator and in the following
section VI we show, how the concept can be applied to typical
avionic systems of large aeroplanes.

https://doi.org/10.1109/DASC58513.2023.10311290

II. RELATED WORK

So far, most applications of Verifiable Computation are re-
lated to the Web3 domain encompassing distributed ledger and
blockchain technology. They include the privacy preserving
digital currency ZCash [19], so-called Roll-ups for improving
the efficiency of existing blockchains [20] and new blockchain
protocols such as Mina [21]. Other possible applications rang-
ing from healthcare services with sensitive personal data [22]
to private voting systems [23] have been proposed. In the
domain of aviation, Lorünser et. al [24] have presented a
framework that uses Verifiable Computing to carry out non-
centralized verifiable calculations for air traffic management.
As to the authors’ knowledge, Verifiable Computing has not
yet been considered as a method for ensuring integrity in
safety-critical systems.

In the railway domain, fail-safe systems with an extensive
use of information redundancy and software flow checks for
error detection have been certified and are used among others
in the Metro Systems of Paris and Lyon [25]. The vital
coded microprocessor presented by Forin in [26] achieves high
fault coverage by encoding operands and defining operations
that directly carry out calculations on the encoded operands
without en- and decoding. Correctly encoded values have
special properties throughout the computation, which are likely
to be changed, should a fault occur, and thus can be checked
at the end of a computation. This process is supported by
special hardware. This method has been revisited and modified
in more recent works [27], [28]. There are some parallels to
our concept, however this approach makes many assumptions
about hardware failures and their propagation in a micropro-
cessor, which might be difficult to prove in a rigid qualification
process, such as required for safety-critical systems in aviation.

III. CONCEPT

We use the following notation throughout this paper: Low-
ercase letters denote values or data items, they can have a
superscript index t denoting the current time step1. Subscript
indeces are used for distinguishing data items with similar
names or, if it is a number or i, for elements of an array of
similar items. Functions are denoted with upper case letters.
A function denoted with letter A is defined by an algorithm
with an optional state, which appears both as an input and as
an output to the function. A function denoted with letter C is
an arithmetic circuit, used to represent a computation within a
Verifiable Computing scheme. A relation R is a set of values
or data items which satisfy a given system of equations.

Our goal is to realize a law on an avionics computer using
Verifiable Computing, such that components using the results
can reliably detect erroneous output with high probability.
The law (Fig. 1) can be any system function, such as a
control law, a monitoring application or some other data
processing function. It can be formally defined as a function
(xout, s

t
law) ← L(xin, s

t−1
law) with internal state slaw, taking

1For better readability, index t is omitted when its presence is easily inferred
from the context.

input values xin and generating output xout. The law is
executed repeatedly such that the law’s output depends on the
input and the state from the previous time step.

z

L

st−1
law stlaw

xoutxin

Fig. 1. Visualization of the law to be realized: the computer executes the law
L every time step t. It takes input xin and generates output xout, with an
internal state slaw stored in memory z.

If hardware would not fail, this could be achieved by
implementing L as a computer program on the computing
device. The device receives and sends input and output data
via one or several databusses and stores its state in memory.
Taking unreliable hardware into account, such a system could
produce erroneous outputs indistinguishable from correct out-
puts. Therefore, extra effort is required to ensure integrity. The
conventional approach uses two computing lanes running the
same program. The lanes cross-compare the outputs and detect
an error when the outputs differ. The error can be detected but
not necessarily attributed to one of the two lanes, reducing
reliability. Sensor values are checked in a similar fashion. The
measurements of multiple independent sensors are compared
to detect erroneous input values.

In our approach, we do not duplicate the computing device,
but instead, we make use of a Verifiable Computing scheme
with knowledge soundness. A Verifiable Computing scheme
is a non-interactive proof system consisting of a prover algo-
rithm, which produces a proof attesting to a correct evaluation
of a circuit C for a statement Φ, and a verifier algorithm
verifying the prover’s claim. C can represent function eval-
uations and arithmetic constraints in general. In other words,
the Verifiable Computing scheme allows proving the correct
execution of a computer program represented as C. The circuit
has input, output and intermediate wires that correspond to the
input and output of the computer program and results of in-
termediate steps in the calculation. These can be either part of
the public statement Φ or the hidden witness ω. Additionally,
we make use of a digital signature scheme resistant against
existential forgery and a hash function resistant against second
preimage computation. These cryptographic primitives allow
us to construct a system which satisfies integrity requirements
without replicating the computing device. Fig. 2 depicts our
construct. Each input message min,i = (x, c, σ)in,i consists of
a value xin,i, a message counter cin,i and a signature σin,i. The
device evaluates the circuit C and runs the prover algorithm
proving correct evaluation of C. C consists of verifying the
signatures of every input message (CVs

) and checking the
message counter c (Cmv). The law L is also represented in
the circuit (CL), taking st−1

law and xin = (xin,1, xin,2, ...) as
inputs and evaluating the updated state st and the output
value xout. The entire state s = (slaw, c) contains the law’s
state slaw as well as the current message counter c, which

CH

CH

xout

ht

π

CLmin,1

min,2

Pvc

C

stst−1

Cinc

CVs Cmv

CVs Cmv

z

ht−1

ω Φπ

Fig. 2. Digital computing device fulfilling integrity requirements without
replication. The device computes circuit C with statement Φ (solid lines) and
witness ω (dashed lines). The state s is stored in memory z and the prover
algorithm produces proof π (dotted lines).

increments in each time step (Cinc). The updated state is
stored in the computing device’s memory z. The device
commits to its state by evaluating the state’s hash h before
and after the computation (CH). The device finally outputs
mout = (xout, h

t, π) consisting of the law’s output xout, the
proof π, and the hash of the updated state ht.

The verifier can now check whether xout has been calcu-
lated according to the law L by running the verifier algorithm
on xout, ht, ht−1 and π. ht must be stored for verifying the
output at the next time step. If the computation were corrupted
due to a hardware failure, the proof verification would fail.
Here, we provide an intuitive explanation, why this is the case.
A more formal argument is given later.

A. Failure types

There are four failure types possibly affecting the compu-
tation:

HW-FAIL-1: There could be any error in the evaluation of
the circuit C. For example, the computer does not correctly
compute the law. The verifier detects such errors according to
the properties of the non-interactive proof system.

HW-FAIL-2: The state could have been changed between
two time steps. As the hash function is resistant against second
preimage computation, the device does not know another state
evaluating to the same hash. Therefore, the hash value of the
modified state will be different from the hash value of the
state, which the system has committed to in the previous time
step, causing the verification to fail.

HW-FAIL-3: The circuit including the law could have been
evaluated correctly, but with input values not from the actual
received message. In this case, the computing device must
know a signature of such a value, which is impossible due to
the signature scheme being secure against existential forgery.

Type 4 results from corrupted input messages due to a
failed sensor and contains a corrupted value, but a correct
signature. The conventional approach of using multiple similar,
independent sensors resolves this issue. We assume, that
independent sensors do not fail in a similar manner at the
same time. Hence a deviation between redundant values will
be an indicator for a fault. We do not consider this type further,
as we will not solve it using Verifiable Computing.

Following, we provide a more formal description of the
components and their properties.

B. The Verifiable Computation Scheme

For proving and verifying a computation in a Verifiable
Computing scheme, the computation is represented as a circuit
C : Hn × Hh → {0, 1}, (Φ, ω) 7→ C(Φ, ω) taking statement
Φ and witness ω and outputting 1, if the circuit is satisfied,
meaning the program was executed correctly, or 0 otherwise.
The elements of the statement and witness are defined over
the domain H, which depends on the chosen proof system.
Given a subset of ω and Φ as input elements, it is possible to
evaluate the circuit, which means to efficiently compute the
remaining elements of Φ and ω. As an example, our notation
“ωL, xout, s

t
law ← evaluate CL(xin, s

t−1
law)” means, that given

the inputs xin and st−1
law , which are part of the witness and

statement of the circuit CL, we calculate the remaining parts
of the witness and statement, which is (ωL, xout, s

t
law). The

circuit C defines the relation R = {(Φ, ω) : C(Φ, ω) = 1}.
We use a Succinct Non-Interactive Argument of Knowledge
(SNARK), which allows a computation to be proven with just
a single short piece of data, called the proof π. Following the
definition of Bitansky et al. [29], a Non-Interactive Argument
of Knowledge is the set of three algorithms (Gvc,Pvc,Vvc):

• (κvc, κ̃vc)← Gvc(C): The generator algorithm generates
a prover-key κvc and a verifier-key κ̃vc given the circuit
C.

• π ← Pvc(κvc,Φ, ω): The proving algorithm takes the
prover-key and computes a proof π given the statement
and witness.

• v ← Vvc(κ̃vc, π,Φ): The verifying algorithm takes the
verifier-key, the statement and the proof and produces
the verification result v ∈ {0, 1} indicating either a pass
(1) or a rejection (0).

They satisfy the following properties:
Completeness: If the output is the correct result of the

computation, the verifier algorithm approves with a probability
(Pr) of 100%:

Pr

 Vvc(κ̃vc, π,Φ) = 1

∣∣∣∣∣∣
(κvc, κ̃vc)← Gvc(C)
π ← Pvc(κvc,Φ, ω)
∀(Φ, ω) ∈ R

 = 1.

(1)
Computational knowledge soundness: If a prover does

not know a witness ω or outputs a value, which is not a result
of the computation, then the verifier accepts with negligible
probability (ε). Formally, for every efficient2 adversary A,
there exists an efficient extractor E, such that

2An efficient algorithm takes polynomial execution time and memory.
Informally, the basic argumentation is, that by increasing the problem size,
there will be a point, where an efficient algorithm can be executed with
bounded resources, while an inefficient algorithm (i.e. its complexity is more
than polynomial) cannot be executed any more.

Pr

 Vvc(κ̃vc, π,Φ) = 1
(Φ, a) /∈ R

∣∣∣∣∣∣
(κvc, κ̃vc)← Gvc(C)
(π,Φ)← A(z, κvc)

a← E(z, κvc)

 = ε.

(2)
Knowledge soundness is necessary for hiding the signed

input values and the state of the computation as part of the
witness, reducing the information to be transmitted between
prover and verifier.

C. Signature Verification

We use an asymmetric signature scheme (Gs,Ss,Vs) con-
sisting of a key generator (κ̃s, κs) ← Gs(), a signing al-
gorithm σ ← Ss(κs,m) and a verification algorithm v ←
Vs(κ̃s, σ,m), v ∈ {0, 1} with properties:

Completeness: Messages signed with the correct key are
accepted:

Pr

[
Vs(κ̃s, σ,m) = 1

∣∣∣∣ (κ̃s, κs)← Gs()
σ ← Ss(κs,m)

]
= 1. (3)

Resistance against existential forgery: Signatures to new
messages cannot be created without the private key, even after
seeing arbitrarily many valid signatures. For any adversary A
and chosen messages mi:

Pr

 Vs(κ̃s, σ,m) = 1
m /∈ {mi}

∣∣∣∣∣∣
(κ̃s, κs)← Gs()
σi ← Ss(κs,mi)

(m,σ)← A({mi, σi})

 = ε.

(4)

D. Hash function

We use a hash function h← H(m) which is resistant against
second preimage attacks.

Resistance against second preimage attacks: Given a
message and it’s hash, a second different message with the
same hash cannot be found efficiently. For any efficient
adversary A:

Pr

[
h = H(m2)
m2 ̸= m

∣∣∣∣ h = H(m)
m2 = A(h,m)

]
= ε. (5)

E. Formal Failure Model

We model the behaviour of a digital computer as the com-
position of the computer program and the hardware transfer
function Ht. The hardware transfer function Ht describes the
effect of the unreliable computing device. At time steps, when
the hardware works correctly, it is the identity function E.

F. Algorithms

Our proposed system requires three algorithms: The in-
put conditioning algorithm (Asensor) for signing the input
values runs on devices providing inputs for the law. This
could be sensors or other upstream computing devices. The
computing algorithm (Acomputing) runs the actual law and
generates the proof. The verification algorithm (Aactuator)
runs on downstream devices or actuators. The algorithms

may have a state that is stored between consecutive invoca-
tions, e.g. for using Acomputing , our notation is: mout, s

t =
Acomputing(min, s

t−1).
The input conditioning increases a message counter and

signs an input value together with the message counter.

Algorithm 1 Input Conditioning Asensor

Input: xin

Output: min

State: c
1: c← c+ 1
2: σ ← Ss(κs, (xin, c))
3: min ← pack (xin, c, σ)

The computing algorithm (Acomputing) evaluates the circuit
C, finding assignments to the the hash function relations

RH = {(ωH, s, h) : H(s) = h},

signature verification relations

RVs
= {(ωVs

, x, c, σ) : Vs(κ̃s, σ, (x, c)) = 1},

the message counter check relations

Rmv = {(ωmv, c, cin) : c = cin},

the message counter increase relation

Rinc = {(ωinc, c
t−1, ct) : ct = ct−1 + 1, },

and the law relation

RL = {(ωL, xin, xout, s
t
law, s

t−1
law) :

L(xin, s
t−1
law) = (xout, s

t
law)}.

The statement Φ = (xout, h
t, ht−1) consists of the law’s

output, and the two hash values. The input values, and in-
termediate values of the circuit assignment are part of the
witness. Note that the evaluations of the hash circuit (CH),
law circuit (CL) and message check circuit (Cinc) generate
valid assignments for the corresponding relations, while the
evaluations of CVs

and Cmv can only yield valid assignments,
if the signature and the message counter are correct.

Algorithm 2 Computing Acomputing

Input: min

Output: mout

State: s
1: ωH, h

t−1 ← evaluate CH(s)
2: for all min,i in min do
3: (xin,i, ci, σi)← unpack min,i

4: ωVs,i ← evaluate CVs
(xin,i, ci, σi)

5: ωmv ← evaluate Cmv(c, cin,i)
6: end for
7: ωinc, c

t ← evaluate Cinc(c
t−1)

8: ωL, xout, s
t
law ← evaluate CL(xin, s

t−1
law)

9: ωH, h
t,← evaluate CH(s)

10: π ← Pvc(κvc, ω,Φ)
11: mout ← pack (xout, ht, π)

The third algorithm checks the validity of an output mes-
sage and returns the output value xout and a status value v
indicating the values validity:

Algorithm 3 Verification Aactuator

Input: mout

Output: xout, v
State: ht−1

1: (xout, h
t, π)← unpack mout

2: v ← Vvc(κ̃vc, π, (xout, h
t−1, ht))

3: ht−1 ← ht

We formally define our notion of integrity for a system and
show that the construction satisfies the definition. We assume,
that the system behaves correctly for the first t− 1 time steps
and look at the system at time step t. The device has correct
state st−1. The device receives an input message for each input
value: min,i ← Asensor(xin,i), min = (min,1,min,2, ...).
System Integrity:
1. If there is no failure in the hardware (the transfer function
is the identity function, H = E), the system verification
algorithm accepts and outputs the value according to L:

Pr

 v = 1
xout, s

t
law =

L(xin, s
t−1
law)

∣∣∣∣∣∣
H = E

mout, s
t ← H(Acomputing(min, s

t−1))
xout, v ← Aactuator(mout)


= 1.
(6)

2. If the system outputs erroneous values, the probability
that Aactuator accepts is negligible:

Pr

 v = 1

∣∣∣∣∣∣∣∣
mout, s

t ← H(Acomputing(min, s
t−1))

z ← Aactuator(mout)
xout ← unpack mout

xout, s
t
law ̸= L(xin, s

t−1
law)

 = ε.

(7)
We first show, that (6) holds. In the case that H = E, then

due to (3), (ωVs
, x, c, σ) ∈ RVs

, and as both sensor and device
have increased the message counter, (ωmv, c, cin) ∈ Rmv.
Therefore for the whole circuit (ω,Φ) ∈ R. Then, according
to (1), Vvc outputs 1.

Next, we show that (7) holds for our system.
We split the condition xout, s

t
law ̸= L(xin, s

t−1
law) into the

three failure types from III-A:
1) xout, s

t
law /∈ {(x, s2) : x, s2 = L(xin, s1) ∀xin, s1}

2) xout, s
t
law = L(xin, s1) ∧ s1 ̸= st−1

law

3) xout, s
t
law = L(x, st−1) ∧ x ̸= xin

HW-FAIL-1: In this case, (ωL, xin, xout, s
t
law, s

t−1
law) /∈ RL

and therefore (Φ, ω) /∈ R. According to (2), the probability
that Vvc accepts is negligible.

HW-FAIL-2: Either RH would not be satisfied, resulting in
the verifier rejecting due to (2), or if the relation was satisfied,
then a state must be extractable from the system, such that
h = H(s) = H(st−1) with s ̸= st−1. According to (5), this is
improbable.

HW-FAIL-3: Here, (ωVs , x, c, σ) /∈ RVs and therefore
(Φ, ω) /∈ R as in case 1. Otherwise, due to (2), a
signature must be extractable from the device, such that
Vs(κ̃s, σ, (xin, cin)) = 1. As cin changes in each iteration,
(xin, cin) is not in the list of messages seen by the system,
therefore (4) applies, stating that this case has negligible
probability.

IV. IMPLEMENTATION

For instantiating the Verifiable Computing scheme, we use a
modified version of the Groth16 preprocessing pairing-based
SNARK presented in [13]. This system is considered state-
of-the-art in terms of verification speed and proof size and
is well established in several Web3 applications, for example
ZCash [30] and Mina [21] use a slightly modified version
of this SNARK. As Groth16 is pairing-based, the domain H
is the prime field Fr with r being the order of the prime
subgroup G1 of points on a pairing-friendly elliptic curve.
The relation R is a rank one constraint system (R1CS). We
will provide details on the constraints in our setup later in
this chapter. As a basis for our implementation, we used
the open-source C++ library libsnark3, which implements a
number of pairing-based SNARK systems and offers a choice
of pairing-friendly curves. We also made use of the open-
source library ethsnarks4, a project originally intended for en-
abling SNARKs on the Ethereum blockchain. It conveniently
provides implementations of R1CS circuits compatible with
libsnark including circuits for hash functions and EdDSA
signature verification.

We made the following modifications to the original
Groth16 proof system: 1.) We removed the randomization
factors in the prover algorithm, which are only needed for
the zero-knowledge property of the SNARK. Information
exposure is not of concern in our application. 2.) Additional to
libsnark’s Barreto-Naehring curve with prime order subgroup
size of 254 bits (presented in [12]), we used a Barreto-
Naehring curve with a 124 bit prime order subgroup size and
a twisted Edwards curve with a 61 bit prime order subgroup
size for speeding up operations over the field Fr and the
elliptic curve group G1. We implemented both curves taking
the existing curve implementations as a template. Using curves
with small subgroup size is justified, as our system is not
required to be secure against intentional abuse, but must rather
protect against randomly occurring hardware faults, which
significantly lower the requirements on the group size. 3.)
Some smaller performance improvements include removing
the representation of the circuit from the proving key in
libsnark and using an FFT algorithm tweaked for better cache
usage. These two improvements were taken from Loopring’s5

fork of libsnark, see [31] for details.
For the digital signature algorithm, we chose EdDSA, which

allows fast signature verification when encoded in R1CS.
EdDSA signature verification consists of operations on group

3https://github.com/scipr-lab/libsnark
4https://github.com/HarryR/ethsnarks
5Loopring is an application on the Ethereum blockchain using SNARKs.

elements of elliptic curves over prime fields, therefore it
can be adapted to SNARK circuits by selecting a so-called
SNARK-friendly elliptic curve (inner curve), whose definition
field has the same order as the prime order group of the
SNARK curve (outer curve). This a common optimization
for cryptographic primitives embedded in SNARKs [32]–[36].
However, it requires a different inner curve for each outer
curve.

We added the following modifications to the EdDSA sig-
nature verification circuit from ethsnarks: We replaced the
circuits for elliptic curve point addition and multiplication with
those used by ZCash [30] to reduce the number of constraints.
Additionally, as the inner curve provided by ethsnarks only fits
to the libsnark Barreto-Naehring curve, we implemented inner
curves for the two additional outer curves.

A. Choice of Security Parameters

In our application, we want to reliably detect computing
faults due to random hardware failures. In order for the system
to be certified, it must be shown, that the probability of an
undetected failure is sufficiently low, depending on the failure
effect. For that, we use a conservative failure model, that
provides an upper bound to the undetected failure probability.
We model the malfunctioning device as a computationally
bounded adversary, trying to cause an undetected failure of
the system. Using cryptanalytic tools, we can then estimate
the adversary’s success probability. This model is justified, as
a device breaking a cryptographic scheme due to some random
malfunction cannot have a higher probability of success than
the same device using an efficient algorithm to break the
scheme. The security parameter allows to set the upper bound
for the probability of an undetected failure: The larger the
parameter, the less probable an undetected failure becomes.
However, computational effort also increases with the security
parameter.

Here we provide a rough sketch on how to chose the
security parameter. The details in a real system will depend on
the system’s purpose, requirements, environment, etc. First, a
functional hazard assessment usually yields a failure effect, to
which a targeted maximum failure probability can be assigned.
On large transport aircraft, for failures causing catastrophic
events, this is typically on the order of 10−9 h−1. Dividing
it by the device’s failure probability results in the maximal
probability for not detecting the failure, which would be
10−9 h−1/10−5 h−1 = 10−4 for a modern robust aviation
computer.

If we assume that a device’s failure must be detected within
∆t = 1 s, we need to show, that an algorithm running for 1 s
has a probability of less than 10−4 of generating a fake proof.
As evident from the qualitative analysis in chapter III, there
are several ways to produce a fake proof, such as forging a
signature, finding a second-preimage to the hash function or
directly targeting the proof system. The parameters of each
of the cryptographic primitives should be chosen, such that a
breach is equally impossible. For sake of brevity, we will only
consider the direct targeting of the proof system and chose

parameters deemed equivalent for the other cases. A more rigid
analysis should consider every case individually.

We note that the security of the Groth16 proof system
is based on the hardness of solving the discrete logarithm
problem on the underlying elliptic curve. That is, if one is able
to fake Groth16 proofs, one is also able to compute discrete
logarithms on that curve. Therefore, in the following, we will
analyse the hardness of the discrete logarithm problem in our
setting. The best known generic algorithm for solving this
problem is Pollard’s rho algorithm. The success probability
of this algorithm depends on the number of iterations k it is
executed and on the security parameter, which is the size of
the group N = |G| (see e.g. [37]):

Pr =

k∑
i=1

i

N
exp(−i2/(2N)). (8)

For the curves mentioned above, we have log2(|G1|) = 254
and 124 for the Barreto-Naehring curves (BN254, BN124) and
61 for the Edwards curve (ED61). The other groups have size
log2(|G2|) = 2 log2(|G1|), log2(|GT |) = 12 log2(|G1|)
for the Barreto-Naehring curve and log2(|G2|) =
3 log2(|G1|), log2(|GT |) = 6 log2(|G1|) for the Edwards
curve.

Each iteration of Pollard rho involves one group addition
operation. We profile group additions for each of our curves
on our target computing device (Intel i5-12500T processor,
restricted to a single core) to estimate k for ∆t = 1 s. Using
(8) gives the maximal success probabilities in table I for the
selected curves.

TABLE I
SUCCESS PROBABILITY OF POLLARD RHO ALGORITHM FOR ∆t = 1 s ON

OUR TARGET COMPUTING DEVICE.

Curve ED61 BN124 BN254

G1 8× 10−6 9× 10−45 2× 10−96

G2 1× 10−26 1× 10−66 4× 10−218

GT 6× 10−65 9× 10−143 <2× 10−308

As we can see, the significant restricition of the computing
capability allows to choose significantly lower security pa-
rameters than recommended for security applications, as these
usually try to protect against an attacker with a large cluster
of high-performing special hardware and several years of
runtime. With our assumptions and model, the Edwards curve
would be sufficient. It should be noted, however, that if the
malfunctioning device is modelled such that it is not restricted
to just generic group operations, more efficient algorithms,
such as the General Number Field Sieve for solving the
discrete logarithm on the target group GT , exist. This example
should not undermine the fact, that finding a suitable security
parameter can be quite difficult [38] and requires a more
careful and thorough analysis than what would fit into this
paper. However, keep in mind, that we conservatively assume

that a random hardware fault leads to an efficient algorithm
for faking a proof.

B. Implementation of the Circuit

While most computations on digital avionics computers use
integers, fixed-point or floating-point numbers, the circuits for
our SNARK proofs are defined over a finite field H = Fr

corresponding to the curve’s prime order group G1. Therefore,
finite field elements must be used to represent the actual
data types. Addition and multiplication of finite field elements
correspond to addition and multiplication of integers modulo
the field order. We represent unsigned integers iu ∈ [0, n]
and signed integers is ∈ [−n, n] with a single prime group
element g ∈ Fr. Range checks of g at appropriate locations
in the circuit enforce that overflows cannot occur. Note that
the maximal range is limited by |Fr| = |G1|, such that with
our smallest curve, integers are restricted to at most 61 bits.
Negative integers are represented by the additive inverse of the
field −|i| = r−|g|. Therefore, addition and multiplication are
trivial. Integer division (with remainder) is more expensive
in terms of circuit size, as this operation requires several
range constraints. For representing decimal numbers we did
not implement floating-point arithmetic but instead use simpler
fixed-point arithmetic. We represent fixed-point numbers d as
a tuple of a field element g and an exponent e: d = g · 2−e.
The exponent is not a variable in the circuit but a fixed
constant associated to the value. It is publicly known as part
of the circuit. Addition of a number with the same exponent
is achieved by adding the field elements. For an addition of
a number with a different exponent, the numbers are first
converted to have a common exponent. Multiplication of a
fixed-point value to another is achieved by first multiplying
the field element and then dividing by 2e.

A central part of the circuit is the law L. In control
applications, the essential part is typically a discretized linear
controller. In our proof-of-concept demonstration, we use a
PT1 controller with time-constant T1, steady-state gain P and
sample time Ts. In discretized state-space form, it is

xt = axt−1 + (1− a)ut

yt = Pxt−1

a = exp(−Ts/T1).

(9)

For sufficiently reducing rounding errors, the internal state
x is implemented as a fixed point number x = x̃ · 2−e with
exponent of e = 16. The constraints for the circuit are6:

⌊a · 2e⌋x̃t = 2eq1 + q2

q1 + ⌊(1− a)2e⌋u = x̃t+1

⌊P ⌋x̃t = 2ey + q3

(10)

Additionally, range constraints need to be set for some of
the variables:

0 ≤ q2 < 2e, −2e ≤ q1 < 2e

0 ≤ q3 < 2e, −2e ≤ y < 2e.
(11)

6⌊..⌋ indicates cutting off decimal places.

Each of these range constraints translates to e R1CS con-
straints, see [30] for details.

The state xt−1, xt is input of the hash function, as it is
part of the whole system’s state s. u is an input value,
and y is the output value. For redundant input values, a
monitoring function is implemented, which in our example
is a simple range check between the two input values with
a fixed threshold ∆, and a passthrough of one of the inputs,
which is cheaper in terms of constraints than an average:

−∆ ≤ u1 − u2 < ∆

u = u1.
(12)

V. DEMO EXAMPLE

We chose a simplified pitch controller that deflects an
elevator to demonstrate our initial concept. Fig. 3 shows the
architecture and exchanged signals and Fig. 4 is a photograph
of the laboratory setup. The system consists of a stick, an
input/output module (IOM) that reads the sensor value, a
computing module (CPM) that computes the target elevator
deflection and the IOM2 that controls the elevator. The demon-
strator shows three different aspects: (1) message signing
(IOM), (2) law execution of proof computation (CPM), and
(3) proof verification (IOM2).

A. General architecture and operation

The IOM reads the current stick position x̃Φ, executes
the sensor-application (Asensor), which generates the corre-
sponding signature σϕ, and transmits the data inside message
msensor = (xϕ, cϕ, σϕ) to the Core Processing Module
(CPM).

The CPM executes the computing application (Acomputing),
which checks the signature and computes the control al-
gorithm. The CPM generates a proof π. It then sends
mcommand = (xη,h , π) to the outbound IOM2.

IOM2 executes the actuator application (Aactuator), checks
if the proof matches the command and controls the actuator
accordingly. If the proof fails, IOM2 indicates an error and
fixes the actuator position.

All computers, IOM, CPM, and IOM2, utilize an Intel Core
i5-12500T CPU and 16GByte RAM. They connect to the
same private Ethernet network. The modules operate on a
standard Debian GNU/Linux Minimal, we did not use a real-
time Kernel and did not add any specific configuration. The
system did not execute any GUI and was remotely accessed
using SSH over Ethernet via a dedicated network.

During a one-time compile action, each module compiles its
own application. The keys are then distributed to each device.

B. Demonstration Scenario

We defined three demonstration scenarios, one shows nor-
mal operation (i), one an error within the CPM (ii), and the
third a discrepancy in the sensor signals (iii).

For scenario (i), we started the applications on IOM
(Asensor), CPM (Acomputing) and IOM2 (Aactuator) and
observed sensor data, computation and actuator. First, the stick
was deflected and the actuator was expected to follow. For

Stick IOM CPM IOM2 Elevator
x̃ϕ

signs verifies

msensor

(xϕ, cϕ, σϕ)

proves

mcommand

(xη,h , π)

Fig. 3. Demonstration concept with exchanged data

scenario (ii), a hardcoded fault in the CPM software was
triggered, and the elevator was expected to stop its movement.
IOM2 should indicate this condition. For scenario (iii), we
adapted scenario (i) and connected two sensors with IOM
to the CPM. The CPM application (Acomputing) compares
the sensor values. Due to an out-of-limit discrepancy, the
application is expected to throw an error.

Fig. 4. Laboratory demonstrator of a simplified pitch control system with a
real-time Verifiable Computing controller

C. Results

The demonstration scenarios performed correctly. Faults
within the signature, the message counter, and the command
were properly detected and correctly attributed. The first
scenario even revealed an integer overflow bug that we unin-
tentionally implemented. The scenarios (ii) and (iii) show that
the failures are detected as intended. The verifiable computing
approach ensures that sensor monitoring works correctly and
enables correct failure attribution. The latter becomes much
more relevant with more sensors in the system and applications
on the CPM. Then the verifier can passivate select commands
instead of the entire module.

For the given hardware and setup, the system operated at
10Hz. The main limiting factor in terms of computational
runtime is the proof generation on the CPM computer.

VI. APPLICATION IN AVIONICS SYSTEMS

In the following section, we discuss, how we imagine the
concept to be applied to typical avionics systems. We consider
the two types of system architectures typically found in large
transport aircraft: In a federated architecture, the different
system functions are implemented on separate hardware de-
vices, each responsible for a limited number of tasks. Typical
communication buses between devices are ARINC 429 and
CAN. Additionally, computing devices have input and output
interfaces for directly interacting with sensors or actuators

using analog or discrete signals. In our concept, sensor values
are signed. This can either be carried out by the sensor itself, if
it is equipped with appropriate electronics and communicates
via a field bus. In the case that it only provides discrete or
analog signals, the computing device interfacing the sensor
can digitally sign the values. Actuator electronics or the
computing device interfacing it verifies the command. The
outlined concept ensures the integrity of computations in
between. As an example, we consider an autopilot inspired
by the Airbus A340 autoflight system. The central part of
the autoflight system in the classical concept are four flight
guidance computer lanes (FGC) arranged in pairs, that allow
a fail-operational, fail-passive behaviour as required for auto-
matic landings. The autopilot gets the pilot’s input via the
Flight-Control Unit (FCU), the Flight-Management System
(FM), Navigation Computers (NAV) and Air Data Inertial
Reference Units (ADIRU). Autoflight commands are passed to
the Primary (PRIM) Flight Control Computers, which together
with additional Secondary Flight Control Computers (SEC)
command the control surface actuators. With our concept,
the two duplex guidance computers could be reduced to two
simplex guidance computers (Fig. 5) while still having fail-
operational, fail-passive behaviour, as the original system. The
FCU, FMs, ADIRUs and NAVs would in this case sign their
data using Asensor. The simplex flight guidance computers can
then compute their commands and prove the computation’s
correctness with Acomputing . The FCPCs can run the verifier
algorithm Aactuator. If one of the FGCs failed, this would be
detected by the verification algorithm, and the FCPCs would
accept commands from the remaining FGC. There are still
many obstacles for realizing such a system, as discussed later,
with one of the biggest challenges being the long runtime of
the proving algorithm.

FM

ADIRU

FCPC

FCSC

NAV

FCU

FGC

FGC

Fig. 5. Proposal of an autoflight system with fail-operational, fail-passive
behaviour: Instead of two duplex guidance computers, two single lane
guidance computers can be used if failures of a single lane are detected using
Verifiable Computing.

Our concept may also be applicable in the setting of Inte-
grated Modular Avionics (IMA). IMA systems communicate

via a common Data Network, such as ARINC 664 [39] or
ARINC 629 [40]. There are special interfacing devices for
multiplexing and formatting raw sensor data onto the network
and for controlling actuators called Remote Data Concentra-
tors (RDC) [41] or input/output modules (IOM) [40]. The
computation is usually carried out on several central computers
which act as a shared computing resource, reducing the total
number of computing devices. In such a system architecture,
signing the data could be taken over by the interfacing devices.
This would have the advantage, that not every datum requires
its own signature, but several data could be signed together,
reducing the number of signature checks in the prover algo-
rithm. Verification can be carried out on the interfacing devices
directly controlling the actuators.

VII. DISCUSSION

Our proposed technique allows for new system architectures
addressing the challenges of current fault tolerant architec-
tures: 1.) The redundancy management in current systems
introduces high complexity. In order to reliably detect random
hardware faults by comparing outputs of replicated systems,
the computer replica must produce similar outputs (so-called
agreement) in the case that no fault occurred and different
outputs in the case of faults. Lala and Harper claim that in
order to achieve 100% coverage of faults using the comparison
method, replicas must exhibit exact agreement [3], which
means that their outputs must be bitwise identical. Otherwise,
in the case of only approximate agreement, thresholds for
the comparison must be selected, which are usually found
empirically and constitute a compromise between good fault
coverage and low number of false positives [3], [5]. It is
questionable, whether approximate agreement systems can
scale to more complex applications, such as image recognition
or audio processing, as finding a threshold might become
impossible. On the other side, exact agreement systems also
face significant challenges: First, replicated systems must be
similar, if not identical, in order to produce bitwise compa-
rable outputs. This increases susceptibility to common mode
failures. Second, exact agreement must be enforced explicitly.
This includes synchronization of redundant computers for
limiting the time skew between corresponding operations [3],
[42], and establishing agreement between input data and state
data. Establishing agreement amongst several computers is
non-trivial, as asymmetric behavior of faulty components,
also known as the byzantine generals problem [43], must be
addressed properly [44], [45]. 2.) There is a large overhead in
resources in the final system. In the Airbus A340 Primary
Flight Control System, computers are duplicated according
to the Control-Monitoring strategy resulting in 2x5 computer
lanes allocated only for flight control [46]. The Boeing 777
Primary Flight Control consists of a triple-triple redundant
system with a fully-verifiable quad-simplex backbone system
accounting to a total of 13 computers allocated for flight
control only [47]. If integrity was ensured by Verifiable Com-
puting, redundancy would only be required for availability, and
not for integrity any more. This new approach therefore has

the potential to reduce redundancy management complexity
and the number of hardware resources required.

On the other hand, the application of Verifiable Computing
for safety in avionics is completely new and exhibits potential
drawbacks. For instance, there is a lack of mature tooling and
industrial experience for applying this method. Our impres-
sions from building circuits with the libsnark library are that
this is a very cumbersome and error prone process. There
are some software packages simplifying the development of
SNARK circuits [48], [49], but for a rigid development pro-
cess, further tooling, e.g. for formally proving the correctness
of circuits and for traceability to requirements are necessary.
Another drawback is the large overhead in computing time,
specifically for the proving algorithm. Fortunately, there is
current research focussing on optimizing the size of constraint
systems e.g. [49]–[51] and on new proof systems with better
performance charactersitics [52], [53].

VIII. CONCLUSION

We proposed to use Verifiable Computing as a technique
to reliably detect hardware faults in avionics computers as
an alternative to ensuring integrity by computer replication.
This allows for new system architectures overcoming some
of the deficiencies of today’s architectures. We carried out the
first proof of concept demonstration that Verifiable Computing
can be used for avionics applications such as simple control
tasks. We provided a formal argument, why our construction
ensures integrity and outlined a method for conservatively
selecting an appropriate security parameter corresponding to
a given maximum failure probability. Major challenges are
the large overhead in computing time and the immaturity of
the available tools, but current developments show promising
results.

REFERENCES

[1] A. Hills, “Digital fly-by-wire experience,” in AGARD Lecture Series No.
143, 1985.

[2] A. Hills and N. Mirza, “Fault tolerant avionics,” in Digital Avionics
Systems Conference, 1988.

[3] J. H. Lala and R. E. Harper, “Architectural principles for safety-critical
real-time applications,” Proceedings of the IEEE, vol. 82, no. 1, pp.
25–40, 1994.

[4] R. Hammett, “Design by extrapolation: An evaluation of fault tolerant
avionics,” IEEE Aerospace and Electronic Systems Magazine, vol. 17,
no. 4, pp. 17–25, 2002.

[5] D. Brière and P. Traverse, “Airbus a320/a330/a340 electrical flight
controls - a family of fault-tolerant systems,” in FTCS-23 The Twenty-
Third International Symposium on Fault-Tolerant Computing. IEEE,
1993, pp. 616–623.

[6] E. Hitt, “Fault-tolerant avionics,” in Digital avionics handbook, C. R.
Spitzer, U. Ferrell, and T. Ferrell, Eds. CRC Press, 2017.

[7] D. J. Popp and R. L. Kahler, “C-17 flight control systems software
design,” in Proceedings / IEEE/AIAA 11th Digital Avionics Systems
Conference. New York: IEEE, 1992, pp. 580–585.

[8] M. Walfish and A. J. Blumberg, “Verifying computations without
reexecuting them,” Communications of the ACM, vol. 58, no. 2, pp.
74–84, 2015.

[9] S. Setty, R. McPherson, A. J. Blumberg, and M. Walfish, “Making
argument systems for outsourced computation practical (sometimes),”
in 19th Annual Network and Distributed System Security Symposium,
2012.

[10] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly
practical verifiable computation,” in 2013 IEEE Symposium on Security
and Privacy. IEEE, 2013, pp. 238–252.

[11] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza,
“Snarks for c: Verifying program executions succinctly and in zero
knowledge,” in Advances in Cryptology - CRYPTO 2013. Springer,
Berlin, Heidelberg, 2013, pp. 90–108.

[12] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct non-
interactive zero knowledge for a von neumann architecture,” in 23rd
USENIX Security Symposium (USENIX Security 14). Berkeley, Calif.:
USENIX Association, 2014, pp. 781–796.

[13] J. Groth, “On the size of pairing-based non-interactive arguments,” in
Advances in Cryptology – EUROCRYPT 2016. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2016, pp. 305–326.

[14] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
“Bulletproofs: Short proofs for confidential transactions and more,” in
2018 IEEE Symposium on Security and Privacy (SP). IEEE, 2018.

[15] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam, “Ligero:
Lightweight sublinear arguments without a trusted setup,” in Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. New York, NY: ACM, 2017, pp. 2087–
2104.

[16] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable, trans-
parent, and post-quantum secure computational integrity,” Cryptology
ePrint Archive, 2018.

[17] A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “Plonk: Permutations
over lagrange-bases for oecumenical noninteractive arguments of knowl-
edge,” Cryptology ePrint Archive, 2019.

[18] S. Bowe, J. Grigg, and D. Hopwood, “Recursive proof composition
without a trusted setup,” Cryptology ePrint Archive, 2019.

[19] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized anonymous payments from
bitcoin,” in 2014 IEEE Symposium on Security and Privacy. IEEE,
2014, pp. 459–474.

[20] C. Sguanci, R. Spatafora, and A. M. Vergani, “Layer 2 blockchain
scaling: a survey,” arXiv preprint, 2021.

[21] J. Bonneau, I. Meckler, V. Rao, and E. Shapiro, “Mina: Decentralized
cryptocurrency at scale.” [Online]. Available: https://docs.minaprotocol.
com/assets/technicalWhitepaper.pdf

[22] D. A. Luong and J. H. Park, “Privacy-preserving blockchain-based
healthcare system for iot devices using zk-snark,” IEEE Access, vol. 10,
pp. 55 739–55 752, 2022.

[23] N. Huber, R. Kuesters, T. Krips, J. Liedtke, J. Mueller, D. Rausch,
P. Reisert, and A. Vogt, “Kryvos: Publicly tally-hiding verifiable e-
voting,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security. New York, NY, USA: ACM,
2022, pp. 1443–1457.

[24] T. Loruenser, F. Wohner, and S. Krenn, “A verifiable multiparty compu-
tation solver for the linear assignment problem,” in Proceedings of the
2022 on Cloud Computing Security Workshop. New York, NY, USA:
ACM, 2022, pp. 41–51.

[25] O. Patrick, “The coded microprocessor certification,” IFAC Proceedings
Volumes, vol. 25, no. 30, pp. 185–190, 1992.

[26] P. Forin, “Vital coded microprocessor principles and application for
various transit systems,” IFAC Proceedings Volumes, vol. 23, no. 2, pp.
79–84, 1990.

[27] U. Wappler and M. Müller, “Software protection mechanisms for
dependable systems,” in Proceedings of the Conference on Design,
Automation and Test in Europe, 2008, pp. 947–952.

[28] M. Süßkraut, A. Schmitt, and J. Kaienburg, “Safe program execution
with diversified encoding,” in Proceedings of the 13th embedded world
conference, 2015.

[29] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “From extractable
collision resistance to succinct non-interactive arguments of knowledge,
and back again,” in Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, ser. ACM Conferences. New York, NY:
ACM, 2012, pp. 326–349.

[30] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox, “Zcash
protocol specification: Version 2022.3.8 [nu5].” [Online]. Available:
https://zips.z.cash/protocol/protocol.pdf

[31] B. Devos, “Loopring’s zksnark prover optimizations - loopring
protocol,” Loopring Protocol, 01.03.2020. [Online]. Available: https:
//medium.loopring.io/zksnark-prover-optimizations-3e9a3e5578c0

[32] A. Kosba, Z. Zhao, A. Miller, Y. Qian, T.-H. H. Chan, C. Papamanthou,
R. Pass, A. Shelat, and E. Shi, “C∅c∅: A framework for building
composable zero-knowledge proofs,” Cryptology ePrint Archive, 2015.

[33] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter,
M. Naehrig, B. Parno, and S. Zahur, “Geppetto: Versatile verifiable
computation,” in 2015 IEEE Symposium on Security and Privacy. IEEE,
2015.

[34] M. Bellés-Muñoz, B. Whitehat, J. Baylina, V. Daza, and J. L. Muñoz-
Tapia, “Twisted edwards elliptic curves for zero-knowledge circuits,”
Mathematics, vol. 9, no. 23, 2021.

[35] Y. El Housni and A. Guillevic, “Families of snark-friendly 2-chains
of elliptic curves,” in Advances in Cryptology–EUROCRYPT 2022.
Springer, Cham, 2022, pp. 367–396.

[36] D. F. Aranha, Youssef El Housni, and Aurore Guillevic, “A survey of
elliptic curves for proof systems,” Designs, Codes and Cryptography,
2022.

[37] J. Hoffstein, J. Pipher, and J. H. Silverman, An introduction to mathe-
matical cryptography, 2nd ed., ser. Undergraduate Texts in Mathematics.
New York and Heidelberg and Dordrecht and London: Springer, 2014.

[38] A. Menezes, P. Sarkar, and S. Singh, “Challenges with assessing the
impact of nfs advances on the security of pairing-based cryptography,”
in Paradigms in Cryptology–Mycrypt 2016. Malicious and Exploratory
Cryptology: Second International Conference, 2016, pp. 83–108.

[39] T. Gaska, C. Watkin, and Y. Chen, “Integrated modular avionics - past,
present, and future,” IEEE Aerospace and Electronic Systems Magazine,
vol. 30, no. 9, pp. 12–23, 2015.

[40] B. Witwer, “Systems integration of the 777 airplane information manage-
ment system (aims),” IEEE Aerospace and Electronic Systems Magazine,
vol. 11, no. 4, pp. 17–21, 1996.

[41] H. Butz, “Open integrated modular avionic (ima): State of the art and
future development road map at airbus deutschland,” in Proceedings of
the 1st International Workshop on Aircraft System Technologies, O. von
Estorff, Ed., 2007, pp. 211–222.

[42] D. L. Palumbo and R. W. Butler, “Measurement of sift operating system
overhead.”

[43] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals prob-
lem,” ACM Transactions on Programming Languages and Systems,
vol. 4, no. 3, pp. 382–401, 1982.

[44] V. Hadzilacos and S. Toueg, “A modular approach to fault-tolerant
broadcasts and related problems.”

[45] M. Barborak, A. Dahbura, and M. Malek, “The consensus problem in
fault-tolerant computing,” ACM Computing Surveys, vol. 25, no. 2, pp.
171–220, 1993.

[46] C. Favre, “Fly-by-wire for commercial aircraft: the airbus experience,”
International Journal of Control, vol. 59, no. 1, pp. 139–157, 1994.

[47] Y. C. Yeh, “Triple-triple redundant 777 primary flight computer,” in 1996
IEEE Aerospace Applications Conference. Proceedings, vol. 1, 1996, pp.
293–307.

[48] J. Eberhardt and S. Tai, “Zokrates - scalable privacy-preserving off-
chain computations,” in 2018 IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CP-
SCom) and IEEE Smart Data (SmartData). IEEE, 2018, pp. 1084–
1091.

[49] A. Kosba, C. Papamanthou, and E. Shi, “xjsnark: A framework for
efficient verifiable computation,” in 2018 IEEE Symposium on Security
and Privacy (SP). IEEE, 2018, pp. 994–961.

[50] L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and M. Schofnegger,
“Poseidon: A new hash function for zero-knowledge proof systems,” in
Proceedings of the 30th USENIX Security Symposium. Berkeley, CA:
USENIX Association, 2021, pp. 519–535.

[51] E. Albert, M. Bellés-Muñoz, M. Isabel, C. Rodrı́guez-Núñez, and A. Ru-
bio, “Distilling constraints in zero-knowledge protocols,” in Computer
Aided Verification. Cham: Springer International Publishing and Imprint
Springer, 2022, pp. 430–443.

[52] J. Lee, S. Setty, J. Thaler, and R. S. Wahby, “Linear-time and post-
quantum zero-knowledge snarks for r1cs,” Cryptology ePrint Archive,
2021.

[53] B. Chen, B. Bünz, D. Boneh, and Z. Zhang, “Hyperplonk: Plonk
with linear-time prover and high-degree custom gates,” in Advances in
Cryptology - EUROCRYPT 2023, 2023, pp. 499–530.

https://docs.minaprotocol.com/assets/technicalWhitepaper.pdf
https://docs.minaprotocol.com/assets/technicalWhitepaper.pdf
https://zips.z.cash/protocol/protocol.pdf
https://medium.loopring.io/zksnark-prover-optimizations-3e9a3e5578c0
https://medium.loopring.io/zksnark-prover-optimizations-3e9a3e5578c0

	Introduction
	Related Work
	Concept
	Failure types
	The Verifiable Computation Scheme
	Signature Verification
	Hash function
	Formal Failure Model
	Algorithms

	Implementation
	Choice of Security Parameters
	Implementation of the Circuit

	Demo Example
	General architecture and operation
	Demonstration Scenario
	Results

	Application in Avionics Systems
	Discussion
	Conclusion
	References

