Embedding the UC Model into the IITM Model

Daniel Rausch!, Ralf Kiisters!, and Céline Chevalier?

! University of Stuttgart
{daniel.rausch, ralf.kuesters}@sec.uni-stuttgart.de
2 CRED, Paris-Panthéon-Assas University
celine.chevalier@ens.fr

Abstract. Universal Composability is a widely used concept for the
design and analysis of protocols. Since Canetti’s original UC model
and the model by Pfitzmann and Waidner several different models for
universal composability have been proposed, including, for example, the
IITM model, GNUC, CC, but also extensions and restrictions of the
UC model, such as JUC, GUC, and SUC. These were motivated by the
lack of expressivity of existing models, ease of use, or flaws in previous
models. Cryptographers choose between these models based on their needs
at hand (e.g., support for joint state and global state) or simply their
familiarity with a specific model. While all models follow the same basic
idea, there are huge conceptually differences, which raises fundamental
and practical questions: (How) do the concepts and results proven in one
model relate to those in another model? Do the different models and the
security notions formulated therein capture the same classes of attacks?
Most importantly, can cryptographers re-use results proven in one model
in another model, and if so, how?

In this paper, we initiate a line of research with the aim to address
this lack of understanding, consolidate the space of models, and enable
cryptographers to re-use results proven in other models. As a start, here
we focus on Canetti’s prominent UC model and the II'TM model proposed
by Kisters et al. The latter is an interesting candidate for comparison
with the UC model since it has been used to analyze a wide variety of
protocols, supports a very general protocol class and provides, among
others, seamless treatment of protocols with shared state, including joint
and global state. Our main technical contribution is an embedding of the
UC model into the II'TM model showing that all UC protocols, security
and composition results carry over to the II'TM model. Hence, protocol
designers can profit from the features of the IITM model while being able
to use all their results proven in the UC model. We also show that, in
general, one cannot embed the full IITM model into the UC model.

1 Introduction

Universal composability is a widely used approach for the modular design and
analysis of cryptographic protocols. Protocols are shown to be secure in arbi-
trary (polynomial-time) contexts, which allows for composing protocols and
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re-using security results. Security properties are stated in terms of ideal function-
alities/protocols. To prove a real protocol 7 secure w.r.t. an ideal functionality
¢ one shows that for all network adversaries A attacking = there is an ideal
adversary, called simulator, that interacts with ¢ such that no (polynomial-time)
environment £ can distinguish between the real and the ideal world. We write
m < ¢ in this case. Composition theorems then immediately imply that one can
replace subroutines ¢ used by an arbitrary higher-level protocol p with their
realization 7 such that p®~™ < p, where in p?~™ the protocol p uses (possibly
multiple instances of) 7 instead of ¢.

The UC model by Canetti [6,7] and the reactive simulatability model by
Pfitzmann and Waidner [22] pioneered this line of research. Since then many
different models implementing the same idea of universal composability have
been proposed, generally motivated by issues in other existing models such as a
lack of expressiveness, overly complicated computational models, and also formal
flaws in theorems. To name just a few examples: The JUC [10] and GUC [9]
models were proposed as extended variants of the UC model which allow for
modeling larger classes of protocols, namely those with joint state (where some
state, such as a signature key, is used by multiple protocol sessions) or global
state (which is shared with arbitrary other protocols), respectively. The SUC
model [8] is a simpler variant of the UC model tailored towards secure multi
party computation. The GNUC model [12] was designed as a sound alternative to
the UC model, fixing several issues that formally invalidated the UC composition
theorem at the time. The IITM model [14,20] offers a simple computational
model that supports a very general class of protocols and composition theorems,
which, out of the box, support joint state, global state, and arbitrarily shared
state, also in combination. The CC model [21] follows a more abstract approach
that does not fix a specific computational model, runtime notion, instantiation
mechanism, or class of environments.

In the literature, cryptographers often choose the security model based on their
needs at hand (for instance support for joint or global state), syntax preferences,
or simply their familiarity with a specific model. While all of the above models
follow the same basic idea of universal composability, the details are (sometimes
drastically) different. It is hence generally unclear how different models and
the security results obtained therein relate to each other: Is one model strictly
more powerful than another? Can all protocols formalized in one model also be
formalized in the other? Are security notions compatible? Do security results
carry over from one model to the other? This lack of a deeper understanding of
the relationship of models is quite disturbing. For example, we might miss some
practical attacks in our security proofs because we, due to a lack of knowledge,
chose a model that might actually offer only a weaker security notion than other
models. Perhaps worst of all, security results proven in one model currently
cannot be used in another model. This drastically limits reusability of security
results, contradicting one of the key features of universally composable security
and more generally modular analyses.
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Our Goal. In this paper, we initiate a line of research with the aim to address this
lack of understanding and clarify the relationships between models for universal
composability. One of our main goals is to identify, as far as possible, classes of
protocols and security results that can be transferred from one model to another.
This would enable protocol designers to use a model of their choice, based on their
personal preference, the specific needs at hand, as well as the features offered
by the model, while still being able to benefit from results shown in another
model. This would also provide insights into the concepts employed in one model
compared to other models and the strength of the security results obtained
within a specific model, potentially justifying that such results are reasonable
and cover all practical attacks. Besides consolidating and re-using results, this
research can also help consolidating and unifying the space of models themselves.
A complete classification of all universally composable models is of course out of
reach of a single paper. As a first step towards our objective, we here focus on
embedding the UC model into the IITM model. We also prove that, in general,
the IITM model cannot be embedded into the UC model. To the best of our
knowledge our work is the first to study such embeddings, and hence, relate
complete models for universal composability. So far, only specific aspects have
been considered. For example, in [15] the relationship between security notions
employed in various models has been studied, although the study was carried out
in one model, and [13,14] discuss runtime notions employed in different models.

On the UC and IITM models. We choose the UC model [6] since it is
currently the most widely used model in the literature on universal composability.
The IITM model [14] has also already been used intensively to analyze a wide
variety of protocols, including cryptographic protocols (e.g., [16,17]) and also
more generally security protocols such as blockchains and distributed ledgers
(e.g., [11]). The IITM model is an interesting candidate for a comparison since
it supports a very general protocol class and comes with composition theorems
which cover joint state and global state out of the box as well as protocols with
arbitrary shared state (joint and global state are special cases of shared state)
and protocols without pre-established session IDs [17], i.e., parties in one session
are not required to share the same SID or fix it upfront (see [4,17,19,20] for
overviews of these features). Moreover, all these features can be freely combined
since they are all covered within one framework. While recently it has been
shown that the UC model directly supports global state [2], combinations of, for
example, joint state and global state or features like general shared state and
protocols without pre-established SIDs are not yet supported in UC. Hence, an
embedding as carried out in this paper enables protocol designers to profit from
such features of the II'TM model while still being able to access the wide range
of existing results shown in the UC model.

For both the UC and IITM model there are recent journal publications; the
UC model has been published in the Journal of the ACM [7] and the IITM model
in the Journal of Cryptology [20]. These provide a solid basis for a comparison.
Such a comparison is far from trivial since the computational frameworks of both
models are defined in very different ways, using sometimes drastically different
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concepts where it is far from obvious how they relate and whether there is a
meaningful relationship at all.

Our contributions. Conceptual Differences. After recalling the most important
definitions and theorems of the UC and IITM models in Section 2, we first
highlight in Section 3.1 the major conceptual differences between the two models:
Diff. 1 concerns support for dynamically generated machine code, Diff. 2 to 8
are about message routing and sender/receiver authentication, Diff. 9 concerns
the different polynomial runtime notions employed in the two models, Diff. 10
concerns the classes of environments considered, and Diff. 11 to 14 are about
requirements of the UC security notion and composition theorem that are not
present in the IITM model.

Mapping of Protocols. With that analysis in mind, one main contribution, given
in Sections 3.2 and 3.5, consists in mapping UC protocols to IITM protocols.
This requires bridging the mentioned differences and to show that the mapping
is faithul, i.e., the original and the mapped protocols have the same behavior
(functional, security, complexity) in all contexts they run in (Lemmas 1 and 2).
This then implies that all UC protocols can be expressed as IITM protocols.

Mapping and Preservation of Security Results. We show in Section 3.3 that this
mapping also preserves security results. That is, myc < ;- ¢ vc in the UC model
it w7 < e @ s for the mapped protocols in the IITM model (Theorem 4).
For the direction from IITM to UC, we require that 7wy < jrrar @ iy can be
shown for simulators meeting the UC runtime notion (Theorem 5). Assuming
the existence of time-lock puzzles, we also show that this direction does not hold
in general since the class of II'TM simulators is strictly larger than the class of
UC simulators (Lemma 3). This latter result is independent of a specific protocol
mapping, and hence, is a fundamental difference between the models, which we
further discuss in Section 3.3.

Mapping and Preservation of Composition Results. Section 3.4 discusses compo-
sition. One easily observes that Theorem 4 already implies that security results
for composed protocols carry over from UC to IITM by first applying the UC
composition theorem and then mapping the resulting UC protocols to the IITM
model (Corollary 1). But this result does not relate the composition theorems
employed in the models themselves. We therefore show that Corollary 1 can be
obtained directly in the IITM model using the II'TM composition theorem and
without relying on the UC theorem (Corollary 2).

This result also enables composition of mapped UC protocols with arbitrary
other ITTM protocols within the IITM model, including those that do not have a
UC counter part and which use features of the IITM model that are out of the
scope of the UC model. We discuss these options in Section 3.6.

The Other Direction: Limitations. We discuss in Section 4 the other direction of
translating IITM protocols and security results to the UC model. To summarize,
[20] has already shown that the IITM runtime notion permits natural protocols
that cannot be expressed in the UC model. Combined with our results, this shows
that the class of IITM protocols is strictly larger than the class of UC protocols.
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Our result from Lemma 3 further shows that also the class of IITM simulators
is strictly larger than the class of UC simulators due to their runtime notions.
So the best one can hope for is a mapping for the class of II'TM protocols and
simulators that follow the UC runtime notion. We also discuss further obstacles
of an embedding of the UC model into the IITM model. We leave it to future
work to study this in more details and provide an embedding of (a subset of) the
ITTM model into the UC model.

Further Insights and Results Obtained Through the Embedding. Firstly, we develop
a modeling technique that allows for obtaining a new type of composition as a
corollary from existing UC and II'TM composition theorems as well as similar
models (cf. Section 3.4). Secondly, we found several previously unknown technical
issues in the UC model that, among others, formally invalidate the UC composition
theorem (cf. Sections 2.1, 3.3, 3.4). We propose fixes for all of these issues which
should be compatible with and hence retroactively apply to existing UC protocols
from the literature.

Altogether, our paper provides deep insights into the UC and IITM models,
clarifies the purpose of different concepts employed by the models for achieving
similar goals, relates them, also in terms of expressiveness, and uncovers how
security results compare to each other. Our main result shows that all protocols,
security, and composability results from the UC model carry over to the IITM
model. As an immediate practical benefit, this opens up entirely new options for
protocol designers so far working in the UC model: they can use all their results
also in the IITM model, combine their work with protocols in the II'TM model and
benefit from IITM features including seamless support for joint, global, shared
state, and protocols without pre-established session IDs, as well as arbitrary
combinations thereof.

2 A Brief Overview of the UC and IITM Models

In this section, we provide brief overviews of the UC and IITM models. We
refer the reader to [7,20] for more in-depth information about both models. The
presentation here should suffice to follow the rest of the paper.

2.1 The UC Model

The general computational model of the UC model is defined in terms of systems
of interactive Turing machines (ITMs or just machines, for short). An interactive
Turing machine M in the UC model is a probabilistic Turing machine with
three special communication tapes, called input, subroutine-output (or simply
output), and backdoor tape. In a run of a system of machines (see also below),
machine instances are created. Every instance has some machine code that it
runs when activated and some identifier. More specifically, each instance has a
unique so-called extended ID eid = (c,id), consisting of its machine code ¢ and
some identity string id that, except for the environment (which has id = 0), is of
the form id = (pid, sid) for a process/party identifier pid and a session identifier
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sid. Machine instances have access to two special operations: a read next message
instruction which moves the head of one of the three mentioned communication
tapes to the start of the next received message within a single unit of time and an
external-write instruction which allows a machine instance to append a message m
to one of the (three) communication tapes of another machine instance, and
hence, send m to that other instance. On an input tape machine instances receive
messages from higher-level protocols or the environment, on subroutine-output
tapes they receive messages from subroutines, and on backdoor tapes they receive
messages from the network/the adversary.

A system of machines (M, C) cousists of the machine code M of the first ITM
to be activated and a so-called control function C' which can prohibit or alter
external-write operations; this is later used to define the security experiment.
The first instance to be activated with external input a in a run of this system is
a machine instance running code M with ID 0. During a run of such a system,
at any time only one machine instance is active and all other machine instances
wait for new input via the external write operation. When a machine sends a
message m via an external write operation to one of the three communication
tapes of another machine, say tape ¢, there are two main options to specify the
recipient: Firstly, by giving an extended ID eid. If there does not exist a machine
instance with this extended identity yet, then such an instance running the code ¢
specified in its eid is first created. Then, m is written to the tape t of the machine
instance with extended ID eid and that machine becomes active (the sender
becomes inactive). This first case is also called forced-write. Secondly, by giving a
predicate P on extended IDs. In this case, m is written to the tape ¢ of the first
existing machine instance (sorted by the order of their first creation) with eid
such that P(eid) holds true. We will refer to this second case as non-forced-write.
For both types of external write operations, the sender can either hide or reveal
its own extended identity towards the recipient. If an external write operation
does not succeed, e.g., when there is no existing machine instance matching the
predicate P, then the initial ITM instance (M, 0) is activated again. A run ends
when the initial ITM reaches a final halting state. The overall output of such a
run is the first bit written on a specific tape of the initial ITM instance.

Two systems of machines (M, C) and (M’,C’) are called indistinguishable
(and we write (M,C) = (M',C")) if the difference between the probability that
(M, C) outputs 1 and the probability that (M’, C") outputs 1 is negligible in the
security parameter 1 and the external input a.?

Runtime. Machine instances can receive and send so-called import as part
of their messages m to/from other machine instances, where import is encoded
as a binary number contained in a special field of m. A machine M is called
probabilistic polynomial-time (ppt) iff (i) there is a polynomial p such that the
overall runtime of (an instance of) M during all points of a run is upper bounded
by p(n; —no), where ny is the sum of all imports received by (that instance of) M
and no is the sum of all imports sent by (that instance of) M to other machines,

3 A function f: N x {0,1}* — R is called negligible if for all ¢,d € N there exists
no € N such that for all n > no and all a € {J,,_,4{0, 17 f(n,a) <n°.
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and (ii) whenever M uses a forced write operation to a machine instance with
code M’, then M’ is also ppt for the same polynomial p.* Furthermore, all
machines are parameterized with a security parameter 7. All machine instances
are required to run only when they hold at least n import, i.e., ny —no >n.

Simulation-Based Security. Security of a protocol 7 is defined via a secu-
rity experiment involving an adversary A and an environment £, where each of
these components is modeled via an ITM with code 7, A, and £ respectively.
More specifically, the experiment is defined via the system (&, C’g}fEC) where
C }75324130 is a control function that enforces the following rules of communication:

— The environment £ (with ID 0) can write only to input tapes, only via forced
write, and only to IDs of the form (pid, sid) where sid must be the same
as in previous write operations (if any exist). This uniquely defined sid is
also called challenge session ID sid.. If pid is the special symbol ¢, then the
control function changes the code of the recipient to A; otherwise, the code
is changed to . So £ can talk to A or to 7 (in session sid.). Unlike all other
machines, the environment is given the additional freedom to freely choose
the extended identity that is claimed as a sender of a message.

— The adversary A (with ID (o, sid.)) may write only to backdoor tapes of
other machines and may not use the forced-write mechanism (i.e., he can
write only to already existing instances using non-forced-writes).’

— All other machine instances (which are part of the protocol stack of m,
including subroutines) must always reveal their own sender extended identities.
They may write to the backdoor tape of (the unique instance of) A using
non-forced-write without specifying the code of the adversary and without
providing import. They may write to input and output tapes of instances other
than (the unique instances of) £ and A, subject to the following modification:
If the sending instance (M, (pid, sid)) has code M = 7, sid = sid., the
recipient tape is the output tape, and the recipient instance does not exist
yet, then the message is instead redirected to the output tape of £ with the
code M removed from the extended sender identity. The extended identity
of the originally intended receiver is also written to the output tape of £.

The initial import for environments is defined to be the length of the external
input a, which is at most some polynomial in the security parameter 7 (as per the

4 Intuitively, each import serves as a runtime token that can be passed between
instances. This is one possible mechanism for ensuring that the whole system, where
an unbounded number of instances can be created, runs in overall polynomial time.
Hence, a polynomial time environment can internally simulate such a system.

The journal version of the UC model [7] formally does not prevent the adversary
from revealing its sender extended identity, including its code, to other machines.
We found that this option actually causes several severe issues, including a failure
of the composition theorem (cf. Appendix J.1 for details). This appears to be an
oversight rather than an intended feature. Indeed, previous versions of the UC model,
such as the one from 2013 [5], included a mechanism that always removed the sender
identity from backdoor tape messages. In what follows, we therefore assume that
adversaries must also hide their own sender extended identity. This fixes the issue
and is compatible with existing results in the literature.

ot
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definition of negligible functions with external input). Environments are required
to be balanced, i.e., provide at least as much import to the adversary as they
provide in total to all instances of the challenge protocol , i.e., all instance with
extended IDs of the form (m, (pid, sid.)), where sid. is the fixed challenge SID.
Given a set of extended identities £, an environment is called £-identity-bounded
if it claims only sender extended identities from £. The set £ may be determined
dynamically via a polytime predicate over the current configuration of the whole
system at the time the input it sent to the protocol, which includes (the states
of) all existing instances of the environment, adversary, and protocol machines.
Given this terminology, the security notion for protocols is defined as follows:

Definition 1. Let w and ¢ be ppt protocols. Then w realizes ¢ w.r.t. £-identity-
bounded environments (m < 5Uc @) if for all ppt adversaries A there exists a ppt
adversary S (a simulator or an ideal adversary) such that for all ppt £-identity-
bounded environments £ it holds true that (&, Cg;‘EC) = (¢, C’g;fEC).G

Composition Theorem. To state the composition theorem, a bit more
terminology is needed. A session (with SID sid) of a protocol 7 consists of all
instances running code 7 with SID sid. We call these instances highest-level
instances, i.e., those are exactly the instances that can receive inputs and provide
outputs to the environment in the security experiment. The session sid of 7
further includes all instances, i.e., subroutines, that have received an input or
output from another instance that is part of the session (except for outputs
by highest-level instances, which are intended for the environment /higher-level
protocols using the session of 7).

A protocol 7 is called subroutine respecting if a protocol session of 7 interacts
with other existing machine instances not belonging to the session only via inputs
to and outputs from the highest level instances of the session, even when 7 is
used as a subroutine within a higher-level protocol p.” The UC model provides a
standard implementation of the subroutine respecting property via a subroutine
respecting shell code that is added as a wrapper on top of the code of w and its
subroutines. A protocol 7 is called subroutine exposing if every session s of the
protocol provides an interface to the adversary that the adversary can use to
learn whether some extended identity eid (specified by the adversary) is part
of the session s. The UC model proposes a standard implementation of this
mechanism by adding a so-called directory machine.

A (higher-level) protocol p is called (7, @, &)-compliant if (i) all instances
of all sessions of p perform write requests to input tapes only via forced-write

% The UC model also defines security w.r.t. the dummy adversary Apum, which essen-
tially simply forwards messages between the environment and the protocol, and shows
this conceptually simpler definition, where only the dummy adversary is considered
rather than quantification over all adversaries, to be equivalent. Also, if £ always
permits all identities, then one simply writes < ;- instead of < i}c-

" The subroutine respecting property ensures that 7 running within a larger protocol
p still behaves as in the security experiment, where an environment can interact only
with one session of m and only via the highest-level instances of that session.
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and ignore outputs from instances that do not reveal their extended identities,
(#i) there are never two external write requests (made by any instances of any
session of p) for the same SID but one for code 7 while the other is for code ¢,
and (7ii) the extended identities of all instances in all sessions of p that pass
inputs to an instance with code m or ¢ satisfy the polytime predicate £. Given
such a (r, ¢, £)-compliant protocol p, the protocol p?=™ is defined just as p but
replaces (input write requests to) subroutine instances of ¢ with (input write
requests to) subroutine instances of . In subroutines of p this replacement is
done as well. ® Now, the composition theorem is as follows:

Theorem 1 (UC Composition [7]). Let p,m, ¢ be ppt protocols, let € be a
ppt predicate, such that p is (mw,¢,&)-compliant, T and ¢ are both subroutine
respecting and subroutine exposing, and w < fUC ¢. Then p?=7™ < ve P-

2.2 The IITTM Model

The general computational model of the IITM model is defined in terms of systems
of (inexhaustible) interactive Turing machines (IITMs or just machines, for short).
An interactive Turing machine in the II'TM model is a probabilistic Turing machine
with an arbitrary number of named bidirectional communication tapes.? The
names are used for determining pairwise connections between machines in a
system of machines.'’ Each machine specifies a CheckAddress and a Compute
mode that it can run in, where the former is a ppt algorithm used for addressing
individual copies/instances of the same machine and the latter is an algorithm
describing the actual computations of instances of the machine (see below).

A system Q of IITMs is a set of IITMs of the form @ = {My,--- , My, | M7, -+,
! M],}'! where the M; and M ]’ are machines and each tape name is shared by at
most two machines in the system. Two machines are called connected if they have
tapes with the same name. The operator ‘!’ indicates that in a run of a system an
unbounded number of (fresh) instances of a machine may be generated (e.g., to
model multiple protocol sessions); for machines without this operator there is at
most one instance of this machine in every run of the system. The first instance
to be activated with external input a in a run of Q is an instance of the so-called
master IITM; this machine is the only one with a so-called master (input) tape
on which it receives external input a given to the system (jumping slightly ahead,
the master IITM will be part of the environment). In a run of a system Q, at
any time only one machine instance is active and all other instances wait for

8 Formally, p®~™ contains an additional so-called UC composition shell code which

acts as a wrapper that replaces these write requests. The wrapper also modifies sender
identities in outputs of 7 to include the code of ¢ instead to keep the subroutine
replacement hidden from higher level machines.

9 Formally, the IITM model uses unidirectional tapes. These can be paired to create
bidirectional tapes as a special case, as shown in, e.g., [3,4].

10 Tape names are hidden from and non-accessible to the logic of the machines. Hence,
they can be renamed and even reconnected without changing the logic of the machine.

11 Also written My| - | Mg | 'M1| - | ' M},.
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new input. If, in @, machines M and M’ are connected via a tape, say a tape
named n, then an (instance of) M can send a message m to and thus trigger an
(instance of) M’ by writing m on its tape named n. To determine which instance
of M’ (if any) gets to process m, the following is done: The message is copied
to the tape named n of the first existing instance of M’, where instances are
sorted by the order of their first creation. (The case that no instance of M’ exists
yet, is handled below.) That instance then processes m using its CheckAddress
algorithm, which either accepts or rejects the input. If the input is accepted,
this instance continues processing m using the Compute algorithm. Otherwise, if
the input is rejected, then its state is reset to the point before m was written
to its tape and the next instance of M’ is activated with message m in mode
CheckAddress. If none of the existing copies accept and M’ is in the scope of
a ‘!’ or no copies of M’ exist yet, then a new instance of M’ is created and runs
in mode CheckAddress with input m on tape n. If it accepts, it gets to process m
using Compute; otherwise, the fresh instance is deleted again and, as a fallback,
an instance of the master IITM of Q is activated with empty input. The same
fallback is also used if an instance (except for instances of the master IITM) stops
without sending a message. A run stops if an instance of the master IITM does
not produce output or a machine outputs a message on a special tape named
decision (just as for the master IITM, only environments have such a special
tape). Such a message is considered to be the overall output of the system.

Two systems Q and R are called indistinguishable (Q = R) if the difference
between the probability that Q outputs 1 (on the decision tape) and the proba-
bility that R outputs 1 is negligible in the security parameter 1 and the external
input a (see Footnote 3).

Types of Systems and Their Runtime. We need the following terminol-
ogy. For a system Q, the tapes of machines in Q that do not have a matching tape,
i.e., there does not exist another machine in @ with a tape of the same name, are
called ezternal. External tapes are grouped into I/0 and network tapes/interfaces
modeling direct connections to subroutines/higher-level protocols and network
communication, respectively. We consider three different types of systems, mod-
eling i) real and ideal protocols/functionalities, ii) adversaries and simulators,
and iii) environments: Protocol systems (protocols) and environmental systems
(environments) are systems which have an external I/O and network interface,
i.e., they may have I/O and network tapes. Adversarial systems (adversaries)
only have an external network interface. Environmental systems may contain a
master machine and may produce output on the decision tape.

An environment must be universally bounded, i.e., the overall runtime of all
instances in a run of an environmental system must be bounded by a single unique
polynomial (in the security parameter and length of the external input) even
when connected to and running with arbitrary systems. Protocols are required to
be environmentally bounded, i.e., when combined with an environment, the overall
system (which includes all instances of all machines) must run in polynomial
time (in the security parameter and length of the external input), except for
potentially a negligible set of runs. Note that the polynomial can depend on
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the environment. Given a protocol, an adversary for that protocol has to satisfy
the following condition: the system obtained by combining the adversary and
the protocol needs to be environmentally bounded. (Note that, e.g., dummy
adversaries belong to this class for all protocols.)

Simulation-Based Security. We can now define the security notion of
strong simulatability: 2

Definition 2. Let P and F be protocols with the same I/0 interface, the real
and the ideal protocol, respectively. Then, P realizes F (P < yirm F) if there
exists an adversary S (a simulator or an ideal adversary) such that the systems P
and S | F have the same external interface and for all environments £, connecting

only to the external network and I/0 interface of P (and hence, the external
interface of S| F), it holds true that E|P =E|S|F.

Composition Theorems. The main IITM composition theorem handles
concurrent composition of a fixed number of (potentially different) protocols:

Theorem 2 (IITM Composition [20]). Let Q, P, F be protocols such that Q
and P as well as Q and F connect only via their external 1/0 interfaces with
each other and P < ry F. Then, Q| P <1y Q| F.

The IITM model also provides another security notion and a composition
theorem for unbounded self-composition, which intuitively states the following:

Theorem 3 ((Informal) IITM Unbounded Self Composition). Let P, F
be protocols with disjoint sessions. If there exists a simulator S such that no

environment interacting with just a single session of P, F can distinguish P and
S| F, then P <prm F.

In other words, it is sufficient to analyze the security of a single session of
such a protocol to then conclude security of an unbounded number of sessions.
For interested readers we recall the formal definition of this security notion and
composition theorem in Appendix I. This second theorem can be combined with
the main composition theorem to obtain a statement similar to Theorem 1 of
the UC model since from the assumption of Theorem 3 and if Q connects only
to the external I/0 interface of P (and hence, F), we not only get P < jyrpr F
but immediately also Q|P < jry Q| F. Roughly, Q corresponds to (higher-
level machines of) p in Theorem 1, and P and F to the subroutines 7w and ¢,
respectively.

3 Embedding the UC Model in the IITM Model

We now show the embedding of the UC model into the IITM model. Formally,
we consider arbitrary protocols myc, ¢ yc, p vc defined in the UC model such

12 The IITM model also supports further security notions, including simulation w.r.t.
the dummy adversary Apu, or w.r.t. arbitrary adversaries A in the real world. All
of these notions have been shown to be equivalent in the IITM model [20].
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that myo < ch ¢ yc and the UC composition theorem can be applied to p y¢o
to obtain p gg” < ye puc- The overall goal of this section is to show that
these protocols, security, and composability results naturally carry over to the
ITTM model (and then can further be used in the IITM model). We discuss the
embedding in the other direction in Section 4.

3.1 Main Conceptual Differences

Let us first list the key conceptual and technical differences of the UC and IITM
models in terms of computational models, security definitions, and theorems. We
further give pointers to where these difference are bridged.

Support for dynamically generated machine code (cf. Section 3.5).
1. The UC model directly supports dynamically determining the machine code
of new machine instances. The IITM model fixes a finite static set of machine
codes that can be instantiated during the run of a system.

Message routing and sender /receiver authentication (cf. Section 3.2).
2. Both the UC and IITM models provide an operation for machine instances to
send messages to other instances. The UC model allows an instance to send
messages to any other instance (subject to a few restrictions imposed by the
security experiment). In the IITM model two instances can send messages to
each other iff they are instances of two different machines M; and My that
share a tape with the same name.

3. The UC model distinguishes between two types of messages between protocol
machines, namely those that provide input to a subroutine and those that
provide output to a higher-level protocol. The IITM model does not have
such a distinction but rather uses I/O tapes for both types of messages.

4. The UC model uses IDs of the form (pid, sid) to address messages to different
protocol instances with the same machine code. The II'TM model instead
uses the generic CheckAddress mechanism which can be freely instantiated
by protocol designers to capture the desired way of addressing of instances.

5. The UC model authenticates the sender of a message (within a protocol) by
revealing its extended ID, consisting of the machine code and the ID of the
instance. The IITM model authenticates the sender via the tape a message is
received on, but does not guarantee that the receiver learns an ID identifying
a specific instance or the code of the sender.

6. The adversary in the UC model cannot spawn any new protocol machine
instances; he may only communicate with existing instances. The adversary
in the ITTM model can spawn new instances.

7. The UC model allows for specifying the receiver of a message via a predicate
over the extended IDs of all existing machine instances (non-forced-writes).
The CheckAddress algorithm of the IITM model bears some similarity, but
runs only over the IDs of instances that share the same machine code.

8. In the UC model, outputs sent from the highest level protocol machines are
redirected to the environment under certain conditions, in which case they
are also modified by removing the machine code of the sender. Protocols in
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the IITM model send messages to the environment iff they are written to an
external I/O tape, without redirections or modifications.

Polynomial runtime notions (cf. Section 3.2).

9. The UC and IITM models use different runtime notions, with the former
being defined for individual machines that use runtime tokens while the latter
is defined for entire systems and does not mandate a specific mechanism for
enforcing runtime.

Support for specific classes of environments (cf. Section 3.3).

10. The UC security notion supports identity bounded environments that use
only sender identities as specified by a polytime predicate £. Environments
in the II'TM model are not required to adhere to any type of predicate.

Additional requirements of the UC security notion and composition

theorem (cf. Theorem 4 and Corollary 2).

Theorem 4 ensures that if 7yc < ;¢ ¢ ve in the UC model, then ey < rrrm

¢ 117 for the mapped protocols in the IITM model, bridging Diff. 11 and 12.

Security results for composed protocols also carry over (Section 3.4): Corollary 2

explains how the additional requirements of the UC model (Diff. 13 and Diff. 14)

are reflected in the mapped IITM protocols while not being necessary for general

IITM protocols.

11. The UC model requires environments to be balanced, providing a minimal
amount of import to the adversary. Environments in the II'TM model are
not restricted in a similar way since adversaries in the II'TM model do not
require import to be able to run.

12. The UC security notion analyzes the security of a single session of a protocol.
The IITM model offers two security notions: A single session security notion
and a more general multi session security notion.

13. Protocols in the UC model have to be subroutine respecting and subroutine
exposing to support composition. The main composition theorem of the
IITM model does not have analogous requirements since the underlying
security notion considers a more general multi-session setting, where sessions
can share state with each other and subroutines can communicate with the
environment.

14. Higher-level protocols in the UC model have to be compliant to support
composition. Composition in the IITM model instead requires only that
higher-level protocols may not connect to the network interface (the UC
model enforces the latter at the level of its security notion).

These sometimes drastic technical differences create several challenges that we
have to resolve while embedding the UC into the II'TM model. For simplicity of
presentation, in what follows we at first focus on the case where protocols use
only machine codes from an arbitrary static but fixed set of different machine
codes, rather than using (ad hoc) dynamically generated code (see Diff. 1); we
denote this fixed set by Codes. Note that this is a very natural class of protocols
which includes virtually all protocols proposed in the UC literature: generally,
the machine codes of honest parties in a protocol are defined and fixed upfront,



14 Daniel Rausch, Ralf Kiisters, and Céline Chevalier

potentially as a parameter, before the protocol is analyzed. While corrupted
parties are typically allowed to choose (almost) arbitrary receiver machine codes
for their messages, spawning a new machine with machine code that is not
used /recognized by an honest party does not give any additional power to the
adversary; the adversary can just internally simulate that machine to obtain
the same results. Hence, w.l.0.g. one can assume that corrupted parties in those
protocols also communicate only with machines running some code from the set
Codes, thereby meeting the above property. Nevertheless, to make our mapping
formally complete, we show in Section 3.5 how our embedding and all security
and composability results can easily be extended to handle also protocols with
dynamically generated machine code, i.e., how to bridge Diff. 1.

3.2 Mapping Protocols

Let myc be a protocol that uses a finite set of machine codes Codes with n :=
|Codes|. Note that mye itself is also one of those codes, in what follows denoted
by ¢, € Codes to make the distinction between the protocol code ¢, and the
overall protocol wy¢ clear.

Normalization. W.l.o.g., let us first bring the protocol myc and the codes
Codes into a normalized form. These purely syntactical changes remove some
technical edge cases that would otherwise needlessly complicate the mapping.
Recall that, since my¢ is subroutine respecting, instances of that protocol can
be grouped into disjoint protocol sessions. In each of those sessions, the only
instances that can communicate with a higher-level protocol/the environment
are instances of the highest-level machine with code ¢, and with a certain SID
sid. that is specific to that protocol session. We refer to such a protocol session
by sid.. We assume that wyc is such that within each protocol session sid.
there are no instances running code ¢, with an SID different from sid.. Most
protocols from the literature naturally meet this property. Other protocols can
trivially be modified by, e.g., adding a dummy forwarder on top of my¢c that
forwards messages between the environment and those instances running code
¢ with SID sid.. This dummy then meets our assumption since the dummy
code is now the highest level code and one can easily ensure that it is never
called (as a subroutine) with an SID different from sid.. Note that introducing
a dummy does not affect any of the properties of and security results for 7y
so is indeed without loss of generality. We also assume that the protocol 7y
uses the standard mechanism proposed by the UC model for implementing the
“subroutine-respecting” requirement, i.e., all codes in Codes already include the
standard subroutine respecting shell code that acts as a wrapper. Among others,
this wrapper guarantees that subroutine instances are aware of the SID sid,
of their protocol session since all subroutine instances have SIDs of the form
(sid,, sid’). Again, this is already the case for virtually all protocols from the
literature. If a protocol does not use this mechanism, it can be added on top
of the protocol since this also does not affect any of the security properties of
and results proven for wyc given that mye is already assumed to be subroutine
respecting.
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IITMs and tapes. We model the protocol 77 in the IITM model via a system
containing machines M,_, M,,,..., M., _,, where Codes = {¢y,c1,...,¢n—1} and
instances of M. essentially run code ¢ € Codes; see the left hand-side of Figure 1
for an illustration of the static structure, i.e., the set of machines and I/O tape
connections, of the mapped protocol system 7w;rps. Just as wye, 7rrras is able to
create an unbounded number of instances of these machines running any of the
codes in Codes (see below). Each pair of machines M., M. is connected by a pair
(t,t') of uniquely named internal I/O tapes. One of the tapes, say ¢, is used by
(instances of) M. to provide subroutine inputs to and receive subroutine outputs
from M., while the other tape is used for the reverse direction where M. provides
subroutine inputs to and receives subroutine outputs from M,."? Altogether these
connections allow instances of an arbitrary machine to send inputs and outputs
to and receive outputs and inputs from any (instance of) another machine in the
system simply by choosing the appropriate tape. While generally not required by
protocols from the literature, if required by 7 yc we can also extend the protocol
wrry to allow for sending messages between different instances of the same
machine. This is done by adding a special bouncer machine M, to the system
iy Mye connects to all machines in the system via a pair of I/O tapes each.
Each time (a session-specific instance of) this machine receives a message, it
returns the same message on the same tape. Hence, a machine M, can send a
message to My, to effectively send that message to an instance of itself (see below
for how we ensure that this message is delivered to the correct receiving instance
of M,). Altogether, these internal I/O tapes bridge Diff. 2 and Diff. 3. In addition
to these internal I/O tapes, each machine M, has one external (unconnected)
network tape that can be used to communicate with the network adversary. The
machine M, also has an unconnected I/O tape which can be used to receive
inputs from and send outputs to higher-level protocols/the environment. These
external tapes capture permitted communication flows between the protocol, the
adversary, and the environment as defined in the security game of the UC model.

In addition to the above machines, we also add another machine Mp,,.
Jumping slightly ahead, session specific instances of this machine are responsible
for (i) implementing some of the more advanced message transmission and
message redirection features of the UC model and (ii) forcing the environment
to be balanced, i.e., to provide a minimal amount of import to the adversary.
This machine connects via a pair of I/O tapes to all machines M., ¢ € Codes,
and offers one external network tape for communication with the adversary. We
describe the behavior of M,s, along with the description of machines M. below.

Addressing of instances. In 7y, an instance of a machine running code c is
uniquely addressed by an ID of the form (pid, sid) and learns the ID (pid,, sids)
and code c; of senders who provide input or subroutine output. Furthermore,
by our initial normalization of 7y, we have that sid = (sid,, sid") for internal
instances, i.e., instances running code ¢ # ¢, and sid = sid,. for instances running

13 Typically, the subroutine relation goes only in one direction and in this case just one
tape is needed. But in general the relationship is allowed to go both ways, in which
case using two tapes allows for distinguishing which relationship is meant.
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Fig. 1. Left: Static structure of a protocol myray using three Codes = {cx,c1,c2}
constructed by our mapping. Right: Static structure of the modified protocol 7r§}deM
that enforces &-identity bounded environments (cf. Section 3.3). Lines denote internal
connections via I/O tapes and the external I/O tape to the environment. Each Machine
also has an external network tape to the adversary (not shown). In a run each machine
can be instantiated arbitrarily often, with instances having IDs of the form (pid, sid).

¢x. To capture these unique IDs for instances in w7y, we use a suitable instan-
tiation of the CheckAddress mode, cf. Figure 2. That is, instances of M. expect
incoming inputs/outputs m to be of the form ((pid, sid, c), (pid,, sids, cs), m’),
where m’ is the actual message body.'* Network messages from the adversary
are expected to be of the form ((pid, sid,c), m’).'> Furthermore, if ¢ # ¢, (i.e.,
the current machine instance is an internal subroutine), then it is also required
that sid = (sid’, sid") for some sid’, sid”, where sid’ is interpreted to be the SID
sid, of the protocol session. Messages not conforming to this format are rejected
immediately. If the current instance is fresh, i.e., has not previously accepted
any messages, then the message is accepted and (in mode Compute) this instance
stores (pid, sid) as its own ID. If the instance is not fresh, i.e., has previously
accepted a message with receiver ID (pid,, sidp), then incoming messages are ac-
cepted if and only if they are prefixed by the same ID, i.e., pid = pid, sid = sidp.
Hence, each instance is effectively assigned a unique ID, namely, the first ID
(pid,y, sidy) that it has ever accepted. There will also never be a second instance
accepting the same ID since all message for this ID will already be accepted
by the first instance with that ID. Given this definition of CheckAddress, an in-
stance (pid,, sids) of machine M., can send a message m’ to the unique instance

14 The only exception are inputs received on the single external I/0 tape from the
environment, which use the header ((pid, sid), (pid,, sids,cs), m'). This directly cor-
responds to the UC experiment, where environments specify only the receiver 1D
(pid, sid) but not the receiver code, which is rather determined by the experiment.
We also note that, except for outputs returned from the protocol to the environment,
it is actually not necessary to include ¢ in the header of any messages on I/O tapes.
After all, the receiving machines M. are already aware of their own code. We chose to
nevertheless include ¢ in the header since this matches the format of write commands
in the UC model more closely.

15 Network messages do not contain a sender identity since the sender is always know
to be the network adversary.
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Mode CheckAddress:

Let m be the message received on some tape.
If this is the highest level machine (i.e., ¢ = ¢x) and m was received on the single external
I/O tape from the environment, then try to parse m as ((pid, sid), (pid,, sids,cs), m’).
Otherwise, if m was received on another I/O tape then try to parse it as
((pid, sid, c), (pidg, sids,cs), m’). Try to parse m as ((pid, sid, c),m’) if it was received
on the network tape. Furthermore, if ¢ # ¢, also try to parse sid as (sid’, sid")
If parsing fails, return reject. (id is a global variable that is L iff this instance is
if id = 1 Vv id = (pid, sid) then {f’resh. It is set to be the ID of the current instance
return accept. in mode Compute upon accepting the first message.
else
return reject.
end if

Fig. 2. Checkaddress mode of the machine M. for ¢ € Codes

(pid, sid) of machine M, by writing the message ((pid, sid, ¢), (pid,, sids, cs),m’)
on one of the two tapes connecting to M, (this bridges Diff. 4).

All machines M, are defined in such a way that they never lie about the
sender identity of a message, and hence, the receiver always learns the correct
identity of the sender (see the Compute mode described below). Specifically, if
an instance (pid,, sids) of a machine M., sends a message m on some tape, then
it will either be of the form ((pid, sid, c), (pidy, sids,cs),m’) (if it is sent on an
I/O tape) or of the form ((pid,, sids,cs),m’) (if it is sent on a network tape
connected to the adversary). This bridges Diff. 5 by providing the same level of
authentication of the sender instance in 7y as in wye.

Runtime behavior. The Compute mode of a machine M, is mostly a direct
implementation of the protocol logic given by code ¢ (cf. Figure 3). Upon its first
activation in this mode an instance (pid, sid) of M, stores its own ID (pid, sid) in
a global variable ¢d. The machine then checks, also during subsequent activations,
if it has already received any inputs/outputs on an I/O tape and stops the
activation otherwise. This captures that the network adversary in the UC model
is not allowed to spawn new machine instances. That is, even though spawning
a new protocol machine instance is technically possible in 77y, the resulting
instance will not do anything until it receives the first input or output from
another protocol machine or the environment, which results in a behavior that is
equivalent to the one in the UC model (this bridges Diff. 6). Once it receives its first
input/output on an I/O tape (and therefore the corresponding instance in 7o is
created), the instance registers itself with the instance (¢, sid.) of My,gs by sending
((e, side, c,, )s (Pid, sid, c), register) on an I/O tape connected to Mps. This
instance, which is specific to the protocol session sid.., stores the ID (pid, sid, c)
and immediately returns an acknowledgement. Finally, if this is an instance of the
highest-level machine M. _ and it receives some import ¢ > 0 in a message from
the environment, then it sends ((e, sidc, cr,,,, ), (pid, sid, ), (notifyImport,))
to notify the session specific instance Mg, about this amount. M, stores %
and returns an acknowledgement; we describe the purpose of registrations and
import notifications later on.
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Mode Compute:
Let m = ((pid, sid, c), (pid,, sids,cs), m’) be the message received on some I/O tape ¢
respectively m = ((pid, sid, c), m’) received on the network tape.
if id = L then

id « (pid, sid) {Store the ID of this instance such that the

CheckAddress mode can use this information.

end if
if this instance has not received any message on an I/O tape yet then

Stop the current activation of this instance. { This activates the environment.
end if

if this is the first message received on an I/O tape then
Send ((e, sidc), (pid, sid, c), register) on the tape connected to Mmsg, where sidc

can be parsed from sid. Wait for the response and then continue.
end if

if ¢ = cr and m/ is a message on the external I/O tape containing import ¢ > 0 then
Send ((e, sidc), (pid, sid, c), (notifyImport,i)) on the tape connected to Mmsg, where

sid. can be parsed from sid. Wait for the response and then continue.
end if

// Main logic //

Run code c¢ using the sender information (pid,,sids,cs) (or e if the message
is from the network adversary), incoming message m’, and the tape type tt €
{input, output, backdoor} that m’ is written on determined from the tape t.

When ¢ wants to send a message, proceed as described in the paragraph “Sending
messages” on Page 18. In particular, ensure that the resulting message contains the
correct sender identity (pid, sid, ¢) in the header.

Fig. 3. Compute mode of the machine M. for ¢ € Codes

Once all of the above steps are finished (and the instance has not aborted),
the instance processes the incoming message m by running the code c. Note that
this is indeed possible: M. can determine whether m is an input, subroutine
output, or a backdoor message depending on the tape m is received on. Inputs
and outputs received from other protocol machines also contain the full extended
identity of the sending instance, including the machine code, so M, has access to
the same information that instances in 7 ¢ have in the UC model upon receiving
a new message.

Sending messages. During the simulation of code ¢, whenever the code ¢
wants to provide input/output m’ to an instance (pid’, sid’) of a machine M.,
M, chooses the I/O tape t that connects M. and M. and which models an
input/output from M. to M. Then M, writes ((pid’, sid’,c'), (pid, sid,c), m’)
on tape t, where (pid, sid) is the ID of the current instance of M,. If the code ¢
wants to send a backdoor message m’ to the network adversary, M, writes the
message ((pid, sid,c), m’) on its network tape.

We still have to explain how we deal with Diff. 7. That is, code ¢ might choose
to use a non-forced-write command and specify the recipient of a message not
by their extended ID but by a predicate P on extended identities. First, observe
that if a message is sent to a backdoor tape, then it must be for the network
adversary by definition of the UC security experiment. Hence, this case is easy
to handle in M.,: if the non-forced-write request is to a backdoor tape, then the
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message is sent as described above to the network adversary. Second, for inputs
and outputs observe that those may not be sent directly to the identities of the
environment or the adversary. So the predicate may match only identities of
(existing) machines within the protocol, i.e., the message will be sent internally.
We can easily mimic this in the IITM model via the machine Myg,. Recall that,
by the above construction, whenever a new machine instance receives the first
input or output on an I/O tape in mode Compute, it registers its extended identity
(pid, sid, c) at (a session dependent instance of) Myse. The machine Mgy offers
a “nonForcedWrite” command to the machines M, that, given message body
m’, message type mt € {input, output}, and predicate P, runs the predicate P
on the list of existing protocol machine instances to find the first matching one.
The message m is then delivered to that instance as described above, but with
the I/O tape chosen based on mt and the sender of the message (which is written
in the header of the message) set to be the machine instance (pid, sid, c) that
called the nonForcedWrite command. If no matching instance is found, then
M,sg aborts and the environment is activated instead, just as in the UC model.

There is another special case that we have to deal with, namely the highest-
level protocol machine M. sending a subroutine output (cf. Diff. 8). In the UC
model, this output is redirected to the environment (without the code of the
sender but instead including the code of the intended receiver) iff the current
instance has challenge SID sid. and the receiver extended identity does not yet
exist as an instance of a protocol machine. Observe that by our normalization
of mye all instances of M. that are part of protocol session sid. also have
SID sid,, i.e., the first condition is always met. The second condition can be
checked using the information stored in the machine My, yielding the following
implementation. Whenever an instance (pid, sids) of M. wants to send a
subroutine output m’ to an extended receiver identity eid, = (pid,., sid,, c;),
M., first asks Mps; whether eid, already exists in the system (via a special
existsInstance? request). If so, the message is sent by M. to the instance
(pid,., sid,) of machine M., as described above. If this instance does not exist
yet, then the message m = ((pid,., sid,, ¢,.), (pids, sids), m') is sent on the single
external I/O tape of M, _ that is connected to the environment. Note that, unlike
for other messages, the sender machine code ¢, is not contained in the header
of m in this case. Altogether, this precisely captures the behavior of the UC
security experiment and hence bridges Diff. 8.

Import handling. We still have to explain the purpose of the notifyImport
message. Instances of M, use these notifications to keep track of the list of
imports received from the environment in this protocol session. The adversary
can send a special totalImport? request to learn the current list of imports.
Jumping slightly ahead, this information will be used by the simulator constructed
in Section 3.3 to bridge Diff. 11: Instead of requiring the environment in the
IITM model to be balanced (i.e., it has to provide at least the same amount
of import to the simulator as it provides to the protocol), the simulator rather
indirectly enforces this property itself. That is, the simulator checks how much
import the protocol has received already and, if the protocol has received more
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than the simulator, adds the missing difference to its own received import. We
note that the security notion of the UC model requires runtime bounds to be
simulated correctly and hence adversaries/simulators generally must already be
aware of the current protocol imports not just for the whole session but even for
individual (highest-level) instances in a session. The added totalImport? request
only makes this property explicit via a fixed mechanism. Nevertheless, we show
in Appendix H that our results can actually also be obtained without adding a
totalImport? request. This, however, requires a more involved mapping than
the one we present here.

Finally, we encode runtime import for the machine codes ¢ in unary instead
of binary. This seemingly cosmetic change does not affect the behavior or se-
curity results obtained for the protocol wy¢. But it allows us to argue that an
environment in the II'TM model, which may send arbitrary inputs of at most
polynomial length to the protocol, can send at most a polynomial amount of
import just as an environment in the UC model.

Altogether, we define mppy = Mo | ' Me, | ... | VM., | | ! Mugg | ! Mie.
Based on the construction and the discussion above, we can easily check that
myc and wry behave the same:

Lemma 1. For all unbounded (including runtime) environments interacting with
Tuc/Trrm by sending inputs/receiving outputs but also by directly interacting
with arbitrary protocol instances over the network, there is a bijective mapping
between runs of myc in the UC model and wyrrar in the IITM model such that both
protocols behave identically. Both protocols have similar computational complexity.

Proof. By construction, the only difference between both protocols is the added
explicit totalImport? request on the network in m;pps. In the UC setting with
mye this request can instead be internally simulated by the environment. a

We show in the next lemma (proven in Appendix A) that mprp is a well-
defined IITM protocol by showing that it meets the II'TM runtime notion for
protocols. This bridges Diff. 9 by relating the UC to the IITM runtime notion.

Lemma 2. The protocol wiry is environmentally bounded in the IITM model
if Tyc is ppt in the UC model.

3.3 UC Security Implies IITM Security

Having defined a mapping of protocols from the UC to the IITM model, we now
prove that this mapping preserves security results. That is, if Tyc < ch o ve,
then 7 f}i}iM <irMm ¢§}i}iM for protocols mapped as described in Section 3.2 plus
an additional mechanism to capture &-identity bounded environments in the
IITM model, which unlike the UC model does not restrict environments. This
mechanism does not change the IITM model. We rather show that £-identity
bounded behavior can be enforced within protocols themselves, thereby bridging
Diff. 10.
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While designing this mechanism, we found that the definition of £-identity
bounded environments as used in the UC model actually does not support com-
position and the proof of the UC composition theorem is flawed. We describe the
issue in detail in Appendix J.3. In a nutshell, the issue is that the UC model allows
for defining the identity set & via a predicate over the current configuration of the
whole system. The configuration of the system and hence potentially the behavior
of the predicate is very different in the security experiment, where there are only
instances of the environment, adversary, and one session of my¢c respectively
¢ vc, compared to the composition theorem, where there are additional instances
of a higher-level protocol p as well as potentially multiple sessions of my¢ /¢ yeo.
Hence, even if p is £&-compliant in the setting where instances of p and multiple
sessions of Tyc/¢ ye exist, this does not imply that an environment internally
simulating p while running only with 7y¢/¢ yeo (but with no actual instances
of p and only a single session of wyc/¢ yc being present in the system) also
is &-identity-bounded. Based on this observation, in Appendix J.3 we show a
concrete counterexample for the UC composition theorem.

Therefore, instead of trying to translate the existing identity-bounded mecha-
nism, which does not support composition in the UC model, and hence, would
also not support composition when faithfully translated to the IITM model, we
propose a fix for the UC model and then transfer that fixed version to the IITM
model. Specifically, instead of defining & as a predicate over the configuration
of the whole system, we define it as a predicate over the (whole history of)
inputs sent and outputs received by the environment/p to/from one session of
the subroutine 7/¢. This fix, which follows a similar idea as [1], indeed solves
the problem: The sequence of messages between p and one of its subroutine
sessions remains the same (for each respective subroutine session) even if we only
simulate p within an environment. Hence, such an environment running directly
with a single session of the subroutine 7/¢ is indeed &-identity-bounded. This
fixes this issue of the UC composition theorem and the proof thereof. This fix
should also be sufficient for practical purposes; we are not aware of any protocols
that have been proven secure for a £ that falls outside this class. We provide an
extended discussion in Appendix J.3.

We now embed this (fixed) definition of -identity-bounded environments into
the IITM model as follows. The obvious option would be to restrict environments
in the II'TM model in the same way. However, this would require us to change the
IITM model and its theorems and proofs. We rather extend the protocols 7
and ¢ ;7 in a generic way to manually enforce the £-identity-bounded property
for all environments. This is a technique that is commonly used in the IITM
model, see for example [16,18]. Formally, we add to each protocol an additional
between the environment and the highest-

level machine M, _ respectively M., creating new protocols W?}i,}iM and qﬁﬁ}i;M

: 3
dummy forwarder machine Midcntity

(cf. right hand-side of Figure 1). In a run, (a session specific instance of) Mfdentity
checks for every input whether £ is met and, if not, drops the input, thereby
activating the environment as a fallback. This achieves the desired goal: On the

one hand, environments that are already &-identity-bounded are not restricted
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since for such environments the original protocols 7 rrar/¢ rrras and the modified
protocols ﬂ'glﬁM ¢§}1}1M behave identically. For any other environment &, the

combination of £ and Mfdentity constitutes a &-identity-bounded environment for
the original protocol. Note that the extended protocols are still environmentally
bounded as Mfdentity adds only a polynomial number of steps; in particular, £
can be evaluated in polynomial time by definition. Altogether, this mechanism
indeed bridges Diff. 10.

We can now show that < security implies < jr7ps security for the mapped
protocols; we discuss the reverse implication afterwards. In Appendix H, we show
that < ;- implies < 77y in general by using a somewhat more involved protocol
embedding. Here, using the (simpler) protocol embedding from Section 3.2, we
formally show this result for a certain though very general class of simulators, in
fact, a class of simulators containing virtually all simulators that have ever been
considered in the literature so far, as further explained below.

More specifically, first recall that, as stated in the UC model, to prove
T < yo ¢ instead of constructing a simulator for every adversary, it suffices to
construct a simulator just for the dummy adversary. (From such a simulator,
simulators for arbitrary adversaries can be constructed.) The dummy adversary
as considered in the UC model allows the environment to provide import ¢ via a
special message, say op(i), which is different from network messages intended for
the protocol. The dummy accepts this import and returns an acknowledgement
to the environment without sending a message to the protocol. We therefore
consider the class of simulators which also do not require an interaction with
the ideal protocol upon receiving import via op from the environment. This is a
natural requirement that should be trivially met by simulators for all reasonable
protocol definitions, also considering that a protocol in reality cannot rely on
the network adversary sending a notification each time the adversary decides to
increase its runtime bound. Indeed, we are not aware of any UC protocols from
the literature where the simulator has to interact with the ideal protocol upon
receiving additional import via op. Simulators are rather defined in a black-box
fashion where they implicitly simulate the dummy adversary and only specify
their behavior for network messages that are forwarded by the dummy to the
real protocol. Since the dummy adversary already handles the input op without
sending any network messages to the protocol, all such black-box simulators
trivially have the stipulated property. We note again that, as mentioned above,
this (though natural) requirement on simulators is not formally necessary.

Theorem 4. Let wyc, ¢ yc be such that myc Sch ¢ vc- Then it holds true
that m5irar < a6 Sizas-

Proof (sketch). We here show this theorem assuming that the simulator for prov-
ing myo < ch ¢ yc has the properties stipulated above and point to Appendix H
for the general case. The proof proceeds in 4 steps (see Appendix B for the full
proof):

Reduction to UC. We first define an IITM dummy adversary A%S;E’f}‘}%ﬂ?[d
and an IITM simulator SY$°"ded that adhere to the UC runtime notion and
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enforce the balanced requirement for environments. Specifically, both machines
are defined to internally run the UC (real and ideal) adversaries Apym, vc and
Suc, respectively, but add a wrapper around them. This wrapper handles the
added totalImport? request on the network itself by forwarding it to My,ee and
returning the response without involving the internally simulated UC adversary.
Also, upon each activation the wrapper first checks whether its protocol has
received one or more new imports (via a call to totalImport?) such that its
total import now exceeds the total import directly provided by the environment
to the adversary. If so, the wrapper adds these missing imports to the internally
simulated UC adversary via (potentially several calls to) the operation op. Then,
and in all other cases, the adversary continues as the internal UC adversary.

Consider an IITM environment 5?}?,%1;’5 that sends inputs and network

messages (via the dummy adversary) only to a single session of the proto-
col wrrra /@ 11, adheres to the &-identity bound, and tries to distinguish the
worlds A%S;,E’f}‘}%(}\fjd | 7y and SHGaheunded | ¢ . We can reduce this case to
the indistinguishability of Apym, ve | Tue and Syc | ¢ in UC by constructing an
UC environment £yc that internally simulates S;}HT‘%\I;’S. Evc further internally
simulates responses to totalImport? requests. Each time £y wants to provide
import as part of an input to the protocol such that the total protocol import
exceeds the total import provided to the adversary so far, Ey¢ first adds the
missing difference via a call to op to the adversary and only then sends the input
to the protocol. By construction, £y¢ is balanced. To see that £y¢ has the same
distinguishing advantage as €528 there are only two aspects that we have to
argue. Firstly, in the IITM setting a protocol might obtain one or more imports
that bring the total above the amount of import of the adversary. Then, as soon
as the adversary wrapper becomes active the next time, it calls op for each of
these imports, and then the internally simulated adversary processes the message.
In the UC world, Ey¢ first calls op, then provides import to the protocol. This
might be repeated several times until, at some point, the adversary processes
whatever message # op it receives next. So while the same number of calls to op
with the same import are used in both UC and IITM setting, formally the state
of the protocol might be different when op is executed. Due to the definition
of the dummy and assumption on the simulator, op is independent of the state
of the protocol, i.e., this formal difference does not actually affect the behavior
of the run. (This is the only case where a slight mismatch occurs. All other
messages are processed at the same points in the run by construction.) Secondly,
the UC environment is bounded in its current import, so might not be able to
complete the simulation. We can find an external input of suitable length, which
determines the initial import, such that this case does not occur.

Environments without the ¢-identity bound. The indistinguishability of

UC-bounded UC-bounded : single,§
Apumattar | Tirm and Sppppg | ¢ i for environments E," is eas-

ily seen to be equivalent to indistinguishability of A%S;,';‘}‘}%‘}\Zd ‘W?}i;M and

UC-bounded | 4 &-id ; : : . single
Siar | @577 for arbitrary single session environments €75
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Indistinguishability for the IITM dummy. So far, we have only considered
the dummy AYC-Pounded which adheres to the UC runtime notion and hence
might stop whenever he has to forward more bits than he has import. However, we
actually have to show < ;rpar for the IITM dummy A pysm, rrrm which never stops
and always forwards messages. The idea for constructing a simulator Sy, for

Apum, rrras is as follows: Observe that the only difference between A%S;,E’f}‘}%‘}ffd

and Apym, i is that ARSPRGed might stop if it has too little import, which

SH%E[O““C‘M then also simulates. So we define the simulator Sy, to internally

run S}Jlg}\‘}ounded but, upon each activation, potentially generate additional import

via a call to op such that an imaginary A%S;ﬁ’f}‘}‘}f}\jd, if given the same overall
import, would not stop. We show that it is indeed possible to build such a
simulator, also while remaining in the polynomial runtime notion of the IITM
model (this is because the additional import is polynomial in the runtime of the
environment and hence the same argument as in Lemma 2 still applies).

We can then reduce a single session environment £7r-5; trying to distin-
Ty Uy

guish A pym, 117 | wf}i}iM and Sy | gb?}igM to indistinguishability of the worlds

3 -id X -id . .
AYC-bounded | 7&0d o q GUCbounded | &0d 1y constructing an environment

/318 that internally simulates €525 plus the additional import generated by

the wrapper portion of Syyray.

Indistinguishability of multiple sessions. Since the protocols have disjoint
sessions and A puym, 117 | w?}i}iM and Srrry | (;S?#M are indistinguishable for any
environment E;}rﬁ; interacting with just a single session, the second compo-
sition theorem of the II'TM model (cf. Theorem 3) immediately implies that
W?}iﬁM <urm ¢ ?11; > 1-€., there also exists a simulator for arbitrary environments

Errry interacting with multiple sessions. O

The construction of the simulator SH5;5°"4d in the above proof bridges Diff. 11:
Since the II'TM model does not require that environments provide a certain
minimal amount of import to the adversary (the IITM model does not even
require the concept of import), the simulator instead enforces this property
itself by manually adding the difference between its own import and the import
received by the protocol. The above proof also bridges Diff. 12 by showing that
the UC security notion implies the single session IITM security notion. The
second composition theorem of the IITM model (cf. Theorem 3) then directly
implies security for multiple sessions.

The other implication of Theorem 4 is more involved since the II'TM model
considers a larger class of adversaries, including simulators, than the UC model.
Specifically, the runtime of UC simulators is required to be bounded by a fixed
polynomial (in their current import) independently of the environment. An IITM
simulator does not need to adhere to any import mechanism. Its polynomial
runtime bound is rather taken over 1 and the length of the external input a and
may even depend on the environment. In fact, the following lemma shows that
the reverse implication of Theorem 4 does not hold true in general:
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Lemma 3. If time-lock puzzles exist, then there exist protocols Tyce and ¢ yo
such that for the mapped protocols we have 7T§ITM <ITMm gbUTM but myc < ye
¢ vc does not hold true. (These protocols are pretty simple, and hence, the result
works for all mappings that preserve the protocols behaviors.)

We recall the definition of time-lock puzzles and formally prove this result in
Appendix C, along with a discussion on the implications for security results. If
we consider only the subclass of IITM simulators that corresponds to the class
of UC simulators that adhere to the UC runtime notion, such as Sylgﬁounded
constructed in the proof of Theorem 4, we have the following reverse implication:

Theorem 5. Let Agg;ﬁ'}’ﬁfli\jd be the IITM dummy adversary that enforces bal-
anced environments and adheres to the UC runtime notion as defined in the proof
of Theorem 4. Let SHZhovnded be an IITM simulator that is of the form as the

one described in the proof of Theorem /.

3 -id i -id L
If AYC-bounded | 7T§I;1M and SHGhounded | d)?]?TM are indistinguishable for all

II'TM environments interacting with a single session of the protocol, then we have
ﬂ'?}%ﬁiM <urm QS%?M (multi session IITM security) as well as wyc §€Uc ?ve-

We provide the proof in Appendix D. Theorem 5 shows that the implication of
Theorem 4 is non-trivial and non-degenerate since our mapping not only preserves
security results but also distinguishing attacks. That is, if for all UC simulators
there is a £-identity bounded UC environment that distinguishes 7 y¢ and ¢ ye,
then Theorem 5 implies that for all II'TM sunulators in the UC runtime class

there is an IITM environment distinguishing s HTM and qﬁ%i}iM.

3.4 UC Composition Implies II'TM Composition

In this section, we investigate in how far composition results carry over from UC
to IITM. We first observe the following direct corollary of Theorem 4:

Corollary 1 (Composition from the UC theorem). Let myc, d ve,p ve
be UC protocols such that myc §§UC ¢ vc and the UC composition theorem can

be applied to p yc to obtain p 38” < e puc- Let p e and p ﬁ%@ be the IITM

pmtocols obtained by applying the mapping from Section 3.2 to p yc and p ; ¢_”T.16

Then PUTM <ITM P IITM-

Proof. Directly follows from Theorem 4 by observing that the simulator con-
structed by UC composition has the property required by Theorem 4 (we discuss
this in detail in Appendix E). Alternatively, one can use the extended mapping
from Appendix H which does not require a specific UC simulator. ad

16 Note that Py ¢H” also contains some UC composition shell code introduced by the

ucC composmon theorem to replace the code ¢y with c. pﬁ?Mﬂ is thus obtained by

mapping the overall machine codes, including the UC composition shell code.
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While this corollary shows that security results obtained via the UC composition
theorem carry over, it does not actually provide insights into how the UC and
IITM composition theorems relate. To answer this question, we next show that the
same composition statement can be obtained directly from the II'TM composition
theorem without relying on the UC theorem.

Obtaining Corollary 1 from the IITM composition theorem. We start
by observing that the IITM theorem requires that higher-level protocols access
the subroutine 7 rrar/ ¢ rrras only via its external 1/0 interface, i.e., the external
I/0O tapes that the environment had access to in absense of the higher-level
protocol. In the special case of our mapped protocols 7wrrar /@ rrrar, which
offer only a single external I/O tape to/from the machine with code ¢, /cy,
this syntactical requirement of the IITM theorem actually corresponds to the
“subroutine respecting” requirement for 7y /¢ yeo in the UC theorem.!” That
is, subroutine respecting protocols are required to reject and drop all messages
from and never send messages to instances outside of their session of 7y¢/é ve,
except for inputs to and outputs from highest-level instances running code
¢x/cy. The only difference is that in UC “subroutine respecting” is a semantic
requirement imposed on the behavior of machines whereas the IITM requirement
enforces the same property on the syntactical level of interfaces by removing
any unintended communication channels/tapes. Hence, to be able to apply the
IITM composition theorem and conclude p f}?& <irm p T we have to make
some slight syntactical adjustments to p ;rrar such that the semantic “subroutine
respecting” property is also reflected by the tape connections.

So let p ;yar be the protocol mapped according to Section 3.3. Then, since
p 1rrm uses code cg € Codes and possibly other codes, p rr7ar looks like depicted
in Figure 4 (left-hand side); we refer to machines of the system p ;7 by M.
The middle picture of Figure 4 illustrates the idea of our syntactical changes
to p iy We extend the protocol p jpray by including the full set of machines
of ¢ 1, as obtained by mapping from ¢ y¢ according to Section 3.3. We now
change all machines in p ;r7ar, i.e., all M7, to send inputs/receive outputs to/from
¢ 117y instead of Mé;. Since multiple machines need to connect to ¢ ;rras but
¢ 117 provides only a single external I/O tape, we introduce a straightforward
multiplexer Mpyuitiplex that forwards messages between ¢ ryr)s and machines
M?. Since inputs to and outputs from Méod) are the only way for higher-level
instances in p to interact with instances in any session of the subroutine ¢ (by
the subroutine respecting property), this syntactic modification of p jyras does
not actually change its behavior. It, however, consistently moves all sessions of
¢ to now be instances of the set of machines ¢ ;;7p. Note that when ¢
calls subroutines (with code in Codes), then ¢ ;;rp now uses its own subrountine
machines, instead of those of p j;ra. The composed protocol pﬁ?j\} is then

17 The IITM composition theorem also supports IITM protocols that offer several
external 1/O tapes, even to subroutines, which gives the environment and higher-level
protocols direct access to those subroutines. Such IITM protocols are more general.
They do not and do not have to meet the “subroutine respecting” property.
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Fig. 4. Overview of the static structures of the protocols in this section. Left: p rrras
mapped as per Section 3.2. Middle: p ;yru after redirecting all inputs/outputs from
MPp A to ¢ rrrav. The machine ME A is formally still present but not used in a run. Right:
The composed protocol pﬁ?M” after applying the II'TM composition theorem, which
replaces the protocol (and hence all sessions of) ¢ ;7 with the protocol 7rrras.

defined by simply replacing the set of machines ¢ ;s with the set of machines
v (right hand-side of Figure 4). This is as simple as reconnecting the single
I/O tape between the multiplexer Mpyitiplex and ¢ ;rras to instead connect to
the external I/O tape of 7y As a result, in pﬁ%@ all inputs to and outputs
from sessions of ¢ ;;rps are now instead handled by sessions of 7wy, which is
just as in p ?}Em In other words, reconnecting this tape has the same effect as
adding the UC composition shell code, which internally changes the code ¢, to
instead be ¢, for such inputs/outputs. So, unlike in Corollary 1, when we use
the IITM composition theorem we actually do not need to include this shell code
inp ﬁ;& The IITM composition theorem then implies the following:

Corollary 2 (Composition from the IITM theorem). Let myc, ¢ vo, p ve
be UC protocols such that myo < §UC o vc and p yc meets the requirements of the

UC composition theorem. Let p ryrar and pﬁ;;[ be the IITM protocols from above.

Then immediately by the IITM composition theorem, pf}?& <[TM PIITM-

We provide full details, including the formal definitions of p jr7a, p 2;1\7;1 and
the proof of Corollary 2 in Appendix F. In the process of showing this result, we
also found and fixed an issue that formally invalidates the UC theorem, namely,
additional assumptions on non-forced writes used within p are actually necessary
(cf. Appendix F for details). Altogether, the construction shown in Figure 4 and
Corollary 2 illustrate how the additional requirements of the UC theorem from
Diff. 13 and Diff. 14 are reflected in the mapped IITM protocols when the IITM
theorem is used to obtain the same composition result.

Novel Composition Operation. Recall that the UC theorem applied to a
protocol p replaces all sessions of subroutines running code ¢ with sessions
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running code 7. Similarly, the IITM theorem applied to a protocol p replaces all
sessions of a set of machines ¢ with sessions of a set of machines 7. Observe that
we can use the above modeling technique not just to move all sessions of ¢ to
a new set of machines. Under certain conditions, we can rather more generally
move a proper subset of the sessions of ¢ to a new set of machines, say ¢’, while
moving the other sessions to a different set, say ¢", where ¢’ and ¢” still run the
same code cg. We then obtain a simple corollary of the UC and IITM composition
theorems (also for similar models), where we can replace ¢’ with a realization
7’ but replace ¢ with a different realization «”. In other words, our technique
allows for replacing subsets of sessions. This can be useful, e.g., if ¢ is an ideal
signature functionality, where each session models one key pair. Then we might
want to implement certain keys with a signature scheme 7’ but others with a
different signature scheme 7", say, depending on where they are used within a
higher-level protocol p. We explain this in more detail, including requirements
on p, in Appendix G.

3.5 Capturing Dynamically Generated Machine Code

We now explain how our constructions from the previous sections can be extended
to also support an unbounded number of dynamically generated machine codes.
This bridges Diff. 1 and thus completes our mapping.

We start by observing that the UC model can be interpreted to be defined on
a single universal Turing machine which is instantiated arbitrarily often during a
run. Whenever a new instance receives its first input message, which contains the
extended identity (pid, sid, c) of that instance, it stores this identity and from
then on runs the code ¢ given in its identity. This mechanism, whichs allows the
UC model to seamlessly support arbitrary dynamically generated machine codes,
can be transferred to an IITM protocol as follows.

Whenever a protocol w7y requires an unbounded number of different dy-
namically generated codes, potentially in addition to a finite number of static
machine codes Codes as above, then we first map the fixed number of static codes
of mrrrar as described in Section 3.2. We then add a universal Turing machine
My that all other machines M., connect to via pairs of I/O tapes. Each instance
of Myr is identified by an ID (pid, sid, c) (instead of (pid, sid) as for machines
M., with fixed code ¢;), where ¢ ¢ Codes, and internally runs code ¢ specified by
its ID. Whenever an instance of any machine in 777y, wants to send a message
to an instance with ID (pid, sid) and code ¢ ¢ Codes, i.e., where M, does not
exist in 7ra, then it sends the message to the instance (pid, sid, c¢) of Myt
instead (this is easily done by choosing the appropriate tape; the actual message
format, including the headers, does not change). The resulting protocol s
behaves just as myc with dynamically generated codes. Hence, by the same
reasoning as for Theorem 4, all realization results carry over for this construction,
including results obtained via the UC composition theorem (i.e., Corollary 1). In
Appendix F we argue that also Corollary 2 carries over since the same modeling
technique from Section 3.4 still applies independently of whether or not there is
a universal Turing machine.
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This bridges Diff. 1 by showing that the IITM model with its composition
theorem also fully supports protocols with an unbounded number of dynamically
generated machine codes, including all results available in the UC model.

3.6 Discussion: Beyond UC Protocols

Above, we have considered only IITM protocols that are obtained by mapping
some UC protocols. Of course, once we have mapped a UC protocol ¢ y¢,
including any security and composability results, into the IITM model, we are
no longer limited to only considering combinations of ¢ j;ras with such mapped
protocols. We can rather consider any combination of ¢ jjry, with arbitrary
other IITM protocols. This includes cases where a higher-level ITTM protocol P
is designed based on top of ¢ ;yrpr, which can then, by the IITM composition
theorem, be composed with any existing UC realization w;ra of ¢ ;. One
can also consider novel realizations of ¢ j;rp via an II'TM protocol P.

Such IITM protocols, which are combined with the mapped UC protocols,
can then make full use of the features of the II'TM model, including seamless
support for joint state, global state, arbitrarily shared state, protocols without
pre-established SIDs, and arbitrary combinations thereof. For example, a higher-
level IITM protocol P can be defined in such a way that different sessions of P
share the same instance of ¢ ;;ra and P could also work without pre-established
SIDs etc. We refer the reader to [4,17,19,20] for in-depth overviews, including
examples, of IITM protocols with these features which can now be combined with
existing UC results. Our mapping thus opens entirely new options for protocol
designers so far working in the UC model by allowing them to combine their UC
results with these IITM features, including IITM protocols that would require
extensions of or are not yet supported by the UC model.

4 Impossibility of Embedding the IITM Model into the
UC Model

Having mostly focused on the direction from UC to IITM, we now briefly discuss
the other direction. In [20], it has been shown that the IITM runtime notion
permits ITTM protocols which cannot be expressed in the UC model as they do
not meet the UC runtime notion. This includes protocols often encountered in
practice, such as protocols that have to deal with ill-formed network messages.
Combined with our results, this shows that the class of IITM protocols is strictly
larger than the class of UC protocols. Another difference in protocol classes is
due to so-called directory machines as required by the UC model for composition.
These directory machines provide an oracle to the adversary to test whether a
certain extended ID exists and is part of a specific UC protocol session. IITM
protocols need not provide such a side channel, i.e., they are able to keep the IDs
of internal subroutines secret from the adversary. This is not merely a cosmetic
difference. Such an oracle rather changes security properties and might not be
simulatable when (the existence of) extended IDs depend on some information
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that is supposed to remain secret. Finally, in this paper we provide an impossibility
result which shows that also the class of II'TM adversaries and hence simulators
is strictly larger than the class of UC adversaries/simulators (cf. Lemma 3 and
Appendix C).

So at best one can hope for an embedding of the IITM model into the UC
model for a restricted class of IITM protocols that follow the UC runtime notion
and provide the same side channel as the directory machine. Realization relations
carry over only for simulators that meet the UC runtime notion. Another obstacle
to an embedding are IITM protocols that share state between protocol sessions,
which includes joint state realizations as a special case. This is because the UC
model mandates that UC protocols are subroutine respecting, i.e., have disjoint
sessions that do not interact with each other. It might be possible to overcome this
mismatch by using an idea briefly mentioned in [4], namely, modeling all sessions
of an ITTM protocol within a single session of a UC protocol by introducing a
second layer of “internal” SIDs identifying the actual sessions of the protocol.
The downside of this idea is that a protocol mapped in such a way cannot be
composed with UC protocols modeled in the “standard” way. This is because all
sessions of such UC protocols would have to access the same UC session (but
potentially different “internal” sessions) of the mapped protocol. Resolving this
mismatch might be possible but probably requires a new variant or perhaps a
corollary of the UC composition theorem. We leave exploring the details of this
direction for future work.

5 Conclusion

In this work, we have initiated a line of research that investigates the so far
unexplored relationships of models for universal composability. Towards this goal,
we have answered the question whether and in how far protocols, security, and
composability results from the UC model carry over to the II'TM model. Our
main finding is that despite the many conceptually differences in the models, all
of this actually carries over in a natural way. As an immediate practical benefit,
this allows protocol designers coming from the UC model to compose their results
with and leverage the features of the IITM model, such as seamless support
for protocols with joint, global, shared state, protocols without pre-established
SIDs, including protocols that are not supported by the UC model, as well as
combinations of all of this.

Through the embedding we developed a modeling technique that allows for
obtaining a more general type of composition from existing composition theorems.
Secondly, we also identified and fixed several issues that, among others, invalidate
the UC composition theorem. These fixes should be compatible with and hence
retroactively apply to existing UC protocols in the literature. These points of
independent interest further highlight the new insights a formal embedding brings
to the table.

While in this work we have mostly focused on the embedding of the UC model
into the II'TM model, we have also discussed and proved obstacles for the other
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direction, and hence, set the boundaries for such an embedding, leaving a formal
embedding of (a subset of) the IITM model into the UC model to future work.

Acknowledgements. We thank Ran Canetti and Bjorn Tackmann for helpful
discussions on an early draft of this paper.
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Appendix

In the following appendices we first give full details of the results described
in the main body of the paper:

— Appendix A: proof of Lemma 2
— Appendix B: proof of Theorem 4
— Appendix C: proof of Lemma 3
— Appendix D: proof of Theorem 5
— Appendix E: proof of Corollary 1
— Appendix F: proof of Corollary 2

Next, we describe in Appendix G our technique for obtaining a new type of
composition as a corollary of both UC and IITM composition theorems.

In Appendix H, we describe an extended variant of our mapping. The most
notable effect of this more complex variant is that we can prove Theorem 4
without any assumptions on the simulator.

In Appendix I, we recall the formal definition of the second composition
theorem of the IITM model [20], including the corresponding security definition,
which enable a single session security analysis of protocols with disjoint sessions.
We then formally show that this theorem is indeed applicable in the last step of
the proof of Theorem 4.

Finally, we provide in Appendix J more in depth discussion of certain technical
details of the UC model [7]. Most notably, this appendix provides full descriptions
of the technical issues that we found while constructing our mapping and which,
among others, cause the UC composition theorem to fail. For each such issue, we
also construct a counter example that contradicts the composition theorem. We
finally give fixes for all of these issues which should be compatible with existing
UC protocols.

A Proof of Lemma 2

Let £ be an environment. Since £ is universally bounded, there exists a polynomial
p such that p(n + |a|) bounds the runtime of £, where 7 is the security parameter
and a the external input. Observe that p is an upper bound for the total number
of bits sent from the environment to the protocol (via an I/O or network tape)
and thus, by unary encoding of import, also for the total import sent to the
protocol. Next, recall that the UC model shows (e.g., as part of the proof of
the composition theorem) that multiple instances of a ppt protocol 7y¢ can be
simulated within a single ppt instance of a machine. Since 7;7)s behaves just as
myc, we thus have that there exists a single polynomial ¢ (in the total import
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received by the protocol) that bounds the combined runtime of emulating all
codes ¢; in all instances of M.,. Combining both polynomials gives the runtime
bound ¢(p(n + |a|)). This bound, however, only applies to the total runtime of all
the codes ¢;. We still need to upper bound the runtime of the surrounding logic
and the additional machines that were introduced in 77 to run the codes ¢;
properly.

Observe that new instances of some machine M., are only ever created by
messages from the environment or by messages sent by some code c¢; within a
machine M,;. Hence, q(p(n + |a|)) also upper bounds the combined number of
instances of all machines M.,. Regarding M, and Mg, there is at most one
instance per session, where the number of sessions is bounded by the number
of instances of M,,. Hence, ¢(p(n + |a|)) also upper bounds each the number of
instances of M, and instances of M.

Furthermore, q(p(n + |a|)) + ¢ for some constant ¢ upper bounds the length
of each individual message received by any machine instance. For messages sent
by the environment or the code ¢; in a machine M,,, we already know from
above that they are bounded by ¢(p(n + |a])) plus potentially a constant ¢ for
messages sent to M,se, which accounts for the additional strings nonForcedWrite,
existsInstance?, and the code of the machine My,s,. For messages sent by M.,
this follows from the fact that the very same message was previously generated by
some code ¢;. Similarly for nonForcedWrite messages sent by My,ss. For messages
to register instances at Mg respectively the responses to these messages, these
messages add at most a fixed constant ¢’ (accounting for the string register)
to the length of the original input of the instance of M., which we know to
be bounded by ¢(p(n + |a|)). Similarly for notifyImport messages and their
response. Finally, there are the responses to totalImport? messages, which are
also bounded by q(p(n + |a])) + ¢ for some constant ¢’ (note in particular that
the total amount of import ¢ contained in that message is upper bounded by
p(n + |a|) since that is the maximal amount of import that an environment can
provide).

Finally, observe that the runtime of an instance of a machine M,,, excluding
the runtime needed for running code ¢;, is linear in the input length, which is
at most g(p(n + |a|)). Hence, the total runtime of each individual instance of
M., is bounded by a polynomial. For My, we also directly see that the runtime
of each instance is linear in the current message length < q(p(n + |al)). For
Mg, each instance runs polynomial in the combined length of all inputs so far
(since register inputs extend the internal state by at most its own length, the
size of the internal state determines how often a predicate P is run, and the
predicates P used in the UC model run in fixed linear time in their input'®),

18 We discuss this property of predicates in detail in Appendix J.2. We note that the
proof would still hold if one were to consider a more general class of predicates
as long as the runtime of all predicates is still bounded by the same polynomial.
Conversely, if the runtime of predicates were not restricted at all, then not only would
this proof fail but it would also not be possible to show the UC composition theorem
(cf. Appendix J.2).



Embedding the UC Model into the II'TM Model 35

which is at most (q(p(n + |a|)) + ¢)?. Altogether, we have that there are at most
polynomially many machine instances each of which is bounded by one of finitely
many polynomials in  and |a|. Hence, the combined runtime of all instances is
bounded by a polynomial in 1 and |a|, which gives the claim. a

B Proof of Theorem 4

As per Footnote 12, we do not show < ;7 as defined in Definition 2 but rather
show the equivalent notion that considers a dummy adversary A pym, ;i in the
real world as that notion is closer to the definition of < .

Let Apym,uc be the UC dummy adversary with runtime bounded by a
polynomial in its import. Specifically, recall that the dummy is defined to use
one import for every bit that he forwards and stop once he has less than 7
import left. Recall that the dummy adversary Apm,vc provides an operation
op(i) that allows the environment to send import i to Apym,vc, who internally
adds 7 to the total import received so far and then returns control back to the
environment. Let Syc be the corresponding simulator for the ideal world such
that the protocols my¢ and ¢ y¢ are indistinguishable for any £-identity-bounded
environment. As mentioned, we here show the theorem using the assumption
that Sy¢ implements op(i) without sending any messages to the ideal protocol
before returning control to the environment, which is a natural property that
should be trivially met by simulators for reasonable protocol definitions including
existing simulators proposed in the literature. See Appendix H for the general
case, which requires a somewhat more involved mapping.

On an intuitive level, the following proof proceeds in four major game hops,
which iteratively modify both real and ideal worlds (see Figures 5 and 6 for
an illustration): (1) Starting from the UC model, we switch into a special case
of the II'TM model where we consider UC runtime bounded adversaries and
environments that are ¢-identity bounded while using only a single protocol
session. The main challenge here is to ensure that IITM environments still respect
the balanced property required for UC environments, which is necessary for
a successful reduction. We do so by adding a wrapper to each adversary that
manually generates additional import such that the internal adversary always has
at least the same import as the protocol. (2) Next, we consider IITM environments
that are not necessarily ¢-identity bounded (but still single session) and show
that such an environment cannot distinguish protocols which manually enforce
¢ themselves via the machine Mi%emity. (3) In the third step, we consider the
general IITM dummy adversary instead of the specific dummy that additionally
adheres to the UC runtime notion. Importantly, the general IITM dummy never
stops delivering messages. The key idea of this step is to add a wrapper to
the simulator which generates additional import such that, if the UC bounded
dummy adversary were to receive the same import, then he will also never stop
delivering messages und thus behave just as the general IITM dummy. (4) Finally,
we consider general ITTM environments that can access multiple concurrent
protocol sessions. Security of this setting follows directly from the second IITM
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= third proof step by reduction (continuation of Figure 5)
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composition theorem for composing an unbounded number of concurrent (disjoint)
protocol sessions. In what follows, we formalize each of these intuitive steps.

Indistinguishability for UC runtime bounded adversaries. We first show
the following statement. If we consider the dummy adversary A%S;,‘jf}‘}%ﬂ}d in the
IITM model that is also bounded by a fixed polynomial in its import, then we find

a simulator SY$ouded that is bounded by a fixed polynomial in its import such

that no environment Si}r}g’;;’g that interacts with only a single protocol session
and uses only sender identities permitted by £ can distinguish real and ideal
world. That is, €757 | ARG [ mrrm = Ear® | ST | ¢ ras for
all such environments.

More formally, we define A%S;,Ef}‘}%(}\jd to connect to all network tapes of
machines of the real protocol 7, which we will call internal network tapes
in what follows. A%Sﬁ‘}‘}%‘}&d offers two external network tapes connected to the
environment. The first external network tape serves as the “main” connection
to the environment where A%S;E’f}‘}%%jd receives and processes all messages from
the environment intended for instances of any machine M, € mrry. That is,
this main external tape directly corresponds to and implements the connection
between UC environment and UC adversary in the UC model. The second external
tape corresponds to the internal network tape of the machine M., added by our
mapping and allows the environment to issue totalImport? messages to that

machine. A%S;,Ef}‘}%‘}ffd then internally simulates Apuy,, vc but with the following

additional wrapper. Each time APS-Pounded yoceives an incoming network message,

it first sends a totalImport? request to the instance of My in the challenge
session sid.. If the total protocol import contained in the response is larger than
the total import provided to Apym, vc so far, then the difference is manually
provided by A%S;,‘ff}‘}%‘}\ffd to the internal import budged of the simulated A pym, vc
via calls to op (if the protocol has received several new imports that exceed the
import of the adversary, then op is called once for each of them). Afterwards, i.e.,
once the simulated Apym, e has processed op and wants to return control to the
environment, A%S;?f}‘}%‘}\jd instead proceeds by processing the original incoming
message: if the incoming message is a totalImport? request received on the
second external tape corresponding to My, then the wrapper forwards this
message to Mg and returns the response without invoking A pum, vc (and hence
without using the import budget of the simulated Apym,vc for these messages).
For all other messages received on the main external tape or any internal network
tape of some machine M., A%S;‘jf}‘}%‘}\jd continues just as Apym, vc and thus
adheres to the UC runtime notion.'® Observe that the wrapper transfers the

balanced requirement for environments to the II'TM model: it is impossible for

19 Note that simulating Apum,vc is indeed possible. In particular, whenever Apum,vc
wants to send a message to some protocol machine instance with extended 1D
(pid, sid, c), where c is the machine code of the recipient, then ABS,‘,E?}‘;;}Ed can
forward that message on the internal network tape tys, connected to the uniquely
identified machine M, running code ¢ in wrp. If no protocol machine with code ¢
and hence no such network tape exists, then the message is simply dropped. This is

just as in the UC model, where the message would formally be sent but, since no
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the ITTM dummy adversary to have less import than the protocol, just as is
the case in the UC model. We define the simulator SH3q°""4°d in the same way.
That is, Sggﬁou“ded internally simulates Sy within the same wrapper, which
adds additional import if the protocol has received more import than Sy so far
while directly forwarding totalImport? requests without involving Sy¢. Observe

: ; ; ; UC-bounded
that these adversaries meet the IITM runtime notion since Ap P97 | Trrmm

and SH(TJ']EO““dCd | & 17 Tun in polynomial time in the combined length of all
inputs received by the environment. This follows by analogous reasoning as for
Lemma 2 and using the observation that the additional import that might be
generated by the wrapper is upper bounded by the overall import provided by
the environment to the protocol.

Let Ef}rﬁ;’g be an environment in the IITM model that sends inputs and
network messages (via the dummy adversary) only to a single session of the pro-
tocol mrrrar /@ rrra. That is, 5;}%%;’5 outputs only inputs and network messages
for the same challenge session sid., which the environment is free to choose in
its first input/network message (cf. Appendix I for a formal definition of single
session environments in the IITM model). We also assume that 5?}2%1;’5 specifies
only sender identities for inputs that are permitted by £. We show that such an
environment cannot distinguish AP | 7y and SEZHC™Y [ ¢ rrar by
reducing this to the UC case.

We define £yc to be the environment in the UC model that runs the same
logic as 5;}2%:;,5 but stops the run with empty overall output upon reaching
a fixed runtime bound ¢, where ¢ is a polynomial in the number of import
tokens currently held by £yc. Every time Ei}rﬁ;’g wants to provide import to the
protocol such that the total import received by the protocol would be larger than
what the adversary has received so far, £y¢ first provides the difference to the
adversary via a call to op and then, after being activated again, sends the input
of Si}rﬁj’f to the protocol. If Ei}lﬁj’g wants to use the second external network
tape of the IITM adversary to send totalImport? to Mpyss, then Eyc does not
actually forward that request but rather continues to behave as if 5?}%};’5 receives
a response containing the amount of import sent as input to the protocol so
far. Network messages sent by E?E%};é via the main tape of the IITM adversary
are forwarded by Eyc to its UC adversary. Responses by the UC adversary are
processed as if they were received by Ei}rﬁj’g on the main network tape of the
ITITM adversary. Observe that £y¢ is indeed a (¢-identity-bounded) environment
in the UC model as it is ppt in the UC sense by construction and as it is balanced

due to providing the adversary with at least the same import as the protocol.

recipient instance with that code is ever created by m, the message is then dropped by
definition of the computational model. Further note that this simulation is possible
even if the protocol 7wy is extended to not just handle a fixed number of codes
¢ € Codes but also includes a universal Turing machine Myt that handles arbitrary
dynamically generated codes ¢ ¢ Codes as described in Section 3.5. In this case, all
messages for a machine instance with code ¢ ¢ Codes are forwarded on the internal
network tape t of Myr.
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Now compare the II'TM real world Si}rﬁj’g |A%S£‘}‘}%<}\jd | 71170 with the UC
real world where £y runs with Apym, ve and mye. Observe that until Eye

reaches its runtime bound ¢ it perfectly simulates not just Sii[r}g;;’f but also the
behavior of the wrapper of APS-PGH45Y. In particular, if the wrapper APS-PG e
in the ITTM setting generates and provides additional import to the internally
simulated Apuym, vc beyond the import provided by Ei}]ﬁj’g, then £yc in the
UC setting adds the same amount of import via the same calls to op. Note that
the exact point in the run where import is provided via a call to op is slightly
different in both worlds but still results in the same behavior. Specifically, in the
IITM setting Ei}rﬁ;’g first provides some import to the protocol (that raises the
total over the import of the adversary), which then performs some computation.
At some point the A%S;,'i‘}‘}%‘}\f}d is activated with a message m, who then first
runs op and processes m afterwards. In the UC world, £y¢ first calls op, then
provides the import to the protocol, which performs some computations, and
then Apym,vc is activated with and directly processes the message m. So in
the ITTM setting the protocol is activated before a call to op and in the UC
setting the protocol is activated after a call to op. But since the dummy adversary
processes op without any interaction with the protocol and therefore this step
does not depend on the state of the protocol, the resulting behavior is still the
same. In particular, we have that as soon as the message m is processed by (the
internally simulated) Apym,vc, which might require some interaction with the
real protocol, the state of the real protocol is identical in both worlds. Altogether
we have that the real worlds behave identical with the same overall outputs, if
any, until £y¢ reaches the runtime bound gq.

Now compare the II'TM ideal world 5?}2%\1/‘;’5 | SPGaheunded | ¢ s with the UC
ideal world where £y runs with Sy and ¢ ye. Since the simulator SH%E}O““ded
uses the same wrapper as A%S;,?f}‘}%}\fjd and, by assumption, implements op without
interacting with the protocol, the same reasoning as above also applies here.
Hence we have that the ideal worlds behave identical with the same overall

outputs, if any, until £y reaches the runtime bound gq.

The only thing left is to define the runtime bound ¢ in a suitable way that
allows for mapping all runs in the IITM setting to runs in the UC setting with
the same overall output distribution. Let p be the polynomial in the security
parameter 1 and length of the external input |a| that bounds the runtime of
5??71%\1;’5 by the universally bounded property of II'TM environments. Observe that
the additional runtime needed by Ey¢ for simulating responses to totalImport?
requests and providing additional import can be bounded by a polynomial 7 in
the total length of all outputs generated by 5;}%}?57 which is at most p(n + |a|).
We set ¢(-) := p(-) + r(p(:)) w.l.o.g. monotonically increasing. Now, consider a
run in the IITM setting with security parameter n and external input a, where
|a| is bounded by a polynomial in the security parameter (the security definition
respectively the definition of negligible functions considers only external inputs of
bounded length). Consider the corresponding run with the same randomness in
the UC setting but with security parameter n and external input (a, 1’7+2'p(’7+‘“‘)).

Note that the overall length of this input and hence the import provided to the
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environment is polynomial in 7. Observe that, given this input, the runtime bound
¢ is never exceeded: Since the overall runtime of £578°¢ is bounded by p(n + |a])
and import was encoded in unary in the II'TM setting, we have that £y forwards
at most 2-p(n+|al) of its import, leaving it with at least n+ |a|. Hence, the overall
runtime bound of ESUiggle’g is always at least ¢(n+ |a|) = p(n+|a|) + r(p(n + |al)),
which is never reached by definition of 5;}%:; £ Thus, the distinguishing advantage
in the II'TM model is the same as in the mapped runs in the UC model, which is

negligible by assumption.

Indistinguishability for arbitrary single session environments. We know
that the systems A%S;,E’f}‘}ﬁf[d | i and SHEHomded | ¢ 1y are indistinguish-

able for single session £-identity bounded environments 8;}%\1; . This is equivalent

to AYC-bounded | 7 &Iy SUCbounded | &I peing indistinguishable for all

single session environments £;7% ;. In particular, a single session environment

running with M. ¢

identity Constitutes a &-identity bounded single session environ-
ment.

Indistinguishability for arbitrary adversaries. So far, we have only con-
structed a simulator for the dummy adversary that has a fixed runtime bound in
its import and which stops once the runtime/import granted by the environment
is exhausted. However, the II'TM model also quantifies over adversaries whose
runtime is not externally determined by the environment. In particular, the
dummy adversary Apym,rrar in the IITM model does not expect adversarial
import in its network messages, does not provide the operation op for adding
import, and also does not adhere to a runtime bound determined by externally
provided import. The IITM dummy rather always forwards whatever network
messages it receives and hence cannot be stopped by the environment.?? Observe
that the simulator from above does not directly work for A pym rrra since he also
simulates the case where the UC dummy adversary stops delivering messages due
to reaching its runtime budget. We slightly modify the simulator via a wrapper
to prevent this case from occurring, which then gives the desired result. The
main idea to achieve this is to let the wrapper itself generate a sufficiently large
amount of import via calls to op such that we can argue that, if one were to run
A%S;,?‘}‘}%}&d with that same import in the real world, then A%S;?’%‘}%(}\jd never
reaches its runtime bound.

There is also a minor syntactical difference between the adversaries A puym, rrmm
and A%g;g‘}‘}%‘}\f[d. Namely, while Aggﬁf}‘}%‘}\?[‘i offers just one main external network
tape to the environment for messages to all machines M, € Ff}i;M (plus a second
external network tape exclusively for network messages to Mpyse) and then
internally directs messages to the correct internal network tapes connected to
each individual machine M, € ﬂ'?}’ﬁM (which can be identified from the code ¢ of
the recipient), Apum, rrrm rather offers one external network tape corresponding

20 Note that this dummy Apym, nryv running with an IITM protocol still runs in
polynomial time in the length of all inputs provided by the environment and hence
meets the IITM runtime notion.
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to each of its internal network tapes and then forwards all messages between
matching external and internal tapes. This mismatch is essentially just a cosmetic
difference. In the simulation, we can simply bundle messages from all external
tapes of machines M. € iy on the single main tape of the previous simulation.

Before we formally define the simulator, we first fix a bit of terminology to
simplify the following presentation. As explained above, the main idea of the
simulation will be to generate additional import ¢ via calls to op(z) in such
a way that, if the same calls were received by A%S;,‘L’"’I‘}%‘}\jd, then this dummy
will have i additional runtime remaining after processing op(x). This additional
runtime ¢ will then be chosen in such a way that it is sufficient for forwarding all
messages that might have to be forwarded by the dummy. However, processing
op(z) already uses logz(z) + ¢ runtime of the runtime budget of A%S;,E’f}‘}%‘}\?[d
(specifically the runtime budget of Apym, ve simulated within), where ¢ is a
small constant accounting for the message format of op and the logarithm is
because the import 2 contained in the op(z) message is interpreted in a binary
encoding by the simulated Apym, yc.?! Hence, we cannot simply call op(i) as
this provides exactly i import, which was sufficient to guarantee the balanced
requirement in the first step of the proof, but then leaves the dummy with less
than ¢ import remaining after processing the operation. Instead, to ensure that 4
import remains, we rather provide double that import by calling op(2 - max(z, ¢’))
where ¢ is a fixed constant such that ¢/ — loga(2 - ¢) — ¢ > 0. Doubling the
import ensures that, even after subtracting runtime cost logs(z) + ¢ for running
op(z), the remaining import added by this operation is still at least as large
as i. The value ¢’ covers cases where i is too small such that doubling might
not be sufficient to retain ¢ import. Note that such ¢ indeed exists and every
value 7 > ¢’ then also has the desired property. In order to simplify the following
presentation and highlight the core ideas more clearly, instead of always writing
out this formula explicitly we will rather say “provide/add/generate ¢ import via
op” or, if clear from the context, just “provide/add/generate ¢ import”.

Given the above intuition and terminology, we now define S;yys to offer the
same set of external network tapes connected to the environment as Apym, 117,
i.e., one external network tape corresponding to each internal network tape of
each machine in ﬂ?}l}lM. Sirry internally simulates SPI(TJ'A‘}OUHded but with the

following additions.?? Let p be the polynomial in the import currently held by the
21 As part of the simulation, the wrapper of AES,;E‘}’;‘#&“ implicitly maps the import
fields in the header of messages between unary encoding used by protocol /environment
and binary encoding expected by the simulated internal adversary Apum,vc-

As mentioned above, on a technical level during this simulation Sy also maps the
larger set of its own external network tapes to the two external network tapes of

Sﬁ%}’ounded. Specifically, Sirry forwards messages from the environment received on

the external tape corresponding to Mmsg to the second external tape of Spqqrtnded,
i.e., the tape that also corresponds to Mugg, and vice versa. Messages received on all
other external network tapes, each of which corresponds to some machine M. € 71y,
are sent via the single main external network tape of SHe°""4°d i.e., the tape where
the internal simulator expects all incoming network messages for protocol machines

M.. Conversely, when SHoi2o"m4ed wants to output a message in the name of some

22
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real protocol that upper bounds the total runtime of the codes of myc and hence
the length of all network messages sent by the real protocol W?}lﬁM (except for
responses to totalImport? requests, which do not exist in my¢ and thus also do
not count towards the runtime budget of the dummy). This polynomial exists as
argued as part of the proof of the UC composition theorem (cf. also the proof of
Lemma 2). W.l.o.g., choose p(x) > x monotonically increasing. Now, upon its first
activation Sy adds 1 additional import to the internally simulated S}Jl%\t/}ounded
via a call of op. Further, each time Sj;r)s is activated it keeps track of the sum
of all imports received by the real protocol (by sending totalImport? requests
to Mg in the ideal protocol as well as tracking the overall import forwarded to
the protocol as part of network messages m from the environment. This includes
the current network message received from the environment by Sy, if any).
If the total amount of import sent to the real protocol in the last activation of
the simulator was ¢ and now the protocol has received some new import ', then
Sirrm provides additional import p(i +14) — p(i) to SHGH™ded (if the protocol
has received multiple new imports ¢’ since the last activation of the simulator,
then this step is repeated for each of them separately, with the import from the
current network message, if any, processed last). Then, if the current incoming
message m is a network message received from the environment, Sy adds an
additional 2 - |m| import via op.?® Afterwards, Sy lets S}II(TJ}\'}O““dEd process
the incoming message. During all of this, Syypp always skips the “balanced
environment” check of the inner wrapper contained within SH$5°"ded (see first
step of this proof), including the message totalImport? sent to the ideal protocol.
Thus, the simulated inner wrapper does not generate any additional calls to op
itself. Note that since we have p(x) > x the outer wrapper of Sy already
generates sufficient import to guarantee the balanced requirement, which is why
we can skip the simulation of the balanced check of the inner wrapper and still
be able to perform a reduction to the previous case. Further observe that Spyry
still meets the runtime notion of the II'TM model by the same reasoning as for

Sggﬁounded. In particular, the additional import generated by the wrapper of

instance of a machine M. € 7wy via its main external network tape, then Spry
forwards this on its own external tape corresponding to M.. This tape mapping also
includes a straightforward conversion between the UC and IITM dummy formats for
messages to/from M. In particular, the (unary) import in the header of an incoming
network message from the environment for the IITM dummy does not contain import
for the adversary but rather contains import i directly provided to the protocol
(since the message is copied as is to the protocol by the IITM dummy). This can
easily be converted to a message for the UC dummy by adding an empty adversarial
import header and re-encoding the import ¢ in binary to be an instruction for the
UC adversary to forward import ¢ to the protocol.
Technically, after converting m from the IITM to the UC dummy format the resulting
message might be longer by some small constant ¢ due to the addition of an adversarial
import field. In such a case, the simulator rather adds 2 - (jm| + ¢) import, which
ensures that the UC dummy can process also such a slightly longer UC message
format. We leave this detail implicit in what follows.

23



44 Daniel Rausch, Ralf Kiisters, and Céline Chevalier

Sty is upper bounded by a polynomial in the length of all messages sent by
the environment plus 7.
Now let Ei}rﬁj be a single session environment that tries to distinguish

ADum, 11701 | w?}i}iM and St | ¢§-}¥M. We reduce t.his to the previous case as
follows. We define &’ Er}gj\lf to internally simulate 5;}%\1; as well as the wrapper

portion of Sy (minus the changes to the internal wrapper of S}Jl%\k/}mmded).

More specifically, &£’ Is}r}gj\lf starts by providing n import to the adversary. During

the run, &’ ]S}r}gj\lj keeps track of the import received by the real protocol so far. Each

time Ei}rﬁj wants to provide more import to the real protocol (either directly via

an input or as part of a forwarded network message), &’ ;}r}gj\lj first evaluates the

polynomial p on that import and provides the difference as additional import via

a call to op to the adversary. If Ef}rﬁ; wants to send a network message m to the

adversary, after £’ f}r}gj\lf has evaluated p and potentially provided additional import

as a result, £ S8l provides a further 2- |m| import to the adversary before finally
sending the actual message m. Observe that the additional runtime necessary
for simulating the wrapper, including sending more import, is polynomial in the
runtime of 528! plus 7. Hence £’ Snele is universally bounded and a valid single
session environment in the II'TM model.

: single &-id ssingle | QUC-bounded | 4 &-id
Cousider & py | Strraa | ¢ Grpag a0d €' 1y | Sprng | ¢ 1rras- By construc-

tion, at each point in the run &’ Is}r}glzvf has provided at least p(x) > x import to
its simulator, where x is the total amount of import provided to the protocol so
far, which includes all import directly provided via inputs to the protocol. Hence,
whenever the inner wrapper of SH(%}\Zou“dEd checks the balanced requirement,
the requirement is meet and thus no additional runtime is generated by the
wrapper. In other words, this is the same behavior as for E;}rﬁ; | St | (b’}:}l}iM,
where these balanced checks are skipped entirely. So analogous to the first step

of this proof, the only formal difference between runs of 5?}1;%\1; | Srrras | g{)?}i}iM

and £/;in8le | SUC-bounded | 4 &d i therefore the timing of additional calls to
op issued by the outer wrapper: In the former case, where the wrapper runs
as part of Syrry, the protocol might be activated with new import first before
the call of op. In the latter case, where the wrapper is simulated within &’ f}r}gj\lj ,
the protocol might be activated with new import only after the call to op. Here
we use again that the inner simulator within Sy, processes theses additional
calls to op independently of the protocol, which is true since Sy skips the
balanced checks by the wrapper of S}}%}j"unded while the innermost simulator
Syc has this property by assumption. Thus, the formal difference in timing does
not actually alter the behavior of the run. In particular, as soon as any other
network message (i.e., a message that is not an additional call to op generated
by the wrapper) is processed, we have that the states of the ideal protocol and
the (internal) simulation is the same in both worlds, including the amounts of
imports received so far. So both ideal worlds behave identical with the same
output distribution.

Now consider the real world S;}I}gj\l; | ADum, 11701 | w?}l}iM compared to the real

world £/5in8¢ | ARt | o &34 .- Both worlds behave identical with all network
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messages being delivered as long as ABS;,?‘}‘I‘%‘}\;d does not exceed its runtime

budget. We show in the following that this case indeed does not occur by
construction. At every point in a run, A%S;‘j"}‘}%‘}\fld has received total import from
E’Islir}g]\l/‘; at least n + p(s) + 2 -t + u, where s is the total amount of import that
the real protocol has received so far, ¢ is the length of all network messages sent

. ingl . . . .
by the environment £7;7%7, and u is sufficient import to account for processing

the additional op messages sent by the wrapper simulated in &’ IS}I%gAI/[C . The total

amount of import forwarded by A%g;f"}‘}%‘}\?[d to the protocol is upper bounded

by t due to the unary encoding of import used by 5;}%&; Hence, the adversary
always keeps at least 7 + p(s) + ¢t + u import for itself. As p(s) upper bounds
the length of all network messages sent by the real protocol by construction
(except for totalImport? responses, which are not limited by the import budget
of A%S;,‘;‘}‘}‘}‘}\jd anyways) and by definition of ¢ and w, which account for all

Qi l _
network messages sent by &' 7775, to the adversary, we conclude that ABST,E"}‘}%‘}\?

indeed does not reach its runtime bound. It rather always has sufficient import
for processing and forwarding all incoming messages in both directions while
retaining at least 7 unused import for itself, as required by the UC runtime
notion. So A%g;,‘i%%ﬁ}d never stops, just as A pym, 77, and hence the real worlds
also behave identical with the same overall output distribution. _
Since ideal and real worlds have the same output distributions and &’ f}r}gj\lf
cannot distinguish its systems as shown above, we obtain that Apym, 117 | w?}iﬁM

and Sy | QS?#M cannot be distinguished by any single session environment
£qmele

Indistinguishability for multiple sessions. Finally, note that protocol ses-
sions are disjoint due to the subroutine respecting property. Hence the sec-
ond composition theorem of the II'TM model (cf. Theorem 3) immediately
implies that there exists a simulator Spuyui,rrrar such that Apym, rrras | w?}iﬁM
and Syt 1170 | qﬁi}ijﬂiM are indistinguishable for all II'TM environments. The
simulator Sy, rrrv simply runs one copy of Sy for each protocol session
(for completeness, we recall the second II'TM composition theorem and provide a
formalization of this statement in Appendix I). This gives the claim. a

C Proof of Lemma 3

In this section we show Lemma 3, which states that the reverse implication of
Theorem 4 does not hold true in general. That is, under a certain complexity
assumption there exist protocols myc, ¢ ye such that we have mrrry < rrrm
¢ rrrm for the mapped protocols but 7y < ;¢ ¢ vc does not hold true. On an
intuitive level, the underlying reason is that the UC model imposes additional
requirements on the simulator. Namely, the runtime of the simulator has to be
bounded in a fixed polynomial in its import, where the import is determined
by the environment. A simulator in the IITM model does not need to adhere to
this added requirement. Hence this result is not due to any specific choices of
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our mapping. It rather holds true for any mapping that allows for capturing the
same protocol behavior, specifically the one constructed below, in both the UC
and IITM models.

In what follows, we first show show two results that prove Lemma 3. We then
further discuss the different classes of simulators considered by the UC and IITM
models, including their implications for security.

Proving Lemma 3. For the construction of the protocols myc/¢ ve resp.
M/ ¢ 1 we need the existence of so-called time-lock puzzles, a complexity
assumption introduced in [23]. We use the definition from [20], which is in turn
based on [13].

Definition 3. A time-lock puzzle consists of an ITM V (the verifier) and an
ITM P (the prover) such that the following conditions are satisfied, where by
(P, V) we denote the distribution of the output of V' after an interaction with P:

1. Given an argument of the form (17, s), V runs in polynomial time in n. Given
an argument of the form (17, s), P runs in polynomial time in n + s.
2. Easiness. For every polynomial p we have that

min Prob[(P(17,s),V(1",s)) = 1]
s<p(n)

is overwhelming (as a function in n). (We call s the hardness of the puzzle.)
8. Hardness. For any ITM B running in polynomial time in the length of its
first two arguments (i.e., in n+ |a|) there exists a polynomial p such that

sup  Prob[(B(1",a,s),V(17,s)) = 1]
s>p(n+lal)

is negligible (as a function in n and a).

Given a time-lock puzzle (P, V'), the construction of /¢ then uses a similar
idea as given in [13]. The authors of [13] showed that their proposed polynomial
runtime notion allows for simulation of protocols that cannot be simulated by
simulators using the UC runtime notion of the 2005 version of the UC model [5].
Here we show that their idea for proving this result carries over to the IITM
runtime notion, which is based on the runtime notion proposed in [13], and the
UC runtime notion of the current journal version of the UC model [7], which
still uses the same underlying idea of runtime tokens/import as in the 2005
version but changed several technical details such as the handling of the security
parameter and the new balanced requirement for environments. Furthermore,
our construction of 7/¢ is also somewhat simpler than the protocols constructed
in [13] as we do not require any involvement of the adversary in the real world
and hence also no direct interactions of the simulator with the environment.

We define the protocol 7 as follows. An instance (pid, sid) of 7 ignores all
messages on the network and in particular is incorruptible. m expects its first
message from the environment to contain import at least n as well as a difficulty
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s of a puzzle that the environment wants to solve. If the first message is different,
then 7 halts permanently and discards any future messages. After receiving
the initial message, m runs the interactive puzzle verification protocol with the
environment, where 7 runs V and the environment is supposed to run the role of
the prover (but might, of course, choose to deviate from the algorithm P). At the
end of the protocol, i.e., once the verifier V' has accepted, rejected, or aborted, 7
returns real to the environment.

Now, the protocol ¢ is defined just as m but with the following modification. If
the verifier outputs 1, i.e., accepts the puzzle, then, instead of returning an output
to the environment, ¢ sends the difficulty s of that puzzle to the simulator. ¢
then expects the simulator to solve a puzzle of the same difficulty, i.e., ¢ runs the
verifier V' for difficulty s in the interactive puzzle verification protocol with the
simulator. If V' outputs 1 and hence also accepts the run with the simulator, then
¢ returns real to the environment. In any other case, including the case that ¢
is activated by the environment while puzzle verification with the simulator is
still in progress, ¢ returns ideal instead.

Note that both m and ¢ meet the UC runtime notion. This is because they do
not start running unless the have 1 import and then run the verification algorithm
V' at most two times, which itself runs in polynomial time in 7. Hence, wy¢ and
¢ yc are valid UC protocols and, by our mapping, the mapped protocols 7y
and ¢ ;s are valid IITM protocols. We note that the following argument does
not actually depend on our specific mapping; it rather holds for any reasonable
modeling 7y and ¢ ;pry of m and ¢ in the IITM model.

Observe that the environment can distinguish both 7 and ¢ only if the
environment solves a time-lock puzzle of some difficulty s while the simulator
does not. Hence, the natural definition for the simulator is to run P for difficulty
s in order to solve the same puzzle as the environment. This is indeed possible in
the II'TM model; in particular, this simulator running with ¢ fulfills the II'TM
runtime notion. We have the following:

Lemma 4. Let TIITM and QJ)HTM be as above. Then TIITM S IITM ¢HTM-

Proof. We define the simulator S to run the proving algorithm P on input s
together with ¢. We have to argue two points. Firstly, the combination S| ¢ jrras
meets the IITM runtime notion, i.e., is environmentally bounded. Secondly, there
is only a negligible chance for the environment to solve a puzzle s successfully
while the simulator running P on s does not.

Let £ by an arbitrary but fixed environment. Recall that, by the universally
bounded property, the runtime of £ is upper bounded by a polynomial ¢ in the
security parameter and length of the external input. The hardness condition
of time-lock puzzles hence implies that there is a polynomial p such that an
environment has negligible probability of solving a puzzle with difficulty s >
p(n+lal); w.lo.g we can assume that p is monotonically increasing. Hence, in an
overwhelming set of runs we have that the environment cannot solve the puzzle or
s < p(n+lal). In the first case, the simulator is never activated, so the combined
runtime of S|y is trivially bounded by the polynomial that bounds the
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runtime of ¢ ;;rps. In the second case, the simulator S additionally runs P on
input s. By assumption, P is polynomial in 7 + s, i.e., there is a polynomial p’
such that p’(n + s) upper bounds the runtime of P. W.l.o.g. we can assume that
p’ is monotonically increasing. Combined with the bound for s, we thus have
that, except for negligible probability, the runtime of S is upper bounded by the
polynomial p’(n 4+ p(n + |al)). Altogether we have that the runtime of S| ¢ rrras
in a run with £ is bounded by a polynomial in 7 and |a| except for negligible
probability, which is precisely the definition of environmentally bounded.

We still have to argue indistinguishability. Recall the definition of negligible
function with external input, which considers inputs a bounded in length by
an arbitrary but fixed polynomial in 7. Let r be such an arbitrary but fixed
polynomial. Given such r, we have to show that the probability of distinguishing
both worlds is negligible in . We already know that s < p(n + |a|) and thus
s < p(n+r(n)) with overwhelming probability in 7. The easiness condition of
time-lock puzzles implies that S running P solves the puzzle except for probability
negligible in 7. Hence ¢ ;77 is indistinguishable from 7 ;7 except for probability
negligible in 7 (depending on r), which was to show. O

Observe that the polynomial that bounds the runtime of S and hence S | ¢ s
actually depends on the environment £. This is because the polynomial p in the
proof depends on £. Furthermore, the polynomial bounding the runtime of the
simulator § actually is in the external input of the environment. Hence, if the
runtime of a fixed environment is increased indirectly due to the external input
being bounded by a larger polynomial, then the simulator is allowed to profit from
the same increase in runtime. Such a dependence of the simulator runtime bound
is possible under the IITM runtime notion. In contrast, the UC runtime notion
requires a fixed polynomial for bounding the runtime of the simulator and also
lets the environment decide upon the argument, i.e., the import provided to the
simulator, of that polynomial. An environment in the UC model is free to provide
only a minimal amount of import, so the UC simulator generally cannot adjust
to computationally more powerful environments. This is the underlying reason
for the impossibility result shown next, namely that there is no UC simulator
such that TuUC < Uc ¢ uc-

As a warmup, observe that the simulator S from the above proof, which simply
runs P on s to solve the puzzle, cannot be used for showing 7yc < ;o ¢ ve. This
is because the environment can decide to provide just 7 import, in which case S
has to run in time polynomial in 5. This is not sufficient for running P, which
also depends on the difficulty s that is dynamically chosen by the environment.
In other words, an environment can effectively “starve” the simulator. This
additional class of attacks possible for UC simulators is exactly what we will use
in the following proof.

Lemma 5. Let myeo and ¢ yo be as above. Then there is no simulator such that
Tyc < Uc ¢ vc-
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Proof. Suppose there was such a simulator S§. This simulator is required to meet
the UC runtime notion, i.e., there is a polynomial p in the import of the simulator
such that the runtime of S is bounded by that polynomial.

Now consider the class of environments that provide exactly n import to both
the adversary/simulator and the protocol. Observe that the protocol, which is
designed to run in polynomial time in 7, is still able to perform all of its tasks.
Hence, if the environment solves a puzzle of difficulty s, then the simulator is
required to do the same (except for negligible probability) to be indistinguishable.

Since the simulator has fixed import 1, he has runtime bounded by p(7).
By the hardness property of the puzzle, there exists a polynomial p’ such that
the simulator cannot solve puzzles of difficulty s > p’(n) (except for negligible
probability). Conversely, by the easiness condition we have that P running on
input s = p’(n) solves the puzzle in time polynomial in 7+ s (except for negligible
probability). Let p” be that polynomial such that p”(n + s) = p”(n + p'(n))
bounds the runtime.

Now choose the environment £ from the aforementioned class (i.e., environ-
ments that provide only a minimal amount of import) that sets s = p/(n) and
then runs P on s to solve the puzzle. Observe that £ is a valid UC environment
since it is balanced and P runs in polynomial time in 7, i.e., £ meets the UC
runtime notion. By the above arguments we have that there is an overwhelming
probability for £ solving the puzzle for difficulty s while S fails to do so, in which
case both m and ¢ are easily distinguishable. a

The combination of Lemma 4 and Lemma 5 shows Lemma 3.

On the difference of the simulator classes. To summarize the above findings,
both UC and IITM simulators run in polynomial time. In the IITM model, the
polynomial runtime bound can depend on the environment as well as the length
of the external input provided to the environment, which allows a simulator to
compensate for environments that have additional computational resources. In
contrast, the polynomial of UC simulators is both independent of the environment
and independent of the external input (i.e., amount of import) available to
the environment. So there are protocols where an environment can effectively
overpower a UC simulator by using much more runtime itself. In other words, if
a realization requires a simulator that can adjust to the computational resources
available to an environment, then this realization is deemed safe and is composable
in the II'TM model but is considered unsafe and not composable in the UC model.

The natural question arising from this comparison is whether the UC notion
of simulators is overly restrictive or whether the IITM notion of simulators is too
lax and allows for proving security of realizations that should actually be deemed
insecure. We argue for the former. The security of a realization 7 is defined via a
suitable ideal protocol ¢. Note that ideal protocols such as ¢ are not designed to
exclusively run with a simulator in the ideal world of the security experiment.
To facilitate composition, ideal protocols are rather also designed to be used
as subroutines in hybrid protocols where they directly interact via the dummy
adversary with the environment. Thus ¢ must be defined to provide security
guarantees even in the presence of environments whose runtime is not bounded
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by a single fixed but rather any arbitrary polynomial that increases based on
arbitrary external input. In other words, the security guarantees defined by ¢
are actually independent of a specific class of simulators as long as that class
is not more powerful than the class of environments (which is also a necessary
requirement for obtaining a composition theorem).

So considering that the subroutine ¢ is already defined to provide security
while interacting over the network with environments bounded by arbitrary
polynomials which also depend on the external input, allowing the simulator
to use similarly flexible computational power, as is done in the IITM model,
does not weaken the security statement for a realization m of ¢. Hence the class
of IITM simulators appears to be a reasonable choice that allows for a wider
variety of realizations compared to the UC simulator class while still being
sufficiently restricted to obtain a composition theorem and hence enable protocol
composition.

D Proof of Theorem 5

Here we provide the proof of Theorem 5. Let us start by describing the class of
simulators that Theorem 5 considers more precisely. S55° 44 must be built
from some core logic and a wrapper such that the core logic adheres to the
UC runtime notion and does not use the added totalImport? command.?* The
wrapper handles incoming totalImport? requests by forwarding them to My
and returning the responses. The wrapper also generates more import via calls
to op if the IITM environment is not balanced, i.e., provides more import to the
protocol than to the adversary, but otherwise does nothing.

First observe that the implication W?}iﬁM <IITMm gf)?}iﬁM has already been
shown in the second half of the proof of Theorem 4 (cf. Figure 6). As for the
other implication myo < ch ¢ vc, this essentially reverses the argument of the
first half of the proof of Theorem 4 (cf. Figure 5). More formally:

We define the UC simulator Sy¢ for the UC dummy adversary Apym,vc to
be the same as SIU[%?[O““dEd except for the wrapper. Observe that Sy¢ meets the
UC runtime notion by the properties of SH$ho"ded and hence is a valid UC
simulator. Now let £y¢ be a &-identity bounded UC environment that tries to
distinguish 7 ¢ running with Apym, ve from ¢ ye running with Sye. We reduce
this to the II'TM case by constructing an II'TM environment ;7 that internally
simulates and hence behaves exactly as £yc. Note that £y runs in polynomial
time in its current import, where the total import in the whole system is the
length of the external input |a|. Hence £y runs in polynomial time in the
security parameter and external input, i.e., is universally bounded and thus a
valid IITM environment.

24 The second requirement is actually not strictly necessary but simplifies both the
protocol mapping and the proof, cf. Appendix H.3. It is also not a strong requirement
since, as mentioned, the UC code of the ideal protocol must generally already provide
at least the same information as totalImport? to the (core of) the simulator.
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Now compare the real UC world with the real IITM world. By construc-
tion, £yc running with Apym,, ve and mye behaves identical to the system

Errrm | A%S;sc}‘}%‘}\?[d | 71 with the same overall output as long as the wrapper

of A%g;,'ff}‘}{‘p‘}\jd does not add any additional import. This only occurs if E;7rar

at some point in the run provides more total import to the protocol than it has
provided to the adversary so far. However, since £y simulates £y which is a
balanced environment, this case never occurs and we have that both real worlds
have the same output distributions. Furthermore, since &7y simulates £y,

Ernrum is also -identity bounded. This implies that £y | Aggﬁf}‘}%‘}\f}d | T

and Errr | A%S;,‘ff}‘}%‘}\jd w?}iﬁM also behave identical with the same overall out-
put distribution. The same argument shows that the ideal worlds, i.e., Eyc
running with Syc and ¢ yo and &y |S}Jlgﬁound8d | d)?}lﬁM, behave identical
with the same output distribution.

Observe that £ only ever interacts with a single session of the protocol due
to simulating £y, which always has this property. Hence, by assumption Errras
cannot distinguish APSPoyaGed |75id, and SYGpeunded | &0 This implies
that £yc also cannot distinguish the UC worlds, i.e., myc < o ¢ vc, which was
to show. ad

E Proof of Corollary 1

Suppose we have mye, ¢ v, p ve UC protocols such that myo < SUC ¢ vc and
the UC composition theorem can be applied to p yc to obtain p ﬁgﬂ < yc PUcC-
Let p ﬁ?ﬁ and p ;i be the protocols obtained by applying our mapping to the
IITM model, if necessary using the technique to model dynamically generated
code from 3.5. To conclude that pf};;[ <irm p Ty from Theorem 4, i.e., to
show Corollary 1, we only have to check that the simulator constructed by the
UC composition theorem is in the class considered for Theorem 4. That is, there
must be a simulator for the composed protocol that implements the operation
op(1) for providing import i to the dummy adversary without interacting with
the ideal protocol. We argue that this is the case in what follows.

First, we need to recall the precise technical details of op(7) as implemented by
the dummy adversary. By its definition (cf. Pages 42 and 43 of [7]), the dummy
adversary expects inputs from the environment to be of the form (i, (m,id, ¢, ")),
where i is the import provided to the adversary. The dummy then interprets this
message by sending m with import ' to the machine with ID id and code c. If id is
the unique ID of the environment, i.e., id = 0, then the dummy adversary instead
sends the message m to the environment without any import. Note that ¢«d =0
indeed uniquely identifies the environment since all other machine instances, both
from the protocol and the adversary, have IDs of the form id = (pid, sid). So
formally op(7) is the input (¢, (0,0,¢,0)) from the environment, where € is the
empty word. This input provides import ¢ to the dummy, who then returns the
message 0 to the environment, i.e., the dummy behaves precisely as claimed for
the operation op(i) (any message other than 0 could also be used and results in
the same behavior).
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Let us now take a look at the construction of the simulator in the proof of
the composition theorem (cf. Figure 10 on Page 63 of [7]). Specifically, consider
the implementation of op(), i.e., the behavior of the simulator upon receiving in
input from the environment of the form (¢, (0,0, ¢,0)) where id = 0. It turns out
that the definition of the simulator is actually incomplete since it does not handle
messages of this format at all, which, however, is required to be indistinguishable
from the dummy adversary. The definition rather only specifies the behavior for
cases where id has the form (pid, sid), i.e., for messages that are to be sent to
the protocol (or adversary).

Looking at the proof and underlying arguments, one observes that the def-
inition of the simulator can be completed by defining it to handle incoming
messages from the environment for id = 0 in exactly the same manner as the
dummy adversary. Indeed, this definition is consistent with the main idea for the
simulator. Namely, upon receiving an incoming message for an ID id = (pid, sid)
and code ¢, the composition simulator first checks whether the intended recipient
is part of a subroutine session of 7/¢. If so, then the incoming message is handled
by an internal copy of the simulator that shows 7y¢ SEUC ¢ yc- Otherwise, the
composition simulator acts exactly as the dummy adversary, i.e., forwarding
the message to the corresponding higher-level instance within p while observing
the runtime bounds of the dummy. So if id = 0, which always belongs to the
environment and is never used by any instance within any protocol, the simulator
does not have to check whether this ID belongs to a session of 7/¢ since he
already knows that it does not. He can rather immediately act just as the dummy
would, namely by returning the message to the environment. One easily verifies
that this way of completing the definition of the simulator is consistent with the
rest of the proof of the UC composition theorem. In particular, this definition of
the behavior for target ID id = 0 is easily simulatable by the hybrid environments
constructed in the proof.

So altogether we have that the operation op(i) can be implemented in the
composition simulator in the same manner as in the dummy adversary. Hence,
that simulator is in the class of simulators that are required by Theorem 4.

F Proof of Corollary 2

In this section we provide full formal details and the proof for Corollary 2. We
then show how and why this result extends to the case of protocols with dynamic
code (Section 3.5), where some machine codes are handled by instances of a
universal Turing machine Myr.

Showing Corollary 2. Let us first briefly discuss a technical detail concerning
puve/p ru- In mapping p ye to p prar and hence to obtain Corollary 1, we
formally considered p o with the standard subroutine respecting wrapper code
cs, added to all of its machines, which prefixes the SIDs of all subroutines of a
session of p by the SID sid, of that session but otherwise preserves the behavior
of each individual session. This ensures that p y¢, which was constructed and
proven secure only in a single session setting, remains secure in a multi session
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setting due to disjoint subroutines. Note that the realization p g’;g” of pyc
carries over after adding such wrappers to both protocols since the resulting
protocols still behave identical when used in a single session, i.e., one can use
the simulator that essentially works as before while internally adding/removing
the wrapper code and SID prefixes for network messages. This is a standard
technique and argument that is implicitly used throughout the UC literature,
where protocols p y¢ are generally defined with a single session in mind. Without
this technique and argument it would hence be virtually impossible to re-use and
compose such a p yo as a subroutine of another protocol, where p ¢ has to be
subroutine respecting, i.e., remain secure even when multiple sessions of p y¢
run concurrently. As a result of the addition of cs, to all machines in p ¢, the
code of the subroutine ¢ y¢ has now formally changed to additionally include the
wrapper code cs, which prefixes all SIDs of instances of ¢ y¢ with the SID sid,
of the current session of p y¢ but hides that prefix from the inner logic. Just as
for the overall p y¢, adding this wrapper does not actually change the behavior
of ¢ yc (or really any other subroutine) while running within a single session of
p vc. Hence, if we consider the same wrapper cs, added to myc, then we still

have myo < EUC ¢ yc for a modified £ that additionally requires the environment
to call Tyc/¢ e as a subroutine of some instance within a single session of p y¢,
i.e., using the same wrapper cs, and SIDs that are consistent with the SID prefix
used by the wrapper cs, of Ty /¢ e (again, the simulator is essentially the same
as before but internally adds/removes the wrapper code and SID prefixes). Finally
observe that our mapping from UC to IITM protocols and all corresponding
results still apply essentially unchanged to these updated my¢ /¢ yo that include
the wrapper cs, on top of their own wrapper c¢sr/csg. The only formal difference
is that the challenge session ID sid. now consists of two elements, namely the
prefixed SID used by ¢s, and the inner SID identifying a session of 7/¢ (within
that session of p). Hence we can still obtain mapped protocols 7y and ¢ jrras
such that ﬂﬁ}i}iM <iTMm ¢§11;M by the same reasoning as for Theorem 4. In the
rest of this section, we therefore leave this technical detail of the additional
wrapper cs, implicit as it does not affect any of our results but would distract
from the core ideas of the following construction.

Next, we describe the the syntactic changes to p ;s for obtaining Corollary 2,
i.e., the transition from the left side of Figure 4 to the protocol in the middle.
Let p ;yrp be the protocol mapped according to Section 3.3, where we denote
the resulting II'TMs by M?. One of these machines is running code ¢y, say, M, e
The left and middle of Figure 4 illustrate the idea of our syntactical changes to
p v We extend the protocol p rrpy by additionally including the full set of
machines of ¢ j7rar, as mapped by Section 3.3, and then reroute all inputs to and
outputs from M(ﬁ; to instead be sent to ¢ jyra via its single external 1/0 tape.
Since such inputs and outputs are the only way for p to interact with instances
in any session of the subroutine ¢ (by the subroutine respecting property of ¢),
this does not actually change the behavior of the modified p jyrps. It, however,
consistently moves all sessions of ¢ to be instances of the set of machines ¢ ;s
(instead of instances of machines M/). The set of machines ¢ ;yry can then be
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replaced by the set of machines 77y using the II'TM composition theorem
(right side of Figure 4), thereby replacing all sessions of ¢ with sessions of 7,
yielding a protocol p f}?& that behaves just as p ?}g”

More formally, first map the protocol ¢ ;rry according to Section 3.3 with
machines M j’ , Where Mg; is the highest-level machine running code c4 and
offering a single external I1/O tape for others to connect to. We start modifying
p ity by adding the static set of machines M;b to the system p ;yrps. We then
connect all machines M/ to the single external I/O tape of M(i Since there is
only a single I/O tape available but multiple different (instances of) machines
Mf have to be able to send inputs to and receive outputs from ¢ ;;rp, we
introduce a straightforward multiplexer Mpyitiplex- We connect every machine
M ;b via one I/O tape used to Mpuiplex for providing inputs to and receiving
outputs. We further connect Mpuisiplex to the single external tape of ¢ 7.
In a run of the protocol, when an instance of Mpyyitiplex receives a message
((pid, sid, cg), (pid,, sids, cs),m") on an I/O tape connected to machine MY,
then Mpuitiplex forwards the message ((pid, sid), (pid,, sids, cs), m’) on the single
I/O tape connected to the subroutine machine M, fd) - If Mmusiplex Teceives output
((pid, sid, c), (pid,, sids), m') on that tape, then the instance of Myugiplex sends
the message ((pid, sid, ¢), (pid,, sids,cg),m') on the unique tape connected to
MPp. This tape exists since, by assumption, p ¢ uses only finitely many machine
codes, which includes the codes used in outputs of the subroutine ¢ y¢.

Finally, we modify the machines M/ to reroute all inputs to and outputs
from M? to instead be sent to/received from ¢ jrras, specifically Mg), via the
multiplexer Mmulsiplex- As explained above, the subroutine respecting property of
¢ yc should imply that this does not change the behavior of p ;. However, it
turns out that we need another property. Specifically, we require that higher-level
instances of p y¢ do not use predicates for sending outputs via a non-forced write
commands?® that match an instance in a session of ¢ y¢ (respectively my¢ in
the composed protocol). Similarly, a session of ¢ y¢ may also not use a predicate
for non-forced write outputs that, in a run within p y¢o, matches instances of
p vc that are not part of the same session of ¢ y¢ (analogously for 7y in the
composed protocol). This is because such predicates create a side channel that
is not available to an environment and thus prevents composition. Indeed, after
observing that this second requirement is necessary for being able to modify
p 117y such that it supports composition via the IITM theorem, we found that
the same issue also occurs for the UC theorem, i.e., the UC theorem is currently
false but can be fixed by adding the same requirement (cf. Appendix J.4 for full
details). Since this is necessary for composition in both the IITM and UC models,
we assume in what follows that p y¢ already has this property. Analogous to
Lemma 1, we then have:

Lemma 6. Let p iy :!pr| oo [ PME | Y Monitipies | @ 1imm be as described
above. For all unbounded environments interacting with p yc/p rrrm, also directly

25 Recall that the UC model already requires p y¢ to use forced writes for inputs.



Embedding the UC Model into the II'TM Model 55

via the network, there is a bijective mapping between runs of both protocols such
that they behave identically.

Proof. Before the modification of p jrras, this followed by construction of our
protocol mapping. The only change in the redefined p ;77 is that we have moved
all calls providing input to the subroutine ¢ y¢ from M, Cd; to a new set of machines
¢ rrrv- This does not alter the behavior of the protocol:

Observe that the codes of the protocol ¢, including all subroutine codes,
contain the standard subroutine respecting shell code sc, (this code is specific
to ¢). This code, among others, ensures that the only messages sent by any
instance in a session of ¢ to an instance that is not in that session are outputs by
instances running c4. Now consider messages sent by a higher-level instance of p
(that is not part of a session of ¢) addressed to one of the codes ¢ used by ¢ and
which might thus be sent to an instance in a session of ¢. If this message is an
input to c4, then this message is consistently redirected to Mg:) in our modified
p rrru- In all other cases, the message is sent to an instance of M# (both before
and after the modification), which runs code ¢. The subroutine respecting shell
code scg contained in ¢ then immediately drops the message, which, again, is the
same before and after the modification. Altogether, the only way for higher-level
instances of p and instances in sessions of ¢ to communicate without dropping
messages is via inputs received and outputs sent by cy, which are consistently
rerouted via the multiplexer to M f; in our modification.

Next observe that the introduction of a second network interface (namely the
network tapes of the additional machines M?), where now all network messages
from and to sessions of the subroutine ¢ are sent/received, also does not provide
any additional knowledge to the environment. This is because the environment
can already determine whether network messages are sent from/to a session of ¢
from the extended ID of the sender/receiver. Specifically, all the machine codes
of all instances of any session of ¢ contain the subroutine respecting shell code
scy. Conversely, by definition of this shell code if some instance running with
that shell code is not part of a session of ¢ then that instance drops all incoming
network messages and never sends an outgoing network message. Hence, by using
the existence of the shell code sc, in the sender/receiver extended identity as an
indicator, an environment (or adversary/simulator on the network) can easily
map between the network behavior of the original protocol with only a single
network interface and the modified p ;;7ps where there are two separate network
interfaces that are used depending on whether the sender/receiver is part of a
session of ¢ (this mapping works in both directions).?%

26 Alternatively, instead of checking for the existence of this shellcode in the extended
sender /receiver ID, the same information can also be obtained by querying the
directory machine of ¢ to determine whether the sender/receiver is part of a session
of ¢. This is the same idea that is used to construct the simulator in the proof of the
UC composition theorem. Indeed, the purpose of the directory machine is to allow a
simulator to determine whether network messages belong to a higher-level instance
or an instance in a session of ¢, i.e., obtain the same information as provided by the
two separated network interfaces of our modified p -
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So the only formal difference between the original and the modified p ;s is
how non-forced writes are handled. Observe that in the modified p ;7 there
are now two machines executing such writes: The machine M}, belonging to
p rrrv handles only higher-level instances of p ;rry (since the new subroutine
instances of ¢ ;ry do not register themselves in that machine). On the other
hand Mr‘ﬁsg within ¢ ;7 handles only instances of a session of ¢ jyra; but not
any other instances of p. Here we use the second requirement discussed above,
namely, predicates of a session of ¢ ;;pp never match instances of p that are
outside of the session of ¢ ;;7y and vice versa. By this, both separated machines
still behave in the same way as the unmodified protocol p jyrps where a single

machine MP? __ handles all instances.

msg
Altogether the behavior of the modified p yrps is still the same and in
particular still just as for p yc. a

Next, we define the composed protocol pﬁ?& (right side of Figure 4) by
replacing the set of machines ¢ ;) with the set of machines wrrps. That is,
p f}?j} = Mcpp | ... | VM2 | ! Mmtiplex | Trrrar. In particular, the single I/0O tape
from the multiplexer Myuyitiplex t0 ¢ 1 is simply reconnected to the single
external 1/0 tape of mrrar. As a result, all inputs to and outputs from sessions
of ¢y are now instead handled by sessions of mjrrys, which is just as in
P ?}g” In other words, reconnecting this tape has the same effect as adding the
UC composition shell code, which internally changes the code ¢4 to instead be
¢ for such inputs/outputs. So, unlike in Corollary 1, when we use the IITM
composition theorem we actually do not need to include this shell code in p 2}’1\7}
Altogether we have:

Lemma 7. For all unbounded environments interacting with p 28”/,0 f}?f\}, also
directly on the network, there is a bijective mapping between runs of both protocols

such that they behave identically.
Proof. Directly follows from the above observation. a
We can now prove Corollary 2:

Proof (Corollary 2). We have W?}?M <1rrm qb?}i}jM by Theorem 4. We modify
£-id

p ity by replacing ¢ jry with ¢5,7,,, which essentially adds the identity
machine Mfdentity between Mpuitiplex and Mj;, to obtain a protocol p 117 id-

Since p yo respects the predicate £ while sending inputs to the subroutine ¢,
the same holds for p ;rra. Hence p rrar and p rrrar,ia behave identical, i.e.,
p 1t id < rrrm P rirm for the simulator that is the dummy adversary.

Since wﬁ}iﬁM <iTMm ¢§}¥M, the composition theorem of the IITM model
(Theorem 2) implies pﬁ?&ﬂ-d < [TM P IITM id-

We can finally repeat the same reasoning as in the first step to obtain
pﬁ?& < iTMm pﬁ?&,iw Note that here we use that if p ;s respects €, then
p f}?}\;,id also does the same (except up to a negligible set of runs) for our
proposed definition of £-identity boundedness. If this were not the case, an
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environment could distinguish ﬂ?}i}iM and ¢§;¥M by internally simulating higher
level instances of p and checking whether £ is met for the sequence of messages sent

by those instances to the external subroutine w?}i}iM /o ?#M, which contradicts
¢-id ¢-id
Tirrm S ITM @ jrrag
By transitivity of the < 7y relation we obtain pﬁ?& <IITM P IITM- O

Corollary 2 for protocols with dynamic code (Section 3.5). As for
whether the ITTM composition theorem allows for obtaining the same kinds
of composition results also for protocols with dynamic code (i.e., Corollary 2),
there are essentially two cases to consider. Firstly, a protocol ¢ j;rys with dynamic
code is a fixed subroutine of a more complex protocol p rru, i.e., the code cy is
not dynamically generated by p but rather part of Codes, (p might still choose
to dynamically generate other machines codes). The IITM composition theorem
directly implies that we can replace ¢ ;;pp with a realization w7, by the same
reasoning as for Corollary 2. Note in particular that the II'TM composition theo-
rem is agnostic of the internal behavior of the machines of 7;rras, ¢ 1771, and
P IITM, 1-€., composition is independent of whether one of the internal machines
is a universal Turing machine.

The second case is more interesting: Suppose that we have a protocol p ;s
that uses dynamically generated code, i.e., has a universal Turing machine. The
UC composition theorem allows for replacing some arbitrary code ¢y, including
all of its subroutines, with the code of some realization ¢, even if the code
¢y is dynamically generated by p (and hence not in Codes,). In p ;r7as, where
dynamically generated code is represented via instances of My, this composition
operation corresponds to replacing some but not all instances of My, namely
exactly those instances that run code ¢y (as well as their subroutines), with
instances running code c,;. However, the II'TM composition theorem does not
directly allow for replacing subsets of instances of the same machine; only the
full machine with all of its instances can be replaced by a realization.

This mismatch can be resolved via some simple purely syntactical changes
using the same modeling technique from Section 3.4 and illustrated in Figure 4.
Namely, we can first add the machines Mf’ of the subroutine ¢ j;rp to p rrum-
We then reroute all messages from/to instances of Myt that run code ¢y (and
that hence should be replaced via composition) via a multiplexer M yigiplex tO
now instead be handled by an instance of M, g‘; . By the same reasoning as for
Lemma 6, the modified protocol still behaves identical. Note in particular that
this reasoning is actually independent of whether ¢, is dynamically generated,
i.e., whether instances running code c4 in the unmodified protocol p jyra are
instances of some fixed machine M¢, or a subset of the instances of the universal
Turing machine Myr. In both cases, since inputs to and outputs from cy4 are
consistently rerouted to the new machine M, c“; in ¢ ;;ry and such inputs/outputs
are the only way for a higher-level protocol to interact with any instance in any
session of ¢, we have that this change consistently moves all instances in all
sessions of ¢ to be instances of machines in ¢ ;77 and hence does not alter the
behavior.
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The IITM composition theorem then directly implies that we can replace
the machines ¢ j;rp; with their realization 7y by the same argument as for
Corollary 2. Observe that, since the above rerouting of messages ensures that
all sessions of ¢, which were previously instances of My, are now exactly the
instances of the machines of ¢ j;rs, this composition operation precisely replaces
all sessions of ¢ with sessions of 7. This is exactly as for the UC composition
theorem.

G A New Type of Composition

Recall that the UC theorem applied to a protocol p replaces all sessions of
subroutines running code ¢ with sessions running code 7. Similarly, the IITM
theorem applied to a protocol p replaces all sessions of a set of machines ¢ with
sessions of a set of machines 7. Using our modeling technique from Sections 3.4
and 3.5, where we syntactically move sessions of a protocol ¢ to a different
set of machines without changing the semantic behavior of the overall protocol
p, it is actually possible to obtain a more general type of composition as a
simple corollary of the existing composition theorems of both models (and other
similar models): under certain conditions, we can implement a proper subset
of the sessions of ¢ with a realization m while the remaining sessions can be
implemented using a different realization, say, 7’. This can be useful, e.g., if
¢ is an ideal signature functionality, where each session models one key pair
belonging to a certain party, then we might want to implement certain keys with
a signature scheme 7 but others with a second signature scheme 7’. In what
follows, we explain the underlying idea as well as necessary requirements which
allow for using our modeling technique to perform this type of composition. The
precise technical details then depend on the underlying universal composability
model and protocol p under consideration and hence need to be filled in on a
case by case basis.

More specifically, suppose that we want to replace a proper subset of the
sessions of ¢ (in runs of a protocol p) with a realization = while leaving all
remaining sessions of ¢ alone. We need that 7/¢ have disjoint sessions that do
not interact with each other. In the UC model, this is guaranteed due to the
subroutine respecting property. In the IITM model, this is a special case of
protocols (cf. Appendix I). We further need that higher-level instances of p as
well as the adversary on the network are able to compute which sessions of ¢ are
to be replaced by 7 and which are to be left alone. The probably most common
way to achieve this property is by specifying the set of sessions that are to be
replaced via a polynomial time indicator function on a (prefix of a) SID shared by
all instances of a session of ¢. In our above example, where ¢ is an ideal signature
functionality and the SID models a signing key pair belonging to a party, the
indicator function could be such that it decides based on the owner of the key
whether that session is implemented via w. Alternatively, p might be such that
the same party uses multiple keys for different purposes in the protocol, where
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each of these keys has its own SID. In that case the indicator function can decide
the implementation depending on where/how the key is used in p.

Given protocols with the above properties, we can use our modeling technique
from Sections 3.4 and 3.5 to move all sessions of ¢ which should not be realized by
7 to instead be sessions of a new separate set of machines/codes ¢’ that behaves
identical to ¢. In the IITM model, ¢’ is simply a second set of IITMs with the
same code as ¢ as shown in Section 3.4. In the UC model, the code ¢’ formally
needs to be different from ¢ (otherwise, the composition theorem would not just
replace sessions of ¢ but also replace all sessions of ¢). This is easily achieved
by adding some additional bit to the code of ¢ that is never used or by adding
a dummy machine on top of ¢, both of which formally change the code but do
not affect the behavior. Note that all realizations of ¢ are also realizations of ¢'.
In the IITM model, this follows from the fact that we simply copied the set of
machines ¢, which is possible in the IITM model. In the UC model, we formally
changed the code of ¢ to obtain ¢, but since this is done in such a way that the
behavior is not changed, one can verify that existing realizations of ¢ carry over.
We finally alter all higher-level instances of p as follows: whenever they are about
to send a message to a session of ¢, they first check whether the recipient session
is one that shall be realized by =. If not, then the message is instead sent to ¢’.
When a higher-level instance of p receives a message from such a session of ¢’, it
acts as if this message was received by ¢.

Due to session disjointness, separating sessions of ¢ to be run on two different
sets of machines/codes ¢ and ¢’ is a purely syntactical modification that does
not actually alter the semantics/behavior of p. More formally, one can show that
the new p realizes the original one: since a simulator is also able to determine
which sessions of ¢ are to be modified and which ones are to be left alone, he
can simply reroute network messages accordingly. Since sessions of ¢ from the
original p are now split to be sessions of two separate machines/codes ¢ and
¢’ in the modified p, we can use the UC/IITM composition theorem to replace
all sessions of ¢ with sessions of 7w while leaving the sessions of ¢’ as is. This is
precisely what we wanted to achieve, namely, replace a subset of all sessions!

One can apply the composition theorem a second time to replace also the
remaining sessions, i.e., the sessions of ¢, but with a different realization ’.
Alternatively, one can iterate the above technique to further split the remaining
sessions into separate machines/codes ¢ and ¢ that can again be realized
independently.

H A More Complex Variant of our Protocol Mapping

In what follows, we describe an extended variant of our mapping which models
more closely the precise technical details of the UC runtime notion for adversaries.
The main difference is the following. In the mapping described in the main body,
the adversary gets access to an totalImport? command that reveals the protocol
import of a session (as mentioned, the code of the UC protocols generally must
already provide at least the same information to allow for a simulation in the
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first place. So we do not actually change the security properties modeled by
the protocol by making this information given to the adversary explicit). The
idea for the IITM adversary/simulator then is that he can manually enforce
the balanced requirement on environments by checking the amount of import
received by the protocol and, if this is more than he has received so far, simply
add the missing difference to his own import budget. Note that there formally
is a slight mismatch in this construction between the UC and IITM worlds:
In the IITM world, the totalImport? mechanism allows the simulator to add
additional import after the protocol has already received it. In the UC model,
due to the balanced property of environments the simulator is guaranteed to
obtain additional import before the protocol is provided with the same. As we
show in Theorem 4, however, this slight mismatch is not an issue as long as
the UC simulator allows for adding runtime without interacting with and hence
influencing the state of the ideal protocol. As explained in Section 3.3, this
includes all existing UC protocols from the literature. Indeed, it seems that no
reasonable protocol definition should require some interaction by the network
adversary/simulator whenever the network adversary/simulator increases its own
runtime, also considering that this information is not available to protocols in
reality. However, formally one might be able to build artificial protocols with
realizations such that simulation requires the simulator to contact the protocol
whenever the simulator receives additional import.

To cover arbitrary simulators, including those not meeting the requirement
of Theorem 4, the extended variant of our mapping guarantees that the II'TM
adversary is activated and obtains import before the protocol import exceeds
the import of the adversary, just as in the UC model. This resembles the precise
behavior of the UC model and hence resolves the above slight mismatch, thereby
removing the need for a specific class of simulators in Theorem 4. As an interesting
side note, this mapping also does not require the explicit totalImport? request;
the ITTM adversary instead just learns some upper bound of the import received by
the ideal protocol, which is the exact guarantee that a balanced UC environment
provides to a UC adversary (again, we emphasize that the code of the UC protocol
generally already provides at least the same information as totalImport? to the
UC adversary and hence, after applying our mapping, also to the II'TM adversary.
We just do not have to make this explicit in this variant of our mapping). On the
downside, this extended mapping leads to protocols which, while still modeling
the intended original protocol behavior, use more complex and less natural
definitions, in particular when they are composed using the II'TM composition
theorem. We therefore chose to present the simpler mapping in the main body,
which should already cover all protocols of practical interest.

Next, we describe how our mapping is changed for the following variant.
We then explain how the theorems and proofs from Section 3.3 are changed.
Most notably, we no longer require a specific type of simulator for the updated
version of Theorem 4. We then also explain how this change in the mapping
affects higher-level protocols that are modeled to be compatible with the IITM
composition theorem such as the one described in Section 3.4.
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H.1 Updates to the mapping

The variant of our mapping is mostly the same as the one described in 2.2 but
changes how import related to the adversary is handled. Firstly, the totalImport?
command is removed. Instead, the highest-level machine M. now provides
an additional provideAdversariallmport request to the environment that,
by suitable encoding, is distinguishable from regular inputs intended for the
code c;. The intention of this request is to give the environment the option to
provide some import ¢ to the adversary via the protocol. The protocol itself
can then check that the balanced requirement is met at all times and block
messages otherwise. More specifically, the IITM environment can send the input
(provideAdversariallmport,i), where ¢ is an import encoded in unary. This
input is then forwarded to My, which keeps track of all adversarial imports
provided in this manner so far (in addition to the protocol imports that are
already tracked). My, then forwards this message to the IITM adversary on
the network who will, jumping slightly ahead, interpret this to be the same as a
direct network message from a UC environment that provides additional import
1. He will then perform the same actions as in this case, potentially including
any interactions with the ideal protocol. This then has the exact same timing as
in the UC case, where an environment directly provides this import, and thereby
allows us to show Theorem 4 for arbitrary simulators. To enforce the balanced
requirement, the machine M. _ is changed as follows. Each time a regular input
(i.e., # provideAdversariallmport) carrying some import > 0 arrives from
the environment on the single external I/O tape, M. first checks with M.
whether accepting this message would increase the total import obtained by
the protocol from the environment to be larger than the total import provided
by provideAdversarialImport requests. If so, then M. drops this message.
In particular, the import contained in that message is not added to the list of
protocol imports received so far. If not, i.e., the environment is still balanced,
then the incoming message is processed as usual, which includes storing the new
import amount in M.

This already allows for showing a version of Theorem 4 for this variant
of our mapping but without assumptions on simulator. To also show the cor-
responding version of Theorem 5, we additionally need the following mecha-
nism. We extend My, to allow the adversary to send messages of the form
(registerAdversarialImport,) on the network, where ¢ is an import encoded
in unary. These messages allow the adversary to notify the protocol in case the
adversary has received some import ¢ by the environment directly, say, as part of
some regular network messages. More formally, M,s, treats these messages in
the same way as (provideAdversariallImport,i) by adding ¢ to the list of ad-
versarial imports so far. M,s, then returns an acknowledgement to the adversary,
say (registerAdversariallmport,ok).

One easily verifies that the above modified mapping yields IITM proto-
cols that, while running with an IITM environment, behave just as the orig-
inal UC protocols running with a balanced UC environment. Specifically, the
added command (provideAdversariallmport,i) available to IITM environ-
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ments corresponds to the UC environment calling op(i) on the network, where
op is the operation for providing the dummy adversary with import, while the
registerAdversarialImport command on the network corresponds to the UC
environment providing some import for the adversary as part of a network mes-
sage # op. Indeed, this correspondence in both directions is what we show and
use in the following proofs. Hence, the mapped IITM protocol is still faithful to
the intended protocol behavior.

H.2 Adjusting Theorem 4 and its proof

As mentioned, for this variant of our mapping we can show a stronger version
of Theorem 4 that does not require a simulator who can receive import without
having to interact with the ideal protocol. In what follows, we explain how the
proof of Theorem 4 needs to be adjusted.

Indistinguishability for UC runtime bounded adversaries. We define the

IITM dummy adversary A%S;?j}‘}%‘}\?[d that adheres to the UC runtime notion as

follows. A%S;;‘}‘}‘%‘}\ffd still consists of a wrapper that internally runs Apym ve. If

the wrapper of AYC-bounded yoceives (provideAdversariallmport,d) from the

protocol, then it internally calls op(i) of A pym, uc, where op is the operation that
can be used by the UC environment to provide the UC dummy with additional
import. If the wrapper receives a registerAdversariallmport request from
the environment on the network for My,sg, then this request is dropped (we will
handle such requests in a later step when we build a simulator for the regular
IITM dummy adversary that is not UC bounded and simply forwards all requests,
including registerAdversarialImport). If the wrapper of .A%S;Sf}‘}%‘}\jd receives
some import ¢ from the environment as part of some network message (which
might be a regular message that is intended to be forwarded to the protocol but
might also be a call to op), then the wrapper first registers this import in the
ideal protocol by sending (registerAdversarialImport,i) and waiting for the
response. The wrapper then forwards the network message from the environment
to Apum,vc- In all other cases, i.e., when the wrapper receives some message from
the protocol, environment, or Apym ve (including notifications by Apym,vc to
the environment for calls to op), it forwards the message accordingly between
protocol/environment and Apym, ve:-

Note that a major difference between the wrapper of A%S;;‘}‘}%%fld defined
here and the original wrapper defined in the proof of Theorem 4 is that this
wrapper is not responsible for enforcing the balanced requirement of the envi-
ronment manually. He can rather rely on the protocol, which already enforces
this requirement in our modified mapping. Hence, A%S;,Ef}‘}%‘}\fjd also never has to
generate any additional import himself but can rather take exactly the amount
it gets from the environment.

The corresponding II'TM simulator SH%\'}O““dEd is again defined to internally

simulate Sy¢ within the same wrapper as describe above for AYC-bounded " Ohgerve

that, just as AYC-bounded "the simulator SH°"4ed does not need to generate
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import itself but rather relies only on the import provided by the environment. Fur-
thermore, by definition of our protocol mapping, the simulator is always activated
immediately at the exact point in time when the environment provides new adver-
sarial import, even when done via the message (provideAdversarialImport, )
to the protocol, which is precisely as in the UC model. Hence we can map a run
in the IITM model to a run in the UC model (see below) without additionally
requiring that op does not interact with the protocol.

Given a single session environment Si}rﬁj’g in the IITM model that sends
only inputs permitted by £ and tries to distinguish A%Sﬁf}‘}%ﬁjd | T and
S}Ilgﬁounded | & 117, we construct the corresponding UC environment Eyc as
follows. £y runs the same logic as 5;}1}%%;’5 but stops the run with empty overall
output upon reaching a fixed runtime bound ¢ in its currently held import. If
Errry wants to send the network message (registerAdversariallmport,i) via
the adversary to the protocol, then £y drops this message, which then activates
Enrm- I Epry wants to send the input (provideAdversariallmport,i) to
the protocol, then £y instead sends op(i) to the adversary on the network.
Furthermore, Eyc keeps track of the total amount of import ¢ (successfully)
provided by Epra directly via inputs to the protocol and the total amount
of import j provided by &y to the adversary (either directly via a network
message or via a provideAdversarialImport message to the protocol). If Errras
wants to send an input containing import ¢’ to the protocol, then £y checks
whether i+14’ > j. That is, whether €777, would violate the balanced requirement
by sending that import. If so, then the message is instead dropped. Otherwise,
i’ is added to the total import 4 tracked by £yc and the input is delivered to
the protocol. All other actions of £y are just as for E;ypr. We have that Eye

meets the UC runtime notion and is balanced by construction.

Now compare runs of the real II'TM and real UC worlds using the same random-
ness. As long as the runtime bound ¢ of £y¢ is not met, both worlds behave per-
fectly identical with the same overall output, if any. In particular, whenever ;s
in the II'TM world provides adversarial import ¢ via provideAdversarialImport,
this is then forwarded to A%S;,‘f)‘}‘}%‘}\fjd who internally calls op(i) of Apuym, ve. This
is exactly the same as for £y¢ in the UC world. Similarly, both the IITM and UC
worlds ignore and drop (registerAdversariallmport,) messages from Eprras.
While in the IITM world the IITM protocol internally tracks the adversarial
import and drops inputs if they would violate the balanced requirement, in the
UC world the same is instead done by £y¢. Note in particular that the protocol in
the IITM world and the environment £y ¢ in the UC world have the same view on
the amounts of protocol and adversarial imports. Hence they drop inputs at the
same points of a run. Finally observe that, even though A%S;fy‘}‘}%‘}\?[d additionally
registers some adversarial import in the IITM protocol but the same operation
is not performed (and not even available) in the UC world, this registration does
not affect or change the behavior of the IITM protocol compared to the UC
protocol except for changing the set of inputs from the II'TM environment that
are dropped due to violating the balanced requirement. In the UC world, this
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aspect is already perfectly simulated by £y¢. Hence, the protocols in both worlds
also behave the same.

The ideal worlds can be compared in the same way to obtain a mapping of runs
(using the same randomness) with the same behavior as long as the runtime bound
q of Eyc is not met. Observe in particular that adversarial import provided via
provideAdversarialImport in the IITM world and the corresponding calls of
op in the UC world occur at the same points in time in the run. More specifically,
when comparing the states of the II'TM and UC protocols the only difference in
the IITM world is that the protocol additionally extends the list of adversarial
imports. However, as argued above, this does not actually affect or change the
behavior of the II'TM protocol except for dropping a different set of inputs from
the environment, which is simulated correctly by £y¢. In particular, the behavior
of the IITM protocol while receiving messages from the simulator following the
call of op, if any such messages are sent, is identical to the UC world. So again
both the UC and IITM worlds behave the same, even if the simulator decides to
interact with the protocol upon receiving import via op.

The previous observation is actually the key difference between this variant
of our protocol mapping and the simpler mapping presented in the main body
of this paper. In this construction, we can argue that calls to op occur at the
same points of a run in both the UC and IITM worlds such that the behavior of
the respective protocols, if they were to receive a message from the simulator, is
also the same. In contrast, in the proof of Theorem 4 for the simpler mapping
we had a situation where calls to op in the UC and IITM worlds did not occur
at precisely the same points in time. Instead, in the II'TM world such a call
would occur after a protocol has already received a message with import, thereby
updating its state and potentially changing its behavior upon receiving a network
message. In the UC world, the call to op would occur before the protocol receives
the message with import. This is why we needed a specific class of simulators
that do not interact with the protocol while receiving import via op. For such
simulators, it does not matter whether the protocol receives its import before
or after the call of op. We only had to ensure that the overall amount of import
added via op is consistent in both the UC and IITM worlds between any pair of
messages m, m’ # op received by the simulator.

To complete this step of the proof, we only have to define the runtime bound
q of Eyc in such a way that, given sufficiently long external inputs, Eyc does
not actually reach the runtime bound. This can be done in the same manner as
in the proof of Theorem 4.

Indistinguishability for arbitrary single session environments. This step
does not change.

Indistinguishability for arbitrary adversaries. We have to construct a sim-
ulator Syrra for the regular IITM dummy adversary Apym, irmv, who does not
receive any import himself. This dummy rather always forwards all messages inde-
pendently of any import mechanism. The idea for constructing the corresponding
simulator is still the same as in the proof of Theorem 4, but the technical details
are slightly different. Namely, the simulator still internally generates its own
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import in such a way that, if one were to run ABS;)EL"}‘}%C}\?[d with the import gener-

ated by the simulator instead of Apum, 7y in the real world, then APS-PGHged

never reaches its runtime bound. As we will see below, due to the definition of
provideAdversarialImport, we are able to construct the simulator in such a
way that we can again perform a reduction without requiring any additional
assumptions on the implementation of op in the simulator. In particular, the
environment constructed for the reduction is able to provide import at the exact
same points in time in the run as Sy generates fresh import. In what follows,
to improve readability we use the same terminology as in the third step of Ap-
pendix B, i.e., when we say that additional import ¢ is generated by the wrapper
of the simulator (via a call to provideAdversarialImport), then this implicitly
also includes sufficient import to account for the logarithmic runtime reduction
due to a call of op such that at least import ¢ remains unused.

Let p be the polynomial in the import currently held by the real protocol
that upper bounds the total runtime of the codes of my¢; w.l.o.g. choose p
monotonically increasing such that p(z) > z. We define Sy to internally
simulate SIUI%\ZOu“ded within a wrapper layer. Upon its first activation with
some message m, the wrapper of Sy provides 1 import to S}Jlgﬁounded via,
provideAdversarialImport as if received from the ideal protocol. Since this
internally calls op, S%gﬁounded should at some point output an acknowledge-
ment for the environment that op was executed. As soon as the wrapper of
St receives the next such notification, it drops it and rather continues
processing the initial message m as it would for any other messages. When
Sy receives a network message (registerAdversarialImport,i) for Mg,
then the wrapper of Syras first forwards this message to the ideal protocol
to register import ¢, waits for the response, and then provides d import to
SyGaheunded via provideAdversarialImport, where d := p(j +1i) — p(j) and j is
the total amount of import provided by the environment so far in network mes-
sages registerAdversarialImport, inputs provideAdversarialImport, and
forwarded via regular network messages. Again, this internally calls op. Hence,
when the wrapper of Sy receives the next acknowledgement for op from
SyGaheunded “the wrapper instead sends (registerAdversariallmport,ok) to
the environment. That is, the environment receives an acknowledgement to the
original (registerAdversarialImport,i) request, just as for the dummy adver-
sary Apum,rrrv in the real world. Whenever Sirrys receives any other network
message m from the environment, Syyrpy first computes d := p(j + i) — p(j) with
j as above and where ¢ is the protocol import that would be forwarded as part of
m. Sy then provides 2 - |m| + d import to the internal simulator via a message
provideAdversarialImport and afterwards, as soon as he receives the next
notification for op from the internal simulator, forwards m to Spghownded, Fi-
nally, whenever the wrapper of Sy receives a (provideAdversarialImport, i)
message from the ideal protocol, it internally provides d import to S}jlgﬁounded
via provideAdversarialImport where again d := p(j + i) — p(j) and j are as
defined above. Afterwards, as soon as Sh3h°"mded wants to send the next ac-
knowledgement to a call of op to the environment, the wrapper of S;;ras instead
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sends (provideAdversarialImport,i). In other words, the simulator forwards
the original provideAdversarialImport message just as the dummy Apym, 117
does in the real world. In all other cases, Sy simply forwards the messages
between SHh°"mded and the protocol/environment.

Let Ei}rﬁ; be a single session environment that tries to distinguish the

_id _id . ingl
systems ADUWHTM\W%]TM and Syt ¢§IITM‘ The environment &'775; for

the reduction (t.o the case of indistinguishability of AP PGP | 759, and
Sy Gyheunded | gb?}l}iM) is defined similarly to the one constructed in the proof

of Theorem 4. That is, £ ]S}I}gj\lj internally simulates Ei}rﬁj and the wrapper
portion of Syrras. Additionally, £ 528! keeps track of protocol and adversarial
imports (via provideAdversarialImport and registerAdversariallmport)

and drops inputs if 5?}1;5]\1; did not provide sufficient adversarial import. More
formally, £ 57&¢ internally runs £328l¢ but with the following modifications.

singl . .
As soon as &5 wants to send its first network message or send an input

of type provideAdversarialImport to the protocol, S’IS}I;%\I,? first provides n
import to the adversary via an input provideAdversarialImport to the pro-

tocol. Afterwards, &’ ;}I}gﬂlj drops the next notification for an op operation from

the adversary and instead processes the original message sent by S?}Iﬁ; as for

ingl . .p osingl
any other messages from &7, 7. During the run, if £7;7%; wants to send the

network message (registerAdversariallmport,i) to Mpgg, S’Islir}g]\f instead pro-
vides d import via an input provideAdversariallImport to the protocol, where
d = p(j+i)—p(j) and j is the total import that 5?}1}%\1; has previously provided via
registerAdversarialImport network messages, provideAdversariallmport

. singl .
inputs, and forwarded as part of network messages m. Then, once &' ;757 receives

the next notification for an op operation, &’ ?}I%gﬂl/fc activates 5?}?,5]{; with network
message (registerAdversarialImport,ok). If 5?}2‘%{; wants to send any other

network message m, then & 528¢ first provides 2 - [m| 4 d (with d computed as

above) adversarial import via an input provideAdversarialImport and then,

upon receiving the next notification for op, sends m to the adversary. Whenever
5?}1351\15 wants to send the input (provideAdversarialImport,i) to the proto-
col, £ 59&¢ instead provides import d via an input provideAdversarialTmport

where d := p(j 4+ i) — p(j) and j are as above. Then, once £ 7&¢ receives

P singl . single _ .
the next op notification, &£'};7%; activates &5 with the network message

(provideAdversarialImport,i). Finally, E’Is}r}gj\l/f tracks the total amount of ad-

versarial import i,4, provided by 5;}2‘%\1; via provideAdversarialImport and

registerAdversarialImport as well as the total protocol import iy provided

directly to the protocol in inputs from 5;}%}; If 5;}1;%5 wants to send an input

containing protocol import such that ippot > dady, then &’ Is}r}gl\lf instead drops this

. . . . . . . singl
message (without increasing the counter ipyor), which in turn activates 775,

with empty input by definition of the II'TM model.

. ingl -id
Now consider runs of the real world E77757 | Apum, rrru | 7T§11TM and the real

ingl X = .
world &[5 | ADS-bounded | ¢ ill}iM with the same randomness. Observe that these
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runs behave identical and have the same overall output as long as the runtime
bound of APTPGH6¢ is not reached. In particular, the additional 7 adversar-

ial import provided by &’ ?}I}g]\f at the beginning does not change the behavior

of the protocol except for increasing the total amount of adversarial import
stored in the protocol. This in turn only increases the set of inputs from the
environment that the protocol running with &’ Is}g%\l/f accepts. As &’ ;}r}gl\lf already
drops inputs itself if they would not be accepted by the protocol running with
Errrm, this aspect is simulated correctly. £’ Is}r}gj\lf further simulates the effect of
(registerAdversarialImport,i) correctly by instead providing d import using
an input provideAdversarialImport, which also increases the amount of adver-
sarial import stored in the protocol. The only difference here is the exact amount of
adversarial import registered in the protocol. By definition of d and since p(z) > x,

we have that &’ ;}r}gj\lj provides at least the same amount of import as Errrar, i.e.,
at most increases the set of inputs accepted by the protocol. As argued above,
since &’ Is}r}gl\lf itself already correctly simulates dropped inputs, this increase in
adversarial imports stored in the protocol does not change the behavior of the run.

The same argument holds for (provideAdversarialImport,i) inputs by Ei}r}g]\lj ,

where, again, the overall import provided by & 528 might be larger but is at
g p p Y ¢ nrv G g

least the same, thereby not changing the overall behavior of the run. Finally, just

as in the proof of Theorem 4, the construction of £’ Is}r}gj\lf is such that Agggf;"}?%‘ﬁd

never reaches its runtime bound.?” Hence, both 5?}?,%\1; | ADum, 1170 | W?}l}iM and

ingl 3 -id o
gomee | AYC-bounded | 4800 have the same overall output distribution.

Now consider runs of the ideal world S;}I}gj\lj | Srrrar | qﬁi}i}iM and the ideal

world £’5ingle | gUC bounded | ¢S4, with the same randomness. First observe
that the initial import 1 is generated by Syyras at the same point in the run
as £ 318l calls (provideAdversariallmport,n). This is because the first ac-

. . . . ingl
tivation of Syyras is either due to a network message by &7/, or due to an

provideAdversarialImport message sent by 5;}%&; via the protocol. Indeed,

even if Ei}rﬁ; first sends several inputs m # provideAdversarialImport to the
protocol, then these inputs are either dropped since no adversarial import has been
provided/registered yet or they do not contain any import. But by definition of the
UC protocol, the machine codes ¢ do not start running until they have received at
least 7 import. Hence, the protocol will never be the one to send the first message
to the simulator, except if activated by an provideAdversarialImport input.
This is precisely as simulated by &’ [S}l}gj\lf . During the remainder of the run, both
worlds behave identical. In particular, observe that S;yrs registers exactly the
amount of import provided by the environment via registerAdversarialImport
network messages but not alny more. Hence, the ideal protocol running with
single

Sirrm drops inputs iff €75, drops inputs. Altogether the only difference be-
tween both worlds is that £’ 5154° formally provides an overall larger amount of

27 Here we use that the total amount of adversarial imports provided by £y via inputs
provideAdversarialImport and network messages registerAdversarialImport is
an upper bound for the import directly provided via inputs to the real protocol.
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adversarial import to ¢§#M compared to 5;}“%; As already explained for the
real worlds above, this only increases the set of inputs that are accepted by the
protocol, which &’ Is}r}gj\l/f already simulates correctly itself. So the ideal worlds also
behave identical with the same overall outputs.

Indistinguishability for multiple sessions. This step does not change.

H.3 Adjusting Theorem 5 and its proof

In the theorem we can drop the requirement that the core of the simulator does
not call totalImport? since this request does not exist in our variant of the
mapping. We do not need to instead require that the core does not call the new
operation registerAdversarialImport. This can rather be concluded from the
fact that real and ideal world are indistinguishable. Specifically, the wrapper
of the simulator already keeps the amount of adversarial import stored in the
ideal protocol identical to the amount of adversarial import stored in the real
protocol. Hence, any simulator whose core calls registerAdversariallmport
will cause the real and ideal world to be easily distinguishable: the ideal world
then has more adversarial import, which the environment can check by providing
a suitable amount of protocol import. Hence, we can conclude that the core does
not use the new command registerAdversarialImport that is available only
in the IITM protocol.

We can therefore directly use the core of the simulator in the UC model. The
proof of the theorem then stays essentially the same. Note in particular that an
IITM environment can simply simulate a distinguishing UC environment. Since
the UC environment is balanced, it will always provide at least as much import
directly to the adversary (via network messages) as it provides directly via inputs
to the protocol. By definition of the wrappers of AYC-Pounded 5pq SHC bounded
this adversarial import is registered in the real and ideal protocols, respectively.
Hence, the real and ideal protocols in the II'TM model always have at least as
much adversarial import as protocol import, i.e., do not drop any messages. This
precisely matches the behavior in the UC model.

H.4 Composition

Suppose we have myc, ¢ yo, p ve UC protocols such that myeo < EUC ¢ vc and
the UC composition theorem can be applied to p yc to obtain p g;” <yc puc-
Observe that, just as for Corollary 1, we can apply the variant of our protocol
mapping directly to p gg” and p yo to obtain protocols p 2?1\7} and p ;. Note
that this involves, among others, mapping the UC composition shell code added
by the UC composition theorem to be able to express the meaning of p ﬁ?ﬂ’} By
the above result, p g}g“ < yc puc then already implies pf}?& <ITM PITM-
In particular, we do not even have to check that the simulator constructed for
the UC composition theorem meets certain properties since this variant of our
mapping works for arbitrary simulators.
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Now consider the case that we want to obtain the same statement directly
via the composition theorem of the IITM model (which also does not require
mapping the UC composition shell code) or want to compose some arbitrary
higher-level IITM protocol p jyry with wrrrar /& 1, where p jprayr does not
have a counter part in the UC model. This is still possible for this variant of
our mapping by modeling p ;rras in the same way as described in 3.4. That
is, we first map ¢ ;s to the II'TM model independently of any higher-level
protocols p.28 The higher-level machines of a protocol p ;rras then connect via
a single tape to the machines of ¢ ;;rps, potentially using a multiplexer. Note
that, since ¢ ;s is mapped independently of the definition of p ;s (if p 1
even has a UC counterpart), it includes the adversarial import mechanism of this
variant of our mapping. Hence, the higher-level protocol p j;ray must be defined
in a way that it first provides the subroutine sessions of ¢ ;;7ys with sufficient
adversarial import via provideAdversarialImport before p jyrp can provide
protocol import and hence use these sessions. Defining a higher-level protocol
p iy in this way should always be possible via syntactical changes that do not
affect its semantics. For example, p j;ras can simply provide the same adversarial
import that it has received also to its subroutine. Alternatively, whenever p jrrys
wants to provide new protocol import ¢ to subroutine ¢ jrrar, p ;7 can first
call (provideAdversariallImport,j),j > i. The adversarial import j provided
by p i to the subroutine ¢y is actually arbitrary, as long as it is larger
than the protocol import provided (to ensure that the subroutine works as
expected) and still of polynomial length (to ensure polynomial runtime of the
overall protocol).

So it is possible to model higher-level protocols p in a manner such that
they are compatible with the IITM composition theorem. However, this variant
of our mapping still introduces quite a bit of additional technical overhead to
the protocol definition of such higher-level protocols. This is one of the main
reasons why we rather presented our simpler mapping in the main body, which
should already cover basically all protocols of practical interest while yielding
less technical, more natural definitions of higher-level protocols.

I Single Session Security Analysis in the II'TM model

In this section we first recall the security definition and second composition
theorem of the IITM model [20] which enable a single session security analysis of
protocols with disjoint sessions. We then provide full details of the last step of
the proof of Theorem 4 by showing that the second composition theorem indeed
applies.

28 Note that this is different from the above, where p Id}?ﬁ and p ;v are obtained by
mapping a specific higher-level protocol as well as all of its subroutines, including
O 1rm-
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I.1 Recalling the Second IITM Composition Theorem

We first have to formalize the meaning of a “protocol session”. We consider a
(polynomially computable) protocol session identifier function o which, given a
message, a tape name, and the direction of the message on that tape, outputs a
protocol session identifier PSID (a bit string) or 1.2° For example, the following
function takes the prefix of a message as its PSID: oprefix(m, t,d) = s if m =
(s,m’) for some s,m’ and oprenx(m,t,d) := L otherwise, for all m,¢,d. The
reason that o, besides a message, also takes a tape name and direction as input
is that the way PSIDs are extracted from messages may depend on the tape and
the recipient machine of a message.?’

Now, we say that an IITM M is a o-session machine (or a o-session version)
if the following conditions are satisfied: (i) M rejects (in mode CheckAddress)
a message m on tape t with direction d if o(m,t,d) = L. (ii) If my is the first
message that M accepted (in mode CheckAddress), say on tape to with direction
dy, in a run, then, M will reject all messages m received on some tape ¢ and some
direction d (in mode CheckAddress) with o(m, t,d) # o(mo, to, do). (ili) Whenever
M outputs a messages m on tape ¢t with direction d (in mode Compute), then
o(m,t,d) = o(mog,to,dp), with mg, tg, do as before. We say that a system Q is
a o-session system (or a o-session version) if every IITM occurring in Q is a
o-session machine.

We call an environment £ o-single session if it only outputs messages with
the same SID according to o. Hence, when interacting with a o-session version,
such an environmental system invokes at most one protocol session.

Let P and F be protocol systems, which in the setting considered here would
typically describe multiple sessions of a protocol. Moreover, we assume that P
and F are o-session versions, i.e., both protocols have disjoint sessions that do
not interact with each other according to o. Now, we define what it means that a
single session of P realizes a single session of F. This is defined just as P < jyrp F,
with the difference that we consider only o-single session environments, and hence,
environments that invoke at most one session of P and F.

Definition 4. Let P, F be o be as above. Then, P single-session realizes F
w.r.t. o (P §‘Z‘;%gle F) if and only if there exists an adversary S (a simulator
or an ideal adversary) such that E|P = E|S|F for every o-single session

2% In [20] a PSID was just called SID. Here we use a different term to avoid confusion
with the SIDs used by UC and our mapped protocols. While both are related, as we
will show later in the section, a PSID uniquely identifies the whole protocol session
whereas there might be multiple different SIDs used by instances within that session.
The definition of protocol session functions given in [20] does not include a direction
d. This is because the basic II'TM model is defined on unidirectional tapes, so a tape
name already uniquely identifies the message direction. Since here we consider named
bidirectional tapes, which are implemented via pairs of uniquely named unidirectional
tapes, we additionally add the direction d to the function input. This is easily seen
to be a special case of the II'TM definition due to the way bidirectional tapes are
implemented.

30
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environment E. (the details regarding interfaces and runtime are analogous to
Definition 2)

Now, the following second IITM composition theorem says that if P realizes
F w.r.t. a single session, then P realizes F w.r.t. multiple sessions. As mentioned
before, in the setting considered here P and F would typically model multi-session
versions of a protocol/functionality.

Theorem 6 (Unbounded Self Composition). Let o, P, and F be as above.
Then, P S?}‘;ﬁ?j’le F implies P < iy F.

1.2 Full Details of the Last Step of the Proof of Theorem 4

Recall that in the last step of Theorem 4 we claimed that the second composition
theorem, i.e., Theorem 6 is applicable and implies the overall statement. We now
formalize this statement using the terminology and definitions from above.

The previous steps of the proof showed that there is a simulator Syrras such
that Apym, 117 | 71'?}17511\/[ and Syt | ¢§}1}1M cannot be distinguished by any single
session environment £5778¢. By Lemma 5 from [20] the I'TM dummy adversary
A pum,rrry can be added or dropped from a system without changing its behavior.
Hence, we also have that w?}i}jM and Srrr | ¢§}i‘TjM cannot be distinguished by
any single session environment 8?}‘;%\1; . Next, we formally define the protocol
session identifier function o which in turn also formalizes the meaning of a single
session environment.

Recall that, by our normalization from Section 3.2, the protocols 7/¢ use
the standard subroutine respecting wrapper mechanism of the UC model. Hence
instances running the highest-level code ¢, /cg have an SID sid. with instances
running any other codes have SIDs of the form (sid., sid'), where sid. is the
SID of the highest-level instances of that protocol session. Furthermore, the
subroutine respecting code guarantees that instances belonging to a session
sid. send messages only to other instances sharing this sid., except for outputs
provided by the highest-level instances running c,/c, to the environment. So the
idea for defining a protocol session identifier is to use sid., which is also included
in the headers of all network messages.

More formally, we define o(m,t,d) as follows. If m is an input from the
environment (via Mfdentity) to ¢x/cy (which can be determined from t and d),
then extract and output sid. from the receiver ID contained in the header of m.
Conversely, if m is an output from ¢ /cy (via Mi%mmy) to the environment, then
extract and output sid. from the sender ID contained in the header of m. If m is
received or sent by a protocol machine on the network, extract and output sid.
from the receiver or sender ID contained in the header of m. Similarly, if m is on
an internal I/O tape between protocol machines, then extract and output sid.
from the receiver contained in the header of m. If m does not match the expected
format of messages on a certain tape, e.g., does not contain a well-formed header
or the header contains the wrong machine code, then we set o(m,t,d) := L.
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Observe that, given this definition of o, the protocols W?}iﬁM and ¢§#M are
indeed o session versions. Condition (i) follows by the definition of CheckAddress
which rejects messages that do not have a certain expected format, including
header. This is exactly the type of messages where o returns L. For (ii), observe
that all instances of ﬂf}iﬁM and ¢§#M, after accepting their first message, store
their SID and then accept future messages only if they are for the same SID.3!
Since this SID contains, potentially as a prefix, the PSID returned by o, this
implies (ii). (iii) is obviously fulfilled for external tapes where the PSID is
extracted from the sender ID. For internal tapes between machines M, running
some UC code ¢, where the PSID is extracted from the receiver, observe that the
definition of the subroutine respecting shell code ensures that the sid. portion of
both the sender and receiver SIDs is the same (since messages on such tapes are
sent between two instances within the same session). For internal tapes between
a machine M, and the machines M} and Mi%entity, this follows by the definition
of their compute modes (as well as the subroutine respecting property of M)
which also always use the same sid. for addressing. Hence (iii) is also fulfilled.

Altogether we have that Wf}i}lM and ¢ ?}ifle are o-session versions and there ex-

ists a simulator Syys such that w?}l}iM and Sy | ¢ ?}iﬁM cannot be distinguished

by any o-single session environment 58 This is exactly Definition 4, i.e., we
y any g IITM y s )
have n$7i0  <7Sinsle &id By Theorem 6, this implies 750y, < rra & 5oy a8

claimed.

J Discussion of Technical Details of the UC Model

In this section, we provide more in depth discussion of certain technical details
of the UC model [7]. This includes full details for issues that we found while
constructing our mapping and which, among others, cause the composition
theorem to fail.

J.1 Adversaries Revealing Their Identity

As highlighted in Footnote 5, while the adversary is restricted to use only non-
forced write commands he is not restricted in whether he wants to reveal its
extended identity, including its full code, to the receiver (cf. the definition of
the security experiment given on Page 39 and summarized in Figure 6 of [7]).
Observe that this code is “authenticated” by the computational framework of the
UC model. That is, if a protocol receives such a revealed extended identity, then

31 A slight exception is Mfdentity, which accepts messages from the subroutine protocol if

they contain the same sender SID as used by that instance of M. <

dentity - For messages

from the environment, Mi%enmy works just as other machines, i.e., accepts them only
if the receiver SID is the same. Note that this is a technical detail that does not
actually affect the following argument. In particular, this definition is consistent with
the way o extracts PSIDs from the messages in different directions between protocol

and environment.
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the computational framework guarantees that the code contained in that identity
is the same as the code that the sender (i.e., attacker) is actually running. This
appears to be unintended. Indeed, previous versions of the UC model, such as
the one from 2013 [5], removed the code of the adversary from any messages sent
to a backdoor tape.

As it turns out, preventing the adversary from revealing its own code in an
authenticated fashion is actually essential to obtain a meaningful model that
supports composition. Specifically, adversaries that can reveal their authenticated
code cause the following three major issues in the current version of the UC
model:

1. The dummy adversary is incomplete. The dummy adversary cannot be
used to simulate arbitrary other adversaries, i.e., Claim 11 of [7] is false. This
is because the dummy adversary is only ever able to reveal its own code to the
protocol. However, an attacker revealing a different code might actually be able
to cause the real world to behave in a manner that is distinguishable from the
ideal world.

It is quite simple to come up with such protocols. For example, consider
the ideal world protocol ¢ that does nothing, i.e., drops all inputs and network
messages. Define the real protocol m to behave as ¢ but 7 actually processes
network messages from the adversary. If the network message does not contain
an authenticated identity or the authenticated identity contains the code of the
dummy attacker, then 7 drops the network message just as ¢ does. Otherwise, 7
sends output real directly to the environment.

It is easily seen that 7 running with the dummy attacker is indistinguishable
from ¢ running with the dummy attacker (which acts as the simulator for ¢).
But clearly m running with some other attacker in the real world can easily be
distinguished from ¢ running with any simulator in the ideal world.

Since completeness of the dummy adversary is used in an essential way in
the proof of the UC composition theorem, this also invalidates the proof of that
theorem.

2. The UC composition theorem does not hold true. Above we already
showed that the proof the composition theorem (Theorem 22 in [7]) is false. But
an even stronger statement is the case: the composition theorem itself is false and
cannot be shown at all. The underlying reason is that the behavior of the ideal
protocol ¢ might depend on the authenticated code of the simulator. However,
obtaining a composition theorem requires constructing a new simulator that not
only handles network messages from ¢ but also from a higher-level protocol p.
Since this changes the code of the simulator, the behavior of ¢ might also change,
in which case it might no longer be indistinguishable from its realization.
Again, it is relatively simple to come up with such protocols. For example,
consider the real protocol 7 that, upon receiving the first input from the envi-
ronment, returns real and otherwise drops all other messages. We define ¢ to
forward the first input from the environment to the simulator. If the response
contains the authenticated code of the simulator and that code equals a certain
fixed code cgim, then ¢ outputs real to the environment. In all other cases, ¢
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drops the message and stops. In particular, if ¢ receives a second input by the
environment, then just as 7 it drops that input. We define the simulator code
Csim to internally simulate the dummy adversary towards the environment. If
the dummy adversary wants to send a message to the real protocol, then the
simulator simply drops the message. If the simulator receives the first message
from an instance of the ideal protocol, then the simulator returns that message
while revealing its own extended identity. All subsequent messages from any
protocol instances are dropped.

By construction, we have that 7 running with the dummy adversary is indis-
tinguishable from ¢ running with the simulator with code cgir,. Next, we construct
a protocol p using ¢ such that the composed protocol p?~7 is distinguishable for
all simulators. Upon receiving its first input from the environment, p forwards this
input to the subroutine ¢ and returns the output, if any. Afterwards, all further
inputs from the environment are forwarded to the adversary on the network.

There is no simulator S such that p®~" running with the dummy adversary
is indistinguishable from p running with S, which shows that the composition
theorem is false. This can be seen as follows: observe that the simulator with
code ¢4y, is not suitable. While both worlds are indistinguishable as long as the
environment sends only a single input, they behave differently in the case of a
second input. Namely, in the real world the protocol p®~" forwards the input
via the dummy adversary to the environment. In contrast, in the ideal world
protocol p this input is forwarded to the simulator running code c¢gjy,, which
then drops the message. Further observe that any simulator running code # cgim,
already causes distinguishable behavior upon the first input. Namely, the real
world protocol p®~™ outputs real upon receiving the first input. The same is
impossible to accomplish in the ideal world protocol p if the simulator runs code
# Csim by construction of ¢.

3. The realization relation can be shown only for few special cases. For
practically all pairs of protocols m, ¢ it is impossible to find a simulator that
proves the realization relation (cf. Definition 1). The only exception are protocols
7, ¢ where the simulator does not need to perform any actions, i.e., is the same
as the adversary in the real world.

The reason for this is that the adversary can not only reveal its code to the
protocol but also to the environment. Since the realization relation quantifies
over all adversaries in the real world, this includes adversaries A that reveal their
authenticated code to the environment. To be able to simulate such an attacker,
the simulator needs to run the same code, i.e., be the same as A.

Our fix. We can fix all of the above issues by disallowing the adversary from
revealing its own identity, which, looking at previous versions of the UC model,
appears to be the intended behavior. This also matches how existing protocols
from the UC literature have so far been defined and analyzed, i.e., this fix also
retroactively applies to existing works. Alternatively, one could allow an adversary
to freely decide upon the code that is revealed as part of its sender extended
identity, i.e., remove the authentication of the adversarial code just already done
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for environments. All of our results, including our protocol mapping, carry over
to this case.

J.2 Predicates for Non-Forced Writes

Recall that the non-forced write mechanism defined by the UC model allows a
machine to specify the receiver of a message via a predicate, where the message is
then delivered to the first machine instance in chronological order that matches
the predicate (cf. Pages 23f in [7]). The model states that M’, which is supposed
to be an extended recipient identity, is interpreted as a predicate P on extended
identities. While the paper does not explicitly state how exactly this interpretation
works, the statement “[for messages from the protocol to the adversary] the forced-
write flag must be unset, and the recipient code must not be specified” (Page 40
of [7]) given later in the paper suggests that the predicates used by protocols are
interpreted as follows: A sender specifies parts of the receiver extended identity.
The corresponding predicate then is the predicate that matches an extended
identity iff that identity contains the same parts. Observe that predicates of this
form run in linear time in their input (for a single fixed polynomial) as claimed
in the proof of Lemma 2.

We also note that the above interpretation is not only heavily implied. More
general ways to interpret M’ as a predicate P, say, by running the code contained
in M’ to compute an indicator function on extended identities, would not allow
for showing the composition theorem without first imposing some additional
requirements. In particular, a protocol must not be able to specify a predicate
P that would allow the protocol to perform exponential work in the security
parameter. Such predicates would not be simulatable within an environment and
hence the composition theorem would break down.

As for adversaries, they must specify the full extended ID of the intended
recipient for non-forced writes to the protocol, i.e., they may not use predicates
which could match multiple different extended IDs for sending network messages
to the protocol. While this natural property of adversaries is not explicitly
highlighted in the definition of the model of protocol execution, it is used,
among others, to prove the UC composition theorem. For example, the simulator
constructed for the composition theorem (cf. Figure 10 in [7]) requires incoming
network messages to specify the exact extended identity of the intended protocol
recipient. This full extended ID then enables the composition simulator to identify
the target protocol session of the network message via calls to the directory
machines of each existing session and by checking whether the extended ID
belongs to a main party of a new session. This would be impossible to figure out
for the simulator if only some parts of the extended identity were given, i.e., if
it were a predicate that might match multiple different extended IDs possibly
belonging to different protocol sessions.
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J.3 &-Identity Bounded Environments

Recall that the UC model defines the set of permitted sender identities £ via an
arbitrary (polytime) predicate that can be taken over the entire configuration of
the whole system (cf. Page 40 of [7]), where a configuration of a system consists
of the environment, the adversary, and all protocol instances. Observe that (a
configuration of) the system considered for showing that 7 realizes ¢ is drastically
different from the system for showing that p®~™ realizes p. For example, in the
latter case there are instances running code p, additional higher-level instances
that are not part of w/¢, possibly not just a single but rather multiple sessions
of /¢, and even different adversaries and environments (e.g., the simulator
constructed by the composition theorem has a different machine code). Hence,
even if we know that in runs of p all inputs provided to ¢ meet the predicate &,
this does not imply that the same is still the case if p is internally simulated by
an environment running with ¢. But this is crucial for obtaining the composition
theorem, i.e., the UC composition theorem (Theorem 22 in [7]) is false for this
general definition of £.

Consider the following counter example for the composition theorem: Upon
receiving the first input, the real protocol 7 outputs real. In the same situation,
¢ instead outputs ideal. All other messages are ignored. Let p be the dummy
protocol that forwards inputs from the environment to ¢ and returns outputs
from ¢ to the environment. Let £ be the predicate that forbids all sender identities
if there is no protocol instance running code p in the current configuration of
the system but otherwise allows all sender identities. Observe that « SfUc 10}
for the simulator that is the dummy adversary. This is because a £-identity
bounded environment may not provide any inputs to the protocol until there
is an instance running code p. But providing an input is the only way for the
environment to spawn any new instances. Note in particular that the adversary
may not use forced-write and hence cannot spawn new protocol instances. So
in a run of a &-identity bounded environment with /¢ there will never be any
protocol instances, making both worlds trivially indistinguishable. Conversely,
observe that p®~7 and p are easily distinguishable by any environment that
sends a single input. This input spawns a new instance of p, which then in turn
forwards that input to its subroutine. By definition of &, this is permitted since
now an instance of p exists. Similar counter examples can also be obtained, e.g.,
by letting £ depend on the existence of multiple sessions of /.

Our fix. Since the underlying issue is that £ behaves differently depending on
the setting, & needs to be restricted in such a way that it behaves identical
independently of whether we are currently considering a protocol p or an envi-
ronment internally simulating the behavior of p. Observe that in both cases the
sequence of inputs and outputs between (the internally simulated) p and one of
its subroutine sessions of ¢ remains the same.

We hence propose, following a similar idea as [1], considering only predicates £
that are defined over this sequence of inputs to/outputs from a session, excluding
the code 7/¢ contained in the receiver resp. sender extended identities of the
subroutine, but nothing more. This then fixes the issue in the composition theorem.
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In particular, if p is £-identity bounded w.r.t. to one of its subroutine sessions
of ¢, then an environment internally simulating p while running with (a single
session of) ¢ also is &-identity bounded. Furthermore, the same assumption on p
also implies that the environment is £-identity bounded even while running with
7, except for negligible probability, as otherwise one could trivially distinguish
m and ¢ by building an environment that evaluates £ itself. Here we use that &
does not depend on the code 7/¢ contained in extended identities, which the
environment does not have access to. Both of these properties are necessary for
showing the composition theorem, which has to construct an environment £ that
is always &-identity bounded, not just in runs with ¢ but also in runs with .32

Discussion of an alternative attempt to fix the issue. One might consider
defining the class of predicates £ not only over the sequence of inputs/outputs
to/from one session of /¢ but, more generally, also over the internal states
of that individual session. Intuitively, this state does not change depending on
whether the session is currently running as a subroutine of a protocol p or with
an environment that internally simulates the behavior of p. So the issue described
above does not occur, i.e., one might hope that the composition theorem holds
true for this definition.

Given this definition of a class of predicates &, we first observe that the
behavior of such a £ generally changes drastically depending on whether we
consider the protocol p running with sessions of ¢ or the composed protocol
p®7™ running with sessions of 7 instead. This because the internal state of ¢ is
drastically different than the internal state of 7 (unless we have m = ¢, in which
case the composition theorem is not needed). For example, £ might depend on
the existence of some internal instances present in 7 but not ¢. £ might also
depend on some variables used only in one protocol but not the other, or £ might
simply depend on the code of 7/¢. Hence, even assuming that p respects ¢ for
inputs to a session of ¢, p®~™ might not at all respect ¢ for any inputs to a
session of 7. As a result, an environment internally simulating p and running
with either ¢ or m would be é-identity bounded for ¢ but generally not for m,
i.e., would not be a valid &-identity bounded environment that we can use for
a reduction. So the composition theorem cannot be shown without introducing
any additional assumptions if we allow ¢ to depend on the internal state of 7/¢.

One might consider adding the new requirement for the composition theorem
that also p®~™ must respect ¢ for inputs provided to 7. This requirement appears
to at least be necessary and potentially also sufficient for showing the composition
theorem for the class of predicates £ that depend on the internal state of a session
of m/¢. Assuming that the composition theorem can indeed be proven, let us

32 Formally, to get rid of the negligible chance of the environment £ simulating p
violating ¢ in a run with 7, one instead constructs an environment £ that simulates £
but, for each input provided by &, first evaluates & itself and aborts the simulation if
¢ is not met. Note that evaluating ¢ is indeed possible for £ using our definition. The
resulting environment is then ¢ identity bounded both for ¢ and 7 and still behaves
just as p respectively p®~™, except for negligible probability. This is sufficient for
showing the theorem.
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take a closer look at the class of protocols p that meet this new requirement, i.e.,
that not only respect ¢ for inputs to ¢ but are also such that p®~7 respects &
for inputs to .

Let us first consider the subclass of predicates £ which change their behavior
depending on secret internal state of ¢/m that higher-level instances in p do not
have access to, such as local variables or IDs of internal instances present only
in one protocol, the number of internal instances, or even just the code of the
protocol ¢/7.23 Essentially the only way for both p and p®~7 to meet ¢ is to
not send any inputs to 7/¢ at all. In other words, we are considering the trivial
class of protocols p where the composition theorem does nothing. This is because
such a ¢ essentially requires p to figure out whether it is still running with ¢
or has been modified to instead run with m and then adapt its input behavior
such that ¢ is still met. This is not possible for p. Indeed, the whole point of the
composition theorem is to argue that the behavior of p does not change when we
replace sessions of ¢ with sessions of .

So to be able to consider interesting protocols p that actually contain sub-
routine sessions ¢ that the composition theorem can replace, we essentially need
a class of predicates £ that depends only on “publicly available” information
of a session of 7/¢ that both p and hence also an environment simulating p
and interacting with m/¢ has access to. Such publicly available information is
therefore also guaranteed to be indistinguishable between 7 and ¢. Formalizing
the intuitive meaning of “publicily available” in the case where £ can take into
account the entire internal state of 7/¢ is a non-trivial task.

To come up with a possible formalization of this class of predicates &, let us
consider the behavior of any concrete protocol p. Higher-level instances in p can
change their behavior only depending on the state of /¢ that they have already
seen and accessed, which are exactly the inputs sent to and outputs obtained
from a session of 7/¢ (except for the code of w/¢ contained in the extended
receiver /sender identities). Hence, any construction of a higher-level protocol
p can only ever meet predicates ¢ that only depend on and can be computed
based on that information. Conversely, if £ changes its behavior depending on
some publicly available information that p could theoretically retrieve but never
actually accesses, then p will not meet £. But these observations lead us back to
our previous proposed definition of a class of predicates £. Namely, to be able
to construct protocols p that meet &, such predicates should depend on and be
computable from only the sequence of inputs to and outputs from a session of
/.

So altogether the attempt of letting £ also depend on the internal state of
a session of 7/¢ not only requires at least an additional assumption on p®~7.
It also does not appear to yield a more general composition theorem since any
higher-level protocol p that one might consider can only meet predicates £ that
depend solely on the information about the state of 7/¢ available to p so far, i.e.,
exactly the information that our proposed definition already takes into account.

33 Recall that the change in code from ¢ to 7 is hidden from higher-level instances
within p®=™.
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J.4 Non-forced Write for Outputs Within Higher-Level Protocols

Recall that protocols in the UC model are allowed to use non-forced-writes for
inputs and outputs sent to other protocol machines (cf. Figure 6 and Page 40
of [7]). That is, they may specify the receiving protocol instance of an input/output
message via a predicate over extended IDs, where the first extended ID (in the
order of their first creation) that matches then receives the message. In the setting
of the composition theorem, this is more restricted. Specifically, neither p nor
any of its subroutine instances, including ¢ and its subroutine instances, may
use non-forced-writes for providing inputs. It turns out, however, that this is not
sufficient. Without also imposing restrictions on non-forced write outputs, the
composition theorem is actually false (Theorem 22 in [7]).

Intuitively, the reason is the following: suppose some higher-level instance
within p/p®~7 generates an output via non-forced write. Then the behavior of
this write command generally depends also on the existence and time of creation
of internal subroutine instances within 7/¢. In other words, this creates a side-
channel that allows the behavior of p to depend on internal subroutine instances
of m/¢. However, an environment does not have access to this side channel and
hence cannot internally simulate p while running with a session of 7/¢. But this
is needed for showing the composition theorem. Similar issues can occur if the
subroutine 7/¢ uses the non-forced write mode for providing outputs. In the
stand alone setting where /¢ directly runs with the environment, the predicate
used by 7/¢ might match some instance ¢ that is an internal subroutine of 7/,
i.e., the message would be delivered to that internal instance 4. In contrast, while
running within a protocol p, there might be some other protocol instance j within
p that also matches the predicate but was created earlier than i. Hence, when
the subroutine 7/¢ uses non-forced write to deliver the output, the instance j
instead of ¢ gets to process the message. Again, this behavior of the protocol p
cannot be simulated by an environment directly running with a session of 7/¢
since the environment never gets to see the message.

Consider the following concrete counter example to the composition theorem.
The real protocol 7, upon receiving its first input, forwards that input to an
internal subroutine 7’ with PID 0. This subroutine does nothing, i.e., it simply
drops all messages, which then activates the environment. After receiving its
first input, 7 also drops all future messages. We define the ideal protocol ¢ in
the same way, but ¢ uses PID 1 for its subroutine. We have that = <~ ¢ for
the simulator that behaves as the dummy adversary but additionally translates
network messages for the directory machine by switching from PID 0 to PID 1 and
vice versa if the request is about the subroutine instance. Observe in particular
that the environment has no way to check whether the internal instance has PID
0 or 1, which is exactly as it should be in a reasonable model.

The protocol p, upon receiving its first input, sends an input to ¢ (with PID
2), which then activates the environment. Upon receiving its second input, p
sends an input to a new subroutine p’ with PID 1. p’ is defined to take all inputs
and outputs from p and return them as outputs to p. As soon as p regains control,
p sends the output real via a non-forced write using the predicate that matches
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machine instances with PID 1. Afterwards, p forwards outputs from p’ to the
environment but drops all other messages. Observe that p and p?~™ are easily
distinguishable by an environment that sends two inputs: Upon receiving the
second input, p does not output anything in the ideal world. This is because the
predicate will match the subroutine ¢’, which was created before the instance
of p’ with the same PID, and ¢’ simply drops that message, thereby activating
the environment. In contrast, p®~" in the real world will output real to the
environment. This is because the only instance with PID 1 in p®~7™ is p/, which
then returns the message real to p®~™ and p?¢~" forwards that message to
the environment. A similar counterexample can be constructed by defining 7/¢
in such a way that the behavior of their predicates depends on other instances
(outside of their own sessions) within p.

Our fix. We require that, in runs of p/p®~™ within an arbitrary environ-

ment /context, predicates used by higher-level instances of p/p#~™ for non-forced
writes never match instances of any session of 7/¢. The same must also hold in
the other direction for predicates used by instances of sessions of 7/¢ (in runs
of p/p?~™), i.e., they may not match any instances in p/p?~™ not belonging
to the same session of 7/¢. This is sufficient to fix the above issues since, using
these requirements, the behavior of a session of 7/¢ and the other instances of
p/p?=™ does not change when an environment interacting with one session of
7/¢ only internally simulates the remainder of p/p?~7. Alternatively, one could
use the stronger and simpler requirement that forbids non-forced writes not just
for inputs but also for outputs. This is still reasonable since the main purpose
of non-forced writes in protocols appears to be to allow the protocol to send a
network message to the adversary without being aware of the full code of the
adversary.

J.5 Simulator Definition for the Composition Theorem

The simulator defined in the proof of the composition theorem is formally
incomplete since it does not specify how a certain type of network messages from
the environment to the dummy adversary are handled. We observe that this
appears to be an oversight that can easily be fixed by adding the same code as
used by the dummy adversary to process these messages. See E for full details.
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