Verifiable E-Voting with a Trustless Bulletin Board

Daniel Rausch
Institute of Information Security
University of Stuttgart
Stuttgart, Germany
daniel.rausch@sec.uni-stuttgart.de

Abstract—Voter privacy and end-to-end (E2E) verifiability
are critical features of electronic voting (e-voting) systems to
safeguard elections. To achieve these properties commonly a
perfect bulletin board (BB) is assumed that provides consistent,
reliable, and tamper-proof storage and transmission of voting
data. However, in practice, BBs operate in asynchronous and
unreliable networks, and hence, are susceptible to vulnerabilities
such as equivocation attacks and dropped votes, which can com-
promise both verifiability and privacy. Although prior research
has weakened the perfect BB assumption, it still depends on
trusting certain BB components.

In this work, we present and initiate a formal exploration of
designing e-voting systems based on fully untrusted BBs. For
this purpose, we leverage the notion of accountability and in
particular use accountable BBs. Accountability ensures that if a
security breach occurs, then cryptographic evidence can identify
malicious parties. Fully untrusted BBs running in asynchronous
networks bring new challenges. Among others, we identify several
types of attacks that a malicious but accountable BB might be
able to perform and propose a new E2E verifiability notion for
this setting. Based on this notion and as a proof of concept, we
construct the first e-voting system that is provably E2E verifiable
and provides vote privacy even when the underlying BB is fully
malicious. This establishes an alternative to traditional e-voting
architectures that rely on (threshold) trusted BB servers.

Index Terms—E-Voting, Accountability, Bulletin Board

I. INTRODUCTION

As democratic societies increasingly adopt electronic voting
(e-voting) systems to enhance the accessibility, convenience,
and efficiency of elections, the challenge of ensuring vote pri-
vacy and end-to-end (E2E) verifiability has gained significant
research attention. Vote privacy is essential for maintaining
the confidentiality of individual votes, while E2E verifiabil-
ity allows everyone, including voters, candidates, and even
external observers, to confirm that the election result reflects
the intended votes of all voters. Both properties are central
to protecting the integrity of elections, against accidental
programming errors as well as malicious actors.

A key goal of e-voting research is minimizing the trust
assumptions needed for security [1]-[7]. This is especially
crucial for verifiability which should, ideally, allow a voter
to check whether the result is correct and takes their own vote
into account even in the worst case where all parties running
the election act maliciously and collude with each other. One
common trust assumption that has garnered interest concerns
the bulletin board (BB) component.

Nicolas Huber
Institute of Information Security
University of Stuttgart
Stuttgart, Germany
nicolas.huber @sec.uni-stuttgart.de

Ralf Kiisters
Institute of Information Security
University of Stuttgart
Stuttgart, Germany
ralf kuesters @sec.uni-stuttgart.de

E-Voting with BBs. A BB is supposed to act as a shared
broadcast channel with memory [8]. It consists of one or more
servers that maintain the internal memory/state, i.e., a list of
client inputs that have been added successfully to the BB. A
secure implementation of a BB is typically expected to provide
at least consistency (of outputs) [9], [10]. That is, the internal
memory list is append-only and clients reading from the BB
always obtain prefixes of that list.

Most e-voting systems rely on a BB to share and publish
data among participants and external observers, including elec-
tion parameters, encrypted votes, the election result, and veri-
fication data such as zero-knowledge proofs (ZKPs). Security
analyses of e-voting systems, such as [11]-[18], commonly
assume that the underlying BB is not just trusted in the sense
that it always provides consistent outputs from an append-only
immutable state. They rather use the much stronger assumption
of the BB being perfect [5], [10], at least in some parts/aspects,
such that additionally (i) all outputs read by clients are not just
consistent but even identical, (ii) all inputs will always end up
in the internal memory, i.e., inputs cannot be dropped, (iii) new
inputs are immediately added to the internal memory and then
readable by everyone without delay, and/or (iv) items in the
BB are ordered chronologically by when clients submitted
them. Such BBs that are not just trusted but in some parts
or even fully perfect cannot exist in reality. In an actual
implementation of a BB running in an asynchronous unreliable
network, called a real BB in what follows, inputs might get lost
during transmission and never end up in the internal memory,
inputs take time to become available as outputs and might
change their order in the process, and outputs received at the
same time by clients might not be identical but only consistent
as they might have been generated and sent by servers at
different points in time. Malicious servers in a real BB can
even equivocate outputs [5], that is, provide different clients
with inconsistent outputs that are not prefixes of the same
internal memory list. Such inconsistent outputs can contradict
each other, e.g., by showing different sets of votes that were
tallied in an election.

This gap is not just a theoretical concern. The assumption
of a perfect BB rather precludes major attack classes available
to real BBs [5], [7], [19], [20]. For example, Hirschi et
al. [5] observe that a malicious real BB might be able to
use equivocation to break verifiability, say, by dropping some
votes while presenting each affected voter with a modified

view of the election that still includes their own vote. Voters
performing verification might then mistakenly be convinced
that the result took their vote into account when it was actually
dropped. Hirschi et al. also show that several prominent
e-voting systems, namely Helios [21], Belenios [22], and
Civitas [23], are susceptible to such equivocation attacks
on verifiability. In [20], Cortier and Lallemand observe that
privacy can be compromised as well when real BBs are used.
For example, the BB might selectively drop all but one vote
of interest, which is then tallied and revealed as the result of
the election. Notably, this issue can occur even when all BB
servers are trusted as a network adversary can drop inputs sent
by clients before even reaching servers.

Current State. Several works on provably secure e-voting
address the trust assumption of perfect BBs. They can roughly
be classified into two major approaches.

One approach aims to perform security analyses of e-voting
systems directly based on real BBs rather than using (partly)
perfect BBs as an abstraction, e.g., [4], [5], [9], [24]. This
approach assumes a trusted threshold of servers — without a
single trusted server, equivocation is trivial — which is much
more realistic than a perfect BB. On a conceptual level,
the work by Hirschi et al. [5] is particularly noteworthy.
Among others, they identify fundamental classes of attacks
on verifiability and propose new general verifiability notions
for analyzing voting systems following this approach.

An alternative approach used by works such as [6], [7], [19]
is to retain a (partly) perfect BB but to give the adversary
additional capabilities to more closely resemble some of the
capabilities of real BBs in asynchronous networks, e.g., by
allowing an adversary to selectively drop or reorder inputs to
the perfect BB or by giving the adversary full control over the
BB but only during some phases of the election. Conceptually,
the work by Cortier et al. [7] is one of the most important ones
as they propose several new privacy notions for this approach.

Both approaches have in common that they cannot entirely
eliminate the trust assumption on the BB, which is particularly
troublesome for verifiability. In this work, we, therefore,
propose and explore a third approach based on the notion of
accountability, which, as we will formally prove for the first
time, can be used to construct secure e-voting systems based
on entirely untrusted, hence possibly fully malicious, real BBs.

Accountability. The works constructing or using real BBs
mentioned above aim for so-called preventive security [25].
That is, it should be impossible to break a security prop-
erty/goal of a BB, such as consistency, even if some servers
running the BB are actively misbehaving. While very desir-
able, such preventive security guarantees generally necessitate
trusting at least a threshold of servers.

In contrast to preventive security, the concept of (individual)
accountability [25]-[28] intuitively ensures the following: if
some intended security property/goal of a protocol, e.g., con-
sistency in a BB, is violated, then one can obtain undeniable
cryptographic evidence that identifies at least one misbehaving
protocol participant that has deviated from the protocol. This

not only ensures that a security breach will be noticed -
thus offering a type of verifiability [26] - but further enables
holding parties accountable for misbehavior, e.g., via financial
or contractual penalties, which strongly incentivizes malicious
parties to follow the protocol honestly and not break security
properties in the first place. As accountability does not pre-
clude a breach of a security property — it only ensures that this
will be observable and a culprit can be identified after the fact
— it is possible to achieve accountability-based security even
in a fully malicious setting without trusted parties (typically
still requiring some cryptographic assumptions, e.g, a PKI).
We note that accountability-based and preventive security are
orthogonal concepts with different (dis-)advantages that can
be used independently to protect a protocol. However, they
can also be combined using accountability as a second layer
of defense in case trust assumptions underlying preventive
security are not met (see [27] for more details).

Accountability is widely used in many security fields,
including auctions [29]-[31], secure multi-party computation
(MPC) [32]-[37], public key infrastructures (PKIs) [38]-[40],
and distributed ledgers [41]-[49]. Accountability has also
been used in the area of e-voting [6], [21], [22], [26], [50],
[51]. However, works that formally prove accountability of
an e-voting system still assume an at least partly perfect
BB. While accountability is often mentioned as desirable and
sometimes also claimed for real BBs [9], [24], [52], only
recently did Graf et al. establish the first provably secure
BB called Fabricgg [10] which offers accountability w.r.t.
consistency. That is, as long as there is no evidence of
misbehavior, all clients will always receive consistent outputs.
Notably, Fabricgg achieves this property without assuming any
trusted servers, i.e., in a fully malicious setting. The security
result is shown in a Universal Composability (UC) model.
All guarantees thus hold even when Fabricgg is used as a
subroutine within a higher-level protocol.

This work. As mentioned, our goal is to obtain provably
secure E2E verifiable and private e-voting systems with-
out trusted servers running the BB. The underlying idea is
conceptually simple: Use a BB that provides accountability
w.r.t. consistency even when all parties are malicious. The
election verification procedure should then check whether any
evidence of misbehavior in the BB was obtained and, if so,
reject the election result. If no misbehavior is detected and,
hence, consistency holds, verification proceeds to check the
correctness of the election material stored on the BB.

While this approach has not been formally considered so
far and no security notions or proofs for this setting exist,
the idea itself has already been mentioned and was sometimes
even used informally. For example, both Helios [21] and Be-
lenios [22], which have been formally proven secure based on
(partly) perfect BBs [6], [11], [12], observe that an actual BB
implementation might misbehave and require that its outputs
should thus be monitored/audited to detect such misbehavior.
This is a type of accountability-based security. Considering
such auditing only informally outside of a security analysis,

however, is not sufficient as illustrated by Hirschi et al. [5],
who found several attacks on verifiability of Helios and Bele-
nios that a malicious BB can perform without being detected
by the auditing procedures suggested by those systems.

Investigating this approach more formally raises several
questions that we address in this work such as: How do we de-
fine verifiability and privacy in a setting with a potentially fully
malicious BB? Can we adapt or re-use previous notions for
perfect and threshold-trusted BBs, at least to some extent? Is
obtaining a provably secure e-voting system using accountable
BBs even feasible? Are there inherent issues and limitations
of this approach that protocol designers have to handle?

Contributions. We start the first formal investigation of the
above idea and establish fundamental insights for this third
approach. Our work is thus best seen as a counterpart to
the foundational works of Hirschi et al. [5] and Cortier et
al. [7], who established security notions and general results
for the other two existing approaches. More specifically, our
contributions are as follows:

E2E Verifiability: We observe that existing verifiability notions
that assume perfect BBs, such as the ones studied in [18], and
the new verifiability notions for threshold-trusted real BBs by
Hirschi et al. [5] cannot be applied to voting systems with
untrusted but accountable BBs. We, therefore, propose a novel
E2E verifiability notion that is highly general: it applies not
just to e-voting systems with accountable BBs but also, e.g.,
to those with perfect or threshold trusted real BBs.

Insights Into Individual and Universal Verifiability: Instead
of E2E verifiability (“Does the election result correspond
to the intended votes of all honest voters and at most one
vote per dishonest voter?”), the literature often considers the
combination of individual verifiability (“Can a voter check that
their encrypted ballot is included in the set that was tallied?””)
and universal verifiability (“Was the election result derived
correctly from the set of encrypted ballots?”). We describe
two novel attack classes on E2E verifiability that a malicious
BB, depending on the voting system, might be able to perform
without breaking individual or universal verifiability. Together
with two related attack classes due to malicious BBs previ-
ously observed in [5], this shows that an E2E verifiability no-
tion is necessary for analyzing the security of e-voting systems
using real BBs; checking individual and universal verifiability
is insufficient. This result supplements [6], [18] who observed
that even for systems assuming a perfect BB splitting E2E
verifiability into subproperties can be problematic.

Privacy: Existing privacy notions often hard-code a perfect BB
into their definition, e.g., [11], [14]-[16], [53]. This includes
the definitions proposed by Cortier et al. [7], which still
assume a partly perfect BB that cannot equivocate. Some
privacy notions are defined more generally, e.g., the one by
Kiisters et al. [54] is defined abstractly for arbitrary voting
systems but so far has only been applied to systems where
the BB is assumed to be at least partly perfect [50], [54]-
[58]. We show that and how the definition by Kiisters et al.
can also be applied to analyze the privacy of e-voting systems

using a potentially malicious real BB. A major challenge is
that untrusted BBs can always drop all but one vote, which
will then be tallied and published, thus trivially breaking
privacy of that vote [20], [55]. We address this impossibility
by considering a class of risk-avoiding adversaries.

A Simple Proof-Of-Concept Voting System: As a case study,
we construct a concrete e-voting system based on an arbitrary
trustless BB that is accountable w.r.t. consistency. This system,
called ABBOVE (Accountable Bulletin Board-based Voting)
follows the line of homomorphic aggregation-based systems
such as Helios and Belenios [21], [22] and is purposefully kept
simple to focus on identifying potential issues, limitations,
and requirements inherent to this new approach. It should be
seen as a proof of concept that includes only a minimal set
of features and does not offer advanced mechanisms such as
receipt-freeness [59], [60] or coercion-resistance [54], [60].
One of the main challenges in designing a secure system
in this approach turns out to be asynchronous networks,
including delays and message drops, that do not exist in
perfect BBs. For example, even when all BB servers behave
honestly, consistent outputs might still differ arbitrarily in
length. A voting system, therefore, needs to provide stability
under message extension to prevent attacks where, say, the
election result could be changed by returning a longer or
shorter sequence of messages. This property requires care due
to new aspects not present or left implicit in settings with
perfect BBs. Another example is the lack of reliability, i.e.,
BB inputs are not guaranteed to become part of the output.
Among others, this rules out some standard constructions used
in e-voting systems, such as the distributed threshold ElGamal
key generation protocol proposed in [16], which requires a
reliable broadcast channel to ensure secrecy of the key.

Feasibility Result: We show that ABBOVE achieves both
privacy and our new E2E verifiability notion, thus formally
confirming for the first time that the long-standing idea of
using accountability to protect against malicious untrusted BBs
is indeed sound and applicable to the class of homomorphic
aggregation-based e-voting systems. We show this result not
for a specific BB but more generally for any BB accountable
w.r.t. consistency in a UC model. As an immediate corollary,
we obtain that this holds for Fabricgg in particular. By this,
we also establish the first concrete provably E2E verifiable
and private e-voting system without assuming any trusted BB
servers running in an asynchronous network.

In our verifiability proof, we bridge the gap between a game-
based verifiability notion (defined as a trace property over
protocol runs) and the UC security notion of the BB, which
establishes computational indistinguishability of two systems
but, in general, does not imply that arbitrary trace properties
carry over from one system to the other (for interested readers
we provide simple counterexamples in the full version [61]).
This uncommon combination of different styles of security
definitions might be useful also for other works on e-voting.

Structure. We recall the definition of UC-secure accountable
bulletin boards in Section II. Since the paper is easier to

follow after seeing a concrete example voting system, we
start by describing and discussing ABBOVE in Section III.
In Sections IV and V, we define a new notion for and prove
E2E verifiability. In Section VI, we study and prove privacy.
Additional details are available in the full version [61].

II. RECAP: UC-SECURE ACCOUNTABLE BBs

Universal composability (UC) is a simulation-based
paradigm for modeling and proving the security of protocols
(e.g., [62]-[64]). In a UC security analysis, one first defines an
ideal protocol/ideal functionality F that specifies a protocol’s
intended security and functional properties, i.e., F is secure
by definition but typically cannot be run in reality. To then
analyze the security of an actual protocol P, the real protocol,
one shows that there exists a probabilistic polynomial-time
(ppt) ideal adversary/simulator S controlling the network of
F such that no ppt distinguisher &£, called environment, can
tell whether it is running in the real world with P or in the
ideal world with F and S (written F | S). Since F is secure
by definition, the real protocol P must, therefore, be at least
as good. One also says that P is a secure implementation of
or (UC-)realizes F, written P < F.

UC models provide a so-called composition theorem which
states that, if P < F, then a ppt higher-level protocol Q using
P as a subroutine (written Q | P) realizes Q using F (i.e.,
Q| P < Q| F) That is, one can first analyze Q w.r.t.
the simpler F, typically showing that Q | F realizes some
other ideal functionality F’, and then replace F by P without
further proof.

An Ideal Functionality for Accountable BBs. To securely
access data stored in a real BB run by servers, higher-level
protocols generally have to run a specific BB client software
as a subroutine. For example, clients might have to use server
public keys to verify signatures on outputs before returning
them to higher-level protocols, might have to query multiple
servers and combine a threshold of responses to obtain an
overall output, or might have to sign inputs from higher-level
protocols due to an access control mechanism. In [10], Graf et
al. therefore defined an ideal bulletin board functionality Fgg
that abstractly captures not just BB servers but also clients
while formalizing accountability w.r.t. consistency for outputs
returned by clients to higher-level protocols.

Intuitively, Fgg contains several BB clients that offer an
input/output interface for the environment/higher-level proto-
cols such as e-voting systems. The environment can send an
input (write,m) to a client to request that it tries to add
the message m to the BB. The environment can also send
an input read to a client to request that it tries to read the
current state of the BB and return the result as an output.
Whenever a client in Fgg receives such input, Fgg forwards
it to the network adversary, who can then decide whether and
how to proceed. Notably, an adversary can decide to drop
or delay the result of an input, and they can also choose the
output for successful read requests subject to some restrictions
explained below. Internally, Fgg keeps an ordered append-
only sequence of messages msglist. The adversary can extend

msglist in arbitrary ways at any time, e.g., by adding a message
m that was part of an input (write, m) received by a client
or by adding new messages of their choosing. Finally, the
adversary can corrupt clients and servers at any time to gain
full control over them.

To define accountability of security properties, Fgg includes
a so-called judge Jgg. Unlike clients, J§§ does not model a
dedicated party but rather abstractly captures an auditing algo-
rithm; this is a common modeling technique for formalizing
accountability and verifiability [18], [26], [27]. In a realization
Pgr of Fgg, the implementation of J&g specifies the exact data
and algorithm used to detect misbehavior, possibly resulting
in a verdict that identifies a malicious party that can be held
accountable. Here, we consider only realizations of J&g that
run on publicly available data such that any party can run the
judging algorithm in practice. Hence, such a judge represents
arbitrary parties that try to check whether consistency holds;
such parties can be BB clients or servers, parties from a higher-
level protocol, or outside observers.

Accountability w.r.t. consistency is then formalized by Fgg
as follows. As long as the judge J&g in Fgg has not yet
computed a verdict, then whenever the adversary instructs an
honest client to return an output r to a read request, 7 is a pre-
fix of msglist. Conversely, once J&g has identified at least one
malicious party in a verdict, the adversary can return arbitrary,
possibly contradictory, outputs r. The environment/higher-
level protocols can query JEg to obtain the current verdict, if
any. This captures that a party (possibly from the higher-level
protocol) can, at any point in time, decide to run the judging
algorithm of a realization of Pgg on currently available public
data to detect misbehavior. If there is no verdict yet, then
consistency holds.

Observe that from this definition of Fgg, it follows that
any realization Pgpg provides accountability w.r.t. consistency:
Assume that the implementation of the judging algorithm
J&E in P does not detect misbehavior and hence does
not return a verdict. Then, by indistinguishability, the ideal
judge in Fgp also does not return a verdict. In this case Fgg
guarantees that the outputs of honest clients are consistent.
Again, by indistinguishability, all outputs of honest clients in
the realization Pgg are thus also consistent.

UC-Secure Accountable BBs Exist. This work is built on,
and all our results are shown for an arbitrary real BB Pgp
that realizes Fgg. Recently, Graf et al. [10] constructed the
first such BB called Fabricgg. This BB is a slight extension
of the prominent Hyperledger Fabric protocol [65] with an
efficient implementation. Graf et al. showed:

Theorem 1 (Security of Fabricgg, informal). It holds true that
Fabricgg < Fgg. This holds in an asynchronous network, even
if all BB servers and arbitrary clients are malicious.

We note that the technical details of Fabricgg are irrelevant
to this work since all results are shown using only that
Fabricgg < Fgg. For the details of Fabricgg, refer to [10].

III. A SIMPLE E-VOTING SYSTEM BASED ON A
TRUSTLESS BB

In Section III-A, we describe our proof of concept sys-
tem ABBOVE, which follows a standard homomorphic
aggregation-based design in the style of Helios, Belenios, and
similar systems [21], [22], [50] but uses an accountable trust-
less BB. In Section III-B, we highlight and discuss important
properties necessary for building securely on such a BB.

A. System Description

Building blocks. ABBOVE uses the following standard cryp-
tographic primitives: Full threshold exponential ElGamal en-
cryption £ = (Enc,Dec) where niers parties each hold
a share of the private key. An EUF-CMA-secure signature
scheme S for authentication. A non-interactive zero-knowledge
proof (NIZKP) reyShareGen for proving knowledge and cor-
rectness of a private decryption key share; a NIZKP rEnc
for proving knowledge and correctness of a plaintext vector
contained in a ciphertext vector; a NIZKP 7Pechare for proving
that a private decryption key share was correctly applied to
a given ciphertext (see, e.g., [11] for possible NIZKPs. We
recall formal security definitions of the required cryptographic
primitives in the full version [61]). We also assume a secure
PKI.

We use an arbitrary (possibly trustless) real BB protocol
Pgg that realizes Fgg. Note that while Pgg < Fgg im-
plies that as long as no misbehavior is detected all outputs
remain consistent, such a Pgg does not necessarily prevent
an adversary from, e.g., dropping, reordering, or delaying
inputs arbitrarily. It might also happen that outputs returned
to different parties, while consistent, differ in length. All of
this can simply be due to an asynchronous, unreliable real-
world network. Dealing with these potential issues is the main
challenge in designing a voting system on top of such a BB
(see also the discussion in Section III-B).

Protocol participants. ABBOVE is run among an election
authority Auth, voters Vq,...,V,,..,' and talliers Ty, ..
T e All parties also act as clients in Pgg by running the
BB client code as a subroutine. We say “publish a message m
on Pgg” to mean that a party runs the client code to submit m
as input, which then may or may not end up in the BB state;
analogously for “read/obtain some data from Pgg”. While we
treat Pgg as a black box, further internal parties/servers are
typically running the BB.

The election authority is responsible for determining trusted
setup parameters but is not involved in evaluating the election;
it is thus, besides the PKI, the only trusted entity. The talliers
will tally the voters’ ballots. In order to avoid that a small set
of malicious talliers learns how each voter voted, we distribute
the secret decryption key among them so that all n4,)jiers talliers
must collaborate to decrypt ballots.

The election authority, all voters, and all talliers own a
signing key pair for S to authenticate their messages. To

)

!'Since ABBOVE is a proof-of-concept system to establish viability, we
simplify by not distinguishing between voters and their voting devices.

publish complaints when voters detect that their vote was
dropped, we require that voters can use a separate reliable
channel, i.e., a public channel without message loss; all other
communication is via unreliable networks/the unreliable Pgg
(see the discussion in Section III-B).

Overview. There are four protocol phases: Setup, voting, tal-
lying, and public result verification. During tallying, votes are
aggregated homomorphically before decryption to protect the
privacy of individual votes. Voters can run a vote verification
algorithm to check whether their vote was counted or dropped.

Setup phase. The election authority Auth determines the
parameters of the current election, including i) the ElGamal
group G of size p with generator g, ii) the list of eligible
voters id,cters Where each voter V; is identified by a unique
ID idv; and their public signing key pk\‘z, iii) the list of
talliers identified via an ID idt; and their public signing key
pksi, and iv) the set C C {0,... ,n\,pc}”ca"d of valid non-
abstention votes,? called choice space, where ncang denotes
the number of candidates and n,c is an upper bound for the
number of votes that a voter may assign to each candidate.
For example, in an election with three candidates where
voters can assign a single vote to one candidate, we set
C= {(c1,02,03) | c; € {0,1}, Zle ¢ = 1}. Auth signs and
then publishes the parameters on Pgg.

All talliers T; locally choose a private ElIGamal encryption
key share skf 8 Z, uniformly at random, compute a
corresponding public key share pkf = gSkf, and create a
NIZKP 7¢ eyShareGen) brove knowledge of sk¢ corresponding
to pkf. Each tallier T; then signs and publishes the message
(idti, pkié‘7 71_1l_<eyShareGen) on Pgg.

A protocol participant considers the setup finished if, after
reading from Pgg, they see the election parameters and one
key share with valid signature per tallier (if there are multiple
messages by the same signer, then all but the first are ignored).
Note that this view can differ for each reader since Pgg might
not (yet) have delivered some of the setup messages. After the
setup is finished, the protocol participant can check the ZKPs
and, if they are valid, compute the overall public encryption
key pké = Hi€{17...,nta|ne,5} pk{ of the election. In that case
this protocol participant considers the system ready for voting.
Otherwise, pkg is undefined, and voting is not possible.

Voting phase. A voter V; can abstain or cast a well-formed
vote v € C. In the latter case, they wait until they can obtain
pk¢ from their output of Pgg and then encrypt each entry
v[j] by computing an EIGamal ciphertext ct;[j] := (g", g¥V! -
(pk®)") with <3 Z,,. This results in a ciphertext vector ct;,
where each entry encrypts the number of votes assigned by V;
to candidate j. Voter V; also computes a NIZKP 75" to prove
that they know which vote v the vector ct; encrypts and that
v € C. Finally, V; signs their ballot b; = (idv;, ct;, wf"c) and
publishes the signed ballot on Pgg. They also store the signed
ballot locally for verification.

2We use a special vote abstain ¢ C to describe abstention. C:=Cu
{abstain} denotes the set of all valid votes, including abstention.

If a voter never sees the setup phase finish, they sign a
complaint (idv;, UnableToVote), indicating that their vote
was dropped, and publish their complaint via their reliable
channel for complaints.

The election authority Auth determines when voting closes
and then publishes a signed message VotingClosed on Pgg.
Just as for the setup phase, the view on whether the voting
phase has finished might differ for each reader of Pgg.

Vote verification. A voter V,; who submitted a signed ballot
b; can verify that their vote v will be counted by reading
the current list of ballots from Pgg and checking that (7)
b; (including the signature) appears in the output and (i7)
there is no valid signed VotingClosed message before b;.
If this fails (and the voter no longer wants to wait for any
possibly delayed messages from Pgg), they sign a complaint
(idv;,VoteVerifFailed) and publish it via their reliable
channel for filing complaints.

Vote verification can be performed at any point in time,
also immediately after submitting a vote, which conforms to
the idea of "Vote&Go” [5], [66]. This improves the probability
Dverif that a voter performs vote verification which is needed
to detect dropped votes (cf. Section III-B).

Tallying phase. Once a tallier T; reading from Pgg sees that
the voting phase has finished, T; starts tallying as follows.

1. Homomorphic aggregation. Let b be the ordered list of
all ballots for the current election contained in T;’s output of
Peg after the election setup has finished with a well-defined
pkg and before the first signed VotingClosed message. T;
then removes ballots (i) that do not contain the ID idv; of
an eligible voter, (ii) where the signature is invalid under the
public key pk}s corresponding to the ID idv; in the ballot, or
(>iii) where the NIZKP is not valid. Then, T, removes all but
the first ballot for any given idv; such that, for each voter, at
most one vote is counted. Finally, T; performs ballot weeding,
i.e., removes all ballots from b that are duplicates w.r.t. the
ciphertext vector ct only keeping the first one. Ballot weeding
protects against replay attacks which jeopardize vote privacy
[67], [68]. From the resulting set of valid ballots b,jiqg, if it
is non-empty, T, then homomorphically aggregates all vectors
ct; entrywise to obtain a vector ct,ze Where each entry is of
the form ctagg[j] = (92", g% Vil - (pk®)2m).

2. Partial decryption. T; locally computes a vector of partial
decryptions ds; by applying their secret key share sk;S to each
entry of ctaggy. That is, for ct,gge [j] = (h1 5, ha, ;). the tallier
computes ds;[j] = (th)Skig. They further generate proofs
ﬂE?CSha'e for each partial decryption ds;[j], showing that it
was computed using secret witness skf. T; combines ds; and
all proofs into a message, signs it, and publishes the signed
message on Ppg.

Computing the result. Everyone can compute the election
result by reading from Pgg: Start by recomputing ct,gg,
in the same way as talliers do. If the output returned by
Peg contains, after the (first) valid signed VotingClosed
message, at least one valid signed partial decryption mes-
sage with valid proofs WE;?CShare for each of the Nealliers

many talliers, then take the first such message for each
tallier to obtain partial decryption vectors ds;. For each
entry/candidate j and ct,gg [j] = (h1,;, ho,;), compute ho ; -
(Tic 1, neneny d8ild]) 7F = g%+ V1. The votes 3, vi[j] for
candidate j can then be obtained by computing the discrete
logarithm; this is feasible since the set of possible exponents
is small in this case.

If the above fails, e.g., because in the output read from Pgg
the setup or voting phases have not yet concluded, the setup
failed and pk® is undefined, or there are not (yet) valid partial
decryption messages for all talliers, then there is no election
result (an error election result). This, again, depends on the
party reading from Pgp and might be a temporary error.

Election verification / E2E verifiability. By reading from
Peg and given the published voter complaints, everyone can
verify that the election result indeed corresponds to the will
of the voters. We define the exact procedure as part of our
verifiability proof in Section V.

B. Discussion

Reliable channels for complaints. All e-voting systems,
irrespective of the type of BB they use, have to deal with the
following general issue: if the tally is missing a ballot from
some voter V;, then only V; themself can determine whether
this is correct, i.e., whether they intended to abstain or their
ballot was dropped maliciously. A standard approach to solve
this issue is to require that voters verify whether their ballot
was dropped and, if so, notify election authorities. Suppose an
adversary can drop or hide these notifications/complaints. In
that case the adversary can break E2E verifiability because
they can drop the corresponding votes without the public
noticing that the election result is incorrect.

Reliable channels for complaints are thus inherently re-
quired for verifiable elections, yet this requirement often
has remained implicit or is covered up by much stronger
assumptions. In works that consider individual and universal
verifiability (e.g., [2], [12]), handling failures of vote verifica-
tion is typically considered out of scope of the cryptographic
protocol. While analyzing E2E verifiability requires treating
complaints explicitly as part of the protocol — at least for
systems where submitted ballots might get dropped — works
such as [50] post complaints on a perfect BB that already
offers much stronger properties. This, however, is insecure
when a BB might misbehave or networks are asynchronous.
E-Voting systems based on real BBs thus have to explicitly
require a separate reliable channel for E2E verifiability.

This is still a drastic improvement over assuming a perfect
or a real but reliable BB. Not only does this assumption cover
far fewer messages. It is also not necessary that complaints
are consistent, ordered in a specific manner such as chrono-
logically, or immediately visible to everyone. In practice,
a voter could, e.g., send their complaint to many different
servers that provide it to anyone verifying the election but
that, unlike real BBs, do not have to interact and synchronize
with each other; the same server does not even have to

provide consistent sets of complaints to different users. As
long as the complaint is not dropped on at least one route,
this is sufficient for security. We also note that our E2E
verifiability analysis (Section V) can easily be adapted to a
weaker assumption where channels are somewhat unreliable
such that a certain number of complaints might get dropped,
weakening verifiability accordingly, cf. Footnote 6.

Stability under message extension. Since even consistent
outputs of Pgg can still differ in length, it is crucial that
once a property of the election system - such as the public
election key, a change of two phases, the election result, or
the ballot that is counted towards the result for a specific user
- can be determined from an output, then any longer output
will lead to the same property. Otherwise, verifiability can
break down in various ways. For example, if a tallier can
later change the public encryption key or the point in time
when setup was concluded, say, by submitting a second setup
message with a different public key share, then this would
retroactively invalidate already submitted and verified votes.
This is a security critical point that has to be considered in
specifications, unlike for systems using perfect BBs.

Further subtle differences compared to using a perfect BB.
Voting systems building on top of perfect BBs might optionally
use but do not need explicit messages to indicate the start of
a new protocol phase. This is because readers of such BBs
are synchronized by always seeing the full and current state
of the BB. However, for a real BB where voters might not see
all stored messages, an explicit VotingClosed message or
an equivalent mechanism becomes mandatory. Without this, it
could happen that vote verification succeeds because the voter
finds their ballot at, say, position 100 of an output of Pgg.
However, it is not counted because Pgg might show only the
first 99 votes to talliers when they start tallying.

Also, if election parameters are distributed via a real BB,
then the BB or even just a network adversary can prevent
voters from running the voting algorithm, effectively dropping
their vote, by never delivering necessary data such as the
public encryption key. By the same reasoning as for submitted
but dropped ballots, handling this case in verification requires
a complaint UnableToVote. Note that this type of complaint
is not needed in systems using reliable perfect BBs.

IV. E2E VERIFIABILITY FOR MALICIOUS BBS

In this section, we observe that we cannot apply existing
verifiability notions for analyzing e-voting systems where the
BB can misbehave arbitrarily — including accountable BBs as
a special case. We hence propose a new, more general E2E
verifiability notion by instantiating the KTV verifiability frame-
work [26], a general framework for designing new verifiability
notions for arbitrary types of protocols. KTV appears to be
the best choice for this task since it covers standard e-voting
verifiability notions as instances [18] and forms the basis of
the new notions for threshold trusted BBs proposed in [5].

Our insights and results complement and extend those by
Hirschi et al. [5], who previously studied verifiability notions

in the presence of misbehaving BBs, observed that existing
notions could not be applied, and proposed a different solution
that, however, is not applicable to accountable BBs. We
compare both works in Section IV-D.

We start by briefly recalling the KTV framework including
existing verifiability notions for e-voting systems.

A. Recap: The KTV Verifiability Framework

Judges. Just as for accountability in Section II, the KTV
verifiability framework uses the concept of a judge J to
formalize the (judging) algorithm/procedure used to verify the
correctness of a protocol run. Intuitively, its task is to detect
whether a desired security goal, such as the correctness of an
election result, has been violated and output reject in this
case; otherwise, it may output accept. To make this decision,
the judge might collect or receive some data as evidence
and performs certain checks, such as the verification of zero-
knowledge proofs, that depend on the protocol specification.
For e-voting protocols, the input to the judge typically consists
solely of public information, i.e., in our case, the information
posted on the bulletin board and complaints issued by voters
via their public reliable channels. As in Section II, one can thus
think of J as a “virtual” entity that only exists for modeling
purposes. In reality, the judging procedure can be carried out
by any party, including external observers and also voters
themselves, who have access to the same evidence.

Goals. The KTV verifiability framework is centered around
the notion of a security goal of a protocol P. Formally, a goal ~y
is simply a set of protocol runs that contains exactly those runs
that are “correct” in some protocol-specific sense. Specifying
a new verifiability definition via the KTV framework mainly
entails defining a suitable goal.

Cortier et al. [18] expressed and compared several es-
tablished verifiability notions for e-voting systems as KTV
goals. They conclude by recommending the following goal
k(@) for defining and analyzing the E2E verifiability of e-
voting systems. Here, ¢ is a boolean formula describing which
combinations of protocol participants are assumed to be honest
for verifiability.® Intuitively, vz (¢) is met if the election result
can be obtained with at most £ € N modifications (e.g.,
dropping votes) to the intended votes of honest voters. The
parameter k allows for computing and comparing how likely
different numbers of vote manipulations might go undetected
by verification. For example, some voters might not check that
their ballot actually ended up in the BB, giving an adversary
a non-zero chance ¢ to drop those ballots without this being
detected. However, in a good voting system, J should decrease
the more votes are dropped, i.e., the higher k. This goal
and close variants have been used to analyze several e-voting
systems (see, e.g., [6], [26], [50], [54], [56]).

Formally, 75(¢) is defined using a distance function
dist. This in turn is defined based on a counting function
feount: C* — N which, for a vector V = (vy,...,v;) € C*

3 A boolean formula captures static corruption. As described in [18], this
can easily be generalized for arbitrary conditions on dynamic corruptions.

(representing a multiset of valid votes including abstention; cf.
Footnote 2), counts how many times each vote v € C occurs
in V. For example, for C consisting of three options A, B, and
C, we get feount(B,B,C) = (0,2,1), i.e., it assigns 0 to A,
2to B, and 1 to C. By feoun(V)[v] we denote the v-th entry
of feount(V), i.e., the number of times vote v was counted by
feont(V) - e.g., feount(B, B,C)[B] = 2. For two vectors of
votes Vg, V1, the distance function dist is then defined by

dist(_"o, _"1) - Z ‘fcoum(‘_’b)[v} - fcount(‘_’:l)[v]l .

VGE

For example, dist((B,C,C),(A,C,C,C))=3.
Now, given a run r of a voting protocol, let (v; € C);c;qnon

voters

be the vector of intended votes of the honest voters idgrer

in 7. Then, the goal ;(¢) is satisfied in r (i.e., r belongs to

vk (¢)) if one of the following conditions holds:

(a) the honesty assumptions are not met (¢ is false) since
then the judge cannot be required to detect errors, or

(b) ¢ holds true in r and there exist votes (v €
E)ieid‘v’j;';?;‘ (representing possible votes of the dishon-
est voters idJsor! in 7) and votes Viea = (VI €

C)1<i<nyews (tepresenting votes of honest and dishonest

voters that led to the published election result) such that:

(i) a (non-error) election result is published in r and this
result is equal to the result that is computed from V ey,
(ii) diSt(‘_;idealy‘_;real) <k,

where Viqeas 1S the concatenation of the vectors
!

(Vi)ieingpe,s and (v;);eiagsten-

Verifiability. Once a goal v is defined, this yields a corre-
sponding verifiability definition following a simple idea: The
judge J should accept a run only if the goal v is met, except for
an error probability of § called verifiability tolerance. While
0 = 0 is desirable, as explained above there is usually a chance
0 > 0 for an attack to go unnoticed. The value of ¢ typically
depends on but should decrease exponentially in the number
of vote modifications k for good voting systems.

Formally, we say that a function f : N — [0, 1] is §-bounded
if, for every ¢ > 0, there exists 7y such that f(n) < J +n~¢
for all n > ng. Then:

Definition 1 (Verifiability [26]). Let P be a protocol that
includes a judge J, i.e., specifies a verification procedure. Let
d € [0,1] be a tolerance and ~y be a goal. Then we say that the
protocol P is (v, d)-verifiable by the judge/verification proce-
dure J if for all ppt adversaries A running with the protocol
P (written (A | P) =: w) the probability Pr[x(17)——ry, (J :
accept)| that m running with security parameter 1 produces
a run which is not in vy but mistakenly accepted by J is §-
bounded as a function of 0.

B. Verifiability in the Context of Malicious BBs

The goal 7x(¢) as well as all other goals/corresponding
definitions studied in [18] are well-defined only if, in runs
where ¢ is true, (i) there exists a uniquely defined election
result and (i¢) there exists a uniquely defined set of eligible

voters (which defines the sets id"" and id%$"°"). Both
requirements are easy to achieve by assuming a trusted BB
that guarantees to distribute the same view on this information
to everyone. However, a real BB, including accountable ones,
might misbehave and provide different contradicting views
to different parties such that these goals cannot be applied.
Notably, these requirements are not just technicalities of the
definition of 74 (¢) but preclude general classes of attacks on
verifiability that a real BB might perform and which should
be detected by a security notion:

As for (i), a malicious BB might collude with malicious
talliers to show each voter different sets of ballots with correct
decryption proofs for the corresponding aggregated ciphertexts
such that each set yields a different election result. The election
then fails at a fundamental level since it does not establish
agreement on a result and should, therefore, also not succeed at
verification. However, each voter would still be able to verify
and hence be convinced that their own local election result
is the correct one in the sense that their encrypted ballot was
included in the set of ballots that they see and their result was
computed correctly from this set of ballots. In practice, one
can easily avoid this issue by broadcasting an official result
outside of the BB, e.g., via television. However, if such a
separate secure broadcast channel is necessary for security,
then this should be detected by a good security notion.

As for (i4), if the BB distributes the set of eligible voters in
a way that a malicious BB can send different sets to different
parties, then it can again collude with malicious talliers to run
the following attack: Let A, B,C be three voters who want
to vote for X and let D, F be two voters who want to vote
for Y. The BB shows A the set of eligible voters {A, D, E'},
shows {B, D, E'} to B, and shows {C, D, E'} to everyone else
including C, D, E. Now, even if the BB shows all submitted
ballots to everyone, each voter would consider a different set of
ballots to be eligible and, thus, to be tallied. If the BB provides
different proofs of decryption depending on which ballots are
expected to be tallied, it can convince all voters that their vote
is tallied and that tallying was performed correctly. Yet, all
parties agree on the incorrect result Y rather than X.

The above also establishes two novel gaps between the com-
monly used combination of individual+universal verifiability
and full E2E verifiability: A malicious BB might convince
voters that their vote is included in the tally (individual) and
tallying was performed correctly (universal), yet this does not
imply that there is a unique result that takes the honest votes
into account (E2E). Together with two related but different
gaps due to malicious BBs observed in [5] (see Section IV-D),
this shows that an E2E verifiability notion is necessary to
obtain meaningful security results when BBs might misbehave.
Since this is still missing, we next propose the first such notion.

C. Generalizing E2E Verifiability

We generalize the goal (o), thus obtaining a new E2E
verifiability notion via Definition 1 that is applicable in a
broader range of settings following a natural idea: We remove
any runs from the goal where the election result or the set of

eligible participants is not uniquely determined and identical
for all honest parties that compute a result resp. read a
set. This adaptation makes the new generalized goal ~; " (¢)
well-defined even if the BB misbehaves. It also strengthens
the corresponding verifiability notion as now the verification
procedure/judge must additionally reject the election as invalid
whenever the cases (i) and (i¢) from Section IV-B occur,
which captures that these are possible attacks that should be
detected. We note that 7§ (¢) does not require all parties
to be able to compute/see both the set of eligible voters and
the election result. Indeed, in a real-world unreliable network,
it can always happen that, e.g., some parties have not yet
received all outputs from the BB and hence cannot yet compute
the verified result. Formally:

Definition 2 (General E2E Verifiability). Let ¢ be a boolean
formula describing honesty assumptions and let k € N. Let r
be a run of an arbitrary voting system (as in Definition 1),
which might include a malicious BB. Then r is in v{" () if
the honesty assumptions do not hold, i.e., ¢ is false, or the
honesty assumptions are met and all of the following is true:

a) The set containing all non-error election results computed
by honest parties in r has size 1. That is, the election has
produced a result, say result,, it is unique, and all honest
parties that computed a non-error result in r agree on it.

b) The set containing all sets of eligible voters obtained by
honest parties in r has size 1. That is, there is exactly
one set of eligible voters in r, and all honest parties that
see such a set also agree on it.

¢) Let (vi € C);ciqnon be the vector of intended votes of the

honest eligible voters idgg{lrs

(vi € C);ciqasmon for the dishonest eligible voters i

in r. Then there exist votes
ddishon

voters
and votes Viea = (VEeal € E)lgignmm such that result,
equals the result computed from all votes in Ve, and
dist(Videal, Vreal) < k where Vigeal is the concatenation of
(Vi)ieidggg,s and (V;)ieid\‘,’ffe’?j'
Discussion. While the main motivation for our new E2E
verifiability definition based on the goal 7§ (¢) are e-voting
systems using fully untrusted but accountable BBs, Defini-
tion 2 is actually agnostic to the type of BB or whether a
BB is used at all. It thus applies more generally to several
other e-voting systems, including: (i) Systems based on perfect
BBs where Conditions a) and b) in Definition 2 are trivially
met in all runs and do not impose additional requirements on
the judge. The goal 7, (¢) is thus captured as a special case
of vi"(¢). (ii) Systems based on real BBs that ensure (pre-
ventive security of) consistency assuming a trusted threshold
of servers. (iii) Systems that establish agreement on eligible
voters and/or the election result via a separate channel outside
of a BB — say, by broadcasting the result on television — such
that even a fully untrusted BB without accountability cannot
present different results to different parties. (iv) Systems that
do not use any BBs, e.g., because they are distributed protocols
run among the voters themselves.

Conditions a) and b) mention honest parties that may or
may not have obtained/computed the set of eligible voters/the
election result. Typically, as for instance in ABBOVE in
Section V-C, such parties include all voters, the (potentially
external) parties running the verification procedure modeled
by the judge, and any other parties with access to the BB.

Condition a) gives guarantees only for parties that success-
fully compute a (non-error) election result. It does not, how-
ever, require that all honest parties who run the election result
computation are successful. This is because in asynchronous
real world networks it can always happen that, say, Alice can
compute a non-error election result while Bob at the same
time might not (yet) see, e.g., all messages from the tallying
phase such that he is unable to compute the result. For the
same reason, Condition b) also gives guarantees only for those
parties who succeed at reading a set of eligible voters.

Security analyses using previous verifiability notions based
on perfect BBs only have to model runs of an e-voting system
up to the point where talliers publish their final messages.
Since Condition a) adds a statement about different parties
computing a result from those messages — possibly at different
points in time — a security analysis using Definition 2 should in
addition also model arbitrary parties running the election result
computation. We recommend letting the adversary decide who
runs this computation and when. Since verifiability is shown
for all adversaries, this then covers arbitrary combinations and
scheduling of parties computing the election result.

Our goal 7" (¢) and the corresponding verifiability notion
consider only a single judge. While one might expect that
one has to consider multiple concurrent judges to define
(E2E) verifiability in a setting where a malicious BB can
provide different views to different parties running the same
verification procedure, this is not necessary: If a single judge
— representing an arbitrary but fixed party running the judging
procedure on its local view of BB — can verify the election
result, then the goal 7{™" (¢) implies that this result is correct,
i.e., was obtained with less than k modifications to honest
votes, and that all other honest parties who obtain an election
result agree on this correct one. Conversely, if parties do not
agree on a unique election result or the result is unique but
incorrect, then no matter who runs the judge/which BB view
is used, the judge will reject.

D. Comparison to Hirschi et al. [5]

Hirschi et al. also start from the verifiability definitions
(expressed as KTV goals) in [18]. They observe that all of
these definitions use perfect BBs providing identical outputs
to all parties after the end of the election and are thus no
longer well-defined for real BBs run by potentially malicious
servers. Hirschi et al. then identify two general attack classes
not covered by these definitions where a malicious BB shows
different sets of ballots to different voters such that individual
and universal verifiability checks succeed, yet all voters agree
on the same but incorrect result, i.e., E2E verifiability is
broken.

To solve well-definedness of previous verifiability notions in
the presence of real BBs, Hirschi et al. propose a novel security
notion for real BBs called final consistency. Intuitively, a
BB achieves final consistency if it reaches a “final” state
where it stops accepting inputs after an election ends and then
guarantees that, whenever a party receives a final state output
from the BB, then this output will be identical to final state
outputs received by all other parties. Identical final outputs are
sufficient such that verifiability definitions based on perfect
BBs, such as the ones studied in [18], remain well-defined
when the perfect BB is replaced by a final consistent one.
They therefore add the requirement to verifiability notions that
the BB used in an e-voting system has the final consistency
property. Hirschi et al. call these new notions verifiability+
notions. They also show that real BBs with final consistency
can be constructed from digital signatures and assuming a
trusted threshold of servers running the BB. They further
prove that verifiability results based on perfect BBs imply the
corresponding verifiability+ version using a final consistent
BB under some mild additional requirements.

The requirements and general attack classes (¢) and (i)
that we identify in Section IV-B are closely related to the
work of Hirschi et al. but new and distinct. Crucially, while
finally consistent BBs are sufficient for previous verifiability
definitions to remain well-defined, this requirement imposed
by verifiability+ is stronger than requirements (¢) and (i%)
we identify. Verifiability+ cannot be applied to a wide range
of voting systems such as those using fully untrusted BBs,
systems using accountable BBs (as accountability does not
preclude misbehavior such as different final outputs), systems
using BBs that run continuously and never reach a final state,
say, because they are shared with other elections, and systems
without BBs such as distributed protocols run among voters.

In contrast, our general verifiability notion given in Defini-
tion 2, which is based on the less demanding and more abstract
requirements (¢) and (47), does not mandate a specific BB — or
even any BB at all. It is in fact applicable to all of the above
cases. It further captures the verifiability+ variant of (o)
as a special case: Consider a system with a finally consistent
BB. As long as the trust assumption for that BB holds, all
readers obtain identical final outputs and hence will always
compute the same set of eligible voters and election result
from those outputs. The first two conditions of Definition 2
are thus always trivially met such that, just as in verifiability+,
the judging procedure only has to verify the original 7. (¢).

V. E2E VERIFIABILITY OF ABBOVE

In this section, we use our new E2E verifiability definition
from Section IV-C to analyze the verifiability of ABBOVE.

A. Computational Model

We model ABBOVE using a general and established com-
putational framework (see, e.g., [18], [26], [50], [54], [56])
which is based on the notion of a process. A process 7p
modeling some protocol P is a set of interacting ppt Turing
machines (ITMs, sometimes also called programs) that can

send messages to each other via connected tapes. At any point
in time, only one machine is actively running, namely, the most
recent one to receive a message. The protocol P runs alongside
an adversary .4, modeled via another process w4, which
controls the network and may corrupt protocol participants by
sending a special corrupt signal via a connected tape to their
ITMs. A corrupted ITM then acts as a pure message forwarder
and thus gives full control to A. Here, we only consider
static corruption of parties. We write m = (7p | m4) for the
combined process. We often use P and 7p interchangeably;
the same for A and 7 4.

ABBOVE can be modeled straightforwardly as a protocol
Paseove (nvoters; Ntalliers> C, Hvote pverif) in the above sense. Re-
call from Section III that we denote the number of voters by
TNyoters, the number of talliers by niajiiers, and the set of valid
votes by C := CU {abstain}. By fiyoe, We denote a distri-
bution over C according to which each honest voter chooses
their intended vote, and by pyers € [0, 1] the probability that an
honest voter chooses to verify their vote. (By this, we model
that the adversary knows both distributions.)

In our model of ABBOVE, the trusted voting authority Auth
is part of an additional incorruptible agent, the scheduler Sch.
Besides playing the role of the authority, Sch schedules all
other agents in a run according to the protocol. In particular,
while the adversary can determine the order of activations of
parties, Sch ensures that all honest voters have been activated
at least once to (try to) vote before Auth closes the voting
phase. Sch also ensures that all honest voters get activated
at least once after their vote submission to decide whether
they want to run vote verification. Sch further collects any
complaints from voters and forwards them directly to the judge
while also making them available to .4, which captures reliable
public complaint channels. Besides Sch, we also model J as
incorruptible. Note that this is not a trust assumption. It rather
captures that the judge represents an arbitrary party running
the judging algorithm on public data (see Section IV-A).
An honest party can thus always choose to run the judging
algorithm themselves to guarantee a correct execution without
needing to trust a third party. We let the adversary decide when
J runs election verification, which then produces an overall
output reject or accept in that run.

Our model of ABBOVE includes an arbitrary accountable
real BB Pgg defined as a UC protocol. This is possible because
UC protocols are defined also using interacting ppt Turing
machines. Since each party P of the voting protocol runs the
client code of Pgg, we formally represent a party P by two
ITMs in our model: A higher-level program 7y, which runs the
logic of the voting protocol and communicates via a directly
connected tape with a subroutine mjien.pp that runs the client
logic of Pgg.* Since, in reality, both programs represent the
same party and run on the same computer, we consider the
corruption of one program to simultaneously corrupt the other.

“Interested readers might want to look at Figure 2 in Appendix A that
illustrates the overall structure of our model.

B. Judge J

Next, we formally specify the judge J for ABBOVE. Since
J defines the exact verification procedure used for verifying
a run of the election, this is an integral part of the protocol
specification of ABBOVE that we now complete.

The judge J has access to all published complaints of
voters, which captures reliable complaint channels. It runs the
accountability judging procedure JEg of Pgg as a subroutine.
Verification then proceeds as follows:

1) Read from Pgp to obtain a sequence of messages msgseq
and run the judging procedure J&g as specified by Pgg.
If this detects a misbehaving party (blamed in a verdict),
then J outputs reject. Otherwise, msgseq is consistent
with all outputs read by honest parties; the following
computations are thus performed based on msgseq.

2) Try to compute the election result as per Section III.
Recall that this involves, among others, computing the
public encryption key from setup messages, recomputing
the aggregated ciphertexts, and verifying signatures and
NIZKPs. If this fails, i.e., the result is L, output reject.

3) Let id,oters be the set of eligible voters from the election
setup message contained in msgseq (if msgseq does not
contain this message or it is invalid, then the previous step
already rejects since no election result can be computed).
Check if there is a complaint with a valid signature signed
by one of the voters in idycters- If SO, output re ject.5

4) Otherwise, accept the election and its result.

C. E2E Verifiability Analysis of ABBOVE

Our security result uses the following assumptions:

(V1) mBnc and 7PecShare are NIZKPs and the signature scheme
S is EUF-CMA-secure (we recall formal security def-
initions of cryptographic primitives we use in the full
version [61]).

(V2) There is at most a negligible chance for two honest
voters to generate the same ciphertext vector ct. E.g., for
non-trivial ElGamal groups this is implied by the DDH
assumption.

(V3) ¢ :=hon(Sch) A hon(J).

(V4) Voters have reliable channels to publish complaints out-
side the BB.

Theorem 2. Let Fgg be an ideal BB functionality as described
in Section Il that provides at least accountability w.r.t. con-
sistency, possibly in addition to further security or functional
properties. Let Pgg be an arbitrary real BB protocol such that
P < Fgg. Let PABBOVE(nvoterSa Ntalliers; C, /Lvotevpverif) be the
voting protocol based on Pgg as above and including the judge
J from Section V-B. Let k € N. Under the assumptions (V1) to
(V4), we have that Paggove is (7" (¢), 0k (Dveri))-verifiable
where

k+1
51@ (pverif) = (1 - pverif) .

5To improve robustness against malicious unjustified complaints, the judge
can alternatively reject only if there are at least d + 1 complaints. This leads
to a slightly worse verifiability level similar to what we explain in Footnote 6.

Proof sketch (see the full version [61] for the complete proof).
The proof consists of two parts. In the first part, we prove
the result for a hybrid system Tiqea.g8 that works as Paggove
but replaces Pgg by Fgg and its simulator (cf. Figure 2).
We perform several game hops using accountability w.r.t.
consistency provided by JFgg, standard arguments from
verifiability proofs of homomorphic aggregation-based
systems using perfect BBs, and additional arguments to
handle attacks based on unreliability and BB outputs differing
in length (see also Section III-B). Intuitively, accountability
w.r.t. consistency and stability under message extension are
the main tools to show that if Conditions a) and b) of 7{™" (¢)
are not met, then this is detected by the judge and the result
is rejected. We are further able to show that the only way
to change the election result — thus violating Condition c) —
while remaining undetected with a non-negligible chance is
by not including submitted ballots in the BB state before the
VotingClosed message. As each dropped ballot changes the
result by 1 and the affected voter will complain if they choose
to verify their vote, we get an upper bound (1 — pverif)k+1 of
more than k modifications remaining undetected.®

In the second part, we show that the verifiability error for
Passove (where Pgg is used) is negligibly close to the one
for Tigeal.Be (Where Fgp is used). While one might expect
this to trivially and always follow from the composability
of UC security of Pgg, this is, in general, not implied
because verifiability is a trace property defined over runs of
systems. Intuitively, this is because trace properties might not
be computable for UC environments. E.g., a trace property
can be defined over and depend on some internal behavior
such as variables and messages that the UC environment
cannot observe or a trace property might not be decidable in
polynomial runtime. The probability for such trace properties
can be vastly different between real and ideal world without
contradicting UC security. For interested readers, we discuss
this gap in more detail and provide two simple counter
examples in the full version [61]. Fortunately, we can show via
a reduction that in our case the statement indeed follows. [

Corollary 1. Under the above assumptions and for the same
goal and 0y, as in Theorem 2, Paggove using Fabricgg is

(’yie" <¢) ’ 61@ (pverif>) -Veriﬁable.
Proof. Follows by Theorems 1 and 2. O

Since Theorem 2 only requires Fabricgg < Fgg, which
holds true even when all parties running the BB are mali-
cious by Theorem 1, this establishes, for the first time, E2E
verifiability of an e-voting system using a fully untrusted BB.

VI. PRIVACY

We analyze the privacy of ABBOVE using the established
privacy definition by Kiisters et al. in [54]. This definition
allows for computing the exact privacy level that an e-voting

OIf complaint channels are assumed to only be somewhat reliable such that
up to d complaints might %et dropped, then the verifiability error § degrades
+1—i

d ;
to Zi:o pzrerif (1 - Pverif)

protocol achieves based on factors such as the choice space C,
the number nf°% = of (non-abstaining) honest voters, and the
honest vote distribution piyee. Alternatively, the definition can
also be used in the form of a more intuitive indistinguishability
game. This game-based version has already been applied in,

e.g., [50], [56] and is what we present and use here as well.

A. Privacy Notion.

In a nutshell, the definition from [54] defines the privacy
of an e-voting protocol as the inability of an adversary to
distinguish whether an arbitrary but fixed honest voter vgps
(the voter under observation) voted for vy or vy. Here, we
consider vg,v; € C, i.e., we do not require that a voting
system hides whether v,,s abstained.

More formally, the privacy notion considers an e-voting
protocol P with choice space C, a security parameter 7, a
ppt adversary A, and a voter under observation veps. Given
some vote v € C, we denote by (m,, (v) | 75 | ma) the
composition of veps’s program m,__ (v) when taking v as their
intended vote, all programs 7}, of the remaining parties in
P, and the adversary’s program 7 4. Note that the degree of
how well the published aggregated election result hides vops’s
vote, and hence the privacy of vgps, depends on the number of
honest voters that submit a vote. Conversely, abstaining honest
voters do not improve privacy. In this section by nl% we
thus denote the number of non-abstaining honest voters, i.e.,
for those voters we consider an honest vote distribution fiyoge
which does not return abstain. Honest voters who abstain are
still captured but are subsumed in the remaining n,oters — I o
voters, some of which might be malicious.

Now privacy is defined via the following privacy game
EPrv (A7 P,n, Vobs):

}EPriv(A’ Pa m, Vobs) :

1) A chooses two possible votes vg,v; € C and sends
them to the challenger.

2) The challenger chooses a bit b < {0, 1} uniformly at
random, which determines vgps’s vote vy.

3) Run the protocol (m,, (Vs) | 75 | T4).

4) A guesses a bit & € {0,1}.

5) If ¥’ = b, return 1, otherwise return 0.

We denote by Pr[EP (A, P, 1, Vops) + 1] the probability that
A wins EP™Y (A, P, 1, vops), Where the probability is taken over
the random coins used by the parties in (m, | 7 | T4) as
well as the random choice b by the challenger in step 2.
Privacy is then defined by comparing the winning prob-
ability of A attacking P with an ideal situation where
an adversary/simulator A;qe attacks an ideal voting proto-
col/functionality Piqea that achieves the best privacy level
by definition. More specifically, Pigeal(C, Tvoters, M8 e Hvote)
is defined with the parameters as above. Intuitively, Pigeal
computes an election result as an aggregation of veps’s vote
vy, nion — 1 additional secret votes chosen independently
according to fiyoe, and up to Nyoters — n*;gf;e,s votes from C
but chosen by the adversary. Piqeal reveals only the election

result but nothing else to the adversary. It therefore captures
the best case where an adversary does not learn anything about
v, besides what it can compute from an election result which
includes at most one copy of v, and (at least) nfon - — 1
independent secret votes.” We recall the formal definition in
Figure 3 in Appendix A.

Privacy is then defined and proven w.r.t. a specific set of
adversaries, called “admissible adversaries” in what follows.
We explain the purpose of this set and define it for ABBOVE

later. Formally:

Definition 3 (Privacy). Let P be a voting protocol and let
Pideal be an ideal voting protocol.® Then, P achieves (ideal)
privacy, if for all admissible adversaries A on P, there is an
adversary Aigeal 0n Pideal such that

|PrDEPriV(A7P7777Vobs) — 1] - Pr[EPriv(Aideah,Pidealv777Vobs) — 1”
is negligible as a function in .

The strength of such a privacy result depends on the
parameters chosen for Pigea. Importantly, a good privacy result
should achieve a large value of n9% _ as this determines how
well the election result hides the vote of vops. Ideally, nhon,
for Pigear should be close to or identical to the number of
non-abstaining honest voters in the real voting protocol P.
To understand the actual level of privacy - i.e., the attacker’s
success probability - offered by different instances of the ideal
protocol Pigeal, including how it varies with parameters like
the choice space C, the number of honest voters ni% . and

the vote distribution puyoe, We refer interested readers to the
analyses provided in [50], [54], [56].

B. Privacy in the Presence of Real BBs

As mentioned in Section I, an adversary A controlling a real
BB or even just the network can trivially break privacy [6],
[20], [50]: A might drop all but vops’s ballot which is then
tallied and revealed as the result of the election. Formally,
this means that in the presence of arbitrarily misbehaving
adversaries, Definition 3 can only be shown for Pigea with
nhon = 1, i.e., when there is no secret vote in the result
that hides the one of vops and, hence, vops’s vote is trivially
revealed also in the ideal protocol.

In [7], Cortier et al. studied malicious BBs and found that,
besides dropping inputs/votes, also re-ordering and modifying
inputs can break privacy. In addition to these results, we
note that equivocation enables further attacks on privacy. For
example, suppose the BB distributes the public election key.
In that case, the BB might provide different encryption keys
to different voters. Among others, this can cause ballots to be
successfully submitted yet not be counted towards the result:
talliers seeing and using a different public key to verify the
NIZKP 7E¢ will consider 75" to be invalid w.r.t. their public
key and hence drop the ballot. Crucially and unlike for ballots

"This also rules out ballot stuffing/replay attacks where, e.g., v is submit-
ted multiple times to inflate its influence on the result [67], [68].
8Typically, Pigeal uses the same parameters as P except for potentially

hon “We discuss this in what follows.

Tyoters*

explicitly dropped by malicious parties, this way of removing a
vote from the result would not be detected via vote verification
by the affected voter who still finds their correct ballot in the
output of the BB. In Appendix B, we describe another type
of equivocation attack on privacy that affects systems using a
decryption threshold ¢ < nialjiers-

By construction, for ABBOVE the above types of attacks
come at a high risk that rational adversaries would typi-
cally avoid. Firstly, since we use an accountable BB, i.e.,
Pes < Fgp, one can use contractual penalties for detected
misbehavior to incentivize malicious BBs to remain consistent
which prevents equivocation attacks (but attacks based on
consistent outputs that differ in length might still be possible).
Secondly, for vote dropping, we have shown as part of proving
Theorem 2 that, as long as the BB provides consistent outputs,
the only ways for an adversary to drop/modify honest votes
will lead to one of two complaints being published — in
case of VoteVerifFailed with chance pyeis of running vote
verification. Often, it is reasonable to assume that rational
adversaries do not want to risk invalidating the entire election
due to complaints, which might cause an investigation, just
to reveal a single or a few votes. This observation motivated
the notion of risk-avoiding adversaries in [50], [55] for which
meaningful privacy results can be shown. Also other works
such as [7] follow a similar idea by defining privacy only for
adversaries that are unwilling/unable to risk a failure in vote
verification or who do not learn the election result if there is
a failure. In fact, in [20] Cortier and Lallemand showed that
successful vote verification is necessary for privacy.

We therefore show privacy of ABBOVE for the following
class of rational adversaries. We call an adversary A k-risk-
avoiding if the following two events (taken over all runs of
A with ABBOVE) have negligible probability: (i) The BB
provides inconsistent views to two (or more) honest parties.
(ii) If an output returned by the BB to an honest party contains
a successful setup phase and a valid signed VotingClosed
message (i.e., the output would be tallied by an honest tallier),
then in that output and before the first VotingClosed message
there are less than n1. _—k signed ballots submitted by honest
voters. That is, A is willing to drop at most & ballots submitted
by honest voters as A considers the probability of a complaint
due to vote verification to be too high for larger numbers.

C. Privacy of ABBOVE

We prove privacy using the following assumptions and class
of adversaries:

(P1) An adversary is admissible if it (i) does not corrupt Sch,
(ii) corrupts at most naiiers — 1 talliers, (iii) corrupts
at most ndishon — oo — NI voters, and (iv) is
k-risk-avoiding.

The ElGamal group G is non-trivial and the DDH prob-
lem is hard in G.

qrieyShareGen rEnc g4 rDecShare gre NIZKPs and the sig-
nature scheme S is EUF-CMA-secure (we recall formal
security definitions of the cryptographic primitives we use
in the full version [61]).

(P2)

(P3)

Now, we can show the following:

Theorem 3. Consider ABBOVE for choice space C, num-

hon
ber Nyoters Of voters, nyoies a lower bound for the number

of honest non-abstaining voters, and vote distribution iy
for those voters. Then ABBOVE achieves ideal privacy for
Pideal (Mvoters, W%« — K, C, thore) against admissible adver-
saries in the sense of (P1) under Assumptions (P2) and (P3).

We give a detailed proof in the full version [61] using a se-
quence of games that transforms the game EP (A, P, 1, Vobs)
to the game EP™Y(Aigear, Pideal; 1, Vobs) for an ideal adversary
Aigeal- Theorem 1 then implies:

Corollary 2. ABBOVE using Fabricgg achieves ideal privacy
for the same parameters as in Theorem 3.

While showing Theorem 3, we found a gap in the privacy
proof of Helios given in [11] which is of independent interest.
We provide details in Appendix B.

ACKNOWLEDGEMENTS

This research was partially funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion), Project-ID 459731562. We thank Mike Graf for helpful
discussions and feedback.

REFERENCES

[1] J. Benaloh, “Simple Verifiable Elections,” in 2006 USENIX/ACCURATE
Electronic Voting Technology Workshop, EVT’06, Vancouver, BC,
Canada, August 1, 2006. USENIX Association, 2006.

[2] V. Iovino, A. Rial, P. B. Rgnne, and P. Y. A. Ryan, “Universal

Unconditional Verifiability in E-Voting without Trusted Parties,” in 33rd

IEEE Computer Security Foundations Symposium, CSF 2020, Boston,

MA, USA, June 22-26, 2020. 1EEE, 2020, pp. 33-48.

J. Benaloh, M. Naehrig, and O. Pereira, “REACTIVE: Rethinking

Effective Approaches Concerning Trustees in Verifiable Elections,”

Cryptology ePrint Archive, Tech. Rep. 2024/915, 2024.

[4] N. Chondros, B. Zhang, T. Zacharias, P. Diamantopoulos, S. Maneas,
C. Patsonakis, A. Delis, A. Kiayias, and M. Roussopoulos, “D-DEMOS:
A Distributed, End-to-End Verifiable, Internet Voting System,” in 36th
IEEE International Conference on Distributed Computing Systems,
ICDCS 2016, Nara, Japan, June 27-30, 2016. 1EEE Computer Society,
2016, pp. 711-720.

[5] L. Hirschi, L. Schmid, and D. A. Basin, “Fixing the Achilles Heel
of E-Voting: The Bulletin Board,” in 34th IEEE Computer Security
Foundations Symposium, CSF 2021, Dubrovnik, Croatia, June 21-25,
2021. 1IEEE, 2021, pp. 1-17.

[6] R. Kiisters, T. Truderung, and A. Vogt, “Clash Attacks on the Verifia-
bility of E-Voting Systems,” in 33rd IEEE Symposium on Security and
Privacy (S&P 2012). 1EEE Computer Society, 2012, pp. 395-409.

[7]1 V. Cortier, J. Lallemand, and B. Warinschi, “Fifty Shades of Ballot
Privacy: Privacy against a Malicious Board,” in IEEE 33rd Computer
Security Foundations Symposium, CSF 2020, 22-25 July, 2020. 1EEE
Computer Society, 2020.

[8] S. Hauser and R. Haenni, “Modeling a Bulletin Board Service Based on
Broadcast Channels with Memory,” in Financial Cryptography and Data
Security - FC 2018 International Workshops, BITCOIN, VOTING, and
WTSC, Nieuwpoort, Curagao, March 2, 2018, Revised Selected Papers,
ser. Lecture Notes in Computer Science, vol. 10958. Springer, 2018,
pp. 232-246.

[9]1 A. Kiayias, A. Kuldmaa, H. Lipmaa, J. Siim, and T. Zacharias, “On
the Security Properties of e-Voting Bulletin Boards,” in Security and
Cryptography for Networks - 11th International Conference, SCN 2018,
Amalfi, Italy, September 5-7, 2018, Proceedings, ser. Lecture Notes in
Computer Science, vol. 11035. Springer, 2018, pp. 505-523.

[3

[t}

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

M. Graf, R. Kiisters, D. Rausch, S. Egger, M. Bechtold, and
M. Flinspach, “Accountable Bulletin Boards: Definition and Provably
Secure Implementation,” in 37th IEEE Computer Security Foundations
Symposium (CSF 2024). 1EEE, 2024, to appear.

D. Bernhard, O. Pereira, and B. Warinschi, “How Not to Prove Yourself:
Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios,” in
Advances in Cryptology - ASIACRYPT 2012 - 18th International Con-
ference on the Theory and Application of Cryptology and Information
Security, Proceedings, ser. Lecture Notes in Computer Science, X. Wang
and K. Sako, Eds., vol. 7658. Springer, 2012, pp. 626-643.

V. Cortier, C. C. Dragan, F. Dupressoir, and B. Warinschi, “Machine-
Checked Proofs for Electronic Voting: Privacy and Verifiability for
Belenios,” in 31st IEEE Computer Security Foundations Symposium,
CSF 2018, Oxford, United Kingdom, July 9-12, 2018. 1EEE Computer
Society, 2018, pp. 298-312.

W. Lueks, I. Querejeta-Azurmendi, and C. Troncoso, “VoteAgain: A
scalable coercion-resistant voting system,” in 29th USENIX Security
Symposium, USENIX Security 2020, August 12-14, 2020. USENIX
Association, 2020, pp. 1553-1570.

D. Bernhard, V. Cortier, D. Galindo, O. Pereira, and B. Warinschi, “SoK:
A Comprehensive Analysis of Game-Based Ballot Privacy Definitions,”
in 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose,
CA, USA, May 17-21, 2015. 1EEE Computer Society, 2015, pp. 499—
516.

D. Bernhard, V. Cortier, O. Pereira, B. Smyth, and B. Warinschi,
“Adapting Helios for Provable Ballot Privacy,” in Computer Security
- ESORICS 2011 - 16th European Symposium on Research in Computer
Security, Leuven, Belgium, September 12-14, 2011. Proceedings, ser.
Lecture Notes in Computer Science, vol. 6879. Springer, 2011, pp.
335-354.

V. Cortier, D. Galindo, S. Glondu, and M. Izabachéne, “Distributed
ElGamal a la Pedersen: Application to Helios,” in Proceedings of the
12th annual ACM Workshop on Privacy in the Electronic Society, WPES
2013, Berlin, Germany, November 4, 2013. ACM, 2013, pp. 131-142.
D. A. Basin, S. Radomirovic, and L. Schmid, “Alethea: A Provably
Secure Random Sample Voting Protocol,” in 31st IEEE Computer
Security Foundations Symposium, CSF 2018, Oxford, United Kingdom,
July 9-12, 2018. IEEE Computer Society, 2018, pp. 283-297.

V. Cortier, D. Galindo, R. Kiisters, J. Miiller, and T. Truderung, “SoK:
Verifiability Notions for E-Voting Protocols,” in IEEE 37th Symposium
on Security and Privacy (S&P 2016). 1EEE Computer Society, 2016,
pp. 779-798.

B. Smyth, “Ballot secrecy with malicious bulletin boards,” Cryptology
ePrint Archive, Tech. Rep. 2014/822, 2014.

V. Cortier and J. Lallemand, “Voting: You Can’t Have Privacy without
Individual Verifiability,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, October 15-19, 2018. ACM, 2018, pp. 53-66.
B. Adida, “Helios: Web-based Open-Audit Voting,” in Proceedings of
the 17th USENIX Security Symposium, P. C. van Oorschot, Ed. USENIX
Association, 2008, pp. 335-348.

V. Cortier, P. Gaudry, and S. Glondu, “Belenios: A Simple Private
and Verifiable Electronic Voting System,” in Foundations of Security,
Protocols, and Equational Reasoning - Essays Dedicated to Catherine
A. Meadows, ser. Lecture Notes in Computer Science, vol. 11565.
Springer, 2019, pp. 214-238.

M. R. Clarkson, S. Chong, and A. C. Myers, “Civitas: Toward a Secure
Voting System,” in 2008 IEEE Symposium on Security and Privacy (S&P
2008). IEEE Computer Society, 2008, pp. 354-368.

C. Culnane and S. A. Schneider, “A Peered Bulletin Board for Robust
Use in Verifiable Voting Systems,” in IEEE 27th Computer Security
Foundations Symposium, CSF 2014, Vienna, Austria, 19-22 July, 2014.
IEEE Computer Society, 2014, pp. 169-183.

J. Feigenbaum, A. D. Jaggard, and R. N. Wright, “Open vs. Closed
Systems for Accountability,” in Proceedings of the 2014 Symposium
and Bootcamp on the Science of Security, HotSoS 2014, Raleigh, NC,
USA, April 08 - 09, 2014. ACM, 2014, p. 4.

R. Kiisters, T. Truderung, and A. Vogt, “Accountability: Definition
and Relationship to Verifiability,” in Proceedings of the 17th ACM
Conference on Computer and Communications Security (CCS 2010).
ACM, 2010, pp. 526535, the full version is available at http://eprint.
iacr.org/2010/236.

M. Graf, R. Kiisters, and D. Rausch, “AUC: Accountable Universal
Composability,” in 44th IEEE Symposium on Security and Privacy, SP

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

(36]

[40]

[41]

[42]

[43]
[44]
[45]

[46]

2023, San Francisco, CA, USA, May 21-25, 2023.
1148-1167.

R. Kiinnemann, I. Esiyok, and M. Backes, “Automated Verification of
Accountability in Security Protocols,” in 32nd IEEE Computer Security
Foundations Symposium, CSF 2019, Hoboken, NJ, USA, June 25-28,
2019. 1IEEE, 2019, pp. 397-413.

N. Asokan, V. Shoup, and M. Waidner, “Asynchronous Protocols for
Optimistic Fair Exchange,” in Proceedings of the IEEE Symposium on
Research in Security and Privacy. 1EEE Computer Society, 1998, pp.
86-99.

C. Chang and Y. Chang, “Efficient Anonymous Auction Protocols with
Freewheeling Bids,” Comput. Secur., vol. 22, no. 8, pp. 728-734, 2003.
Z. Zhao, M. Naseri, and Y. Zheng, “Secure Quantum Sealed-bid Auction
with Post-confirmation,” Optics Communications, vol. 283, no. 16, pp.
3194-3197, 2010.

C. Hong, J. Katz, V. Kolesnikov, W. Lu, and X. Wang, “Covert Security
with Public Verifiability: Faster, Leaner, and Simpler,” in Advances in
Cryptology - EUROCRYPT 2019 - 38th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Darm-
stadt, Germany, May 19-23, 2019, Proceedings, Part III, ser. Lecture
Notes in Computer Science, vol. 11478. Springer, 2019, pp. 97-121.
Y. Aumann and Y. Lindell, “Security Against Covert Adversaries:
Efficient Protocols for Realistic Adversaries,” in Proceedings of the 4th
Theory of Cryptography Conference,(TCC 2007), ser. Lecture Notes in
Computer Science, S. P. Vadhan, Ed., vol. 4392. Springer, 2007, pp.
137-156.

G. Asharov and C. Orlandi, “Calling Out Cheaters: Covert Security
with Public Verifiability,” in Advances in Cryptology - ASIACRYPT
2012 - 18th International Conference on the Theory and Application
of Cryptology and Information Security, Beijing, China, December 2-6,
2012. Proceedings, ser. Lecture Notes in Computer Science, vol. 7658.
Springer, 2012, pp. 681-698.

C. Baum, I. Damgérd, and C. Orlandi, “Publicly Auditable Secure
Multi-Party Computation,” in Security and Cryptography for Networks
- 9th International Conference, SCN 2014, Amalfi, Italy, September 3-5,
2014. Proceedings, ser. Lecture Notes in Computer Science, vol. 8642.
Springer, 2014, pp. 175-196.

M. Rivinius, P. Reisert, D. Rausch, and R. Kiisters, “Publicly Account-
able Robust Multi-Party Computation,” in 43rd IEEE Symposium on
Security and Privacy, SP 2022, San Francisco, CA, USA, May 22-26,
2022. 1EEE, 2022, pp. 2430-2449.

M. Rivinius, “MPC with publicly identifiable abort from pseudoran-
domness and homomorphic encryption,” in Eurocrypt 2025, 2025, (To
appear).

H. Leibowitz, A. Herzberg, and E. Syta, “Provable Security for PKI
Schemes,” Cryptology ePrint Archive, Tech. Rep. 2019/807, 2019.

S. Matsumoto and R. M. Reischuk, “Certificates-as-an-Insurance: In-
centivizing accountability in SSL/TLS,” in Proceedings of the NDSS
Workshop on Security of Emerging Network Technologies (SENT’15),
2015.

T. H. Kim, L. Huang, A. Perrig, C. Jackson, and V. D. Gligor, “Account-
able Key Infrastructure (AKI): a Proposal for a Public-key Validation
Infrastructure,” in 22nd International World Wide Web Conference,
WWW ’13, Rio de Janeiro, Brazil, May 13-17, 2013. International
World Wide Web Conferences Steering Committee / ACM, 2013, pp.
679-690.

M. Graf, R. Kiisters, and D. Rausch, “Accountability in a Permissioned
Blockchain: Formal Analysis of Hyperledger Fabric,” in IEEE European
Symposium on Security and Privacy, EuroS&P 2020, Genoa, Italy,
September 7-11, 2020. Los Alamitos, CA, USA: IEEE, 2020, pp.
236-255.

G. O. Karame, E. Androulaki, M. Roeschlin, A. Gervais, and S. Capkun,
“Misbehavior in Bitcoin: A Study of Double-Spending and Accountabil-
ity,” ACM Trans. Inf. Syst. Secur., vol. 18, no. 1, pp. 2:1-2:32, 2015.
V. Buterin and V. Griffith, “Casper the Friendly Finality Gadget,” CoRR,
vol. abs/1710.09437, 2017.

R3, “R3 Corda Master Documentation,” https://docs.corda.net/docs/
corda-os/4.4.html, 2020, (Accessed on 04/24/2020).

Ethereum Foundation, “Ethereum Enterprise,” https://www.ethereum.
org/enterprise/, 2019, (Accessed on 11/13/2019).

A. Boudguiga, N. Bouzerna, L. Granboulan, A. Olivereau, F. Quesnel,
A. Roger, and R. Sirdey, “Towards Better Availability and Accountability
for IoT Updates by Means of a Blockchain,” in 2017 IEEE European

IEEE, 2023, pp.

http://eprint.iacr.org/2010/236
http://eprint.iacr.org/2010/236
https://docs.corda.net/docs/corda-os/4.4.html
https://docs.corda.net/docs/corda-os/4.4.html
https://www.ethereum.org/enterprise/
https://www.ethereum.org/enterprise/

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

Symposium on Security and Privacy Workshops, EuroS&P Workshops
2017, Paris, France, April 26-28, 2017. 1EEE, 2017, pp. 50-58.

G. D’Angelo, S. Ferretti, and M. Marzolla, “A Blockchain-based Flight
Data Recorder for Cloud Accountability,” in Proceedings of the Ist
Workshop on Cryptocurrencies and Blockchains for Distributed Systems,
CRYBLOCK®@MobiSys 2018, Munich, Germany, June 15, 2018. ACM,
2018, pp. 93-98.

E. Funk, J. Riddell, F. Ankel, and D. Cabrera, “Blockchain technology:
a data framework to improve validity, trust, and accountability of infor-
mation exchange in health professions education,” Academic Medicine,
vol. 93, no. 12, pp. 1791-1794, 2018.

A. Shamis, P. Pietzuch, B. Canakci, M. Castro, C. Fournet, E. Ashton,
A. Chamayou, S. Clebsch, A. Delignat-Lavaud, M. Kerner et al., “IA-
CCF: Individual Accountability for Permissioned Ledgers,” in /9th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 22), 2022, pp. 467-491.

R. Kiisters, J. Liedtke, J. Miiller, D. Rausch, and A. Vogt, “Ordinos: A
Verifiable Tally-Hiding E-Voting System,” in IEEE European Symposium
on Security and Privacy, EuroS&P 2020, Genoa, Italy, September 7-11,
2020. 1IEEE, 2020, pp. 216-235.

C. C. Dragan, F. Dupressoir, K. Gjgsteen, T. Haines, P. B. Rgnne, and
M. R. Solberg, “Machine-Checked Proofs of Accountability: How to
sElect Who is to Blame,” in Computer Security - ESORICS 2023 - 28th
European Symposium on Research in Computer Security, The Hague,
The Netherlands, September 25-29, 2023, Proceedings, Part III, ser.
Lecture Notes in Computer Science, vol. 14346. Springer, 2023, pp.
471-491.

J. Heather and D. Lundin, “The Append-Only Web Bulletin Board,” in
Formal Aspects in Security and Trust, 5th International Workshop, FAST
2008, Malaga, Spain, October 9-10, 2008, Revised Selected Papers, ser.
Lecture Notes in Computer Science, vol. 5491. Springer, 2008, pp.
242-256.

V. Cortier and B. Smyth, “Attacking and fixing Helios: An analysis of
ballot secrecy,” Journal of Computer Security, vol. 21, no. 1, pp. 89-148,
2013.

R. Kiisters, T. Truderung, and A. Vogt, “Verifiability, Privacy, and
Coercion-Resistance: New Insights from a Case Study,” in 32nd IEEE
Symposium on Security and Privacy (S&P 2011). IEEE Computer
Society, 2011, pp. 538-553.

R. Kiisters, J. Miiller, E. Scapin, and T. Truderung, “sElect: A
Lightweight Verifiable Remote Voting System,” in IEEE 29th Computer
Security Foundations Symposium (CSF 2016). 1EEE Computer Society,
2016, pp. 341-354.

N. Huber, R. Kiisters, T. Krips, J. Liedtke, J. Miiller, D. Rausch,
P. Reisert, and A. Vogt, “Kryvos: Publicly tally-hiding verifiable
e-voting,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2022, Los Angeles,
CA, USA, November 7-11, 2022, H. Yin, A. Stavrou, C. Cremers,
and E. Shi, Eds. ACM, 2022, pp. 1443-1457. [Online]. Available:
https://doi.org/10.1145/3548606.3560701

R. Kiisters, T. Truderung, and A. Vogt, “Formal Analysis of Chaumian
Mix Nets with Randomized Partial Checking,” in 35th IEEE Symposium
on Security and Privacy (S&P 2014). 1EEE Computer Society, 2014,
pp. 343-358.

R. Kiisters and T. Truderung, “Security Analysis of Re-Encryption RPC
Mix Nets,” in IEEE Ist European Symposium on Security and Privacy
(EuroS&P 2016). 1EEE Computer Society, 2016, pp. 227-242.

P. Chaidos, V. Cortier, G. Fuchsbauer, and D. Galindo, “BeleniosRF: A
Non-interactive Receipt-Free Electronic Voting Scheme,” in Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security, Vienna, Austria, October 24-28, 2016. ACM, 2016, pp.
1614-1625.

S. Delaune, S. Kremer, and M. Ryan, “Coercion-Resistance and Receipt-
Freeness in Electronic Voting,” in Proceedings of the 19th IEEE Com-
puter Security Foundations Workshop (CSFW’06). 1EEE Computer
Society Press, 2006, pp. 28-39.

D. Rausch, N. Huber, and R. Kiisters, “Verifiable E-Voting with a Trust-
less Bulletin Board,” Cryptology ePrint Archive, Tech. Rep. 841, 2025,
full version of this paper, available at https://eprint.iacr.org/2025/841.
R. Canetti, “Universally Composable Security,” J. ACM, vol. 67, no. 5,
pp- 28:1-28:94, 2020.

R. Kiisters, M. Tuengerthal, and D. Rausch, “The IITM Model: a
Simple and Expressive Model for Universal Composability,” Journal
of Cryptology, vol. 33, no. 4, pp. 1461-1584, 2020.

[64] J. Camenisch, S. Krenn, R. Kiisters, and D. Rausch, “iUC: Flexible
Universal Composability Made Simple,” in Advances in Cryptology
- ASIACRYPT 2019 - 25th International Conference on the Theory
and Application of Cryptology and Information Security, Kobe, Japan,
December 8-12, 2019, Proceedings, Part IlI, ser. Lecture Notes in
Computer Science, vol. 11923. Springer, 2019, pp. 191-221, the full
version is available at http://eprint.iacr.org/2019/1073.

E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. D.
Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Mu-
ralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith,
A. Sorniotti, C. Stathakopoulou, M. Vukolic, S. W. Cocco, and J. Yellick,
“Hyperledger Fabric: A Distributed Operating System for Permissioned
Blockchains,” in Proceedings of the Thirteenth EuroSys Conference,
EuroSys 2018, Porto, Portugal, April 23-26, 2018. ACM, 2018, pp.
30:1-30:15.

S. Kremer and P. B. Rgnne, “To Du or Not to Du: A Security Analysis
of Du-Vote,” in IEEE European Symposium on Security and Privacy,
EuroS&P 2016, Saarbriicken, Germany, March 21-24, 2016. 1EEE,
2016, pp. 473-486.

V. Cortier and B. Smyth, “Attacking and Fixing Helios: An Analysis
of Ballot Secrecy,” in Proceedings of the 24th IEEE Computer Security
Foundations Symposium, CSF, 2011, 2011, pp. 297-311.

D. Mestel, J. Miiller, and P. Reisert, “How efficient are replay attacks
against vote privacy? A formal quantitative analysis,” J. Comput. Secur.,
vol. 31, no. 5, pp. 421-467, 2023.

[65]

[66]

[67]

[68]

APPENDIX A
SUPPLEMENTARY FIGURES

Here we provide supplementary Figures 1 to 3.

(e J=[_¢]

A
simulated
NET of P Ilo NET of P 10
D ——
Fig. 1. UC security definition. Real world/protocol on the left, ideal

world/protocol on the right. “IO” denotes input/output interfaces provided
to higher-level protocols, “NET” are interfaces for sending/receiving network
messages, = is computational indistinguishability of the output of £.

APPENDIX B
FURTHER INSIGHTS RELATED TO PRIVACY

Equivocation Attacks for Threshold Encryption. Consider
a homomorphic aggregation-based voting system that uses a
threshold ¢ < Niaiers for decryption (unlike ABBOVE, which
uses full threshold, i.e., ¢ = ngalliers). This is a common
technique to improve the robustness of the tallying phase. In
such systems, a malicious BB can run the following type of
attack using equivocation.

If ¢ < *afie= the malicious BB controlled by an adversary
A can split the talliers into two or more distinct groups. It
can show each group a different set of ballots, say, one set
that contains all submitted ballots and one set that contains
all ballots except for the one from v,p,s that A wants to learn.
As both sets of ballots appear reasonable to the respective
talliers, both groups would compute and publish the election
result based on the respective sets of ballots they see. Hence,
the adversary controlling the BB learns (at least) two election
results (rather than only one as in an ideal voting protocol) and
can even derive the vote of vqps directly from both results.

https://doi.org/10.1145/3548606.3560701
https://eprint.iacr.org/2025/841
http://eprint.iacr.org/2019/1073

PaBBOVE:

Voting protocol

A 1
|

| |
I

! Add1t1onal internal machines and connections; :

3 a1l

! 5 typically includes several servers § !

| I I I R R R R R, . |

| Bulletin Board Pss X

| Votlng protocol

Fig. 2. Top: Illustration of the computational model of our protocol Pagsove
(see Section V-A) running with an adversary .A. Bottom: Hybrid system used
in the proof of Theorem 2 where the real BB Ppgp is replaced by the ideal
BB Fpgg running with a simulator S.

Ntalliers

This type of attack is not limited to ¢t < but works
for any threshold ¢ < nuiers if the adversary, in addition to
controlling the BB, also controls (up to) t—1 malicious talliers.
As a result, even if £ = nyapiers — 1 (such that there are t — 1 =
Ntalliers — 2 malicious and 2 honest talliers), the BB might show
each honest tallier a different set of ballots to learn one partial
decryption for each of them. The malicious talliers can then
compute the remaining partial decryptions for both sets.

We note that this is not an impossibility result. It rather
demonstrates that, if e-voting protocols using a threshold ¢ <
Ntalliers are designed based on a real BB that can equivocate,
then the protocol has to consider and protect against additional
types of attacks on privacy.

A Gap in the Privacy Proof in [11]. While analyzing the
privacy of ABBOVE and checking whether we can re-use
some arguments from privacy proofs of similar homomorphic-
aggregation-based systems, we found a gap in the privacy
proof given for Helios in [11].

Specifically, as part of their proof in [11], the authors
perform a reduction to (a variant of) the CPA-security of

Pideal (nvoterm nsg?em C7 Mvote) [Vb]

Parameters:

o Probability distribution fiyee over C

e Numbers of voters nyoters and honest voters

hon
Myoters

o I + () (initially)

Inputs:
¢ Choice vy for the voter under observation veps.

Pideal uses a scheduler Sch which forwards messages
to and from A4, while taking care that the fol-
lowing messages are sent sequentially in the order
presented here. It also ensures that the first and
last message ((init, honest) and compute) are sent
at most once each:

On (init, honest) from Ajgea do:

1) Vie{l,...,nh% —1}: store v; <2 C
2) Store v, hon. <— vy
) I < I U {1 ' Egilers

4) Return success (to the adversary Ajgeal)-
On (setChoice, ¢ V) from Ajges do:
1) Ifi¢ {nh"“

voters
1.
2) Store v; < Vv
3) I+ TU{i}
4) Return success (to the adversary Ajgeal).

-, Nyoters} OF v & C, return

On compute from Ajgea do:

1) Return res < (Zie[n Iviej 1)]
voters|s Vi —,]e Tcan
the adversary Ajgeal). ‘

(to

Fig. 3. The ideal voting protocol Pjyea for choice space C, number nyoters

of voters, nvoters < Nyoters 0f which are honest voters, and vote distribution

Mvote -

ElGamal encryption under the assumption that there is at
least one honest tallier Tpo,. Intuitively, in the reduction, T,
computes its public key share based on the public key shares
of all other talliers in a way that forces the overall public
encryption key of the election to be the same as the public
key in the CPA game. While this works if Ty, happens to be
the last tallier to publish its share, this is not guaranteed. If
a malicious tallier waits until all other talliers have published
their public key shares and then chooses its share depending
on those published shares, say, by hashing all of them and
using the result as the secret exponent, the reduction fails.
Fortunately, we found that a different reduction technique
from [3] given for the threshold ElGamal version used by
Belenios can be adapted to the full threshold ElGamal version
used by Helios and ABBOVE to show privacy, as described in
the full version [61]. This reduction is more complicated than
the one given in [11] but does not require The, to compute
its share based on shares of other talliers. Hence, it works
irrespective of the order in which talliers publish shares.

	Introduction
	Recap: UC-Secure Accountable BBs
	A Simple E-Voting System based on a Trustless BB
	System Description
	Discussion

	E2E Verifiability For Malicious BBs
	Recap: The KTV Verifiability Framework
	Verifiability in the Context of Malicious BBs
	Generalizing E2E Verifiability
	Comparison to Hirschi et al. HirschiSchmidBasin-CSFW-2021

	E2E Verifiability of ABBOVE
	Computational Model
	Judge J
	E2E Verifiability Analysis of ABBOVE

	Privacy
	Privacy Notion.
	Privacy in the Presence of Real BBs
	Privacy of ABBOVE

	References
	Appendix A: Supplementary Figures
	Appendix B: Further Insights Related to Privacy

