

A Study of Mechanisms for
End-to-End Verifiable Online Voting

Studie von Mechanismen für Ende-zu-Ende Verifizierbare Onlinewahlen

Version history

Version Date Changes

 2024-01 26.08.2024 Original version

Acknowledgments

This study was conducted by the famoser GmbH (Switzerland) on behalf of the Bundesamt für
Sicherheit in der Informationstechnik as part of the project Studie zu Ende-zu-Ende- Verifizier
barkeitsmethoden für Online-Wahlen (StuVe).

The authors of this study are:

• Florian Moser

• Johannes Müller

• Véronique Cortier

• Alexandre Debant

• Pierrick Gaudry

• Anselme Goetschmann

• Ralf Küsters

• Melanie Volkamer

This study is published in English due to its scientific nature and international audience.

Bundesamt für Sicherheit in der Informationstechnik
Postfach 20 03 63, 53133 Bonn, Germany
E-Mail: online-wahlen@bsi.bund.de
Internet: https://www.bsi.bund.de
© Bundesamt für Sicherheit in der Informationstechnik 2024

online-wahlen@bsi.bund.de
https://www.bsi.bund.de

A Study of Mechanisms for End-to-End Verifiable Online Voting

Executive summary

Introduction. In today’s digital world, many elections are conducted online. In such elections,
however, there is a risk that voters’ votes may be altered unnoticed by the voting system as they pass
through electronically, and therefore the will of the voters may not be accurately reflected in the final
result. End-to-end verifiability is the gold standard to address this problem. With this fundamental
property, it is possible to independently verify that the final result matches the votes received, even
if parts of the voting system do not work correctly.

Problem statement. Over the past decades, many methods for online voting have been proposed,
implemented and analyzed to provide end-to-end verifiability without compromising the secrecy
of the voter’s vote and overall usability. These works represent a vast body of knowledge, making it
difficult to understand which of the proposed methods are the most appropriate and how they can
be combined to realize end-to-end verifiable online voting.

Objective of the study. The goal of this study is to provide a low-threshold, systematic, and well-
founded introduction to the complex world of end-to-end verifiable online voting.

Approach of the study. We have identified the most important cryptographic building blocks of
end-to-end verifiable online voting, described them in detail, evaluated them from different per
spectives, and discussed them.

Main results. Our key findings are as follows:

• Holistic view: In order to assess whether an online voting system meets the desired character
istics, it is important to know what each method does, but ultimately it is key to look at the
voting system as a whole. In particular, even if the individual methods work properly, they
must be linked together correctly to provide end-to-end verifiability.

• Trust assumptions: The ultimate goal of verifiable online voting systems with vote secrecy is to
reduce the required trust in the various system components as much as possible. To effectively
distribute trust in practice, it must be ensured that these parties are truly independent of each
other.

• Verifiable tallying: We can expect any state-of-the-art verifiable online voting system to com
bine a secret ballot technique with a verifiable privacy-preserving tallying technique. In this
way, independent auditors can verify the correctness of the election result, without having to
trust the tallying authority, while keeping individual votes secret.

• Voting device verification: There is no one-size-fits-all solution to protect against possibly cor
rupted voting devices. Which voting device verification mechanism is appropriate for a given
election depends on various election-specific requirements.

• Everlasting privacy: In many elections, it is necessary to protect privacy not only in the fore
seeable future, but also in the long run, e.g. against quantum adversaries. There are feasible
approaches to guarantee this property, called everlasting privacy, towards anyone who wants
to verify the election, i.e., without compromising verifiability.

Conclusion. This study provides developers, regulators, researchers, election officials, decision
makers, and all interested parties with a powerful toolbox for end-to-end verifiable online voting.

Bundesamt für Sicherheit in der Informationstechnik (BSI) iii

A Study of Mechanisms for End-to-End Verifiable Online Voting

Contents

1 Introduction 6

2 Background 8
2.1 End-to-end verifiable online voting . 8

2.1.1 Overview . 8
2.1.2 Properties . 8
2.1.3 General approach . 11

2.2 Cryptography . 13
2.2.1 Public-key encryption . 13
2.2.2 Commitments . 14
2.2.3 Digital signatures . 15
2.2.4 Zero-knowledge proofs . 16
2.2.5 Threshold secret sharing . 17

3 Evaluation criteria 19
3.1 Legal background . 20
3.2 Secrecy . 21

3.2.1 Vote privacy . 22
3.2.2 Everlasting privacy . 23
3.2.3 Vote-buying resistance . 24

3.3 End-to-end verifiability . 25
3.3.1 Notion . 25
3.3.2 Criteria . 25

3.4 Usability . 28
3.4.1 Background . 28
3.4.2 Factors . 28
3.4.3 Criteria . 29

3.5 Practicality . 31
3.5.1 Implementability . 31
3.5.2 Efficiency . 32

4 Evaluation 34
4.1 Overview . 34
4.2 Malleable public-key encryption . 37

4.2.1 Requirements . 37
4.2.2 Description . 41
4.2.3 Analysis . 42

4.3 Malleable commitments . 47
4.3.1 Requirements . 47
4.3.2 Description . 50
4.3.3 Analysis . 50

4.4 Homomorphic aggregation . 53
4.4.1 Requirements . 53
4.4.2 Description . 53
4.4.3 Analysis . 55

iv Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

4.5 Verifiable mixing networks . 59
4.5.1 Requirements . 59
4.5.2 Description . 60
4.5.3 Analysis . 61

4.6 Digital signatures . 65
4.6.1 Requirements . 65
4.6.2 Description . 65
4.6.3 Analysis . 65

4.7 Audit-or-cast . 69
4.7.1 Requirements . 69
4.7.2 Description . 69
4.7.3 Analysis . 70

4.8 Cast-and-audit . 74
4.8.1 Requirements . 74
4.8.2 Description . 74
4.8.3 Analysis . 76

4.9 Return codes . 79
4.9.1 Requirements . 79
4.9.2 Description . 79
4.9.3 Analysis . 80

4.10 More methods . 84
4.10.1 Secure bulletin board . 84
4.10.2 Verifiable mix nets . 84
4.10.3 Cast-as-intended . 85
4.10.4 Freedom of choice . 86
4.10.5 Post-quantum voting . 86
4.10.6 Tally-hiding voting . 88
4.10.7 Special settings . 89

5 Conclusion 90
5.1 Summary . 90
5.2 Key findings . 92

Bundesamt für Sicherheit in der Informationstechnik (BSI) v

A Study of Mechanisms for End-to-End Verifiable Online Voting

1 Introduction

Online elections have become an integral and growing part of our digitalized world. In an online
election, voters enter their votes into computers (e.g., smartphones, PCs, tablets), which digitize them
and send them over the Internet to a digital ballot box. The received ballots are then counted elec
tronically and the results are made available online.

Secure online voting. The goal of an election in general is to capture and accurately reflect the
will of the voters. However, there are two fundamental challenges to achieving this goal that must
be addressed:

• Ballot secrecy: Every voter should be able to express their true will. Unfortunately, depending
on the circumstances of an election, there is a risk that not every voter will be in such a posi
tion. For example, there may be a general discomfort with open voting, since voters may fear
that they will sooner or later be disadvantaged if they openly express their will. In this case,
which applies to many elections, it must be ensured that voters can cast their votes in secret
and that they must remain secret during and after the election.

• End-to-end verifiability: Especially in online elections, there is a risk that votes can be digitally
altered: it is not immediately apparent whether votes have been lost, added, or changed on
the purely electronic path from the voting devices through the digital ballot box to the result
announced online. Such changes can be caused not only by intentional manipulation, but
also by unknown software bugs. However, to ensure that the final result is accepted only if
it correctly reflects the votes of the voters, even if parts of the voting system do not function
properly, the voting system must be end-to-end verifiable.

At first glance, it is far from clear whether and, if so, how these two contradictory properties can
be combined in online elections. On the one hand, ballot secrecy requires that the individual con
nections between voters and their votes in the result remain secret, while end-to-end verifiability
requires that it is possible to check that these connections remain intact throughout the complete
digital trail.

A plethora of knowledge. Fortunately, modern cryptography provides several viable methods for
resolving this conflict. For more than forty years, researchers and developers have designed, imple
mented, and analyzed end-to-end verifiable online voting systems that provide ballot secrecy and
other useful properties. Beginning with the pioneering work of Josh Benaloh in the 1980s [29, 17],
hundreds of academic papers have been published on this challenge over the past four decades, and
numerous online voting systems have been implemented that aim to combine ballot secrecy and
end-to-end verifiability using cryptography.

The primary goal of these methods is to place as little trust as possible in the individual compo
nents of the voting system, in order to be able to convince oneself as an independent auditor of
the correctness of the final result, while at the same time not revealing more information about the
individual votes than can be derived from the final result anyway.

While this plethora of knowledge holds enormous potential for the realization of secure online
elections, it also poses a great challenge. The jungle of proposals, discussions, analyses and systems
is almost impossible to keep track of. What methods exist and what are their goals? How secure and

6 Bundesamt für Sicherheit in der Informationstechnik (BSI)

$\EA $

$\RA $

$\voter _1, \ldots , \voter _n$

v_i

$\voter _i$

$\VD $

$\rho $

$\trustee _1, \ldots , \trustee _m$

$\mixserver _1, \ldots , \mixserver _l$

$\VS $

$\pbb $

$\auditor $

$\EA $

$\RA $

$\voter _1, \ldots , \voter _n$

$\VD $

$\VS $

$\trustee $

$\EA $

$\RA $

$\voter _i$

v_i

$\VD $

$\VS $

$\VS $

$\trustee $

$\rho $

$\rho (v_1, \ldots , v_n)$

$\VS $

$\trustee $

$\trustee $

$\VD $

$\trustee $

$\trustee _1, \ldots , \trustee _m$

$\pbb $

$\auditor $

$\voter _1, \ldots , \voter _n$

$\pbb $

v_i

$\pbb $

$\trustee $

$\trustee _1, \ldots , \trustee _m$

$\RA $

$\RA $

$\RA $

$\RA $

$\VD $

$\trustee _1, \ldots , \trustee _m$

$\pbb $

$res = \rho (v_1, \ldots , v_n)$

$\pbb $

$\pbb $

(\pk ,\sk)

$\E = (\KeyGenE , \Enc , \Dec)$

$\KeyGenE $

(\pk ,\sk)

$\Enc $

$\pk $

m

e

$\Dec $

$\sk $

e

m'

$(\pk ,\sk) \leftarrow \KeyGenE $

m

$e \leftarrow \Enc (\pk , m)$

m

$\pk $

e

sk

m

$m = \Dec (\sk , e)$

$\Enc (\pk , m)$

m

$\sk $

(\pk , \sk)

c

m_0

m_1

$\pk $

m_0, m_1

$\sk $

$\pk $

$\sk '$

$\sk $

$\mathcal {C} = (\Setup , \Com , \allowbreak \Open)$

$\Setup $

$\Com $

$\prm $

m

(c,d)

d

$\Open $

$\prm $

m

c

d

b

$\Com $

m

$\Open $

c

m

d

$\Com $

d

$prm \leftarrow \Setup $

m

$(c,d) \leftarrow \Com (\prm , m)$

(\prm , m, c, d)

$\Open (\prm , m, c, d) = 1$

c

m_0

m_1

$\prm \leftarrow \Setup $

(m_0, m_1)

$\Com (\prm , m_0)$

$\Com (\prm , m_1)$

c

$m_0 \neq m_1$

$\prm \leftarrow \Setup $

(c, m_0, m_1, d_0, d_1)

$m_0 \neq m_1$

$\Open (\prm , m_0, c, d_0) = 1$

$\Open (\prm , m_1, c, d_1) = 1$

(\vk ,\ssk)

$\Si = (\KeyGenS , \Sign , \VerifyS)$

$\KeyGenS $

(\vk , \ssk)

$\Sign $

$\ssk $

m

s

$\VerifyS $

$\vk $

m

s

b

$(\vk , \ssk) \leftarrow \KeyGenS $

m

$s \leftarrow \Sign (\ssk , m)$

(\vk , m, s)

$\VerifyS (\vk , m, s) = 1$

$\ssk $

w

x

w

w

x

w

x

$\mathcal {L}$

$\mathsf {NP}$

$\mathcal {L} = \mathcal {L}_{\mathcal {R}} = \{x \colon \exists w \colon (x,w) \in \mathcal {R} \}$

x

$\mathcal {R}$

w

$\mathcal {L}_{\mathcal {R}} = \{x \colon \exists w \colon (x,w) \in \mathcal {R} \}$

(\Prove , \Verify)

$\Prove $

$(x,w) \in \mathcal {R}$

$\pi $

$\Verify $

x

$\pi $

b

(\Prove , \Verify)

$(x,w) \in \mathcal {R}$

$\pi \leftarrow \Prove (x,w)$

$\pi $

$\Verify (x, \pi) = 1$

$s^* \notin \mathcal {L}$

$\Prove ^*$

$\Verify $

$\pi ^*$

$\Prove ^*$

$\Verify ^*$

$\mathsf {S}^*$

$x \in \mathcal {L}$

$\pi ^*$

$\pi \leftarrow \Prove (x,w)$

(t,n)

s

s_1, \ldots , s_n

n

t

n

s

t

s

$\mathcal {S}$

(\Share ,\Combine)

$\Share $

(t, n, s)

$t \leq n$

$s \in \mathcal {S}$

(s_1, \ldots , s_n)

$\mathcal {S}$

$\Combine $

$(I, (s_i)_{i \in I})$

I

$\{1, \ldots , n\}$

t

$(s_i)_{i \in I}$

$\mathcal {S}$

$s \in \mathcal {S}$

(t,n)

$s \in \mathcal {S}$

s_1, \ldots , s_n

$\Share (t, n, s)$

I

$\{1,\ldots , n\}$

t

$\Combine (I, (s_i)_{i \in I}) = s$

(t,n)

$t-1$

$\Share (t,n,s)$

s

(t,n)

s, s'

t

$\Share (t,n,s)$

t

$\Share (t,n,s')$

r

r^*

e_i^*

$1\si {MB}$

vid

r

e_i

$\AD $

$\VD $

$\AD $

$\VD $

$\voter _1$

$\voter _2$

v

$\VD _1$

$\VD _2$

A, B, C

$(10, -5, -5)$

A

B

C

$\prm $

$\EA $

$\Setup $

$\prm $

$\prm $

$\pbb $

$\VD $

v_i

$\prm $

(c_i, d_i)

$\pi _i$

v_i

c_i

$\VD $

$(c_i,\pi _i)$

$\VS $

$(c_i,\pi _i)$

$\pbb $

c_i

$\pi _i$

$\VD $

d_i

$\pk $

$\VS $

$\VS $

$\RA $

$\trustee $

$\trustee _1, \ldots , \trustee _m$

v_i

v_i^j

$\trustee _j$

$256 \si {bit}$

$32\si {B}$

$1.9\si {GHz}$

$0.32\si {ms}$

$421'580$

$421'580 \div (3.8 \times 10^9) \approx 11 \times 10^{-5} = 0.11 \si {ms}$

$0.11\si {ms}$

$\VD $

f

x_1, \ldots , x_n

$y = f(x_1,\ldots , x_n)$

≤ -1

$\leq $

$1\si {s}$

$d = (m,r)$

$\{0,1\}$

$(1+4)*100 = 500$

$(2+4) * (100+1) = 606$

$500 * 32 \si {B} + 606 * 32 \si {B} \leq 35 \si {KB}$

$1 \si {MB}$

$(2 + 4) * 100 = 600$

$4 * (100+1) = 404$

$0.32 \si {ms}$

$(600 + 404) * 0.32 \si {ms} = 321 \si {ms}$

(\KeyGenE , \Enc , \Dec)

$\Hom $

$e_i = \Enc (\pk , m_i)$

$(i \in I)$

e

$\Dec (\sk ,e) = \sum _{i \in I} m_i$

$\Hom $

m_i

$\sk $

(\pk ,\sk)

(\KeyGenE , \Enc , \Dec)

$\ReRand $

$\pk $

e

m

$\sk $

e'

m

$\sk $

$\ReRand $

$\Enc $

$\ReRand $

m

$\sk $

(\pk ,\sk)

$4 \cdot 0.32 \si {ms}= 1.28 \si {ms}$

$2 \cdot 2 = 4$

$200 \cdot 0.32 \si {ms} = 64 \si {ms}$

$404 \cdot 0.32 \si {ms} = 129.3 \si {ms}$

$1\si {s}$

$\trustee $

$\mathsf {hon}(\trustee)$

$\tau $

$(\mathsf {hon}(\RA) \text { AND } \allowbreak \mathsf {hon}(\VD) \text { AND } \mathsf {hon}(\trustee) \text { AND } \mathsf {hon}(\VS) \text { AND } \mathsf {hon}(\AD))$

v

$\voter _i$

$v > 1$

$\mathcal {G}$

$\mathbb {Z}_q$

$\sender _i$

$\mixserver _k$

$\mixserver _k$

$\sender _i$

$\mixserver _k$

$\sender _i$

$\mixserver _k$

$\sender _i$

$\mixserver _2$

$\mixserver _1$

$\sk _1$

$\mixserver _2$

$\sk _2$

$\mixserver _n$

$\mixserver _{k}$

$(\pk _k, \sk _k)$

$\pk _1, \ldots , \pk _n$

$\sender _i$

msg_i

$\pk _1, \ldots , \pk _n$

$\mixserver _1, \ldots , \mixserver _{n}$

$\sender _i$

e_i

$\mixserver _1$

$\pbb $

$\pbb $

E

$\mathsf {min}(\cdot ,\cdot) = 5$

I

$\mathsf {trim}(5 + \mathsf {sum}(\cdot)) = 3$

$\tfrac {2}{3} I + \tfrac {1}{3} E = 3.67$

$1\si {MB}$

$\mathsf {min}(\cdot ,\cdot) = 2$

$\mathsf {min}(\cdot ,\cdot) = 2$

$\mathsf {hon}(\RA) \text { AND } \mathsf {hon}(\VS) \text { AND } (\mathsf {hon}(\VD) \text { OR } \mathsf {hon}(\SC))$

$\VD $

e_i

v_i

v_i

k

$\VD $

$\VD $

s

k

s

r_i

$\VD $

$e_i \leftarrow \Enc (\pk , v_i, r_i)$

$\VS $

$\VS $

rc_i'

$\VD $

rc_i'

$rc_i' = rc_i$

k

$\voter $

$\SC $

v_i

(v_i, e_i, rc_i)

$e_i \leftarrow \Enc (\pk , v_i)$

v_i

rc_i

$\SC $

(e_i, rc_i)

$\VS $

$\SC $

(v_i, r_i)

r_i

v_i

s

s

$\SC $

k

(v_i, rc_i)

$\voter $

$\VD $

v_i

e_i

$\VD $

$\VS $

$\VS $

rc_i'

rc_i'

$rc_i' = rc_i$

(v_i, e_i, rc_i)

$\voter $

$\SC $

v_i

(v_i, e_i, rc_i)

$e_i \leftarrow \Enc (\pk , v_i)$

v_i

rc_i

$\SC $

(e_i, rc_i)

$\VS $

$\SC $

$\voter $

(\pk ,\sk)

$\SC $

$\SC $

$\SC $

$\SC $

$\SC $

$\VS $

$\mathsf {min}(\cdot ,\cdot) = 5$

E

I

$\mathsf {trim}(5 + \mathsf {sum}(\cdot)) = 5$

$\tfrac {2}{3} I + \tfrac {1}{3} E = 5$

$1\si {s}$

$\mathsf {min}(\cdot ,\cdot) = 2$

$\mathsf {hon}(\RA)$

$\VD $

$\mathsf {hon}(\RA) \text { AND } \mathsf {hon}(\VS) \text { AND } (\mathsf {hon}(\VD) \text { OR } \mathsf {hon}(\AD))$

$r^* = r+x$

v^*

v_i

e^*_i

$e^*_i = \Enc (\pk , v_i, r+x)$

r^*

$\AD $

e^*_i

r^*

v_i

v^*

$\AD $

$\VD $

r^*

$\VS $

e_i

e^*_i

$\VS $

$\AD $

e^*_i

e_i

e^*_i

r^*

v^*

v^*

v_i

$\VD $

e_i

e_i

e_i

r_i

$\VS $

x

e_i

x

e^*_i

$e^*_i = \ReRand (\pk , e_i, x)$

$\VS $

x

$r^* \leftarrow r + x$

r

$\VD $

e_i

v_i

$\voter _i$

$\VD $

$e_i \leftarrow \Enc (\pk , v_i)$

r_i

e_i

$\VS $

v

$\AD $

$\VD $

vid

r

$\VD $

e_i

$\AD $

vid

e_i

r

$e_i = \Enc (\pk , v; r)$

v

v

v_i

e_i

$\voter _i$

v_i

$\VD $

$e_i \leftarrow \Enc (\pk , v_i)$

r_i

$\VS $

$\VS $

vid

e_i

vid

$\auditor $

$\auditor $

r, x

$\ReRand (\pk , \Enc (\pk ,m,r), x) = \Enc (\pk ,m,r+x)$

m

e^*

e

$\AD $

$\VD $

$\AD $

$\VD $

E

$\mathsf {min}(\cdot ,\cdot) = 5$

I

$\mathsf {trim}(5 + \mathsf {sum}(\cdot)) = 5$

$\tfrac {2}{3} I + \tfrac {1}{3} E = 5$

$1\si {s}$

$1\si {MB}$

≤ -2

$\mathsf {min}(\cdot ,\cdot) = 0$

v'

$\voter _i$

v_i

$\VD $

$e_i \leftarrow \Enc (\pk , v_i)$

e_i

e_i

$\VD $

e_i

v'

r'

v_i

$\AD $

$\AD $

$e_i = \Enc (\pk , v'; r')$

v'

v_i

$\VD $

e_i

$\AD $

$\VD $

$\VD $

$\VD $

$\VD $

$\mathsf {min}(\cdot ,\cdot) = 5$

E

I

$\mathsf {trim}(5 + \mathsf {sum}(\cdot)) = 5$

$\tfrac {2}{3} I + \tfrac {1}{3} E = 5$

$0.32\si {ms}$

$1\si {s}$

$10^{5} \cdot 2 \cdot 0.11\si {ms} = 22 \si {s}$

$64 \si {B}$

$1\si {MB}$

$32\si {B}$

$\mathsf {min}(\cdot ,\cdot) = 5$

$\mathsf {min}(\cdot ,\cdot) = 5$

$\mathsf {min}(\cdot ,\cdot) = 4$

$\mathsf {hon}(\VD) \text { AND } \mathsf {hon}(\VS)$

$\RA $

$\RA $

$\RA $

$\pbb $

$\mathsf {min}(\cdot ,\cdot) = 3$

E

I

$\mathsf {trim}(5 + \mathsf {sum}(\cdot)) = 5$

$\tfrac {2}{3} I + \tfrac {1}{3} E = 4.34$

$100'000 * (4 + 2 + 7) = 13 * 10^5$

$3 \cdot 10^5$

$0.11 \si {ms}$

$4 \times 10^5 \cdot 0.11 \si {ms} = \textbf {44\si {s}}$

$(7 + 2) \times 10^5 \cdot 0.11 \si {ms} = \textbf {99\si {s}}$

$3 \times 10^5 \cdot 0.11 \si {ms} = \textbf {33\si {s}}$

$\textbf {2:56\si {min}}$

3

1

$\mathsf {hon}(\RA) \text { AND } \mathsf {hon}(\VD) \text { AND } \mathsf {hon}(\VS)$

$\pbb $

$\pbb $

$\pbb $

$\VD $

$\pbb $

$\sbb $

$\pbb $

$\pbb $

$\sbb $

$\pbb $

$\pbb $

$(e_i, \pi _i)$

$\pi _i$

e_i

e_i

$\pi _i$

$\pbb $

$\mixserver _1, \ldots , \mixserver _l$

$\pbb $

$\pbb $

e_i

$\voter _i$

$\pi _i$

v_i

$\pi _i$

$(e_i, \pi _i)$

$\pbb $

$\pbb $

$\auditor $

$e = \Enc (\pk , m)$

c

m

d

c

m

e

$\sk $

$\mixserver _{k}$

$\sender _i$

m_i

$\pk $

$\pbb $

$\mixserver _1$

$\mixserver _2$

$\mixserver _n$

$\sender _1, \ldots , \sender _m$

$\mixserver _1, \ldots , \mixserver _{n}$

$\pk $

$\sk $

$e = \Enc (\pk , m)$

$e' = \Enc (\pk , m)$

$\sk $

$\tfrac {2}{3} I + \tfrac {1}{3} E = 4.67$

I

$\mathsf {trim}(5 + \mathsf {sum}(\cdot)) = 5$

E

$\mathsf {min}(\cdot ,\cdot) = 4$

$\{0,1\}$

8

808

100

$8.08 \cdot 10^7$

$100\textrm '000 \cdot 200 = 2 \times 10^7$

$0.11 \si {ms}$

$(8.08 \times 10^7) \cdot 0.11 \si {ms} \approx 8'888 \si {s} \approx \textbf {2:28\si {h}}$

$(2 \times 10^7) \cdot 0.11 \si {ms} \approx 2200\si {s} \approx \textbf {0:37\si {h}}$

$3 \cdot 0.11 \si {ms} = \textbf {0.33\si {ms}}$

$\textbf {3:05\si {h}}$

$\mathsf {hon}(\RA) \text { AND } \mathsf {hon}(\VD) \text { AND } \mathsf {hon}(\VS)$

$\RA $

$\VS $

$\pbb $

$\trustee $

$\pbb $

$\pbb $

$\pbb $

$\pbb $

$\pbb $

$\VD $

$\pbb $

$\pbb $

$\pbb $

$(c_i, \pi _i)$

$\pi _i$

c_i

c_i

$\pi _i$

$\pbb $

$\trustee _j$

d^j_1, \ldots , d^j_n

$d^j \leftarrow \sum _{i=1}^n d^j_i$

$\pbb $

$\VS $

v_i

$\trustee _1, \ldots , \trustee _m$

v^1_i, \ldots , v^m_i

$(c^j_i, d^j_i) \leftarrow \Com (\prm , v^j_i)$

$\pi _i$

$c_i \leftarrow \sum _{j=1}^m c^j_i$

$\pi _i$

$(c^j_i)_{j=1}^m$

$((c^j_i)_{j=1}^m, \pi _i)$

$\pbb $

d^j_i

$\trustee _j$

$\trustee _j$

$\trustee _j$

$\pbb $

$\pbb $

$\pi _i$

$(e_i, \pi _i)$

e_i

e_i

$\pi _i$

$\pbb $

$\pbb $

$\pbb $

$\voter _i$

$\pi _i$

v_i

$\pi _i$

e_i

$(e_i, \pi _i)$

$\pbb $

$e_i = \Enc (\pk , v_i)$

v_i

$\Enc $

$\Hom $

v_1, \ldots , v_n

e_1, \ldots , e_n

$e = \Hom ((e_i)_{i=1}^n) = \Enc (\pk , \sum _{i=1}^n v_i)$

$\Hom $

$\tfrac {2}{3} I + \tfrac {1}{3} E = 3.67$

I

$\mathsf {trim}(5 + \mathsf {sum}(\cdot)) = 3$

E

$\mathsf {min}(\cdot ,\cdot) = 5$

$\mathsf {min}(\cdot ,\cdot) = 5$

2

$\mathsf {hon}(\RA) \text { AND } \mathsf {hon}(\trustee) \text { AND } \mathsf {hon}(\VD) \text { AND } \mathsf {hon}(\VS)$

$c \in \mathcal {G}$

$d = (m, r) \in \mathbb {Z}^2_q$

$\Open $

$c = g^m \cdot h^r$

$\Setup $

$\mathcal {G}$

q

g

h

$\mathcal {G}$

$\prm = (\mathcal {G}, p, q, g, h)$

$m \in \mathbb {Z}_q$

$\prm = (\mathcal {G}, p, q, g, h)$

$\Com $

r

$\mathbb {Z}_q$

$(c = g^m \cdot h^r, d = (m, r))$

c

m

d

c

m

n

$k \leq n$

$\{0,1\}$

$\{0,1\}$

m

$c = \Com (\prm , m)$

$\mathcal {C}$

m

m

$c = \Com (\prm , m)$

m

$\ReRand $

$\ReRand $

$\prm $

c

m

d

c'

m

d'

c

c'

m

d

c

$\mathcal {C} = (\Setup , \Com , \allowbreak \Open)$

$\Hom $

$\prm $

$(c_i)_{i \in I}$

$(m_i)_{i \in I}$

c

$\sum _{i\in I} m_i$

$d = \sum _{i \in I} d_i$

$(d_i)_{i \in I}$

$\Hom $

m_i

d_i

$\mathsf {min}(\cdot ,\cdot) = 5$

E

I

$\mathsf {trim}(5 + \mathsf {sum}(\cdot)) = 5$

$\tfrac {2}{3} I + \tfrac {1}{3} E = 5$

$2 \cdot 32 \si {B} + 2 \cdot 32 \si {B} = 128 \si {B}$

$\{0,1\}$

$100 + 1 = 101$

200

$101 \cdot 8 = 808$

$200 \cdot 32 \si {B} + 808 \cdot 32 \si {B} \approx 32 \si {KB}$

$1 \si {MB}$

0

5

3

5

$\mathsf {min}(\cdot ,\cdot) = 5$

$\mathsf {hon}(\RA) \text { AND } \mathsf {hon}(\trustee) \text { AND } \mathsf {hon}(\VD) \text { AND } \mathsf {hon}(\VS)$

2

$\sk $

$\pbb $

$\RA $

$\trustee $

$\KeyGenE $

$\pk , \sk $

$\KeyGenE $

$\trustee _1, \ldots , \trustee _m$

$\trustee _j$

$\sk _j$

$\pk $

$\pbb $

$\voter _i$

v_i

$\VD $

v_i

$\pk $

e_i

$\pi _i$

v_i

e_i

$(e_i,\pi _i)$

$\VS $

$(e_i,\pi _i)$

$\pbb $

e_i

$\pi _i$

$\VS $

$\pk $

m

$t < m$

c

$\{0,1\}$

$\{0,1\}$

$\sk $

$\pk $

$\sk $

e

$\pk $

m

$v \cdot u^{-s} = g^{sr} \cdot g^{-sr} \cdot m = m$

$\Dec $

$\sk = (\mathcal {G}, p, g, s)$

$e = (u,v)$

m

$v \cdot u^{-s}$

$(u,v) = (g^{r}, h^{r} \cdot m)$

$h=g^{s}$

$\KeyGenE $

$\mathcal {G}$

p

g

$\mathcal {G}$

s

$\mathbb {Z}_p$

$\pk $

$(\mathcal {G}, p, g, h=g^{s})$

$\sk $

$(\mathcal {G}, p, g, s)$

$\Enc $

$\pk = (\mathcal {G}, p, g, h=g^{s})$

$m \in \mathcal {G}$

r

$\mathbb {Z}_q$

e

$(u = g^{r},v = h^{r} \cdot m) \in \mathcal {G}^2$

h^r

m

$u = g^{r}$

s

$(u = g^{r},v = h^{r} \cdot g^m)$

$m \in \mathbb {Z}_q$

$\log _g (v \cdot u^{-s})$

m

$t < m$

$\sk $

$\sk $

$\sk $

$\pk $

$\pk $

$\KeyGenE $

$\mathcal {C}$

m

$e = \Enc (\pk , m)$

m

$\pk $

$\pk $

$\pk $

$\pk $

$\pk $

m

$e = \Enc (\pk , m)$

m

$\VS $

$\RA $

$\leq $

$\leq $

$\leq $

$\leq $

$>$

$\geq $

$\leq $

$\leq $

$\geq $

$>$

$\tau $

$\tau $

$\tau $

$\tau $

$\auditor $

$\tau $

$\mathsf {hon}(\RA)$

$\mathsf {hon}(\VD)$

$\mathsf {hon}(\AD)$

$\mathsf {hon}(\trustee)$

$\mathsf {hon}(\VS)$

$\mathsf {hon}(\mathsf {X})$

$\mathsf {X}$

$\EA $

$\RA $

$\VD $

$\AD $

$\cal {A}$

$A \in \cal {A}$

$\tau $

$\tau = \mathsf {hon}(\VS) \text { AND } \mathsf {hon}(\trustee)$

$\VS $

$\trustee $

$\tau $

$\mathcal {A}$

$\tau $

$\tau $

$\mathsf {X}$

$\mathsf {hon}(\mathsf {X})$

$\mathsf {X}$

$\tau $

$\mathsf {hon}(\mathsf {X})$

$\pbb $

$\trustee $

$\EA $

$\RA $

$\mathcal {M}$

$\pk $

$\EA $

$\RA $

$\VS $

$\voter _1$

$\voter _2$

$\voter _3$

$\VD _1$

$\VD _2$

$\VD _3$

v_1

v_2

v_3

b_1

b_2

b_3

$\trustee $

b_1, b_2, b_3

$\rho (v_1, v_2, v_3)$

$\Enc (\pk)$

$\Dec (\sk)$

$\Com (\prm)$

$\Open (\prm)$

$\Sign (\ssk)$

$\VerifyS (\vk)$

$\Prove (w)$

$\Verify $

s

s_2

s_1

s_3

$\Share (2,3)$

s

$\Combine $

x

y

x

y

$x + y$

$x + y$

$\Enc (\pk)$

$\Enc (\pk)$

$\Hom $

$\Dec (\sk)$

$\Enc (\pk)$

$\ReRand $

$\Dec (\sk)$

x

d_x

x

y

d_y

y

$x + y$

$\Com (\prm)$

$\Com (\prm)$

$\Hom (\prm)$

$\Open (\prm)$

$\Com (\prm)$

$\ReRand (\prm)$

$\Open (\prm)$

0

1

0

1

1

0

0

1

0

1

1

0

$\Enc (\pk)$

$\Enc (\pk)$

$\Enc (\pk)$

1

2

$\Hom $

$\Hom $

1

2

$\Dec (\sk)$

$\Dec (\sk)$

$\Enc (\pk)$

$\Enc (\pk)$

$\Enc (\pk)$

$\ReRand (\pk)$

$\ReRand (\pk)$

$\ReRand (\pk)$

$\ReRand (\pk)$

$\ReRand (\pk)$

$\ReRand (\pk)$

$\Dec (\sk)$

$\Dec (\sk)$

$\Dec (\sk)$

A Study of Mechanisms for End-to-End Verifiable Online Voting

practical are they? Which components can be combined to build a complete, end-to-end verifiable
online voting system? What are the pitfalls?

This work. The purpose of this study is to provide a comprehensive reference to answer the pre
vious questions:

1. Identification of key methods: Based on an extensive market and literature analysis, we have
selected eight key methods for end-to-end verifiable online voting that we will study in more
detail in this work. These methods differ in their purposes, underlying assumptions and cryp
tographic building blocks.

2. Introduction of evaluation criteria: We introduce evaluation criteria for the four most impor
tant aspects of secure online voting. These are secrecy, verifiability, usability, and practicality.

3. Description of methods: For each of these eight methods, we explain in detail which require
ments (cryptographic or systemic) are necessary to realize them. We then describe how these
methods are integrated into an online voting system.

4. Evaluation of methods: We evaluate each of these methods with regard to the four aspects
mentioned above. In this way, we can determine their individual characteristics.

5. Discussion: Based on our evaluation results, we discuss the advantages and disadvantages of
the different methods and give recommendations for their deployment in practice.

Our study is intended for readers without a strong technical background who want to familiarize
themselves with the topic of end-to-end verifiable online elections. While we assume that the read
ers have some basic knowledge of computer science, we will introduce all the cryptographic and
online voting concepts necessary to understand our study from the ground up.

Structure. Our study is organized as follows. In Chapter 2, we present the necessary background in
online voting and cryptography to follow our study. In Chapter 3, we introduce our four evaluation
criteria. In Chapter 4, the main work of our study, we describe and evaluate the eight different
methods we selected. In Chapter 5, we summarize and discuss our results.

Bundesamt für Sicherheit in der Informationstechnik (BSI) 7

\begin {equation*}(\ldots \text { AND } \ldots) \text { OR } (\ldots \text { AND } \ldots) \text { OR } (\ldots \text { AND } \ldots) \text { OR } \ldots ,\end {equation*}

\begin {equation*}\mathsf {hon}(\RA) \text { AND } (\mathsf {hon}(\VS) \text { OR } \mathsf {hon}(\trustee))\end {equation*}

\begin {equation*}(\mathsf {hon}(\RA) \text { AND } \mathsf {hon}(\VS)) \text { OR } (\mathsf {hon}(\RA) \text { AND } \mathsf {hon}(\trustee)).\end {equation*}

$[1,5]$

A Study of Mechanisms for End-to-End Verifiable Online Voting

2 Background

2.1 End-to-end verifiable online voting

In this section, we give a brief introduction to verifiable online voting systems. We will describe
their main components/participants and overall flow, their main security and privacy goals, and
their basic common approach to guarantee these properties.

2.1.1 Overview

Table 2.1: Notation for e-voting protocols.

Variable Meaning
EA election authority
RA registration authority

V1, . . . ,Vn voters
vi Vi’s vote
VD voting device
ρ result function

T1, . . . ,Tm tallier
M1, . . . ,Ml mix servers

VS voting server
BB bulletin board
A auditor

An online voting protocol is run between an election authority EA, a registration authority RA,
a set of voters V1, . . . ,Vn with voting devices VD, a voting server VS, and a tallier T (see Table 2.1).
The election authority EA is responsible for setting up the election (date, set of candidates, voting
method, etc.). The registration authority RA authenticates the voters to ensure that only eligible
voters can vote. During the submission phase, each voter Vi enters their vote vi to their voting device
VD, which digitally encodes the vote and submits it over the internet to the voting server VS. In
the tallying phase, the voting server VS sends these digital votes to the tallier T, which applies the
specified voting method ρ to these votes (e.g., counts the number of votes per candidate), and finally
returns the election result ρ(v1, . . . , vn) to VS.

Obviously, all parties in the voting protocol sketched above must be trusted in all important as
pects. For example, T would learn the clear choice of each digitally encoded vote, and if T were
dishonest, it could manipulate the election outcome undetected. Another example is the voting de
vices VD, which receive the voters’ clear choices and thus learn how each voter voted, and which
can secretly manipulate those votes. Such weaknesses can be avoided by designing online voting
systems to combine several security and privacy features.

2.1.2 Properties

We describe the most important properties of verifiable online voting. These include secrecy, veri
fiability, usability and practicality. Here, we explain these properties on an intuitive level, which is

8 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

EA

RA VS

configures configures

V1

V2

V3

authenticates

authenticates

authenticates

VD1

VD2

VD3

enters v1

enters v2

enters v3

submits b1

submits b2

submits b3

T

b1, b2, b3 ρ(v1, v2, v3)

Figure 2.1: Illustration of a voting protocol.

sufficient to follow our exposition, and in Chapter 3, we will define them precisely to later evaluate
the different methods in Chapter 4.

Secrecy (Section 3.2). To ensure that election results reflect the true, unbiased will of the voters, the
voting system must provide an environment in which voters do not fear disadvantage for casting a
vote for their preferred choice. There are different aspects of this challenge that need to be consid
ered for any election and resolved when necessary. In the following, we describe three important
properties, namely vote privacy, everlasting privacy, and vote-buying resistance, that relate to this
challenge and that we will use in our evaluation. The first property, vote privacy, is the most basic
and is commonly required, while the other two may or may not be required depending on the type
of election.

• Vote privacy (Section 3.2.1) guarantees that the links between individual voters and their votes
in the (public) final result remain secret. To this end, it should not be possible for an observer to
obtain more information during the course of an election than what can be inferred from the
final result. Such malicious observers can be external actors as well as attackers who corrupt
parts of the election system. Therefore, the role of the tallier T is often distributed among
several entities T1, . . . ,Tm so that only a threshold of them need to be trusted for privacy.1

• Practical everlasting privacy (Section 3.2.2) guarantees that the audit data used to verify an
online election (see below) keeps the individual votes unconditionally secret, i.e. without any
computational hardness assumptions.

The background is that the verifiability of voting systems, as we explain below, requires that
certain data be shared in order to verify that the voters’ will is correctly reflected in the final
result. Depending on how this property is realized at the cryptographic level, the audit data
keeps the individual votes secret only under certain computational hardness assumptions.

1Moreover, depending on how trust is distributed, the protocol becomes more robust in case a tallier is not able (or
willing) to participate in tallying.

Bundesamt für Sicherheit in der Informationstechnik (BSI) 9

A Study of Mechanisms for End-to-End Verifiable Online Voting

While such hardness assumptions may hold at the time of the election, there is a risk that they
may not hold in the future due to new cryptanalytic techniques or more powerful computers
(such as quantum computers). Thus, if an attacker stores conditionally secret audit data and
uses it to deduce the votes of individual voters in the future, this leakage can have negative
effects on voters even after several decades, depending on the election. Verifiable online voting
systems with practical everlasting privacy avoid this threat because their audit data keeps the
voters’ individual choices unconditionally secret.

• Vote-buying resistance (Section 3.2.3) makes it more difficult for the final result to be influenced
by vote-buying. While it is not possible to prevent voters from selling their votes by purely
technical means, it is possible to build in mechanisms that prevent voters from convincingly
proving to third parties (especially vote buyers) how they voted. In this way, the incentive to
buy votes is economically undermined.

Verifiability (Section 3.3). Another fundamental challenge is to be confident that the votes cast by
voters are accurately reflected in the election result. The gold standard for meeting this challenge is
end-to-end verifiability, which can be enhanced to accountability.

• End-to-end verifiability ensures that it is possible to verify that the final election result is cor
rect, even if some of the participants are corrupted. Since the main purpose of verifiability is
to protect against possibly corrupted parties, verifiability should (ideally) not be based on any
trust assumptions.

• Accountability is a stronger notion of verifiability. While verifiability enables auditors to verify
whether the final election result correctly reflects the votes chosen by the voters, verifiability
alone is not sufficient to detect which parties manipulated the final outcome. Accountability
solves this problem as it enables one to identify misbehaving parties individually and hold
these parties accountable. This property can be particularly useful in practice to resolve/avoid
possible disputes and to increase the system’s robustness.

Usability (Section 3.4). In order to guarantee the secrecy and verifiability properties described
above not only in theory, but also in practice, it is crucial that the human components of voting
systems (especially the voters) can successfully perform their roles. Otherwise, the security of the
voting system may be rendered completely insecure in real-world elections, even if it appears to
work properly in gray theory.

Therefore, it is important to study the usability of a voting system. Special attention is paid to
the voting procedures and to the individual verification procedures of the voters. Only if the voters
can perform these procedures efficiently (in a reasonable time), effectively (reaching the goal), and
satisfactorily (in a comfortable way), they fulfill their desired function: casting a vote and, if sup
ported by the system, verifying that the voting device processed the cast vote as intended. If these
steps are not sufficiently usable by voters, this has fundamental implications. If voters are unable to
cast their vote, this prevents them from participating in the election, which undermines the univer
sality of the election. If voters are unable to verify their voting devices, corrupt voting devices can
manipulate votes unnoticed, which subverts the integrity of the election result.

Practicality (Section 3.5). It is the practicality of a voting system that ensures that it can be im
plemented correctly in practice and that the resulting implementation is efficient enough for the
intended election. We will consider the following two basic aspects of practicality:

• Implementability (Section 3.5.1) captures the effort required to implement a mechanism.
There are various constraints (e.g., required skills, limited resources, and the complexity of

10 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

the protocol) that decrease implementability, while some enablers (e.g., existing software
libraries) can increase it.

• The efficiency (Section 3.5.2) of a mechanism limits the election settings to which it can be
applied in practice. These settings are determined by, among other things, the equipment of
the voters and election officials, and the complexity of the ballots (e.g., number of candidates).
Therefore, before using a voting system for a particular election, it is important to be able to
assess whether the mechanism will be efficient in that environment.

2.1.3 General approach

While it may not be intuitively obvious that the conflicting properties of verifiability and vote pri
vacy can be combined, there are several methods to efficiently resolve this seeming contradiction
using cryptography. These methods differ, among other things, in the specific functions they are
intended to fulfill within the electoral system. In the following, we present the main components
according to their function.

Bulletin board. Verifiable e-voting protocols commonly implement a bulletin board BB, which
broadcasts all data that is necessary to verify the correctness of the final result. Depending on the
election scenario or voting system, this data may be accessible to everyone (voters, observers, etc.)
or only to certain parties. In the following, we consider the parties with access to this data as a single
entity, which we call the auditor A.

Secret ballots. During the submission phase, the voters V1, . . . ,Vn post some information about
their votes on BB. In order to protect their own privacy, voters seal their votes vi in secret ballots.
Most commonly, the voters encrypt their secret votes and post the resulting ciphertext to BB. The
ciphertext can only be decrypted by the tallier T, or in case of distributed trust, jointly by the different
talliers T1, . . . ,Tm.

Authenticated ballots. Authenticating ballots is necessary to ensure their eligibility. The internal
registration authority RA responsible for this task has special power because it can effectively decide
which ballots are accepted for voting and which are not. To limit the power of RA, it is helpful to
introduce alternative authentication methods that do not require trusting RA. A common way to do
this is to use digital signatures, whose trustworthiness is guaranteed by system-independent means
(e.g., electronic IDs). While the building block itself does not require any election-specific properties,
it can prevent a corrupted RA from stuffing the ballot box with illegitimate ballots.

Voting device verification. Since the voting devices use cryptographic techniques to keep the vot
ers’ individual choices secret, it is impossible for a human voter to directly check that their voting
device VD cast their vote as intended. There exist different techniques to empower voters to verify
that their original choices have been processed correctly. Some techniques employ, for example,
separate audit devices or applications, while others use human-readable codes.

Verifiable privacy-preserving tallying. In the tallying phase, the talliers T1, . . . ,Tm employ some
secret knowledge (e.g., private keys) to process the secret ballots on BB and compute the final result
res = ρ(v1, . . . , vn). During this process, the individual links between the voters and their choices
in the final result must be kept secret to maintain vote privacy. The two most common ways to
guarantee this property are secret shuffling of the ballots and secret aggregation of the choices:

Bundesamt für Sicherheit in der Informationstechnik (BSI) 11

A Study of Mechanisms for End-to-End Verifiable Online Voting

• Secret shuffling: The links between the received secret ballots and the output plaintext ballots
are obscured by randomly shuffling the secret ballots and then outputting only the shuffled
ballots in plaintext at the end. This method is equivalent to the way ballot secrecy is main
tained in traditional paper-based elections: voters place their completed secret ballots in a
ballot box, which is then shaken out at the end of the election so that the individual ballots in
the pile can no longer be assigned to individual voters.

• Secret aggregation: This method secretly adds up the individual votes for each candidate, and
then outputs these totals. Thus, the final result is the total number of votes cast for each can
didate. Each individual vote thus disappears in the anonymized total. This type of counting
corresponds to non-digital elections where each candidate has its own ballot box and voters
can cast their votes in the form of stones (or similar) into these individual ballot boxes. The
number of stones per ballot box then equals the total number of votes cast for that candidate.

The talliers then post the result to the bulletin board BB. To prove that they executed the privacy-
preserving technique correctly, the talliers also compute a proof that can be verified by anyone with
access to the encrypted ballots and the election result. This proof does not reveal any secret knowl
edge of the talliers, such as information about private keys. The talliers then post this proof to BB.

12 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

2.2 Cryptography

All verifiable online voting systems have cryptographic building blocks at their core. In this section,
we will introduce the most important recurring cryptographic building blocks:

• Public-key encryption (Section 2.2.1) is used in most verifiable voting systems to encrypt sen
sitive data, such as votes, with a public key so that only selected parties who know the corre
sponding secret key can read it.

• Commitments (Section 2.2.2) are often used for similar purposes, with the difference that the
sensitive data cannot be read with a message-independent secret key, but only with specific
information that is generated during the individual commit process and then shared with
selected parties.

• Digital signatures (Section 2.2.3) are commonly used in voting systems so that different parties
can verify that the messages they receive are from the indicated party.

• Zero-knowledge proofs (Section 2.2.4) allow a party to prove that it performed a certain com
putational step correctly, without having to reveal any further information (such as the secret
key used in the computation). These building blocks are central to combine the competing
but desirable properties of public verifiability and secrecy of votes.

• Threshold secret sharing (Section 2.2.5) can be used to distribute information about a secret
(e.g., a secret key) among multiple parties, so that more than a certain threshold of them must
cooperate to recover the secret from their individual shares.

For more detailed information on modern cryptography, we refer the reader to the relevant lit
erature, for example [82, 54, 55, 19] (English) or [105] (German).

2.2.1 Public-key encryption

A public-key encryption (PKE) scheme enables everyone to encrypt messages so that the content of
the resulting ciphertexts can only be read by the designated receiver but no-one else.

Message Message Message
Enc(pk) Dec(sk)

Figure 2.2: Illustration of a public-key encryption scheme with public/private key pair (pk, sk).

Notation. In general, a public-key encryption (PKE) scheme is a tuple of polynomial-time algo
rithms E = (KGe, Enc,Dec):2

• The probabilistic key generation algorithm KGe outputs a public/private key pair (pk, sk).3

• The probabilistic encryption algorithm Enc takes as input a public key pk and a message m,
and outputs a ciphertext e.

• The deterministic decryption algorithm Dec takes as input a secret key sk and a ciphertext e,
and outputs a message m′.

2Cryptographic algorithms usually depend on a security parameter that determines the concrete security level of the
scheme. Throughout this paper, we assume that the security parameter is an implicit input to all algorithms.

3We assume that the public key pk implicitly defines the set of valid messages M.

Bundesamt für Sicherheit in der Informationstechnik (BSI) 13

A Study of Mechanisms for End-to-End Verifiable Online Voting

Correctness. A PKE scheme is correct if and only if for all public/private key pairs (pk, sk)← KGe,
for all messages m, and for all encryptions e← Enc(pk,m) of m with public key pk, the decryption
of e with the secret key sk returns the originally encrypted message m, i.e., m = Dec(sk, e).

Security. A PKE scheme is secure if any ciphertext Enc(pk,m) does not leak any information about
the secret message m if the corresponding decryption key sk is secret. More precisely, for our ap
plication, we need a PKE scheme that is secure against chosen-plaintext attacks (CPA). This notion
guarantees that for any public/secret key pair (pk, sk) of this PKE scheme, an attacker cannot dis
tinguish whether a ciphertext c encrypts message m0 or m1, even if the attacker knows the public
key pk and can choose the messages m0,m1. See, e.g., [82] for a formal definition of this notion.

We note that the security of PKE schemes (and of public-key cryptography in general) can only be
guaranteed for computationally limited adversaries. The reason is that computationally unbounded
adversaries can always ”brute-force” the secret key sk from the corresponding public key pk, i.e., try
out all possible secret keys sk′ until they find the correct one sk. Therefore, the security of specific
PKE schemes is based on certain problems that are assumed to be computationally intractable for
potential adversaries.

2.2.2 Commitments

A commitment scheme (CS) enables everyone to commit to a message so that:

1. Anyone, who does not know how the resulting commitment was created, is unable to derive
the original message (hiding).

2. And everyone can be convinced by the committing party that the commitment in fact com
mits to the original message (binding).

Message

Decommitment Message

Yes/No

Com(prm)

Open(prm)

Figure 2.3: Illustration of a commitment scheme.

Notation. A commitment scheme (CS) (Figure 2.3) is a tuple of polynomial-time algorithms C =
(Setup,Com,Open):

• The probabilistic setup algorithm Setup outputs the public parameters.

• The probabilistic commitment algorithm Com takes as input the public parameters prm and
a message m, and outputs a commitment/opening pair (c, d); the value d is sometimes called
decommitment.

• The opening/verification algorithm Open takes as input public parameters prm, a message m,
a commitment c, and an opening value d, and outputs a bit b.

14 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

The commitment algorithm Com is run by the committer to commit to a message m. The open
ing algorithm Open can be run by anyone who wants to verify that a given commitment c actually
commits to m; to do so, the committer reveals the opening value d to the verifier.

If the committer runs Com and reveals the correct opening value d, then the opening algorithm
returns 1 (”accept”), otherwise 0 (”reject”); this is formalized by the following correctness property.

Correctness. A CS is correct if and only if for all public parameters prm← Setup, for all messages
m, and for all commitment/opening pairs (c, d) ← Com(prm,m), the opening algorithm accepts
the tuple (prm,m, c, d), i.e., Open(prm,m, c, d) = 1.

Security. The hiding property of commitment scheme guarantees that any observer cannot dis
tinguish whether a given commitment c is for some message m0 or m1. This notion is formalized
similar to the CPA notion for the secrecy of PKE schemes (Section 2.2.1). For all public parameters
prm ← Setup and for all possible message pairs (m0,m1), the distributions of their resulting com
mitments Com(prm,m0) and Com(prm,m1) are indistinguishable. Depending on the specific CS,
the distributions are (in order of hardness) computationally indistinguishable, statistically indistin
guishable, or identical.

The binding property of commitment schemes guarantees that the committer cannot create
a commitment c that is valid for two different messages m0 ̸= m1. This notion is formalized
as follows. For all public parameters prm ← Setup, the probability that any potential adversary
can compute a tuple (c,m0,m1, d0, d1) such that m0 ̸= m1 and Open(prm,m0, c, d0) = 1 and
Open(prm,m1, c, d1) = 1 is negligible. Depending on the specific CS, the binding property can be
unconditional or based on the hardness of a computational problem.

Since commitment schemes are keyless, such a scheme can in principle be unconditionally hiding
or unconditionally binding (but never both). This is in contrast to PKE scheme, whose secrecy is al
ways conditional (Section 2.2.1). Unconditionally hiding commitment schemes are useful to design
verifiable online voting protocols with practical everlasting privacy (Section 4.3).

2.2.3 Digital signatures

A digital signature (DS) scheme enables a party to sign messages so that everyone can convince them
selves that the signatures were created by that party but no-one else.

Message Signature

Yes/No

Sign(ssk)

Verify(vk)

Figure 2.4: Illustration of a digital signature scheme with verification/signing key pair (vk, ssk).

Notation. A digital signature (DS) scheme (Figure 2.4) is a tuple of algorithms S = (KGs, Sign,Verify):

• The probabilistic key generation algorithm KGs outputs a verification/signing key pair
(vk, ssk).

• The probabilistic signature algorithm Sign takes as input a secret signing key ssk and a message
m, and outputs a digital signature s.

Bundesamt für Sicherheit in der Informationstechnik (BSI) 15

A Study of Mechanisms for End-to-End Verifiable Online Voting

• The verification algorithm Verify takes as input a verification key vk, a message m, and a sig
nature s, and outputs a bit b.

Correctness. A DS scheme is correct if and only if for all verification/signing key pairs (vk, ssk)←
KGs, for all messages m, and for all signatures s ← Sign(ssk,m), the verification algorithm accepts
the tuple (vk,m, s), i.e., Verify(vk,m, s) = 1.

Security. On an intuitive level, a DS scheme is secure if it is infeasible to create a valid fresh sig
nature without knowing the secret signing key, even when a possible attacker can choose arbitrary
messages to be signed and returned by the signer (which knows the secret signing key ssk). This
property is reflected in the common notion of EUF-CMA (Existential Unforgeability under Chosen
Message Attack) security, which we assume to hold for the DS schemes used in this work.

2.2.4 Zero-knowledge proofs

A zero-knowledge proof (ZKP) enables a party to prove that a certain statement holds true (soundness)
without revealing any information beyond the correctness of that statement (zero-knowledge).

Statement Proof

Yes/No

prover P(w)

verifier V

Figure 2.5: Illustration of a non-interactive zero-knowledge proof for some statement with witness
w.

Notation. A ZKP is a protocol that is run between two parties, the prover and the verifier. The
prover wants to convince the verifier that a certain statement, denoted x, is true. The prover has
some secret knowledge, the witness w. The prover uses w to prove that x is correct without revealing
any information about w beyond what can be derived from the statement x anyway.

More formally, each ZKP is defined for a language L, which specifies the supported statements.
The languages of the ZKPs that we study in this paper are all subsets of the complexity class NP.
They can thus be represented as L = LR = {x : ∃w : (x,w) ∈ R}, where the variable x denotes a
statement that is in relation R with some witness w.

Most of the ZKP systems used for verifiable e-voting are non-interactive zero-knowledge proof
(NIZKP) systems. In these systems, the prover creates a proof without interacting with the verifier.
In particular, anyone who receives the proof can verify its correctness. A NIZKP for some language
LR = {x : ∃w : (x,w) ∈ R} is a tuple of algorithms (P,V):

• The probabilistic prover algorithm P takes as input a statement/witness pair (x,w) ∈ R, and
outputs a proof π.

• The deterministic verifier algorithm V takes as input a statement x and a proof π, and outputs
a bit b.

Correctness. A NIZKP (P,V) is correct if and only if for all statement/witness pair (x,w) ∈ R and
all proofs π ← P(x,w), the verifier accepts the proof π, i.e., V(x, π) = 1.

16 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

Soundness. On an intuitive level, the soundness property of a NIZKP guarantees that a dishonest
prover cannot create a valid proof for a false statement. This notion is formalized as follows. For all
invalid statements s∗ /∈ L and any (possibly corrupted) P∗, the probability that the verifier V accepts
a ”proof” π∗ from P∗ is negligibly small.

Zero-knowledge. On an intuitive level, the zero-knowledge property of a NIZKP guarantees that
no more information can be extracted from the proof than the correctness of the statement. This
notion is formalized as follows. For any possibly corrupted verifier V∗, there exists a probabilistic
polynomial-time algorithm S∗ (the simulator) that outputs for all x ∈ L a simulated ”proof” π∗. The
point is that the simulator creates this ”proof” without knowing the witness, but such that simulated
proofs are indistinguishable from real proofs π ← P(x,w) that were computed with the witness.
For this purpose, the simulator is allowed to go back to an earlier point in the protocol run, and
use knowledge of the later trace (rewinding); this allows the simulator (unlike the actual prover) to
anticipate possible challenges of the verifier.

2.2.5 Threshold secret sharing

s s2

s1

s3

Share(2, 3)

s
Combine

Figure 2.6: Illustration of a secret sharing scheme with three shares, out of which two are needed to
reconstruct the secret.

A (t, n)-threshold secret sharing scheme allows to distribute knowledge about a secret s in the form
of shares s1, . . . , sn among n different parties such that any t of the n shares are sufficient to recon
struct the secret s, but any set of less than t shares reveals nothing about s.

Notation. A threshold secret sharing scheme (over some arbitrary finite set S) is a pair of efficient
algorithms (Share,Combine):

• Share is a probabilistic sharing algorithm that takes as input (t, n, s), where t ≤ n are positive
integers and s ∈ S , and returns a vector (s1, . . . , sn) with elements in S .

• Combine is a deterministic combining algorithm that takes as input (I, (si)i∈I), where I is a
subset of {1, . . . , n} of size t and (si)i∈I is a vector of elements in S , and returns an element
s ∈ S .

Correctness. A (t, n)-threshold secret sharing scheme is correct if for all s ∈ S , for all
outputs s1, . . . , sn of Share(t, n, s), and for all subsets I of {1, . . . , n} with size t, we have
Combine(I, (si)i∈I) = s.

Bundesamt für Sicherheit in der Informationstechnik (BSI) 17

A Study of Mechanisms for End-to-End Verifiable Online Voting

Security. A (t, n)-threshold secret sharing is secure if every set of t − 1 shares output by
Share(t, n, s) reveals nothing about s. This notion is formalized similarly to the CPA-security of
PKE schemes (Section 2.2.1) and to the hiding property of commitment schemes (Section 2.2.2). We
say that a (t, n)-threshold secret sharing scheme is secure, if for all secrets s, s′, the distributions of
any set of less than t shares of Share(t, n, s) and of any set of less than t shares of Share(t, n, s′) are
indistinguishable.

18 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

3 Evaluation criteria

We introduce the four criteria that we will use to evaluate the different methods for verifiable online
voting (Chapter 4): vote secrecy (Section 3.2), verifiability (Section 3.3), usability (Section 3.4), and
practicality (Section 3.5).

Remark 1: Expressiveness

The following points should be noted:

• Scoring system: For three of the four properties (secrecy, usability, and practicality) we
will introduce scoring systems that give some indication of the degree of effect on the
property. We would like to make it clear at this point that these numbers should not be
taken as absolute truths, but serve to provide a rough classification.

• Focus and scope: While the focus of our evaluation is on the individual methods, the entire
electoral system must always be considered for a complete analysis. Such a comprehen
sive analysis, taking into account all components of the online voting system in detail, is
beyond the scope of this study.

Before going into the technical definitions of these criteria, we first describe the legal background
of online voting in general, and how our criteria relate to it.

Bundesamt für Sicherheit in der Informationstechnik (BSI) 19

A Study of Mechanisms for End-to-End Verifiable Online Voting

3.1 Legal background

The Council of Europe describes the common principles for democratic elections of its member
states in its Code of Good Practice in Electoral Matters [35]. The Code identifies the principles of
universal, equal, free and secret elections with direct suffrage. In addition, basic conditions must be
met, including the rule of law, respect for fundamental rights (e.g. freedom of expression, freedom
of assembly), stability of the electoral law and effective procedures.

To implement the election principles for e-voting, as defined in the Code of Good Practice, the
Council of Europe describes in its Recommendation CM/Rec(2017)51 on standards for e-voting [36] a
set of minimum requirements that an online voting system must meet in particular. These mini
mum requirements must be fulfilled by any online voting system, while they may be supplemented
by additional standards of the legal framework applicable to the specific election. For example, in
Germany, elections at the national level are additionally governed by the principle of “the public na
ture of elections”, which requires that essential parts of the election be publicly verifiable (“öffentlich
nachvollziehbar”) [23].

We summarize the minimum requirements as given by the Recommendation as follows:

• Universal: The voting system must be easy to use and accessible to all voters, and voters must
be aware that they are voting in a real election.

• Equal: Official voting information must be presented equally to other voting channels. Fur
ther, the system must effectively authenticate voters and their ballots, respecting the ”one
person, one vote” principle.

• Free: The voting system must not influence the voter’s intention, and the voter must be able to
determine whether their vote was cast as intended. Further, the voting system must prove that
all authenticated votes are accurately included in the final result, and the final result consists
only of votes of eligible voters.

• Secret: The voting system must effectively protect the secrecy of voter registers, votes, and
preliminary results. In addition, the voter must not receive a receipt for their vote, and their
unsealed vote must not be traceable to them.

In this study, we focus on the technical aspects to implement these legal minimum requirements.
We use the following approaches:

• Secrecy: The voters’ choices remain secret except for what is learned from the election result.
This realizes the secret voting principle.

• Verifiability: The announced result of the election is the actual choice of the voters. This real
izes the principles of equal and free elections.

• Usability: The voting system is efficient, effective and satisfying to use, while remaining ac
cessible to all. This realizes the principle of universal suffrage.

• Practicality: The voting system, respectively the concrete mechanisms it is composed of, is
feasible to implement and operate.

20 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

3.2 Secrecy

We present our privacy criterion to evaluate the verifiable e-voting mechanisms. We divide it into
three subcriteria: Vote privacy (Section 3.2.1), everlasting vote privacy (Section 3.2.2) and vote buying
resistance (Section 3.2.3).

Model. To analyze the three secrecy aspects, we refine our general voting protocol model (Sec
tion 2.1) as follows:

• Registration authority: We regard that part of the election authority EA that registers voters as
a separate entity, called the registration authority RA.

• Talliers: For each tallier T, we distinguish between the tally trustee (the party that processes
the submitted secret ballots), and the decryption trustee (which decrypts the processed ballots).
For the decryption trustee, we distinguish even further between the decryption machine (the
computer that the decryption trustee uses) and the secret key storage (the medium on which
the secret decryption key material is stored).

We further assume that the roles of all authorities and talliers can be distributed among different
entities (to reduce trust).

Types of information. We further distinguish between the following types of information:

• Public information: This includes all general information provided to the voters (e.g., dates,
election parameters, talliers’ public key). Such data could, for example, be shared on a public
part of the bulletin board.

• Semi-public information: This includes all verification data on the bulletin board BB. This
contains, among others, the voters encrypted ballots and possible data shared by the elec
tion authorities. Since they can be accessed by the election auditors, we consider this data
semi-public.

• Receipts: This includes any information that a voter, who follows their prescribed role, receives
(e.g. by email) or that a voter is asked to save.

• Secret information: Some data is kept secret by the trusted parties. This includes, for example,
decryption keys if the decryption authorities are trusted. The adversary never gets access to
this data, so these assets do not appear in our evaluation.

Overall secrecy score. We assign an overall score for secrecy to each online voting system. The
idea is: the higher the score, the better the protection of secrecy.

The overall score is composed of three partial scores, namely the scores for vote privacy, vote-
buying resistance, and everlasting privacy. For each of these aspects, the voting system can reach a
certain level and the number of this level corresponds to the score for this aspect.

We then combine these partial scores as follows to determine the overall score for secrecy. If the
score of vote privacy is zero, then the overall score is also zero. Otherwise, to evaluate the overall se
crecy score, we add together the doubled score of vote privacy (because this is the most fundamental
secrecy property), the score of everlasting privacy, and the score of vote-buying resistance.

Bundesamt für Sicherheit in der Informationstechnik (BSI) 21

A Study of Mechanisms for End-to-End Verifiable Online Voting

3.2.1 Vote privacy

Vote privacy guarantees that an observer or an attacker cannot learn any information about the
votes of individual voters beyond what can be inferred from the public election result. We evaluate
the vote privacy of a voting system according to the types of attackers against which it provides vote
privacy. The stronger the potential attackers are, the higher we rate the vote privacy of the voting
system. The final level provides the strongest protection of vote privacy that an online voting system
can achieve (under realistic, practical assumptions).

At the first level, we consider only external attackers. These attackers have access to all data sent
over the network during the election, to the public information available to all participants, and
to all receipts that voters receive when they cast their votes. We expect any voting system with a
minimum level of vote privacy to keep voters’ votes secret from such attackers.

Vote privacy: Level 1

The attacker learns all data sent on the network, all public information, and all voter receipts.

To achieve levels higher than level 1, the voting system must guarantee vote privacy even if the
attacker can passively or even actively corrupt certain components of the voting system.

We start with level 2 by assuming that the attacker can either (1) passively corrupt the voting
server and learn all of the internal data of that server, in particular the log data of individual voters
and their votes cast,1

Vote privacy: Level 2

The attacker can additionally control (at most) one of the following machines:

(1) An honest-but-curious voting server: the voting server follows its dedicated program, but
may leak all internal data to the attacker.

(2) One malicious tally trustee and one malicious decryption machine: the attacker can fully
control the actions of one tally trustee and one decryption machine and learns all internal
data.

At level 3, we strengthen the potential attackers by providing them with the secret key shares of
the decryption trustees up to a threshold and allowing them to learn all data necessary to verify
the election result, including all intermediate ciphertexts and corresponding (non-interactive zero-
knowledge) proofs.

Vote privacy: Level 3

The attacker can additionally access secret key storage of up to a threshold of the decryption
trustees, and all data provided to the auditors (i.e., all semi-public information).

At level 4, we also consider the registration authorities, whose trustworthiness is relevant to vote
privacy for the following reason. Since it is the task of the registration authorities to ensure the eligi

1Despite its practical importance, we do not consider in our evaluation the case where the attacker can actively corrupt
the voting server, neither in terms of verifiability nor in terms of privacy. The reason for this is that in our model, the
voting server also hosts the bulletin board, and in this work we do not study methods for securing the bulletin board
(and thus the voting server) against active attacks. We refer to Section 4.10.1 for work that addresses this problem. or (2)
actively corrupt a subset of the parties responsible for counting the votes (the talliers and the decryption authorities).
Scenario (1) requires that the votes are not sent to the voting server in clear text, but in encrypted form. Scenario (2)
requires that the votes in the result output by the tallying parties cannot be linked to the identities of individual voters.

22 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

bility of the ballots, sufficiently many corrupt registration authorities can prevent voters from voting
(in a more or less subtle way). This would reduce the number of ballots and thus the anonymity set in
which individual ballots should hide. To reach level 4, we expect the voting system to provide vote
privacy even if up to a threshold many registration authorities can be actively corrupted. In addi
tion, we also allow possible attackers to actively control up to a threshold many of the decryption
trustees and tally trustees.

Vote privacy: Level 4

The attacker can additionally control up to a threshold of the registration authorities, up to a
threshold of the decryption trustees, and up to a threshold of the tally trustees.

At the highest level, we expect that the voting system also protects vote privacy even if the voters’
voting clients are corrupted.

Vote privacy: Level 5

The attacker can additionally corrupt all voting clients.

3.2.2 Everlasting privacy

The general idea of everlasting privacy is that the audit data that are necessary to verify an election
should not compromise vote privacy, even if computational hardness assumptions are broken after
the election (e.g., because all the decryption keys are leaked, new insights into its cryptanalysis, or
more powerful computers). We divide the degree of everlasting privacy into four levels, with ev
erlasting privacy being stronger the higher the level reached. The lowest level is 0, which is given
when no higher level can be achieved or when no reasonable degree of verifiability can be provided
(Section 3.3).

At the first level, we make the general minimal assumption that all public information is also
available to the attacker, and the more specific assumption that the attacker obtains all secret keys
of the decryption trustees.

Everlasting privacy: Level 1

The attacker has access to all public information and to the secret key storage of all decryption
trustees.

At the next level, the attacker can also access all the data needed to verify the election.

Everlasting privacy: Level 2

The attacker additionally has access to all data provided to auditors (semi-public information).

At the highest level, we make the weakest trust assumption under which everlasting privacy can
be achieved at all: that the attacker can access all data except the data of the voting server.

Everlasting privacy: Level 3

The attacker additionally has access to the data of all participants except the voting server.

Bundesamt für Sicherheit in der Informationstechnik (BSI) 23

A Study of Mechanisms for End-to-End Verifiable Online Voting

3.2.3 Vote-buying resistance

The general principle is that the system should protect against vote buying, i.e. a voter should be
able to lie about their vote and their material so that they cannot convince a buyer.

We will use the term short-term voting material to refer to any election-specific material (login,
password, credential, etc.), in contrast to the long-term voting material which refers to any election-
independent material (e.g., ID card, professional login and password, single sign-on).

There are different types of vote-buying and they cannot be directly compared (i.e., they are nei
ther stronger nor weaker than the other). We take this into account by specifying that voting systems
can in principle achieve the same level of vote-buying resistance even if they protect against other
types of vote-buying.

At level 1, we consider two different types of influence. In the first type, the attacker receives all
receipts from the voter it wants to influence. In the second type, the attacker is physically present
and looks over the voter’s shoulder as they cast their vote. If the voting system protects against one
of these types of attacks, it achieves level 1.

Vote-buying resistance: Level 1

At least one of the following two scenarios is prevented:

(1) The attacker can have access to the full public data. If the voter behaves honestly and
provides all their receipts (if any) to an attacker, the attacker cannot be convinced that the
voter voted in a certain way.

(2) The attacker can physically observe the voter while voting but does not make any further
checks. The voter has a way to still vote for their preferred candidate, without the attacker
being able to notice, even if that candidate is not the attacker’s candidate.

If the voting system prevents both scenarios (1) and (2), even if the voter hands over their short-
term voting material (see above) to the attacker, the voting system reaches level 3. Because of the
special challenge of achieving this goal, we go directly from level 1 to level 3 in this case.

Vote-buying resistance: Level 3

Both scenarios from level 1 can be prevented, even when the voter provides the attacker with
their short-term voting material.

To reach level 4, the voting system must also protect against vote buyers who have access to semi-
public information (audit data), or who are able to successfully cast one vote on behalf of the voter
(but the voter can still cast another vote that secretly nullifies the attacker’s vote). If it protected
against both, this reaches level 5.

Vote-buying resistance: Level 4

In addition, the attacker has at least one of the following abilities:

(1) The attacker has access to the data provided to auditors.

(2) The attacker can successfully cast a vote on behalf of the voter.

Vote-buying resistance: Level 5

The attacker has both abilities (1) and (2), as defined at level 4.

24 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

3.3 End-to-end verifiability

We present the verifiability criteria that we will use to analyze the mechanisms for verifiable online
voting. We first describe the notion of verifiability which we then use to develop our criteria for
assessing the level of verifiability of online voting systems.

3.3.1 Notion

Our notion of verifiability is the result of an earlier systematic review on verifiability notions for
e-voting protocols [32].

Idea. Our notion of end-to-end verifiability considers whether the votes of the (human) voters
that enter the system at one end correctly match the final result that is output at the other end
of the system. An end-to-end verifiable voting system is characterized by the fact that it provides
mechanisms for voters or observers to check that the data at both ends do indeed match; if they do
not match, one of the checks ”sounds the alarm”.

This means that the purpose of verifiability is to ensure that even if one or more components of
the voting system fail to perform their tasks correctly (whether intentionally or not), it is possible to
detect that something has gone wrong. However, if all of these components are corrupted simulta
neously and collectively, then it is difficult to provide any guarantees at all about the security of the
voting system in general, and its verifiability in particular.

This central observation shows that an e-voting system can only provide verifiability under spe
cific assumptions regarding the correctness or honesty of its participants/components. Therefore,
a main conclusion of the survey on verifiability notions [32] was that it is important to state these
trust assumptions explicitly. We will also follow this principle.

Definition. We represent the assumption that a participant X is honest by hon(X). This individual
trust assumption states X cannot be corrupted and behaves as specified by the protocol. Now, we
represent the overall trust assumption τ as a combination of ”OR” and ”AND” of different individual
trust assumptions hon(X). For example, τ = hon(VS) AND hon(T) describes that the voting server
VS and the tallier T are assumed to be honest, i.e., cannot be corrupted.

Our definition of end-to-end verifiability is now as follows. Let τ be a trust assumption, and let A
be a set of algorithms/attacks that an attacker can execute under the trust assumption τ . We say that
a voting system is end-to-end verifiable under the trust assumption τ against A if under any attack
A ∈ A (obeying the trust assumption τ), the probability that the final result published by the voting
system is accepted, even though this result does not match the voters’ votes, is negligible. We refer
to [32] for the formal definition.

In our analysis, unless otherwise stated, we assume that all corrupted components and channels
can be controlled or intercepted by the same attacker. From a security perspective, these global and
active attackers represent the most pessimistic case, i.e. the greatest threat.

3.3.2 Criteria

We now present our approach to evaluate the end-to-end verifiability of a voting system.

Idea. The main idea of our evaluation is based on an explicit and precise description of the trust
assumptions under which a voting system is verifiable. Based on these trust assumptions, it is then
possible to make general statements about the end-to-end verifiability of the analyzed voting sys
tem, and to assess in which specific election scenarios the system should be used and in which ones
it should not.

Bundesamt für Sicherheit in der Informationstechnik (BSI) 25

A Study of Mechanisms for End-to-End Verifiable Online Voting

Model. To study verifiability, we refine our general model (Section 2.1) as follows:

• Voter: We distinguish between the human voter, their voting device VD (the device that voters
use to cast their votes), and their audit device AD (the device that voters use to perform their
individual checks).

• Registration authority: We consider the part of the election authority EA that is responsible for
registering voters (and optionally providing them with authentication tokens) to be a separate
entity, the registration authority RA.

Trust assumption. Based on the decomposition introduced above, we can now model any trust
assumption τ as OR and AND combinations of the literals hon(RA), hon(VD), hon(AD), hon(T), and
hon(VS), where hon(X) stands for the fact that the participant X is honest (see above). Since we as
sume that the auditor A is always is honest, we do not explicitly include the trust assumption for
this party.

We note any AND/OR combination can be represented in the form

(. . . AND . . .) OR (. . . AND . . .) OR (. . . AND . . .) OR . . . ,

i.e, by an OR combination of pure AND-clauses. For example,

hon(RA) AND (hon(VS) OR hon(T))

is equivalent to
(hon(RA) AND hon(VS)) OR (hon(RA) AND hon(T)).

We therefore focus on these AND combinations in our analysis.

Assessment. The identification of a trust assumption τ in the above form is the basis for assess
ing the end-to-end verifiability of the voting system under investigation. Generally speaking, the
less assumptions the formula τ contains, the higher is the level of end-to-end verifiablity a system
provides. However, not all assumptions have the same weight. More specifically:

• General assessment: First, a voting system cannot be considered verifiable if all parties
need to be trusted. Therefore, if the trust assumption τ contains the term (hon(RA) AND
hon(VD) AND hon(T) AND hon(VS) AND hon(AD)), then this indicates that the respective
voting system is not verifiable.

Second, of all the participants, a corrupt tallier T can most easily manipulate the complete
final result if its output is not (or cannot be) verified.2 Therefore, we expect that the trust as
sumption hon(T) should be avoided in any reasonable verifiable voting system, which reduces
the possible combinations for such systems to seven AND combinations.

• Specific assessment: We also use the trust assumption τ to evaluate more precisely in which
types of elections the voting system is verifiable. For example, the assumption that the regis
trar is honest is stronger the less information about the voters (number, identities, etc.) is made
public and integrated into the voting system. This example illustrates that the same trust as
sumption τ does not lead to the same evaluation in two different contexts. Therefore, in our
evaluation, we will consider in which contexts the respective trust assumption is justified and
in which contexts it is not.

In summary, when evaluating the end-to-end verifiability of a voting system, we combine the
general and specific perspectives based on the corresponding trust assumption.

2Moreover, there are efficient and established methods to verify the tallying of the ballots, while the situation is more
difficult for the other components.

26 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

Accountability. While end-to-end verifiability guarantees the correctness of the final result,
a stronger feature is desirable from a practical point of view. Namely, it is helpful to be able to
identify the party or parties responsible for the error. For example, if a voting system uses a mix
net (Section 4.5) consisting of multiple mix servers, and it can be observed that a particular mix
server is not working correctly, then this mix server can be replaced without changing the rest of
the system. In addition, potential identification serves as a deterrent against corrupt participants
who fear penalties if it is discovered that they have misbehaved.

This desired property is called accountability [102]. It is a stronger form of verifiability, making it
possible not only to determine whether the final result matches the votes cast, but also to identify
the responsible component (or at least limit the possible sources of error) in the event of a detected
error. Because of its practical usefulness, we will positively evaluate accountability as a bonus of
end-to-end verifiable systems.

Bundesamt für Sicherheit in der Informationstechnik (BSI) 27

A Study of Mechanisms for End-to-End Verifiable Online Voting

3.4 Usability

We present our usability criterion to evaluate the mechanisms that we study in this work. We first
present some insights from usability evaluations of e-voting systems (i.e., systems with actual user
interfaces), including what we can learn from these studies for usability criteria and evaluation at the
mechanism level. We then present the usability-relevant factors we use in this work, which form the
abstraction layer on which we evaluate the mechanism. Finally, we present the evaluation criterion
itself, which assigns a rating to each mechanism. Our criteria focuses on mechanisms which require
user involvement.

3.4.1 Background

In the following, we explain the most important aspects of usability and the factors that research on
the usability of e-voting has so far identified as influencing these aspects. These findings form the
basis for the definition of our criteria (Sections 3.4.2 and 3.4.3).

Usability. The ISO standard for usability [78] considers the following aspects:

• Efficiency: This is the (total) time that users need to complete their task. In our application,
this is the time to complete authentication, vote casting, and individual verification.

• Effectiveness: This property describes how accurately and completely users perform their task.
In our application, there are essentially two types of potential errors: failing to cast a vote, or
failing to apply the individual verification mechanism. The latter can be divided into failing
to detect manipulations, or failing to report a detected manipulation to the right place.

• Satisfaction: This property measures how comfortable users found the task. In our applica
tion, this could for example be affected by voters complaining about having to use two devices.

Related work. We base our evaluation criteria on the results of previous studies in this area (see,
e.g., [121, 1, 89, 41, 98, 4, 111, 90, 113, 140, 136]). In the following, we will discuss in more detail the
two studies that are most directly relevant to our criteria for our study:

• Marky et al. [110] use expert evaluation, specifically independent of a concrete user interface,
to assess the usability of mechanisms in the context of remote electronic voting, focusing on
the cast as intended verifiability. The capabilities we identify are inspired by this work, while
we choose a more expressive structuring to evaluate our more diverse set of mechanisms.
Furthermore, the authors of [110] only quantify the number of required assumptions, but do
not consider differences in complexity or time required for the capabilities considered.

• Kulyk et al. apply human factors from other security domains to the context of online vot
ing [96]. We consider the pitfalls they identified when determining the capabilities required
by voters.

3.4.2 Factors

We divide usability-relevant factors into preconditions that must be met before the voter can use
the mechanism, and the actual steps that the voter must take to execute the mechanism. Since we
evaluate these mechanisms independent of the specific user interfaces, we stick to the technical
properties: the data exchanged with the voter and the voter’s steps during the exchange. Note that
this excludes steps that may be very important in an actual user interface (for example, an overview
of all selected candidates before really casting the vote), but are not required by the mechanism
under evaluation.

28 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

Preconditions. For each mechanism, there exist certain requirements that are necessary to exe
cute the mechanism. This includes in particular (but not exclusively) the following potential re
quirements:

• Remembering secret(s) (e.g. a password for the SSO service).

• Having tokens (e.g. eID card) available.

• Having additional devices available (e.g. smartcard reader, or smartphone).

• Verifying that you are connected to the correct web service (e.g. checking server certificate).

• Installing and using the correct application (e.g. vote casting app, app to verify certain steps).

In our evaluations, we do not consider the requirements, as they are not part of the mechanism
itself. However, we document requirements explicitly when describing the mechanism, as they still
may have an impact (e.g. maybe not all users have access to an additional device).

Steps. If the relevant preconditions are met, the voter executes the concrete steps of the mecha
nism. This includes in particular (but is not limited to) the following possible actions:

• Entering data (e.g. codes, tokens) manually or via QR code(s).

• Selecting options (e.g. ticking boxes next to candidates/parties).

• Comparing data (e.g. selected vote, random looking characters, images).

• Looking up data (e.g. using the browser’s search function).

• Forwarding data (e.g. sending receipts to talliers via email).

Each of these steps may include aspects which make it harder for the voter to execute the step
effectively (e.g. because the step is mentally demanding to perform). We consider this in our evalu
ation. What we unfortunately cannot evaluate on the abstraction layer aimed for by this study are
aspects of accessibility; while we note that none of the evaluated mechanisms present an additional
obvious hurdle.3

3.4.3 Criteria

We present our criteria to evaluate the usability of a voting mechanism. In general, usability can be
decomposed into efficiency, effectiveness, and satisfaction. In this work, we do not evaluate satis
faction, since satisfaction reported in previous work was consistently high, regardless of the mech
anism (see, e.g., [113]), and since this would require a real user study. Here, as we have no concrete
user interfaces given, we however instead perform an expert evaluation. Therefore, we focus on
efficiency and effectiveness, for which we present scoring systems.

Efficiency. To evaluate the efficiency level, we count the number of relevant steps to execute the
mechanism (see Section 3.4.2). If the mechanism requires only one relevant step, it achieves the
highest score, which is 5. For each additional step, we reduce this score by one.

We reduce this subscore by one for steps that require non-trivial effort per candidate, rather than
per ballot (e.g., when voters need to compare a string for each candidate). This condition captures
cases where a mechanism scales poorly to larger ballots.

3However, accessibility tools to execute some of the steps, such as readers or magnifiers, may introduce additional de
vices and therefore also additional trust assumptions for secrecy and verifiability.

Bundesamt für Sicherheit in der Informationstechnik (BSI) 29

A Study of Mechanisms for End-to-End Verifiable Online Voting

Effectiveness. To evaluate the level of effectiveness, we count the number of all steps that are dif
ficult, disruptive, optional, or have a large impact, as explained next:

• Difficult: We consider a step to be difficult if it requires actions that are challenging and not
common in ”everyday” applications (browsing, online banking, messaging, etc.). Such steps
carry a significant risk of not being executed correctly.

• Disruptive: We consider a step to be disruptive if voters need to take actions at different times.
For example, if voters need to be active before the actual voting and then later during the sub
mission phase, or if the first part of the verification takes place during voting and the other part
at the end of the voting period. Such breaks are likely to result in errors and low motivation
to continue at a later time.

• Optional: We consider a (verification) step to be optional if votes can be cast without perform
ing the verification step. The reason is that optional security steps have a negative effect on
the manipulation detection rate.

• Large impact: We consider a step to have a large impact if an incorrect execution of that step
enables the adversary to insert or change ballots (as opposed to ”only” drop ballots).

• Additional device: Some steps need to be executed on a device different from the voting device.
We consider this also to place a burden on the voter.

If a mechanism does not include any of such steps, it achieves the highest effectiveness score,
which is 5. Otherwise, for each such step, we reduce the score by one.

Overall usability score. The overall usability of a mechanism is rated as the minimum of the effi
ciency and effectiveness subscores.

30 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

3.5 Practicality

We propose a practicality criterion to evaluate e-voting mechanisms.
We divide our criterion into two sub-criteria: implementability and efficiency, each receiving a

score between 1 and 5. Implementability represents the complexity of developing an implementa
tion for a mechanism (Section 3.5.1), while efficiency reflects the computational and communication
costs of running a voting system using that mechanism (Section 3.5.2).

Overall practicality score. To combine the implementability and efficiency scores into an overall
practicality score, we use a weight of 2/3 for implementability and 1/3 for efficiency. The reason is
that implementation difficulties can lead to serious security problems.

3.5.1 Implementability

Implementability captures the effort required to implement a mechanism. We do not give a precise
definition of the concept here, but propose a reasonably objective grading scale.

We begin by listing the various aspects that affect implementability, and follow with a grading
scale to quantify the impact of each aspect. We classify the aspects of implementability into con
straints, which imply complexity of the mechanism and its implementation, and enablers, which
facilitate the implementation.

To evaluate the overall implementability of a mechanism, we start with 5, subtract the points
corresponding to constraints, and add the points for enablers. The resulting sum is trimmed to fit
in the range [1, 5].

Constraint: skills (Table 3.1). A mechanism may require the person or group of people implement
ing it to have some knowledge or skill in a particular domain. We consider these to be any skills, in
addition to the ”standard” background of a software engineer, that are required to understand the
particular algorithm or to implement it correctly.

Examples of such skills include cryptography (e.g. elliptic curves, zero-knowledge proofs), sys
tems (e.g. mailing system, virtualization), parallelism (e.g. MPI, POSIX threads), secure hardware
(e.g. JavaCard programming), Blockchain (e.g. Smart Contract programming), or web security
(e.g. CSRF, CSP).

Table 3.1: Evaluation of required skills.

 Score Description
 0 Only common software engineering knowledge is needed
-1 Advanced knowledge in one topic needed
-2 Advanced knowledge in multiple topics is needed

Constraint: resources (Table 3.2). A mechanism may rely on existing resources, physical or digital,
to enable its implementation, making the task more complex.

Examples of such resources include sources of randomness in a constrained environment, low-
latency/high-throughput network between agents, key management systems (e.g. HSM), multiple
interacting devices, anonymous/untappable channels, special printing (e.g., special paper, unusual
folding, scratch cards), or personal trusted hardware (e.g. eID).

Constraint: protocol complexity (Table 3.3). The number of agents involved in the mechanism,
as well as the pattern of communication between the agents, has a significant impact on the ef
fort required to implement the mechanism: more agents means that more independent pieces of

Bundesamt für Sicherheit in der Informationstechnik (BSI) 31

A Study of Mechanisms for End-to-End Verifiable Online Voting

Table 3.2: Evaluation of required resources.

 Score Description
 0 No specific resource is needed
-1 Some reasonably obtainable resource is needed
-2 Some hard to obtain or setup or manageable resource is needed

software must be developed, and the communication between the agents must be managed and
synchronized. Therefore, the more agents are involved and the more complex their communica
tion is, the more negatively we evaluate this constraint. If the mechanism requires up to two more
agents, we consider this few agents, otherwise we consider this many agents.

Table 3.3: Evaluation of protocol complexity.

 Score Description
 0 Few agents
-1 Many agents with independent actions
-2 Many agents, with multiple dependent interactions

Enabler: software library (Table 3.4). If a library exists that implements the mechanism, the im
plementability is greatly increased, possibly to the point where the question becomes moot. Since
the answer to the question of whether a library exists is rarely a simple yes or no, we use the following
categories to evaluate the quality of a library:

• High: Actively maintained, well documented, and has a permissive license. The library covers
exactly the mechanism.

• Medium: Passively maintained, lacking some documentation, or with a restrictive license. The
library only partially covers the mechanism, or some relevant part is hard to extract.

• Low: Unmaintained or uncommon language, poorly documented and difficult to use.

Table 3.4: Evaluation of enablers.

 Score Description
 0 No library or reference implementation, the algorithm is

 only described in white papers or research papers
 1 Low quality or prototype implementation for part or for

 the entire mechanism, but not usable as-is
 2 High quality library for an important building block,

 or medium quality library for the entire mechanism
 3 One or more high quality libraries for the entire mechanism,

 well specified and documented

3.5.2 Efficiency

We study two aspects of efficiency: communication and computation. We evaluate the communi
cation overhead and the computation overhead of a mechanism separately, and the minimum of
both is its overall efficiency.

In our evaluations, to estimate the data size and computation time, we will consider an election
with 100 candidates from which a voter can choose one.

32 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

Communication (Table 3.5). The main communication costs of a mechanism are the size of the
data to be transferred and the complexity of the communication:

• Data size: We look at the total size of all messages and divide it by the number of voters. We
use 1 MB per voter as a definition of medium size.

• Complexity: We count the number of communication rounds, i.e. the number of times an
agent (server, voting device, audit device, …) has to wait for data from others before it can send
messages again. The higher the number of rounds, the worse the communication complexity.
If the number of rounds is in relation to the number of servers and trustees, we use some
rounds, else we use many rounds.

Table 3.5: Evaluation of communication overhead.

 Score Description
 1 many rounds and big size
 2 some rounds and big size, or many rounds and medium size
 3 some rounds and medium size
 4 1 round and medium size
 5 0-1 round and small size

Computation (Table 3.6). To evaluate the computational overhead of a mechanism, we consider
a large scale election with 100,000 voters on current retail hardware. We distinguish between the
computational cost on the voters’ side and on the servers’ side.

• Voter: We assume that the voter is using a browser or app on their personal computer or
phone. We distinguish between less than 1 second, less than 1 minute, and more than 1 minute
of computation time.

• Server: We distinguish between a few minutes, a few hours, and many hours (more than five)
of computation time on a single processor. We value positively when the algorithm can be
distributed or parallelized.

Table 3.6: Evaluation of computational cost.

 Score Time Server Time Client
 1 ≥ few hours and not distributable and not parallelizable > 1min
 2 ≥ few hours, distributable or parallelizable > 1min
 3 ≤ few hours ≤ 1min
 4 ≤ few hours, distributable or parallelizable ≤ 1s
 5 ≤ few minutes ≤ 1s

Bundesamt für Sicherheit in der Informationstechnik (BSI) 33

A Study of Mechanisms for End-to-End Verifiable Online Voting

4 Evaluation

This chapter represents the main part of our work: the description and our evaluation of different
methods for verifiable online voting.

Before we study these techniques in Section 4.2 to Section 4.9, we start with an overview of our
evaluation. Please read this introduction carefully before proceeding with the evaluation.

4.1 Overview

From the results of our market and literature analysis, we selected eight different techniques that
are used to implement verifiable online voting. These eight methods are the cryptographic building
blocks that we consider most relevant for the practical implementation of verifiable online voting.
In addition to these methods, there are of course other useful building blocks, which we do not
discuss in detail in this paper, but which we briefly describe in Section 4.10.

Selected methods. The methods that we will evaluate in this paper can be categorized as follows
(recall Section 2.1.3):

• Secret ballots: We study two different methods for keeping individual ballots secret, namely
malleable public-key encryption (Section 4.2) and malleable commitments (Section 4.3),
which are both compatible with the following verifiable tallying techniques.

• Verifiable tallying: We study two different methods to verifiably tally ballots in a privacy-
preserving way. These are homomorphic aggregation (Section 4.4) and verifiable mixing
(Section 4.5).

• Authenticated communication: We study how digital signatures (Section 4.6) can be used in
verifiable online voting to resolve possible disputes and to distribute trust in the authentica
tion of ballots.

• Voting device verification: We study three different methods that enable individual human
voters to verify that their voting devices correctly processed their secret votes. These are audit-
or-cast (Section 4.7), cast-and-audit (Section 4.8), and return codes (Section 4.9). All of these
techniques are compatible with the two secret ballot techniques (see above). Depending on
how they are implemented, these techniques protect against potentially corrupted voting ap
plications or even potentially corrupted voting machines.

Evaluation. We study these eight techniques with our criteria for vote secrecy (Section 3.2), verifi
ability (Section 3.3), usability (Section 3.4), and practicality (Section 3.5) that we defined in Chapter 3.

Relationship to subproperties. End-to-end verifiability of e-voting systems is sometimes divided
into three subtypes: individual verifiability (voters can verify that the votes they cast are included in
the tally), universal verifiability (it can be independently verified that the tally is correct), and eligi
bility verifiability (it can be verified that only eligible voters participate in the election).

Although this separation contains subtle pitfalls and end-to-end verifiability cannot be easily de
rived from these sub-properties (see below), we would like to illustrate their relationship to the se
lected methods:

34 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

• Individual verifiability: Essentially, individual verifiability allows voters to check that (1) their
voting device has processed their vote correctly and (2) their processed vote is included in the
tally. The first property is called cast-as-intended; the methods audit-or-cast (Section 4.7), cast-
and-audit (Section 4.8), and return codes (Section 4.9) aim to ensure this property. The second
property, called recorded-as-cast, ensures that cast ballots are stored and remain stored on the
bulletin board. Recorded-as-cast is usually achieved by voters verifying that their ballots have
been correctly stored by the voting server or posted to the bulletin board (depending on the
system). Since this check is independent of the mechanisms that we study in this work, we
assume in the following that honest voters make this check.

• Universal verifiability: Universal verifiability guarantees that the secret votes in the digital bal
lot box are tallied correctly. Therefore, this property is sometimes called tallied-as-recorded.
This property can be achieved by combining one of the two secret ballot methods (malleable
PKE and malleable commitments, see Sections 4.2 and 4.3) with one of the two verifiable tal
lying methods (homomorphic aggregation and verifiable mixing, see Sections 4.4 and 4.5).

• Eligibility verifiability: How to verify or ensure that only eligible voters cast a vote is primarily
a feature of the voting system, based on effective authentication of voters. Nevertheless, el
igibility verifiability can be improved using cryptography, for example by integrating digital
signatures to distribute the authentication of voters to parties independent of the system.

However, a word of caution at this point. Even if a voting system provides all three of these prop
erties, this does not guarantee the end-to-end verifiability of the system. For example, it is necessary
to ensure that the data is consistent throughout the course of an election and that so-called clash at
tacks [103] are prevented. Therefore, when analyzing the security of an online voting system, it is
crucial to consider the entire system and not to use any shortcuts!

Limitations. We want to be clear about the limitations of our work:

1. Focus: In this study, we focus on the cryptographic methods of verifiable online voting sys
tems. In addition to these core components, there are many other aspects that are important
for realizing verifiable online elections in practice. These include, but are not limited to, gen
eral IT security considerations for complex and distributed systems, the establishment of an
information security management system (ISMS) and the development of an appropriate user
interface (UI).

2. Scope: We do not study all existing important cryptographic building blocks. In particular,
we always assume in our evaluation that the bulletin board is implemented securely, i.e., that
it provides a consistent, unbiased view of the audit material to all authorized participants.
For completeness, we briefly describe other relevant methods that we have identified in our
market and literature analysis in Section 4.10.

3. Formal rigidity: The intended audience of this paper is newcomers to the field of verifiable
online voting, and this paper is intended to give them a first, well-founded overview of the
various methods available in this area. Therefore, we have deliberately avoided a rigid math
ematical description and evaluation in favor of accessibility. For formal analysis, we will refer
to corresponding work in the academic literature.

Conventions. For ease of presentation and evaluation, the following conventions are used
throughout this chapter:

Bundesamt für Sicherheit in der Informationstechnik (BSI) 35

A Study of Mechanisms for End-to-End Verifiable Online Voting

• Bulletin board: While it is important to ensure that the bulletin board is implemented cor
rectly (see above), the methods we study in this paper are essentially independent of this sys
tem component. Therefore, in this study we assume (as stated above) that the bulletin board
is working correctly. We also assume that the voting server hosts the bulletin board and is
implemented correctly. In Section 4.10.1 we will describe approaches to reduce the trust in
the bulletin board independently from the cryptographic components and thus improve the
overall security.

• Ballot authentication: Most of the techniques we will present and evaluate in this paper are
essentially independent of how ballots are authenticated. The only exception is Section 4.6,
where we come to the use of digital signatures to make authentication more independent
of the voting system. Therefore, in all other sections we always assume that the registration
authority RA is honest and correctly authenticates the voters to the voting server VS.

• Voting and audit devices: Since it is not directly relevant to the cryptographic methods, in this
study we will always consider each device as the entirety of the personal system that the voter
uses. Therefore, we will not distinguish between the actual machine, the operating system,
and the applications.

Software libraries. In our practicality analysis, we will refer to software libraries that implement
the (building blocks of the) different mechanisms that we study in this work. More specifically,
we use the following high-quality and well-maintained libraries we are aware of: CHVote, Elec
tionGuard, Verificatum, Belenios, and Swiss Post. For convenience, we typically refer to only one
specific implementation of a given cryptographic building block in one of these libraries because
the alternative implementations (if any) in the other libraries are usually equivalent (but may be
written in different languages). Our specific references do not imply that we consider one of these
implementations to be better or worse than the other.

36 Bundesamt für Sicherheit in der Informationstechnik (BSI)

https://gitlab.com/openchvote
https://www.electionguard.vote
https://www.electionguard.vote
https://www.verificatum.org
https://www.belenios.org
https://gitlab.com/swisspost-evoting/e-voting

A Study of Mechanisms for End-to-End Verifiable Online Voting

4.2 Malleable public-key encryption

In verifiable online vote, using malleable public-key encryption (PKE) is the most common method
for voters to cast their votes in such a way that the integrity of their ballots can be verified throughout
the election process without compromising the privacy of their individual votes. At a high level, the
basic encryption property (Section 2.2.1) guarantees the secrecy of individual votes, while the mal
leability of these ciphertexts is used to process the encrypted votes in a verifiable privacy-preserving
manner.

For this to work, the PKE scheme must provide certain features, which we first explain along with
a common implementation that we consider in this work (Section 4.2.1). We then describe how
malleable public-key encryption is used in verifiable online elections for secret voting (Section 4.2.2).
Finally, we apply our evaluation criteria to analyze the mechanism (Section 4.2.3).

4.2.1 Requirements

We specify the features that malleable public-key encryption schemes need to satisfy in addition to
the basic ones (Section 2.2.1) when used for verifiable online voting. These features are malleabil
ity, proof of plaintext knowledge, verifiable key generation, verifiable decryption, and distributed
decryption. We also specify an implementation that realizes these features and that we analyze.

Malleability. The malleability of PKE schemes is the foundation of many advanced cryptographic
features that are used for verifiable e-voting. Depending on how the encrypted ballots are tallied,
one of the following forms of malleability is required:

• Additively homomorphic (for homomorphic aggregation, see Section 4.4): In an additively ho
momorphic PKE scheme (KGe, Enc,Dec), there exists a deterministic polynomial-time algo
rithm Hom that takes as input ciphertexts ei = Enc(pk,mi) (i ∈ I) and returns a ciphertext e,
such that Dec(sk, e) =

∑︁
i∈I mi. It is important to note that Hom does not take any mi or sk

as input.1

See Figure 4.1 for an illustration.

• Re-randomizable (for verifiable mix nets, see Section 4.5): In a re-randomizable PKE scheme
(KGe, Enc,Dec), there exists a probabilistic polynomial-time algorithm ReRand that takes as
input a public key pk and an arbitrary ciphertext e that decrypts to some message m with
the corresponding secret key sk, and returns a new ciphertext e′ that decrypts to the same
message m with the secret key sk and such that the result of ReRand is computationally in
distinguishable from that of Enc. It is important to note that ReRand does not take m or sk as
input.

See Figure 4.2 for an illustration.

1In addition, there are other types of homomorphism that differ in terms of which operations they are homomorphic.
The most important types are multiplicatively homomorphic (homomorphic with respect to the multiplication of mes
sages), leveled homomorphic (homomorphic with respect to arbitrary functions/circuits with restricted depth), and
fully homomorphic (homomorphic with respect to arbitrarily complex functions/circuits). Such types of homomor
phism can be useful for the design of verifiable online voting systems with particularly strong secrecy properties (see
Section 4.10).

Bundesamt für Sicherheit in der Informationstechnik (BSI) 37

A Study of Mechanisms for End-to-End Verifiable Online Voting

Remark 2: Malleability warning notice

The malleability of PKE schemes is a double-edged sword, because it can also be exploited by
an attacker to undermine both the vote privacy or the verifiability of a voting system if it is not
used in a targeted and localized manner:

• Vote privacy: It is necessary that voters cast their votes independently [50]. For example,
replay attacks are a prominent class of attacks that exploit the missing independence of
ballots. In a replay attack, an attacker submits a targeted voter’s vote on behalf of some
corrupted voters. In this way, the targeted voter’s choice is amplified in the final result,
which undermines their vote privacy (see [115] for an efficiency analysis of replay attacks).

The simplest type of replay attack is to copy the targeted voter’s ballot. Therefore, bal
lots that match an already accepted ballot must not be accepted. However, there are more
subtle types of replay attacks that cannot be prevented in this way and require other mea
sures. In fact, an attacker can exploit the malleability of the PKE scheme to re-randomize
the target voter’s encrypted ballot.a To protect against such attacks, we always combine
the ”raw” manipulable public-key encryption scheme with a so-called proof of knowledge
(see below).

With this proof, each voting device must prove that it also knows the secret vote cast, with
out revealing which vote it is to preserve the secrecy of the vote. However, an attacker does
not know which vote was chosen by the targeted honest voter, because that is precisely its
goal. Thus, the attacker cannot generate their own valid proof of knowledge of the tar
geted voter’s secret vote. To prevent the attacker from copying the proof of knowledge of
the targeted voter, no ballots are accepted that contain a proof of knowledge that is already
contained in another accepted ballot.

• Verifiability: When the ballots are tallied homomorphically (Section 4.4), then it must be
guaranteed that the encrypted message in fact belongs to the set of valid choices.

In fact, if in this case no further protection is in place, then a single corrupt voter could
determine the final result as they wish, without this manipulation being detected. Instead
of a correct ballot, such a voter could encrypt a message that adds an arbitrary number of
votes to the desired candidate and simultaneously subtracts those votes from the unde
sired ones. For example, in an election with three choices A,B,C a corrupt voter could
submit the fake ballot (10,−5,−5) to add ten votes to choice A, stolen equally from B and
C .

Therefore, we always combine the ”raw” homomorphic public-key encryption scheme
with a proof of set membership (see below), when we tally the ballots homomorphically
(Section 4.4).b

This demonstrates that great care must be taken to ensure that malleable PKE schemes are
malleable only for their intended purpose and not otherwise.

aIn addition to replay attacks, there are other ways to exploit the malleability of a PKE scheme to undermine vote
privacy. See for example [117].

bNote that when we tally them with a verifiable mix net (Section 4.5), we do not need such a proof of set membership.
The reason is that each voter’s individual input appears in the (anonymized) final result, so invalid votes can be
removed directly and do not change the result.

Proof of plaintext knowledge. To ensure that the voters cast their votes independently, and thus
to guarantee vote privacy (see Remark 2), each voter must prove that they know their secret vote.

38 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

x

y

x

y

x+ y x+ y

Enc(pk)

Enc(pk)

Hom Dec(sk)

Figure 4.1: Illustration of an additively homomorphic public-key encryption scheme (Section 4.2.1)
with public/private key pair (pk, sk).

Message Message Message Message
Enc(pk) ReRand Dec(sk)

Figure 4.2: Illustration of a re-randomizable public-key encryption scheme (Section 4.2.1) with pub
lic/private key pair (pk, sk).

For this purpose, we use a proof of plaintext knowledge to prove knowledge of a message m in a
given public-key encrypted ciphertext e = Enc(pk,m), without revealing any other information (in
particular, no information about the message m).

Proof of set membership (for homomorphic aggregation, Section 4.4). To ensure that only valid
votes are homomorphically aggregated, and thus to guarantee verifiability (see Remark 2), each voter
must prove that the encrypted message belongs to the set of valid choices. For this purpose, we use
a proof of set membership to prove that a message m in a given public-key encrypted ciphertext
e = Enc(pk,m) belongs to a certain set C, without revealing any other information (in particular, no
information about the message m).

Verifiable key generation. For a voting system to be verifiable, it is important to ensure that the
public key pk has been generated correctly. For example, if the public key pk is malformed, it can
be exploited by malicious voters to create malformed ballots, or by malicious talliers to covertly
manipulate ballots, even if all other security mechanisms are correctly integrated. Furthermore, if
the public key pk is computed in a distributed fashion to distribute trust, but the well-formedness of
pk is not guaranteed, then a single malicious tallier could exploit this flaw to subvert its contribution
to the computation of pk, allowing that single tallier to learn how individual voters voted.

To protect against these threats, the party or parties (in the case of distributed decryption/key
generation) computing the public key must provide independently verifiable proof that the output
pk is a valid output of the key generation algorithm KGe. To protect the secrecy of the PKE scheme
and thus the privacy of the voting system, this proof must not reveal any information (in particular,
about the secret key or the secret key shares) other than the correctness of the public key.

Verifiable decryption. At the end of the two privacy-preserving tallying methods that we analyze
in this study (Sections 4.4 and 4.5), the processed ciphertexts are decrypted. This step is performed
internally by the tallier, since its private decryption key is used, which must remain secret. In order
to verify that the decrypted plaintexts (which represent the final result) match the messages in the
ciphertexts, the tallier must provide a proof of correct decryption. This property is known as verifi
able decryption. As with verifiable key generation, such a proof should not reveal any information
about the secret key sk.

Bundesamt für Sicherheit in der Informationstechnik (BSI) 39

A Study of Mechanisms for End-to-End Verifiable Online Voting

Distributed decryption. If a PKE is used as described above, then the tallier who owns the secret
key sk can decrypt all individual votes and thus learns how each individual voter has voted. To
prevent this, the secret key sk should be generated and distributed among multiple talliers in a way
that requires a certain number of talliers to work together to decrypt a ciphertext that was computed
with the talliers’ joint public key pk. This property is called distributed decryption.

There are two flavors of distributed decryption: full secret sharing and threshold secret sharing
(Section 2.2.5). In the first case, the secret key is shared in such a way that all m talliers (the share
holders) must contribute to decrypt a ciphertext. In the second case, only a threshold t < m of the
talliers are required to cooperate; threshold secret sharing improves the robustness of the scheme,
for example against loss of secret key shares or unavailable talliers.

Implementation. In the context of verifiable online voting, ElGamal’s PKE [47] scheme is the most
common implementation in today’s systems. Therefore, we study this implementation.

Remark 3: ElGamal PKE

In this excursion, we describe ElGamal’s original PKE scheme. This description is intended for
readers with a mathematical background who want to understand how malleable public-key
encryption can be technically realized. Since this excursion is not necessary for understanding
our study, feel free to skip this part.

• The key generation algorithm KGe chooses a cyclic group G of (large) prime order p in
which the Decisional Diffie-Hellman (DDH) assumption is assumed to hold true. Next,
this algorithm chooses a random generator g of G, and a uniformly random number s
from Zp. The resulting public key pk consists of the tuple (G, p, g, h = gs), while the secret
key sk is (G, p, g, s).

• The encryption algorithm Enc takes as input a public key pk = (G, p, g, h = gs) and a
message m ∈ G . It then chooses a uniformly random r from Zq , and returns as ciphertext
e the tuple (u = gr, v = hr ·m) ∈ G2. The purpose of hr is to mask the message m, while
u = gr can be used to unmask it again with the help of the secret s, as described next.

• The decryption algorithm Dec takes as input a secret key sk = (G, p, g, s) and a ciphertext
e = (u, v). It recovers the encrypted message m by ”stripping of” the mask by computing
v · u−s; in fact, for (u, v) = (gr, hr ·m) and h = gs, we have v · u−s = gsr · g−sr ·m = m.

In the exponential version of ElGamal’s scheme, ciphertexts are of the form (u = gr, v = hr ·gm),
where m ∈ Zq is the message. In this version, ciphertexts are decrypted as logg(v · u−s), which
can be done efficiently when the set of possible messages is relatively small.

ElGamal’s scheme is (IND-CPA) secure under the so-called Decisional Diffie-Hellman (DDH) as
sumption, which is generally believed to be intractable on the (classical) computers we use today.2
ElGamal’s original scheme is multiplicatively homomorphic (in the underlying group G) and re-
randomizable. Often, an exponential version of the scheme is used, which is additively homomor
phic (in the underlying group Zq) and also re-randomizable. We refer to Remark 3 for the mathe
matical background.

We study the following implementations of the features that are required in addition to the mal
leability property:

2There are algorithms for quantum computers that can efficiently solve the DDH assumption and thus break the secrecy
of ElGamal’s scheme. While no real quantum computer exists today that can compute these algorithms, the develop
ment of more powerful quantum computers poses a risk to public-key cryptography currently in use, including for
online voting. See Section 4.3 for more details.

40 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

• Proof of knowledge: We study the use of the non-interactive zero-knowledge proof (NIZKP)
(Section 2.2.4) of plaintext knowledge for ElGamal ciphertext described, for example, in [58].

• Proof of set membership (for homomorphic aggregation): We consider the implementation of
the proof of set membership by a NIZKP of knowledge for the corresponding relation. Specif
ically, we consider the implementation in [58] for the case of ElGamal encrypted votes. This
NIZKP of set membership consists of NIZKPs of membership in {0, 1} for each ciphertext per
candidate and a NIZKP of membership in {0, 1} for the homomorphically aggregated candi
date ciphertext; from the correctness of these proofs it follows that the vector representation
of the ballot is binary with exactly one 1 entry.

Since these proofs of set membership imply knowledge of the plaintext, we do not need a
separate proof of knowledge in this case.

• Verifiable key generation: We study the use of a NIZKP of knowledge (Section 2.2.4) to let
the tallier prove that it knows the secret sk corresponding to a public key pk. Specifically,
we choose the common implementation based on the non-interactive pre-image proof in
Schnorr’s identification scheme [130] (see also Section 5.4 in [58]). This implementation is de
scribed, for example, in the CHVote specification (see Algorithm 8.7 in [58]).

• Verifiable decryption: We study the use of a NIZKP of knowledge to let the tallier prove that it
used the secret key sk to decrypt an ElGamal ciphertext e under the public key pk to a message
m. Specifically, we choose again the common implementation based on Schnorr’s identifica
tion scheme, which is also described, for example, in the CHVote specification (see Example 3
in Section 5.4 in [58]).

• Distributed key generation/decryption: We study the use of full and threshold secret sharing to
distribute the ElGamal key generation and decryption among different talliers such that m or
t < m of the talliers need to collaborate to decrypt a ciphertext c that was encrypted under
their joint public key pk. The algorithms that are run by individual talliers are combined with
the NIZKP for verifiable key generation and verifiable decryption (see above). For a full secret
sharing, see, for example, Protocol 7.1 (verifiable distributed key generation) and Protocol 7.8
(verifiable distributed decryption) in [58]. For verifiable threshold secret sharing, see [53, 31].

There are different ways to realize the underlying algebraic group of the ElGamal PKE scheme
and these NIZKPs. For our evaluation, we study the implementations that use the elliptic curve
Curve25519 to instantiate this group.

4.2.2 Description

We now describe how a PKE scheme with the above properties is used in verifiable online voting.
In the setup phase, the tallier T runs the key generation algorithm KGe to obtain a public/secret key

pair pk, sk; in case of distributed decryption, the key generation algorithm KGe is run in a distributed
fashion by the different talliers T1, . . . ,Tm so that each tallier Tj obtains its secret key share skj . The
tallier(s) also provide(s) a proof for the correctness of the public key. After that, the public key pk and
its proof are posted to the bulletin board BB.

In the ballot submission phase, each voter Vi enters their choice vi to the voting device VD, which
encrypts vi under pk to obtain the secret ballot ei and computes a corresponding proof of knowledge
πi of vi. Depending on the tallying method, the voters compute and append more data to ei, as we
explain in Sections 4.4 and 4.5. Afterwards, the voting device sends (ei, πi) (and the additional data,
if any) to the voting server VS. The voting server stores (ei, πi) on BB if neither ei nor πi appear in an
already accepted ballot. Here, we abstract away from the way the voter/voting device authenticates
to VS and assume that the registration authority RA correctly established such an authenticated
channel (recall our conventions in Section 4.1).

Bundesamt für Sicherheit in der Informationstechnik (BSI) 41

A Study of Mechanisms for End-to-End Verifiable Online Voting

Remark 4: Identifiable vs anonymous ballots

Depending on the voting protocol, the encrypted ballots of the voters on the bulletin board are
individually linked to the voters (e.g., connected with the voters’ IDs) or anonymous (without any
identifiable information). In the following, we discuss the main advantages and disadvantages
of these two approaches.

Anonymous ballots:

• Everlasting privacy: Since the ballots do not contain any information about the identi
ties of the associated voters, anonymous ballots can be used to achieve vote privacy with
out the use of cryptography, in particular independent of any hardness assumptions, and
therefore provide everlasting privacy.

• Participation privacy: For the same reason as before, anonymous ballots can be used to
keep secret which voters participated in the election and which did not.

• Verifiability: The main disadvantage of anonymous ballots is their lower level of trans
parency. First, the eligibility of the votes cast cannot be independently verified, which can
for example be exploited to stuff the voting server with illegitimate ballots. Second, it
opens up the possibility of so-called clash attacks (Remark 8) with which corrupted voting
devices can secretly alter voters’ choices.

Identifiable ballots:

• Everlasting privacy: Only special cryptographic techniques can guarantee that the voting
system will provide everlasting privacy. This is possible, for example, with commitments
(see Section 4.3). In contrast to anonymous ballots, therefore, for everlasting privacy one
must trust that the cryptographic procedures employed are correct.

• Participation privacy: Again, only special cryptographic methods can guarantee that the
voting system provides privacy. This is possible, for example, with the methods from [118,
65, 109], which we will not discuss further in this study.

• Verifiability: Since the (encrypted) ballots are assigned to individual voters, the eligibility
of the ballots submitted can be checked immediately and independently, and clash attacks
can be prevented.

In short, anonymous ballots are an easy way to achieve strong privacy properties, but they
come at the cost of a lower level of transparency than identifiable ballots, which require the use
of advanced cryptographic methods to provide strong privacy properties.

There are two ways the talliers can process the encrypted votes. In the simple case, they directly
decrypt the encrypted votes with their secret key shares, then compute the final result, and finally
post it to BB. In the other case, the talliers first process the encrypted votes in a privacy-preserving
way, and only then decrypt the processed votes to compute and share the final result; we will study
the two most common approaches to privacy-preserving tallying in Sections 4.4 and 4.5.

4.2.3 Analysis

We now evaluate the level of secrecy, verifiability, usability, and practicality of malleable public-key
encryption according to our criteria defined in Chapter 3.

42 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

Secrecy. We analyze the secrecy of the mechanism based on our criteria introduced in Section 3.2.
Here we will focus on the simple case of direct decryption and computation of the final result. In Sec
tions 4.4.3 and 4.5.3, we will study cases where the votes are first processed in a privacy-preserving
way.

 Vote privacy. In the simple case (without privacy-preserving tallying), the voting scheme
achieves vote privacy level 1, but does not achieve vote privacy level 2 according to our privacy
criteria (Section 3.2.1). The reason why level 1 is achieved is that the voters’ choices are transmitted
in encrypted manner over the network, but the attacker does not know the corresponding secret
key sk. However, level 2 is not achieved because the votes are decrypted without previous privacy-
preserving processing, which is why every single tallier learns the individual links between the
voters and their votes. Therefore, if the adversary can control one tallier (as assumed for level 2),
then the adversary would also be able to break vote privacy.

We will show that in combination with homomorphic aggregation (Section 4.4) or with verifiable
shuffling (Section 4.5), higher levels of vote privacy can be guaranteed.

 Everlasting privacy. This mechanism provides everlasting privacy level 0 because it does not
provide a reasonable level of verifiability. In fact, as we observe below, we need to trust all compo
nents of the voting system for the correctness of the final result.

 Vote-buying resistance. This mechanism does not protect against vote-buying because an at
tacker could learn how the voter voted by observing the voter during the ballot submission (as as
sumed for vote-buying resistance level 1). Therefore, this mechanism provides vote-buying resis
tance level 0.

We note that a simple option to protect against the first type of Level 1 attackers is re-voting,
which would allow voters to overwrite their previously cast ballots. To protect against any stronger
vote-buying attacks, more complicated mechanisms must be integrated, which we do not study in
detail in this work, but which are mentioned in Section 4.10.

Table 4.1: Secrecy score summary.

Aspect Score
Vote Privacy 1
 Everlasting Privacy 0
Vote Buying Resistance 0
 Secrecy 2

Verifiability. We analyze the verifiability of the mechanism based on our criteria introduced
in Section 3.3.

Recall from Section 3.3 that the purpose of end-to-end verifiability is to reduce or even remove
trust in the system components regarding the correctness of election result. Using solely malleable
public-key encryption does not offer any advantages in this respect because we still have to trust all
components.

Table 4.2: Verifiability trust assumptions.

hon(RA) AND hon(T) AND hon(VD) AND hon(VS)

Bundesamt für Sicherheit in der Informationstechnik (BSI) 43

A Study of Mechanisms for End-to-End Verifiable Online Voting

This shows that malleable PKE must always be used in combination with a verifiable privacy-
preserving mechanism, such as homomorphic aggregation (Section 4.4) or verifiable mixing (Sec
tion 4.5) mechanisms. We evaluate the combined mechanisms in Sections 4.4.3 and 4.5.3.

Usability. We analyze the usability of the mechanism based on our criteria from Section 3.4.
The voter’s procedure consists only of entering the preferred candidate into the voting device.

The voting device then performs the encryption and any other necessary computation by itself. We
evaluate the procedure as follows:

• Efficiency: The voter performs one step, namely entering the chosen candidate. This corre
sponds to an efficiency score of 5.

• Effectiveness: The single step has none of the characteristics which would reduce its effective
ness. Therefore, the effectiveness score is 5.

Table 4.3: Usability score summary.

Aspect Score
 Efficiency 5
 Effectiveness 5
 Usability min(·, ·) = 5

Practicality. We analyze the practicality of the mechanism based on our criteria introduced in Sec
tion 3.5.

We analyze the implementation of mallable public-key encryption including the required proofs.
For the proofs, we separate between no threshold secret sharing, and threshold secret sharing, when
the characteristics are different according to our evaluation criteria. Further, we consider differ
ences in implementation when used in a verifiable mix net (see Section 4.5) or homomorphic aggre
gation (see Section 4.4).

We assume the implementation to employ elliptic curve cryptography, using the standard
Curve25519 [106]. The curve has good characteristics to enable efficient and secure implemen
tations [18]. Group elements and scalars each have a size of 256bit, i.e. 32B. On the voter’s side,
based on benchmarks from Belenios done in Firefox on a 2019 laptop with a 1.9GHz CPU, a single
modular exponentiation takes about 0.32ms. On the server’s side, based in benchmarks from the
Bernstein comparison3, a modular exponentiation takes about 0.11ms.4 Compared to modular
exponentiations, modular multiplications are less computationally demanding, but for simplicity
(and as it does not make much of a difference in our scenario), we use the same estimation for both.

We evaluate the implementability constraints (Section 3.5.1) as follows:

• Skills: Knowledge in cryptography is necessary to implement and integrate the mechanism
correctly. We deduce one point.

• Resources: No specific resources are needed for the mechanism.

3See https://bench.cr.yp.to/impl-scalarmult/curve25519.html. We choose the most performant implemen
tation running on an AMD Ryzen 7 7700 processor at 3.8 GHz. The implementation needs 421′580 cycles, which
corresponds to 421′580÷ (3.8× 109) ≈ 11× 10−5 = 0.11ms.

4This is faster because the implementation takes advantage of hardware-specific characteristics. As the system provider
typically knows the exact hardware used in the server, the provider may choose an implementation that has been
adapted accordingly.

44 Bundesamt für Sicherheit in der Informationstechnik (BSI)

https://bench.cr.yp.to/impl-scalarmult/curve25519.html

A Study of Mechanisms for End-to-End Verifiable Online Voting

• Protocol complexity: Due to the distribution, there are many agents involved. With no thresh
old secret sharing, the actions of the agents phases are essentially independent, leading us to
deduce one point. With threshold secret sharing, the talliers’ setup and tallying phases include
more involved interactions, as illustrated in Protocol 7.1 and 7.8 of [58], leading us to deduce
two points.

We evaluate the implementability enablers (Section 3.5.1) as follows:

• Software library: There exist several well-documented, ready-to-deploy libraries that imple
ment malleable PKE, the proof of plaintext knowledge, and the proof of set membership (for
homomorphic aggregation) as needed for the mechanism:

– Verificatum/VJSC: Javascript, MIT license, actively maintained, library providing full
functionality to encrypt a ballot with ElGamal;

– ElectionGuard: C++/Rust, MIT license, in development, library with various functional
ities;

– CHVote: Java, AGPLv3, actively maintained, cryptographic core of a voting system;

– Belenios: OCaml, AGPLv3, actively maintained, voting system;

– SwissPost’s system: Java, proprietary license, actively maintained, voting system.

We therefore grant three points.

We evaluate the communication efficiency (Section 3.5.2) as follows. Both approaches have data
size small. Concerning the number of blocking rounds, no threshold needs 0 rounds, while threshold
needs some rounds. This results in an overall communication efficiency score of 5 for no threshold,
and 3 for threshold. We achieve their intermediate scores as follows:

• Data size: First, we note that a single ElGamal ciphertext consists of two group elements.

When we tally the ballots with a verifiable mix net (Section 4.5), we can encrypt the complete
choice in a single ciphertext. The corresponding proof of plaintext knowledge is done with 2
scalars (see Section 5.4.1 in [58]). The ciphtertext together with the proof results therefore in
2 · 32B+ 2 · 32B = 128B per ballot.

When we tally the ballots with homomorphic aggregation (Section 4.4), we consider the ap
proach of representing each choice as a binary vector, where the 1 entries indicate a voter’s
preferred candidates. Proving membership in the set {0, 1} consists of 4 scalars: 2 challenges
and 2 responses for each element in the set (see, e.g., Section 5.4 of [58]). A membership proof
is needed for each candidate as well as for the homomorphic aggregation of the candidate en
tries, which corresponds to 100 + 1 = 101 proofs for an election with 100 candidates. When
we put these numbers together, a ballot consists of 200 group elements for the encryptions
and 101 · 8 = 808 scalars for the NIZKPs. This results in 200 · 32B+ 808 · 32B ≈ 32KB.

This shows that in both cases, the size of the ballot is well below our 1MB threshold, hence the
data is small.

• Complexity: With no threshold secret sharing, no blocking communication is necessary. With
threshold secret sharing, the protocol includes blocking steps impacting the communication
efficiency. As described in Section 3.1.1 of [53] and with more details in [31], 3 rounds per
tallier are required to build partial decryption keys. Assuming the usage of homomorphic
aggregation (see Section 4.4), the talliers perform the decryption in 2 rounds, which results in
a total of 5 rounds per tallier.

For no threshold secret sharing, we therefore have 0 blocking rounds, while for threshold secret
sharing, we have some blocking rounds.

Bundesamt für Sicherheit in der Informationstechnik (BSI) 45

https://www.verificatum.org
https://www.electionguard.vote
https://gitlab.com/openchvote
https://www.belenios.org
https://gitlab.com/swisspost-evoting/e-voting

A Study of Mechanisms for End-to-End Verifiable Online Voting

We evaluate the computational efficiency (Section 3.5.2) as follows. For both approaches, the
server time is less than a few minutes, and the voter time less than a second, hence both have an
overall computational efficiency score of 5. We achieve the intermediate scores as follows:

• Server time: Only the voting server is active in the ballot submission phase and it only needs
to store (or forward) the incoming ballots.5 The time required for these operations is less than
a few minutes in total.

• Voter time: First, we note that forming a single ciphertext requires two exponentiations.

When we tally the ballots with a verifiable mix net (Section 4.5), a single ciphertext is sufficient.
The corresponding proof of plaintext knowledge requires another 2 exponentiations. Hence,
the total time to compute the ballot is therefore 4 · 0.32ms = 1.28ms.

When we tally the ballots homomorphically (Section 4.4), we again consider the approach
which results in one ciphertext per candidate (see the Data size evaluation for details). Each
membership proof requires 4 exponentiations (see, e.g., Section 5.4 of [58]: a proof of plaintext
knowledge requires 2 exponentiations, thus a membership proof for a set with 2 elements
requires 2 · 2 = 4). In an election with 100 candidates where a voter can select at most one of
them, a ballot therefore needs 200·0.32ms = 64ms to encrypt, and then 404·0.32ms = 129.3ms
to generate the NIZKP. The total ballot construction time remains clearly under 1s.

Table 4.4: Practicality score summary.

Aspect no threshold threshold
 Skills -1 -1
 Resources 0 0
 Protocol complexity -1 -2
 Software library +3 +3
 Implementability (I) trim(5 + sum(·)) = 5 5
 Communication 5 3
 Computation 5 5
 Efficiency (E) min(·, ·) = 5 3
 Practicality 2

3I +
1
3E = 5 4.33

5We evaluate the server time to verify the proofs as part of the verifiable mix net (see Section 4.5), respectively the ho
momorphic aggregation (see Section 4.4).

46 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

4.3 Malleable commitments

An interesting alternative to the use of public-key encryption for public secrecy of votes is the use of
commitment schemes. Since commitment schemes are keyless, their secrecy can be unconditional
in contrast to public-key encryption schemes (see Section 2.2.2). Unconditionally hiding commit
ments therefore represent a way to provide practical everlasting privacy without compromising ver
ifiability (recall Remark 4).

At a high level, the hiding property of the commitment scheme (Section 2.2.2) guarantees the se
crecy of individual votes, while the malleability of these commitments is used to process the com
mitted votes in a verifiably privacy-preserving manner. For this to work, the commitment scheme
must provide certain features, which we first explain along with a common implementation that
we consider in this work (Section 4.2.1). We then describe how malleable commitments are used in
verifiable online elections for secret voting (Section 4.2.2). Finally, we apply our evaluation criteria
to analyze the mechanism (Section 4.2.3).

4.3.1 Requirements

We specify the features that malleable commitment schemes need to satisfy in addition to the basic
ones (Section 2.2.2) when used for verifiable online voting. These features are malleability, proof
of plaintext knowledge, and threshold secret sharing of committed messages. We also specify the
implementation of this building block that we analyze in our work.

Malleability. As with public-key encryption schemes (see Section 4.2), the malleability of commit
ment schemes (CS) is the basis for many advanced cryptographic features that are used for verifiable
online voting. Depending on how the committed ballots are tallied, one of the following forms of
malleability is required:

• Additively homomorphic (for homomorphic aggregation, see Section 4.4): In an additively ho
momorphic CS C = (Setup,Com,Open), there exists a deterministic polynomial-time algo
rithm Hom that takes the parameters prm and commitments (ci)i∈I to messages (mi)i∈I as
input and returns a commitment c that can be opened to

∑︁
i∈I mi with opening value d =∑︁

i∈I di, where (di)i∈I are the corresponding individual secret opening values. It is important
to note that Hom does not take any message mi or any opening value di as input.

See Figure 4.3 for an illustration.

• Re-randomizable (for verifiable mixing, see Section 4.5): In a re-randomizable CS, there exists a
probabilistic polynomial-time algorithm ReRand that takes as input the parameters prm and
an arbitrary commitment c that can be opened to some message m with opening value d, and
returns a new commitment c′ that can be opened to the same message m with a different
opening value d′ and such that the distributions of c and c′ are indistinguishable. It is impor
tant to note that ReRand does not take m or the opening value d of c as input.

See Figure 4.4 for an illustration.

Remark 5: Malleability warning notice

Just as with malleable PKE schemes (Remark 2), malleable commitment schemes must be com
bined with NIZKPs so that they are malleable only for their intended purpose and not otherwise.

Bundesamt für Sicherheit in der Informationstechnik (BSI) 47

A Study of Mechanisms for End-to-End Verifiable Online Voting

x

dx x

y

dyy

x+ y

Yes/No

Com(prm) Com(prm)

Hom(prm)

Open(prm)

Figure 4.3: Illustration of an additively homomorphic commitment scheme (Section 4.3.1).

Message

Decommitment Message

Message Randomness

Yes/No

Com(prm)

ReRand(prm)

Open(prm)

Figure 4.4: Illustration of a re-randomizable commitment scheme (Section 4.3.1).

Proof of plaintext knowledge. To ensure that the voters cast their votes independently, and thus
to guarantee vote privacy (see Remark 2), each voter must prove that they know their secret vote.
For this purpose, we use a proof of plaintext knowledge to prove knowledge of a message m in a
given commitment c = Com(prm,m), without revealing any other information (in particular, no
information about the message m).

Proof of set membership (for homomorphic aggregation, Section 4.4). To ensure that only valid
votes are homomorphically aggregated, and thus to guarantee verifiability (see Remark 2), each voter
must prove that the committed vote belongs to the set of valid choices. For this purpose, we use a
proof of set membership to prove that a message m in a given commitment c = Com(prm,m)
belongs to a certain set C, without revealing any other information (in particular, no information
about the message m).

Threshold secret sharing. Just as in the case of PKE (Section 4.2), it can be useful to distribute trust
among the talliers so that threshold of them need to collaborate to open a committed message. This

48 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

technique can be used when committed ballots are homomorphically aggregated (Section 4.4).

Implementation: Pedersen commitments. To implement the commitment scheme, we choose
Pedersen’s scheme [124], which is unconditionally hiding, computationally binding under the Dis
crete Logarithm (DL) assumption, and both additively homorphic and re-randomizable. This is
the most popular (unconditionally hiding) commitment scheme due to its simplicity, efficiency
and well-studied security. See, for example, [58] for an implementation of Pedersen’s commitment
scheme.

We study the following implementations of the features that are required in addition to the mal
leability property:

• Proof of knowledge: We study the use of the non-interactive zero-knowledge proof (NIZKP)
(Section 2.2.4) of plaintext knowledge for Pedersen commitments described, e.g., in [48].

• Proof of set membership (for homomorphic aggregation): We consider the implementation of
the proof of set membership by a NIZKP of knowledge for the corresponding relation. Specif
ically, we consider the implementation in [48] for the case of Pedersen commitments. This
NIZKP of set membership consists of NIZKPs of membership in {0, 1} for each commitment
per candidate and a NIZKP of membership in {0, 1} for the homomorphically aggregated can
didate commitment; from the correctness of these proofs it follows that the vector represen
tation of the ballot is binary with exactly one 1 entry.

Since these NIZKPs are proofs of knowledge, we do not need a separate proof of knowledge.

• Threshold secret sharing: To secretly share messages in Pedersen commitments, we choose
Shamir’s threshold secret sharing scheme [132], which can be used to divide the secret among
n receivers in such a way that at least k ≤ n (arbitrary) receivers must combine their shares to
reconstruct the message (Section 2.2.5).

Remark 6: Pedersen’s commitment scheme

In this excursion, we describe Pedersen’s commitment scheme. This description is intended for
readers with a mathematical background who want to understand how malleable commitments
can be technically realized. Since this excursion is not necessary for understanding our study,
feel free to skip this part.

• To generate the public parameters, the setup algorithm Setup chooses a cyclic group G of
order q in which the DL assumption is assumed to hold true. It then chooses two gener
ators g and h of G independently uniformly at random. The resulting public parameters
are prm = (G, p, q, g, h).

• To commit to a message m ∈ Zq for public parameters prm = (G, p, q, g, h), the com
mitment algorithm Com chooses a uniformly random r from Zq and returns the com
mitment/opening pair (c = gm · hr, d = (m, r)). The (public) commitment c then hides
the message m, while the (private) opening value d can be used to verify/prove that c is a
commitment to m.

• To open a commitment c ∈ G with opening value d = (m, r) ∈ Z2
q , the opening algorithm

Open returns 1 if c = gm · hr and otherwise returns 0.

Bundesamt für Sicherheit in der Informationstechnik (BSI) 49

A Study of Mechanisms for End-to-End Verifiable Online Voting

4.3.2 Description

We explain how a commitment scheme with the above features is used in verifiable online voting.

In the setup phase, the election authority EA runs the algorithm Setup of the commitment scheme
to obtain the public parameters prm and then post prm to the bulletin board BB.6

In the ballot submission phase, the voting device VD commits to the voter’s choice vi under prm
to obtain the commitment/opening pair (ci, di) and computes a corresponding proof of knowledge
πi of vi. Depending on the tallying method, the voting device computes and appends more data
to ci (see Sections 4.4 and 4.5). Afterwards, the voting device VD sends (ci, πi) (and the additional
data, if any) to the voting server VS. The voting server stores (ci, πi) on BB if neither ci nor πi appear
in an already accepted ballot. Moreover, VD encrypts di under the tallier’s public key pk and sends
the resulting ciphertext to them (for example via the voting server VS). Here, as in Section 4.3.2, we
abstract away from the way the voter/voting device authenticates to VS and assume that the reg
istration authority RA correctly established such an authenticated channel (recall our conventions
in Section 4.1).

If the ballots are tallied homomorphically (Section 4.4), then the trust in T can be distributed
among different talliers T1, . . . ,Tm as follows. First, the voting device uses the secret sharing scheme
to secretly share the voter’s vote vi among the talliers. Then, the voter performs the casting process
described before for each share vji of their vote and the corresponding tallier Tj . If the ballots are
tallied with a mix net, then there exist different techniques to distribute the trust without dividing
the commitments into different shares (see Section 4.5 for details).

In the tallying phase, the talliers process the committed votes in a privacy-preserving way to com
pute the election result (see Sections 4.4 and 4.5).

4.3.3 Analysis

Secrecy. We evaluate the three subproperties of vote secrecy.

 Vote privacy. Using only malleable commitments achieves vote privacy level 1 of our evalu
ation criteria (Section 3.2.1) for the same reasons that using only malleable public-key encryption
achieves level 1 (Section 4.2.3).

This observation shows that this method (just like malleable public-key encryption) must always
be combined with a privacy-preserving tallying mechanism to provide a reasonable level of vote
privacy (see Sections 4.4.3 and 4.5.3), vote privacy can be guaranteed.

 Everlasting privacy. This mechanism provides everlasting privacy level 0 because it does not
provide a reasonable level of verifiability. In fact, as we observe below, we need to trust all compo
nents of the voting system for the correctness of the final result.

 Vote-buying resistance. This mechanism does not protect against vote-buying because an at
tacker could learn how the voter voted by observing the voter during the ballot submission (as as
sumed for vote-buying resistance level 1). Therefore, this mechanism provides vote-buying resis
tance level 0.

6It is important that this step be done honestly, because the correctness of prm is the basis of all security and privacy
features. Failure to adhere to this principle can lead to serious problems [61].

50 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

Table 4.5: Secrecy score summary.

Aspect Score
Vote Privacy 1
 Everlasting Privacy 0
Vote Buying Resistance 0
 Secrecy 2

Verifiability. Relying solely on a malleable commitment scheme is not sufficient to make the sys
tem verifiable for the same reasons that relying solely on a malleable public-key encryption is not
sufficient either.

Table 4.6: Verifiability trust assumptions.

hon(RA) AND hon(T) AND hon(VD) AND hon(VS)

This means that malleable commitments must always be used in combination with a verifiable
privacy-preserving mechanism, such as homomorphic aggregation (Section 4.4) or verifiable mixing
(Section 4.5) mechanisms. We evaluate the combined mechanisms in Sections 4.4.3 and 4.5.3.

Usability. We get the same result as for malleable public-key encryption (Section 4.2.3) with the
same reasoning.

Table 4.7: Usability score summary.

Aspect Score
 Efficiency 5
 Effectiveness 5
 Usability min(·, ·) = 5

Practicality. The evaluation from the point of view of practicality is very similar to malleable PKE
(Section 4.2.3). We mention here only the aspects which differ:

• Implementability enablers: No software library which provides commitments as a building
block as required in our context was found, which results in a score of 0 for this aspect.7.

• Data size: As we use commitments instead of encryptions, the data size changes. Each com
mitment consists out of one group element and the encryption of an opening value d = (m, r)
of 4 group elements. A NIZKP of membership in {0, 1} for a Pedersen commitment consists
of 2 group elements and 4 scalars, as described, e.g., in Appendix B.2 of [48].

When we tally the ballots with homomorphic aggregation (Section 4.4), in an election with
100 candidates where a voter can select at most one of them, a ballot consists therefore of
(1+4)∗100 = 500 values for the commitments/openings and (2+4)∗(100+1) = 606 values
for the NIZKPs. This results in 500 ∗ 32B+ 606 ∗ 32B ≤ 35KB.

This remains well below our 1MB threshold, hence the data is still considered to be small.

7Some prototype implementations of systems are taken into account when evaluating homomorphic aggregation and
verifiable mixnets in Sections 4.4 and 4.5

Bundesamt für Sicherheit in der Informationstechnik (BSI) 51

A Study of Mechanisms for End-to-End Verifiable Online Voting

• Voter time: Similarly to data size, the use of commitments changes the time to build a ballot.
Each Pedersen commitment requires 2 exponentiations and the ElGamal encryption of the
corresponding opening requires 4 exponentiations. The membership proof for a commitment
requires 4 exponentiations (see Appendix B.2 of [48]).

When we tally the ballots with homomorphic aggregation (Section 4.4), in an election with 100
candidates where a voter can select at most one of them, the construction of a ballot requires
(2 + 4) ∗ 100 = 600 exponentiations for the commitments/openings and 4 ∗ (100 + 1) =
404 for the membership proofs. Using the same time estimation for an exponentiation as in
Section 4.2.3, i.e. 0.32ms, this results in (600 + 404) ∗ 0.32ms = 321ms.

Table 4.8: Practicality score summary.

Aspect no threshold threshold
 Skills -1 -1
 Resources 0 0
 Protocol complexity -1 -2
 Software library 0 0
 Implementability (I) trim(5 + sum(·)) = 3 2
 Communication 5 3
 Computation 5 5
 Efficiency (E) min(·, ·) = 5 3
 Practicality 2

3I +
1
3E = 3.67 2.33

52 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

4.4 Homomorphic aggregation

Many verifiable voting systems use the malleable structures of the cryptographic algorithms to en
crypt or commit to the votes to combine these ciphertexts or commitments, respectively, in such a
way that the votes they contain are added together.

The concept of homomorphic aggregation to tally ballots in a verifiable manner is based on the ad
ditively homomorphic property of the underlying public-key encryption or commitment scheme.
As we explained in Section 4.2 (for public-key encryption) and in Section 4.3 (for commitments),
this feature guarantees that a list of such ciphertexts or a list of such commitments can be com
bined in a way that the result is a single ciphertext or a single commitment that contains the sum of
all messages in the respective list; in particular, this function is deterministic and can be performed
by anyone without any secret knowledge (e.g., of a secret key or opening values).

Idea (Figure 4.5). Let us now describe how this property is used in verifiable online voting to tally
ballots in a verifiable privacy-preserving way. We illustrate the idea for the case of encrypted ballots
(Section 4.2); the case of committed ballots (Section 4.3) is analogous.

The basic idea of homomorphic aggregation is that each voting device encrypts the number 1
if the voter supports the corresponding candidate, and the number 0 otherwise. After each voting
device has encrypted its input vote vi under Enc to ei = Enc(pk, vi) and cast it, the homomorphic
function Hom of the public-key encryption scheme is used to implicitly add up the secret votes
v1, . . . , vn of all voters without having to decrypt the corresponding ciphertexts e1, . . . , en; in short,
e = Hom((ei)

n
i=1) = Enc(pk,

∑︁n
i=1 vi).

This summation breaks the links between the individual voters and their votes and thus keeps
them secret. Since the Hom operation is deterministic, any observer can independently verify the
correctness of this step. Depending on the voting system, the aggregated ciphertext is then de
crypted or used for other purposes.

Remark 7: Malleability warning notice

We already warned the reader in Remark 2 that exploiting homomorphic (or more gener
ally: malleable) properties of cryptographic algorithms is a double-edged sword, as it can also
be exploited by potential adversaries.

In fact, if we use the homomorphic aggregation as sketched above, a corrupted voter Vi could
secretly submit more than one vote (by choosing some v > 1) or remove votes to manipulate
the election outcome (see Remark 2 for an example).

To ensure that the homomorphic property is used only for its intended purpose, we must
use a proof of set membership, as specified in Sections 4.2.1 and 4.3.1. In this way, voters prove
that their encrypted votes v are from the set of valid choices.a

aSince these proofs of set membership are usually also proofs of knowledge, we do not need a separate proof of
knowledge to ensure ballot independence (Remark 2).

4.4.1 Requirements

We do not need any cryptographic building blocks other than those specified in Section 4.2 (homo
morphic PKE) or Section 4.3 (homomorphic commitments).

4.4.2 Description

We explain how to extend the secret ballot mechanism for encrypted ballots (Section 4.2.2) or for
committed ballots (Section 4.3.2) to securely aggregate ballots homomorphically.

Bundesamt für Sicherheit in der Informationstechnik (BSI) 53

A Study of Mechanisms for End-to-End Verifiable Online Voting

0 1

0 1

1 0

0 1

0 1

1 0

Enc(pk)

Enc(pk)

Enc(pk)

1 2

Hom Hom

1 2

Dec(sk) Dec(sk)

Figure 4.5: Illustration of a homomorphic aggregation of public-key encrypted votes (Section 4.4.2),
with three voters (rows) and two candidates (columns).

There are two main differences between the homomorphic aggregation of public-key ciphertexts
(see above) and commitments. First, in the case of public-key encryption, trust is distributed by shar
ing the secret key among the talliers, while in the case of commitments, trust is distributed by shar
ing the individual votes among the talliers. Second, in the case of public-key encryption, the talliers
use their secret key (shares) to decrypt the aggregated ballots, while in the case of commitments,
they use the opening values they received directly from the voters.

Encrypted ballots. In addition to the steps taken in the submission phase described in Sec
tion 4.2.2, the voting device of each voter Vi also computes a proof of set membership πi for the
secret vote vi. The voting device appends the proof πi to the ciphertext ei and posts the tuple (ei, πi)
to BB.

After the end of the submission phase, the talliers verify for each (ei, πi) whether πi is valid w.r.t. ei
and whether neither ei nor πi are contained in any previous ballot; the first check is to guarantee
the correctness of the secret vote, and the second check is to ensure that the ballots are cast in
dependently of each other (recall Remark 2). If any of these conditions do not hold, the ballot is
discarded, and otherwise accepted for the following tallying phase. Note that this preselection can
be performed and thus verified by anyone with access to BB.

In the tallying phase, the preselected encrypted votes are first homomorphically aggregated; note
that this step can also be performed and thus be verified by anyone with access to BB. Afterwards, the
talliers check whether the preselection and the homomorphic aggregation were correct, and then
secretly decrypt the aggregated result, compute a proof of correct decryption, and post the resulting
plaintexts together with their proofs of decryption to BB.

To verify the correctness of the election result, an observer with access to BB verifies all proofs
on BB (i.e., the tallier’s proof of correct key generation, the voters’ proof of set membership, and
the tallier’s proof of correct decryption), the correctness of the preselection, the correctness of the
homomorphic aggregation, and that the result is equal to the combination of the partial decryptions.
If all checks pass, the election result is accepted, otherwise it is rejected.

Committed ballots. First, the voting device secretly shares the voter’s secret vote vi among the tal
liers T1, . . . ,Tm into shares v1i , . . . , v

m
i and then commits to each share as (cji , d

j
i)← Com(prm, vji).

Afterwards, the voting device computes a proof of set membership πi to show that the sum of all
committed shares ci ←

∑︁m
j=1 c

j
i can be opened to an element in the set of valid choices. The vot

54 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

ing device adds the proof πi to the commitments (cji)
m
j=1 and posts the tuple ((cji)

m
j=1, πi) to BB. In

parallel, the voting device encrypts the opening value dji under the public key of the corresponding
tallier Tj and sends the encrypted value to Tj (for example via the voting server VS, which forwards
it to Tj).

After the end of the submission phase, the talliers verify for each (ci, πi) whether πi is valid w.r.t. ci
and whether neither ci nor πi are contained in any previous ballot; the first check is to guarantee
the correctness of the secret vote, and the second check is to ensure that the ballots are cast in
dependently of each other (see Remark 2). If any of these conditions does not hold, the ballot is
discarded, and otherwise accepted for the following tallying phase. Note that this preselection can
be performed and thus verified by anyone with access to BB.

In the tallying phase, the preselected committed votes are first homomorphically aggregated; note
that this step can also be performed and thus be verified by anyone with access to BB. Afterwards,
each tallier Tj privately aggregates its shares dj1, . . . , d

j
n of the secret opening values that it obtained

from the voters, and posts the resulting overall opening value dj ←
∑︁n

i=1 d
j
i to BB. The final result

can then be computed by opening the aggregated commitments with the aggregated opening values
of all talliers.

To verify the correctness of the election result, an observer with access to BB verifies all proofs
on BB (i.e., the voters’ proof of set membership), the correctness of the preselection, the correctness
of the homomorphic aggregation, and the correctness of the final opening. If all checks pass, the
election result is accepted, otherwise it is rejected.

4.4.3 Analysis

Secrecy. We analyze the secrecy aspects (vote privacy, everlasting privacy, vote-buying resistance)
of the combination malleable PKE (Section 4.2) & homomorphic aggregation and of the combina
tion malleable commitments (Section 4.3) & homomorphic aggregation. We summarize our results in
Table 4.9.

 Vote privacy. We distinguish between the following two scenarios, both for the use of malleable
PKE and for the use of malleable commitments. In the first scenario, there is only one tallier. In the
second scenario, there are multiple talliers and they generate their joint public key distributively (in
the case of malleable PKE) or voters secretly distribute their votes among the talliers (in the case of
malleable commitments).

1. Single tallier: In this case, the voting system protects against Level 1 attackers, but not against
Level 2 attackers. The reason is that a Level 2 attacker can compromise the decryption machine
and thus learn the decryption key to decrypt or open any ballot on the bulletin board BB.

2. Several talliers: In this case, the voting system protects against Level 4 attackers, but not against
Level 5 attackers. Indeed, the attacker cannot compromise enough decryption talliers to be
able to decrypt or open commitments. However, because voting device VD learns the voter’s
plain vote, the mechanism does not protect against Level 5 attackers.

We would like to make the following remarks about possible shortcuts that reduce the vote pri
vacy level:

• Implementing a distributed key generation (DKG) is challenging (see Section 4.2.3). Therefore,
in practice many systems run a ”fake” DKG protocol on a single machine. The shares are then
distributed to each tallier to give a semblance of security. This approach degrades the evalua
tion to Level 3 since the attacker can learn the decryption key once the machine used during
the setup can be compromised.

Bundesamt für Sicherheit in der Informationstechnik (BSI) 55

A Study of Mechanisms for End-to-End Verifiable Online Voting

• In many practical voting systems, the talliers do not decrypt on their own machines (mainly
to control the access to the voting material). Instead, partial decryptions are all computed on
a single machine on which each tallier uses its share of the decryption key. This degrades the
evaluation to Level 3. Note that if the data received by the tally machine link voters to their
ballot, then the evaluation decreases to Level 1 since the tally machine can associate a plain
vote to a voter.

 Everlasting privacy. We distinguish between the following two cases: identifiable ballots and
anonymous ballots (recall Remark 4).

1. Identifiable ballots: In this case, malleable public-key encryption combined with homomor
phic aggregation does not provide practical everlasting privacy. The reason is that all en
crypted ballots are posted to the bulletin board, and thus anyone with access to the bulletin
board will also learn the conditionally secret ballots.

Malleable commitments can however provide practical everlasting privacy even when the
voters’ commitments (ballots) are identifiable. In fact, if we use unconditionally hiding com
mitments such as Pedersen commitments, if all NIZKPs are unconditionally zero-knowledge
(like in the implementation we consider), and if the voting server forwards (and then deletes)
the encrypted opening values directly to the talliers, then the system protects against Level
3 attackers because all data on the bulletin board keeps the individual votes unconditionally
secret.

2. Anonymous ballots: In this case, the ballots are information-theoretically independent of the
voters’ identities. Therefore, this approach provides everlasting privacy. However, this tech
nique cannot be combined with digital signatures to reduce trust in the registration authority
(Section 4.6).

 Vote-buying resistance. This mechanism combined with any of the secret ballot mechanisms
does not protect against vote-buying, i.e., achieves only level 0, but not level 1. The reason is the
same as described in Sections 4.2.3 and 4.3.3.

Table 4.9: Summary of secrecy evaluation. The overall score of one of the compositions here is
calculated by adding together the doubled score of vote privacy, the score of everlasting privacy,
and the score of vote-buying resistance (see Section 3.2).

Aspect with mall. PKE with mall. commitment
Vote privacy
 One tallier 1 1
 Several talliers 4 4
 Everlasting privacy
 Identifiable ballots 0 3
Anonymous ballots 3 3
Vote-buying resistance 0 0

Verifiability. We study the verifiability of homomorphic aggregation combined with malleable
PKE or malleable commitments. To this end, we analyze under which trust assumptions the cor
rectness of the final result can be verified.

The voters’ NIZKP of set membership on BB ensures that each voter can submit only valid votes.
The homomorphic aggregation of the votes is deterministic and can be executed by anyone with

56 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

access to the bulletin board BB. If public-key encryption is used, the talliers’ NIZKP of correct de
cryption on BB ensures that the final result matches the homomorphically aggregated votes. If com
mitments are used, the binding property of the commitment scheme ensures that the final result
matches the homomorphically aggregated votes. In combination, these mechanisms guarantee that
the final result correctly matches the encrypted votes on BB, even if the talliers are corrupted.

We do, however, need to make three trust assumptions in this evaluation:

1. We assume that the voting server VS, which hosts the bulletin board BB, is honest; mitigating
this assumption is usually independent of the actual voting system (see Section 4.10).

2. We assume that the voting devices of (honest) voters are honest. Otherwise, without further
means the voters do not have any guarantee that their voting devices processed their votes cor
rectly. The challenge to protect against possibly corrupted voting devices is addressed in Sec
tions 4.7 to 4.9.

3. We assume that the voters were registered correctly by the corresponding authority RA. This
assumption can, for example, be mitigated with the use of digital signatures (Section 4.6), how
ever only if ballots are identifiable.

These assumptions are summarized in the following table. Note that we do not need to trust the
tallier T.

Table 4.10: Verifiability trust assumptions.

hon(RA) AND hon(VD) AND hon(VS)

Usability. The mechanism does not affect usability of the voter casting their vote.

Practicality. We evaluate the implementability constraints (Section 3.5.1) as follows:

• Skills: Knowledge in cryptography is necessary to implement and integrate the mechanism
correctly. We deduce one point.

• Resources: No specific resources are needed for the mechanism.

• Protocol complexity: The mechanism does not significantly increase the complexity of the un
derlying voting system.

We evaluate the implementability enablers (Section 3.5.1) as follows:

• Software library: When homomorphic aggregation is combined with malleable PKE, the li
braries listed in Section 4.2.3 can be used. We grant three points.

When homomorphic aggregation is combined with malleable commitments, to our knowl
edge the only public implementation is the prototype of the Koinonia voting system [49]8. We
grant one point.

We evaluate the communication efficiency (Section 3.5.2) as follows:

• Data size: The data size is small (see Sections 4.2.3 and 4.3.3).

• Complexity: The mechanism does not add communication complexity to the system.

8https://github.com/gehuangyi20/Koinonia, accessed on 2024-05-13

Bundesamt für Sicherheit in der Informationstechnik (BSI) 57

https://github.com/gehuangyi20/Koinonia

A Study of Mechanisms for End-to-End Verifiable Online Voting

We evaluate the computational efficiency (Section 3.5.2) as follows:

• Server time: As part of the mechanism, the NIZKPs of ballot validity are verified, the ballots are
aggregated and the result is then verifiably decrypted.

Verifying a proof of set membership in {0, 1} for an ElGamal ciphertext requires 8 exponen
tiations (see 5.4.1 and 5.4.2 in [58]), corresponding to 808 exponentiations per ballot for 100
candidates with one selected candidate. For an election with 100’000 voters, this results in
8.08 · 107 exponentiations. To aggregate the ballots, they need to be multiplied together, re
sulting in 100’000 · 200 = 2 × 107 multiplications. Then, the aggregation is decrypted, and a
corresponding proof of correct decryption is generated. This requires one exponentiation for
the decryption, as well as two exponentiations for the proof. Each tallier performs all of these
steps, possibly in parallel.

We reuse the same time estimation as in Section 4.2.3, i.e. 0.11ms. This results in (8.08× 107) ·
0.11ms ≈ 8′888s ≈ 2:28 h for verifying ballots, (2 × 107) · 0.11ms ≈ 2200s ≈ 0:37 h for
aggregation and 3 · 0.11ms = 0.33 ms for verifiable decryption, amounting to a total of 3:05 h.

As the algorithm, notably the verification, is highly parallelizable, we grant four points.

• Voter time: There are no computations to be performed on the voter’s side.

Table 4.11: Practicality score summary.

Aspect with mall. PKE with mall. commitment
 Skills -1 -1
 Resources 0 0
 Protocol complexity 0 0
 Software library +3 +1
 Implementability (I) trim(5 + sum(·)) = 5 5
 Communication 5 5
 Computation 4 4
 Efficiency (E) min(·, ·) = 4 4
 Practicality 2

3I +
1
3E = 4.67 4.67

58 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

4.5 Verifiable mixing networks

Verifiable mixing networks (mix nets) are a common technique to tally secret ballots in verifiable
online voting. In this section, we describe how to verifiably mix encrypted or committed secret
votes (Sections 4.2 and 4.3) and evaluate the properties of this approach.

There are two types of mix nets: decryption mix nets (originally proposed in [27], see Sec
tion 4.10.2) and re-randomization mix nets (originally proposed in [123]). In this study, we focus on
re-randomization mix nets, which work as follows (for public-key encrypted messages).

Re-randomization mix nets (Figure 4.6). Mix nets are distributed protocols for anonymizing sen
sitive data. A mix net is run between a set of senders S1, . . . , Sm (in our case the voters) and a set of
independent mix servers M1, . . . ,Mn (in our case the talliers). The senders and the mix servers know
the public key pk of a IND-CPA-secure public key encryption scheme (as in Section 4.2), whose secret
key sk is secretly shared among some designated talliers (e.g., the mix servers themselves). The pub
lic key encryption scheme must be re-randomizable, which guarantees that it is possible to derive
from any ciphertext e = Enc(pk,m) a computationally indistinguishable ciphertext e′ = Enc(pk,m)
without knowing the corresponding secret key sk (see the definition in Section 4.2.1).

Each sender Si encrypts its plaintext input message mi with the public key pk and posts the cipher
text to BB. The first mix server M1 re-randomizes all input ciphertexts, shuffles the re-randomized
ciphertexts uniformly at random, and passes the resulting ciphertexts to the second mix server M2.
The second mix server re-randomizes these ciphertexts again, shuffles them, and so on. Finally, the
last mix server Mn outputs a list of ciphertexts that encrypt the input messages originally chosen by
the senders, but under different random coins and in a random order. Afterwards, the result can be
decrypted by the talliers who hold the secret key shares.

If at least one mix server Mk is honest and does not reveal the permutation and the random coins
it applied, a mix net guarantees that the individual links between senders and their messages remain
secret.

Verifiability technique. If misbehaving mix servers are a threat, then the simple mix nets sketched
above must be extended. In fact, for applications such as secure online voting, the mix net used
must also be verifiable to ensure that it can be detected if something goes wrong (e.g., the final re
sult does not match the submitted ballots). Many different methods have been developed to make
mix nets verifiable [62]. The most popular and common technique to transform a re-randomization
mix net into a verifiable one is to have each mix server prove in zero-knowledge that it correctly
re-randomized and shuffled its input ciphertexts (see Section 4.10.2 for more techniques for verifi
able mix nets). Using such proofs of shuffle is also the approach that we describe and analyze in the
following.

4.5.1 Requirements

We now explain which additional cryptographic building blocks are required to securely shuffle
encrypted ballots (Section 4.2) or committed ballots (Section 4.3). The building blocks of the corre
sponding secret ballot approaches are described in Sections 4.2.1 and 4.3.1, respectively.

Proof of shuffle. As described above, we consider the approach that each mix server proves with
a proof of shuffle that the output ciphertext or commitment vector contains the same messages as
the vector it received. This proof of shuffle must not reveal any further information, such as the
random coins used for re-randomization or the private permutation.

Bundesamt für Sicherheit in der Informationstechnik (BSI) 59

A Study of Mechanisms for End-to-End Verifiable Online Voting

B

B

A

B

B

A

Enc(pk)

Enc(pk)

Enc(pk)

B

B

A

ReRand(pk)

ReRand(pk)

ReRand(pk)

A

B

B

A

B

B

ReRand(pk)

ReRand(pk)

ReRand(pk)

B

A

B

B

A

B

Dec(sk)

Dec(sk)

Dec(sk)

Figure 4.6: Illustration of a re-randomization mix net for public-key encrypted votes (Section 4.4.2),
with three voters (rows) and two mix servers (dotted boxes: re-randomization and shuffle).

Implementation. We consider the following implementations of this approach in our analysis.

• Public-key encryption: We use the NIZKP of shuffle originally presented in [135] that was later
implemented in Verificatum [139]. We note that in [59, 60] a machine-checked verifier for this
proof of shuffle was proposed.

A notable alternative to this proof of shuffle is the one proposed in [15], which is more efficient
but also more complicated and therefore harder to implement, as evidenced, for example,
in [61].

• Commitments: When commitments are used to keep the voters’ vote secret, verifiable shuf
fling is more difficult. The challenge here is that the re-randomized shuffled commitments
must be opened at the end, but without revealing any of the secret data of the individual mix
servers (private re-randomization values and private permutations). Below we describe how
to solve this challenge.

This solution requires a special type of malleable public-key encryption that is called commit
ment consistent encryption [38]. This property makes it possible to derive (without any secret
knowledge) from a public-key ciphertext e = Enc(pk,m) a commitment c that can be opened
to the same message m; the corresponding opening values d to open c to m can be derived
from e with the secret key sk.

Now, the idea is to publish only the unconditionally hiding commitments on the part of the
bulletin board that the auditor A can read, while the conditionally secret public-key cipher
texts are only shared on a secret part of the bulletin board BB that the mix servers can access.

An implementation of this special public-key encryption scheme and a corresponding NIZKP
of plaintext knowledge have been proposed in [38], and it has been proved in [51] that a modi
fication of the Verificatum NIZKP of shuffle (see above) can also be used to implement a proof
of shuffle for this special scheme. We will choose these implementations for our evaluation
as they are technically close to the state-of-the-art mix net Verificatum.

4.5.2 Description

We now describe how the secret ballot protocols in Section 4.2.2 (for encrypted ballots) or in Sec
tion 4.3.2 (for committed ballots) are extended so that the ballots can be verifiably shuffled.

Encrypted ballots. In addition to the steps taken in the submission phase described in Sec
tion 4.2.2, the voting device of voter Vi computes a proof of knowledge πi for the secret vote vi. The
voting device appends the proof πi to the ciphertext ei and posts (ei, πi) to BB.

After the end of the submission phase, the mix servers and talliers verify for each (ei, πi) whether
πi is valid w.r.t. ei and whether neither ei nor πi are contained in any previous ballot; see Remark 2.

60 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

If any of these conditions does not hold, the ballot is discarded, and otherwise it is accepted for the
following tallying phase. Note that this preselection can be performed and thus verified by anyone
with access to BB.

In the tallying phase, the preselected encrypted votes are sent through a mix net of designated
mix servers M1, . . . ,Ml. Each of these mix servers computes a proof of shuffle and posts it together
with its outcome ciphertext vector to BB.

The talliers check that the preselection phase was correct and that all mix servers posted valid
proofs of shuffle. If so, the talliers secretly decrypt the aggregated result, compute a proof of correct
decryption, and post the resulting plaintexts along with the proof of decryption to BB.

To verify the correctness of the election result, an observer with access to BB verifies all proofs on
BB (i.e., the tallier’s proof of correct key generation, the voters’ proof of knowledge, the mix servers’
proofs of shuffle, and the tallier’s proof of correct decryption) and the correctness of the preselection.
If all checks pass, the election result is accepted, otherwise it is rejected.

Committed ballots. The main idea behind this approach is to have two trails of votes: a private
one to tally the ballots and a public one to audit the correctness of the tallying process.

• Private: The private trail is the same as the encrypted ballot approach described earlier. The
data of this verifiable mix network is shared on a secret part of the bulletin board, called SBB,
which only the mix servers and the talliers have access to, but not the auditors.

• Public: The commitment consistency property of the special public-key encryption scheme
and of the NIZKPs (of knowledge and of shuffle) is then used to derive the public trail. More
precisely, committed messages are derived from the corresponding encrypted messages, and
NIZKPs for the commitments are derived from the corresponding NIZKPs for the encrypted
messages. This data, which can be used to verify the correctness of the mixing and opening
process, is published on the part of the bulletin board BB that the auditor can read.

This results in two parallel verifiable mix nets, a public one with unconditionally hiding9 com
mitted messages and NIZKPs that are unconditionally (aka perfectly) zero-knowledge, and a private
one with computationally secret encrypted messages.

After the mixing phase, as before, the talliers check that all previous steps (preselection, NIZKPs)
were correct, and, if so, they decrypt the final ciphertext vector of the private mix net. They then
post the resulting messages to the public part of the bulletin board BB so that everyone can open
the final commitment vector of the public mix net.

When this approach is realized with the above implementation [38, 51], the public part of the
bulletin board BB is essentially a (strict) subset of the data on the secret bulletin board SBB.

4.5.3 Analysis

Secrecy. We analyze the secrecy aspects (vote privacy, everlasting privacy, vote-buying resistance)
of the combination ”malleable PKE (Section 4.2) & verifiable mixing” and of the combination ”mal
leable commitments (Section 4.3) & verifiable mixing”. We summarize our results in Table 4.12. We
get essentially the same result as for homomorphic aggregation (Section 4.4.3) with a similar rea
soning.

 Vote privacy. We distinguish between the following two scenarios, both for the use of malleable
PKE and for the use of malleable commitments. In the first scenario, there is only one tallier and one
mix server. In the second scenario, there are multiple talliers and they generate their joint public
key distributively (in the case of malleable PKE) or voters secretly distribute their votes among the
talliers (in the case of malleable commitments), and there are multiple mix servers.

9If implemented, for example, with Pedersen’s commitment scheme.

Bundesamt für Sicherheit in der Informationstechnik (BSI) 61

A Study of Mechanisms for End-to-End Verifiable Online Voting

1. Single tallier and single mix server: In this case, the voting system protects against Level 1 at
tackers, but not against Level 2 attackers. The reason is that a Level 2 attacker can compromise
the decryption machine and thus learn the decryption key to decrypt or open any ballot on
the bulletin board BB.

2. Multiple talliers and multiple mix servers: In this case, the voting system protects against Level
4 attackers, but not against Level 5 attackers. Indeed, the attacker cannot compromise enough
decryption talliers to be able to decrypt or open commitments. Similarly for the mix servers
who jointly realize the mix net. However, because voting device VD learns the voter’s plain
vote, the mechanism does not protect against Level 5 attackers.

We would like to point to our remarks in the vote privacy analysis in Section 4.4.3 about possible
shortcuts.

 Everlasting privacy. We obtain essentially the same result as for homomorphic aggregation (re
call Section 4.4.3). When the ballots are identifiable, then using malleable public-key encryption
does not provide practical everlasting privacy, while using unconditionally hiding malleable com
mitments in combination with perfect zero-knowledge proofs guarantees practical everlasting pri
vacy with Level 3. When the ballots are anonymous, then the scheme provides practical everlasting
privacy no matter whether public-key encryption or commitments are used.

 Vote buying resistance. This mechanism combined with any of the secret ballot mechanisms
does not protect against vote-buying, i.e., achieves only level 0, but not level 1. The reason is the
same as described in Sections 4.2.3 and 4.3.3.

Table 4.12: Summary of secrecy evaluation. The overall score of one of the compositions here is
calculated by adding together the doubled score of vote privacy, the score of everlasting privacy,
and the score of vote-buying resistance (see Section 3.2).

Aspect with mall. PKE with mall. commitment
Vote privacy
 One tallier 1 1
 Several talliers 4 4
 Everlasting privacy
 Identifiable ballots 0 3
Anonymous ballots 3 3
Vote-buying resistance 0 0

Verifiability. We study the verifiability of verifiable mixing combined with malleable PKE or mal
leable commitments. To this end, we analyze under which trust assumptions the correctness of
the final result can be verified. We get essentially the same result as for homomorphic aggregation
(Section 4.4.3) with a similar reasoning.

The correctness of each mixing step can be verified with the mix server’s individual proofs of
shuffle posted to BB. If public-key encryption is used, the correctness of the final decryption step
can be verified with the tallier’s individual proofs of correct decryption on the bulletin board BB. If
a commitment scheme is used, then the correctness of the final opening step can be verified with
the opening algorithm of the commitment scheme applied to all entries of the final shuffled vec
tor. In combination, these mechanisms guarantee that the final result correctly matches the voters’
submitted votes, even if the mix servers and the talliers are corrupted.

We do, however, need to make the same trust assumptions as for homomorphic aggregation
(see Section 4.4.3).

62 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

Table 4.13: Verifiability trust assumptions.

hon(RA) AND hon(VD) AND hon(VS)

Usability. The mechanism does not affect usability of the voter casting their vote.

Practicality. We evaluate the implementability constraints (Section 3.5.1) as follows:

• Skills: NIZKPs of correct shuffling are more complicated to implement than the NIZKPs of
set membership and correct decryption. Thus, compared to homomorphic aggregation (Sec
tion 4.4), stronger cryptographic skills are required. We deduce two points.

• Resources: No specific resources are needed for the mechanism.

• Protocol complexity: During the tally phase, the mix servers have to perform their part of the
shuffle in a serial manner. This process implies involved interactions, which makes the pro
tocol more complex. We deduce one point.

We evaluate the implementability enablers (Section 3.5.1) as follows:

• Software library: For encrypted ballots, there are libraries and systems available, notably a
subset of the resources listed in Section 4.2. In particular, Verificatum [139] provides a well
specified and documented mix net implementation for the entire mechanism. We grant a
score of 3.

For committed ballots, we found no equivalent library. However, the Verificatum mix net
provides shuffling of arbitrary ballots, and therefore may be adapted to work over committed
ballots (see [52]). We grant a score of 1.

We evaluate the communication efficiency (Section 3.5.2) as follows:

• Data size: The data size is small (see Sections 4.2.3 and 4.3.3).

• Complexity: During the tally phase, the mix servers perform their shuffle in a serial manner
and block the process during their turn, see Protocol 7.7 in [58] for more details. As there is
typically more than one tallier, we count this as some rounds, and award three points.

We evaluate the computational efficiency (Section 3.5.2) as follows:

• Server time: As part of the mechanism, the NIZKPs of ballot validity are verified, the ballots are
shuffled and the result is verifiably decrypted.

Verifying a proof of plaintext knowledge requires 4 exponentiations (see 5.4.1 in [58]). Then,
each ballot needs to be re-randomized, requiring 2 exponentiations per ballot (see Algorithm
8.46 in [58]). Further, generating a shuffle proof requires 7 exponentiations per ballot (see Sec
tion 5.5 of [58]). For an election with 100’000 voters, this results in 100′000∗(4+2+7) = 13∗105
exponentiations. Each tallier performs the verified shuffle one-after-the-other.

After the verified shuffle, each ballot is decrypted, and a corresponding proof of correct de
cryption is generated. This requires one exponentiation for the decryption, as well as two ex
ponentiations for the proof. For 100,000 ballots, we obtain 3 ·105 exponentiations per trustee.
Each tallier performs the verifiable decryption using their part of the private key, possibly in
parallel.

We reuse the same time estimation as in Section 4.2.3, i.e. 0.11ms. This results in 4 × 105 ·
0.11ms = 44 s for verifying the ballots, (7 + 2) × 105 · 0.11ms = 99 s for re-randomizing the

Bundesamt für Sicherheit in der Informationstechnik (BSI) 63

A Study of Mechanisms for End-to-End Verifiable Online Voting

ballots and generating the shuffle proof, and 3× 105 · 0.11ms = 33 s for verifiable decryption,
amounting to a total of 2:56 min.

According to [51], the time needed to verifiably shuffle malleable commitments is in a similar
range.

• Voter time: There are no computations to be performed on the voter’s side.

Table 4.14: Practicality score summary.

Aspect with mal. PKE with mal. commitment
 Skills -1 -2
 Resources 0 0
 Protocol complexity -1 -1
 Software library +3 +1
 Implementability (I) trim(5 + sum(·)) = 5 3
 Communication 3 3
 Computation 3 3
 Efficiency (E) min(·, ·) = 3 3
 Practicality 2

3I +
1
3E = 4.34 3

64 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

4.6 Digital signatures

Digital signatures are a central cryptographic building block of verifiable online voting systems.
While the building block itself (usually) does not require any election specific properties, its usage
can help to resolve or mitigate possible security issues in online voting. For example, it can resolve
possible disputes between different participants, or reduce trust in the election authority regarding
the eligibility verifiability of voters.

4.6.1 Requirements

We do not need any special requirements for the digital signature scheme besides its EUF-CMA secu
rity (Section 2.2.3). There are numerous possible options to implement this cryptographic building
block, for example Schnorr signatures [130] and many more (see below).

4.6.2 Description

We describe two applications of digital signatures for verifiable online voting.

Signatures of election authorities. Each election authority generates a key pair for signing mes
sages and verifying signed messages. The election authority distributes the verification key among
the participants of the voting system and keeps the signing key secret. The election authority then
signs each message with its private key and the recipients only accept messages from this authority
if they arrive with a signature that has been verified as correct using the authority’s verification key.
In particular, the voting server (as an election authority) signs valid incoming ballots and returns
the signature to the voter as a receipt.

Signatures of voters. In this application, there are two ways in which voters can obtain a secret
signing key. Either they generate the signing key and the corresponding verification key themselves,
or they receive this key pair from a trusted party. In the second case, for example, electronic identi
ties (eIDs) distributed by an external trust service provider could be used. In any case, the (election
specific) registration authority is not involved in the creation and the distribution of the key mate
rial. Whatever approach is taken, it is important to ensure that it is implemented correctly. Since
the exact method should be independent of or outside the rest of the voting system, we do not in
vestigate it in this paper.

When casting their vote, the voter also enters their secret key into the voting device, which signs
the generated ballot (Sections 4.4 and 4.5) and then sends it to the bulletin board BB. Only those
ballots are then counted that have been provided with a valid signature of a voter eligible to vote.

4.6.3 Analysis

Secrecy. Signatures of election authorities do not affect secrecy. Signatures of voters (that can
be verified without having to trust the registration authority), do not affect vote privacy and vote-
buying resistance. However, they do affect everlasting privacy:

• Malleable PKE: If we extend a voting protocol that uses malleable PKE and anonymous ballots,
then the ballots become identifiable due to the signatures. Therefore, the everlasting score for
such schemes decreases from 3 (when combined with one of the tallying techniques from Sec
tions 4.4 and 4.5) to 0 (recall Tables 4.9 and 4.12).

• Malleable commitments: If we extend a voting protocol that uses malleable commitments in
combination with one of the tallying techniques described in Sections 4.4 and 4.5, then ever
lasting privacy remains at level 3.

Bundesamt für Sicherheit in der Informationstechnik (BSI) 65

A Study of Mechanisms for End-to-End Verifiable Online Voting

Verifiability. We distinguish between the two possible uses of digital signatures that we have de
scribed above. In both cases we assume that one of the two secret ballot methods (Sections 4.2
and 4.3) is combined with one of the two verifiable tallying methods (Sections 4.4 and 4.5).

 Signatures of election authorities. In this case, verifiability is strengthened by accountability
(see Section 3.3.2), because the signatures guarantee that the election authorities cannot deny signed
messages that they sent.

 Signatures of voters. Assuming that the voters’ key pairs were generated correctly and the sign
ing keys were distributed or computed secretly, the trust in the election specific registration author
ity RA is reduced. This gives us the following trust assumption (if we combine a secret ballot method
with a verifiable tallying method as mentioned above).

Table 4.15: Verifiability trust assumptions.

hon(VD) AND hon(VS)

Otherwise, if the PKI is set up by RA, then trust in RA is still required and we obtain the same trust
assumptions as in Sections 4.4.3 and 4.5.3.

Usability. We distinguish between the two possible uses of digital signatures that we have de
scribed above.

 Signatures of election authorities. Some systems provide signatures which need to be validated
by the voter (e.g. a signature which confirms the ballot has been received by the system). We consider
here the case where this is done (only) on the voting device VD. This case has no impact on the voter’s
procedure, which is why we do not evaluate it further.10

 Signatures of voters. The signatures of votes have different user interactions depending on
their implementation. Signature keys may be generated on the voting device, with the public key
then being authenticated through conventional authentication procedures (e.g. see the identity-
based voter authentication mode in Electa [10]). Further, signature keys may be generated by the
system, and then delivered to the voter. In the latter case, the system may provide a string to be
entered (e.g. in the Swiss systems [58, 134]), or a dedicated signature device (e.g. an eID card as in the
Estonian setting [73]).

• Efficiency: In case that the signature keys are generated on the voting device, the voter then
needs to authenticate the public key, which we count as one step. In case the system provides
the signature key, the voter either needs to enter it, or operate the dedicated signature device,
which we each count as one step. All three approaches therefore need one step, which results
in an efficiency score of 5.

• Effectiveness: The dedicated signature device counts as an additional device, which reduces
the effectiveness of this approach by one to 4. The other approaches have none of the charac
teristics which would reduce their effectiveness, hence both achieve an effectiveness of 5.

10These signatures may (additionally) be validated on an audit device, or may even be forwarded to independent parties
(e.g. receipts in the POLYAS system may be delivered to auditors, which then verify the signed vote is part of the tally
[119]). The precise voter’s procedure depends heavily on the design of the voting system.

66 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

Table 4.16: Usability score summary.

Aspect Device-generated Entered to device Signature device
 Efficiency 5 5 5
 Effectiveness 5 5 4
 Usability min(·, ·) = 5 min(·, ·) = 5 min(·, ·) = 4

Practicality. We evaluate both possible uses of digital signatures together, as their implementation
is similar, and as they achieve the same score. However, we mention crucial differences, and explain
why these do not affect the scoring.

We consider the Schnorr signature , which is one of the popular, lightweight and well-studied
schemes. See, for example, Section 5.6 of [58]. We use the same elliptic curves as in Section 4.2.3.
Each signature needs two exponentiations to generate, and is composed out of two values with each
having a size of 32B.

We evaluate the implementability constraints (Section 3.5.1) as follows:

• Skills: Knowledge in cryptography is necessary to implement and integrate the mechanism
correctly. We deduce one point.

• Resources: For the signatures of election authorities, no dedicated resources are needed. For
the signatures of voters, some approaches may require distribution of key material to the vot
ers (e.g. over postal mail), or a dedicated signature device. We expect however that voting
systems would reuse an already established system, which is why we consider this to be out
side of the actual voting system. We therefore deduce no points.

• Protocol complexity: The mechanism does not significantly increase the complexity of the un
derlying voting system.

We evaluate the implementability enablers (Section 3.5.1) as follows:

• Software library: Digital signatures are not specific to online voting, and a plethora of high
quality and ubiquitous libraries for different languages and signature schemes exist. For ex
ample, OpenSSL11 provides ECDSA functionalities in C, and schnorrkel12 provides Schnorr
signatures in Rust. We grant three points.

We evaluate the communication efficiency (Section 3.5.2) as follows:

• Data size: The size of a signature is only 64B, which is well below 1MB.

• Complexity: The mechanism does not add communication complexity to the system.

We evaluate the computational efficiency (Section 3.5.2) as follows:

• Server time: Assuming an election with 100 000 ballots, with the same number of signatures
to be generated, a single server would need 105 · 2 · 0.11ms = 22s. The process is additionally
easy to parallelize.

• Voter time: The time to generate a signature is 0.32ms, which is well below 1s.

11https://www.openssl.org/docs/man3.3/man3/ECDSA_sign.html
12https://docs.rs/schnorrkel/0.11.4/schnorrkel/index.html

Bundesamt für Sicherheit in der Informationstechnik (BSI) 67

https://www.openssl.org/docs/man3.3/man3/ECDSA_sign.html
https://docs.rs/schnorrkel/0.11.4/schnorrkel/index.html

A Study of Mechanisms for End-to-End Verifiable Online Voting

Table 4.17: Practicality score summary.

Aspect Score
 Skills -1
 Resources 0
 Protocol complexity 0
 Software library +3
 Implementability (I) trim(5 + sum(·)) = 5

 Communication 5
 Computation 5
 Efficiency (E) min(·, ·) = 5

 Practicality 2
3I +

1
3E = 5

68 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

4.7 Audit-or-cast

The audit-or-cast approach, sometimes called Benaloh challenge after its inventor [16], is a promi
nent technique for enabling (human) voters to provide some evidence that their voting devices VD
have processed their secret votes as intended. The goal of this and the other cast-as-intended mech
anisms (Sections 4.8 and 4.9) is to protect against corrupted voting devices that do not process the
voters’ choices correctly. The audit-or-cast mechanisms is, for example, integrated in Helios [3] and
Electa [10].

Idea. In the original and most widely implemented version, the audit-or-cast approach works as
follows. After the voter’s choice has been encrypted (or committed to) by the voting device VD, the
voter has two options: they can either (1) cast that encrypted (or committed) ballot or (2) challenge
(i.e., audit) the ballot. If the latter option is chosen, the voting client enables auditing by revealing
the randomness used to encrypt (or commit to) the secret vote, so that the voter (typically using
an additional computer or application) can verify that this ciphertext contains the intended choice.
To avoid that the audit data can serve as a trivial receipt for the voter’s choice, the spoiled ballot is
discarded and the voter has to restart the voting process, possibly selecting a different choice.

The security of this approach is based on the assumption that the voting device VD (possibly con
trolled by an adversary) does not know in advance whether the encrypted/committed vote will be
audited or cast. Therefore, if the adversary controls VD and tries to manipulate the ballot, it risks
being detected. Note, however, that the ballot that is actually cast is not the one that is audited. This,
unlike other approaches (Sections 4.8 and 4.9), gives the voter some (probabilistic) assurance, but not
fully effective guarantees.

4.7.1 Requirements

While the audit-or-cast technique can be applied to encrypted (Section 4.2) and to committed (Sec
tion 4.3) ballots without any additional cryptographic requirements, it requires an independent au
dit device to verify the actual ballot.

Audit device. The human voter needs an additional device, called the audit device AD, during the
casting process. There must be a communication channel to send messages from the voting device
to the audit device.

4.7.2 Description

The basic ballot submission phase (as described in Section 4.2.2) is changed as follows; all other
phases remain unchanged.

First, as in the basic scheme, the voter Vi enters their vote vi into the voting device VD, which com
putes the ciphertext ei ← Enc(pk, vi). Then, the voting device displays the ciphertext ei (or a shorter
cryptographic hash of ei) to the voter. In this way, the voting device commits to the encrypted vote.
Now, the voter can choose whether they want to cast or audit this ciphertext, as described next.

If the voter decides to audit the ciphertext, the voting device VD sends the ciphertext ei, the choice
v′, and the random coins r′ that it used to encrypt vi to the audit device AD. The audit device AD then
verifies whether ei = Enc(pk, v′; r′). Afterwards, the audit device displays v′ to the voter, who can
verify whether this v′ matches the input choice vi. If it does not match, the voter can file a complaint;
the way in which the voter can do this, depends on the specification of the real voting system. In
any case, the voter must restart the voting process to cast or audit a new choice (to protect against
trivial vote selling, as mentioned above).

If the voter decides to cast the ciphertext, the voting device VD sends the ciphertext ei to the
voting server as in the basic secret ballot protocol. In this case, the voting device does not reveal the

Bundesamt für Sicherheit in der Informationstechnik (BSI) 69

A Study of Mechanisms for End-to-End Verifiable Online Voting

random coins that were used to encrypt the cast vote, but deletes them. The voting server responds
with a signature on the submitted ballot to confirm it has received the vote. The voter then again
uses their audit device to check that the acknowledged ballot matches the one that the voting device
displayed at the start.

4.7.3 Analysis

Secrecy. We analyze the secrecy aspects (vote privacy, everlasting privacy, vote-buying resistance)
of the audit-or-cast approach. We assume that one of the two secret ballot methods (Sections 4.2
and 4.3) is combined with one of the two verifiable tallying methods (Sections 4.4 and 4.5).

• Vote privacy: If the voter always audits random choices, then the information that the audit
device obtains is independent of the choice that the voter casts. Under this assumption, the
audit-or-cast technique does not change the vote privacy results in Sections 4.4.3 and 4.5.3.

However, if we cannot assume that human voters enter random choices to be audited, then
the individual data, which is a receipt, reveals some information about how the voter actually
voted and can therefore reduce the vote privacy level to 1.

• Everlasting privacy: The scheme with audit-or-cast provides the same level of everlasting pri
vacy as the underlying scheme without audit-or-cast (see Sections 4.4.3 and 4.5.3).

• Vote-buying resistance: Audit-or-cast does not change the vote-buying resistance of the un
derlying system it extends. In particular, it does not weaken vote-buying resistance because
audited/spoiled votes cannot be cast.

Verifiability. To evaluate the verifiability of the audit-or-cast technique, it is important to distin
guish whether the voters’ ballots are anonymous or identifiable (Remark 4).

If the ballots are anonymous, then neither the audit-or-cast technique we study in this section
nor the cast-and-audit technique we study in Section 4.8 protect against several corrupted voting
devices joining forces to secretly manipulate the votes of some of the voters using them. The reason
for this is the possibility of clash attacks; extra protections must be implemented to avoid these
attacks (see, e.g., [103]).

Remark 8: Clash attacks [103]

The general idea of a clash attack is to exploit situations, in which two or more different voters
create the same ballot (with or without the influence of the attacker), to maliciously exchange or
remove all instances of those identical ballots except one. At the same time, depending on the
individual verification method, each affected voter can still be convinced that ”their own” ballot
was recorded.a

aThere are individual verification mechanisms that still achieve their purpose even when anonymous ballots are
used, for example return codes (Section 4.9) and verification codes [100, 127] (Section 4.10.2).

Let us now explain how such a clash attack can be executed in the case of anonymous ballots, even
if the audit-or-cast technique is used. Assume that two voters V1 and V2 vote for the same candidate
v, and that their voting devices VD1 and VD2 are controlled by an attacker. The attacker now instructs
the two voting devices to use the same randomness to compute the encrypted ballots, which results
in identical ballots for both voters. Further, the attacker instructs the voting device of the voter who
casts second, to not send the ballot to the server, but instead to reuse the acknowledgment of the
voting server for the first voter. Since both ballots are identical and anonymous, the second voter
is fooled into believing that their own ballot has actually been recorded, while the adversary was

70 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

successfully able to drop one of the two votes.13 This shows that in the case of anonymous ballots,
the audit-or-cast mechanism we described in Section 4.7.2 does not protect against dishonest voting
devices. Thus, we will now assume that identifiable ballots are used.

The audit-or-cast technique by design does not audit the cast vote, the mechanism can only pro
vide some assurance of the correctness of the cast vote. Therefore, it is not only necessary that the
voter is able to detect a possible manipulation, but also that the voting device cannot predict whether
the voter will decide to audit the just-encrypted vote. This means that the audit-or-cast approach
(with identifiable ballots) only provides a probabilistic level of protection against corrupted voting
devices. Due to the complexity of this analysis, we refer to [103, 80] for formal analyses.

Usability. When the voter starts the voter’s procedure, they must decide whether they intend to
audit or to cast. If they want to audit, they enter a candidate at random; otherwise, they enter their
preferred candidate. The voting device then shows a commitment to what it claims to be an encryp
tion of that candidate, which the voter initializes their audit device with.

If the voter’s intent was to audit, they advice the voting device to audit. The voting device reveals
the encryption randomness to the audit device, which allows the audit device to recover the chosen
candidate. If the audit device shows the correct candidate, the voter restarts the procedure. Oth
erwise, the voter aborts and files a complaint on a channel that is independent from their voting
device.

If the voter’s intent was to cast, they advice the voting device to cast, and use the audit device to
check that indeed the encrypted ballot is cast in their name.

• Efficiency: We consider here the case when the voter audits once, and then casts their vote.

The voter’s procedure starts by entering a random candidate, and initializing the audit device.
Then, the voter advises the voting device to audit, and performs the audit on the audit device
(whether the displayed vote is correct). So far, the voter needed four steps.

Afterwards, the voter restarts the vote procedure by selecting their preferred candidate, and
again initializes the audit device. The voter advises the voting device to cast, and performs the
audit on the audit device (whether the ballot is submitted in their name). This adds another
four steps, resulting in an efficiency score of -2.14

Note that for the mechanism to be effective, at least some voters need to audit at least once,
while the voter’s strategy must remain unpredictable to the voter’s device. Some voters may
even audit more than once, which further increases the number of steps required to execute
the mechanism. We account for this by prefixing the score by a smaller-than-or-equal sign ≤.

• Effectiveness: Before entering the candidate, the voter needs to decide on an audit strategy,
which we consider a difficult task.15 The audit step is optional, but has a large impact, as failing
to perform it correctly may allow the adversary to change the vote. Further, the audit needs
an additional device. Altogether, this gives an effectiveness score of 1.

13Of course, this attack can be generalized to apply to more than two voters at the same time. Further, the adversary may
also choose, instead of simply dropping, to replace ballots.

14We analyze here the classic version of the mechanism, however we are also aware of a variant [10] which achieves a
slightly better ≤ −1 in efficiency (still resulting in the same overall score). In this variant, the voter always casts their
ballot, but is only afterwards given the choice to audit it. In case the voter chooses to audit, the ballot is first invalidated,
then the voter performs the audits (whether the vote is correct, and the ballot is submitted in their name), and then
restarts the voter’s procedure. In case the voter chooses to not audit, no more action is necessary. This overall saves
one step, namely initializing the audit device when the vote is not audited.

15Studies find that this step does not align well with the mental model of voters about verification (e.g. [112, 2]).

Bundesamt für Sicherheit in der Informationstechnik (BSI) 71

A Study of Mechanisms for End-to-End Verifiable Online Voting

Table 4.18: Usability score summary.

Aspect Score
 Efficiency ≤ −2
 Effectiveness 1
 Usability min(·, ·) = 0

Practicality. We evaluate the implementability constraints (Section 3.5.1) as follows:

• Skills: Knowledge in cryptography is necessary to implement and integrate the mechanism
correctly. We deduce one point.

• Resources: No specific resources are needed for the mechanism.

• Protocol complexity: The mechanism does not significantly increase the complexity of the un
derlying voting system.

We evaluate the implementability enablers (Section 3.5.1) as follows:

• Software library: No library is, to our knowledge, available for the mechanism. Helios16 im
plements the mechanism. We note that the mechanism is rather simple, and access to li
braries which offer just its building blocks (e.g. encryption), some of which we describe in
Section 4.2.3, should be sufficient. We grant a score of 2.

We evaluate the communication efficiency (Section 3.5.2) as follows:

• Data size: The voting device needs to transfer the ballot and the encryption randomness to
the audit device. Implemented as proposed in Section 4.2.3, this remains small.

Further, the audit device needs to check whether the ballot is indeed stored by the server, most
likely by downloading an appropriate digital signature from the server. Besides the signature,
the audit device would likely download additional meta-data (e.g. the election the ballot was
cast in).

It is safe to conclude that the data size remains small and clearly under 1MB.

• Complexity: No blocking operation decreases the communication efficiency.

We evaluate the computational efficiency (Section 3.5.2) as follows:

• Server time: The mechanism does not need computation on the server side.

• Voter time: For each audit, the voting device needs to encrypt the vote, and the audit device
needs to decrypt it. Implemented as proposed in Section 4.2, this is fast and remains clearly
under 1s.

16https://github.com/benadida/helios-server, originally published in [3]

72 Bundesamt für Sicherheit in der Informationstechnik (BSI)

https://github.com/benadida/helios-server

A Study of Mechanisms for End-to-End Verifiable Online Voting

Table 4.19: Practicality score summary.

Aspect Score
 Skills -1
 Resources -1
 Protocol complexity 0
 Software library +2
 Implementability (I) trim(5 + sum(·)) = 5

 Communication 5
 Computation 5
 Efficiency (E) min(·, ·) = 5

 Practicality 2
3I +

1
3E = 5

Bundesamt für Sicherheit in der Informationstechnik (BSI) 73

A Study of Mechanisms for End-to-End Verifiable Online Voting

4.8 Cast-and-audit

The cast-and-audit approach is another prominent technique for enabling (human) voters to verify
that their voting devices VD have processed their secret votes as intended. Such mechanisms are,
for example, integrated in the Estonian [73] and in the Polyas online voting system [119].

Idea. The basic idea is that the voting device VD reveals some information data to the audit device
AD that can be used to revert and thus verify the encryption of the voter’s choice. However, care
must be taken that this data does not serve as a receipt for how the voters voted.

We will describe and analyze two different approaches to tackle this problem. The first technique
mitigates the problem on the conceptual level at the cost of public verifiability. The second tech
nique solves the problem on the cryptographic level without affecting public verifiability.

4.8.1 Requirements

Both cast-and-audit techniques that we describe and analyze can be applied to encrypted (Sec
tion 4.2) and to committed (Section 4.3) ballots. Both techniques require an independent audit de
vice to verify the actual ballot. The second technique additionally requires that the underlying PKE
scheme (or commitment scheme) is re-randomizable and that a corresponding interactive zero-
knowledge proof is available.

Audit device. The human voter needs an additional device, called the audit device AD, during the
casting process.

Re-randomization and interactive zero-knowledge proof. For the second technique, we assume
that the public-key encryption scheme is re-randomizable (Section 4.2.1). More specifically, we re
quire that ReRand(pk, Enc(pk,m, r), x) = Enc(pk,m, r + x) holds true for all messages m and all
random coins r, x. This property is guaranteed, for example, for ElGamal PKE (see Section 4.2.1) and
for Pedersen commitments (Section 4.3.1).

Furthermore, we assume an interactive zero-knowledge proof (ZKP) to prove that a given cipher
text e∗ is a re-randomization of e. The main difference to non-interactive zero-knowledge proofs
(Section 2.2.4) is that interactive ones require an active verifier (in our case the audit device) and
guarantee that the proof is convincing only to the active verifier, since it can be simulated/”faked”
towards any other party.

To implement such an interactive ZKP, we can use essentially the same building blocks as for
the NIZKP (for the same relation) that we mentioned in Section 4.5.1; however, since this proof is
interactive, we must use a technique such as Protocol 6.5.1 [70, 107] (which is also implemented
in [119]) to make this proof sound.

4.8.2 Description

We describe two versions of this approach:

• In the first version, the audit material can also convince a third party how the voter voted;
in other words, without further means, a voter cannot deny how they voted to an observer
who receives the individual audit material. This issue can, however, be mitigated under the
assumption that voters can re-vote and that the auditing parties A (who can access the bul
letin board) do not collude with any corrupted observer. On the downside, assuming that A
is trusted in this respect means that the public (including possible vote buyers) cannot access
and therefore not verify the content of the bulletin board.

74 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

• The second version is designed so that the audit material can only convince the corresponding
voter that their vote was cast as intended, even if voters cannot re-vote or if the bulletin board
is public. While the technique is not designed to prevent voters from willingly selling their
votes, it does not reduce the level of receipt-freeness of the underlying voting system that it
extends (assuming that the audit device is not corrupted).

In both versions, only the basic ballot submission phase (as described in Section 4.2.2) is changed,
while all other phases remain unchanged. For simplicity, we assume that malleable PKE is used
to keep individual choices secret (Section 4.2); the case of malleable commitments (Section 4.3) is
analogous.

Version without cryptographic deniability. First, as in the basic scheme, the voter Vi enters their
vote vi into the voting device VD, which computes the ciphertext ei ← Enc(pk, vi) with randomness
ri (and a corresponding proof of knowledge). Then the voting device sends the encrypted ballot ei
to the voting server VS over the dedicated authenticated channel.

The voting server VS verifies the identity of the voter, creates a ballot identifier vid for ei, and
returns vid to the voting device.

If the voter decides to audit the ballot, the audit device AD queries VD to obtain a ballot identifier
vid and the random coins r that VD used to compute ei. Then AD sends vid to the voting server
to obtain a ciphertext ei. The audit device uses the randomness r to compute v such that ei =
Enc(pk, v; r). Finally, the audit device displays v to the voter, who can check whether v matches the
cast vote vi.

Version with cryptographic deniability. First, as in the secret ballot protocol (Section 4.2),
the voter Vi enters their vote vi into the voting device VD, which computes the ciphertext
ei ← Enc(pk, vi) with randomness ri (and a corresponding proof of knowledge). Then the voting
device sends the encrypted ballot ei to the voting server VS over the dedicated authenticated
channel.

Now, to allow the voter to verify the cast vote, the voting server establishes a ”blinded verification
track” of ei as follows. This does not change the ciphertext ei, which will be tallied, but provides a
way to verify that ei encrypts the intended choice without revealing the randomness ri to the voter.
More precisely, the voting server VS first verifies the identity of the voter, chooses random coins
x (from the set of possible random coins to encrypt messages) and re-randomizes ei with x to e∗i ,
i.e., e∗i = ReRand(pk, ei, x). Then, the voting server VS returns x to the voting device VD, which
computes the blinded randomness r∗ ← r+x, where r is the randomness that VD used to compute
ei.

If the voter decides to audit the ballot, the audit device AD first queries VD to obtain the
blinded randomness r∗ and then the voting server VS to obtain the original ciphertext ei and the
re-randomized ciphertext e∗i . The voting server VS and the audit device AD run the interactive
zero-knowledge proof to prove/verify that e∗i is a re-randomization of ei. If the proof is successful,
the audit device decrypts the blinded ciphertext e∗i with the blinded randomness r∗ to obtain v∗.
Finally, the audit device displays v∗ to the voter, who can check whether v∗ matches the cast vote
vi.

Let us now explain why the recomputed choice v∗ matches vi if the two devices and the voting
server run their dedicated programs. Due to the re-randomization property, the re-randomized
ciphertext e∗i is of the form e∗i = Enc(pk, vi, r+ x) and the randomness r∗ is of the form r∗ = r+ x.
Therefore, when the audit device AD decrypts e∗i with r∗, it obtains the choice vi that the voter cast.

Bundesamt für Sicherheit in der Informationstechnik (BSI) 75

A Study of Mechanisms for End-to-End Verifiable Online Voting

4.8.3 Analysis

Secrecy. We analyze the secrecy aspects (vote privacy, everlasting privacy, vote-buying resistance)
of the cast-and-audit approach. As for our evaluation of the audit-or-cast approach (Section 4.7.3),
we assume that one of the two secret ballot methods (Sections 4.2 and 4.3) is combined with one of
the two verifiable tallying methods (Sections 4.4 and 4.5).

• Vote privacy: In the version without cryptographic deniability, the receipt that the voter ob
tains from their voting device reveals to an attacker how the voter voted if the attacker can
also access the semi-public information. Therefore, with this technique, the vote privacy level
is 2.

In the version with cryptographic deniability, the vote privacy level of the underlying scheme
(Sections 4.4.3 and 4.5.3) is preserved because the receipt only reveals how the voter voted if
the voting server is also corrupted.

• Everlasting privacy: The scheme with cast-and-audit provides the same level of everlasting
privacy as the underlying scheme without cast-and-audit (see Sections 4.4.3 and 4.5.3).

• Vote-buying resistance: When the version without cryptographic deniability is used, the cast-
and-audit technique makes vote buying easy if voters cannot re-vote or if a vote buyer learns
the election audit data. On the other side, the version with cryptographic deniability does not
weaken the vote-buying resistance of the underlying system in all cases.

Verifiability. As in the evaluation of the audit-or-cast technique (Section 4.7.3), we distinguish be
tween the cases of anonymous ballots and identifiable ballots (Remark 4). In the case of anonymous
ballots, the cast-and-audit technique we study in this section does not protect against corrupted
voting devices because the same kind of clash attacks (Remark 8) is possible as when the audit-or-
cast technique studied in Section 4.7 is used with anonymous ballots. As mentioned in Section 4.7.3,
extra protections must be implemented to avoid these attacks.

In the following, we assume that the ballots are identifiable, which protects against clash attacks or
similar vulnerabilities. We assume that one of the two secret ballot methods (Sections 4.2 and 4.3) is
combined with one of the two verifiable tallying methods (Sections 4.4 and 4.5). If the audit device is
not corrupted, then in both versions (with and without cryptographic deniability), the voting device
VD does not have to be trusted for verifiability. We thus obtain the following trust assumptions.

Table 4.20: Verifiability trust assumptions.

hon(RA) AND hon(VS) AND (hon(VD) OR hon(AD))

Note that in combination with digital signatures (Section 4.6), we can also avoid the trust assump
tion hon(RA).

Usability. We consider both versions of the mechanism together since the version with crypto
graphic deniability does not impact the voting procedure.

The voter’s procedure starts by entering their preferred candidate, which the voting device casts.
Then, the voter may optionally audit the ballot. To perform the audit, the voter initializes the audit
device to access the encrypted ballot. Then, the voter checks whether the vote displayed on the
audit device is correct, and whether the vote has been cast in their name. If the vote is not correct,
the voter aborts and files a complaint.

• Efficiency: The voter first enters their chosen candidate, which is then cast by their voting
device. Then, to perform the audit, the voter initializes the audit device, checks whether the

76 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

displayed vote is correct, and has been cast in their name. The four executed steps result in an
efficiency score of 2.

• Effectiveness: The audit step is optional, but has a large impact, as failing to perform it correctly
may allow the adversary to change the vote. Further, the audit needs an additional device.
Altogether, this gives an effectiveness score of 2.

Table 4.21: Usability score summary.

Aspect Score
 Efficiency 2
 Effectiveness 2
 Usability min(·, ·) = 2

Practicality. We evaluate the implementability constraints (Section 3.5.1) as follows:

• Skills: Knowledge in cryptography is necessary. We deduce one point.

• Resources: The voter needs an audit device, which is considered an additional resource. We
deduce one point.

• Protocol complexity: The version without cryptographic deniability does not significantly in
crease the complexity of the underlying voting system. However, we consider the interactive
zero-knowledge proof between the voting and audit device for the version with cryptographic
deniability a complex interaction, which is why we deduce one point for this version.

We evaluate the implementability enablers (Section 3.5.1) as follows:

• Software library: No library is, to our knowledge, available for the mechanism. The building
blocks are however readily available (see Section 4.2.3). For the version without cryptographic
deniability, this should enable a straightforward implementation, which is why we grant two
points. The version with cryptographic deniability, which is specified in a research paper [119],
is more evolved to compose out of its building blocks, which is why we grant one point.

We evaluate the communication efficiency (Section 3.5.2) as follows (total with/without crypto
graphic deniability: 3/5):

• Data size: The version without cryptographic deniability needs to transfer the ballot identifier
vid, the randomness r and the ciphertext ei between the voting device, the audit device and
the voting server. If the cryptography is implemented as proposed in Section 4.2.3, all values
are small.17

The version with cryptographic deniability additionally transfers the second ciphertext e∗i
18,

as well as the messages part of the interactive ZKP. Overall, all values remain small, and clearly
under 1MB.

• Complexity: In both versions, the audit device AD requests the randomness from the voting
device VD and the ciphertext from the voting server, which we count as one round of small
size. We grant five points.

In the version with cryptographic deniability, additionally AD and VD perform an interactive
ZKP, which adds another round. We grant three points.

17For the identifier, a couple of bytes are sufficient.
18The randomness r and the blinded randomness r∗ are essentially of the same size.

Bundesamt für Sicherheit in der Informationstechnik (BSI) 77

A Study of Mechanisms for End-to-End Verifiable Online Voting

We evaluate the computational efficiency (Section 3.5.2) as follows:

• Server time: The version without cryptographic deniability needs no computations on the
server side, but only to store or forward the ballot. The version with cryptographic deniability
additionally needs to perform the re-randomization of the ballot. Implemented as proposed
in Section 4.2.3, this is efficient. The server time remains clearly under a few minutes.

• Voter time: The version without cryptographic deniability needs to decrypt the ballot. In the
version with cryptographic deniability, the audit device additionally needs to perform the in
teractive ZKP. All operations are efficient if implemented as proposed in Section 4.2.3. The
client time remains for both mechanisms under 1s.

Table 4.22: Practicality score summary.

Aspect without with cr. deniability
 Skills -1 -1
 Resources -1 -1
 Protocol complexity 0 -1
 Software library +2 +1
 Implementability (I) trim(5 + sum(·)) = 5 3
 Communication 5 3
 Computation 5 5
 Efficiency (E) min(·, ·) = 5 3
 Practicality 2

3I +
1
3E = 5 3

78 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

4.9 Return codes

Return codes are another way to enable (human) voters to verify that their voting devices VD have
processed their secret votes as intended. While the mechanism does not need the use of an audit
device, such as the audit-or-cast and the cast-and-audit techniques (Sections 4.7 and 4.8), it does
require a setup component which processes the correct return codes, and a secure channel through
which the voters can learn them (e.g., by postal mail). This approach is integrated, for example, in
the Swiss setting, in the deployed Swiss Post System [134] and in the research-oriented CHVote [58].

Idea. Before the voting phase begins, each voter receives a code sheet (e.g., by mail) listing all possi
ble voting choices along with the corresponding return codes. These codes are unique to each voter
and each vote, and need to be kept secret. During the voting phase, after voting, the voter receives
(via the voting application or another dedicated channel) the return code corresponding to the se
lected choice. The voter compares this received code with the one listed on the code sheet next to
the intended choice.

4.9.1 Requirements

The return codes can be applied to both encrypted (Section 4.2) as well as committed (Section 4.3)
ballots. It requires a setup component SC to produce the code sheet, with the sheet then sent over a
trusted channel to the voter. Further, the voting server VS must be able to (re-)generate the return
codes from the cast ballot. Finally, for the system to be able to create a complete code sheet, all
voting choices must be known in advance.

Setup component. The setup component SC constructs the code sheet for the voter. As during
this step it learns the return codes, it needs to be trusted. SC is further responsible to send the code
sheet over a trusted channel (both secret and authenticated) to the voter.

Note that the mechanism needs no complex computations to be performed on the voter side (as
opposed to audit-or-cast and cast-and-audit, which both therefore need an audit device): Compar
ing the correct return codes with the actual return codes displayed in the voting application can be
done directly by the human voter. This eliminates the need for a trusted device to perform compu
tations on the voter’s side. However, in turn it requires this trusted SC, as well as the secure channel
from SC to the voter.

Computation of return codes. Given the (encrypted or committed) ballot, the server must be able
to derive the return codes sent back to the voter. In the simplest case for the mechanism, all possible
ballots are formed in advance, and for each of these pre-formed ballots, a return code is stored next
to it. Calculating the return codes is then a simple lookup of what is stored next to the pre-formed
ballot. However, ballots may not always be known in advance, e.g. because the voter’s device per
forms randomized ballot encryption based on the voter’s plaintext choice. Extracting return codes
is then more complicated, but still possible, e.g., using plaintext equivalent tests (PETs) [22]. In this
study, we only consider pre-formed ballots, which is sufficient to show the two fundamentally dif
ferent approaches from the voter’s perspective.

4.9.2 Description

We adopt the setting described in Section 4.2.2, add code sheet generation after the generation of
the talliers’ public/private key pair (pk, sk), and modify the ballot submission phase. For simplicity,
we assume that malleable PKE is used (Section 4.2); the case of malleable commitments (Section 4.3)
is analogous.

Bundesamt für Sicherheit in der Informationstechnik (BSI) 79

A Study of Mechanisms for End-to-End Verifiable Online Voting

We distinguish between the following two versions, which both use pre-formed ballots, but differ
mainly in their user interactions:

• Entering pre-formed ballots: The voter enters the pre-formed ballot (i.e., their encrypted
choice) directly.

• Entering plaintext ballots: The voter selects their candidate in the voting application, which
then recomputes the pre-formed ballot corresponding to that candidate.

In the first version, the voting application (and thus the voting device) never learns the voter’s
choice, but it may be cumbersome to use for the voter, who can no longer select their candidate
directly in the voting application. In the second version, the voting application learns the voter’s
choice, but it is potentially easier to use for the voters.

Enter pre-formed ballot. To generate the code sheet for voter V, the setup component SC gen
erates for each possible vote vi (each candidate) a triplet (vi, ei, rci), where ei ← Enc(pk, vi) is an
encryption of the vote vi and rci is a randomly chosen return code. SC then secretly shuffles all tu
ples (ei, rci) and sends the result to the voting server VS. Furthermore, SC sends all (vi, ei, rci) (the
code sheet) to voter V via the secure channel.

To cast the vote vi, the voter then enters the corresponding ei into their voting device VD, which
forwards it to the voting server VS. VS responds with the corresponding return code rc′i. VD shows
rc′i to the voter, who checks if rc′i = rci.

Enter the plaintext ballot. To generate the code sheet for voter V, the setup component SC gen
erates for each possible vote vi (each candidate) a triplet (vi, ei, rci), where ei ← Enc(pk, vi) is an
encryption of the vote vi and rci is a randomly chosen return code. SC then secretly shuffles all tu
ples (ei, rci) and sends the result to the voting server VS. Additionally, SC symmetrically encrypts
each (vi, ri), where ri will later be used to encrypt vi, under a randomly chosen key k into a store s,
and posts s to the bulletin board. Finally, SC sends k and all (vi, rci) (the code sheet) to the voter V
via the secure channel.

To cast the vote vi, the voter enters vi and k into their voting device VD. VD downloads s and then
uses k to decrypt s and retrieve the corresponding ri. VD (re-)computes ei ← Enc(pk, vi, ri) and
sends ei to the voting server VS. VS responds with the corresponding return code rc′i. VD shows rc′i
to the voter, who checks if rc′i = rci.

4.9.3 Analysis

Secrecy. We analyze the secrecy aspects (vote privacy, everlasting privacy, vote-buying resistance)
of the return code approach. As for our evaluation of the audit-or-cast approach (Section 4.7.3) and
cast-and-audit approach (Section 4.8.3), we assume that one of the two secret ballot methods (Sec
tions 4.2 and 4.3) is combined with one of the two verifiable tallying methods (Sections 4.4 and 4.5).

• Vote privacy: When entering pre-formed ballots, the privacy increases to level 5 if the roles
of the registration authority and the talliers are distributed. Otherwise, the privacy level does
not change.

When entering plaintext ballots, the privacy level of the underlying scheme without return
codes does not change.

• Everlasting privacy: The scheme with return codes provides the same level of everlasting pri
vacy as the underlying scheme without return codes (see Sections 4.4.3 and 4.5.3).

80 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

• Vote-buying resistance: Neither version improves the vote-buying resistance of the underlying
system that it extends. For both pre-formed and plaintext ballots, it holds that if the adversary
has access to the short-term voting material (which includes the code sheet), then the adver
sary can check how the voter voted. Therefore, a system using such a mechanism cannot reach
level 3 or higher.

Verifiability. We assume that one of the two secret ballot methods (Sections 4.2 and 4.3) is com
bined with one of the two verifiable tallying methods (Sections 4.4 and 4.5). If the setup component
is not corrupted, then in both versions (entering pre-formed ballots or entering plaintext ballots)
the voting device VD does not have to be trusted for verifiability. We thus obtain the following trust
verifiability result.

Table 4.23: Verifiability trust assumptions.

hon(RA) AND hon(VS) AND (hon(VD) OR hon(SC))

Usability. For pre-formed ballots, the voter’s procedure starts by the voter entering the pre-formed
ballot (essentially a long string) corresponding to their preferred candidate. For plaintext ballots, the
voter enters directly their preferred candidate, and a key (essentially a long string, too). After casting
the pre-formed or plaintext ballot, the voter may optionally compare the return code.19 If the return
codes are not correct, the voter files a complaint.

• Efficiency: For pre-formed ballots, the voter enters directly the ballot. This is a non-trivial
effort for each candidate, for which we deduce an efficiency point. After casting the ballot, the
voter compares the return code. This is again a non-trivial effort for each candidate, which
leads us to deduce another point. Overall, the two executed steps minus two point deductions
lead to an efficiency score of 2.

For plaintext ballots, the voter enters their preferred candidate. Further, the voter enters the
key. After casting the ballot, the voter compares the return codes, which is a non-trivial effort
for each candidate. Overall, the three executed steps minus one point deduction lead to an
efficiency score of 2.

• Effectiveness: While entering long strings may be tedious, we do not consider it to be diffi
cult. Further, we do not consider comparing return codes to be difficult, notably we observe
that other common applications rely on similar mechanisms, such as some types of second
factor authentication. However, the audit step is optional and has a large impact, as failing
to perform it correctly may allow the adversary to change the vote. Altogether, this gives an
effectiveness score of 3.

Table 4.24: Usability score summary.

Aspect pre-formed plaintext
 Efficiency 2 2
 Effectiveness 3 3
 Usability min(·, ·) = 2 min(·, ·) = 2

19Comparing the return codes may, depending on the implementation, involve an additional device or induce a media
break (e.g. in the Swiss setting, the return codes are on a sheet of paper delivered by mail [134]).

Bundesamt für Sicherheit in der Informationstechnik (BSI) 81

A Study of Mechanisms for End-to-End Verifiable Online Voting

Practicality. We evaluate the implementability constraints (Section 3.5.1) as follows:

• Skills: Knowledge in cryptography is necessary to implement and integrate the mechanism
correctly. We deduce one point.

• Resources: The secure channel required for the mechanism from the system to the voter rep
resents a resource hard to obtain. For example in the Swiss Post System, the channel is imple
mented by sending a letter over postal mail. We deduce two points.

• Protocol complexity: The addition of the setup component increases the complexity of the
interactions. We deduce one point.

We evaluate the implementability enablers (Section 3.5.1) as follows:

• Software library: No library is, to our knowledge, available for the mechanism. For both the
Swiss Post system [134] as well as the CHVote system [58], which both implement their own
flavour of return codes, the specification and code is however available. Further, some versions
of the mechanism are rather simple (e.g. the versions we describe here), and access to libraries
which offer just its building blocks (e.g. encryption), of which multiple exist (see Section 4.2.3),
should be sufficient. We grant two points.

We evaluate the communication efficiency (Section 3.5.2) as follows:

• Data size: The mechanism needs to form a ciphertext for every possible vote per voter. Further,
these ciphertexts need to be sent to the servers and the voter (either on the voting sheet for
pre-formed ballots, or within the store for plaintext ballots). Even for 100 candidates, as seen
in Section 4.2.3, the data size per voter remains well under 1MB.

• Complexity: Generating the code sheet, and the corresponding communication with the
server and the voter, needs only non-blocking communication. After casting the vote, the
voter however needs to wait for the server to respond with the return code, which counts
as one round of small size. For the mechanism variant using plaintext ballots, the voting
device additionally needs to download the store, which we however do not consider blocking
communication, as it can be done asynchronously. We grant five points.

We evaluate the computational efficiency (Section 3.5.2) as follows:

• Server time: For both versions of the mechanism, the server computation is an efficient lookup
(e.g. a database query), which relates the ciphertext to its correct return code. We do not eval
uate here the computation of the setup component, for which performance is less relevant, as
execution can start long before the voting phase starts.20 We remain well under a few minutes.

• Voter time: For pre-formed ballots, the mechanism does not need any computation on the
side of the voter. For plaintext ballots, the voting device needs to decrypt the store, for which
only (generally very efficient) symmetric encryption is necessary.21 Further, the device needs
to recompute the encryption of the vote, which is efficient as seen in Section 4.2.3. We remain
well under 1s.

20Observe how the setup component primarily executes encryptions, which are efficient, as seen in Section 4.2.3.
21Symmetric encryption usually needs a low number of cycles per byte, hence it is by factors faster than asymmetric

encryption.

82 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

Table 4.25: Practicality score summary.

Aspect Score
 Skills -1
 Resources -2
 Protocol complexity -1
 Software library +2
 Implementability (I) trim(5 + sum(·)) = 3

 Communication 5
 Computation 5
 Efficiency (E) min(·, ·) = 5

 Practicality 2
3I +

1
3E = 3.67

Bundesamt für Sicherheit in der Informationstechnik (BSI) 83

A Study of Mechanisms for End-to-End Verifiable Online Voting

4.10 More methods

In this section, we list additional methods and approaches for verifiable online voting that we have
identified through our literature and market analysis. Some of them (such as the implementation
of secure bulletin boards) are complementary to the methods we described and evaluated before,
while others represent alternatives (such as alternative verifiable mix nets). In contrast to the eight
mechanisms in the main part, we describe these additional methods only briefly and refer to the
respective publications for more details.

4.10.1 Secure bulletin board

The bulletin board BB is a critical component of verifiable voting protocols because this broadcast
channel with memory guarantees that all information to verify an election is provided accurately
and consistently to the auditors and other participants. If BB does not work properly, then all veri
fiability and secrecy properties collapse.

While many voting protocols in the literature include bulletin boards, most work abstracts away
from these central protocol components and considers them as black boxes. The implementation
and security analysis of secure bulletin boards has been studied in the following publications [71,
86, 37, 69, 74, 56]. We are, however, not aware of any real online voting system that uses such an
approach to realize a secure bulletin board.

4.10.2 Verifiable mix nets

In Section 4.5, we described and evaluated re-randomization mix nets that are made verifiable by
proofs of shuffle. While this combination net has become the most established way to implement
verifiable mix nets in online voting, there is also another type of mix net that can be used, and several
other techniques to make mix nets verifiable. In the following, we briefly describe these alternative
solutions and refer to [62] for a systematic and more detailed review of them.

Types of mix nets. There are two types of mix nets: decryption mix nets (DMNs) and re-
randomization mix nets (RMNs). Originally, the concept of a DMN was proposed by Chaum [27] in
1981, and the one of a RMN by Park, Itoh, and Kurosawa [123] in 1993. We already described how a
RMN works in Section 4.5. A DMN works as follows.

 Decryption mix nets. Each mix server Mk holds a public/private key pair (pkk, skk) of an IND-
CCA-secure public key encryption scheme, and the senders know the public keys pk1, . . . , pkn.

Each sender Si iteratively encrypts its plaintext input message msgi using the public keys
pk1, . . . , pkn of the mix servers M1, . . . ,Mn in reverse order. The sender Si submits the resulting
nested ciphertext ei to the first mix server M1.

The first mix server M1 uses its secret key sk1 to decrypt the outermost encryption layer of all
input ciphertexts, shuffles the decrypted messages, and forwards them to the second mix server M2.
The second mix server M2 uses its secret key sk2 to decrypt the next encryption layer, shuffles the
result, and so on. Finally, the last mix server Mn outputs the plaintext messages initially selected by
the senders in random order.

Techniques for verifiable mix nets. There exist several alternatives to using proofs of shuffles to
make a mix net verifiable. In the following, we describe their main ideas.

• Randomized Partial Checking (RPC) was originally proposed in [79] (for both RMNs and DMNs).
RPC has since been used in many e-voting systems since, such as Prêt à Voter [128] for real-
world on-site elections in Australia [24]. However, researchers observed that the verifiability

84 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

and privacy level of RPC is lower than originally claimed [85]; these results were later formally
proven in [101] for re-randomization mix nets, and in [104] for decryption mix nets. A simple
way to fix the problems of the original RPC technique for decryption mix nets was proposed
in [64].

RPC can be regarded as a relaxed version of a proof of shuffle, trading weaker security and
privacy for higher efficiency. The basic idea is to ask each mix server to reveal the traces of a
randomly selected subset of the ciphertexts it has processed. For this purpose, a mix server
in a decryption mix net provides a proof of decryption for these messages, and a mix server
in a re-randomization mix net reveals the random coins that it used to re-randomize these
messages.

• Message tracing is a simple technique to provide a certain level of verifiability in a decryption
mix net. The idea is that each sender Si knows the trace of its own input through the mix
network, and can therefore look up the output of the mix network (which includes the in
termediate results of the mix servers) to verify that this trace has not been broken. Message
tracing was proposed in [100] and formally analyzed in [100, 42, 116].

• Verification codes are another simple mechanism to provide a certain level of verifiability in a
decryption mix net. In such a mix net, each sender chooses a random verification code and
appends it to its message; the sender can then verify whether its message/code pair is in the
final outcome of the mix net. The idea of verification codes was originally proposed in [129],
and later used in [100] where it was also formally analyzed.

• The concept of the trip wire technique was originally used in a specific variant in the repli
cation technique (see below) as a subroutine, and generalized in [20] so that it could be used
as an independent verifiability technique. The basic idea of the trip wire technique is to hide
the senders’ inputs by a set of indistinguishable dummy inputs that act as trip wires. The trip
wires are injected by a set of auditors, one of which must be temporarily trusted (similar to
the RPC technique, see above). Now the mix net is run with this extended set of inputs. Once
mixing is complete, the auditors publicly reveal the trip wires’ traces through the mix net. If
a mix server Mk manipulated one of the dummy traces, then Mk can be identified and be held
accountable.

• The message replication technique was originally proposed in [84] for decryption mix nets and
formally analyzed in [62]. The basic idea of the replication is to let each sender Si replicate its
input multiple times, so that all of its replications are also part of its input. Now, if a malicious
mix server Mk tries to manipulate Si’s input, then Mk must simultaneously manipulate Si’s
replicated inputs in the same way as well.

• Finally, there also exist alternative proofs of shuffle to [135], which we used to implement and
evaluate verifiable mix nets in Section 4.5. These include, for example, [63, 6, 5, 135, 15, 108,
44, 46, 45, 88, 72], which were all designed for re-randomization mix nets.

4.10.3 Cast-as-intended

In the main part, we described and evaluated three cast-as-intended techniques, namely audit-or-
cast (Section 4.7), cast-and-audit (Section 4.8), and return codes (Section 4.9). In addition to these
techniques, there exist alternative proposals to enable voters to verify whether their voting devices
have processed their votes correctly.

• Pre-authenticated voting codes: In this approach, the voter receives a voting sheet with pre-
authenticated voting codes. To vote, the voter enters the code (or scans a QR code) corre
sponding to their choice. By construction, the voting client is then only able to prepare a valid

Bundesamt für Sicherheit in der Informationstechnik (BSI) 85

A Study of Mechanisms for End-to-End Verifiable Online Voting

ballot for the selected choice, and no others. The voter however still needs to check that the
voting client actually forwarded the ballot to the server.

This approach is used, for example, in [30], where the voting codes are used not only to provide
verifiability, but also to protect ballot privacy against dishonest voting clients.

• Custom hardware tokens: Another option for verifying voting devices is to use special hard
ware tokens during the voting process. However, it has been shown in [87] that the only exist
ing implementation of this approach [57] suffers from several security problems and is there
fore not yet ready for deployment.

• Verification codes: The sElect system [100] provides cast-as-intended in a different way by im
plementing the verification code for mix nets (see Section 4.10.2). Voters choose random ver
ification codes as they cast their ballots and attach them to their votes. After the tally, voters
can check that their verification codes appear next to their votes. With this technique, voters
can verify the entire voting process end-to-end.

However, the simple verification code technique in sElect makes vote buying trivial. The rea
son is that the voter can simply give the verification code to a vote buyer, who can then look
up the election result to check whether the voter obeyed. To address this issue, the Selene
system [127] implements a more complex cryptographic machinery to use verification codes
without enabling trivial vote buying.

4.10.4 Freedom of choice

Many voting protocols have been proposed to guarantee by technical means that voters can vote
freely without being influenced by vote-selling or coercion:

• Fake credentials [81, 28, 92, 9, 7, 8]: By using fake credentials for authentication, voters who are
coerced to vote for a particular candidate, can make up an invalid credential that they use to
submit their coerced votes. The usability of this approach was empirically studied in [120] and
turned out to be very low.

• Deniable vote updating [109, 65, 118, 95, 97, 73]: Voters can secretly update their (possibly co
erced or sold) votes so that only their intended votes are tallied. Although the usability of this
approach has not yet been studied, the voters’ ceremonies seem to be much easier than in the
(practically ineffective) fake credential approach.

• Re-randomizable signatures [26, 30]: The voters’ signed ballots are re-randomized before being
posted to the bulletin board in order to render the random coins used for encryption useless
for vote-selling.

• Selene [127, 77]: This protocol uses verification codes that cannot be sold as trivial receipts of
how the voters voted to provide some level of protection against corrupted voting devices.

• Masking [11, 138]: This technique enables voters to blind their choices with cryptographic
masks so that their intended votes are counted, while being able to compute a valid-looking
mask for any coerced choice.

4.10.5 Post-quantum voting

The security of the cryptographic building blocks currently used in real online voting systems, but
also in most academic proposals, is based on so-called ”classical” hardness assumptions. For ex
ample, the security of ElGamal PKE (Section 4.2.1), the binding property of Pedersen commitments

86 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

(Section 4.3.1),22 and the soundness property of the most common NIZKP for these primitives (Sec
tions 4.2.1 and 4.3.1) are based on the hardness of computing the discrete logarithm efficiently in
certain groups. These (and related) assumptions are currently justified because even extremely pow
erful conventional computers cannot solve these problems with the best known algorithms.

However, hardness assumptions such as the discrete logarithm problem (or prime factorization),
and thus the security of systems based on such assumptions, are threatened by the development of
ever more powerful quantum computers. The reason is that thirty years ago Peter Shor [133] showed
that quantum computers working with a sufficient number of controllable qubits could solve these
problems efficiently.

Although the strength of existing quantum computers, as far as is publicly known, still seems
to be far from solving these problems, it is necessary to develop and use alternative cryptographic
schemes to prevent a future potential security and privacy disaster. For more than 20 years, so-called
post-quantum cryptographic schemes have been developed, for example for PKE, commitments and
NIZKPs, whose underlying hardness assumptions cannot be broken by known quantum algorithms.

There are several approaches to post-quantum cryptography, which differ in the type of hard
ness assumption they are based on. The most prominent approaches are lattice-based, code-based,
hash-based, isogeny-based, and multivariate cryptography. The U.S. National Institute of Standards
and Technology (NIST) launched a standardization program for post-quantum cryptography a few
years ago and, after several rounds of evaluation, identified the first post-quantum methods (for key
encapsulation mechanisms from which PKE schemes can be built and for digital signatures) to be
standardized.

In the course of these developments, research has also been conducted on how to design verifiable
online voting systems with post-quantum security. The challenge here is that the post-quantum
cryptographic building blocks provide a different balance between security, speed, and data size
than the conventional quantum-insecure schemes. Several solutions have been developed in the
academic literature over the last 10 years:

• Homomorphic aggregation: There are two proposals for post-quantum online voting [21, 39]
that combine malleable commitments (Section 4.3) with homomorphic aggregation (Sec
tion 4.4) and implement the corresponding cryptographic requirements using only lattice-
based blocks. The voting protocol proposed in [21] is based on [39] and extends it to provide
end-to-end verifiability.

• Verifiable mix nets: There are several proposals for post-quantum online voting [6, 5, 43, 75]
that combine malleable PKE (Section 4.2) with verifiable mixing based on proofs of shuffle
(Section 4.5) and implement the corresponding cryptographic requirements using only
lattice-based blocks.

Another solution was proposed in [20], in which the authors implement a decryption mix net
made verifiable with the trip wire technique (Section 4.10.2) using only lattice-based PKE.

• Special setting: For elections in which the nodes of a peer-to-peer network want to hold an
anonymous veto vote, a lattice-based solution was presented in [40].

Although some of these approaches are practicable, the development of post-quantum online
voting systems is currently still in the basic research phase. It is therefore an open challenge to
implement a complete, deployable post-quantum online voting system.

22The hiding property of Pedersen commitments is not affected as it is guaranteed unconditionally.

Bundesamt für Sicherheit in der Informationstechnik (BSI) 87

A Study of Mechanisms for End-to-End Verifiable Online Voting

Remark 9: Post-quantum security vs everlasting privacy

At this point, we would like to clarify the relationship between post-quantum security and ev
erlasting privacy (Section 3.2.2):

1. Privacy: Any voting system with everlasting privacy also guarantees post-quantum pri
vacy, since everlasting privacy implies that even a computationally unbounded attacker
cannot derive any information about the individual votes of the voters from the audit
data. Conversely, post-quantum privacy does not imply everlasting privacy, since even
post-quantum hardness assumptions can be broken by (theoretically) computationally
unbounded attackers.

2. Verifiability: One cannot make a general statement about whether a voting system with
everlasting privacy also provides post-quantum verifiability, and vice versa. Although it is
in principle possible to combine these two properties, they are generally independent.

4.10.6 Tally-hiding voting

To reduce the amount of information published during an election, so-called tally-hiding voting
protocols implement the desired result function exactly and securely without any detours. For ex
ample, if the result function is to announce the winner, then the data published during the election
(including zero-knowledge proofs etc.) does not reveal any information other than which candidate
received the most votes; in particular, it does not reveal the number of votes per candidate.

There are essentially two types of tally-hiding voting, which differ in terms of towards which
parties the full tally (i.e., the number of votes per candidate) remains secret:

• Fully tally-hiding: In these systems, even the individual talliers who tally the election only
learn the tally-hiding final result (e.g., only the winner). There are several proposals in the
literature to realize verifiable fully tally-hiding online voting [33, 99, 137, 125, 66, 25]. While
these solutions differ in the result functions they target, their efficiency, and their crypto
graphic components, they all have in common that they implement some kind of secure mul
tiparty computation (MPC) protocol to verifiably compute the tally-hiding voting result in a
distributed fashion.23

• Publicly tally-hiding: In these systems, the full tally remains hidden from anyone who has ac
cess to the bulletin board (e.g., to verify the election), while the individual talliers can learn
the full tally (i.e., the number of votes per candidate), but not the individual votes of the vot
ers. By relaxing the tally-hiding property in this way, it is possible to realize more complex
voting methods, including ranked voting, as demonstrated in [76], which is the only verifiable
publicly tally-hiding voting protocol in the literature to date.

There are two works in the literature that are somewhat related to tally-hiding voting, but have
different goals:

• In [34], a secure MPC protocol was used to hide potentially sensitive information generated in
the tallying phase of coercion-resistant voting protocols that employ fake credential systems
(Section 4.10.4).

• In [126], a method was presented that reduces the level of verifiability (in a controlled manner)
in order to reduce sensitive information in the final result.

23In multiparty computation (MPC) protocols, several parties jointly compute a function f whose input values x1, . . . , xn

and all intermediate computation values remain secret, so that even the individual processing parties only learn the
final function value y = f(x1, . . . , xn). Secure MPC protocols additionally guarantee that the correctness of the secret
calculation can be verified, even when the processing parties are actively corrupted.

88 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

4.10.7 Special settings

Many voting protocols have been proposed for peer-to-peer (aka boardroom) online voting, in which
the voters themselves tally their ballots [68, 83, 40, 13, 12, 14, 114, 131, 67, 122, 94, 93]. While such
protocols can be interesting for these specific election types, they require that all (or most) voters
actively participate in the tallying phase.

Some voting protocols enable voters to choose designated parties, so called proxies, to vote on
their behalf (e.g., [91, 97]).

Bundesamt für Sicherheit in der Informationstechnik (BSI) 89

A Study of Mechanisms for End-to-End Verifiable Online Voting

5 Conclusion

5.1 Summary

Secret ballots. Malleable public-key encryption (Section 4.2) and malleable commitments (Sec
tion 4.3) are efficient methods for encrypting voters’ votes such that the ciphertexts keep these votes
secret and such that they are compatible with any of the mechanisms for verifiably tallying the secret
votes in a privacy-preserving manner (see below).

The main advantage of malleable public-key encryption over malleable commitments is that
there are more high-quality reference implementations that have also been hardened by numerous
real-world applications. The main advantage of malleable commitments over malleable public-key
encryption is that they allow votes to be kept unconditionally private from any auditor, providing
everlasting privacy without compromising verifiability (Remark 4).

Verifiable privacy-preserving tallying. Homomorphic aggregation (Section 4.4) and verifiable
mixnets (Section 4.5) are efficient methods to tally secret ballots in such a way that the individual
connections between voters and their votes remain secret in the final result, while at the same
time it can be independently verified that the tallying was done correctly. There are high-quality
reference implementations for both approaches, which also offer the possibility to distribute trust
in terms of privacy among different tallying parties.

The main advantage of verifiable mixnets over homomorphic aggregation is that their efficiency
is independent of the complexity of the ballots and can therefore be used for all types of voting
methods. The main advantages of homomorphic aggregation over mixnets are that its efficiency is
independent of the number of talliers and that there are no time dependencies between the tallying
authorities.

Authenticated communication. Digital signatures (Section 4.6) are a simple and effective way to
ensure that votes are cast by eligible voters. In particular, it can prevent votes from being ”stuffed”
(e.g., by unauthorized persons or in the name of abstaining voters). When digital signatures are
used by voting authorities, this helps to strengthen accountability. Since digital signatures provide
a strong form of individual identification of each encrypted ballot, caution is advised when using
them if everlasting privacy is a concern. One cryptographic possibility to combine both properties
is to use commitments (see paragraph secret ballots).

Voting device verification. There are different methods for verifying that the voting devices have
processed the votes correctly, which offer diverse trade-offs between the assumptions they make
about the infrastructure, the voters’ possessions and their capabilities, and the specific verifiability
and privacy features they provide. The main technical features of the three techniques that we have
described and evaluated in more detail are as follows:

• Audit-or-cast (Section 4.7) is the simplest one to plug into an existing voting scheme, but pro
vides only some probabilistic assurance of correctness. It requires an audit device.

• Cast-and-audit (Section 4.8) guarantees that the encrypted vote cast by the voting device is in
fact the one that the voter chose, but to avoid that the individual audit data can serve as trivial

90 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

receipts it requires a cryptographically more involved interaction with the voting server. It
requires an audit device.

• Return codes (Section 4.9) avoid the need for the voter to use an audit device and for the voting
device to learn the voter’s choice, but they require a more complex voting infrastructure.

Although there have been some studies on the usability of these methods, more research is needed
to better understand under what practical circumstances these methods meet the desired usability
properties and how they compare.

Combinations. As a basic building block of a verifiable voting system, any secret ballot method can
be combined with any verifiable privacy-preserving tallying method that we investigated as part of
this study. In this way, the correctness of the result can be independently verified while keeping the
voters’ choices secret towards the auditors.

The resulting basic building block can then be independently extended by the use of digital sig
natures and/or a method for verifying the voting devices. In this way, the authenticity of the com
munication can be improved and/or the correct functioning of the voting devices can be checked.

Bundesamt für Sicherheit in der Informationstechnik (BSI) 91

A Study of Mechanisms for End-to-End Verifiable Online Voting

5.2 Key findings

Key Finding 1: The whole is more than the sum of its parts

Verifiable online voting systems combine many different methods and components. In order
to assess whether an online voting system meets the desired characteristics, it is important to
know what each method does, but ultimately it is key to look at the voting system as a whole. In
particular, even if the individual methods work properly, they must be linked together correctly
to provide end-to-end verifiability.

To illustrate Key finding 1, we recall that the effectiveness of voting device verification methods
depends on the overall protocol in which they are embedded. For example, the methods we studied
in Sections 4.7 and 4.8 can be ineffective if the voting protocol is vulnerable to clash attacks (Sec
tion 4.7.3). However, this problem cannot be detected if we only consider the respective mechanisms
”locally”, but we need to look at the whole system with all its specifications.

We would like to take this key finding as an opportunity to emphasize, as we did in Section 4.1,
that the focus of our study was on individual (cryptographic) methods that can be combined to form
the backend of verifiable online voting systems. We have explained which of these methods can be
combined and how this works in principle. However, we have not investigated how to embed these
methods into a complete online voting system and how to correctly and securely connect them at
the implementation level. With this in mind, we would like to remind the reader of our warning
from Section 4.1: When analyzing the security of an online voting system, it is crucial to consider the
entire system and not to draw any shortcuts!

Key Finding 2: The goal is to reduce trust assumptions effectively

The ultimate goal of verifiable online voting systems with vote secrecy is to reduce the required
trust in the various system components as much as possible. With respect to some properties
(e.g., correct tallying), it is possible to completely avoid any trust in the responsible party, while
for other properties (e.g., vote privacy), this is impossible. In the latter case, to avoid a single party
being responsible for such properties, it is useful to distribute the role of that part among several
entities, so that only some of these parties need to be trusted with respect to that property. For
the distribution of trust to be effective in practice, it must be ensured that these parties are truly
independent of each other.

To evaluate under which circumstances an election system is secure, one must first and fore
most understand which components must be trusted in terms of verifiability and vote secrecy. One
should keep in mind that in secure online elections, as in traditional paper ballot elections, it is im
possible to completely avoid trusting any system component.

If an online voting system aims to distribute trust among multiple entities, then special care must
be taken to ensure that these different entities are truly independent. Distributing trust for the sake
of appearances is not enough. Depending on the role, this may mean, for example, that the parties
are physically separated (e.g., in distributed mix nets), that their software comes from independent
sources (e.g., in voting device verification) and that the providers are independent (e.g., economically,
politically).

92 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

Key Finding 3: Distributed verifiable tallying of secret ballots is practical

We can expect any state-of-the-art verifiable online voting system to combine a secret ballot
technique with a verifiable privacy-preserving tallying technique. In this way, we can allow in
dependent auditors to verify the correctness of the election result, without having to trust the
tallying authority.

Furthermore, it can be expected that the trust regarding vote privacy is distributed among
multiple parties; in this way, only an (arbitrarily determinable) number of talliers must be trusted
to ensure that the individual links between voters’ encrypted votes and their choices in the final
result remain secret. We remind the reader of Key finding 2, which here implies that the talliers
must be effectively distributed.

With this key finding, we make clear that the combination of a secret ballot and a verifiable
privacy-preserving tallying method should be the minimum standard for any verifiable online
voting system. The methods for this purpose that we investigated are practical to implement and
operate. Appropriate standardization of suitable building blocks and corresponding verification
algorithms could help ensure that more voting systems meet this minimum standard.

Key Finding 4: No ’one-size-fits-all’ solution for voting device verification

It is complicated to choose a voting device verification mechanism that is appropriate for a given
election. The decision depends on what infrastructure is available, what assumptions we can
make about the voters, what threat scenario we are considering, and what properties we want
to achieve. Based on these conditions, we then have to decide on a voting device verification
method that satisfies these conditions or, more realistically, at least provides a good balance
between them.

Although choosing a method to verify voting devices is more difficult than choosing a privacy-
preserving tallying method (see above), there are reasonable methods to solve this challenge in prin
ciple. Therefore, it is appropriate to expect that one of these methods will be used if there is a risk
that the voting devices may be corrupted. Following Key finding 2, if a verification method is used
that requires audit devices or other trusted parties, it is important to ensure that they and the voting
device are provided by different entities and can be executed independently.

Key Finding 5: Everlasting privacy is feasible without compromising verifiability

In many elections, it is necessary to protect privacy not only in the foreseeable future, but also
in the long run (for example against future adversaries that use quantum computers). There are
feasible approaches to guarantee this property, called everlasting privacy, towards anyone who
wants to verify the election, without compromising verifiability.

Everlasting privacy is especially relevant in the context of future quantum attackers. While such
attackers cannot retroactively undermine the correctness of today’s elections, they can retrospec
tively break privacy if the adversary learns the connections between the voters and their classically
encrypted choices. Everlasting privacy provides effective protection against such ’store now, decrypt
later’ attacks (Remark 9).

In order to provide everlasting privacy towards the public, two approaches are currently used in
practice. In the voting systems for political elections in Estonia or Switzerland, only a few selected
auditors are given the opportunity to verify parts of the election. These auditors are then trusted
not to violate everlasting privacy. Other voting systems, such as versions of Helios, use anonymous
ballots, which means that the tallying process can also be verified by observers who may be able

Bundesamt für Sicherheit in der Informationstechnik (BSI) 93

A Study of Mechanisms for End-to-End Verifiable Online Voting

to break the underlying hardness assumptions of the public-key encryption scheme used, but still
cannot use this power to compromise vote privacy.

While these approaches have transparency drawbacks, using identifiable ballots with uncondi
tionally hiding commitments instead can guarantee everlasting privacy towards the auditors under
weaker trust assumptions for verifiability. Since we observed in our evaluation that this approach is
in fact technically feasible, legal frameworks that allow this approach in their jurisdiction could help
promote the market-ready development and deployment of online voting systems with everlasting
privacy and fully independent end-to-end verifiability.

94 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

Bibliography

[1] C. Z. Acemyan, P. Kortum, M. D. Byrne, and D. S. Wallach. Usability of voter verifiable, end-
to-end voting systems: Baseline data for Helios, Prêt à Voter, and Scantegrity II. The USENIX
Journal of Election Technology and Systems, 2(3):26–56, 2014.

[2] C. Z. Acemyan, P. Kortum, M. D. Byrne, and D. S. Wallach. Users’ Mental Models for Three End-
to-End Voting Systems: Helios, Prêt à Voter, and Scantegrity II. In International Conference on
Human Aspects of Information Security, Privacy, and Trust, pages 463–474. Springer, 2015.

[3] B. Adida. Helios: Web-based Open-Audit Voting. In P. C. van Oorschot, editor, Proceedings of
the 17th USENIX Security Symposium, July 28-August 1, 2008, San Jose, CA, USA, pages 335–348.
USENIX Association, 2008.

[4] M. Alsadi and S. Schneider. Verify my vote: Voter experience. 10 2020.

[5] D. F. Aranha, C. Baum, K. Gjøsteen, and T. Silde. Verifiable Mix-Nets and Distributed Decryp
tion for Voting from Lattice-Based Assumptions. In W. Meng, C. D. Jensen, C. Cremers, and
E. Kirda, editors, Proceedings of the 2023 ACM SIGSAC Conference on Computer and Commu
nications Security, CCS 2023, Copenhagen, Denmark, November 26-30, 2023, pages 1467–1481.
ACM, 2023.

[6] D. F. Aranha, C. Baum, K. Gjøsteen, T. Silde, and T. Tunge. Lattice-Based Proof of Shuffle and
Applications to Electronic Voting. In K. G. Paterson, editor, Topics in Cryptology - CT-RSA 2021
- Cryptographers’ Track at the RSA Conference 2021, Virtual Event, May 17-20, 2021, Proceedings,
volume 12704 of Lecture Notes in Computer Science, pages 227–251. Springer, 2021.

[7] R. Araújo, A. Barki, S. Brunet, and J. Traoré. Remote Electronic Voting Can Be Efficient, Veri
fiable and Coercion-Resistant. In J. Clark, S. Meiklejohn, P. Y. A. Ryan, D. S. Wallach, M. Bren
ner, and K. Rohloff, editors, Financial Cryptography and Data Security - FC 2016 International
Workshops, BITCOIN, VOTING, and WAHC, Christ Church, Barbados, February 26, 2016, Revised
Selected Papers, volume 9604 of Lecture Notes in Computer Science, pages 224–232. Springer,
2016.

[8] R. Araújo, N. B. Rajeb, R. Robbana, J. Traoré, and S. Yousfi. Towards Practical and Secure
Coercion-Resistant Electronic Elections. In S. Heng, R. N. Wright, and B. Goi, editors, Cryptol
ogy and Network Security - 9th International Conference, CANS 2010, Kuala Lumpur, Malaysia,
December 12-14, 2010. Proceedings, volume 6467 of Lecture Notes in Computer Science, pages
278–297. Springer, 2010.

[9] R. Araújo and J. Traoré. A Practical Coercion Resistant Voting Scheme Revisited. In J. Heather,
S. A. Schneider, and V. Teague, editors, E-Voting and Identify - 4th International Conference,
VoteID 2013, Guildford, UK, July 17-19, 2013. Proceedings, volume 7985 of Lecture Notes in Com
puter Science, pages 193–209. Springer, 2013.

[10] Assembly Voting. Electa: Documentation of the cryptographic protocol (version
2.0). https://downloads.assembly-voting.com/download/marketing/electa_-_
documentation_of_the_cryptographic_protocol.pdf. [Accessed 05-02-2024].

Bundesamt für Sicherheit in der Informationstechnik (BSI) 95

https://downloads.assembly-voting.com/download/marketing/electa_-_documentation_of_the_cryptographic_protocol.pdf
https://downloads.assembly-voting.com/download/marketing/electa_-_documentation_of_the_cryptographic_protocol.pdf

A Study of Mechanisms for End-to-End Verifiable Online Voting

[11] M. Backes, M. Gagné, and M. Skoruppa. Using mobile device communication to strengthen
e-voting protocols. In A. Sadeghi and S. Foresti, editors, Proceedings of the 12th annual ACM
Workshop on Privacy in the Electronic Society, WPES 2013, Berlin, Germany, November 4, 2013,
pages 237–242. ACM, 2013.

[12] S. Bag, M. A. Azad, and F. Hao. E2E Verifiable Borda Count Voting System without Tallying
Authorities. In Proceedings of the 14th International Conference on Availability, Reliability and
Security, ARES 2019, Canterbury, UK, August 26-29, 2019, pages 11:1–11:9. ACM, 2019.

[13] S. Bag, M. A. Azad, and F. Hao. PriVeto: a fully private two-round veto protocol. IET Inf. Secur.,
13(4):311–320, 2019.

[14] S. Bag and F. Hao. E2E Verifiable Electronic Voting System for Shareholders. In 2019 IEEE
Conference on Dependable and Secure Computing, DSC 2019, Hangzhou, China, November 18-
20, 2019, pages 1–8. IEEE, 2019.

[15] S. Bayer and J. Groth. Efficient Zero-Knowledge Argument for Correctness of a Shuffle. In
D. Pointcheval and T. Johansson, editors, Advances in Cryptology - EUROCRYPT 2012 - 31st
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Cambridge, UK, April 15-19, 2012. Proceedings, volume 7237 of Lecture Notes in Computer Sci
ence, pages 263–280. Springer, 2012.

[16] J. Benaloh. Ballot Casting Assurance via Voter-Initiated Poll Station Auditing. In R. Martinez
and D. A. Wagner, editors, 2007 USENIX/ACCURATE Electronic Voting Technology Workshop,
EVT’07, Boston, MA, USA, August 6, 2007. USENIX Association, 2007.

[17] J. C. Benaloh and M. Yung. Distributing the Power of a Government to Enhance the Privacy of
Voters (Extended Abstract). In J. Y. Halpern, editor, Proceedings of the Fifth Annual ACM Sym
posium on Principles of Distributed Computing, Calgary, Alberta, Canada, August 11-13, 1986,
pages 52–62. ACM, 1986.

[18] D. J. Bernstein. Curve25519: new diffie-hellman speed records. In Public Key Cryptography-
PKC 2006: 9th International Conference on Theory and Practice in Public-Key Cryptography,
New York, NY, USA, April 24-26, 2006. Proceedings 9, pages 207–228. Springer, 2006.

[19] D. Boneh and V. Shoup. A Graduate Course in Applied Cryptography. 2023.

[20] X. Boyen, T. Haines, and J. Müller. A Verifiable and Practical Lattice-Based Decryption Mix Net
with External Auditing. In L. Chen, N. Li, K. Liang, and S. A. Schneider, editors, Computer Se
curity - ESORICS 2020 - 25th European Symposium on Research in Computer Security, ESORICS
2020, Guildford, UK, September 14-18, 2020, Proceedings, Part II, volume 12309 of Lecture Notes
in Computer Science, pages 336–356. Springer, 2020.

[21] X. Boyen, T. Haines, and J. Müller. Epoque: Practical End-to-End Verifiable Post-Quantum-
Secure E-Voting. In IEEE European Symposium on Security and Privacy, EuroS&P 2021, Vienna,
Austria, September 6-10, 2021, pages 272–291. IEEE, 2021.

[22] A. Brelle and T. Truderung. Cast-as-Intended Mechanism with Return Codes Based on PETs. In
R. Krimmer, M. Volkamer, N. B. Binder, N. Kersting, O. Pereira, and C. Schürmann, editors, Elec
tronic Voting - Second International Joint Conference, E-Vote-ID 2017, Bregenz, Austria, October
24-27, 2017, Proceedings, volume 10615 of Lecture Notes in Computer Science, pages 264–279.
Springer, 2017.

[23] Bundesverfassungsgericht (Germany). BVerfG, Urteil des Zweiten Senats vom 03. März 2009,
March 2009.

96 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

[24] C. Burton, C. Culnane, J. Heather, T. Peacock, P. Y. A. Ryan, S. A. Schneider, V. Teague, R. Wen,
Z. Xia, and S. Srinivasan. Using Prêt à Voter in Victoria State Elections. In J. A. Halderman and
O. Pereira, editors, 2012 Electronic Voting Technology Workshop / Workshop on Trustworthy
Elections, EVT/WOTE ’12, Bellevue, WA, USA, August 6-7, 2012. USENIX Association, 2012.

[25] S. Canard, D. Pointcheval, Q. Santos, and J. Traoré. Practical Strategy-Resistant Privacy-
Preserving Elections. In J. López, J. Zhou, and M. Soriano, editors, Computer Security - 23rd Eu
ropean Symposium on Research in Computer Security, ESORICS 2018, Barcelona, Spain, Septem
ber 3-7, 2018, Proceedings, Part II, volume 11099 of Lecture Notes in Computer Science, pages
331–349. Springer, 2018.

[26] P. Chaidos, V. Cortier, G. Fuchsbauer, and D. Galindo. BeleniosRF: A Non-interactive Receipt-
Free Electronic Voting Scheme. In E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and
S. Halevi, editors, Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu
nications Security, Vienna, Austria, October 24-28, 2016, pages 1614–1625. ACM, 2016.

[27] D. Chaum. Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. Commun.
ACM, 24(2):84–88, 1981.

[28] M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: Toward a Secure Voting System. In 2008
IEEE Symposium on Security and Privacy (SP 2008), 18-21 May 2008, Oakland, California, USA,
pages 354–368. IEEE Computer Society, 2008.

[29] J. D. Cohen and M. J. Fischer. A Robust and Verifiable Cryptographically Secure Election
Scheme (Extended Abstract). In 26th Annual Symposium on Foundations of Computer Science,
Portland, Oregon, USA, 21-23 October 1985, pages 372–382. IEEE Computer Society, 1985.

[30] V. Cortier, A. Filipiak, and J. Lallemand. BeleniosVS: Secrecy and Verifiability Against a Cor
rupted Voting Device. In 32nd IEEE Computer Security Foundations Symposium, CSF 2019,
Hoboken, NJ, USA, June 25-28, 2019, pages 367–381. IEEE, 2019.

[31] V. Cortier, D. Galindo, S. Glondu, and M. Izabachène. Distributed ElGamal à la Pedersen: Ap
plication to Helios. In A. Sadeghi and S. Foresti, editors, Proceedings of the 12th annual ACM
Workshop on Privacy in the Electronic Society, WPES 2013, Berlin, Germany, November 4, 2013,
pages 131–142. ACM, 2013.

[32] V. Cortier, D. Galindo, R. Küsters, J. Müller, and T. Truderung. Sok: Verifiability notions for e-
voting protocols. In IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA, USA, May
22-26, 2016, pages 779–798. IEEE Computer Society, 2016.

[33] V. Cortier, P. Gaudry, and Q. Yang. A Toolbox for Verifiable Tally-Hiding E-Voting Systems. In
V. Atluri, R. D. Pietro, C. D. Jensen, and W. Meng, editors, Computer Security - ESORICS 2022 -
27th European Symposium on Research in Computer Security, Copenhagen, Denmark, Septem
ber 26-30, 2022, Proceedings, Part II, volume 13555 of Lecture Notes in Computer Science, pages
631–652. Springer, 2022.

[34] V. Cortier, P. Gaudry, and Q. Yang. Is the JCJ voting system really coercion-resistant? IACR
Cryptol. ePrint Arch., page 430, 2022.

[35] Council of Europe. Code of good practice in electoral matters: guidelines and explanatory
report, October 2002.

[36] Council of Europe. Recommendation CM/Rec(2017)51 of the Committee of Ministers to
member States on standards for e-voting, June 2017.

Bundesamt für Sicherheit in der Informationstechnik (BSI) 97

A Study of Mechanisms for End-to-End Verifiable Online Voting

[37] C. Culnane and S. A. Schneider. A Peered Bulletin Board for Robust Use in Verifiable Voting
Systems. In IEEE 27th Computer Security Foundations Symposium, CSF 2014, Vienna, Austria,
19-22 July, 2014, pages 169–183. IEEE Computer Society, 2014.

[38] E. Cuvelier, O. Pereira, and T. Peters. Election Verifiability or Ballot Privacy: Do We Need to
Choose? In J. Crampton, S. Jajodia, and K. Mayes, editors, Computer Security - ESORICS 2013 -
18th European Symposium on Research in Computer Security, Egham, UK, September 9-13, 2013.
Proceedings, volume 8134 of Lecture Notes in Computer Science, pages 481–498. Springer, 2013.

[39] R. del Pino, V. Lyubashevsky, G. Neven, and G. Seiler. Practical Quantum-Safe Voting from
Lattices. In B. Thuraisingham, D. Evans, T. Malkin, and D. Xu, editors, Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017, pages 1565–1581. ACM, 2017.

[40] J. Ding, D. Emery, J. Müller, P. Y. A. Ryan, and V. K. Wong. Post-Quantum Anonymous Veto
Networks. IACR Cryptol. ePrint Arch., page 1023, 2020.

[41] V. Distler, M.-L. Zollinger, C. Lallemand, P. Rønne, P. Ryan, and V. Koenig. Security - visible, yet
unseen? how displaying security mechanisms impacts user experience and perceived security.
05 2019.

[42] C. C. Dragan, F. Dupressoir, K. Gjøsteen, T. Haines, P. B. Rønne, and M. R. Solberg. Machine-
Checked Proofs of Accountability: How to sElect Who is to Blame. In G. Tsudik, M. Conti,
K. Liang, and G. Smaragdakis, editors, Computer Security - ESORICS 2023 - 28th European
Symposium on Research in Computer Security, The Hague, The Netherlands, September 25-29,
2023, Proceedings, Part III, volume 14346 of Lecture Notes in Computer Science, pages 471–491.
Springer, 2023.

[43] V. Farzaliyev, J. Willemson, and J. K. Kaasik. Improved lattice-based mix-nets for electronic
voting. IET Inf. Secur., 17(1):18–34, 2023.

[44] P. Fauzi and H. Lipmaa. Efficient Culpably Sound NIZK Shuffle Argument Without Random
Oracles. In K. Sako, editor, Topics in Cryptology - CT-RSA 2016 - The Cryptographers’ Track at the
RSA Conference 2016, San Francisco, CA, USA, February 29 - March 4, 2016, Proceedings, volume
9610 of Lecture Notes in Computer Science, pages 200–216. Springer, 2016.

[45] P. Fauzi, H. Lipmaa, J. Siim, and M. Zajac. An Efficient Pairing-Based Shuffle Argument. In
T. Takagi and T. Peyrin, editors, Advances in Cryptology - ASIACRYPT 2017 - 23rd International
Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong,
China, December 3-7, 2017, Proceedings, Part II, volume 10625 of Lecture Notes in Computer
Science, pages 97–127. Springer, 2017.

[46] P. Fauzi, H. Lipmaa, and M. Zajac. A Shuffle Argument Secure in the Generic Model. In J. H.
Cheon and T. Takagi, editors, Advances in Cryptology - ASIACRYPT 2016 - 22nd International
Conference on the Theory and Application of Cryptology and Information Security, Hanoi, Viet
nam, December 4-8, 2016, Proceedings, Part II, volume 10032 of Lecture Notes in Computer Sci
ence, pages 841–872, 2016.

[47] T. E. Gamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms.
In G. R. Blakley and D. Chaum, editors, Advances in Cryptology, Proceedings of CRYPTO ’84,
Santa Barbara, California, USA, August 19-22, 1984, Proceedings, volume 196 of Lecture Notes
in Computer Science, pages 10–18. Springer, 1984.

[48] H. Ge, S. Y. Chau, V. E. Gonsalves, H. Li, T. Wang, X. Zou, and N. Li. Koinonia: verifiable e-
voting with long-term privacy. In D. Balenson, editor, Proceedings of the 35th Annual Computer

98 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

Security Applications Conference, ACSAC 2019, San Juan, PR, USA, December 09-13, 2019, pages
270–285. ACM, 2019.

[49] H. Ge, S. Y. Chau, V. E. Gonsalves, H. Li, T. Wang, X. Zou, and N. Li. Koinonia: verifiable e-voting
with long-term privacy. In Proceedings of the 35th Annual Computer Security Applications
Conference, pages 270–285, 2019.

[50] R. Gennaro. Achieving Independence Efficiently and Securely. In J. H. Anderson, editor, Pro
ceedings of the Fourteenth Annual ACM Symposium on Principles of Distributed Computing, Ot
tawa, Ontario, Canada, August 20-23, 1995, pages 130–136. ACM, 1995.

[51] K. Gjøsteen, T. Haines, and M. R. Solberg. Efficient Mixing of Arbitrary Ballots with Everlasting
Privacy: How to Verifiably Mix the PPATC Scheme. In M. Asplund and S. Nadjm-Tehrani, edi
tors, Secure IT Systems - 25th Nordic Conference, NordSec 2020, Virtual Event, November 23-24,
2020, Proceedings, volume 12556 of Lecture Notes in Computer Science, pages 92–107. Springer,
2020.

[52] K. Gjøsteen, T. Haines, and M. R. Solberg. Efficient mixing of arbitrary ballots with everlasting
privacy: How to verifiably mix the ppatc scheme. In Secure IT Systems: 25th Nordic Conference,
NordSec 2020, Virtual Event, November 23–24, 2020, Proceedings 25, pages 92–107. Springer,
2021.

[53] S. Glondu. Belenios specification. Version 2.5.

[54] O. Goldreich. The Foundations of Cryptography - Volume 1: Basic Techniques. Cambridge Uni
versity Press, 2001.

[55] O. Goldreich. The Foundations of Cryptography - Volume 2: Basic Applications. Cambridge
University Press, 2004.

[56] M. Graf, R. Küsters, D. Rausch, S. Egger, M. Bechtold, and M. Flinspach. Accountable Bulletin
Boards: Definition and Provably Secure Implementation. IACR Cryptol. ePrint Arch., page 1869,
2023.

[57] G. S. Grewal, M. D. Ryan, L. Chen, and M. R. Clarkson. Du-Vote: Remote Electronic Voting with
Untrusted Computers. In C. Fournet, M. W. Hicks, and L. Viganò, editors, IEEE 28th Computer
Security Foundations Symposium, CSF 2015, Verona, Italy, 13-17 July, 2015, pages 155–169. IEEE
Computer Society, 2015.

[58] R. Haenni, R. E. Koenig, P. Locher, and E. Dubuis. CHVote System Specification. IACR Cryptol.
ePrint Arch., page 325, 2017.

[59] T. Haines, R. Goré, and B. Sharma. Did you mix me? Formally Verifying Verifiable Mix Nets in
Electronic Voting. In 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco,
CA, USA, 24-27 May 2021, pages 1748–1765. IEEE, 2021.

[60] T. Haines, R. Goré, and M. Tiwari. Machine-checking Multi-Round Proofs of Shuffle: Terelius-
Wikstrom and Bayer-Groth. In J. A. Calandrino and C. Troncoso, editors, 32nd USENIX Security
Symposium, USENIX Security 2023, Anaheim, CA, USA, August 9-11, 2023, pages 6471–6488.
USENIX Association, 2023.

[61] T. Haines, S. J. Lewis, O. Pereira, and V. Teague. How not to prove your election outcome. In
2020 IEEE Symposium on Security and Privacy (SP), pages 644–660. IEEE, 2020.

[62] T. Haines and J. Müller. SoK: Techniques for Verifiable Mix Nets. In 33rd IEEE Computer Security
Foundations Symposium, CSF 2020, Boston, MA, USA, June 22-26, 2020, pages 49–64. IEEE, 2020.

Bundesamt für Sicherheit in der Informationstechnik (BSI) 99

A Study of Mechanisms for End-to-End Verifiable Online Voting

[63] T. Haines and J. Müller. A Novel Proof of Shuffle: Exponentially Secure Cut-and-Choose. In
J. Baek and S. Ruj, editors, Information Security and Privacy - 26th Australasian Conference,
ACISP 2021, Virtual Event, December 1-3, 2021, Proceedings, volume 13083 of Lecture Notes in
Computer Science, pages 293–308. Springer, 2021.

[64] T. Haines and J. Müller. Optimal Randomized Partial Checking for Decryption Mix Nets. In
J. Baek and S. Ruj, editors, Information Security and Privacy - 26th Australasian Conference,
ACISP 2021, Virtual Event, December 1-3, 2021, Proceedings, volume 13083 of Lecture Notes in
Computer Science, pages 277–292. Springer, 2021.

[65] T. Haines, J. Müller, and I. Querejeta-Azurmendi. Scalable Coercion-Resistant E-Voting under
Weaker Trust Assumptions. In J. Hong, M. Lanperne, J. W. Park, T. Cerný, and H. Shahriar, edi
tors, Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing, SAC 2023, Tallinn,
Estonia, March 27-31, 2023, pages 1576–1584. ACM, 2023.

[66] T. Haines, D. Pattinson, and M. Tiwari. Verifiable Homomorphic Tallying for the Schulze Vote
Counting Scheme. In S. Chakraborty and J. A. Navas, editors, Verified Software. Theories, Tools,
and Experiments - 11th International Conference, VSTTE 2019, New York City, NY, USA, July 13-
14, 2019, Revised Selected Papers, volume 12031 of Lecture Notes in Computer Science, pages
36–53. Springer, 2019.

[67] F. Hao and P. Zielinski. A 2-Round Anonymous Veto Protocol. In B. Christianson, B. Crispo, J. A.
Malcolm, and M. Roe, editors, Security Protocols, 14th International Workshop, Cambridge, UK,
March 27-29, 2006, Revised Selected Papers, volume 5087 of Lecture Notes in Computer Science,
pages 202–211. Springer, 2006.

[68] L. Harrison, S. Bag, H. Luo, and F. Hao. VERICONDOR: End-to-End Verifiable Condorcet Voting
without Tallying Authorities. In Y. Suga, K. Sakurai, X. Ding, and K. Sako, editors, ASIA CCS
’22: ACM Asia Conference on Computer and Communications Security, Nagasaki, Japan, 30 May
2022 - 3 June 2022, pages 1113–1125. ACM, 2022.

[69] S. Hauser and R. Haenni. Modeling a Bulletin Board Service Based on Broadcast Channels with
Memory. In A. Zohar, I. Eyal, V. Teague, J. Clark, A. Bracciali, F. Pintore, and M. Sala, editors,
Financial Cryptography and Data Security - FC 2018 International Workshops, BITCOIN, VOT
ING, and WTSC, Nieuwpoort, Curaçao, March 2, 2018, Revised Selected Papers, volume 10958 of
Lecture Notes in Computer Science, pages 232–246. Springer, 2018.

[70] C. Hazay and Y. Lindell. Sigma protocols and efficient zero-knowledge. In Efficient Secure
Two-Party Protocols, pages 147–175. Springer, 2010.

[71] J. Heather and D. Lundin. The Append-Only Web Bulletin Board. In P. Degano, J. D. Guttman,
and F. Martinelli, editors, Formal Aspects in Security and Trust, 5th International Workshop,
FAST 2008, Malaga, Spain, October 9-10, 2008, Revised Selected Papers, volume 5491 of Lecture
Notes in Computer Science, pages 242–256. Springer, 2008.

[72] C. Hébant, D. H. Phan, and D. Pointcheval. Linearly-Homomorphic Signatures and Scalable
Mix-Nets. In A. Kiayias, M. Kohlweiss, P. Wallden, and V. Zikas, editors, Public-Key Cryptogra
phy - PKC 2020 - 23rd IACR International Conference on Practice and Theory of Public-Key Cryp
tography, Edinburgh, UK, May 4-7, 2020, Proceedings, Part II, volume 12111 of Lecture Notes in
Computer Science, pages 597–627. Springer, 2020.

[73] S. Heiberg and J. Willemson. Verifiable internet voting in estonia. In R. Krimmer and M. Volka
mer, editors, 6th International Conference on Electronic Voting: Verifying the Vote, EVOTE 2014,
Lochau / Bregenz, Austria, October 29-31, 2014, pages 1–8. IEEE, 2014.

100 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

[74] L. Hirschi, L. Schmid, and D. A. Basin. Fixing the Achilles Heel of E-Voting: The Bulletin Board.
In 34th IEEE Computer Security Foundations Symposium, CSF 2021, Dubrovnik, Croatia, June
21-25, 2021, pages 1–17. IEEE, 2021.

[75] P. Hough, C. Sandsbråten, and T. Silde. Concrete NTRU Security and Advances in Practical
Lattice-Based Electronic Voting. IACR Cryptol. ePrint Arch., page 933, 2023.

[76] N. Huber, R. Küsters, T. Krips, J. Liedtke, J. Müller, D. Rausch, P. Reisert, and A. Vogt. Kryvos:
Publicly Tally-Hiding Verifiable E-Voting. In H. Yin, A. Stavrou, C. Cremers, and E. Shi, editors,
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2022, Los Angeles, CA, USA, November 7-11, 2022, pages 1443–1457. ACM, 2022.

[77] V. Iovino, A. Rial, P. B. Rønne, and P. Y. A. Ryan. Using Selene to Verify Your Vote in JCJ. In
M. Brenner, K. Rohloff, J. Bonneau, A. Miller, P. Y. A. Ryan, V. Teague, A. Bracciali, M. Sala, F. Pin
tore, and M. Jakobsson, editors, Financial Cryptography and Data Security - FC 2017 Interna
tional Workshops, WAHC, BITCOIN, VOTING, WTSC, and TA, Sliema, Malta, April 7, 2017, Revised
Selected Papers, volume 10323 of Lecture Notes in Computer Science, pages 385–403. Springer,
2017.

[78] Ergonomics of human-system interaction – Part 11: Usability: Definitions and concepts.
Standard, International Organization for Standardization, Geneva, CH, Mar. 2018.

[79] M. Jakobsson, A. Juels, and R. L. Rivest. Making Mix Nets Robust for Electronic Voting by Ran
domized Partial Checking. In D. Boneh, editor, Proceedings of the 11th USENIX Security Sym
posium, San Francisco, CA, USA, August 5-9, 2002, pages 339–353. USENIX, 2002.

[80] W. Jamroga. Pretty Good Strategies for Benaloh Challenge. CoRR, abs/2307.03258, 2023.

[81] A. Juels, D. Catalano, and M. Jakobsson. Coercion-resistant electronic elections. In V. Atluri,
S. D. C. di Vimercati, and R. Dingledine, editors, Proceedings of the 2005 ACM Workshop on Pri
vacy in the Electronic Society, WPES 2005, Alexandria, VA, USA, November 7, 2005, pages 61–70.
ACM, 2005.

[82] J. Katz and Y. Lindell. Introduction to Modern Cryptography, Second Edition. CRC Press, 2014.

[83] D. Khader, B. Smyth, P. Y. A. Ryan, and F. Hao. A Fair and Robust Voting System by Broadcast.
In M. J. Kripp, M. Volkamer, and R. Grimm, editors, 5th International Conference on Electronic
Voting 2012, (EVOTE 2012), Co-organized by the Council of Europe, Gesellschaft für Informatik
and E-Voting.CC, July 11-14, 2012, Castle Hofen, Bregenz, Austria, volume P-205 of LNI, pages
285–299. GI, 2012.

[84] S. Khazaei, T. Moran, and D. Wikström. A Mix-Net from Any CCA2 Secure Cryptosystem.
In X. Wang and K. Sako, editors, Advances in Cryptology - ASIACRYPT 2012 - 18th Interna
tional Conference on the Theory and Application of Cryptology and Information Security, Bei
jing, China, December 2-6, 2012. Proceedings, volume 7658 of Lecture Notes in Computer Science,
pages 607–625. Springer, 2012.

[85] S. Khazaei and D. Wikström. Randomized Partial Checking Revisited. In E. Dawson, editor,
Topics in Cryptology - CT-RSA 2013 - The Cryptographers’ Track at the RSA Conference 2013,
San Francisco,CA, USA, February 25-March 1, 2013. Proceedings, volume 7779 of Lecture Notes
in Computer Science, pages 115–128. Springer, 2013.

[86] A. Kiayias, A. Kuldmaa, H. Lipmaa, J. Siim, and T. Zacharias. On the Security Properties of e-
Voting Bulletin Boards. In D. Catalano and R. D. Prisco, editors, Security and Cryptography for
Networks - 11th International Conference, SCN 2018, Amalfi, Italy, September 5-7, 2018, Proceed
ings, volume 11035 of Lecture Notes in Computer Science, pages 505–523. Springer, 2018.

Bundesamt für Sicherheit in der Informationstechnik (BSI) 101

A Study of Mechanisms for End-to-End Verifiable Online Voting

[87] S. Kremer and P. B. Rønne. To Du or Not to Du: A Security Analysis of Du-Vote. In IEEE
European Symposium on Security and Privacy, EuroS&P 2016, Saarbrücken, Germany, March
21-24, 2016, pages 473–486. IEEE, 2016.

[88] T. Krips and H. Lipmaa. More Efficient Shuffle Argument from Unique Factorization. In K. G.
Paterson, editor, Topics in Cryptology - CT-RSA 2021 - Cryptographers’ Track at the RSA Con
ference 2021, Virtual Event, May 17-20, 2021, Proceedings, volume 12704 of Lecture Notes in
Computer Science, pages 252–275. Springer, 2021.

[89] O. Kulyk, J. Henzel, K. Renaud, and M. Volkamer. Comparing “Challenge-Based” and “Code-
Based” Internet Voting Verification Implementations. In IFIP Conference on Human-Computer
Interaction, pages 519–538. Springer, 2019.

[90] O. Kulyk, J. Ludwig, M. Volkamer, R. E. Koenig, and P. Locher. Usable Verifiable Secrecy-
Preserving E-Voting. In 6th International Joint Conference on Electronic Voting (E-Vote-ID).
University of Tartu Press, 2021.

[91] O. Kulyk, K. Marky, S. Neumann, and M. Volkamer. Introducing Proxy Voting to Helios. In 11th
International Conference on Availability, Reliability and Security, ARES 2016, Salzburg, Austria,
August 31 - September 2, 2016, pages 98–106. IEEE Computer Society, 2016.

[92] O. Kulyk, S. Neumann, K. Marky, J. Budurushi, and M. Volkamer. Coercion-Resistant Proxy
Voting. In J. Hoepman and S. Katzenbeisser, editors, ICT Systems Security and Privacy Pro
tection - 31st IFIP TC 11 International Conference, SEC 2016, Ghent, Belgium, May 30 - June 1,
2016, Proceedings, volume 471 of IFIP Advances in Information and Communication Technol
ogy, pages 3–16. Springer, 2016.

[93] O. Kulyk, S. Neumann, K. Marky, and M. Volkamer. Enabling Vote Delegation for Boardroom
Voting. In M. Brenner, K. Rohloff, J. Bonneau, A. Miller, P. Y. A. Ryan, V. Teague, A. Bracciali,
M. Sala, F. Pintore, and M. Jakobsson, editors, Financial Cryptography and Data Security - FC
2017 International Workshops, WAHC, BITCOIN, VOTING, WTSC, and TA, Sliema, Malta, April
7, 2017, Revised Selected Papers, volume 10323 of Lecture Notes in Computer Science, pages
419–433. Springer, 2017.

[94] O. Kulyk, S. Neumann, M. Volkamer, C. Feier, and T. Koster. Electronic voting with fully dis
tributed trust and maximized flexibility regarding ballot design. In R. Krimmer and M. Volka
mer, editors, 6th International Conference on Electronic Voting: Verifying the Vote, EVOTE 2014,
Lochau / Bregenz, Austria, October 29-31, 2014, pages 1–10. IEEE, 2014.

[95] O. Kulyk, V. Teague, and M. Volkamer. Extending helios towards private eligibility verifiability.
In R. Haenni, R. E. Koenig, and D. Wikström, editors, E-Voting and Identity - 5th International
Conference, VoteID 2015, Bern, Switzerland, September 2-4, 2015, Proceedings, volume 9269 of
Lecture Notes in Computer Science, pages 57–73. Springer, 2015.

[96] O. Kulyk and M. Volkamer. Usability is not enough: Lessons learned from’human factors in
security’research for verifiability. Cryptology ePrint Archive, 2018.

[97] O. Kulyk and M. Volkamer. A Proxy Voting Scheme Ensuring Participation Privacy and
Receipt-Freeness. In T. Bui, editor, 52nd Hawaii International Conference on System Sciences,
HICSS 2019, Grand Wailea, Maui, Hawaii, USA, January 8-11, 2019, pages 1–10. ScholarSpace,
2019.

[98] O. Kulyk, M. Volkamer, M. Müller, and K. Renaud. Towards Improving the Efficacy of Code-
Based Verification in Internet Voting. In VOTING. Springer, 2020.

102 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

[99] R. Küsters, J. Liedtke, J. Müller, D. Rausch, and A. Vogt. Ordinos: A Verifiable Tally-Hiding E-
Voting System. In IEEE European Symposium on Security and Privacy, EuroS&P 2020, Genoa,
Italy, September 7-11, 2020, pages 216–235. IEEE, 2020.

[100] R. Küsters, J. Müller, E. Scapin, and T. Truderung. sElect: A Lightweight Verifiable Remote
Voting System. In IEEE 29th Computer Security Foundations Symposium, CSF 2016, Lisbon,
Portugal, June 27 - July 1, 2016, pages 341–354. IEEE Computer Society, 2016.

[101] R. Küsters and T. Truderung. Security Analysis of Re-Encryption RPC Mix Nets. In IEEE Euro
pean Symposium on Security and Privacy, EuroS&P 2016, Saarbrücken, Germany, March 21-24,
2016, pages 227–242. IEEE, 2016.

[102] R. Küsters, T. Truderung, and A. Vogt. Accountability: definition and relationship to verifia
bility. In E. Al-Shaer, A. D. Keromytis, and V. Shmatikov, editors, Proceedings of the 17th ACM
Conference on Computer and Communications Security, CCS 2010, Chicago, Illinois, USA, Octo
ber 4-8, 2010, pages 526–535. ACM, 2010.

[103] R. Küsters, T. Truderung, and A. Vogt. Clash Attacks on the Verifiability of E-Voting Systems. In
IEEE Symposium on Security and Privacy, SP 2012, 21-23 May 2012, San Francisco, California,
USA, pages 395–409. IEEE Computer Society, 2012.

[104] R. Küsters, T. Truderung, and A. Vogt. Formal Analysis of Chaumian Mix Nets with Random
ized Partial Checking. In 2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA,
USA, May 18-21, 2014, pages 343–358. IEEE Computer Society, 2014.

[105] R. Küsters and T. Wilke. Moderne Kryptographie - Eine Einführung. Vieweg + Teubner, 2011.

[106] A. Langley, M. Hamburg, and S. Turner. Elliptic Curves for Security. RFC 7748, Jan. 2016.

[107] Y. Lindell. Zero-Knowledge from Sigma Protocols–An Erratum, 2018. https://u.cs.biu.
ac.il/~lindell/errata-zk-sigma.pdf; Online; accessed May 27, 2024.

[108] H. Lipmaa and B. Zhang. A More Efficient Computationally Sound Non-Interactive Zero-
Knowledge Shuffle Argument. In I. Visconti and R. D. Prisco, editors, Security and Cryptog
raphy for Networks - 8th International Conference, SCN 2012, Amalfi, Italy, September 5-7, 2012.
Proceedings, volume 7485 of Lecture Notes in Computer Science, pages 477–502. Springer, 2012.

[109] W. Lueks, I. Querejeta-Azurmendi, and C. Troncoso. VoteAgain: A scalable coercion-resistant
voting system. In S. Capkun and F. Roesner, editors, 29th USENIX Security Symposium, USENIX
Security 2020, August 12-14, 2020, pages 1553–1570. USENIX Association, 2020.

[110] K. Marky, O. Kulyk, and M. Volkamer. Comparative usability evaluation of cast-as-intended
verification approaches in internet voting. 2018.

[111] K. Marky, V. Zimmermann, M. Funk, J. Daubert, K. Bleck, and M. Mühlhäuser. Improving the
Usability and UX of the Swiss Internet Voting Interface. In ACM CHI, 2020.

[112] K. Marky, M. Zollinger, P. B. Roenne, P. Y. A. Ryan, T. Grube, and K. Kunze. Investigating Us
ability and User Experience of Individually Verifiable Internet Voting Schemes. ACM Trans.
Comput. Hum. Interact., 28(5):30:1–30:36, 2021.

[113] K. Marky, M.-L. Zollinger, P. Roenne, P. Y. Ryan, T. Grube, and K. Kunze. Investigating Usability
and User Experience of Individually Verifiable Internet Voting Schemes. ACM Trans. Comput.-
Hum. Interact, 28(5), 2021.

Bundesamt für Sicherheit in der Informationstechnik (BSI) 103

https://u.cs.biu.ac.il/~lindell/errata-zk-sigma.pdf
https://u.cs.biu.ac.il/~lindell/errata-zk-sigma.pdf

A Study of Mechanisms for End-to-End Verifiable Online Voting

[114] P. McCorry, S. F. Shahandashti, and F. Hao. A Smart Contract for Boardroom Voting with Max
imum Voter Privacy. In A. Kiayias, editor, Financial Cryptography and Data Security - 21st In
ternational Conference, FC 2017, Sliema, Malta, April 3-7, 2017, Revised Selected Papers, volume
10322 of Lecture Notes in Computer Science, pages 357–375. Springer, 2017.

[115] D. Mestel, J. Müller, and P. Reisert. How efficient are replay attacks against vote privacy? A
formal quantitative analysis. J. Comput. Secur., 31(5):421–467, 2023.

[116] K. Morio and R. Künnemann. Verifying Accountability for Unbounded Sets of Participants.
In 34th IEEE Computer Security Foundations Symposium, CSF 2021, Dubrovnik, Croatia, June
21-25, 2021, pages 1–16. IEEE, 2021.

[117] J. Müller. Breaking and Fixing Vote Privacy of the Estonian E-Voting Protocol IVXV. In S. Mat
suo, L. Gudgeon, A. Klages-Mundt, D. P. Hernandez, S. Werner, T. Haines, A. Essex, A. Bracciali,
and M. Sala, editors, Financial Cryptography and Data Security. FC 2022 International Work
shops - CoDecFin, DeFi, Voting, WTSC, Grenada, May 6, 2022, Revised Selected Papers, volume
13412 of Lecture Notes in Computer Science, pages 325–334. Springer, 2022.

[118] J. Müller, B. Pejó, and I. Pryvalov. DeVoS: Deniable Yet Verifiable Vote Updating. Proc. Priv.
Enhancing Technol., 2024(1):357–378, 2024.

[119] J. Müller and T. Truderung. A Protocol for Cast-as-Intended Verifiability with a Second Device.
CoRR, abs/2304.09456, 2023.

[120] A. S. Neto, M. Leite, R. Araújo, M. P. Mota, N. C. S. Neto, and J. Traoré. Usability Considerations
For Coercion-Resistant Election Systems. In M. Mota, B. S. Meiguins, R. O. Prates, and H. Can
dello, editors, Proceedings of the 17th Brazilian Symposium on Human Factors in Computing
Systems, IHC 2018, Belém, Brazil, October 22-26, 2018, pages 40:1–40:10. ACM, 2018.

[121] S. Neumann, M. M. Olembo, K. Renaud, and M. Volkamer. Helios Verification: To Alleviate,
or to Nominate: Is That the Question, or Shall we Have Both? In International Conference on
Electronic Government and the Information Systems Perspective, pages 246–260. Springer, 2014.

[122] F. E. Orche, R. Géraud-Stewart, P. B. Rønne, G. Bana, D. Naccache, P. Y. A. Ryan, M. Biroli,
M. Dervishi, and H. Waltsburger. Time, Privacy, Robustness, Accuracy: Trade-Offs for the
Open Vote Network Protocol. In R. Krimmer, M. Volkamer, D. Duenas-Cid, P. B. Rønne, and
M. Germann, editors, Electronic Voting - 7th International Joint Conference, E-Vote-ID 2022,
Bregenz, Austria, October 4-7, 2022, Proceedings, volume 13553 of Lecture Notes in Computer
Science, pages 19–35. Springer, 2022.

[123] C. Park, K. Itoh, and K. Kurosawa. Efficient Anonymous Channel and All/Nothing Election
Scheme. In T. Helleseth, editor, Advances in Cryptology - EUROCRYPT ’93, Workshop on the
Theory and Application of of Cryptographic Techniques, Lofthus, Norway, May 23-27, 1993, Pro
ceedings, volume 765 of Lecture Notes in Computer Science, pages 248–259. Springer, 1993.

[124] T. P. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing.
In J. Feigenbaum, editor, Advances in Cryptology - CRYPTO ’91, 11th Annual International Cryp
tology Conference, Santa Barbara, California, USA, August 11-15, 1991, Proceedings, volume 576
of Lecture Notes in Computer Science, pages 129–140. Springer, 1991.

[125] K. Ramchen, C. Culnane, O. Pereira, and V. Teague. Universally Verifiable MPC and IRV Ballot
Counting. In I. Goldberg and T. Moore, editors, Financial Cryptography and Data Security -
23rd International Conference, FC 2019, Frigate Bay, St. Kitts and Nevis, February 18-22, 2019,
Revised Selected Papers, volume 11598 of Lecture Notes in Computer Science, pages 301–319.
Springer, 2019.

104 Bundesamt für Sicherheit in der Informationstechnik (BSI)

A Study of Mechanisms for End-to-End Verifiable Online Voting

[126] P. Y. A. Ryan, P. B. Roenne, D. Ostrev, F. E. Orche, N. Soroush, and P. B. Stark. Who Was that
Masked Voter? The Tally Won’t Tell! In R. Krimmer, M. Volkamer, D. Duenas-Cid, O. Kulyk,
P. B. Rønne, M. Solvak, and M. Germann, editors, Electronic Voting - 6th International Joint Con
ference, E-Vote-ID 2021, Virtual Event, October 5-8, 2021, Proceedings, volume 12900 of Lecture
Notes in Computer Science, pages 106–123. Springer, 2021.

[127] P. Y. A. Ryan, P. B. Rønne, and V. Iovino. Selene: Voting with Transparent Verifiability and
Coercion-Mitigation. In J. Clark, S. Meiklejohn, P. Y. A. Ryan, D. S. Wallach, M. Brenner, and
K. Rohloff, editors, Financial Cryptography and Data Security - FC 2016 International Work
shops, BITCOIN, VOTING, and WAHC, Christ Church, Barbados, February 26, 2016, Revised Se
lected Papers, volume 9604 of Lecture Notes in Computer Science, pages 176–192. Springer, 2016.

[128] P. Y. A. Ryan and S. A. Schneider. Prêt à Voter with Re-encryption Mixes. In D. Gollmann,
J. Meier, and A. Sabelfeld, editors, Computer Security - ESORICS 2006, 11th European Sympo
sium on Research in Computer Security, Hamburg, Germany, September 18-20, 2006, Proceed
ings, volume 4189 of Lecture Notes in Computer Science, pages 313–326. Springer, 2006.

[129] B. Schneier. Applied cryptography - protocols, algorithms, and source code in C, 2nd Edition.
Wiley, 1996.

[130] C. Schnorr. Efficient Signature Generation by Smart Cards. J. Cryptol., 4(3):161–174, 1991.

[131] S. F. Shahandashti and F. Hao. DRE-ip: A Verifiable E-Voting Scheme Without Tallying Author
ities. In I. G. Askoxylakis, S. Ioannidis, S. K. Katsikas, and C. Meadows, editors, Computer Secu
rity - ESORICS 2016 - 21st European Symposium on Research in Computer Security, Heraklion,
Greece, September 26-30, 2016, Proceedings, Part II, volume 9879 of Lecture Notes in Computer
Science, pages 223–240. Springer, 2016.

[132] A. Shamir. How to Share a Secret. Commun. ACM, 22(11):612–613, 1979.

[133] P. W. Shor. Algorithms for Quantum Computation: Discrete Logarithms and Factoring. In
35th Annual Symposium on Foundations of Computer Science, Santa Fe, New Mexico, USA, 20-
22 November 1994, pages 124–134. IEEE Computer Society, 1994.

[134] Swiss Post. Swiss Post voting system: System specification. version 1.4.0. Technical report,
Swiss Post, Feb. 2024.

[135] B. Terelius and D. Wikström. Proofs of Restricted Shuffles. In D. J. Bernstein and T. Lange,
editors, Progress in Cryptology - AFRICACRYPT 2010, Third International Conference on Cryp
tology in Africa, Stellenbosch, South Africa, May 3-6, 2010. Proceedings, volume 6055 of Lecture
Notes in Computer Science, pages 100–113. Springer, 2010.

[136] M. Volkamer, O. Kulyk, J. Ludwig, and N. Fuhrberg. Increasing security without decreasing us
ability: Comparison of various verifiable voting systems. In Eighteenth Symposium on Usable
Privacy and Security (SOUPS 2022), Boston, MA, Aug. 2022. USENIX Association.

[137] C. Wabartha, J. Liedtke, N. Huber, D. Rausch, and R. Küsters. Fully Tally-Hiding Verifiable E-
Voting for Real-World Elections with Seat-Allocations. In G. Tsudik, M. Conti, K. Liang, and
G. Smaragdakis, editors, Computer Security - ESORICS 2023 - 28th European Symposium on
Research in Computer Security, The Hague, The Netherlands, September 25-29, 2023, Proceedings,
Part I, volume 14344 of Lecture Notes in Computer Science, pages 209–228. Springer, 2023.

[138] R. Wen and R. Buckland. Masked Ballot Voting for Receipt-Free Online Elections. In P. Y. A.
Ryan and B. Schoenmakers, editors, E-Voting and Identity, Second International Conference,
VoteID 2009, Luxembourg, September 7-8, 2009. Proceedings, volume 5767 of Lecture Notes in
Computer Science, pages 18–36. Springer, 2009.

Bundesamt für Sicherheit in der Informationstechnik (BSI) 105

A Study of Mechanisms for End-to-End Verifiable Online Voting

[139] D. Wikström. User manual for the verificatum mix-net version 3.1.0. Verificatum AB, Stock
holm, Sweden, 2022.

[140] M. Zollinger, V. Distler, P. B. Rønne, P. Y. A. Ryan, C. Lallemand, and V. Koenig. User ex
perience design for e-voting: How mental models align with security mechanisms. CoRR,
abs/2105.14901, 2021.

106 Bundesamt für Sicherheit in der Informationstechnik (BSI)

	1 Introduction
	2 Background
	2.1 End-to-end verifiable online voting
	2.1.1 Overview
	2.1.2 Properties
	2.1.3 General approach

	2.2 Cryptography
	2.2.1 Public-key encryption
	2.2.2 Commitments
	2.2.3 Digital signatures
	2.2.4 Zero-knowledge proofs
	2.2.5 Threshold secret sharing

	3 Evaluation criteria
	3.1 Legal background
	3.2 Secrecy
	3.2.1 Vote privacy
	3.2.2 Everlasting privacy
	3.2.3 Vote-buying resistance

	3.3 End-to-end verifiability
	3.3.1 Notion
	3.3.2 Criteria

	3.4 Usability
	3.4.1 Background
	3.4.2 Factors
	3.4.3 Criteria

	3.5 Practicality
	3.5.1 Implementability
	3.5.2 Efficiency

	4 Evaluation
	4.1 Overview
	4.2 Malleable public-key encryption
	4.2.1 Requirements
	4.2.2 Description
	4.2.3 Analysis

	4.3 Malleable commitments
	4.3.1 Requirements
	4.3.2 Description
	4.3.3 Analysis

	4.4 Homomorphic aggregation
	4.4.1 Requirements
	4.4.2 Description
	4.4.3 Analysis

	4.5 Verifiable mixing networks
	4.5.1 Requirements
	4.5.2 Description
	4.5.3 Analysis

	4.6 Digital signatures
	4.6.1 Requirements
	4.6.2 Description
	4.6.3 Analysis

	4.7 Audit-or-cast
	4.7.1 Requirements
	4.7.2 Description
	4.7.3 Analysis

	4.8 Cast-and-audit
	4.8.1 Requirements
	4.8.2 Description
	4.8.3 Analysis

	4.9 Return codes
	4.9.1 Requirements
	4.9.2 Description
	4.9.3 Analysis

	4.10 More methods
	4.10.1 Secure bulletin board
	4.10.2 Verifiable mix nets
	4.10.3 Cast-as-intended
	4.10.4 Freedom of choice
	4.10.5 Post-quantum voting
	4.10.6 Tally-hiding voting
	4.10.7 Special settings

	5 Conclusion
	5.1 Summary
	5.2 Key findings

Barrierefreiheitsbericht

		Dateiname:

		main_accessible.pdf

		Bericht erstellt von:

		

		Firma:

		

[Persönliche und Firmenangaben über das Dialogfeld „Voreinstellungen > Identität“ eingeben.]

Zusammenfassung

Beim Prüfen sind Probleme gefunden worden, die eventuell den Vollzugriff auf das Dokument verhindern.

		Manuelle Prüfung erforderlich: 3

		Manuell bestanden: 0

		Manuell nicht bestanden: 0

		Übersprungen: 1

		Bestanden: 27

		Fehlgeschlagen: 1

Detaillierter Bericht

		Dokument

		Regelname		Status		Beschreibung

		Berechtigungskennzeichen für Barrierefreiheit		Bestanden		Berechtigungskennzeichen für Barrierefreiheit muss festgelegt werden.

		PDF (nur Bilder)		Bestanden		Dokument ist nicht eine nur aus Bildern bestehende PDF-Datei

		PDF (mit Tags)		Bestanden		Dokument ist PDF (mit Tags)

		Logische Lesereihenfolge 		Manuelle Prüfung erforderlich		Dokumentstruktur ist logisch in Lesereihenfolge geordnet

		Hauptsprache		Bestanden		Sprache ist im Text festgelegt

		Titel		Bestanden		Dokumenttitel ist in Titelleiste sichtbar

		Lesezeichen		Bestanden		In umfangreichen Dokumenten sind Lesezeichen vorhanden

		Farbkontrast		Manuelle Prüfung erforderlich		Dokument verfügt über geeigneten Farbkontrast

		Seiteninhalt

		Regelname		Status		Beschreibung

		Inhalt mit Tags		Fehlgeschlagen		Alle Seiteninhalte verfügen über Tags

		Anmerkungen mit Tags		Bestanden		Alle Anmerkungen verfügen über Tags

		Tab-Reihenfolge		Bestanden		Tab-Reihenfolge ist mit der Ordnungsstruktur konsistent

		Zeichenkodierung		Bestanden		Zuverlässige Zeichenkodierung ist vorhanden

		Multimedia mit Tags		Bestanden		Alle Multimediaobjekte verfügen über Tags

		Bildschirmflackern		Bestanden		Seite verursacht kein Bildschirmflackern

		Skripten		Bestanden		Keine unzugänglichen Skripts

		Zeitlich abgestimmte Antworten		Bestanden		Seite erfordert keine zeitlich abgestimmten Antworten

		Navigationslinks		Manuelle Prüfung erforderlich		Navigationslinks wiederholen sich nicht

		Formulare

		Regelname		Status		Beschreibung

		Formularfelder mit Tags		Bestanden		Alle Formularfelder verfügen über Tags

		Feldbeschreibungen		Bestanden		Alle Formularfelder weisen eine Beschreibung auf

		Alternativtext

		Regelname		Status		Beschreibung

		Alternativtext für Abbildungen		Bestanden		Abbildungen erfordern Alternativtext

		Verschachtelter alternativer Text		Bestanden		Alternativer Text, der nicht gelesen wird

		Mit Inhalt verknüpft		Bestanden		Alternativtext muss mit Inhalten verknüpft sein

		Überdeckt Anmerkung		Bestanden		Alternativtext sollte keine Anmerkung überdecken

		Alternativtext für andere Elemente		Bestanden		Andere Elemente, die Alternativtext erfordern

		Tabellen

		Regelname		Status		Beschreibung

		Zeilen		Bestanden		„TR“ muss ein untergeordnetes Element von „Table“, „THead“, „TBody“ oder „TFoot“ sein

		„TH“ und „TD“		Bestanden		„TH“ und „TD“ müssen untergeordnete Elemente von „TR“ sein

		Überschriften		Bestanden		Tabellen sollten Überschriften besitzen

		Regelmäßigkeit		Bestanden		Tabellen müssen dieselbe Anzahl von Spalten in jeder Zeile und von Zeilen in jeder Spalte aufweisen

		Zusammenfassung		Übersprungen		Tabellen müssen Zusammenfassung haben

		Listen

		Regelname		Status		Beschreibung

		Listenelemente		Bestanden		„LI“ muss ein untergeordnetes Element von „L“ sein

		„Lbl“ und „LBody“		Bestanden		„Lbl“ und „LBody“ müssen untergeordnete Elemente von „LI“ sein

		Überschriften

		Regelname		Status		Beschreibung

		Geeignete Verschachtelung		Bestanden		Geeignete Verschachtelung

Zurück zum Anfang

