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Abstract

For most basic cryptographic tasks, such as public key encryption, digital signatures, authen-
tication, key exchange, and many other more sophisticated tasks, ideal functionalities have been
formulated in the simulation-based security approach, along with their realizations. Surprisingly,
however, no such functionality exists for symmetric encryption, except for a more abstract Dolev-
Yao style functionality. In this paper, we fill this gap. We propose two functionalities for symmetric
encryption, an unauthenticated and an authenticated version, and show that they can be imple-
mented based on standard cryptographic assumptions for symmetric encryption schemes, namely
IND-CCA security and authenticated encryption, respectively. We also illustrate the usefulness of
our functionalities in applications, both in simulation-based and game-based security settings.
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1 Introduction

For most basic cryptographic tasks, such as public key encryption, digital signatures, mutual authenti-
cation, and key exchange, ideal functionalities have been proposed and realized in the simulation-based
security approach (see, e.g., [14, 16, 15, 21, 3, 32, 35]). There are also many functionalities for more
sophisticated cryptographic tasks (see, e.g., [17] for an overview). Surprisingly, however, a functionality
for symmetric encryption, similar to the one for public key encryption, as first proposed by Canetti [14],
is still missing; there only exists an abstract Dolev-Yao style functionality (see below). Our main goal
in this paper is therefore to come up with ideal functionalities for symmetric encryption which capture
standard cryptographic assumptions on symmetric encryption schemes. Such functionalities would be
very useful for the modular design and analysis of systems that employ symmetric encryption.

Compared to a functionality for public key encryption, one faces several challenges when devising a
functionality for symmetric key encryption: In case of public key encryption, it is reasonable to assume
that the private key never leaves the functionality. This makes it relatively easy to formulate and provide
certain security guarantees. However, symmetric keys, in particular session keys, typically have to travel
between parties, as, e.g., in Kerberos. But, of course, a symmetric encryption functionality cannot just
give out these keys, because no security guarantees could be provided. So, a user must not get his/her
hands on these keys directly, but should only be able to refer to these keys by pointers. A user should,
for instance, be able to instruct the functionality to encrypt message m with the key corresponding
to pointer ptr , where m itself may contain pointers in order to be able to encrypt other keys, which,
encapsulated in the ciphertext, could then travel (securely). This implies that an ideal symmetric
encryption functionality has to keep track of who knows which keys and which keys have been revealed,
e.g., due to corruption or encryption with a previously revealed key. The functionality also has to provide
mechanisms for bootstrapping symmetric encryption. For example, by such a mechanism it should be
possible to distribute symmetric keys using encryption under long-term pre-shared keys or public key
encryption. Finally, one has to deal with two technical problems: key cycles [28, 1] and the commitment
problem [4, 19, 27]. A key cycle occurs if an encryption under k1 depends on a key k2 and vice versa, e.g.,
k is encrypted under itself. In the context of symmetric encryption, the commitment problem occurs in
the simulation-based approach if a key is revealed after it was used to encrypt a message.

Contribution of this paper. In this paper, we propose two variants of an ideal functionality for
symmetric encryption, Funauth

senc and Fauth
senc . We show that Funauth

senc can be realized by an encryption
scheme iff the encryption scheme is IND-CCA secure. Similarly, we show equivalence between Fauth

senc and
an encryption scheme for authenticated encryption, i.e., an IND-CPA and INT-CTXT secure encryption
scheme [9]. In both cases, we have to assume that the environment does not use these functionalities
in such a way that a key cycle is produced or the commitment problem occurs. So, we circumvent
these two problems by assuming appropriate environments. This approach was also taken by Backes and
Pfitzmann [4], who already pointed out that key cycles and, assuming static corruption, the commitment
problem typically do not occur in applications. So, assuming such environments seems to be justified for
most applications.

The functionalities Funauth
senc and Fauth

senc currently contain two mechanisms for bootstrapping symmet-
ric encryption: (authenticated or unauthenticated) encryption with long-term symmetric keys as well
as public key encryption. These bootstrapping mechanisms are added to our functionalities in a mod-
ular way, by factoring them out in separate ideal functionalities, Fltsenc and Fpke. In this way, these
“bootstrapping functionalities” can be realized separately and can easily be extended and replaced.
For example, we consider both an authenticated and an unauthenticated version of Fltsenc. Also, new
bootstrapping mechanisms can be added by adding new functionalities.

The functionality Fltsenc, we propose, allows two parties to encrypt and decrypt messages in an ideal
way under a (long-term) shared key. The functionality Fpke is standard (see, e.g., [16, 35, 20, 32]). It may
be used by many parties to (ideally) encrypt messages under a public key and by one party to decrypt
such messages. We provide realizations for Fltsenc, both for the authenticated and the unauthenticated
case, and joint state theorems; for Fpke this was done in [32]. These joint state theorems guarantee that
in different protocol sessions the same long-term and public/private keys may be used, while at the same
time it suffices to analyze only a single protocol session in order to get security guarantees in a scenario
with multiple, concurrent sessions. We believe that the functionality Fltsenc that we propose and the
results shown for this functionality are of independent interest.
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Our functionalities Funauth
senc and Fauth

senc have applications both in simulation- and game-based settings.
In case of static corruption, they tremendously simplify the analysis and (modular) design of systems, e.g.,
cryptographic protocols, that employ symmetric encryption: the often involved reasoning about IND-
CCA games for symmetric encryption as well as IND-CPA and INT-CTXT games is made superfluous;
this reasoning is done once and for all in the proofs of the realizations of these functionalities. Using
Funauth

senc and Fauth
senc more abstract and simpler information theoretic arguments now suffice. To illustrate

these points, we use Fauth
senc to show that a variant of the Amended Needham-Schroeder Symmetric Key

Protocol [34] realizes a key exchange functionality. We also employ both Funauth
senc and Fauth

senc to reprove
and in some respects generalize theorems on key indistinguishability and key usability properties of so-
called secretive protocols by Roy et al. [36, 37] in the game-based approach. While the proofs of these
theorems were quite technical and involved, these theorems are now immediate corollaries of our main
theorems, namely the realizations of Funauth

senc and Fauth
senc . We believe that our functionalities are also

useful for establishing new computational soundness results for symmetric encryption. But we leave this
as future work.

Our results are based on the recently proposed so-called IITM model for simulation-based security
[29]. While being in the spirit of Canetti’s UC model [16], it has certain advantages over the UC model,
as demonstrated and discussed in [29, 32]. Particularly relevant for this work is that while a joint state
theorem for public key encryption was established in the IITM model, there are several problems with
the joint state theorems in the UC model [32]. Putting these problems aside, the results presented here
would, however, also carry over to the UC model.

Related Work. Backes and Pfitzmann proposed a functionality for symmetric encryption within their
cryptographic library [4]. This library differs from our functionality in several aspects. The main
motivation for this library was to relate Dolev-Yao style protocol analysis with cryptographic protocol
analysis. For this purpose, the user is provided with an abstract Dolev-Yao style interface, which, except
for payload data, never provides the user with real bit strings, but only with pointers to Dolev-Yao
terms in the library. This allows for quite abstract, Dolev-Yao style reasoning; protocol analysis has
to be carried out w.r.t. multiple sessions, though, as Backes and Pfitzmann do not have a joint state
theorem. The Dolev-Yao style abstraction, however, comes with a price: All operations on messages,
not only encryption and decryption, but also concatenation of messages, nonce generation, sending and
receiving of messages, etc. have to be performed via the library. Also, the realization of the library
requires non-standard assumptions about the encryption scheme; authenticated encryption schemes do
not suffice, extra randomness as well as identifiers for symmetric keys have to be added. Moreover,
the realization of the library assumes specific message formats: message tags are used for all types of
messages (nonces, ciphertexts, payloads, pairs of messages). Altogether, based on the library only those
protocols can be analyzed which merely use operations provided by the library and these protocols
can only be shown to be secure w.r.t. the non-standard encryption schemes and assuming the specific
message formats. Conversely, our symmetric key functionalities provide less abstraction than the library
by Backes and Pfitzmann: arbitrary messages (bit strings) can be encrypted, where only pointers to keys
are interpreted, and real ciphertexts are returned to the user. By being lower-level functionalities the
range of applications is broader and the analysis performed based on these functionalities makes only
standard cryptographic assumptions, IND-CCA security and authenticated encryption, with almost no
restriction on message formats or cryptographic primitives used alongside symmetric encryption.

Other works concerned with abstractions of symmetric encryption include [1, 33, 23]. However, these
works do not consider simulation-based security and, just as the work by Backes and Pfitzmann, aim at
computational soundness of Dolev-Yao style reasoning. In the full version [24] of the work by Comon-
Lundh and Cortier [23], several examples are presented pointing out a problem that forced the authors
to make the rather unrealistic assumption that the adversary cannot fabricate keys, except for honestly
running the key generation algorithm. In other words, dishonestly generated keys are disallowed. The
authors pointed out that they do not know how the problem that they encountered is solved in the
cryptographic library by Backes and Pfitzmann. Indeed the examples by Comon-Lundh and Cortier
suggest that dishonestly generated keys also have to be forbidden for the cryptographic library, in case
symmetric encryption is considered.

In [26], a formal logic that enjoys a computational, game-based semantics is used to reason about
protocols that use symmetric encryption. In [27], Datta et al. prove that certain variants of symmetric
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encryption cannot have realizable ideal functionalities.
We finally mention the tool CryptoVerif [12] by Blanchet for analyzing protocols that employ sym-

metric encryption in a game-based cryptographic setting.

Structure of this paper. In the next section, we recall the computational model for simulation-based
security that we use. Notation on defining functionalities and other preliminaries are given in Section 3.
The functionalities for bootstrapping symmetric encryption are presented in Section 4. The functionality,
Fauth

senc , for symmetric encryption is introduced in Section 5, along with their implementation. In Section 6
the functionality Funauth

senc and their implementation is described. Applications are presented in Section 7.

2 The IITM Model

In this section, we briefly recall the IITM model for simulation-based security (see [29] for details). Based
on a relatively simple, but very expressive general computational model in which IITMs and systems of
IITMs are defined, simulation-based security notions are formalized, and a general composition theorem
can be proved in the IITM model.

2.1 The General Computational Model

We first define IITMs and then systems of IITMs. We note that this general computation model is also
useful in contexts other than simulation-based security [25].

Syntax of IITMs. An (inexhaustible) interactive Turing machine (IITM, for short, or simply ITM) M
is a probabilistic Turing machine with input and output tapes. These tapes have names and, in addition,
input tapes have an attribute with values consuming or enriching (see below for an explanation). We
require that different tapes of M have different names. The names of input and output tapes determine
how IITMs are connected in a system of IITMs. If an IITM sends a message on an output tape named
c, then only an IITM with an input tape named c can receive this message. An IITM with a (enriching)
input tape named start, is called a master IITM. It will be triggered if no other IITM was triggered. An
IITM is triggered by another IITM if the latter sends a message to the former. Each IITM comes with
an associated polynomial q which is used to bound the computation time per activation and the length
of the overall output produced by M .

Computation of IITMs. An IITM is activated with one message on one of its input tapes and it
writes at most one output message per activation on one of the output tapes. The runtime of the
IITM per activation is polynomially bounded in the security parameter, the current input, and the size
of the current configuration. This allows the IITM to “scan” the complete incoming message and its
complete current configuration, and to react to all incoming messages, no matter how often the IITM
is activated. In particular, an IITM can not be exhausted (therefore the name inexhaustible interactive
Turing machine). The length of the configuration and the length of the overall output an IITM can
produce is polynomially bounded in the security parameter and the length of the overall input received
on enriching input tapes so far, i.e., writing messages on these tapes increases the resources (runtime,
potential size of the configuration, and potential length of the output) of the IITM. An IITM runs in one
of two modes, CheckAddress (deterministic computation) and Compute (probabilistic computation). The
CheckAddress mode will be used to address different copies of IITMs in a system of IITMs (see below).
This is a very generic addressing mechanism: Details of how an IITM is addressed are not fixed up-front,
but left to the specification of the IITM itself.

Systems of IITMs. A system S of IITMs is defined according to the following grammar:

S ::= M | (S ‖S) | !S.

where M ranges of the set of IITMs. No two input tapes occurring in IITMs in S are allowed to
have the same names, i.e. every input tape name belongs to exactly one IITM in the system. The
system S1 ‖ S2 is the concurrent composition of the two systems S1 and S2 and !S is the concurrent

5



composition of an unbounded number of copies of (machines in) the system S. Each machine M that
occurs in a subexpression !S ′ of S is said to be in the scope of a bang. Below, we define the way a
system runs. From that it will be clear that every system S is equivalent to a system of the shape
M1 ‖ · · · ‖Mk ‖ !M ′1 ‖ · · · ‖ !M ′k′ where Mi for all i ∈ {1, . . . , k} and M ′j for all j ∈ {1, . . . , k′} are IITMs.

In a run of S at every time only one IITM, say a copy of some M in S, is active and all other IITMs
wait for new input; the first IITM to be activated in a run of S will be the master IITM, which may get
some auxiliary input written on tape start. The active machine may write at most one message, say m,
on one of its output tapes, say c. This message is then delivered to an IITM with an input tape named c.
There may be several copies of an IITM M ′ in S with input tape named c. In the order in which these
copies were generated, these copies are run in mode CheckAddress. The first of these copies to accept m
will process m in mode Compute. If no copy accepts m, it is checked whether a newly generated copy of
M ′ (if M ′ is in the scope of a bang) with fresh random coins, would accept m. If yes, this copy gets to
process m. Otherwise, the master IITM in S is activated (by writing ε on tape start). The master IITM
is also activated if the currently active IITM did not produce output. A run stops if the master IITM
does not produce output (and hence, does not trigger another machine) or an IITM outputs a message
on a tape named decision. Such a message is considered to be the overall output of the system.

Formally, as defined in [29], a configuration C of S given the security parameter η and external
input a (a configuration of S(1η, a), for short) is a tuple of the form (A,P ) where A is the sequence of
configurations of IITMs (the sequence of previously activated machines) and P is a system (the passive
machines). A (complete) run ρ of S(1η, a) is a sequence of configurations C0, . . . , Ck of S(1η, a) such
that C0 is an initial configuration, Ci+1 is a successor configuration of Ci, for all i < k, and Ck does not
have a successor configuration. By Pr[ρ] we denote the probability of the run ρ, see [30] for details. By
runsaη(S) we denote the set of all runs of S(1η, a).

We will only consider so-called well-formed systems [29], which satisfy a simple syntactic condition
that guarantees polynomial runtime of systems and suffices for applications since it allows to always
provide sufficient resources to IITMs via enriching tapes.

A system is well-formed if the master IITM (if there is any) does not occur in the scope of a bang and
there are no cycles in the connection of the IITMs via their enriching tapes. For example, the system
S = M1 ‖M2 is not well-formed if M1 is a master IITM with an output tape c2 which is an enriching
input tape of M2 and M2 has an output tape c1 which is an enriching input tape of M1. In fact, M1 and
M2 could sent messages back and forth between each other forever as they are connected via enriching
tapes.

Theorem 1 ([29]). (informal) Well-formed systems run in polynomial time.

We say that a run is accepting if the overall output (the message written on tape decision, if any) is 1.
We write Pr[S(1η, a) 1] to denote the probability that a run of a (well-formed) system S with security
parameter η and auxiliary input a for the master IITM is accepting. The set of accepting runs is denoted
by arunsaη(S). By Pr[ρ] we denote the probability of a run ρ. For sets of runs C ⊆ runsaη(S) we have that
Pr[C] =

∑
ρ∈C Pr[ρ] and we define the complement C = runsaη(S) \ C. For example, Pr[C] = 1−Pr[C] and

Pr[arunsaη(S)] = Pr[S(1η, a) 1].
Let f : {1}∗ × {0, 1}∗ → R≥0. Two well-formed systems P and Q are called f -equivalent or f -

indistinguishable (P ≡f Q) iff |Pr[P(1η, a) 1]− Pr[Q(1η, a) 1]| ≤ f(1η, a) for all η ∈ N, a ∈ {0, 1}∗.
Furthermore, P and Q are called equivalent or indistinguishable (P ≡ Q) iff there exists a negligible
function f (i.e., for all polynomials p and q there exists η0 ∈ N such that for all η > η0 and all bit strings
a ∈ {0, 1}∗ with length |a| ≤ q(η) we have that f(1η, a) ≤ 1

p(η) ) such that P ≡f Q. Note that ≡0 denotes
perfect indistinguishability.

Given an IITM M , we will often use its identifier (ID) version M to be able to address multiple
copies of M (see [29, 30] for a detailed definition). The identifier version M of M is an IITM which
simulates M within a “wrapper”. The wrapper requires that all messages received have to be prefixed
by a particular ID, e.g., a session ID (SID) or party ID (PID); other messages will be rejected in the
CheckAddress mode. Before giving a message to M , the wrapper strips off the ID. Messages sent out
by M are prefixed with this ID by the wrapper. The ID that M will use is the one with which M was
first activated. We often refer to M by session version or party version of M if the ID is meant to be a
SID or PID, respectively. For example, if M specifies an ideal functionality, then !M denotes a system
which can have an unbounded number of copies of M , all with different SIDs. If M specifies the actions
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performed by a party in a multi-party protocol, then !M specifies the multi-party protocol where every
copy of M has a different PID. Note that one can consider an ID version M of M , which effectively
means that the ID is a tuple of two IDs. Of course, this can be iterated further. Given a system S,
its identifier (ID) version S is obtained by replacing all IITMs by their ID version. For example, with
S = M1 ‖ · · · ‖Mk ‖ !M ′1 ‖ · · · ‖ !M ′k′ as above, we obtain S = M1 ‖ . . . ‖Mk ‖ !M ′1 ‖ . . . ‖ !M ′k′ . Note
that for all i, all copies of M ′i in a run of S will have different IDs.

2.2 Notions of Simulation-Based Security

In order to define security notions for simulation-based security, we need further notation.
Let us consider a system S and an IITM M . By T (M) (T (S)) we denote the set of (names of) tapes

of the machine M (of the machines in S). The set T (M) is partitioned into the set of input and output
tapes Tin(M) and Tout(M), respectively. A tape c in T (S) is called internal if there exist machines M
and M ′ in S such that c is an input tape of M and an output tape of M ′, i.e. c ∈ Tin(M) ∩ Tout(M ′).
Otherwise, c is called external. The set of external tapes of S is denoted by Text(S) and is partitioned
into the set of (external) input and (external) output tapes of S, Tin(S) and Tout(S), respectively. An
external tape c is an input tape of S, if there exists an IITM M in S with an input tape c. On the other
hand, an external tape c is an output tape of S if there exists an IITM M in S with an output tape c.
The set of external tapes is further partitioned into the set of network and I/O tapes. This partitions
each of the sets Text(S), Tin(S) and Tout(S) into T net

ext (S) and T io
ext(S), T net

in (S) and T io
in (S) and T net

out (S)
and T io

out(S), respectively.
With the composition P |Q of two systems P and Q, we describe the concurrent composition P ′ ‖Q′

where P ′ and Q′ are obtained from P and Q by renaming all internal tapes such that the internal tapes
of P ′ are disjoint from the tapes of Q′ and vice versa. Informally speaking, P and Q communicate only
via their external tapes.

Two systems P and Q are compatible, if they have the same external tapes with the same attributes,
i.e. T net

in (P) = T net
in (Q), T net

out (P) = T net
out (Q), T io

in (P) = T io
in (Q), T io

out(P) = T io
out(Q), and each external

tape c is enriching in P iff it is enriching in Q.
Two systems P and Q are I/O compatible if they do not interfere on network tapes, i.e. T net

ext (P) ∩
T net
ext (Q) = ∅, and have the same set of I/O tapes, i.e. T io

in (P) = T io
in (Q), T io

out(P) = T io
out(Q) and the

attributes are the same.
A system P is connectible for a system Q if each common external tape has the same type in both

systems (network or I/O) and complementary directions (input or output), i.e. for each common external
tape c ∈ Text(P) ∩ Text(Q), it holds that c is a network tape in P iff it is one in Q and c is an input
tape in P iff it is an output tape in Q. For a set B of systems, ConB(Q) denotes the set of systems in
B which are connectible for Q.

A system A is adversarially connectible for a system P if it is connectible for P and A does not
communicate with P via I/O tapes, i.e. Text(A)∩T io

ext(P) = ∅. For a set B of systems, SimPB(F) denotes
the set of systems S in B which are adversarially connectible for the system F and S |F is compatible
with P.

A system E is environmentally connectible for a system P if it is connectible for P and does not
communicate with P via network tapes, i.e. Text(E) ∩ T net

ext (P) = ∅. For a set B of systems, EnvB(P)
denotes the set of systems in B which are environmentally connectible for P.

We define three different types of well-formed systems (whose composition will again be well-formed):
A system P is called a protocol system if it is well-formed, P has no tape named start or decision, all
network tapes are consuming (I/O tapes may be enriching) and if an IITM M of P occurs not in the
scope of a bang, then M accepts every message in mode CheckAddress. The set of all protocol systems
is denoted by P. Requiring network tapes to be consuming is not a real restriction in applications
since sufficient resources can always be provided by an environment via the I/O tapes, e.g., to forward
messages between the network and I/O interface. A system A is called an adversarial system if it is
well-formed and A has no tape named start or decision. (All external tapes of A may be enriching.) The
set of all adversarial systems is denoted by A or S. A system E is called an environmental system if it
is well-formed, tape start may be enriching and all other external tapes are consuming. The set of all
environmental systems is denoted by E.

We are now ready to define the security notion that we will use.
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Definition 1 (Strong Simulatability (SS); [29]). Let P and F be I/O compatible protocol systems, the
real and the ideal protocol, respectively. Then, P SS-realizes F (P ≤SS F) iff there exists an adversarial
system S ∈ SimPS (F) such that for all environmental systems E ∈ ConE(P) it holds that E | P ≡ E | S |F .

In a similar way, other equivalent security notions such as black-box simulatability and (dummy) UC
can be defined [29]. We emphasize that in these and the above definitions, no specific addressing or
corruption mechanism is fixed. This can be defined in a rigorous, convenient, and flexible way as part of
the real/ideal protocol specifications.

We note that the strong simulatability relation is transitive, i.e. if Q1, Q2 and Q3 are pairwise
I/O compatible protocol systems and Q1 ≤SS Q2 and Q2 ≤SS Q3, then Q1 ≤SS Q3. The strong
simulatability relation is also reflexive, i.e., for all protocol systems P, we have that P ≤SS P 1.

2.3 Composition Theorems

We restate the composition theorems from [29]. The first composition theorem describes concurrent
composition of a fixed number of protocol systems while the second one the composition of an unbounded
number of copies of a protocol system.

Theorem 2 ([29]). Let P1, . . . ,Pk and F1, . . . ,Fk be protocol systems such that the systems P1 | . . . | Pk
and F1 | . . . | Fk are well-formed and for every j ∈ {1, . . . , k} the following conditions are satisfied:

1. Pj is environmentally connectible for Pj+1 | . . . | Pk,

2. Fj is environmentally connectible for Fj+1 | . . . | Fk,

3. Pj and Fj are I/O compatible and

4. Pj ≤SS Fj.
Then,

P1 | . . . | Pk ≤SS F1 | . . . | Fk .

Theorem 3 ([29]). Let P and F be protocol systems such that P and F are I/O compatible and P ≤SS F .
Then,

!P ≤SS !F .

As an immediate consequence of the above theorems, we obtain:

Corollary 1. If P1,P2,F1 and F2 are protocol systems such that P1 | !P2 and F1 | !F2 are well-formed,
P1 and F1 are environmentally connectible for P2 and F2 (resp.), P1 and F1 are I/O compatible, P2

and F2 are I/O compatible, P1 ≤SS F1 and P1 ≤SS F1, then

P1 | !P2 ≤SS F1 | !F2 .

Iterated application of Theorem 2 and 3 allows to construct very complex systems, e.g., protocols
using several levels of an unbounded number of copies of sub-protocols. Unlike the UC model, super-
protocols can directly access sub-protocols across levels, yielding simpler and possibly more efficient
implementations. In the UC model, a protocol has to completely shield its sub-protocol from the envi-
ronment, and hence, from super-protocols on higher levels. In [18], the composition operator therefore
had to be extended to allow access to a globally available functionality. No such extension would have
been necessary in the IITM model to obtain the results proved in this work. We also note that Theorem 3
cannot only be interpreted as yielding multi session realizations from single session realizations, but also
providing multi party realizations from single party realizations (when P and F are considered as multi
party versions).

1Technically, we have that P ≤SS P ′ where P ′ is obtained from P by renaming the network tapes. This is required
because by I/O compatibility the network tapes have to be disjoint.
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2.4 Proof Method for Equivalence of Systems

In this section we establish a method for proving equivalence of systems.
Let S0 and S1 be well-formed systems, η ∈ N, and a ∈ {0, 1}∗. Let R ⊆ runsaη(S0) × runsaη(S1). By

dom(R) = {ρ0 | ∃ρ1 : (ρ0, ρ1) ∈ R} we denote the domain and by rng(R) = {ρ1 | ∃ρ0 : (ρ0, ρ1) ∈ R} we
denote the range of R. By ∼R we denote the transitive-reflexive closure of R ∪R−1, i.e. an equivalence
relation on dom(R) ∪ rng(R),2 and by [∼R] the equivalence classes of ∼R. The relation R is called a
(c0, c1, c2)-probabilistic trace (or run) relation between runsaη(S0) and runsaη(S1) (where c0, c1, c2 ∈ R≥0)
if for all C ∈ [∼R]

1. all runs in C are either all accepting or all not accepting,

2. Pr[dom(R)] ≤ c2, and

3. |Pr[C0]− Pr[C1]| ≤ c0 · Pr[C0] + c1 · Pr[C1] where C0 = C ∩ runsaη(S0) and C1 = C ∩ runsaη(S1).

Theorem 4. Let S0 and S1 be well-formed systems, η ∈ N, a ∈ {0, 1}∗, and R a (c0, c1, c2)-probabilistic
trace relation between runsaη(S0) and runsaη(S1). Then,∣∣Pr[S0(1η, a) 1]− Pr[S1(1η, a) 1]

∣∣ ≤ c0 + c1 + c2 .

Proof. We have that

Pr[arunsaη(S0)] ≤ Pr[arunsaη(S0) ∩ dom(R)] + Pr[dom(R)]

=
∑

C∈[∼R]

Pr[arunsaη(S0) ∩ C] + Pr[dom(R)]

≤
∑

C∈[∼R]

Pr[arunsaη(S1) ∩ C] + c0 + c1 + Pr[dom(R)]

≤ Pr[arunsaη(S1)] + c0 + c1 + c2 .

Furthermore, we have that

Pr[arunsaη(S1)] ≥ Pr[arunsaη(S1) ∩ rng(R)] =
∑

C∈[∼R]

Pr[arunsaη(S1) ∩ C]

≥
∑

C∈[∼R]

Pr[arunsaη(S0) ∩ C]− c0 − c1 ≥ Pr[arunsaη(S0)]− Pr[dom(R)]− c0 − c1

≥ Pr[arunsaη(S0)]− c0 − c1 − c2

from which we conclude that

Pr[arunsaη(S1)] = 1− Pr[arunsaη(S1)]

≤ 1− Pr[arunsaη(S0)] + c0 + c1 + c2 = Pr[arunsaη(S0)] + c0 + c1 + c2

which completes the proof.

By the above theorem, to prove that S0 and S1 are equivalent (S0 ≡ S1) it suffices to show that
there exists a negligible function f and a family of relations (Rη,a)η∈N,a∈{0,1}∗ such that Rη,a is an
(f(1η, a), f(1η, a), f(1η, a))-probabilistic trace relation for all for all η ∈ N and a ∈ {0, 1}∗.

A useful special case of the above theorem is the following: Let B ⊆ runsaη(S0) be an error set of
runs of S0 (i.e., runs we do not want to consider) and R an injective function from runsaη(S0) \ B to
runsaη(S1) where ρ0 is accepting iff R(ρ0) is accepting and Pr[ρ0] = Pr[R(ρ0)] for all ρ0 ∈ runsaη(S0) \B.
Then Pr[B] = Pr[dom(R)] and thus R is a (0, 0,Pr[B])-probabilistic trace relation. Hence, Theorem 4
implies

|Pr[S0(1η, a) 1]− Pr[S1(1η, a) 1]| ≤ Pr[B] .

2By R−1 we denote the inverse relation R−1 = {(ρ1, ρ0) | (ρ0, ρ1) ∈ R}.
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3 Preliminaries

3.1 Notation

For describing IITMs and algorithms we use standard pseudo code with an obvious semantics. By x := y
we denote deterministic assignment of the variable or constant y to variable x. By x ← A we denote
probabilistic assignment to the variable x according to the distribution of algorithm A. By x←R S we
denote that x is chosen uniformly at random from the set S. By x++ we abbreviate x := x + 1 and by
x := y++ we abbreviate the sequence x := y, y := y + 1.

The description of an IITM will be divided into three parts: State, CheckAddress and Compute. The
first part is used to describe the variables that describe the state of the IITM and also the initial state
while the others describe the behavior of the IITM in mode CheckAddress and Compute, respectively.
The description in mode Compute, consists of a sequence of blocks where every block is of the form
〈condition〉 : 〈actions〉. Upon activation, the conditions of the blocks are checked one after the other. If
a condition is satisfied the corresponding actions are carried out.

A condition is often of the form “receive m on t” for a message m and a tape t. This condition is
satisfied if a message is received on tape t and the message is of the form m.

In the description of actions we often write “send m on t”. This means that the IITM outputs
message m on tape t and stops for this activation. In the next activation the IITM will not proceed at
the point where it stopped, but again go through the list of conditions, starting with the first one, as
explained above. However, if we write “send m on t and wait for receiving m′ on t′” (or simply “send m
on t and receive m′ on t′”), then the IITM does the following: It outputs m on tape t and stops for this
activation. In the next activation, it will check whether it received a message on input tape t′ and check
whether this message matches with m′. If it does, the computation continues. Otherwise, the IITM
stops for this activation without producing output. In the next activation, it will again check whether it
received a message on input tape t′ and whether this message matches with m′ and behaves as before,
and so on, until it receives the expected message on t′.

Typically, an IITM M is parameterized by a set of tape names Tusers and a tape name Tadv which
induces the I/O and network interface as follows: M has the I/O input tape T in and the I/O output
tape T out for each T ∈ Tusers. Furthermore, M has the network input tape T in

adv and the network output
tape T out

adv. Of course M might have additional tapes. In the description of M , we abbreviate “send m
on T out (resp., T out

adv)” by “send m to T (resp., Tadv)” and “receive m on T in (resp., T in
adv)” by “receive

m from T (resp., Tadv)”.

Running External Code. Sometimes, an IITM M obtains the description of an algorithm A as input
on some tape and has to execute it. We write y ← simn(A, x) to say that the IITM simulates algorithm
A on input x for n steps. The random coins that might be used by A are chosen by M . The variable y
is set to the output of A if A terminates after at most n steps. Otherwise, y is set to the error symbol
⊥. If we want to enforce M to simulate A in a deterministic way we write y := sim-detn(A, x). If A uses
random coins, M can simply use the zero bit string.

The executing IITM is only allowed to perform a polynomial number of steps for executing the
algorithm A, i.e., n has to be bounded polynomially in the security parameter plus the length of the
input. Note that at least the degree of the polynomial that bounds n has to be fixed in advance because
it must not depend on the security parameter. This holds true for any definition of polynomial time and
is not a limitation of the definition of polynomial time in the IITM model.

3.2 Leakage Algorithms

The functionalities for encryption that we consider in this paper will all produce ciphertexts that do not
depend on the actual plaintext that was encrypted but only leak some information about the plaintext,
e.g., the length. A probabilistic leakage algorithm, as defined in this section, specifies the amount of
information that is leaked. For ideal encryption, instead of directly encrypting a plaintext m the leakage
algorithm is applied to m to obtain a plaintext m, the leakage, which is then encrypted.

Definition 2. A domain D over {0, 1}∗ is a family (Dη)η∈N where Dη ⊆ {0, 1}∗. We require that there
exists a polynomial time algorithm T such that T (1η, x) = 1 if and only if x ∈ Dη.
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A (probabilistic) leakage algorithm L with domain D is a probabilistic polynomial time (PPT) algo-
rithms L which takes as input 1η (where η is the security parameter) and a bit string x ∈ Dη and returns
a bit string. By dom(L) we denote the domain D of L.

In this paper, we only consider leakage algorithms L where the domain satisfies the following property:
If x ∈ dom(L) then x′ ∈ dom(L) for all x′ ∈ {0, 1}|x|.

Often, it is required or one wants to guarantee that encryption does not leak more than the length
of the plaintext. This can be modeled by an appropriate leakage algorithm which leaks the length of a
plaintext, e.g. one of the following leakage algorithms.

Example 1. The leakage algorithms L0 and L|·| both leak the length of a message.

1. L0(1η, x) returns 0|x|.

2. L|·|(1η, x) chooses r←R{0, 1}|x| uniformly at random and returns r.

Most often we consider length preserving leakage algorithms or even leakage algorithms that leak
exactly the length of a message.

Definition 3. A leakage algorithm L is length preserving if Pr[|L(1η, x)| = |x|] = 1 for all η ∈ N and
x ∈ dom(L)η.

A leakage algorithm L leaks exactly the length of a message if it is length preserving and the probability
distributions of L(1η, x) and L(1η, y) are equal for all η ∈ N and x, y ∈ dom(L)η with |x| = |y|.

For example, the leakage algorithms in Example 1 both leak exactly the length of a message. Hence,
the amount of information leaked is the same, namely the length of the message, but the second has
another property which we call high entropy.

Definition 4. A leakage algorithm L has high entropy if for all x, y ∈ dom(L) the probability of collisions
Pr[L(1η, x) = L(1η, y)] is negligible (as a function in η).

Leakage algorithms with high entropy have advantages when the ideal functionality is used for rea-
soning about security properties of protocols because collisions occur only with negligible probability.
Leakage algorithms with high entropy have been studied in [32] for public key encryption functionali-
ties and we can also use it for the long-term and short-term symmetric key encryption functionalities
presented in this paper, see Section 4.1 and 5.1.

For example, L0 does not have high entropy. If the domain of L|·| contains only long messages, e.g.
if |x| ≥ η for all η ∈ N and x ∈ dom(L)η then L|·| has high entropy. On the other hand, L|·| does
not have high entropy for domains with short messages because there are collisions with non-negligible
probability.

3.3 IND-CCA, IND-CPA and INT-CTXT Security

Traditionally, security notions for symmetric encryption schemes, see, e.g., [8, 9] and references therein,
are defined with respect to uniform adversaries, i.e., adversaries that do not obtain auxiliary input except
for the security parameter. Simulation-based frameworks like [15, 29] deal with non-uniform environments
and hence non-uniform adversaries. In order to reduce security to the underlying primitives the notions
have to be compatible. We have chosen to define IND-CCA, IND-CPA and INT-CTXT security with
respect to non-uniform adversaries. However, all our results carry over to the uniform setting, i.e., where
all environments are uniform and we use the standard (i.e. uniform) definitions of IND-CCA, IND-CPA
and INT-CTXT security.

For completeness, we recall the notions of [8, 9] and adapt them to non-uniform adversaries.

Definition 5. A symmetric encryption scheme Σ = (gen, enc,dec) with domain dom(Σ) (see above) con-
sists of a probabilistic polynomial-time (PPT) key generation algorithm gen(x : {1}∗) : {0, 1}∗, a PPT
encryption algorithm enc(k : {0, 1}∗,m : {0, 1}∗) : {0, 1}∗, a deterministic polynomial-time decryption al-
gorithm dec(k : {0, 1}∗,m : {0, 1}∗) : {0, 1}∗ ∪ {⊥}, and a domain of plaintexts dom(Σ). Furthermore, it
is required that dec(k, enc(k,m)) = m for all η ∈ N, keys k generated by gen(1η) and m ∈ dom(Σ)η.
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We assume that every encryption scheme is associated with a polynomial q that bounds the runtime
of the algorithms and the length of there description in some standard encoding. We say that Σ is
q-bounded. For all encryption schemes Σ considered in this paper, we assume that (for a fixed security
parameter) the generated keys have constant length, i.e., for all η ∈ N exists len-keyη ∈ N such that all
keys generated by gen(1η) have length len-keyη. This is without loss of generality because one could add
appropriate padding.

Note that dec outputs ⊥ if the decryption fails, i.e., the presented ciphertext is not a valid ciphertext
with respect to the used key.

We define LR(m0,m1, b) = mb for b ∈ {0, 1}.
An IND-CPA adversary A

O(·,·)
cpa (x : {1}∗, a : {0, 1}∗) : {0, 1} is a probabilistic algorithm that has

access to the oracle O such that all the two messages queried of O always have equal length.

Definition 6 (IND-CPA secure). Let Σ be a symmetric encryption scheme, b ∈ {0, 1}, η ∈ N and
a ∈ {0, 1}∗. Let Acpa be an IND-CPA adversary. The corresponding experiment is defined in Algorithm 1.
The advantage of the adversary is defined as follows:

Advind-cpa
Σ,Acpa

(1η, a) =
∣∣∣Pr

[
Expind-cpa-1

Σ,Acpa
(1η, a) = 1

]
− Pr

[
Expind-cpa-0

Σ,Acpa
(1η, a) = 1

]∣∣∣ .
A symmetric encryption scheme Σ is called IND-CPA secure if for all polynomial-time IND-CPA adver-
saries Acpa the advantage Advind-cpa

Σ,Acpa
(1η, a) is negligible as a function in η and a.

An IND-CCA adversary A
O1(·,·),O2(·)
cca (x : {1}∗, a : {0, 1}∗) : {0, 1} is a probabilistic algorithm that

has access to the oracles O1 and O2 such that all the two messages queried of O1 always have equal
length and O2 is never queried with a message returned by O1.

Definition 7 (IND-CCA secure). Let Σ be a symmetric encryption scheme, b ∈ {0, 1}, η ∈ N and
a ∈ {0, 1}∗. Let Acca be an IND-CCA adversary. The corresponding experiment is defined in Algorithm 2.
The advantage of the adversary is defined as follows:

Advind-cca
Σ,Acca

(1η, a) =
∣∣∣Pr
[
Expind-cca-1

Σ,Acca
(1η, a) = 1

]
− Pr

[
Expind-cca-0

Σ,Acca
(1η, a) = 1

]∣∣∣ .
A symmetric encryption scheme Σ is called IND-CCA secure if for all polynomial-time IND-CCA adver-
saries Acca the advantage Advind-cca

Σ,Acca
(1η, a) is negligible as a function in η and a.

An INT-CTXT adversary A
O1(·),O2(·)
int-ctxt (x : {1}∗, a : {0, 1}∗) : {0, 1} is a probabilistic algorithm that

has access to the oracles O1 and O2.

Definition 8 (INT-CTXT secure). Let Σ be a symmetric encryption scheme, η ∈ N and a ∈ {0, 1}∗.
Let Aint-ctxt be an INT-CTXT adversary. The corresponding experiment is defined in Algorithm 3. The
advantage of an adversary is defined as follows:

Advint-ctxt
Σ,Aint-ctxt

(1η, a) = Pr
[
Expint-ctxt

Σ,Aint-ctxt
(1η, a) = 1

]
.

A symmetric encryption scheme Σ is called INT-CTXT secure if for all polynomial-time INT-CTXT
adversaries Aint-ctxt the advantage Advint-ctxt

Σ,Aint-ctxt
(1η, a) is negligible as a function in η, a.

To link the game based definition and ideal encryption in the simulation based setting more easy, we
define the IITM Oracle which is parameterized by a symmetric encryption scheme Σ = (gen, enc,dec), a
variable mode ∈ {unauth, auth, real} which specifies the behavior (unauthenticated ideal, authenticated
ideal, or real behavior), and a leakage algorithm L. The IITM has an enriching I/O input tape T in

oracle

and an I/O output tape T out
oracle. First, Oracle expects a key generation message upon which it generates

a key k ← gen(1η). After the key generation, the environment can use Oracle for encryptions and
decryptions. In mode real these requests are answered by the actual encryption/decryption results. But
in mode unauth and auth not the plaintext m is encrypted but instead the leakage L(1η,m). Also,
for later decryption, m is recorded to be the decryption of the (ideal) ciphertext. Upon decryption of
a ciphertext c Oracle returns i) ⊥ if the decryption is ambiguous (i.e., if there are different recorded
plaintext for c), ii) m if there is exactly one recorded plaintext m for c, and iii) dec(k, c) in mode unauth
and ⊥ in mode auth if there is no recorded plaintext for c. See Figure 1 for a detailed definition.

12



Algorithm 1 Expind-cpa-b
Σ,Acpa

(1η, a)

k ← gen(1η)
b′ ← A

enc(k,LR(·,·,b))
cpa (1η, a)

return b′

Algorithm 2 Expind-cca-b
Σ,Acca

(1η, a)

k ← gen(1η)
b′ ← A

enc(k,LR(·,·,b)),dec(k,·)
cpa (1η, a)

return b′

Algorithm 3 Expint-ctxt
Σ,Aint-ctxt

(1η, a)

k ← gen(1η)
if Aenc(k,·),dec(k,·)

cpa (1η, a) makes a query c to dec(k, ·) such that dec(k, c) 6= ⊥ and c was never returned
by the encryption oracle enc(k, ·) then

return 1
else

return 0

Oracle(Σ = (gen, enc,dec),mode ∈ {unauth, auth, real}, L)

Tapes: enriching I/O input tape T in
oracle, I/O output tape T out

oracle

State: state ∈ {init, ok} (initially init), k ∈ {0, 1}∗ ∪ {⊥} (initially ⊥)
decTable ⊆ {0, 1}∗ × {0, 1}∗ (initially ∅)

1. Upon receiving (KeyGen) from Toracle where state = init:
k ← gen(1η) , state := ok , send (Ack) to Toracle

2. Upon receiving (Enc,m) from Toracle where state = ok and m ∈ dom(L)η:
if mode = real then

c← enc(k,m)
else {mode ∈ {unauth, auth}}

m← L(1η,m) , c← enc(k,m) , decTable := decTable ∪ {(m, c)}
send (Ciphertext, c) to Toracle

3. Upon receiving (Dec, c) from Toracle where state = ok:
if mode = real then

m := dec(k, c)
else {mode ∈ {unauth, auth}}

m :=


m′ if ∃!m′ : (m′, c) ∈ decTable (exists unique m′)
dec(k, c) if mode = unauth and ∀m′ : (m′, c) /∈ decTable
⊥ otherwise

send (Plaintext,m) to Toracle

Figure 1: The IITM Oracle is parameterized by a symmetric encryption scheme Σ, mode ∈
{unauth, auth, real} and a leakage L. Parameter mode specifies whether the behavior is unauthenticated
ideal, authenticated ideal, or real.
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Lemma 1. Let L be a length preserving leakage algorithm and Σ a symmetric encryption scheme with
domain dom(L). Then,

1. Oracle(Σ, real, L) ≤SS Oracle(Σ, unauth, L) if Σ is IND-CCA secure, and

2. Oracle(Σ, real, L) ≤SS Oracle(Σ, auth, L) if Σ is IND-CPA and INT-CTXT secure.

Note: For systems P,Q without network tapes, like Oracle, ≤SS is symmetric, i.e., P ≤SS Q if and only
if Q ≤SS P.

Proof. Throughout the proof, we abbreviate Oracle(Σ,mode, L) by O(mode). Since Oracle has no net-
work tapes, we need no simulator. Let E ∈ ConE(Oracle).

ad 1. We define an IND-CCA adversary Acca and show that its advantage equals the advantage of E in
distinguishing between O(real) and O(unauth).

The adversary AO1(·,·),O2(·)
cca (1η, a) sets the variable state := ⊥ and then simulates a run of E(1η, a) as

follows:

1. If E outputs (KeyGen) on T in
oracle then Acca sets state := ok and sends (Ack) to T out

oracle.

2. If E outputs (Enc,m) on T in
oracle then Acca sends ε to start if state 6= ok or m /∈ dom(L)η, and,

otherwise, computes c← O1(m,L(1η,m)), stores (m, c) and sends (Ciphertext, c) to T out
oracle.

3. If E outputs (Dec, c) on T in
oracle then Acca sends ε to start if state 6= ok, and, otherwise, Acca sends

(Plaintext,m) to T out
oracle where

m :=


m′ if ∃!m′ : (m′, c) stored
O2(c) if ∀m′ : (m′, c) not stored
⊥ otherwise.

4. If E terminates with overall output 1 (i.e., output 1 on tape decision) then Acca returns 1. Otherwise,
if E terminates then Acca returns 0.

First note that Acca is a polynomial-time IND-CCA adversary as it never requests O2 with ciphertexts
returned by O1 and the two messages given to O1 are always of the same length because L is length
preserving. As E is polynomial-time, so is Acca.

One easily verifies that

Pr
[
Expind-cca-1

Σ,Acca
(1η, a) = 1

]
= Pr[(E |O(unauth))(1η, a) 1] .

Furthermore, one obtains

Pr
[
Expind-cca-0

Σ,Acca
(1η, a) = 1

]
= Pr[(E |O(real))(1η, a) 1]

because i) dec(k, enc(k,m)) = m which implies that if (m, c) is stored then O2(m) = c, and ii) for all
stored pairs (m, c), (m′, c′) we have m = m′ if c = c′ (this follows from i)). By i) and ii) we conclude
that decryption is simulated perfectly.

Since Σ is IND-CCA secure, Acca has only negligible advantage which yields that∣∣Pr[(E |O(unauth))(1η, a) 1]− Pr[(E |O(real))(1η, a) 1]
∣∣

is negligible as a function in η and a.

ad 2. We define an IND-CPA adversary Acpa and an INT-CTXT adversary Aint-ctxt and show that
the probability of E distinguishing between O(real) and O(auth) is bounded above by the sum of the
advantages of the two adversaries.

The adversary AO(·,·)
cpa (1η, a) is defined exactly like Acca except that upon decryption it computes the

plaintext m that is returned to E by

m :=

{
m′ if ∃!m′ : (m′, c) stored
⊥ otherwise.
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Note that this is the only case where Acca possibly uses its decryption oracle O2. Hence, Acpa is a
polynomial-time IND-CPA adversary.

It is easy to see that

Pr
[
Expind-cpa-1

Σ,Acpa
(1η, a) = 1

]
= Pr[(E |O(auth))(1η, a) 1] . (1)

Let B(1η, a) be the event that in a run of (E |O(real))(1η, a) E sends (Dec, c) to Oracle such that
dec(k, c) 6= ⊥ and c has never been output by Oracle before. It is easy to find an injective map-
ping of runs of (E |O(real))(1η, a) where B(1η, a) does not occur to runs of Expind-cpa-0

Σ,Acpa
(1η, a) with the

same output and probability. By Theorem 4 we obtain that∣∣∣Pr
[
Expind-cpa-0

Σ,Acpa
(1η, a) = 1

]
− Pr[(E |O(real))(1η, a) 1]

∣∣∣ ≤ Pr[B(1η, a)] . (2)

We conclude

Advind-cpa
Σ,Acpa

(1η, a) =
∣∣∣Pr
[
Expind-cpa-1

Σ,Acpa
(1η, a) = 1

]
− Pr

[
Expind-cpa-0

Σ,Acpa
(1η, a) = 1

]∣∣∣
(1),(2)

≥
∣∣Pr[(E |O(auth))(1η, a) 1]− Pr[(E |O(real))(1η, a) 1]

∣∣− Pr[B(1η, a)] .

Since Σ is IND-CPA secure Advind-cpa
Σ,Acpa

(1η, a) is negligible and it suffices to show that Pr[B(1η, a)] is
negligible too.

We define the adversary AO1(·),O2(·)
int-ctxt (1η, a) which first sets the variable state := ⊥ and then simulates

a run of E(1η, a) as follows:

1. If E outputs (KeyGen) on T in
oracle then Aint-ctxt sets state := ok and sends (Ack) to T out

oracle.

2. If E outputs (Enc,m) on T in
oracle then Aint-ctxt sends ε to start if state 6= ok or m /∈ dom(L)η, and,

otherwise, computes c← O1(m) and sends (Ciphertext, c) to T out
oracle.

3. If E outputs (Dec, c) on T in
oracle then Aint-ctxt sends ε to start if state 6= ok, and, otherwise, computes

m := O2(c) and sends (Plaintext,m) to T out
oracle.

4. If E terminates then Aint-ctxt terminates.

Note that Aint-ctxt is a polynomial-time INT-CTXT adversary because E is polynomial-time.
It is easy to see that

Advint-ctxt
Σ,Aint-ctxt

(1η, a) = Pr[Expint-ctxt
Σ,Aint-ctxt

(1η, a) = 1] = Pr[B(1η, a)] .

Hence, Pr[B(1η, a)] is negligible because Σ is INT-CTXT secure, which concludes the proof.

4 Bootstrapping Symmetric Key Encryption

In this section, we describe the two functionalities Fltsenc and Fpke for bootstrapping symmetric key
encryption, as mentioned in the introduction.

4.1 Symmetric Key Encryption with Long-Term Keys

The functionality !Fltsenc is a single session but multi-party functionality for pre-shared (or exchanged)
long-term keys between two or more parties. We distinguish between an authenticated and an unauthen-
ticated version of Fltsenc, denoted by Fauth

ltsenc and Funauth
ltsenc , respectively. We show that realizing !Funauth

ltsenc

and !Fauth
ltsenc by a symmetric encryption scheme is equivalent to the scheme being IND-CCA or IND-CPA

and INT-CTXT secure, respectively. Furthermore, we give a joint state realization for both variants of
!Fltsenc.
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4.1.1 The Functionality

One instance of the functionality Fltsenc provides two (or more) parties with a way to ideally encrypt and
decrypt messages/ciphertexts under the same shared symmetric key. For this purpose, the parties first
send a key exchange command to Fltsenc and the adversary then provides encryption and decryption
algorithms (with a built-in symmetric key), as described above. The key is meant to model a long-
term shared key between the parties, and never leaves the functionality. We distinguish between an
authenticated and an unauthenticated version of Fltsenc, denoted by Fauth

ltsenc and Funauth
ltsenc , respectively.

Both variants take as a parameter a leakage algorithm L and a polynomial q. Furthermore, the names
of input and output tapes are parameterized by (sets of) tape names Tusers and Tadv. The polynomial q
is used to bound the length and runtime of the encryption and decryption algorithms received from the
adversary, see Section 3.1 for remarks on running external code.

In mode CheckAddress, Fltsenc only accepts messages prefixed by the set of parties pids that share
this key. This set is defined by the first activation of Fltsenc. Only these parties are able to use the
functionality. When a party requests Fltsenc, e.g., for encryption, then it provides its party ID p and
Fltsenc checks if p ∈ pids. The multi-party version !Fltsenc of Fltsenc provides symmetric encryption
functionalities with long-term keys for an unbounded number of sets of parties. Each instance of Fltsenc

is used by one set of parties. The functionalities Funauth
senc and Fauth

senc will use !Fltsenc.
Next, we describe mode Compute of Fltsenc informally. See Figure 2 for a precise definition.
In a key exchange phase the parties declare that they are willing to exchange a key with the other

parties. These request are forwarded to the adversary who is required to provide encryption and de-
cryption algorithms. In this phase the adversary also decides whether or not she wants to corrupt the
functionality (static corruption). Encryption and decryption requests are then processed locally, i.e.,
without further involvement of the adversary. Our functionality can handle an unbounded number of
encryption and decryption requests, with no bounds on the length of messages and ciphertexts.

If the functionality is requested to encrypt a message m (which may be an arbitrary bit string), it
will, in case the functionality is not corrupted, encrypt the leakage L(1η,m) of m instead of m, using
the encryption algorithm and provided by the adversary, where the encryption algorithm is simulated
for a polynomial number of steps, see above. This results in some ciphertext c. The functionality then
stores the pair (m, c). Hence, even though the adversary knows the keys, only L(1η,m) (e.g., the length
of m) will be leaked by the ciphertext. This is independent of the algorithms and keys provided by
the adversary. Therefore when using Fltsenc in the analysis of systems, one can abstract from these
algorithms completely.

Upon a decryption request for a ciphertext c (which may be an arbitrary bit string), an uncorrupted
functionality performs the following actions: If the functionality has stored exactly one pair (m, c) for
some plaintext m, this plaintext is returned. In case there is more than one such pair, an error is
returned. If there is none such pair, the following is done: In the authenticated variant of Fltsenc, which
is supposed to model authenticated encryption, an error message is returned. In the unauthenticated
variant of Fltsenc, c is decrypted with the decryption algorithm provided by the adversary and the result
is returned.

In case the functionality is corrupted, encryption and decryption are not handled ideally but as
in the real system, i.e., the ciphertext/plaintext is computed by encrypting/decrypting m/c with the
encryption/decryption algorithm provided by the adversary. Note that the adversary does not obtain
full control over the party’s behavior because corruption here models that the key is known (or exposed)
to the adversary. It does not model that the party itself is corrupt or dishonest. This however is not
restricting because corrupt or dishonest behavior of the party can be captured one layer above in the
definition of the protocol that uses the functionality. For example, see Section 7.1 where we analyze a key
exchange protocol using Fauth

senc and Fauth
ltsenc. Alternatively, one could define Fltsenc with a more involved

corruption behavior as done for public key encryption in [32].
We note that if the functionality is used with a leakage that has high entropy, then it guarantees that

unknown ciphertext cannot be guessed. Let us explain: Assume that, e.g., due to nested encryption,
a ciphertext c was generated by Fltsenc and that c is not known to the adversary because it was never
output to the adversary. If the leakage has high entropy, the following is easy to see: The adversary has
only negligible guessing probability for all ciphertexts that are stored in decTable in Fsenc and which are
formally unknown to the adversary. The proof idea is to exploit that the ciphertext has to contain as
much information as L(1η,m), because of the decryption test during encryption. Since the leakage has
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Fltsenc(q, L, (Tusers, Tadv))

Tapes: in: T in for all T ∈ Tusers (enriching I/O tapes), T in
adv (network tape)

out: T out for all T ∈ Tusers (I/O tapes), T out
adv (network tape)

State: pids ⊆ Pids (initially ∅)
state : Pids 99K {wait} × Tusers ∪ {ok} (partially defined, initially domain = ∅)
enc, dec : Pids 99K {0, 1}∗ (partially defined, initially domain = ∅)
decTable ⊆ {0, 1}∗ × {0, 1}∗ (initially ∅)
corrupted , incorruptible ∈ {false, true} (initially false)

ChkAdr: Upon first activation accept only messages of shape (pids ′,m) on all I/O tapes where
pids ′ ⊆ Pids. In mode Compute, at first set pids := pids ′.
Later accept only messages of shape (pids ′,m) on all tapes where pids = pids ′.

1. Key exchange: Upon receiving (pids, p,KeyExchange) from T ∈ Tusers where p ∈ pids do: Send
(pids, p,Completed) to T if state(p) = ok, otherwise, set state(p) := (wait, T ) and send
(pids, p,KeyExchange) to Tadv.

2. Complete: Upon receiving (pids, p,Complete, enc, dec) from Tadv where p ∈ pids,
state(p) = (wait, T ) for some T , and |enc|, |dec| ≤ q(η) (Note: peers do not have to have sent
KeyExchange) do: state(p) := ok, enc(p) := enc, dec(p) := dec, and incorruptible := true and send
(pids, p,Completed) to T .

3. Corruption: Upon receiving (pids,Corrupt) from Tadv where |dom(state)| > 0, not incorruptible
and not corrupted do: corrupted := true and send (pids,Corrupted) to Tadv.

4. Corruption request: Upon receiving (pids,Corrupted?) from T ∈ Tusers where exists p ∈ pids
s.t. state(p) = ok do: Send (pids,CorruptionState, corrupted) to T .

5. Encryption: Upon receiving (pids, p,Enc,m) from T ∈ Tusers where p ∈ pids: If state(p) 6= ok or
m /∈ dom(L)η then send (pids, p,Ciphertext,⊥) to T , otherwise:

if not corrupted then
m← L(1η,m) , c← simq(η+|m|)(enc(p),m)
if sim-detq(η+|c|)(dec(p), c) = m then

decTable := decTable ∪ {(m, c)} , send (pids, p,Ciphertext, c) to T
else

send (pids, p,Ciphertext,⊥) to T
else {corrupted}

c← simq(η+|m|)(enc(p),m) , send (pids, p,Ciphertext, c) to T

6. Decryption: Upon receiving (pids, p,Dec, c) from T ∈ Tusers where p ∈ pids: If state(p) 6= ok
then send (pids, p,Plaintext,⊥) to T , otherwise:

if not corrupted then

m :=


m′ if ∃!m′ : (m′, c) ∈ decTable (exists unique m′)
sim-detq(η+|c|)(dec(p), c) if variant Funauth

ltsenc and ∀m′ : (m′, c) /∈ decTable
⊥ otherwise

send (pids, p,Plaintext,m) to T
else {corrupted}

m := sim-detq(η+|c|)(dec(p), c) , send (pids, p,Plaintext,m) to T

Figure 2: Functionality !Fltsenc for symmetric encryption with long-term keys. Both variants Funauth
ltsenc

and Fauth
ltsenc.
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Pltsenc(Σ = (gen, enc,dec), (Tusers, Tadv))

Tapes: in: T in (enriching) for all T ∈ Tusers, T out
keysetup (I/O tapes), T in

adv (network tape)
out: T out for all T ∈ Tusers, T in

keysetup (I/O tapes), T out
adv (network tape)

State: pids ⊆ Pids (initially ∅)
state : Pids 99K {wait} × Tusers ∪ {ok} (partially defined, initially domain = ∅)
k : Pids 99K {0, 1}∗ (partially defined, initially domain = ∅)
corrupted , incorruptible ∈ {false, true} (initially false)

ChkAdr: Like Fltsenc (see Figure 2).

1. Key exchange: Upon receiving (pids, p,KeyExchange) from T ∈ Tusers where p ∈ pids: Send
(pids, p,Completed) to T if state(p) = ok, otherwise, set state(p) := (wait, T ) and send
(pids, p,KeyExchange) to Tadv.

2. Complete: Upon receiving (pids, p,Complete, k′) from Tadv where state(p) = (wait, T ) for some T
and |k′| ≤ q(η) (where q is the polynomial associated with Σ that bounds the runtime of the
algorithms):

state(p) := ok , incorruptible := true
if corrupted then

k(p) := k′

else {not corrupted}
send (pids,GetKey) to Tkeysetup , recv (pids,Key, k′′) from Tkeysetup , k(p) := k′′

send (pids, p,Completed) to T

3. Corruption: Upon receiving (pids,Corrupt) from Tadv where |dom(state)| > 0, not
incorruptible, and not corrupted : corrupted := true and send (pids,Corrupted) to Tadv.

4. Corruption request: Upon receiving (pids,Corrupted?) from T ∈ Tusers where exists p ∈ pids
s.t. state(p) = ok: Send (pids,CorruptionState, corrupted) to T .

5. Encryption: Upon receiving (pids, p,Enc,m) from T ∈ Tusers where p ∈ pids:
Send (pids, p,Ciphertext, c) to T where c← enc(k(p),m) if state(p) = ok and m ∈ dom(Σ)η,
otherwise, c := ⊥.

6. Decryption: Upon receiving (pids, p,Dec, c) from T ∈ Tusers where p ∈ pids: Send
(pids, p,Plaintext,m) to T where m := dec(k(p), c) if state(p) = ok, otherwise, c := ⊥.

Figure 3: Protocol !Pltsenc for symmetric encryption with long-term keys.

high entropy, L(1η,m) is sufficiently random and can be guessed only with negligible probability.

4.1.2 Realizing the Functionality

We show that realizing !Funauth
ltsenc and !Fauth

ltsenc by a symmetric encryption scheme together with a key
setup functionality which provides the parties with pre-shared keys is equivalent to the scheme being
IND-CCA or IND-CPA and INT-CTXT secure, respectively.

The protocol Pltsenc is parameterized by a symmetric encryption scheme Σ and (sets of) tape names.
It provides the same interfaces as Fltsenc. See Figure 3 for a precise formulation. In the key exchange
phase, the adversary has the ability to statically corrupt the key in which case she is requested to provide
the corrupted key which is then used by the parties. In the uncorrupted case, Pltsenc obtains the secret
key from an ideal key setup functionality Fkeysetup which is given in Figure 4. See Figure 5 for on
overview of the connections between the machines.

Theorem 5. Let L be a leakage algorithm, which leaks exactly the length of a message, and Σ =
(gen, enc,dec) be a symmetric encryption scheme with domain dom(L). Then, for all sufficiently large
polynomials q (i.e., where all algorithms in Σ are bounded by q) it holds

1. Σ is IND-CCA secure iff !Pltsenc(Σ, T̂ ) | Fkeysetup(gen) ≤SS !Funauth
ltsenc (q, L, T ), and

2. Σ is IND-CPA and INT-CTXT secure iff !Pltsenc(Σ, T̂ ) | Fkeysetup(gen) ≤SS !Fauth
ltsenc(q, L, T ),
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Fkeysetup(gen)

Tapes: enriching I/O input tape T in
keysetup, I/O output tape T out

keysetup

State: k : 2Pids 99K {0, 1}∗ (partially defined, initially domain = ∅)

1. Key request: Upon receiving (pids,GetKey) from Tkeysetup where pids ⊆ Pids:
If pids /∈ dom(k) then k(pids)← gen(1η). Send (pids,Key, k(pids)) to Tkeysetup.

Figure 4: Key setup functionality Fkeysetup.

in !Pltsenc(T̂ )

out

in
Tusers

Tkeysetup

out

in

Fkeysetup

outT̂adv

≡ Tadv

inoutin !Fltsenc(T )

out

in

T̂adv out

Tusers

SFltsenc

Figure 5: Theorem 5, !Pltsenc | Fkeysetup and SFltsenc | !Fltsenc are indistinguishable. Solid lines represent
I/O tapes and dashed lines network tapes. Filled arrow heads represent enriching and unfilled arrow
heads consuming input tapes.

for all disjoint (sets of) tape names Tusers, Tadv, T̂adv where T = (Tusers, Tadv) and T̂ = (Tusers, T̂adv).
The directions from left to right hold for any length preserving leakage algorithm L.

Proof. The direction from right to left is easy to prove. Given any IND-CCA, IND-CPA or INT-CTXT
adversary A we can easily construct an environment E of !Pltsenc | Fkeysetup such that the advantage of A
is bound by the advantage of E distinguishing between !Pltsenc | Fkeysetup and S | !Funauth

ltsenc or S | !Fauth
ltsenc,

respectively, for any simulator S. The environment E simply exchanges an uncorrupted key for two
parties and simulates A by using this key for encryption and decryption to simulate the oracles of A.

Next, we show the direction from left to right. The definition of the simulator SFltsenc is straight
forward. It has two enriching network input tapes T out

adv and T̂ in
adv and two output tapes T in

adv and T̂ out
adv

to connect to !Fltsenc and the environment, respectively, see Figure 5 for on overview of the connections
between the IITMs. It treats every instance of Fltsenc separately. By Fltsenc[pids] we denote the instance
of Fltsenc for the parties pids. In the uncorrupted case, upon completion it simply generates a key
k ← gen(1η) (only one for all parties in pids) and provides the (description of the) algorithms enc(·) =
enc(k, ·) and dec(·) = dec(k, ·) to Fltsenc[pids]. In the corrupted case it uses the key k′ contained in
the completion message and sends the algorithms e = enc(k′, ·) and d = dec(k′, ·) to Fltsenc[pids]. The
messages (pids, p,KeyExchange) are forwarded from Fltsenc[pids] to the environment. One easily verifies
that SFltsenc is a simulator for !Fltsenc w.r.t. !Pltsenc | Fkeysetup, i.e., SFltsenc ∈ Sim !Pltsenc | Fkeysetup

S ( !Fltsenc).
Next, we show that SFltsenc is a successful simulator. We use that Oracle(Σ, real, L) is indistinguishable

from Oracle(Σ, unauth, L) (resp., Oracle(Σ, auth, L)).
We define an intermediate system Q which behaves like !Pltsenc | Fkeysetup except that it connects

to the identifier version !Oracle (as defined in Section 3.3) and if Pltsenc[pids] is not corrupted then
upon encryption and decryption it uses Oracle[pids] (i.e., pids is used as the identifier and the prefix of
all messages sent to Oracle[pids]) to compute the ciphertext and plaintext, respectively. If Pltsenc[pids]
is corrupted then Oracle is not used but Q behaves like Pltsenc[pids] upon encryption and decryption,
respectively, i.e. it uses the corrupted key.

For any E ∈ ConE( !Pltsenc | Fkeysetup), by definition of Q, we have

E |Q | !Oracle(Σ, real, L) ≡0 E | !Pltsenc(Σ) | Fkeysetup(gen) .
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Because q is chosen large enough such that Fltsenc can always compute enc and dec, we can prove that

E |Q | !Oracle(Σ, unauth, L) ≡0 E | SFltsenc | !Funauth
ltsenc (q, L) , and

E |Q | !Oracle(Σ, auth, L) ≡0 E | SFltsenc | !Fauth
ltsenc(q, L) .

By Lemma 1 and the composition theorem, we obtain

E |Q | !Oracle(Σ, real, L) ≡ E |Q | !Oracle(Σ, unauth, L) , and

E |Q | !Oracle(Σ, real, L) ≡ E |Q | !Oracle(Σ, auth, L) .

By transitivity of ≡, we are done.

Instead of using Fkeysetup as a setup assumption, one could realize Fltsenc by a key exchange protocol.
The proof will be almost identical to the proof above if one uses an ideal key exchange functionality (e.g.
[20]) which replaces Fkeysetup. Then, by the composition theorem one obtains a realization of Fltsenc for
any key exchange protocol which realizes the key exchange functionality.

4.1.3 Joint State Realization

As first explicitly studied by [22], see also [32], the composition theorem itself does not immediately yield
practical realizations for multi-session, multi-party protocols. This is also the case for the multi-session
version !Fltsenc of !Fltsenc. Here, we would have a different instance of Fltsenc, i.e., a different fresh key,
for every set of parties pids for every session. A practical realization can be obtained by a composition
theorem that allows for joint state. The idea is to prove a theorem like P js

ltsenc | !Fltsenc ≤SS !Fltsenc where
P js

ltsenc, the joint state realization, uses for every set of parties pids only a singe instance of Fltsenc to
realize the instances of Fltsenc for these parties in all sessions.

We give a joint state realization P js
ltsenc for both variants of Fltsenc. The basic idea is that before

encryption the plaintexts are prefixed by the session identifier. The same method has been used in [22]
for digital signatures and in [32] for public key encryption.

The protocol P js
ltsenc is parameterized by a polynomial q and a set of tape names. The polynomial

q is used to bound the length of the session identifier. This is necessary as pointed out in [31]. P js
ltsenc

has enriching I/O tapes as Fltsenc for parties and the environment to connect to. Furthermore, it has
consuming I/O tapes to connect to !Fltsenc. Note that P js

ltsenc will connect to all I/O tapes of Fltsenc,
in particular to all enriching tapes. Thus, Fltsenc only receives enriching input from P js

ltsenc and P js
ltsenc

will always be able to forward messages from Fltsenc. The protocol P js
ltsenc accepts message of the form

(sid , pids,m) from the environment and of the form (pids,m) form Fltsenc. See Figure 6 for a precise
definition and Figure 7 for an overview of the connection to Fltsenc.

Theorem 6. For all polynomials q, q′ and disjoint (sets of) tape names Tusers, Tadv there exists a poly-
nomial q′′ such that for every leakage algorithm L we have

!P js
ltsenc(q, Tusers) | !Fltsenc(q′, L′, T̂ ) ≤SS !Fltsenc(q′′, L, T )

where L′(1η, (sid ,m)) = (sid , L(1η,m)) for all sid ∈ Sids and m ∈ dom(L)η, i.e., dom(L′) = ({(sid ,m) |
sid ∈ Sids,m ∈ dom(L)η})η∈N, T = (Tusers, Tadv), and T̂ = (T̂users, T̂adv) (T̂users = {T̂ | T ∈ Tusers}).

This holds for both Fltsenc = Fauth
ltsenc and Fltsenc = Funauth

ltsenc .

Proof. The proof is very similar to the proof of the joint state theorem for public key encryption [31].
First, we define a simulator !S js

Fltsenc
and then sketch the proof that there is a (0, 0, 0)-probabilistic

trace relation between runs of the joint state (JS) world (runsaη(E | !P js
ltsenc | !Fltsenc)) and runs of the

ideal world (runsaη(E | !S js
Fltsenc

| !Fltsenc)), recall the definitions from Section 2.4.
The simulator is given in Figure 8. When the simulator receives the algorithms enc and dec it

forwards the algorithms encsid and decsid to the instance of Fltsenc with session ID sid . The idea is that
encsid(m) = enc((sid ,m)) and that decsid(c) = m if dec(c) = (sid ,m) for some m, and decsid(c) = ⊥
otherwise. The difficulty is that we simulate the algorithms only a polynomial number of steps, e.g. in the
JS world enc is simulated q′(η+ |(sid ,m)|) steps while in the ideal world encsid is simulated q′′(η+ |m|)
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P js
ltsenc(q, Tusers)

Tapes: I/O in: T in (enriching), T̂ out for all T ∈ Tusers

I/O out: T out, T̂ in for all T ∈ Tusers

State: pids ⊆ Pids (initially ∅)
sids : Pids 99K Sids (initially domain = ∅)
state : Pids 99K {wait} × Sids ∪ {ok} (initially domain = ∅)

ChkAdr: Upon first activation accept only messages of shape (sid , pids ′,m) on all enriching I/O
tapes where pids ′ ⊆ Pids, sid ∈ Sids and |sid | ≤ q(η). In mode Compute, at first do
pids := pids ′.
Later accept only messages of shape (sid , pids ′,m) from T or (pids ′,m) from T̂ where
T ∈ Tusers, pids = pids ′, and (if applicable) sid ∈ Sids and |sid | ≤ q(η).

1. Upon receiving (sid , pids, p,KeyExchange) from T ∈ Tusers where p ∈ pids:
if state(p) = ok then

sids(p) := sids(p) ∪ {sid} , send (sid , pids, p,Completed) to T
else

state(p) := (wait, sid) , send (pids, p,KeyExchange) to T̂

2. Upon receiving (pids, p,Completed) from T̂ with T ∈ Tusers, state(p) = (wait, sid) for some sid :
state(p) := ok, sids(p) := {sid}, and send (sid , pids, p,Completed) to T .

3. Upon receiving (sid , pids, p,Enc,m) from T ∈ Tusers:
if sid /∈ sids(p) then

send (sid , pids, p,Ciphertext,⊥) to T
else

send (pids, p,Enc, (sid ,m)) to T̂ , recv (pids, p,Ciphertext, c) from T̂
send (sid , pids, p,Ciphertext, c) to T

4. Upon receiving (sid , pids, p,Dec, c) from T ∈ Tusers:
if sid /∈ sids(p) then

send (sid , pids, p,Plaintext,⊥) to T
else

send (pids, p,Dec, c) to T̂ , recv (pids, p,Plaintext,m) from T̂
if m can be parsed as (sid ,m′) for some m′ then

send (sid , pids, p,Plaintext,m′) to T
else

send (sid , pids, p,Plaintext,⊥) to T

5. Upon receiving (sid , pids,Corrupted?) from T ∈ Tusers where ∃p ∈ pids : sid ∈ sids(p): Send
(pids,Corrupted?) to T̂ and wait for receiving (pids,CorruptionState, corrupted) from T̂ where
corrupted ∈ {false, true}. Send (sid , pids,CorruptionState, corrupted) to T

Figure 6: Joint state realization !P js
ltsenc for symmetric encryption with long-term keys.
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in !Fltsenc(T̂ )

out

in
T̂users

outT̂adv

!P js
ltsenc

out

in
Tusers

≡ Tadv

inoutin !Fltsenc(T )

out

in

T̂adv out

Tusers

S js
Fltsenc

Figure 7: Theorem 6, !P js
ltsenc | !Fltsenc and S js

Fltsenc
| !Fltsenc are indistinguishable. Solid lines represent

I/O tapes and dashed lines network tapes. Filled arrow heads represent enriching and unfilled arrow
heads consuming input tapes.

steps. Of course, for the simulation to work, they must have different runtime behavior. This is the
reason why the session IDs have to be bounded polynomially in the security parameter. It is easy to see
and was also shown for similar algorithms in [31] that for all polynomials q, q′ there exists a polynomial
q′′ such that for all security parameters η ∈ N, all session IDs sid with |sid | ≤ q(η), and all algorithms
enc, dec with |enc|, |dec| ≤ q′(η) it holds that algorithms encsid , decsid can be constructed in polynomial
time such that

1. |encsid |, |decsid | ≤ q′′(η),

2. the probability distributions of simq′′(η+|m|)(encsid ,m) and simq′(η+|(sid,m)|)(enc, (sid ,m)) are equal
for all m ∈ {0, 1}∗, and

3. simq′′(η+|c|)(decsid , c) = m if sim-detq′(η+|c|)(dec, c) = (sid ,m) for some m ∈ {0, 1}∗, otherwise,
simq′′(η+|c|)(decsid , c) = ⊥ for all c ∈ {0, 1}∗.

Let E ∈ ConE( !P js
ltsenc | !Fltsenc). We define an injection α from runs of the runs of the ideal world

(runsaη(E | !S js
Fltsenc

| !Fltsenc)) to runs of JS world (runsaη(E | !P js
ltsenc | !Fltsenc)) as follows. The state of

S js
Fltsenc

defines the state of P js
ltsenc and the state of the instance of Fltsenc for the parties pids (we call

this instance Fltsenc[pids]) is defined by the state of the instances of Fltsenc for the parties pids for all
session IDs sid (we call these instances Fltsenc[sid , pids]). For example, the decryption table decTable in
Fltsenc[pids] is set to the union of {((sid ,m), c) | (m, c) ∈ decTable in Fltsenc[sid , pids]} for all sid .

The crucial and simple observation is that there are no collisions between sessions, i.e., for all
sid , sid ′, c, c′,m,m′ where dec(c) = (sid ,m) and dec(c′) = (sid ′,m′) we have that c 6= c′ if sid 6= sid ′.
By the definition of the leakage algorithm L′ we do not have collisions between sessions in the JS world.
Now, it is easy to prove that for every run ρ ∈ runsaη(E | !S js

Fltsenc
| !Fltsenc) of the JS world, we have that

Pr[ρ] = Pr[α(ρ)]. By Theorem 4 we obtain that E | !S js
Fltsenc

| !Fltsenc ≡0 E | !P js
ltsenc | !Fltsenc.

Note that the leakage algorithm L′, as defined in the above theorem, is length preserving if the
leakage algorithm L is length preserving. Hence, we can apply Theorem 5 and obtain that the protocol
!P js

ltsenc | !Pltsenc(Σ) realizes the multi-party multi-session functionality !Fltsenc(L) for any length preserv-
ing leakage algorithm L and IND-CCA (resp., IND-CPA and INT-CTXT) secure symmetric encryption
scheme Σ.

4.2 Public Key Encryption

We use a slightly simplified version of the functionality Fpke for public key encryption as introduced
in [32]. As shown in [32], the results transfer to the variant considered here, a public key encryption
scheme realizes Fpke if and only if it is IND-CCA secure. Moreover, it is shown that there is a joint state
realization of Fpke.

The Functionality. One instance of Fpke can be used by one decryptor and arbitrary many encryptors.
Intuitively, Fpke stands for one public/private key pair. The decryptor can use Fpke to (ideally) decrypt
with the private key and the encryptors can use Fpke to (ideally) encrypt with the public key, as described
above. The decryptor is first supposed to send a key generation command to Fpke, upon which the
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S js
Fltsenc

(q, q′, Tadv)

Tapes: enriching network in: T in
adv (denoted “from Fltsenc”), T̂ out

adv (denoted “from T̂adv”)
network out: T out

adv (denoted “to Fltsenc”), T̂ in
adv (denoted “to T̂adv”)

State: pids ⊆ Pids (initially ∅)
sids : Pids 99K Sids (initially domain = ∅)
state : Pids 99K {wait} × Sids ∪ {ok} (initially domain = ∅)
enc, dec : Pids 99K {0, 1}∗ (initially domain = ∅)
corrupted , incorruptible ∈ {false, true} (initially false)

ChkAdr: Upon first activation accept only messages of shape (sid , pids ′,m) from Fltsenc where
pids ′ ⊆ Pids and sid ∈ Sids. In mode Compute, at first do pids := pids ′.
Later accept only messages of shape (sid , pids ′,m) from Fltsenc or (pids ′,m) from T̂adv

where pids = pids ′ and (if applicable) sid ∈ Sids and |sid | ≤ q(η).

1. Upon receiving (sid , pids, p,KeyExchange) from Fltsenc:
if state(p) = ok then

sids(p) := sids(p) ∪ {sid} , send (sid , pids, p,Complete, enc(p)sid , dec(p)sid) to Fltsenc

else
state(p) := (wait, sid) , send (pids, p,KeyExchange) to T̂adv

2. Upon receiving (pids, p,Complete, enc, dec) from T̂adv where state(p) = (wait, sid), for some sid ,
and |enc|, |dec| ≤ q′(η):

state(p) := ok , sids(p) := {sid} , enc(p) := enc , dec(p) := dec , incorruptible := true
send (sid , pids, p,Complete, enc(p)sid , dec(p)sid) to Fltsenc

3. Upon receiving (pids,Corrupt) from T̂adv where not incorruptible, not corrupted , and
|dom(state)| > 0:

corrupted := true
for all p ∈ pids and sid ∈ sids(p) do

send (sid , pids,Corrupt) to Fltsenc , recv (sid , pids,Corrupted) from Fltsenc

send (pids,Corrupted) to T̂adv

Figure 8: Simulator !S js
Fltsenc

for joint state realization of !Fltsenc.
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adversary is asked to send encryption and decryption algorithms as well as a public key. The public key
is given to the decryptor, who can distribute it.

We formulate Fpke with a modeling of corruption which is similar to the one we introduced for Fltsenc.
See Figure 9 for a definition of Fpke. The proofs of the theorems in [32] can be easily adapted to the
definition of Fpke we consider in this paper. For completeness we restate the results from [32], see below.

The functionalities Funauth
senc and Fauth

senc will use the multi-party version !Fpke of Fpke, which provides
public key encryption functionalities for an unbounded number of parties.

Realizing the Functionality. Every asymmetric encryption scheme Σ induces a protocol (system)
Ppke(Σ, (Tusers, Tadv)) that has the same interfaces as Fpke and provides encryption and decryption
abilities for the parties. Furthermore, the adversary is able to statically corrupt the keys generated
within Ppke.

Theorem 7. Let L be a leakage algorithm, which leaks exactly the length of a message, and let Σ =
(gen, enc,dec) be an asymmetric encryption scheme with domain dom(L). Then, for all sufficiently large
polynomials q (i.e., where all algorithms in Σ are bounded by q) it holds

Σ is IND-CCA secure iff Ppke(Σ, T̂ ) ≤SS Fpke(q, L, T )

for all disjoint (sets of) tape names Tusers, Tadv, T̂adv where T = (Tusers, Tadv) and T̂ = (Tusers, T̂adv).
The directions from left to right hold for any length preserving leakage algorithm L.

Joint State Realization. The joint state realization of [32] can be adapted in an obvious way to
obtain a joint state realization P js

pke for the formulation of Fpke in this paper. As in [32] and for long-
term symmetric key encryption, P js

pke is parameterized by a polynomial and a set of tape names. The
polynomial is used to bound the length of the session identifiers. We can prove the following joint state
theorem.

Theorem 8. For all polynomials q, q′ and disjoint (sets of) tape names Tusers, Tadv there exists a poly-
nomial q′′ such that for every leakage algorithm L we have

!P js
pke(q, Tusers) | !Fpke(q′, L′, T̂ ) ≤SS !Fpke(q′′, L, T )

where L′(1η, (sid ,m)) = (sid , L(1η,m)) for all sid ∈ Sids and m ∈ dom(L)η, i.e., dom(L′) = ({(sid ,m) |
sid ∈ Sids,m ∈ dom(L)η})η∈N, T = (Tusers, Tadv), and T̂ = (T̂users, T̂adv) (T̂users = {T̂ | T ∈ Tusers}).

5 The Symmetric Key Encryption Functionality

The main purpose of this functionality is for parties to be able to generate short-term keys and to provide
(ideal) encryption and decryption under these keys as well as under public keys and long-term symmetric
key, as described in Section 4. Short-term keys may themselves be part of the encrypted messages. As
already mentioned in the introduction, the users of Fsenc (or its realization) do not get their hands on
the actual short-term keys, but only on pointers to keys stored in the functionality, since otherwise no
security guarantees could be provided. The functionality can be used to encrypt arbitrary messages (bit
strings). We do not put a bound on the length and number of these messages. These messages may
contain pointers of the form (Key, ptr), where Key is a tag and ptr is the actual pointer to a key. The tag
is used to identify the bit string ptr as a pointer. Before a message is actually encrypted, the pointers are
replaced by the keys they point to. Keys are written in the form (Key, k), where Key is a tag and k the
actual key. Again, the tag is used to identify the bit string k as a key. Upon decryption of a ciphertext,
keys embedded in the plaintext are first turned into pointers before the plaintext is given to the user.

We emphasize that, apart from keys and pointers, we do not interpret messages; messages may be
arbitrary bit strings, representing payload data, party names, nonces, ciphertexts (including ciphertexts
previously generated by the functionality), digital signatures, non-interactive zero-knowledge proofs etc.
Instead of using tags for pointers and keys we could parametrize the functionalities with any encoding
and decoding function, for identifying pointers in a message and turning them into keys, and vice versa.
The security guarantees that Fsenc provides are not affected by the details of the encoding. For example,
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Fpke(q, L, (Tusers, Tadv))

Tapes: in: T in for all T ∈ Tusers (enriching I/O tapes), T in
adv (network tape)

out: T out for all T ∈ Tusers (I/O tapes), T out
adv (network tape)

State: stateDec ∈ {init,wait} × Tusers ∪ {ok} (initially init)
stateEnc : Pids 99K {wait} × Tusers ∪ {ok} (partially defined, initially domain = ∅)
enc, dec, pk ∈ {0, 1}∗ ∪ {⊥} (initially ⊥)
decTable ⊆ {0, 1}∗ × {0, 1}∗ (initially ∅)
corrupted ∈ {false, true} (initially false)

1. Key generation: Upon receiving (Algorithms, enc′, dec′, pk ′, corrupt) from Tadv where
enc = dec = pk = ⊥, |enc′|, |dec′|, |pk ′| ≤ q(η), and corrupt ∈ {false, true}:
enc := enc′, dec := dec′, pk := pk ′, corrupted := corrupt , send (Ack) to Tadv.

2. Initialization decryptor: Upon receiving (KeyGen) from T ∈ Tusers: stateDec := (wait, T ) and
send (KeyGen) to Tadv.

3. Complete decryptor: Upon receiving (Complete) from Tadv where pk 6= ⊥ and
stateDec = (wait, T ): stateDec := ok and send (PublicKey, pk) to T .

4. Initialization encryptor: Upon receiving (p, Initialize) from T ∈ Tusers:
stateEnc(p) := (wait, T ) and send (p, Initialize) to Tadv.

5. Complete encryptor: Upon receiving (p,Complete) from Tadv where pk 6= ⊥ and
stateEnc(p) = (wait, T ): stateEnc(p) := ok and send (p,Completed) to T .

6. Encryption: Upon receiving (p,Enc, pk ′,m) from T ∈ Tusers:
Send (p,Ciphertext,⊥) to T if stateEnc(p) 6= ok or m /∈ dom(L)η, otherwise:

if not corrupted and pk = pk ′ then
m← L(1η,m) , c← simq(η+|m|)(enc, (pk ,m))
if m = sim-detq(η+|c|)(dec, c) then

decTable := decTable ∪ {(m, c)} , send (p,Ciphertext, c) to T
else

send (p,Ciphertext,⊥) to T
else

c← simq(η+|m|)(enc, (pk ′,m)) , send (p,Ciphertext, c) to T

7. Decryption: Upon receiving (Dec, c) from T ∈ Tusers:
Send (Plaintext,⊥) to T if stateDec 6= ok, otherwise:

if not corrupted then

m :=


m′ if ∃!m′ : (m′, c) ∈ decTable
sim-detq(η+|c|)(dec, c) if ∀m′ : (m′, c) /∈ decTable
⊥ otherwise

send (Plaintext,m) to T
else {corrupted}

m := sim-detq(η+|c|)(dec, c) , send (Plaintext,m) to T

8. Corruption request: Upon receiving (Corrupted?) from T ∈ Tusers where pk 6= ⊥:
Send (CorruptionState, corrupted) to T .

Figure 9: Functionality Fpke for asymmetric encryption.
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in applications in which the positions of pointers/keys in a message are known, pointers and keys could
be extracted without relying on tags.

In Section 5.2, we show that the functionality can be realized by every authenticated encryption
scheme. We also present, in Section 6, a relaxed version Funauth

senc of Fsenc which does not capture the
properties of an authenticated encryption scheme and is realizable by every IND-CCA secure encryption
scheme. To explicitly distinguish between the two variants we refer to the functionality presented in this
section by Fauth

senc .

5.1 The Functionality

The ideal functionality Fsenc handles the key generation, encryption, and decryption requests of multiple
parties. It also provides an interface to Fltsenc and Fpke, for bootstrapping symmetric key encryption
(see Section 4). Just as these two functionalities, Fsenc is parametrized by a polynomial q, a leakage
algorithm L and tape names Tusers and Tadv. The polynomial is used to bound the algorithm and keys
for encryption and decryption provided by the adversary, see discussion in Section 3.1. The tape names
specify the interface, i.e., the input and output tapes, see also Figure 16 for an overview.

1. User interface (enriching I/O tapes): The input tapes T in and output tapes T out (for all T ∈ Tusers)
are for users to generate short-term keys and to encrypt and decrypt messages with these short-
term keys. Users may connect to Fltsenc and Fpke via Fsenc to set up long-term keys or public
keys, respectively, and to encrypt and decrypt messages with these long-term keys or public keys,
respectively. Furthermore, the environment might request whether keys (short-term, long-term or
public keys) are corrupted.

2. Interface to Fltsenc and Fpke (consuming I/O tapes): As mentioned above, Fsenc connects to Fltsenc

and Fpke, therefore, the tapes T ltin, T ltout, T pkein, and T pkeout (for all T ∈ Tusers) are used to
connect to Fltsenc and Fpke, respectively.

Although these tapes are consuming Fsenc still can forward all messages received on these tapes be-
cause we only consider Fsenc running together with Fltsenc and Fpke and they only receive enriching
input via Fsenc.

3. Adversarial interface (consuming network tapes): The adversary connects to T in
adv and T out

adv.

The functionality Fsenc has to keep track of which party has access to which keys (via pointers) and
which keys are known to the environment/adversary, i.e., have been corrupted or have been encrypted
under a known key, and as a result became known. For this purpose, Fsenc maintains a set K of all
short-term keys stored within the functionality, a set Kknown ⊆ K of known keys, and a set of corrupted
keys Kcorrupt ⊆ Kknown. The set K \ Kknown represents the unknown keys. A partial function key yields
the key key(p, ptr) ∈ K pointer ptr points to for party p. Pointers are natural numbers, the first pointer
a party receives is 0, the second 1 and so on. The information about the next pointer of party p is
stored in nextpointer(p). For ideal encryption and decryption, a table decTable(k) is kept for every key
k ∈ K \ Kknown which records pairs (m, c) of ciphertexts c and their corresponding plaintext m. For
generation of short-term keys, we need to store information which is done in variable stateKeyGen(p)
for party p, see below. In enc and dec the algorithms for encryption and decryption with short-term
keys are stored, see below. To keep track of known keys, Fsenc maintains sets of ciphertexts Clt(pids)
and Cpke(p) that where encrypted ideally by Fltsenc for parties pids or Fpke for party p, respectively, see
below. To tell, whether a ciphertext was encrypted ideally by Fpke for party p, it is important to know
whether the right public key was used, therefore, Fsenc stores the public key of party p in pk(p). In mode
CheckAddress all messages are accepted.

We now explain how Fsenc works in more detail, see Figure 10, 11 and 12 for full details:

Obtaining Encryption and Decryption Algorithms. Before encryption and decryption can be
performed, Fsenc expect to receive an encryption enc and decryption dec algorithm from the adversary
(the simulator). As in the case of Fpke and Fltsenc, we do not put any restrictions on these algorithms; all
security guarantees that Fsenc provides are made explicit within Fsenc in a rather syntactic way, without
relying on specific properties of these algorithms. As a result, when using Fsenc in the analysis of more
complex systems, one can completely abstract from these algorithms.
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Fauth
senc (q, L, (Tusers, Tadv))

Tapes: in: T in (enriching), T ltout, T pkeout for all T ∈ Tusers (I/O tapes), T in
adv (network tape)

out: T out, T ltin, T pkein for all T ∈ Tusers (I/O tapes), T out
adv (network tape)

State: enc, dec ∈ {0, 1}∗ ∪ {⊥} (initially ⊥)
nextpointer : Pids→ N (initially p 7→ 0 for all p)
stateKeyGen : Pids 99K {wait} × Tusers (partial function, initially domain = ∅)
decTable : {0, 1}∗ → 2{0,1}

∗×{0,1}∗ (initially k 7→ ∅ for all k)
key : Pids× N 99K {0, 1}∗ (partial function, initially domain = ∅)
K,Kknown,Kcorr ⊆ {0, 1}∗ (initially ∅)
Clt : 2Pids → 2{0,1}

∗
(initially pids 7→ ∅ for all pids)

Cpke : Pids→ 2{0,1}
∗

(initially p 7→ ∅ for all p)
pk : Pids 99K {0, 1}∗ (partial function, initially domain = ∅)

1. Algorithms: Upon receiving (Algorithms, e, d) from Tadv where |e|, |d| ≤ q(η) and enc = dec = ⊥:
enc := e , dec := d , send (Ack) to Tadv

2. Key generation: Upon receiving (p,KeyGen) from T ∈ Tusers:
stateKeyGen(p) := (wait, T ) , send (p,KeyGen) to Tadv

3. Key generation: Upon receiving (p,KeyGen, corrupt , k) from Tadv where
stateKeyGen(p) = (wait, T ), for some T , |k| ≤ q(η), corrupt ∈ {false, true}, and (k /∈ K or
(corrupt = true and k ∈ Kknown)):

stateKeyGen(p) := ⊥ , K := K ∪ {k}
if corrupt then Kcorr := Kcorr ∪ {k} , Kknown := Kknown ∪ {k}
if not ∃!ptr : key(p, ptr) = k then {this is always the case if corrupt = false}

ptr := nextpointer(p)++ , key(p, ptr) := k
send (p,KeyGen, ptr) to T

4. Store: Upon receiving (p,Store, k) from T ∈ Tusers do: If k ∈ K \ Kknown then ptr := ⊥,
otherwise, if exists ptr ′ s.t. key(p, ptr ′) = k then ptr := ptr ′, otherwise, ptr := nextpointer(p)++,
key(p, ptr) := k, and Kknown := Kknown ∪ {k}. Finally, send (p,Store, ptr) to T .

5. Reveal: Upon receiving (p,Reveal, ptr) from T ∈ Tusers do: If k := key(p, ptr) = ⊥ then send
(p,Reveal,⊥) to T . Otherwise, Kknown := Kknown ∪ {k} and send (p,Reveal, k) to T .

6. Corruption request: recv (p,Corrupted?, ptr) from T ∈ Tusers, (p, ptr) ∈ dom(key):
send (CorruptionState, “key(p, ptr) ∈ Kcorr”) to T

7. Forwarding: Forward all messages for Fltsenc (resp., Fpke) except for encryption and decryption
requests between T and T lt (resp., T pke) for all T ∈ Tusers. If received (p,PublicKey, k) from T pke

then pk(p) := k.

Figure 10: Functionality Fauth
senc for symmetric encryption with short-term keys.
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Fauth
senc (q, L, (Tusers, Tadv)) (continued)

8. Encryption, short-term key: recv (p,Enc, ptr ,m) from T ∈ Tusers:

Translate pointers in m to keys, obtain m′: If m is an invalid user plaintext for p (i.e.,
contains invalid pointer) then m′ := ⊥, otherwise, obtain m′ from m by replacing
(Key, ptr) ∈ m by (Key, key(p, ptr)).

Encrypt m′, obtain ciphertext c:

if ptr is invalid or m′ = ⊥ or m′ /∈ dom(L)η or enc = dec = ⊥ then
c := ⊥

else if (k := key(p, ptr)) /∈ Kknown then {key k is unknown}
m← L(1η,m′) , c← simq(η+|m|)(enc, (k,m))
if sim-detq(η+|c|)(dec, (k, c)) = m then

decTable(k) := decTable(k) ∪ {(m′, c)}
else

c := ⊥
else {key k is known}

c← simq(η+|m′|)(enc, (k,m′))

Update Kknown: Kknown := Kknown ∪ {k′ | (Key, k′) ∈ m′} if c 6= ⊥ and encryption was not
ideal, i.e., if key(p, ptr) ∈ Kknown.

Return ciphertext c: Send (p,Ciphertext, c) to T .

9. Encryption, long-term key: recv (pids, p,Enc,m) from T ∈ Tusers and p ∈ pids:

Translate pointers in m to keys, obtain m′: As encryption with short-term keys.
Encrypt m′, obtain ciphertext c: Send (pids, p,Enc,m′) to T lt and wait for receiving

(pids, p,Ciphertext, c) from T lt (i.e., request Fltsenc[pids])
Update Kknown: Kknown := Kknown ∪ {k′ | (Key, k′) ∈ m′} if c 6= ⊥ and encryption was not

ideal, i.e., if Fltsenc[pids] is corrupted (determined by requesting Fltsenc[pids]).
Store ciphertext c: Clt(pids) := Clt(pids) ∪ {c} if c 6= ⊥ and encryption was ideal.
Return ciphertext c: Send (pids, p,Ciphertext, c) to T .

10. Encryption, public key: recv (p′, p,Enc, k,m) from T ∈ Tusers:

Translate pointers in m to keys, obtain m′: As encryption with short-term keys.
Encrypt m′, obtain ciphertext c: Send (p′, p,Enc, k,m′) to T pke and wait for receiving

(p′, p,Ciphertext, c) from T pke (i.e., request Fpke[p′]).

Update Kknown: Kknown := Kknown ∪ {k′ | (Key, k′) ∈ m′} if c 6= ⊥ and encryption was not
ideal, i.e., if Fpke[p′] is corrupted (determined by requesting Fpke[p′]) or k 6= pk(p′) (wrong
public key).

Store ciphertext c: Cpke(p′) := Cpke(p′) ∪ {c} if c 6= ⊥ and encryption was ideal.
Return ciphertext c: Send (p′, p,Ciphertext, c) to T .

Figure 11: Functionality Fauth
senc for symmetric encryption with short-term keys. (continued)
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Fauth
senc (q, L, (Tusers, Tadv)) (continued)

11. Decryption, short-term key: recv (p,Dec, ptr ,m) from T ∈ Tusers:

Decrypt c, obtain plaintext m′:

if ptr is invalid (i.e., (p, ptr) /∈ dom(key)) or enc = dec = ⊥ then
m′ := ⊥

else if (k := key(p, ptr)) /∈ Kknown then {key k is unknown}
if ∃!m′′ ∈ {0, 1}∗ : (m′′, c) ∈ decTable(k) then {exists unique m′′}

m′ := m′′

else {decryption of c is ambiguous or c does not exist in decTable(k)}
m′ := ⊥

else {key k is known}
m′ := sim-detq(η+|c|)(dec, (k, c))

Prevent key guessing: If decryption was not ideal (i.e., key(p, ptr) ∈ Kknown) and m′

contains (Key, k′) with k′ ∈ K \ Kknown then m′ := ⊥.
Update Kknown: Kknown := Kknown ∪ {k′ | (Key, k′) ∈ m′} if decryption was not ideal.
Translate keys in m′ to pointers, obtain m: Obtain m from m′ by replacing

(Key, k′) ∈ m by (Key, ptr) where k′ = key(p, ptr) (if such ptr exists it is unique), otherwise,
create new pointer ptr := nextpointer(p)++, key(p, ptr) := k′

Return plaintext m: Send (p,Plaintext,m) to T .

12. Decryption, long-term key: recv (pids, p,Dec, c) from T ∈ Tusers and p ∈ pids:

Decrypt c, obtain plaintext m′: Send (pids, p,Dec, c) to T lt and wait for receiving
(pids, p,Plaintext,m′) from T lt (i.e., request Fltsenc[pids])

Prevent key guessing: As decryption with short-term keys except that here “decryption
was not ideal” means that Fltsenc[pids] is corrupted or c /∈ Clt(pids).

Update Kknown: Kknown := Kknown ∪ {k′ | (Key, k′) ∈ m′} if decryption was not ideal.
Translate keys in m′ to pointers, obtain m: As decryption with short-term keys.
Return plaintext m: Send (pids, p,Plaintext,m) to T .

13. Decryption, public key: recv (p,Dec, c) from T ∈ Tusers:

Decrypt c, obtain plaintext m′: Send (p,Dec, c) to T pke and wait for receiving
(p,Plaintext,m′) from T pke (i.e., request Fpke[p])

Prevent key guessing: As decryption with short-term keys except that here “decryption
was not ideal” means that Fpke[p] is corrupted or c /∈ Cpke(p).

Update Kknown: Kknown := Kknown ∪ {k′ | (Key, k′) ∈ m′} if decryption was not ideal.
Translate keys in m′ to pointers, obtain m: As decryption with short-term keys.
Return plaintext m: Send (p,Plaintext,m) to T .

Figure 12: Functionality Fauth
senc for symmetric encryption with short-term keys. (continued)
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(Short-term) Key Generation. A party p can ask Fsenc to generate a key. This request is forwarded
to the adversary, who is expected to provide such a key, say k. The adversary can decide to corrupt k
right away (static corruption), in which case k is added to Kknown and Kcorrupt. In case the key is not
marked corrupted, the functionality Fsenc only accepts k if k does not belong to K, modeling that k is
fresh. In case k is corrupted, k still may not belong to K \ Kknown (no key guessing). We emphasize
that the difference between Kknown and K \ Kknown is not whether or not an adversary knows the value
of a key; the adversary knows this value anyway, since she provides these values in the ideal world. The
point is that if k ∈ K \Kknown, messages encrypted under k will be encrypted ideally, i.e., the leakage of
these messages is encrypted instead of the messages itself. Conversely, if k ∈ Kknown, the actual messages
are encrypted under k. So, no security guarantees are provided in this case. In the realization of Fsenc,
however, keys corresponding to keys in K \ Kknown will of course not be known by the adversary.

After the key k has been provided by the adversary, a pointer to this key is created for party p, if
there does not exist such a pointer already, and this pointer is given to p. Note that if k is not marked
corrupted then a new pointer will always be created because k is fresh in this case.

Key generation requests for public/private keys and long-term symmetric keys are simply forwarded
to (instances of) Fpke and Fltsenc, respectively. For public/private key generation, if the public key is
returned by Fpke then it is stored in pk(p) for party p.

Store and Reveal. A party p can ask Fsenc to store some bit string k under some pointer. If k belongs
to K \Kknown then Fsenc will return an error message (no key guessing). Otherwise, it creates a pointer
to this key for party p, if there does not exist such a pointer already, and this pointer is given to p. The
key k is added to Kknown.

A party p can ask Fsenc to reveal the bit string corresponding to some pointer in which case Fsenc

will return the bit string to p and adds it to Kknown.

Encryption Requests. We first consider encryption with short-term keys. Such a request contains a
message m to be encrypted, the name of the party p who wants to encrypt m, and a pointer ptr to the
key under which p wants to encrypt m. Upon such a request, Fsenc first checks whether ptr is associated
with a key, i.e., whether k = key(p, ptr) is defined, we call such pointers valid (for party p). Also, this
is checked for all pointers (Key, ptr ′) in m. We call such an m a valid user plaintext (for party p) If
these checks are successful, these pointers are replaced by their corresponding keys (Key, k′), resulting
in a message m′. Then, if k ∈ K \ Kknown, the leakage L(1η,m′) of m′ is encrypted under k using the
encryption algorithm provided by the adversary, which is simulated for a polynomial number of steps.
If c denotes the resulting ciphertext, the pair (m′, c) is added to decTable(k) and c is given to p. If
k ∈ Kknown, m′ itself is encrypted, resulting in some ciphertext c. All keys in m′ are then added to
Kknown, as they have been encrypted under a known key. The ciphertext c is given to p.

Encryption requests for long-term symmetric key encryption and public key encryption are handled
similarly. The main difference is that the encryption of m′ is handled by (an instance of) Fltsenc and
Fpke, respectively. If one of these functionalities is corrupted (this can be checked by simply asking the
functionalities about their corruption status), the keys stored in m′ are marked as known in Fsenc. For
public key encryption, these keys are also marked as known if the wrong public key has been used, this
can be checked because upon key generation the public key for party p was recorded in pk(p). If the
encryption was ideal, i.e., if the keys in m′ where not marked known, then the ciphertext produced by
Fltsenc for parties pids or Fpke for party p, respectively, is stored in Clt(pids) or Cpke(p), respectively.
This information is needed for decryption, see below.

Decryption Requests. We first consider encryption with short-term keys. Such a request contains a
ciphertext c, the name of the party p who wants to decrypt c and a pointer ptr to the key with which
p wants to decrypt m. Similar to the case of encryption, it is first checked whether ptr is valid for p
(i.e., k = key(p, ptr) is defined). If k ∈ Kknown, c is decrypted under k with the decryption algorithm
provided by the adversary. If the resulting plaintext m′ contains a key (Key, k′) with k′ ∈ K \ Kknown,
an error message is given to p, modeling that this should not happen (no key guessing). Otherwise, the
keys (Key, k′) in m′ are turned into pointers (Key, ptr ′) for p; for new keys, new pointers are generated
and these keys are marked as known. The resulting message m is given to p. If k ∈ K \ Kknown, it is
checked whether there exists exactly one m′ such that (m′, c) ∈ decTable(k). If so, the keys (Key, k′) in
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m′ are turned into pointers (Key, ptr ′) for p; for new keys, new pointers are generated. The resulting
message m is given to p. If there are none or more than one m′ with (m′, c) ∈ decTable(k), an error is
returned.

Decryption requests for long-term symmetric key encryption and public key encryption are handled
similarly. The main difference is that the decryption of c is handled by (an instance of) Fltsenc and Fpke,
respectively. If the decryption is not ideally, i.e., if one of these functionalities is corrupted (this can be
checked by simply asking the functionalities about their corruption status) or if the ciphertext was not
created ideally by honest parties (this can be checked because we stored honestly created ciphertexts in
Clt(pids) and Cpke(p)), then, as for short-term key decryption, an error message is returned if the resulting
plaintext m′ contains a key (Key, k′) with k′ ∈ K\Kknown modeling that this should not happen (no key
guessing).

Corrupted keys. The environment can ask, for a party p and a pointer ptr , whether the corresponding
key, if any, is corrupted, i.e., belongs to Kcorrupt. Similar questions for long-term symmetric keys and
public/private keys are forwarded by Fsenc to (instances of) Fltsenc and Fpke.

This concludes the description of Fsenc. As explained for encryption requests, if a message m is encrypted
under a known key (or by a corrupted Fltsenc or Fpke), then all keys in m are marked known in Fsenc.
Yet, if in an application the ciphertext c for m is encrypted again under an unknown key and c is always
encrypted under an unknown key, the keys in m might not be revealed. However, at some point in
a cryptographic protocol, say, a ciphertext will typically be sent without being encrypted itself. So,
Fsenc seems to suffice in most applications. We are, for example, not aware of any authentication or key
exchange protocol where the above situation occurs (see, e.g., [13] for a collection of such protocols) and
even if it occurred, it might not be relevant for the kind of security properties one wishes to prove.

As for Fltsenc and Fpke, if the functionality is used with a leakage that has high entropy, then it
guarantees that unknown ciphertext cannot be guessed. Let us explain: Assume that, e.g., due to nested
encryption, a ciphertext c was generated by Fsenc and that c is not known to the adversary because it
was never output to the adversary. If the leakage has high entropy, the following is easy to see: The
adversary has only negligible guessing probability for all ciphertexts that are stored in decTable in Fsenc

and which are formally unknown to the adversary. The proof idea is to exploit that the ciphertext has
to contain as much information as L(1η,m), because of the decryption test during encryption. Since
the leakage has high entropy, L(1η,m) is sufficiently random and can be guessed only with negligible
probability.

Useful Invariants for Reasoning with the Functionality. Encryption with unknown and uncor-
rupted keys is ideal:

Lemma 2. Let E ∈ ConE(Fsenc | !Fltsenc | !Fpke). In a run of E |Fsenc(L) | !Fltsenc(L) | !Fpke(L), every
ciphertext returned by Fsenc upon corruption of some plaintext m with some uncorrupted and unknown
key (i.e., a key in K \ Kknown or an uncorrupted long-term key or public key) depends only on L(m).

Proof. Trivially this is an immediate consequence of the definition of Fsenc | !Fltsenc | !Fpke.

The following lemma states that if a key is generated honestly and never encrypted by a corrupted or
known key then the key is always unknown. This, together with Lemma 2, is useful for reasoning about
protocols, see Section 7.

Lemma 3. Let E ∈ ConE(Fsenc | !Fltsenc | !Fpke) and ρ be a run of E |Fsenc | !Fltsenc | !Fpke(1η, a) for
some η, a. Let k ∈ {0, 1}∗ be a key such that:

1. k is generated honestly, i.e., there is a configuration C in ρ where E sent (p,KeyGen, false, k) (false
indicates that this key is not corrupted) to Fsenc and k /∈ K in the configuration of Fsenc in C,

2. k is never encrypted by a corrupted or known key, i.e., in no configuration C in ρ, E sent
(p,Enc, ptr ,m), (pids, p,Enc,m), or (p′, p,Enc, pk ,m) where (Key, ptr ′) ∈ m, k = key(p, ptr ′) and
key(p, ptr) ∈ Kknown, Fltsenc[pids].corrupted = true, or Fpke[p′].corrupted = true or pk is the wrong
public key (i.e., pk 6= pk(p′)), respectively, and

3. k is never revealed, i.e., in no configuration C in ρ, E sent (p,Reveal, ptr) where key(p, ptr) = k.
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Then, the key k is always unknown, i.e., k /∈ Kknown for any configuration in ρ.

Proof. Because k is generated honestly upon generation we have k ∈ K \Kknown. After that, it can only
be marked known upon encryption with a corrupted or known key or upon a reveal command which is
excluded by assumption. Upon decryption k cannot be marked as known because of the “Prevent key
guessing” rule. Hence, k will always be unknown.

Handling of Uninterpreted Messages. The functionality Fsenc always interprets the plaintext and
replaces pointers by keys. Typically this is not a big restriction, however, sometimes one might want to
encrypt a bit string uninterpreted, e.g. if one wants to encrypt a Nonce which by accident happens to
be of shape (Key, x) for some bit string x.

Here, we explain how Fsenc can be used to encrypt messages without interpreting them by using the
commands store and reveal.

If we want to encrypt a message m without interpreting it, instead of sending m directly to Fsenc we
first parses m for occurrences of (Key, x) for any bit string x. For each such x we store x in Fsenc (by
sending the message (p, Store, x)) obtaining a pointer ptr and replace (Key, x) by (Key, ptr) in m. This
guarantees that exactly the plaintext intended to be encrypted gets encrypted because Fsenc is undoing
this replacement before encryption.

Similarly, if we want to decrypt a ciphertext c and obtain the uninterpreted plaintext, we decrypt c
obtaining an interpreted plaintext m. Then, we retrieve the corresponding bit strings x (by sending the
reveal command (p,Reveal, ptr) to Fsenc) for every (Key, ptr) ∈ m and replace (Key, ptr) by (Key, x) in
m.

5.2 Realizing the Functionality

In this section, we show that an authenticated encryption scheme (IND-CPA and INT-CTXT secure)
together with !Fltsenc | !Fpke realizes Fsenc | !Fltsenc | !Fpke.

5.2.1 Protocol for Symmetric Key Encryption

A symmetric encryption scheme Σ = (gen, enc,dec) induces a realization Psenc(Σ) = Psenc(Σ, T ) of
Fsenc in the obvious way: In Psenc(Σ, T ), i) the tapes, are defined as for Fsenc by the parameter T , ii)
ideal encryption and decryption is replaced by real encryption and decryption, iii) key guessing is not a
prior prevented anymore, and iv) the bookkeeping for unknown and known keys is removed. Upon key
generation, the adversary is asked whether she wants to corrupt the key, in which case she provides the
key. Otherwise, the key is generated honestly within Psenc(Σ) using gen(1η). Keeping track of corrupted
keys is necessary because the environment has the ability to ask which keys are corrupted. See Figure 13
for a precise definition of Psenc.

5.2.2 Restricting the Environment

We would like to prove that Psenc(Σ) realizes Fsenc for standard assumptions about the authenticated
symmetric encryption scheme Σ, namely IND-CPA and INT-CTXT secure. However, it is easy to see
that such a theorem does not hold in the presence of environments that may produce key cycles or cause
the commitment problem, as mentioned in the introduction: It is well-known that standard assumptions
about symmetric encryption schemes are too weak to deal with key cycles [11, 6]. Recall that in the
context of symmetric encryption, the commitment problem occurs if a key is revealed after it was used
to encrypt a message. Before the key is revealed, messages encrypted under this key, are encrypted
ideally by the simulator, i.e., the leakage of the message is encrypted by the simulator. After the key
has been revealed, the simulator would have to come up with a key such that the ciphertexts produced
so far decrypt to the original messages. However, this is typically not possible (see, e.g., [4, 27]). As
already mentioned in the introduction, similarly to [4], we therefore restrict the class of environments that
we consider, basically to those environments that do not produce key cycles or cause the commitment
problem.

To formulate such a class of environments that captures what is typically encountered in applications,
we observe, as was pointed out in [4], that once a key has been used in a protocol to encrypt a message,
this key is typically not encrypted anymore in the rest of the protocol. Let us call these protocols standard.
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Psenc(Σ = (gen, enc,dec), (Tusers, Tadv))

Tapes: As Fsenc (see Figure 10).

State: nextpointer : Pids→ N (initially p 7→ 0 for all p)
stateKeyGen : Pids 99K {wait} × Tusers (partial function, initially domain = ∅)
key : Pids× N 99K {0, 1}∗ (partial function, initially domain = ∅)
Kcorr ⊆ {0, 1}∗ (initially ∅)

1. Key generation: Upon receiving (p,KeyGen) from T ∈ Tusers:
stateKeyGen(p) := (wait, T ) , send (p,KeyGen) to Tadv

2. Key generation: Upon receiving (p,KeyGen, corrupt , k′) from Tadv where
stateKeyGen(p) = (wait, T ), for some T , corrupt ∈ {false, true}, and |k′| ≤ q(η) (where q is the
polynomial associated with Σ that bounds the runtime of the algorithms):

stateKeyGen(p) := ⊥
if corrupt then

k := k′ , Kcorr := Kcorr ∪ {k}
else

k ← gen(1η)
if not ∃!ptr : key(p, ptr) = k then

ptr := nextpointer(p)++ , key(p, ptr) := k
send (p,KeyGen, ptr) to T

3. Store: Upon receiving (p,Store, k) from T ∈ Tusers do: If exists ptr ′ s.t. key(p, ptr ′) = k then
ptr := ptr ′, otherwise, ptr := nextpointer(p)++ and key(p, ptr) := k. Send (p,Store, ptr) to T .

4. Reveal: Upon receiving (p,Reveal, ptr) from T ∈ Tusers do: If k := key(p, ptr) = ⊥ then send
(p,Reveal,⊥) to T . Otherwise, send (p,Reveal, k) to T .

5. Corruption request: Upon receiving (p,Corrupted?, ptr) from T ∈ Tusers where
(p, ptr) ∈ dom(key) do: Send (CorruptionState, “key(p, ptr) ∈ Kcorr”) to T .

6. Forwarding: Forward all messages for Fltsenc (resp., Fpke) except for encryption and decryption
requests between T and T lt (resp., T pke) for all T ∈ Tusers.

7. Encryption, short-term key: Upon receiving (p,Enc, ptr ,m) from T ∈ Tusers:

Translate pointers in m to keys, obtain m′: As Fsenc (8.), see Figure 11.
Encrypt m′, obtain ciphertext c: c := ⊥ if ptr is invalid (i.e., ptr /∈ dom(key)), m′ = ⊥ or
m′ /∈ dom(Σ)η, otherwise, c← enc(key(p, ptr),m′).

Return ciphertext c: Send (p,Ciphertext, c) to T .

8. Encryption, long-term and public key: As Fsenc (9.) and (10), respectively, see Figure 11,
but without “Update Kknown” and “Store ciphertext”.

9. Decryption, short-term key: Upon receiving (p,Dec, ptr , c) from T ∈ Tusers:

Decrypt c, obtain plaintext m′: m′ := ⊥ if ptr is invalid (i.e., ptr /∈ dom(key)), otherwise,
m′ := dec(key(p, ptr), c).

Translate keys in m′ to pointers, obtain m: As Fsenc (11.), see Figure 12.
Return plaintext m: Send (p,Plaintext,m) to T .

10. Decryption, long-term and public key: As Fsenc (12.) and (13), resp., see Figure 12, but
without “Prevent key guessing” and “Update Kknown”.

Figure 13: Protocol Psenc for symmetric encryption with short-term keys.
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This observation can be generalized to used order respecting environments, which we formulate based
on Fsenc: In what follows, we say that an unknown key k, i.e., k ∈ K \ Kknown, has been used (for
encryption), if Fsenc has been instructed to encrypt a message using k. Now, an environment is used
order respecting if runs of the following form occur only with negligible probability: An unknown key k
used for the first time at some point is encrypted itself by an unknown key k′ used for the first time later
than k. Clearly, used order respecting environments produce key cycles (among unknown keys) with at
most negligible probability.

We say that an environment does not cause the commitment problem, if runs of the following form
occur only with negligible probability: After an unknown key k has been used to encrypt a message,
k does not become known later in the run, i.e., is not added to Kknown. Assuming static corruption of
keys, it is easy to see that for standard protocols, as introduced above, the commitment problem does
not occur.

Instead of explicitly restricting the class of environments in our main theorem, we describe a function-
ality F∗ that provides exactly the same I/O interface as Fsenc (and hence, Psenc), but before forwarding
requests to Fsenc checks whether the used ordering is still respected and the commitment problem is not
caused. Otherwise, F∗ raises an error flag and from then on blocks all messages, i.e., effectively stops
the run. See Figure 14 and 15 for a precise definition of F∗.

Definition 9. An environmental system E that is environmentally connectible with Fsenc | !Fltsenc | !Fpke

is non-committing and used order respecting if for every simulator S that is adversarial connectible to
Fsenc | !Fltsenc | !Fpke and where E is connectible to S |Fsenc | !Fltsenc | !Fpke the probability that F∗ sends
(CommitProblem) or (UsedOrderViolated) in a run of E | S | F∗ | Fsenc | !Fltsenc | !Fpke is negligible in the
security parameter.

A protocol (system) P which is environmentally connectible with Fsenc | !Fltsenc | !Fpke is non-com-
mitting and used order respecting if E | P is non-committing and used order respecting for all environments
E that are environmentally connectible with P |Fsenc | !Fltsenc | !Fpke.

Note that these restrictions could also be expressed as a condition in the sense of [2].
Recall that a protocol (system) P that is environmentally connectible with Fsenc | !Fltsenc | !Fpke is

called standard if for every environment E that is connectible with P |Fsenc | !Fltsenc | !Fpke in every
run of E | P |Fsenc | !Fltsenc | !Fpke all short-term keys are never encrypted (by short-term, long-term or
public keys) after they have been first used for encryption.

Lemma 4. Every standard protocol (system) is non-committing and used order respecting.

Proof. Because unknown and used short-term keys are never encrypted by any short-term, long-term or
public key the commitment problem does not occur. Also, used order violations only occur if unknown
and used keys are encrypted.

5.2.3 Main Results

Before stating the main theorem, we fix the interfaces, i.e. the tapes, for the rest of this section as
follows: Let Tusers be a set of tape names and let Tadv be a tape name such that Tadv /∈ Tusers. We define
T = (Tusers, Tadv), T lt = (T lt

users, T
lt
adv), Tpke = (T pke

users, T
pke
adv ), T̂ = (Tusers, T̂adv), T̂ lt = (T lt

users, T̂
lt
adv),

T̂ pke = (T pke
users, T̂

pke
adv ) where T lt

users = {T lt | T ∈ Tusers} and T pke
users = {T pke | T ∈ Tusers}. Furthermore,

let Fsenc(q, L) = Fsenc(q, L, T ), Psenc(Σ) = Psenc(Σ, T̂ ), and F∗ = F∗(Tusers). See Figure 16 for the
connection between the systems.

Theorem 9. Let L be a leakage algorithm which leaks exactly the length of a message and Σ be a
symmetric encryption scheme with domain dom(L). Then for all polynomials qst, qlt and qpke where qst

is sufficiently large (such that Σ is bounded by qst) it holds that Σ is IND-CPA and INT-CTXT secure
if and only if

F∗ | Psenc(Σ) | !Fltsenc(qlt, L, T̂ lt) | !Fpke(qpke, L, T̂ pke)

≤SS F∗ | Fsenc(qst, L) | !Fltsenc(qlt, L, T lt) | !Fpke(qpke, L, T pke) .

This holds for both Fltsenc = Fauth
ltsenc and Fltsenc = Funauth

ltsenc . Also, this holds if the leakage algorithms used
by Fsenc, Fltsenc and Fpke differ.
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F∗(Tusers)

Tapes: I/O in: T̂ in (enriching, from environment), T out (from Fsenc) for all T ∈ Tusers,
I/O out: T̂ out (to environment), T in (to Fsenc) for all T ∈ Tusers

State: nextkeyid ,nextused ∈ N (initially 1)
keyid : Pids× N 99K N (partially defined, initially domain = ∅)
used : N 99K N (partially defined, initially domain = ∅)
Kknown ⊆ N (initially {0})
decTablest : N→ 2{0,1}

∗×{0,1}∗ (initially i 7→ ∅ for every key ID i)
decTable lt : 2Pids → 2{0,1}

∗×{0,1}∗ (initially pids 7→ ∅ for every set of PIDs pids)
decTablepke : Pids→ 2{0,1}

∗×{0,1}∗ (initially p 7→ ∅ for every PID p)

1. Key generation: Upon receiving (p,KeyGen, ptr) from T ∈ Tusers: If ptr of p is corrupted
(determined by sending (p,Corrupted?, ptr) to T ) then keyid(p, ptr) := 0 if (p, ptr) /∈ dom(keyid),
otherwise, keyid(p, ptr) := nextkeyid++. Send (p,KeyGen, ptr) to T̂ .

2. Store: Upon receiving (p, Store, ptr) from T ∈ Tusers: If ptr 6= ⊥ and (p, ptr) /∈ dom(keyid) then
keyid(p, ptr) := 0. Send (p,Store, ptr) to T̂ .

3. Reveal: Upon receiving (p,Reveal, ptr) from T̂ with T ∈ Tusers: If ptr is unknown and used (i.e.,
keyid(p, ptr) ∈ dom(used) \ Kknown) then send (CommitProblem) to T̂ and terminate. Otherwise,
Kknown := Kknown ∪ {keyid(p, ptr)} and send (p,Reveal, ptr) to T .

4. Encryption, short-term key: Upon receiving (p,Enc, ptr ,m) from T̂ with T ∈ Tusers:

Forward m, obtain ciphertext c: Send (p,Enc, ptr ,m) to T and wait for receiving
(p,Ciphertext, c) from T .

Prevent used order violation: If c 6= ⊥, encryption was ideal (i.e.,
keyid(p, ptr) /∈ Kknown) and m contains an unknown and used key i′ (i.e., m contains
(Key, ptr ′) for some ptr ′ s.t. i′ = keyid(p, ptr ′) ∈ dom(used) \ Kknown) and
(i = keyid(p, ptr) /∈ dom(used) or used(i) ≥ used(i′)) then send (UsedOrderViolated) to T̂ and
terminate (i.e., block all further messages).

Prevent commitment problem: If c 6= ⊥, encryption was not ideal and m contains an
unknown and used key then send (CommitProblem) to T̂ and terminate.

Update Kknown and decTable: If c 6= ⊥ and encryption was not ideal then
Kknown := Kknown ∪ {keyid(p, ptr ′) | (Key, ptr ′) ∈ m}.
If c 6= ⊥ and encryption was ideal then create the list keyids of key IDs in m (i.e., translate
pointers in m to key IDs) and add (keyids, c) to decTablest(keyid(p, ptr)). Furthermore, if
i = keyid(p, ptr) /∈ dom(used) then used(i) := nextused++.

Forward ciphertext c: Send (p,Ciphertext, c) to T̂ .

5. Encryption, long-term and public key: Upon receiving (pids, p,Enc,m) or (p′, p,Enc, k,m)
from T̂ with T ∈ Tusers:

Forward m, obtain ciphertext c: Send (pids, p,Enc,m) (resp., (p′, p,Enc, k,m)) to T and
wait for receiving (pids, p,Ciphertext, c) (resp., (p′, p,Ciphertext, c)) from T .

Prevent commitment problem: If c 6= ⊥, encryption was not ideal (i.e., if Fltsenc[pids] is
corrupted or Fpke[p′] is corrupted or k is not the public key returned by Fpke[p′], respectively)

and m contains an unknown and used key then send (CommitProblem) to T̂ and terminate.
Update Kknown and decTable: As encryption with short-term keys. Here, add (keyids, c) to

decTable lt(pids) or decTablepke(p′), respectively.

Forward ciphertext c: Send (pids, p,Ciphertext, c) or (p′, p,Ciphertext, c), respectively, to T̂ .

Figure 14: Functionality F∗ for restricting the environment.
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F∗(Tusers) (continued)

4. Decryption, short-term key: Upon receiving (p,Dec, ptr , c) from T̂ with T ∈ Tusers:

Forward c, obtain plaintext m: Send (p,Dec, ptr , c) to T and wait for receiving
(p,Plaintext,m) from T .

Update Kknown: If c 6= ⊥ and decryption was not ideal (i.e., keyid(p, ptr) ∈ Kknown) then
keyid(p, ptr ′) := 0 for all (Key, ptr ′) ∈ m where (p, ptr ′) /∈ dom(keyid) and
Kknown := Kknown ∪ {keyid(p, ptr ′) | (Key, ptr ′) ∈ m}.
If c 6= ⊥ and decryption was ideal then let keyids be s.t. (keyids, c) ∈ decTablest(keyid(p, ptr))
(when running with Fauth

senc this always exist and is unique) and set keyid(p, ptr) := i′ for all
(Key, ptr ′) ∈ m and corresponding key ID i′ ∈ keyids. (When not running with Fauth

senc such
keyids does not need to exist, in that case produce empty output and terminate.)

Forward plaintext m: Send (p,Plaintext,m) to T̂ .

5. Decryption, long-term and public key: Upon receiving (pids, p,Dec, c) or (p,Dec, c),
respectively, from T̂ with T ∈ Tusers:

Forward c, obtain plaintext m: Send (pids, p,Dec, c) (resp., (p,Dec, c)) to T and wait for
receiving (pids, p,Plaintext,m) (resp., (p,Plaintext,m)) from T .

Update Kknown: As decryption with short-term keys except that here decryption was not ideal
means that Fltsenc[pids] is corrupted or c does not exist in decTable lt(pids) or Fpke[p] is
corrupted or c does not exist in decTablepke(p), respectively)

Forward plaintext m: Send (pids, p,Plaintext,m) or (p,Plaintext,m), respectively, to T̂ .

6. Forward all other messages.

Figure 15: Functionality F∗ for restricting the environment. (continued)

Recall that the bootstrapping component !Fltsenc | !Fpke on the left-hand side of ≤SS can be replaced
by its realization or even joint state realization, due to Theorems 5, 6, 7, and 8.

If for realizability we only consider a restricted class of environments, namely non-committing and
used order respecting environments, then we also obtain realizability. We define that P ≤SS(∗) F if there
exists a simulator S such that for all non-committing and used order respecting environments E it holds
that E | P ≡ E | S |F .

Corollary 2. Let L be a leakage algorithm which leaks exactly the length of a message and Σ be a
symmetric encryption scheme with domain dom(L). Then for all polynomials qst, qlt and qpke where qst

is sufficiently large (such that Σ is bounded by qst) it holds that Σ is IND-CPA and INT-CTXT secure
if and only if

Psenc(Σ) | !Fltsenc(qlt, L, T̂ lt) | !Fpke(qpke, L, T̂ pke)

≤SS(∗) Fsenc(qst, L) | !Fltsenc(qlt, L, T lt) | !Fpke(qpke, L, T pke) .

This holds for both Fltsenc = Fauth
ltsenc and Fltsenc = Funauth

ltsenc . Also, this holds if the leakage algorithms used
by Fsenc, Fltsenc and Fpke differ.

Proof of Corollary 2. The direction from right to left follows immediately from the proof of Theorem 9
because the constructed environment is non-committing and used order respecting.

Next, we consider the direction from left to right: By Theorem 9, we find a simulator S for
F∗ | Psenc | !Fltsenc | !Fpke ≤SS F∗ | Fsenc | !Fltsenc | !Fpke. Let E ∈ ConE( | Psenc | !Fltsenc | !Fpke) such
that E is non-committing and used order respecting. Let E ′ be obtained from E by renaming the
I/O tapes connecting E and Fsenc such that E ′ connects to F∗. Then E ′ | F∗ | Psenc | !Fltsenc | !Fpke ≡
E ′ | S | F∗ | Fsenc | !Fltsenc | !Fpke. Since E (and hence E ′) is non-committing and used order respecting we
have that E ′ | S | F∗ | Fsenc | !Fltsenc | !Fpke ≡ E | S |Fsenc | !Fltsenc | !Fpke. Consequently, the probability
that F∗ outputs (CommitProblem) or (UsedOrderViolated) in a run of E ′ | F∗ | Psenc | !Fltsenc | !Fpke is
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negligible too. Thus, E ′ | F∗ | Psenc | !Fltsenc | !Fpke ≡ E |Psenc | !Fltsenc | !Fpke. By transitivity of ≡, we
conclude E | Psenc | !Fltsenc | !Fpke ≡ E | S |Fsenc | !Fltsenc | !Fpke, as desired.

We directly obtain the following corollary for non-committing and used order respecting protocols.
As mentioned above, most protocols have this property and this can typically be easily checked by
inspection of the protocol (see Section 7.1 for an example).

Corollary 3. Let L be a leakage algorithm which leaks exactly the length of a message and Σ be an
IND-CPA and INT-CTXT secure symmetric encryption scheme with domain dom(L). Let P be a non-
committing and used order respecting protocol. Then for all polynomials qst, qlt and qpke where qst is
sufficiently large (such that Σ is bounded by qst) it holds that

P |Psenc(Σ) | !Fltsenc(qlt, L, T̂ lt) | !Fpke(qpke, L, T̂ pke)

≤SS P |Fsenc(qst, L) | !Fltsenc(qlt, L, T lt) | !Fpke(qpke, L, T pke) .

This holds for both Fltsenc = Fauth
ltsenc and Fltsenc = Funauth

ltsenc . Also, this holds if the leakage algorithms used
by Fsenc, Fltsenc and Fpke differ.

5.2.4 Proof of the Main Results

To prove the Theorem 9 we first consider the direction from right to left. Given any IND-CCA, IND-CPA
or INT-CTXT adversary A we can construct an environment E such that the advantage of A is bound
by the advantage of E distinguishing between F∗ | Psenc(Σ) | !Fltsenc | !Fpke and F∗ | Fsenc | !Fltsenc | !Fpke

for any simulator S. The environment E generates an uncorrupted short-term key for some party p and
simulates A by using this key for encryption and decryption to simulate the oracles of A. To do so A
has to encrypt messages uninterpreted (i.e. without replacing pointers by keys) which can be done as
explained in Section 5.1 (handling of uninterpreted messages).

To prove the direction from left to right we first give the simulator and define hybrid systems F (r)
senc

for every r ∈ N where all keys that have used order less than r are treated as in Fsenc while the others are
treated as in Psenc. Then, we relate the hybrid with r = 0 to the real system and the hybrid with r = p(η)
(where p is a polynomial that bounds the runtime of the environment) to the ideal system. Finally, we
relate the r’s hybrid to the (r + 1)’s. To simplify the last step we introduce hybrids F̂ (r)

senc which behave
like F (r)

senc but use Oracle (as defined in Section 3.3) to perform the encryption and decryption with the
r-th key, i.e., the key of order r. By Lemma 1, to relate F (r)

senc and F (r+1)
senc we then only need to show

that F̂ (r)
senc | Oracle(real) is related to F (r)

senc and that F̂ (r)
senc | Oracle(auth) is related to F (r+1)

senc . Note that
these systems are already very close because every key is treated (real or ideal) in the same way. The
only difference occurs upon key collisions (for honestly generated keys) or if the environment is able to
guess a key that is ideally not known to it. But because these keys where only encrypted ideally we can
show that this probability is negligible.

Formulation of the Simulator. The simulator SFsenc = SFsenc(Σ, Tadv) is defined in Figure 17. On
the first activation it provides the encryption and decryption algorithms to Fsenc. Then, key generation
request from Fsenc are forwarded to the environment. Key generation complete messages from the
environment are forwarded to Fsenc but if the key is uncorrupted then SFsenc generates a key with gen(1η)
and sends this key to Fsenc. All messages between environment and Fltsenc or Fpke are forwarded.

Formulation of Hybrid Systems. We define the hybrid systems F (r)
senc and F̂ (r)

senc for all r ∈ N, see
below.

F (r)
senc behaves like Fsenc except that the order in which unknown keys are used is tracked, as in F∗. All

keys with order < r are treated ideally (as in Fsenc) but keys with order ≥ r are treated as in the real
world. In Fsenc the adversary was not able to insert keys (upon key generation, store, or decryption with
corrupted or known keys) that collide with unknown keys (guessing of keys that are ideally not known).
Here, this is only guaranteed for keys of order ≤ r or as long as there are no keys of order > r (i.e.,
nextused ≤ r).
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Figure 16: Theorem 9,F∗ | Psenc | !Fltsenc | !Fpke and SFsenc | F∗ | Fsenc | !Fltsenc | !Fpke are indistinguish-
able. Solid lines represent I/O tapes and dashed lines network tapes. Filled arrow heads represent
enriching and unfilled arrow heads consuming input tapes.

SFsenc(Σ = (gen, enc,dec), Tadv)

Tapes: network in: T out
adv (denoted by “from Fsenc”), T lt

adv

out (“from Fltsenc”), T pke
adv

out
(“from

Fpke”), T̂ in
adv (“from T̂adv”), T̂ lt in

adv (“from T̂ lt
adv”), T̂ pke in

adv (“from T̂ pke
adv”)

network out: T in
adv (denoted by “to Fsenc”), T lt in

adv (“to Fltsenc”), T pke in
adv (“to Fpke”), T̂ out

adv

(“to T̂adv”), T̂ lt out
adv (“to T̂ lt

adv”), T̂ pke out
adv (“to T̂ pke

adv”)

0. Upon first activation from Fsenc:
send (Algorithms, enc,dec) to Fsenc, recv (Ack) from Fsenc

proceed as on normal activation (Step 1 to 3)

1. Upon receiving (p,KeyGen) from Fsenc: Send (p,KeyGen) to T̂adv.

2. Upon receiving (p,KeyGen, corrupt , k′) from T̂adv, corrupt ∈ {false, true}, |k′| ≤ q(η) (where q is
the polynomial associated with Σ that bounds the runtime of the algorithms): If corrupt = false
then k ← gen(1η), otherwise, k := k′. Send (p,KeyGen, corrupt , k) to Fsenc.

3. Forward all messages between T̂ lt
adv, T̂ pke

adv and Fltsenc, Fpke, respectively.

Figure 17: Simulator SFsenc for the realization of Fsenc.
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More formally: The functionality F (r)
senc has two additional variables nextused ∈ N (initially 1) and

used : {0, 1}∗ 99K N (partially defined, initially domain = ∅). The condition “k /∈ K or (corrupt = true
and k ∈ Kknown)” of receive rule 3. (key generation) of Fsenc changes to “k /∈ K or (corrupt = true and
not KeyGuess(r)(k))” where KeyGuess(r)(k) = true if and only if k ∈ K\Kknown and (⊥ 6= used(k) ≤ r or
nextused ≤ r). For encryption and decryption with short-term keys the way the ciphertext (rule 8.) and
plaintext (rule 11.), respectively, is computed changes as follows. For store and decryption of short-term,
long-term and public keys, the key guessing prevention changes as well:

Store: Upon receiving (p,Store, k) from T ∈ Tusers do: If KeyGuess(r)(k) then ptr := ⊥, otherwise, if
exists ptr ′ s.t. key(p, ptr ′) = k then ptr := ptr ′, otherwise, ptr := nextpointer(p)++, key(p, ptr) := k,
and Kknown := Kknown ∪ {k}. Finally, send (p,Store, ptr) to T .

Encrypt m′, obtain ciphertext c:

if ptr is invalid or m′ = ⊥ or m′ /∈ dom(L)η or enc = dec = ⊥ then
c := ⊥

else if (k := key(p, ptr)) /∈ Kknown then {key k is unknown}
if k /∈ dom(used) then used(k) := nextused++
if used(k) < r then

m← L(1η,m′) , c← simq(η+|m|)(enc, (k,m))
if sim-detq(η+|c|)(dec, (k, c)) = m then

decTable(k) := decTable(k) ∪ {(m′, c)}
else

c := ⊥
else {used(k) ≥ r}

c← simq(η+|m′|)(enc, (k,m′))
else {key k is known}

c← simq(η+|m′|)(enc, (k,m′))

Decrypt c, obtain plaintext m′:

if ptr is invalid (i.e., (p, ptr) /∈ dom(key)) or enc = dec = ⊥ then
m′ := ⊥

if (k := key(p, ptr)) /∈ Kknown then {key k is unknown}
if ⊥ 6= used(k) < r or nextused ≤ r then

if ∃!m′′ ∈ {0, 1}∗ : (m′′, c) ∈ decTable(k) then
m′ := m′′

else {decryption of c is ambiguous or c does not exist in decTable(k)}
m′ := ⊥

else
m′ := sim-detq(η+|c|)(dec, (k, c))

else {key k is known}
m′ := sim-detq(η+|c|)(dec, (k, c))

Prevent Key Guessing: If the decryption was not ideal and the plaintext m′ contains (Key, k′)
with KeyGuess(r)(k′) = true then m′ := ⊥.

F̂ (r)
senc behaves like F (r)

senc except that it connects to Oracle and the key with order r is relayed out and
handled by calls to Oracle.

More formally: F̂ (r)
senc has the additional I/O output tape T in

oracle and I/O input tape T out
oracle. Further-

more, for encryption and decryption with short-term keys the way the ciphertext (rule 8.) and plaintext
(rule 11.), respectively, is computed changes as follows (compared to F (r)

senc):
Encrypt m′, obtain ciphertext c:

if ptr is invalid or m′ = ⊥ or m′ /∈ dom(L)η or enc = dec = ⊥ then
c := ⊥

else if (k := key(p, ptr)) /∈ Kknown then {key k is unknown}
if k /∈ dom(used) then

used(k) := nextused++
if used(k) = r then
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send (KeyGen) to Toracle , recv (Ack) from Toracle

if used(k) < r then
m← L(1η,m′) , c← simq(η+|m|)(enc, (k,m))
if sim-detq(η+|c|)(dec, (k, c)) = m then

decTable(k) := decTable(k) ∪ {(m′, c)}
else

c := ⊥
else if used(k) = r then

send (Enc,m′) to Toracle , recv (Ciphertext, c) from Toracle

else {used(k) > r}
c← simq(η+|m′|)(enc, (k,m′))

else {key k is known}
c← simq(η+|m′|)(enc, (k,m′))

Decrypt c, obtain plaintext m′:

if ptr is invalid (i.e., (p, ptr) /∈ dom(key)) or enc = dec = ⊥ then
m′ := ⊥

else if (k := key(p, ptr)) /∈ Kknown then {key k is unknown}
if ⊥ 6= used(k) < r or nextused ≤ r then

if ∃!m′′ ∈ {0, 1}∗ : (m′′, c) ∈ decTable(k) then
m′ := m′′

else {decryption of c is ambiguous or c does not exist in decTable(k)}
m′ := ⊥

else if used(k) = r then
send (Dec, c) to Toracle , recv (Plaintext,m′) from Toracle

else
m′ := sim-detq(η+|c|)(dec, (k, c))

else {key k is known}
m′ := sim-detq(η+|c|)(dec, (k, c))

We can prove the following invariants for F∗ | F (r)
senc | !Fltsenc | !Fpke: If a short-term key k′ is encrypted

by some unknown short-term key k then k′ is known, k′ has not yet been used for encryption, or the used
order of k is smaller than the one of k′. In particular this implies that the used order is never violated.
Furthermore, if a short-term key has used order ≤ r then it is always unknown.

Lemma 5. For all r ∈ N let E ∈ ConE(F∗ | F (r)
senc | !Fltsenc | !Fpke) and ρ be a run of E |F∗ | F (r)

senc |
!Fltsenc | !Fpke(1η, a) for any η, a. In the following, for a configuration C in ρ, by C.x we denote the

value of variable x in the configuration of F (r)
senc in C.

1. If a key k′ is encrypted by some unknown short-term key k (i.e., in some configuration C in
ρ, E sends (p,Enc, ptr ,m) to Fsenc and receives (p,Ciphertext, c) where c 6= ⊥, (Key, ptr ′) ∈ m,
C.key(p, ptr) = k /∈ Kknown and C.key(p, ptr ′) = k′) then k′ is known (i.e., k′ ∈ C.Kknown), k′ has
not yet been used for encryption (i.e., k′ /∈ dom(C.used)), or the used order of k is smaller than
the one of k′ (i.e., ⊥ 6= C.used(k) < C.used(k′) 6= ⊥).

2. If a key k has used order ≤ r (i.e., there is a configuration C in ρ where ⊥ 6= C.used(k) ≤ r) then
k is always unknown (i.e., k /∈ C.Kknown for any C in ρ).

Proof. ad 1. It is easy to see that this is guaranteed by F∗.
ad 2. Let C be the configuration in ρ where a key k is first used and gets used order ≤ r. By

definition, k is unknown in C. Later, in some configuration C ′, k cannot be encrypted by a known or
corrupted key because F∗ would trigger (CommitProblem) in that case. Hence, k can only be encrypted
by unknown or uncorrupted keys. It is easy to see that Lemma 3 also holds for F (r)

senc for keys with used
order ≤ r because of the definition of KeyGuess(r), hence, k is always unknown.

Proof of Theorem 9. Let E ∈ ConE(F∗ | Psenc | !Fltsenc | !Fpke) and pE be a polynomial such that the
overall length of all messages output by E in any run of E |Q(1η, a) for any system Q, security parameter
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η ∈ N and initial input a ∈ {0, 1}∗ is bound by pE(η+ |a|). Since E is an environmental system (all input
tapes are consuming) such a polynomial always exists.

For all r ∈ N, b ∈ {real, auth} we define the following combined systems:

C(r) = E | SFsenc | F∗ | F (r)
senc | !Fltsenc | !Fpke

Ĉ(r)
b = E | SFsenc | F∗ | F̂ (r)

senc | Oracle(b) | !Fltsenc | !Fpke .

Next, we define an error set (i.e., a negligible set of runs we do not want to consider) for collisions of
honestly generated keys. Let B(r)

coll(1
η, a) be the set of runs of C(r)(1η, a) where the simulator generates

a key that collides with some key in F (r)
senc. More formally: Where at some point during the run the

simulator sends a message of the shape (p,KeyGen, false, k) for some p ∈ Pids and k ∈ F (r)
senc.K.

The following lemma is used in the proofs of Lemma 7 and 8.

Lemma 6. There exists a negligible function fcoll such that for all r ∈ N, η ∈ N and a ∈ {0, 1}∗

Pr
[
B

(r)
coll(1

η, a)
]
≤ fcoll(1η, a) . (3)

Proof. Let fcoll(η) = max{gen(1η) = k | k ∈ {0, 1}∗} (because gen is polynomial the set of keys generated
by gen(1η) is finite, so, this maximum exists). Since E ’s output is polynomially bounded by pE , in every
run of C(r)(1η, a) the number of keys in F (r)

senc (|K|) is polynomially bounded. Hence, Pr
[
B

(r)
coll(1

η, a)
]

is
bounded by a polynomial in η + |a| times fcoll(η). Thus, it suffice to show that fcoll(η) is negligible (as
a function in η). Note that this bound does not depend on r, thus, we obtain a uniform bound for all
r ∈ N.

Let AO(·,·)(1η) be the following IND-CPA adversary for Σ. First, A computes k∗ ← gen(1η) and
chooses plaintexts m0 6= m1, |m0| = |m1|. Then A request the oracle for c ← O(m0,m1) and outputs 0
if dec(k∗, c) = m0, and 1 otherwise.

If the key k∗ generated by A is equal to the key k generated in the IND-CPA game, which happens
with probability at least f2

coll(η), then A always chooses the right bit. Hence, fcoll(η) is negligible as Σ
is IND-CPA secure.

Lemma 7. There exists a negligible function f0 such that

E |F∗ | Psenc | !Fltsenc | !Fpke ≡f0 C(0) (4)

and
Pr
[
E | SFsenc | F∗ | Fsenc | !Fltsenc | !Fpke(1η, a) 1

]
= Pr

[
C(pE(η+|a|))(1η, a) 1

]
(5)

for all η ∈ N, a ∈ {0, 1}∗.

Proof. ad (4): Let f0(1η, a) = Pr
[
B

(0)
coll(1

η, a)
]

(see Lemma 6). By Lemma 6 we have that f0 is negligible.
Now, we show that E |F∗ | Psenc | !Fltsenc | !Fpke ≡f0 C(0).

Note that in every run of C(0)(1η, a) it always holds that nextused ≥ 1 and used(k) = ⊥ or used(k) > 0.
In particular this implies that KeyGuess(0)(k) = false for all k. One then easily verifies that every run
of C(0)(1η, a) where B(0)

coll(1
η, a) does not occur corresponds, i.e., can be injectively mapped, to a run

of E |F∗ | Psenc | !Fltsenc | !Fpke(1η, a) with the same overall output and probability. By Theorem 4 we
conclude ∣∣Pr

[
E |F∗ | Psenc | !Fltsenc | !Fpke(1η, a) 1

]
− Pr

[
C(0)(1η, a) 1

]∣∣ ≤ f0(1η, a) .

ad (5): In every run of C(pE(η+|a|))(1η, a) it always holds that nextused ≤ pE(η+ |a|) and for all k we have
KeyGuess(pE(η+|a|))(k) = true iff k ∈ K \ Kknown. Hence, one easily verifies by code inspection that the
behavior of the two systems C(pE(η+|a|)) and E | S | F∗ | Fsenc | !Fltsenc | !Fpke does not differ at all upon
security parameter η and initial input a.

Lemma 8. There exist negligible functions freal, fideal such that

C(r) ≡freal
Ĉ(r)

real for all r ∈ N and (6)

C(r+1) ≡fideal
Ĉ(r)

auth for all r ∈ N . (7)
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The proof of this lemma can be found in the appendix.
Finally, we prove Theorem 9:

Proof of Theorem 9. Let E ′ be the system that upon input of security parameter η and initial in-
put a first chooses r ∈ {0, . . . , pE(η + |a|) − 1} uniformly at random and then behaves exactly like
E | SFsenc | F∗ | F̂

(r)
senc | !Fltsenc | !Fpke(1η, a). Clearly, E ′ ∈ ConE(Oracle) and by Lemma 1 we find a negli-

gible function fO such that

E ′ | Oracle(real) ≡fO E ′ | Oracle(auth) . (8)

By definition, for all η ∈ N, a ∈ {0, 1}∗, r < pE(η + |a|), and b ∈ {real, auth} it holds that

Pr
[
Ĉ(r)
b (1η, a) 1

]
= Pr

[
(E ′ |Oracle(b))(1η, a) 1

∣∣ E ′ chooses r
]

= pE(η + |a|) · Pr
[
(E ′ |Oracle(b))(1η, a) 1 and E ′ chooses r

]
.

(9)

In the following, we abbreviate pE = pE(η+ |a|), fx = fx(1η, a), and Pr[Q] = Pr[Q(1η, a) 1]. Now, for
all η ∈ N and a ∈ {0, 1}∗ it holds∣∣Pr[E |F∗ | Psenc | !Fltsenc | !Fpke]− Pr[E | SFsenc | F∗ | Fsenc | !Fltsenc | !Fpke]

∣∣
(4),(5)

≤
∣∣Pr
[
C(0)

]
− Pr

[
C(pE)

]∣∣+ f0 =
∣∣∣∑
r<pE

Pr
[
C(r)

]
− Pr

[
C(r+1)

]∣∣∣+ f0

(6),(7)

≤
∣∣∣∑
r<pE

Pr
[
Ĉ(r)

real

]
− Pr

[
Ĉ(r)

auth

]∣∣∣+ f0 + pE(freal + fideal)

(9)
= pE

∣∣∣∑
r<pE

Pr
[
E ′ | Oracle(real) and E ′ chooses r

]
− Pr

[
E ′ | Oracle(auth) and E ′ chooses r

]∣∣∣
+ f0 + pE(freal + fideal)

= pE
∣∣Pr
[
E ′ | Oracle(real)

]
− Pr

[
E ′ | Oracle(auth)

]∣∣+ f0 + pE(freal + fideal)
(8)

≤ f0 + pE(freal + fideal + fO) .

Since f0 + pE(freal + fideal + fO) is negligible, F∗ | Psenc | !Fltsenc | !Fpke ≤SS F∗ | Fsenc | !Fltsenc | !Fpke.
This concludes the proof.

6 Unauthenticated Symmetric Key Encryption

In this section we show how to relax the functionality Fauth
senc to obtain a functionality Fsenc which is

realizable by an IND-CCA secure encryption scheme, instead of an authenticated encryption scheme.

6.1 The Functionality

We define Funauth
senc as Fsenc = Fauth

senc except that upon decryption if the ciphertext was not honestly
generate then we do not refuse decryption but we decrypt it with the decryption algorithm. Furthermore,
we treat the decryption as a decryption with a known key because this ciphertext was not generated by
an honest party. That is, for decryption with short-term keys, we change Fsenc as follows:

Decrypt c, obtain plaintext m′:

if ptr is invalid (i.e., (p, ptr) /∈ dom(key)) or enc = dec = ⊥ then
m′ := ⊥

if (k := key(p, ptr)) /∈ Kknown then {key k is unknown}
if ∃!m′′ ∈ {0, 1}∗ : (m′′, c) ∈ decTable(k) then {exists unique m′′}

m′ := m′′

else if ∀m′ ∈ {0, 1}∗ : (m′, c) /∈ decTable(k) then {c does not exist in decTable(k)}
m′ := sim-detq(η+|c|)(dec, (k, c))

else {decryption of c is ambiguous}
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m′ := ⊥
else {key k is known}

m′ := sim-detq(η+|c|)(dec, (k, c))

Prevent key guessing: If decryption was not ideal (i.e., key(p, ptr) ∈ Kknown or c does not exist
in decTable(key(p, ptr))) and m′ contains (Key, k′) with k′ ∈ K \ Kknown then m′ := ⊥.

Update Kknown: Kknown := Kknown ∪ {k′ | (Key, k′) ∈ m′} if decryption was not ideal, as defined
above.

6.2 Realizing the Functionality

Recall Psenc from Section 5.2 and the notation and tape names from Section 5.2.3.
In the proof of Theorem 9, we needed, among other error sets, an error set B(r+1)

int which is the set of
all runs where the environment produces a ciphertext that decrypts under an unknown and unused key
before the (r+ 1)-th key has been used, see Appendix A.2. Recall that the used order, as defined by F∗,
records keys only when they are first used for encryption, not for decryption. The reason why we needed
this error set is because upon decryption with an unknown and unused key k before the (r + 1)-th key
has been used, to be more precise where nextused = r + 1, F̂ (r)

senc treats the decryption non-ideal but
F (r+1)

senc treats it ideal and returns ⊥.
One could think to easily circumvent this problem by changing the definition of performing decryp-

tions ideally (i.e., returning ⊥) for unused keys as long nextused ≤ r + 1 and instead perform them
non-ideally (i.e, actually decrypt with the key). But this would not work because one of these keys
might be the r-th key, but F̂ (r)

senc does not know this yet because it has not yet been used for encryption
and would have to use Oracle for decryption, otherwise the simulation would fail.

Fortunately, for INT-CTXT secure encryption schemes B(r+1)
int is negligible, as we have shown in

Lemma 12. For only IND-CCA secure encryption schemes this is not true in general. In fact, given
an IND-CCA secure encryption scheme, it is easy to construct an IND-CCA secure encryption scheme
where B(r+1)

int is not negligible.
One solution would be to require that the encryption scheme Σ = (gen, enc,dec) is not only IND-CCA

secure but also satisfies the following property. For all probabilistic polynomial time adversaries A it
is almost impossible for A to produce a ciphertext c that decrypts under a randomly generated key k
where A has no knowledge of k at all. More formally, where

Pr[k ← gen(1η), c← A(1η, a) : dec(k, c) 6= ⊥]

is negligible (as a function in η, a). For example, this is fulfilled by an IND-CCA secure encryption
scheme where the ciphertexts are “connected” to the keys they where produced with, i.e., where every
ciphertext decrypts under at most one key.

However, requiring this additional assumption seems artificial and indeed we can proof realizability
without it if we slightly change the used order. The used order, as defined by F∗, is insufficient for proving
that one hybrid system is close to the next hybrid system because for unauthenticated encryption we
need to know how to handle (real or ideal) keys upon decryption, as argued above. Thus, we change
the used order such that we also count the use of a key for decryption as used. However, commitment
problems still only occur if a key used ideally for encryption (not for decryption) later becomes known.
Because we want F∗ to be as less restrictive as possible we do not change this aspect. This induces
the following: A key that is used for decryption where it is unknown might later become known, i.e.,
the invariant that all keys that have used order ≤ r are unknown is no longer true. See the proof of
Theorem 10 on how this can be dealt with.

Definition of F∗unauth. As motivated above, we define F∗unauth as F∗ with the following exceptions:

1. The commitment problem prevention (for short-term, long-term and public keys) changes:

Prevent commitment problem: If c 6= ⊥ and m contains an unknown key with key ID i such
that decTablest(i) 6= ∅ (i.e., i has been used for encryption before) then send (CommitProblem)
and terminate.
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2. For decryption with short-term keys we have the following additional rule: If c 6= ⊥, keyid(p, ptr) /∈
Kknown, and i = keyid(p, ptr) /∈ dom(used) then used(i) := nextused++.

We are now able to state the main theorem for Funauth
senc :

Theorem 10. Let L be a leakage algorithm which leaks exactly the length of a message and Σ be a
symmetric encryption scheme with domain dom(L). Then for all polynomials qst, qlt and qpke where qst

is sufficiently large (such that Σ is bounded by qst) it holds that Σ is IND-CCA secure if and only if

F∗unauth | Psenc(Σ) | !Fltsenc(qlt, L, T̂ lt) | !Fpke(qpke, L, T̂ pke)

≤SS F∗unauth | Funauth
senc (qst, L) | !Fltsenc(qlt, L, T lt) | !Fpke(qpke, L, T pke) .

This holds for both Fltsenc = Fauth
ltsenc and Fltsenc = Funauth

ltsenc . Also, this holds if the leakage algorithms used
by Funauth

senc , Fltsenc and Fpke differ.

This theorem yields corresponding corollaries for non-committing and used order respecting environ-
ments and protocols as in Section 5.2.3.

Proof of Theorem 10. We only sketch the proof of the direction from left to right and highlight the
differences compared to the proof of Theorem 9. We use exactly the same simulator SFsenc .

The hybrid system F (r)
senc changes on how ideal decryption is done in the way Funauth

senc changed com-
pared to Fauth

senc . Furthermore, upon decryption with unknown and unused short-term keys the short-term
key gets assigned a used value. For completeness, we give the full definition of the decryption rule with
short-term keys of F (r)

senc:
Decrypt c, obtain plaintext m′:

if ptr is invalid (i.e., (p, ptr) /∈ dom(key)) or enc = dec = ⊥ then
m′ := ⊥

else if (k := key(p, ptr)) /∈ Kknown then {key k is unknown}
if k /∈ dom(used) then used(k) := nextused++
if used(k) < r then

if ∃!m′′ ∈ {0, 1}∗ : (m′′, c) ∈ decTable(k) then {exists unique m′′}
m′ := m′′

else if ∀m′ ∈ {0, 1}∗ : (m′, c) /∈ decTable(k) then {c not in decTable(k)}
m′ := sim-detq(η+|c|)(dec, (k, c))

else {decryption of c is ambiguous}
m′ := ⊥

else
m′ := sim-detq(η+|c|)(dec, (k, c))

else {key k is known}
m′ := sim-detq(η+|c|)(dec, (k, c))

Now, the r-th key might become known after it has been used as an unknown key for decryption. When
F̂ (r)

senc performs encryptions with the r-th key it relays to Oracle. Now, it has to have the ability to
treat the key in Oracle as a known key which of course is only possible if F̂ (r)

senc actually knows the bit
string. By F∗unauth this change only needs to be possible until Oracle has been first used for encryption.
Therefore, in Figure 18, we define Oracleunauth which is identical to Oracle except that it is corruptible
and reveals the key upon corruption. It is incorruptible once it has been used for encryption.

As for Oracle, the real variant realizes the ideal variant if the encryption scheme is IND-CCA secure.

Lemma 9. Let L be a length preserving leakage algorithm and Σ an IND-CCA secure symmetric en-
cryption scheme with domain dom(L). Then, Oracleunauth(Σ, real, L) ≤SS Oracleunauth(Σ, ideal, L).

Note: For systems P,Q without network tapes, like Oracleunauth, ≤SS is symmetric, i.e., P ≤SS Q
if and only if Q ≤SS P.

Proof. Oracleunauth in mode ideal differs from Oracle in mode unauth only by the ability to be corruptible.
As long as decTable = ∅ the behavior of Oracleunauth in mode ideal and real is identical. Because it can
be corrupted only as long as decTable = ∅ an environment trying to distinguish between mode ideal and
real has no advantage if it corrupts Oracleunauth. The proof proceeds as the proof of Lemma 1.
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Oracleunauth(Σ = (gen, enc,dec),mode ∈ {ideal, real}, L)

Tapes: enriching I/O input tape T in
oracle, I/O output tape T out

oracle

State: state ∈ {init, ok, terminated} (initially init), k ∈ {0, 1}∗ ∪ {⊥} (initially ⊥)
decTable ⊆ {0, 1}∗ × {0, 1}∗ (initially ∅)

1. Upon receiving (KeyGen) from Toracle where state = init:
k ← gen(1η) , state := ok , send (Ack) to Toracle

2. Upon receiving (Enc,m) from Toracle where state = ok, m ∈ dom(L)η:
if mode = real then

c← enc(k,m)
else {mode = ideal}

m← L(1η,m) , c← enc(k,m) , decTable := decTable ∪ {(m, c)}
send (Ciphertext, c) to Toracle

3. Upon receiving (Dec, c) from Toracle where state = ok:
if mode = real then

m := dec(k, c)
else {mode = ideal}

m :=


m′ if ∃!m′ : (m′, c) ∈ decTable (exists unique m′)
dec(k, c) if ∀m′ : (m′, c) /∈ decTable
⊥ otherwise

send (Plaintext,m) to Toracle

4. Upon receiving (Corrupt) from Toracle where state = ok and decTable = ∅:
state := terminated , send (Corrupted, k) to Toracle

Figure 18: The IITM Oracleunauth is parameterized by an encryption scheme Σ, mode ∈ {real, ideal} and
a leakage algorithm L. The mode specifies whether the behavior is real or ideal.
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Now, the definition of the hybrid system F̂ (r)
senc changes on how ideal decryption is done in the way

F (r)
senc changed. Furthermore, if the r-key becomes known then Oracleunauth is corrupted and the key

that used to be the r-th key is replaced by the key obtained from Oracleunauth. Note that the r-th key
can only become known upon encryption with a corrupted or known key and by F∗unauth this will never
happen after it has been used for encryption. The update Kknown rule for encryption with short-term,
long-term and public keys and the decryption rule with short-term keys of F̂ (r)

senc is as follows:
Update Kknown: If c 6= ⊥, encryption was not ideal and exists (Key, k′) ∈ m′ with used(k′) = r and
k′ /∈ Kknown then send (Corrupt) to Toracle and wait for receiving (Corrupted, k′′) from Toracle. Then,
replace k′ by k′′ everywhere (i.e., in K,Kknown, key , decTable and used).

If c 6= ⊥ and encryption was not ideal then Kknown := Kknown ∪ {k′ | (Key, k′) ∈ m′}.
Decrypt c, obtain plaintext m′:

if ptr is invalid (i.e., (p, ptr) /∈ dom(key)) or enc = dec = ⊥ then
m′ := ⊥

else if (k := key(p, ptr)) /∈ Kknown then {key k is unknown}
if k /∈ dom(used) then

used(k) := nextused++
if used(k) = r then

send (KeyGen) to Toracle , recv (Ack) from Toracle

if used(k) < r then
if ∃!m′′ ∈ {0, 1}∗ : (m′′, c) ∈ decTable(k) then {exists unique m′′}

m′ := m′′

else if ∀m′ ∈ {0, 1}∗ : (m′, c) /∈ decTable(k) then {c not in decTable(k)}
m′ := sim-detq(η+|c|)(dec, (k, c))

else {decryption of c is ambiguous}
m′ := ⊥

else if used(k) = r then
send (Dec, c) to Toracle , recv (Plaintext,m′) from Toracle

else
m′ := sim-detq(η+|c|)(dec, (k, c))

else {key k is known}
m′ := sim-detq(η+|c|)(dec, (k, c))

To prove Theorem 10, we establish the same error sets: B(r)
coll and B

(r)
guess-unused. The error set B(r),r′

guess

only changes slightly: we require that the guessed key (the r′-th key) is unknown. It is easy to adapt
the proofs that these error sets are negligible to this setting. Instead of the INT-CTXT adversary an
IND-CCA adversary can be used.

By adapting the proofs of Lemma 7 and 8, we can prove that there are negligible functions f0, freal

and fideal such that
C(0) ≡f0 E |F∗unauth | Psenc | !Fltsenc | !Fpke , (10)

Pr[C(pE(η+|a|))(1η, a) 1] = Pr[E | SFsenc | F∗unauth | Funauth
senc | !Fltsenc | !Fpke(1η, a) 1] (11)

for all η ∈ N and a ∈ {0, 1}∗, and

C(r) ≡freal
Ĉ(r)

real for all r ∈ N , (12)

C(r+1) ≡fideal
Ĉ(r)

ideal for all r ∈ N . (13)

Note that the proof of (13) does not require the error set B(r)
int . It was used to prevent some bad behavior

upon decryption with unused keys. By the definition of the new used order, this case never occurs
because even keys only used for decryption are used.

The proof proceeds as for the authenticated case.
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7 Applications

As mentioned in the introduction, Fsenc has applications both in the simulation- and game-based setting.
We now illustrate the usefulness of Fsenc in these settings by two examples. In what follows, let Fenc =
Fsenc | !Fltsenc | !Fpke, with !Fltsenc | !Fpke being the bootstrapping component (see Theorem 9). We
write Funauth

enc , if in Fenc we set Fsenc = Funauth
senc and Fltsenc = Funauth

ltsenc ; analogously for Fauth
enc . We write

Penc for a realization of Fenc, as obtained in the previous sections. We write Punauth
enc if Penc is based on

an IND-CCA secure symmetric encryption scheme and Pauth
enc in case of authenticated encryption.

7.1 Simulation-based Analysis of a Key Exchange Protocol

In this section, we analyze a variant of the Amended Needham Schroeder Symmetric Key (ANSSK)
protocol [34]. Compared to ANSSK, our variant, which we call ANSSK’, is augmented by a short-term
key; the analysis of the original ANSSK protocol is even simpler. We show that this protocol realizes
an ideal key exchange functionality Fke = Fke(gen) in case authenticated encryption is used. (We show
that this is not true if the encryption scheme is merely IND-CCA secure, see below.) Due to our main
result (Section 5.2.3), it suffices to show that ANSSK’ realizes Fke when encryption and decryption is
performed based on Fauth

enc . As we will see, the use of Fauth
enc tremendously simplifies the analysis. Also,

we only need to analyze one protocol session. The composition theorems and the joint state theorems
for the bootstrapping component then yield a practical realization for multiple sessions of Fke.

The ANSSK’ Protocol. The protocol can informally be described as follows. There are three roles,
the initiator B, the responder A and the server S. In the following description, Na is a nonce, Kb is
a short-term symmetric key generated by B and only used in one session, Kas and Kbs are long-term
symmetric keys shared between A (resp., B) and S, and Kab is a short-term symmetric key chosen by
S to be used as a session key by A and B. See Figure 19.

1. B → A : {A,Kb}Kbs

2. A→ S : A,B,Na, {A,Kb}Kbs

3. S → A : {Na, B,Kab, {Kab, A}Kb}Kas

4. A→ B : {Kab, A}Kb

Figure 19: The ANSSK’ Protocol.

The initiator B generates a short-term key Kb, encrypts it together with A’s identity under the key
Kbs shared with the server, and sends this ciphertext to A. Then, A generates a nonce Na and sends
it together with its own identity, B’s identity and the received ciphertext to the server S. The server S
decrypts the ciphertext with the key shared with B and checks if A’s identity is included in the ciphertext
and extracts the key Kb. Then S generates a fresh key Kab and creates the following two ciphertexts:
i) The first is encrypted with the key Kb and contains the freshly generated key Kab and A’s identity.
ii) The second is encrypted with the key Kas shared with A and contains A’s nonce, B’s identity, Kab
and the first ciphertext. This second ciphertext is sent to A. Now, A decrypts the ciphertext, checks the
containing nonce and B’s identity, accepts with Kab as a the session key exchanged with B and sends
the containing ciphertext to B. Then B decrypts this ciphertext with Kb, checks that A’s identity is
contained and accepts with Kab as the session key exchanged with A.

Compared to the ANSSK protocol [34], ANSSK’ differs in two aspects. First, the key Kb was originally
a nonce of B and instead the server uses Kb for encryption it uses the long-term key Kbs. We made this
modification to make the protocol more interesting to analyze as otherwise there would be no short-term
keys that are used but only long-term keys. Second, we omitted the last two messages which are used for
key confirmation. There, the exchanged key Kab is used to encrypt some nonces. It is easy to show that
this implies that Kab is not indistinguishable from random (see e.g. [26, 5] where this problem is studied
for other protocols), i.e., the ANSSK protocol does not satisfy cryptographic key indistinguishability
and would not realize any ideal key exchange protocol which is based on this. If one would remove the
key confirmation in the ANSSK protocol then it would realize the ideal key exchange functionality. The
proof is even simpler than the one for the ANSSK’ protocol.
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The Ideal Key Exchange Functionality. We restate the ideal key exchange functionality Fke =
Fke(gen) from [20] in the setting of the IITM-model. The parameter gen is a probabilistic key generation
algorithm. The functionality describes one session of an ideal key exchange between two parties. The
adversary has the ability to corrupt the functionality by sending a corrupt message. As usual in the
definition of our functionalities and protocols, the environment can ask Fke (via a special tape) whether
it is corrupted. If the functionality is uncorrupted its behavior is as follows: After a party A (the
initiator) has send some initial message that it is willing to exchange a key with another party B (the
responder), the adversary can send a complete message for A upon which the functionality generates a
key by gen(1η) (if not done so before) and outputs this key to A. Similar for the responder B, B has
to send an initial message. Upon the second complete message, the already generated key is sent to the
party. In the corrupted case, the adversary can decide which key (in every complete message she can
choose a different key if she likes) is sent to the party. A complete is possible even if the peer has not
sent its initial message, i.e., it is in that sense weaker than authenticated key exchange.

Note that this functionality only captures the single session and single party case, i.e., there is
exactly one key exchange between two parties. The multi-party, multi-session version !Fke is the desired
functionality for multi-party, multi-session ideal key exchange. By the composition theorem it can be
realized if we have a realization of Fke.

The ANSSK’ Protocol Realizes the Ideal KE Protocol. It is straightforward to specify the
ANSSK’ protocol as a protocol system Panssk’ in the IITM-model which relies on Fenc for encryption and
decryption. Next, we only mention the main issues. Panssk’ describes a single session of the protocol (just
as Fke), i.e., it consists of one IITM for each participant role: initiator, responder and server. We assume,
similar as in formulations by Canetti et al. (see, e.g., [20]), that the machines in Panssk’ are invoked with
the same pair (A,B), which tells each entity the names of the parties which want to exchange a session
key in that session; this information could be exchanged at the beginning of a protocol run as part of an
ID for that session. In this first activation with the pair (A,B) every party exchanges its long-term keys
with the server.

The send/receive behavior of these machines follows directly from the informal definition of the
protocol (Figure 19). For encryption and decryption the functionality Fenc is called. Nonces are computed
by choosing a value uniformly at random from {0, 1}η. The responder B generates the session key Kb
by using Fenc. The server computes Kab as gen(1η). Note that in this protocol Kab is never used as a
key but rather as a secret nonce and, so, does not need to be a key in Fenc.

For the IITMs for the initiator, responder and server we define static Byzantine corruption behavior,
i.e., just after initialization, upon a corrupt message from the network interface they output their internal
state to the adversary and will from then on forward all messages between the I/O interface and the
adversary, giving the adversary complete control over this instance of the protocol. We require that if
a party is corrupted all its short-term and long-term keys are corrupted as well. The environment has
the ability to ask whether Fke is corrupted, since, Panssk’ has to provide the same I/O interface as Fke,
upon such a corrupted request by the environment Panssk’ returns false if and only if all the parties and
all their keys are uncorrupted.

We obtain the following theorem, which says that the ANSSK’ protocol when using ideal (authenti-
cated) encryption, realizes the ideal key exchange functionality Fke.

Theorem 11. P |Fauth
enc ≤SS Fke.

Before proving this theorem, we note that by the results of Section 5.2.3, we immediately obtain the
following corollary, in which Fauth

enc is replaced by its realization Pauth
enc .

Corollary 4. P |Pauth
enc ≤SS Fke.

This corollary says that the ANSSK’ protocol when implemented with authenticated encryption
realizes Fke.

The above theorem and corollary are only concerned with a single protocol session, see below for the
discussion of multiple sessions.

Proof sketch of Theorem 11. We first need to define a simulator: The simulator S simulates Panssk’ | Fenc

and sends a completion request to Fke if Panssk’ outputs a key. Upon corruptions of any party, the
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simulator can corrupt Fke and then is free to complete with exactly the same key as in the real world.
Hence, in case of corruption nothing is to show.

For the uncorrupted case, first note that, by definition of Fauth
enc , the only plaintexts returned by Fauth

enc

upon decryption are the ones “inserted” upon encryption. (We can ignore public key encryption as it is
not used in the protocol.) Now, in every run of E | Panssk’ | Fauth

enc (without corruption), we have: i) Since
Panssk’ handles only a single protocol session, say between A, B, and S, the instance of Fauth

ltsenc for {B,S}
contains at most the plaintext (A,Kb), the instance of Fauth

ltsenc for {A,S} contains at most the plaintext
(Na, B,Kab′, c), and Fauth

senc contains at most the plaintext (Kab, A) for the key Kb. (Here we use that,
in the session we consider, the instances of A, B, and S expect a key exchange between A and B.) The
latter two plaintexts were inserted by S, hence, by definition of S, it follows that Kab = Kab′. ii) Since
we are in the uncorrupted case, Kb is initially marked unknown in Fauth

senc , when created for B. Also,
the instance of Fauth

ltsenc for {B,S}, which is used to encrypt Kb, is uncorrupted. It follows that Kb is
always marked unknown. Given this and the fact that the instance Fauth

ltsenc for {A,S} is uncorrupted, the
session key Kab is only encrypted ideally, i.e., instead of the messages containing Kab only the leakage
of these messages are encrypted. Hence, E ’s view on a run is information theoretically independent of
Kab. But then, E cannot distinguish between the session key Kab output by P in runs of E | P |Fauth

enc

and the session key generated and output by Fke in runs of E | S | Fke. Therefore, it is easy to establish
a one-to-one correspondence between the runs of E | P |Fauth

enc and those of E | S | Fke. Thus, we obtain:
E | P |Fauth

enc ≡ E | S |Fke.

We emphasize that due to the use of Fauth
enc , we did not need to reason about IND-CPA and INT-

CTXT games. We also remark that we did not use the nonce Na in our argumentation. In fact, this nonce
is not needed. The reason is that the analysis only involved a single session of the protocol (see below).
Nevertheless, by applying Theorem 3, we obtain from Theorem 11 that !Panssk’ | !Fauth

enc ≤SS !Fke, i.e., the
multi-session version of Panssk’ realizes ideal key exchanges in multiple sessions. In this realization, Panssk’

uses fresh long-term keys in every session. However, we can apply the joint state theorem (Theorem 6)
for Fauth

ltsenc to replace !Fauth
ltsenc in !Fauth

enc by a joint state realization. We obtain that

!Panssk’ | !Fauth
senc | !P js

ltsenc | !Fauth
ltsenc ≤SS !Fke .

By the composition theorems (Theorem 2 and 3), Theorem 5, Corollary 3, and transitivity of ≤SS we
finally obtain

!Panssk’ | !Psenc(Σ) | !P js
ltsenc | !Pltsenc(Σ) ≤SS !Fke

for any authenticated encryption scheme Σ. As explained in Section 4.1, in this realization SIDs are
embedded into plaintexts before encryption with long-term keys. This is why Panssk’ realizes Fke also
for multiple concurrent sessions, even if the nonce Na is dropped. Altogether, this realization of the
ANSSK’ protocol is secure (as a key exchange protocol) in every polynomially bounded environment and
no matter how many copies of this protocol run concurrently, even if a pair of parties uses the same
long-term symmetric key across all sessions.

We note that one could prove Theorem 11 directly for the case that Panssk’ and Fke handle multiple
sessions. In this case, one does not need to resort to the joint state realization. In the analysis one
would need to make use of Na. Altogether the analysis would become more involved. However, using
Fenc it would still be fairly simple, in particular since the arguments would be rather straightforward
information theoretically, without the need for considering IND-CCA and INT-CTXT games, as this has
been done once and for all in proofs of the realizations of Fsenc and Fltsenc (Theorems 5, 9 and 10).

Remarks on Unauthenticated Encryption. We note that the ANSSK’ protocol using unauthen-
ticated encryption does not realize Fke, i.e., Panssk’ | Funauth

enc 6≤SS Fke. An attack, which can directly
be formulated as a distinguishing environment, is the following: Since encryption is not authenticated,
we have to assume that for the considered encryption scheme the adversary can produce ciphertexts
that decrypt, e.g. under Kas, to any plaintext she likes (for Funauth

ltsenc it is clear that she has this ability).
Because the nonce Na is not secret, the adversary can fake the message sent from the server to A and
send some message that decrypts to (Na, B, k, c) under Kas where k and c are chosen as she likes. Then,
A accepts with k as a the session key exchanged with B. The same flaw exists in the original ANSSK
protocol.
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7.2 Theorems on Secretive Protocols in the Game-Based Approach

We now use Fenc for proving general theorems about cryptographic protocols in a game-based setting.
More specifically, in [37, 36] Roy et al. define what they call secretive protocols for key exchange pro-
tocols that rely on symmetric encryption and that can be corrupted statically. Intuitively, a protocol is
secretive w.r.t. some key k, typically the session key to be exchanged, if the key is only sent “properly”
encrypted. Roy et al. show that if in a secretive protocol the key k is never used, then this guarantees
key indistinguishability for k, in the sense of Bellare et al. [10, 7]. In case the key is used within the
protocol (e.g., in a key confirmation phase), IND-CCA key usability is still guaranteed. IND-CCA key
usability [26] means that k can be used securely as a key in an IND-CCA game, i.e., an adversary first
interacting with the protocol and then with the IND-CCA game, in which k is used as a key, has only
a negligible chance of winning the game. Roy et al. also prove that if in a protocol run of a secretive
protocol an honest party successfully decrypts a ciphertext with k, then, with overwhelming probability,
this ciphertext originates from an encryption by an honest party.

In this section, we define secretive protocols and formulate the mentioned theorems by Roy et al. in
our setting. Using Corollary 3, the proofs of these theorems now are very simple, they do not require
to reason about IND-CCA, IND-CPA, or INT-CTXT games. While Roy et al. consider protocols which
may use only symmetric encryption, our theorems immediately extend to protocols that in addition
use public key encryption. These theorems can, for example, be applied to the protocol discussed in
Section 7.1 and also the original ANSSK protocol.

Let P be a protocol system that relies solely on public key and symmetric encryption, uses Penc

for this purpose, and specifies an unbounded number of sessions of a key exchange protocol. For key
indistinguishability, we assume that the session key is never used as a key in the protocol. Therefore,
this key does not have to be handled by Penc; it is simply a bit string generated within (a run of) P
itself. For key usability the session key might have been used as a key in the protocol, therefore, this key
is handled as a short-term key by Penc. For ciphertext integrity it might be either of the above variants.

Definition 10. A protocol system P as above is called secretive if P is non-committing, used order
respecting, and for every environmental system E , which may connect to the I/O and network interfaces
of P |Fenc, it holds with overwhelming probability that the session key in some uncorrupted session
picked by E is always marked unknown in Fenc or, for key indistinguishability (where the session key is
not a short-term key in Fenc), has never been encrypted by a corrupted instance of Fltsenc or Fpke, or
keys marked known in Fenc.

We note that Roy et al. did not assume the protocol to be non-committing and used order respecting,
but they also needed to prohibit key cycles.

Key Indistinguishability. Following Roy et al., for key indistinguishability, we assume that session
keys are never used as keys in the protocol itself. Therefore, in the specification of P in our setting,
these keys do not have to be handled by Penc, they can rather be modeled as bit strings outside of Penc,
generated within (a run of) P itself. We also assume that P is such that an environment interacting with
P may pick a party in a complete and uncorrupted session, and then obtains the corresponding session
key output by that party.

Key indistinguishability for P can now be formulated as follows in our setting: Consider an envi-
ronmental system E for P |Penc consisting of two subsystems. One subsystem, call it A, interacts with
P |Penc (both on the I/O and network interfaces) and at some point picks a party in a complete and
uncorrupted session. The other subsystem, which is the same for all A, call it T , receives the session
key output by that party and then gives this key or a randomly generated key to A. The task of A is
to decide which key it was given. Then, T outputs 1 if A guessed correctly, and 0 otherwise. Key indis-
tinguishability for P means that the probability that T outputs 1 is bounded above 1/2 by a negligible
function in the security parameter for every A.

We obtain the following analog of the theorem by Roy et al. on key indistinguishability. Due to the
use of Fenc, the proof of this theorem is considerably simpler than the one by Roy et al. In particular,
we do not need to reason about IND-CCA, IND-CPA, or INT-CTXT games.

Theorem 12. Let P be a secretive protocol as described above. Then, P satisfies key indistinguishability.
This holds both in case P relies on Punauth

enc and on Pauth
enc for encryption and decryption, i.e., for both

IND-CCA secure and authenticated encryption.
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Proof. Let E be an environmental system as described for key indistinguishability. Since Penc is a
realization of Fenc, by Theorem 2, Corollary 3, and the transitivity of ≤SS we know that there exists a
simulator S such that (∗): E | P |Penc ≡ E |P | S |Fenc. Since P is secretive and E | S can be considered
to be an environment for P |Fenc, it follows that in runs of E | P | S |Fenc, the session key, say k, output
by the party picked by A has never been encrypted by a corrupted instance of Fpke or Fltsenc, or keys
marked known in Fsenc. Moreover, by assumption, we know that k is not used to encrypt other messages.
But then, from the definition of Fenc it follows that k has always been encrypted ideally. Hence, the
view of A in runs of E | P | S |Fenc is independent of the value of k. Consequently, the probability that
T outputs 1 is exactly 1/2. By (∗), the probability that T outputs 1 in a run of E | P |Penc is bounded
above 1/2 by a negligible function, as desired.

Key Usability. Let P be a protocol as above that uses Penc for encryption and decryption, i.e., P uses
an IND-CCA secure or authenticated encryption scheme. For key usability, unlike key indistinguishabil-
ity, session keys may be used as keys in the protocol. Therefore, in the specification of P, session keys
will be handled as short-term keys within Penc.

As mentioned above, key usability for session keys established in uncorrupted sessions means that
these keys can be used securely as keys in IND-CCA games, i.e., an adversary first interacting with the
protocol and then with the IND-CCA game, in which a session key of an uncorrupted session picked by
the adversary is used as a key, has only a negligible chance of winning the game. We note that in our
setting we may w.l.o.g. assume that encryption and decryption in the IND-CCA game is performed by
invoking Penc.

We consider an extension P ′ of P. In P ′, an environment interacting with P may pick a party, say
p, in a complete and uncorrupted session. As a result, P ′ will provide the environment with the pointer
ptr to the session key of party p in that session. Moreover, P ′ allows the environment to encrypt and
decrypt messages under the key corresponding to the pointer ptr . However, the protocol P stops. Hence,
from now on, the environment can only encrypt and decrypt messages under ptr using Penc.

Key usability for P can now be formulated as follows in our setting: Consider an environmental system
E for P ′ | Penc consisting of two subsystems. One subsystem, call it A, interacts with P ′ | Penc (both on
the I/O and network interfaces) and at some point picks a party p in a complete and uncorrupted session.
The pointer ptr to the corresponding session key is given to the second subsystem of E , call it T . From
now on, A cannot interact with the protocol anymore but only with T . Moreover, T can only use P ′ as
an interface to encrypt and decrypt message under the key corresponding to ptr in Penc. The subsystem
T , which is the same for all A, behaves like a left-or-right oracle for encryption and decryption under
the key corresponding to ptr : T first randomly chooses a bit b. Upon an encryption request from A of
the form (m0,m1), where m0,m1 are arbitrary bit strings of the same length, T uses Penc to encrypt
mb with the key corresponding to ptr . Where the encryption of m0 and m1 is done in such a way that
the bit strings m0 and m1 are encrypted exactly as they are, without interpreted substrings of the form
(Key, x), if any (see Section 5.1 about handling of uninterpreted messages for details). Upon a decryption
request from A of the form c, where c is a bit string which has not been returned by T before, T uses
Penc to decrypt c with the key corresponding to ptr , the resulting plaintext (if any) is returned to A
(again uninterpreted). The task of A is to guess b. When A sends its guess b′ to T , T outputs 1 if b′ = b,
and 0 otherwise.

Now, key usability for P means that the probability that T outputs 1 is bounded above 1/2 by
a negligible function in the security parameter for every A. This exactly captures the notion of key
usability in [26]. We obtain the following analog of the theorem by Roy et al. on key usability. In our
theorem, we assume that a protocol does not use the session key to encrypt other (short-term) keys.
This assumption is quite natural (all protocols that we have encountered satisfy this property). However,
the assumption did not seem to be necessary in the work by Roy et al. Our assumption guarantees that
the environment remains non-committing after the session key has been “given” to the IND-CCA game.
A more relaxed assumption would guarantee this as well. Nevertheless, for simplicity we stick to this
simpler assumption.

Theorem 13. Let P be a secretive protocol where the session keys are never used to encrypt other keys.
Then, P satisfies key usability. This holds both in case P relies on Punauth

enc and in case P relies on Pauth
enc

for encryption and decryption, i.e., for both IND-CCA secure and authenticated encryption schemes.
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Proof. Let E be an environmental system as described for key usability. First we note that E | P ′ is non-
committing and used order respecting: Since P is non-committing and used order respecting this is the
case in the first phase (where A interacts with P). In the second phase, this follows from our assumption
that session keys are never used to encrypt other keys. Upon encryption of a message m all short-
term keys possibly contained in m are marked known in Fsenc because m is encrypted uninterpreted and
therefore all keys are inserted into Fsenc by the store command which marks them known (see Section 5.1
about handling of uninterpreted messages). Hence, (∗) for all message ciphertext pairs stored in Fsenc the
messages only contain known keys (if any). For the first phase this is guaranteed by P because we assume
that session keys are never used to encrypt other keys. In particular, this implies that the used order is
always respected. Recall that for the used order only unknown keys are considered. Furthermore, the
only case where the non-committing property might be violated in the second phase is upon decryption
where the resulting plaintext contains some unknown key. In this case, the reveal command (because we
decrypt uninterpreted) would mark an unknown key known. But this case can never occur because, by
(∗), all keys upon decryption are already marked known. We conclude that P ′ is non-committing and
used order respecting.

Since Penc is a realization of Fenc, by Theorem 2, Corollary 3, and the transitivity of ≤SS we know
that there exists a simulator S such that (∗∗): E | P ′ | Penc ≡ E |P ′ | S | Fenc.

Since P is secretive and E | S can be considered to be an environment for P ′ | Fenc, it follows by the
definition of P ′ that in the first phase in runs of E | P ′ | S | Fenc, where the subsystem A of E interact
with P, the session key picked by A is always marked “unknown” in Fenc. This does not change in the
second phase, where A interacts with the subsystem T of E . Hence, from the definition of Fenc it follows
that encrypt request of the form (m0,m1) from A are answered by T using Fenc as encryption of the
leakage of mb. Since the leakages of m0 and m1 have the same distribution, as m0 and m1 have the same
length, no information about bit b is revealed to A. Consequently, the probability that T outputs 1 is
exactly 1/2. By (∗∗), the probability that T outputs 1 in a run of E | P ′ | Penc is bounded above 1/2 by
a negligible function, as desired.

Ciphertext Integrity. We allow session keys to be used within the protocol. Therefore, in the speci-
fication of P, session keys will be handled as short-term keys within Penc.

Ciphertext integrity under session keys for P can now be formulated as follows in our setting: Consider
an environmental system E running with P |Penc which picks a party in a complete and uncorrupted
session. If a ciphertext is successfully decrypted with the session key output by that party but the
ciphertext did not originate from an encryption by an honest party, then E outputs 1. Note that this
event cannot be observed by E alone. However, within P this event can be observed. It is easy to extend
any P to say Pint in which this event is observed and reported to E . Now, P satisfies ciphertext integrity
under session keys for every environmental system E as just described if the probability that in a run of
E | Pint | Penc the bit 1 is output is negligible in the security parameter.

Theorem 14. Let P be a secretive protocol. Then, P satisfies ciphertext integrity under session keys.
This holds in case P relies on Pauth

enc for encryption and decryption, i.e., authenticated encryption
schemes.

Proof. Let E be an environmental system as described for ciphertext integrity. First it is easy to see that
if P is secretive, then so is Pint.

Now, since Penc is a realization of Fenc, by Theorem 2, Corollary 3, and the transitivity of ≤SS we
know that there exists a simulator S such that (∗): E | Pint | Penc ≡ E |Pint | S | Fauth

enc .
Since Pint is secretive and E | S can be considered to be an environment for Pint | Fauth

enc , it follows
that in runs of E | Pint | S | Fauth

enc , the session key picked by E is always marked “unknown” in Fauth
enc . But

then, from the definition of Fauth
enc it follows that if a ciphertext successfully decrypts, it must originate

from an encryption of an honest party. Hence, E never outputs 1 in a run with Pint | S | Fauth
enc . By (∗),

the probability that E outputs 1 in a run with Pint | Pauth
enc is negligible, as desired.
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A Proof of Lemma 8

Lemma 8 (restated from Section 5.2.4). There exist negligible functions freal, fideal such that

C(r) ≡freal
Ĉ(r)

real for all r ∈ N and (6)

C(r+1) ≡fideal
Ĉ(r)

auth for all r ∈ N . (7)

Before proving (6) and (7) separately, we establish a negligible error set, i.e., a negligible set of runs
we do not want to consider. Let B(r),r′

guess (1η, a) for all r, r′ ∈ N be the set of runs of C(r)(1η, a) where E
“guesses” the r′-th key. More formally: Where at some point during the run:

1. E wants to use the r′-th key as a corrupted key, i.e., where, for some p, k, E sends a message of
shape (p,KeyGen, true, k) to the simulator where F (r)

senc.used(k) = r′ 3,

2. E wants to store the r′-th key, i.e., where E sends a message of shape (p,Store, k) for some p, k to
F (r)

senc where F (r)
senc.used(k) = r′,

3. E decrypts a ciphertext with a known short-term key or a corrupted long-term or public key and
where the decryption contains the r′-th key, i.e., where

(a) E sends a message of shape (p,Dec, ptr , c) for some p, ptr , c to F (r)
senc where the key k =

F (r)
senc.key(p, ptr) ∈ F (r)

senc.Kknown and dec(k, c) contains (Key, k′) with F (r)
senc.used(k′) = r′,

(b) E sends a message of shape (pids, p,Dec, c) for some pids, p, c to F (r)
senc where it holds that

Fltsenc[pids].corrupted = true and the result of Fltsenc[pids].dec(p) applied to c contains
(Key, k) with F (r)

senc.used(k) = r′ 4, or

3By F(r)
senc.x we denote the value of the variable x in the configuration of F(r)

senc.
4By Fltsenc[pids].x we denote the value of the variable x in the configuration of the instance of Fltsenc which accepts

messages of the shape (pids,m) for any m.
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(c) E sends a message of shape (p,Dec, c) for some p, c to F (r)
senc where Fpke[p].corrupted = true

and the result of Fpke[p].dec applied to c contains (Key, k) with F (r)
senc.used(k) = r′. 5

Later, we only need that these error sets are negligible for any r′ and r = r′ and r = r′+ 1 but we prove
it more general.

Recall that we abbreviate pE = pE(η + |a|) and f = f(1η, a) for negligible functions f .

Lemma 10. There exists a negligible function fguess such that for all r, r′ ∈ N with r′ ≤ r and for all
η ∈ N and a ∈ {0, 1}∗

Pr
[
B(r),r′

guess (1η, a)
]
≤ fguess(1η, a) .

Proof. The proof is a standard cryptographic reduction. We construct an INT-CTXT adversary who is
successful, i.e. wins the INT-CTXT game, if the event occurs.

Let r, r′ ∈ N with r′ ≤ r. First, look at when the event B(r),r′

guess occurs. It occurs when E chooses
(or inserts) a key that collides with the r′-th key. By E chooses we mean that E sends messages of the
shape defined in 1., 2. and 3. in the definition of B(r),r′

guess . For example if E sends (p,KeyGen, true, k)
for some p then E chooses k. For another example if E sends (p,Dec, ptr , c) for some p, ptr , c where
dec(key(p, ptr), c) contains (Key, k0) and (Key, k1) then E chooses k0 and k1. Given a run of C(r) we
order the keys chosen by E as they appear and call the j-th key kj . Note that this order is different from
the used order.

For all r, r′ ∈ N with r′ ≤ r we construct an INT-CTXT adversary AO1(·),O2(·)
r,r′ that behaves as follows.

First Ar,r′ chooses j ∈ {0, . . . , pE(η + |a|) − 1} uniformly at random and then simulates C(r)(1η, a) by
using O1 and O2 for encryptions and decryptions, respectively, with the r′-th key. Recall that the r′-th
key is used non-ideally if r′ = r and used ideally if r′ < r. The adversary stops the simulation when E
chooses the j-th key (as defined above). The adversary assumes that this key is the key used by O1/O2

and challenges the game by computing c∗ ← enc(kj ,m∗) for some m∗ that was never encrypted before
and making a query O2(c∗). The adversary then stops. Recall that the adversary wins the INT-CTXT
game if at some point he queried O2 with a ciphertext that decrypts but was never returned by O1.

If the event B(r),r′

guess occurs then with probability 1/pE(η + |a|) the adversary aborts the simulation
at the right place, i.e., where the event occurs. Up to that point the simulation was perfect because
the r′-th key was never encrypted non-ideally (by Lemma 5, F∗ guarantees that the r′-th key can only
be encrypted by unknown keys with used order < r and these keys are treated ideally in C(r)) and the
leakage leaks exactly the length of a message. Hence, the key kj is in fact the key used by O1/O2 and
Ar,r′ wins because c∗ was never returned by O1 as m∗ was never requested to O1. We obtain that

Pr
[
B(r),r′

guess (1η, a)
]
≤ pE(η + |a|) ·Advint-ctxt

Σ,Ar,r′
(1η, a) . (14)

Finally, since we are interested in a bound independent of r, we construct an adversary A which first
chooses r′ ∈ {0, . . . , pE(η + |a|) − 1} and r ∈ {r′, . . . , pE(η + |a|) − 1} uniformly at random and then
behaves like Ar,r′ . Clearly,

pE(η + |a|) · pE(η + |a|) ·Advint-ctxt
Σ,A (1η, a) ≥ Advint-ctxt

Σ,Ar,r′
(1η, a) (15)

for all r, r′ < pE(η+|a|) with r′ ≤ r. For r ≥ pE(η+|a|) the system C(r) behaves exactly like C(pE(η+|a|)−1)

and hence (15) holds for all r, r′ ∈ N with r′ ≤ r.
Since Σ is INT-CTXT secure Advint-ctxt

Σ,A (1η, a) is negligible and by (14) and (15) we conclude that

there exists a negligible function fguess such that Pr
[
B

(r),r′

guess (1η, a)
]
≤ fguess(1η, a) for all r, r′ ∈ N with

r′ ≤ r, η ∈ N and a ∈ {0, 1}∗.

A.1 Proof of (6)

For all r, η, a we define a relation R = Rr,η,a between runs of C(r)(1η, a) and runs of Ĉ(r)
real(1

η, a).

5By Fpke[p].x we denote the value of the variable x in the configuration of the instance of Fpke which accepts messages

of the shape (p,m) for any m.
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First we describe R informally. In runs of the system Ĉ(r)
real we have two r-th keys, the one in F̂ (r)

senc

which we denote by the payload key and the one in Oracle(real) which we denote by the encryption key.
The differences between the two systems C(r) and Ĉ(r)

real is not on how the keys are used. The r-th key
in C(r) and the encryption key in Ĉ(r)

real are both used non-ideally. Also, the r-th key is never encrypted
non-ideally (because of F∗) and therefore it does not matter if the payload key is different from the
encryption key. The only difference between the systems is if the environment guesses the r-th key
because in Ĉ(r)

real there is this difference between the payload and the encryption key. For the same reason
collisions with the r-th key result in different behavior of the systems. Fortunately, we can push these
events into negligible error sets, namely B(r)

coll (see Lemma 6) and B
(r),r
guess (see Lemma 10).

The only difference between the systems to deal with is the moment when the r-th key is generated.
When in C(r) the r-th key is generated then in Ĉ(r)

real the payload key is generated and when in C(r) the
r-th key is first used (at that moment it gets assigned the used order r) then in Ĉ(r)

real the encryption key
is generated and first used. The payload key is never really used, not even as a payload, because it is
always encrypted ideally (this follows from the definition of F∗). Therefore, we can relate a run ρ of C(r)

to several runs ρ̂k of Ĉ(r)
real for all possible payload keys k, i.e., the r-th key in ρ equals the encryption key

in ρ̂k and the payload key in ρ̂k (which does not occur in ρ) is k. Then we can prove that

Pr[ρ]− Pr[{ρ̂k | k possible payload key}] ≤ Pr[ρ] · f

for some negligible function f (which is independent of r). By Theorem 4 we can conclude (6).
We now define the relation R more formal. Let η, a be fixed and, to simplify notation, let C = C(r),

Ĉ = Ĉ(r)
real and B = B

(r),r
guess(1η, a) ∪B(r)

coll(1
η, a).

In a run of the system Ĉ, if F̂ (r)
senc sends a message to Oracle(real) and directly receives an answer then

in the run this results in three configurations which correspond to a single configuration in a run of C.
For simplification, we consider F̂ (r)

senc and Oracle(real) to be a single IITM. This is valid as shown in [29].
For ρ ∈ runsaη(C) \ B let Kρ be the set of all keys that occur in ρ, i.e. Kρ = F (r)

senc.K in the last
configuration of ρ because K contains all keys and is monotone, i.e., no keys get deleted. We define
Kρ = {0, 1}key-lenη \ Kρ to be the set of keys that can be generated by gen(1η) and which do not occur
in ρ. Recall that we assume that all keys generated by gen(1η) have length key-lenη.

For all keys k∗ ∈ Kρ (this corresponds to the payload key in the informal description) we define
αk∗ : runsaη(C) \B → runsaη(Ĉ). Let ρ = C0, . . . , Cn ∈ runsaη(C) \B we define αk∗(ρ) as follows:

1. If there exists no r-th key, i.e. no k ∈ {0, 1}∗ and m ≤ n such that F (r)
senc.used(k) = r in Cm then

we define αk∗(ρ) = Ĉ0, . . . , Ĉn where for all m ≤ n, Ĉm is obtained from Cm by replacing the
configuration of F (r)

senc by the configuration of F̂ (r)
senc | Oracle(real) (recall that we consider F̂ (r)

senc and
Oracle(real) to be a single IITM) where Oracle is uninitialized and the state (i.e., the value of all
variables) of F̂ (r)

senc is equal to the state of F (r)
senc.

Note that in this case we have not used the payload key k∗ because there is no r-th key.

2. If there exists an r-th key, i.e. we find k ∈ {0, 1}∗ and m ≤ n such that F (r)
senc.used(k) = r in Cm

then let m be the smallest such value (i.e., in configuration Cm the r-th key is first used).

We define αk∗(ρ) = Ĉ0, . . . , Ĉn as follows:

1. For all m < m, Ĉm is obtained from Cm by replacing the configuration of F (r)
senc by the

configuration of F̂ (r)
senc | Oracle(real) where there is no running instance of Oracle and the

state of F̂ (r)
senc is equal to the state of F (r)

senc except that the key k (the encryption key) is
replaced by k∗ (the payload key). By replaced we mean that it is replaced everywhere, i.e. in
K, decTable, key and used .

2. For all m ≤ m ≤ n, Ĉm is obtained from Cm by replacing the configuration of F (r)
senc by

the configuration of F̂ (r)
senc | Oracle(real) where there is a running instance of Oracle with

state = ok, k = k (i.e. Oracle uses the encryption key) and decTable = ∅ and the state of
F̂ (r)

senc is equal to the state of F (r)
senc except that the key k (the encryption key) is replaced by

k∗ (the payload key).
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Clearly, αk∗(ρ) ∈ runsaη(Ĉ).
Now we define R. A run ρ ∈ runsaη(C) \ B is in relation to αk∗(ρ) for all k∗ ∈ Kρ, i.e., (ρ, ρ̂) ∈ R if

and only if ρ̂ = αk∗(ρ) for some k∗ ∈ Kρ. Clearly, dom(R) = runsaη(C) \B, i.e, Pr[dom(R)] = Pr[B]. The
equivalence classes of ∼R are {ρ} ∪ {αk∗(ρ) | k∗ ∈ Kρ} for all ρ ∈ runsaη(C) \B.

Finally, we prove that there exists a negligible function f such that

0 ≤ Pr[ρ]− Pr[{αk∗(ρ) | k∗ ∈ Kρ}] ≤ f(1η, a) · Pr[ρ] (16)

for all ρ ∈ runsaη(C) \B. Let

f(1η, a) = max{Pr[k ← gen(1η) : k ∈ K] | K ⊆ {0, 1}∗, |K| ≤ pE(η + |a|)} .

Similar to the proof of Lemma 6 it can be shown that f is negligible because Σ is IND-CPA secure and
K has polynomial size. Note that f does not depend on r.

Let ρ = C0, . . . , Cn ∈ runsaη(C) \B. If there exists no r-th key in ρ (as in 1. in the definition of αk∗)
then one easily verifies that Pr[ρ] = Pr[αk∗(ρ)] for any k∗. Also, we have that αk∗1 (ρ) = αk∗2 (ρ) for any
k∗1 , k

∗
2 (because k∗ is never used in that case). Hence, Pr[ρ] = Pr[{αk∗(ρ) | k∗ ∈ Kρ}] in this case. If

there exists an r-th key then let k and m be defined as in 2. in the definition of αk∗ . Recall that m is
the (index of the) configuration where k is first used. Let m′ be the configuration where the key k is
generated, i.e., where the simulator generates k by computing gen(1η) and sends it to F (r)

senc. For every
k∗ ∈ Kρ let αk∗(ρ) = Ck

∗

0 , . . . , Ck
∗

n .
Recall that we assume that Oracle and F̂ (r)

senc are considered as a single IITM. By definition of the prob-
ability of a run we have Pr[ρ] =

∏
0<m≤n Pr[Cm−1 → Cm] and Pr[αk∗(ρ)] =

∏
0<m≤n Pr[Ck

∗

m−1 → Ck
∗

m ].
Now, we relate these probabilities. The crucial point is that because ρ /∈ B and k∗ /∈ Kρ there is no differ-
ence upon guessing or collisions of unknown keys (i.e., in “Key generation”, “Store”, and “Prevent
key guessing”). Furthermore, if party p decrypts c with pointer ptr where key(p, ptr) = k and
used(k) = ⊥ then it is important to verify that the behavior is the same. Note that because used(k) = ⊥
we have that nextused ≤ r, hence, F (r)

senc and F̂ (r)
senc will both return ⊥ (because decTable(k) = ∅). Since

the distribution of L(1η, k) equals the one of L(1η, k∗) (L leaks exactly the length of a message and k and
k∗ have the same length) and by Lemma 5 (the r-th key is never encrypted non-ideally), we conclude
that the behavior upon encryption and decryption is always the same, i.e., we have that

Pr
[
Cm−1 → Cm

]
= Pr

[
Ck
∗

m−1 → Ck
∗

m

]
for all m ∈ {1, . . . , n} \ {m′,m} .

The runs differ at the transitions from m′ − 1 to m′ and from m − 1 to m because in Cm′ the key k is
generated while in Ck

∗

m′ the payload key k∗ is generated. In Cm the key k is first used and no keys are
generated while in Ck

∗

m the encryption key k is generated and then used. Hence,

Pr
[
Ck
∗

m′−1 → Ck
∗

m′
]

= Pr
[
Cm′−1 → Cm′

]
· Pr[gen(1η) = k∗]

Pr[gen(1η) = k]
,

Pr
[
Ck
∗

m−1 → Ck
∗

m

]
= Pr

[
Cm−1 → Cm

]
· Pr[gen(1η) = k] .

Therefore, for all k∗ ∈ Kρ it holds

Pr[αk∗(ρ)] =
∏

0<m≤n

Pr[Ck
∗

m−1 → Ck
∗

m ]

= Pr
[
Cm′−1 → Cm′

]
· Pr[gen(1η) = k∗]

Pr[gen(1η) = k]
· Pr

[
Cm−1 → Cm

]
· Pr[gen(1η) = k]

·
∏

m∈{1,...,n}\{m′,m}

Pr
[
Cm−1 → Cm

]
= Pr[gen(1η) = k∗] · Pr[ρ] .

We conclude

Pr[{αk∗(ρ) | k∗ ∈ Kρ}] =
∑
k∗∈Kρ

Pr[αk∗(ρ)] = Pr[gen(1η) ∈ Kρ] · Pr[ρ] ≤ Pr[ρ] .
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and because |Kρ| ≤ pE(η + |a|) we have that

Pr[{αk∗(ρ) | k∗ ∈ Kρ}] = (1− Pr[gen(1η) ∈ Kρ]) · Pr[ρ] ≥ Pr[ρ]− f(1η, a) · Pr[ρ]

from which we obtain (16).
By Lemma 6 and 10, we find a negligible f ′ such that for all r, η ∈ N and a ∈ {0, 1}∗ we have

f ′(1η, a) ≥ Pr[B(r),r
guess(1η, a) or B(r)

coll(1
η, a)] = Pr[dom(Rr,η,a)]. Hence, for all r, η ∈ N and a ∈ {0, 1}∗ the

relation Rr,η,a is a (f(1η, a), 0, f ′(1η, a))-probabilistic trace relation between runsaη(C(r)) and runsaη(Ĉ(r)
real).

Theorem 4 implies that (6) holds with freal = f + f ′. Note that since f and f ′ are independent of r, so
is freal.

A.2 Proof of (7)

For all r, η, a we define a relation R = Rr,η,a between runs of C(r+1)(1η, a) and runs of Ĉ(r)
auth(1η, a).

The relation R and the proof are similar to the proof of (6). However, the systems are more different
because of guessing of keys. In C(r+1) we have to consider KeyGuess(r+1) while in Ĉ(r)

auth we have to
consider KeyGuess(r). Therefore, we need two additional error sets which capture guessing of unknown
and unused keys before the r-th key has been used.

Let B(r)
guess-unused(1η, a) for all r ∈ N be the set of runs of C(r)(1η, a) where E “guesses” an unknown

and unused key before the r-th key has been used. More formally: Where at some point during the run
before the r-th key has been used, i.e., where F (r)

senc.nextused ≤ r:
1. E wants to use an unknown and unused key k as a corrupted key, i.e., where E sends a message

of shape (p,KeyGen, true, k) for some p to the simulator where k ∈ F (r)
senc.K \ F (r)

senc.Kknown and
k /∈ dom(F (r)

senc.used),

2. E wants to store an unknown and unused key k, i.e., where E sends a message of shape (p,Store, k)
for some p to F (r)

senc where k ∈ F (r)
senc.K \ F (r)

senc.Kknown and k /∈ dom(F (r)
senc.used), or

3. E decrypts a ciphertext with a known short-term key or a corrupted long-term or public key and
where the decryption contains an unknown and unused key k, i.e., where k ∈ F (r)

senc.K\F (r)
senc.Kknown

and k /∈ dom(F (r)
senc.used) and

(a) E sends a message of shape (p,Dec, ptr , c) for some p, ptr , c to F (r)
senc where the key k′ =

F (r)
senc.key(p, ptr) ∈ F (r)

senc.Kknown and dec(k′, c) contains (Key, k),
(b) E sends a message of shape (pids, p,Dec, c) for some pids, p, c to F (r)

senc where it holds that
Fltsenc[pids].corrupted = true and the result of Fltsenc[pids].dec(p) applied to c contains
(Key, k), or

(c) E sends a message of shape (p,Dec, c) for some p, c to F (r)
senc where Fpke[p].corrupted = true

and the result of Fpke[p].dec applied to c contains (Key, k).

Lemma 11. There exists a negligible function fguess-unused such that for all r ∈ N and for all η ∈ N and
a ∈ {0, 1}∗

Pr[B(r)
guess-unused(1η, a)] ≤ fguess-unused(1η, a) .

Proof. We only sketch the proof. All keys with used order < r are used ideally. Furthermore, unknown
keys are generated honestly and have not been encrypted by known or corrupted keys, i.e., only by keys
with used order < r. Because they are unused, guessing one of these keys is like guessing a key generated
by gen(1η) without having any information about the key. Because Σ is IND-CPA secure and there are
only polynomially many such keys B(r)

guess-unused(1η, a) is negligible. We obtain a bound independent of r
with the same technique as used in the proof of Lemma 10.

Let B(r)
int (1η, a) for all r ∈ N be the set of runs of C(r)(1η, a) where E “produces” a ciphertext that

successfully decrypts (to some plaintext 6= ⊥) under an unknown and unused key before the r-th key has
been used. More formally: Where at some point during the run before the r-th key has been used, i.e.,
where F (r)

senc.nextused ≤ r, E decrypts a ciphertext c, i.e., where E sends a message of shape (p,Dec, ptr , c)
to F (r)

senc for some p, ptr , c, where k = F (r)
senc.key(p, ptr) ∈ F (r)

senc.K \ F (r)
senc.Kknown, k /∈ dom(F (r)

senc.used)
and dec(k, c) 6= ⊥.
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Lemma 12. There exists a negligible function fint such that for all r ∈ N and for all η ∈ N and
a ∈ {0, 1}∗

Pr[B(r)
int (1η, a)] ≤ fint(1η, a) .

Proof. We only sketch the proof. As for B(r)
guess-unused, all keys with used order < r are used ideally,

unknown keys are generated honestly and have not been encrypted by known or corrupted keys. Because
these keys are unused, producing a ciphertext that decrypts for these keys is like producing a ciphertext
for a key generated by gen(1η) without having any information about the key. Because Σ is INT-CTXT
secure and there are only polynomially many such keys B(r)

int (1η, a) is negligible. We obtain a bound
independent of r with the same technique as used in the proof of 10.

Now, we proof (7). The differences compared to the proof of (6) are the following.

1. Here, we consider the error set B = B
(r+1)
coll ∪B(r+1),r

guess ∪B(r+1),r+1
guess ∪B(r+1)

guess-unused ∪B
(r+1)
int instead

of B(r)
coll ∪B

(r),r
guess.

2. We still relate the r-th key (not the (r+ 1)-th key) of C(r+1) to the key in Oracle(auth). This time
the key is used ideally, therefore, we also have to relate the decryption tables F (r+1)

senc .decTable(k)
and Oracle(auth).decTable (where k is the r-th key).

We now define the relation R more formal. Let η, a be fixed and, to simplify notation, let C = C(r+1),
Ĉ = Ĉ(r)

auth and B = B
(r+1)
coll (1η, a)∪B(r+1),r

guess (1η, a)∪B(r+1),r+1
guess (1η, a)∪B(r+1)

guess-unused(1η, a)∪B(r+1)
int (1η, a).

As above, for simplification, we consider F̂ (r)
senc and Oracle(auth) to be a single IITM.

Recall the definition of Kρ and Kρ from above. For all keys k∗ ∈ Kρ (this will be the payload key)
we define αk∗ : runsaη(C) \B → runsaη(Ĉ). Let ρ = C0, . . . , Cn ∈ runsaη(C) \B we define αk∗(ρ) as follows:

1. If there exists no r-th key, i.e. no k ∈ {0, 1}∗ and m ≤ n such that F (r+1)
senc .used(k) = r in Cm

then we define αk∗(ρ) = Ĉ0, . . . , Ĉn where for all m ≤ n Ĉm is obtained from Cm by replacing the
configuration of F (r+1)

senc by the configuration of F̂ (r)
senc | Oracle(auth) (recall that we consider F̂ (r)

senc

and Oracle(auth) to be a single IITM) where Oracle is uninitialized and the state of F̂ (r)
senc is equal

to the state of F (r+1)
senc .

Note that in this case we have not used the payload key k∗ because there is no r-th key.

2. If there exists an r-th key, i.e. we find k ∈ {0, 1}∗ and m ≤ n such that F (r+1)
senc .used(k) = r in Cm

then let m be the smallest such value (i.e., in configuration Cm the r-th key is first used).

We define αk∗(ρ) = Ĉ0, . . . , Ĉn as follows:

1. For all m < m, Ĉm is obtained from Cm by replacing the configuration of F (r+1)
senc by the

configuration of F̂ (r)
senc | Oracle(auth) where there is no running instance of Oracle and the

state of F̂ (r)
senc is equal to the state of F (r+1)

senc except that the key k (the encryption key) is
replaced by k∗ (the payload key). By replaced we mean that it is replaced everywhere, i.e. in
K, decTable, key and used .

2. For all m ≤ m ≤ n, Ĉm is obtained from Cm by replacing the configuration of F (r+1)
senc by

the configuration of F̂ (r)
senc | Oracle(auth) where there is a running instance of Oracle with

state = ok, k = k (i.e. Oracle uses the encryption key) and decTable = F (r+1)
senc .decTable(k)

and the state of F̂ (r)
senc is equal to the state of F (r+1)

senc except that the key k (the encryption
key) is replaced by k∗ (the payload key) and F̂ (r)

senc.decTable(k∗) = ∅. By replaced we mean
that it is replaced everywhere, i.e. in K, decTable and key .

Clearly, αk∗(ρ) ∈ runsaη(Ĉ).
Now we define R. A run ρ ∈ runsaη(C) \ B is in relation to αk∗(ρ) for all k∗ ∈ Kρ, i.e., (ρ, ρ̂) ∈ R if

and only if ρ̂ = αk∗(ρ) for some k∗ ∈ Kρ. Clearly, dom(R) = runsaη(C) \B, i.e, Pr[dom(R)] = Pr[B]. The
equivalence classes of ∼R are {ρ} ∪ {αk∗(ρ) | k∗ ∈ Kρ} for all ρ ∈ runsaη(C) \B.

Finally, we prove that there exists a negligible function f such that

0 ≤ Pr[ρ]− Pr[{αk∗(ρ) | k∗ ∈ Kρ}] ≤ f(1η, a) · Pr[ρ] . (17)
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The proof of (17) is similar to the proof of (16), in fact, we can use the same f but we have to argue
using the different error set.

Let ρ = C0, . . . , Cn ∈ runsaη(C) \ B. If there exists no r-th key in ρ (as in 1. in the definition of
αk∗) then we always have that nextused ≤ r, so, there is no difference between KeyGuess(r+1) and
KeyGuess(r). One verifies that Pr[ρ] = Pr[αk∗(ρ)] for any k∗. Also, we have that αk∗1 (ρ) = αk∗2 (ρ) for
any k∗1 , k

∗
2 (because k∗ is never used in that case). Hence, Pr[ρ] = Pr[{αk∗(ρ) | k∗ ∈ Kρ}] in this case.

If there exists an r-th key then let k and m be defined as in 2. in the definition of αk∗ . Recall that m
is the (index of the) configuration where k is first used. Let m′ be the configuration where the key k is
generated, i.e., where the simulator generates k by computing gen(1η) and sends it to F (r)

senc. For every
k∗ ∈ Kρ let αk∗(ρ) = Ck

∗

0 , . . . , Ck
∗

n .
Recall that we assume that Oracle and F̂ (r)

senc are considered as a single IITM. By definition of the prob-
ability of a run we have Pr[ρ] =

∏
0<m≤n Pr[Cm−1 → Cm] and Pr[αk∗(ρ)] =

∏
0<m≤n Pr[Ck

∗

m−1 → Ck
∗

m ].
Now, we relate these probabilities. The two crucial points are the following:

1. Consider key guessing. If E guesses a key k ∈ K \ Kknown then because of the difference between
KeyGuess(r+1) and KeyGuess(r) there might be difference if nextused = r + 1. We show that
this is not the case. If ⊥ 6= used(k) < r or ⊥ 6= used(k) > r + 1 then there is no difference
between KeyGuess(r+1) and KeyGuess(r). The case used(k) ∈ {r, r + 1} cannot occur because of
the error sets B(r+1),r

guess and B
(r+1),r+1
guess . Hence, we only have to consider unused keys, i.e., where

k /∈ dom(used). The only difference might occur if nextused = r + 1 but this case is ruled out by
B

(r+1)
guess-unused.

2. If party p decrypts c with pointer ptr where key(p, ptr) = k for some k ∈ K\Kknown and used(k) = ⊥
then it is important to verify that the behavior is the same. If nextused ≤ r both F (r+1)

senc and F̂ (r)
senc

treat the key as ideal and return ⊥. If nextused = r + 1 then F (r+1)
senc treats the key ideal and

returns ⊥ but F̂ (r)
senc treats the key real and computes dec(k, c) which by B

(r+1)
int returns ⊥. If

nextused > r + 1 then both systems treat the key real but we know that it is not the r-th key, so,
they use the same key.

Since the distribution of L(1η, k) equals the one of L(1η, k∗) (L leaks exactly the length of a message
and k and k∗ have the same length) and by Lemma 5 (the r-th key is never encrypted non-ideally), we
conclude that the behavior upon encryption and decryption is always the same, i.e., we have that

Pr
[
Cm−1 → Cm

]
= Pr

[
Ck
∗

m−1 → Ck
∗

m

]
for all m ∈ {1, . . . , n} \ {m′,m} .

As in the proof of (6), the runs differ at the transitions from m′ − 1 to m′ and from m− 1 to m because
in Cm′ the key k is generated while in Ck

∗

m′ the payload key k∗ is generated. In Cm the key k is first used
and no keys are generated while in Ck

∗

m the encryption key k is generated and then used. Hence,

Pr
[
Ck
∗

m′−1 → Ck
∗

m′
]

= Pr
[
Cm′−1 → Cm′

]
· Pr[gen(1η) = k∗]

Pr[gen(1η) = k]
,

Pr
[
Ck
∗

m−1 → Ck
∗

m

]
= Pr

[
Cm−1 → Cm

]
· Pr[gen(1η) = k] .

As for (6), we conclude

Pr[{αk∗(ρ) | k∗ ∈ Kρ}] ≤ Pr[ρ] ,

Pr[{αk∗(ρ) | k∗ ∈ Kρ}] ≥ Pr[ρ]− f(1η, a) · Pr[ρ]

from which we obtain (17).
By Lemma 6, 10, 11 and 12, we find a negligible f ′ such that for all r, η ∈ N and a ∈ {0, 1}∗ we

have f ′(1η, a) ≥ Pr[B] = Pr[dom(Rr,η,a)]. Hence, for all r, η ∈ N and a ∈ {0, 1}∗ the relation Rr,η,a is
a (f(1η, a), 0, f ′(1η, a))-probabilistic trace relation between runsaη(C(r+1)) and runsaη(Ĉ(r)

auth). Theorem 4
implies that (7) holds with fideal = f + f ′. Note that since f and f ′ are independent of r, so is fideal.
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