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Abstract—For most basic cryptographic tasks, such as
public-key encryption, digital signatures, authentication, key
exchange, and many other more sophisticated tasks, ideal
functionalities have been formulated in the simulation-based
security approach, along with their realizations. Surprisingly,
however, no such functionality exists for symmetric encryption,
except for a more abstract Dolev-Yao style functionality. In this
paper, we fill this gap. We propose two functionalities for sym-
metric encryption, an unauthenticated and an authenticated
version, and show that they can be implemented based on
standard cryptographic assumptions for symmetric encryption
schemes, namely IND-CCA security and authenticated encryp-
tion, respectively, provided that the environment does not create
key cycles or cause the so-called commitment problem. We also
illustrate the usefulness of our functionalities in applications,
both in simulation-based and game-based security settings.

I. INTRODUCTION

For most basic cryptographic tasks, such as public-key
encryption, digital signatures, mutual authentication, and
key exchange, ideal functionalities have been proposed and
realized in the simulation-based security approach (see, e.g.,
[11], [13], [12], [18], [2], [25], [29]). There are also many
functionalities for more sophisticated cryptographic tasks
(see, e.g., [14] for an overview). Surprisingly, however, a
functionality for symmetric encryption, similar to the one
for public-key encryption, as first proposed by Canetti [11],
is still missing; there only exists an abstract Dolev-Yao style
functionality (see Section VI). Our main goal in this paper is
therefore to come up with ideal functionalities for symmetric
encryption which capture standard cryptographic assump-
tions on symmetric encryption schemes. Such functionalities
would be very useful for the modular design and analysis
of systems that employ symmetric encryption.

Compared to a functionality for public-key encryption,
one faces several challenges when devising a functionality
for symmetric key encryption: In case of public-key en-
cryption, it is reasonable to assume that the private key
never leaves the functionality, making it relatively easy to
formulate and provide certain security guarantees. However,
symmetric keys, in particular session keys, typically have
to travel between parties, as, e.g., in Kerberos. But, of
course, a symmetric encryption functionality cannot just
give out these keys, because no security guarantees could
be provided. So, clearly a user must not get his/her hands
on these keys directly, but should only be able to refer
to these keys by pointers [3]. A user should, for instance,

be able to instruct the functionality to encrypt message m
with the key corresponding to pointer ptr , where m itself
may contain pointers to keys; these keys can then travel
(securely) encapsulated in the ciphertext to m. This implies
that an ideal symmetric encryption functionality has to keep
track of who knows which keys and which keys have been
revealed, e.g., due to corruption or encryption with a previ-
ously revealed key. The functionality also has to provide
mechanisms for bootstrapping symmetric encryption. For
example, by such a mechanism it should be possible to
distribute symmetric keys using encryption under long-term
pre-shared keys or public-key encryption. Finally, one has
to deal with two technical problems: key cycles [23], [1]
and the commitment problem [3], [16], [21]. A key cycle
occurs if an encryption under k1 depends on a key k2 and
vice versa, e.g., k is encrypted under itself. In the context
of symmetric encryption, the commitment problem occurs
in the simulation-based approach if a key is revealed after
it was used to encrypt a message.

Contribution of this Paper. In this paper, we propose two
variants of an ideal functionality for symmetric encryption,
Funauth

senc and Fauth
senc . We show that Funauth

senc can be realized
by an encryption scheme iff the encryption scheme is IND-
CCA secure. We also prove equivalence between Fauth

senc and
an encryption scheme for authenticated encryption, i.e., an
IND-CPA and INT-CTXT secure encryption scheme [6]. In
both cases, we have to assume that the environment does
not use these functionalities in such a way that a key cycle
is produced or the commitment problem occurs. So, we
circumvent these two problems by assuming appropriate
environments. This approach was also taken by Backes and
Pfitzmann [3], who already pointed out that key cycles
and, assuming static corruption, the commitment problem
typically do not occur in applications. So, assuming such
environments seems to be justified for most applications.

The functionalities Funauth
senc and Fauth

senc currently contain
two mechanisms for bootstrapping symmetric encryption:
(authenticated and unauthenticated) encryption with long-
term symmetric keys as well as public-key encryption. These
bootstrapping mechanisms are added to our functionalities
in a modular way, by factoring them out in separate ideal
functionalities, Fltsenc and Fpke. In this way, these “boot-
strapping functionalities” can be realized separately and can
easily be extended and replaced. For example, we consider



both an authenticated and an unauthenticated version of
Fltsenc. Also, new bootstrapping mechanisms can be added
by adding new functionalities.

The functionality Fltsenc, we propose, allows two parties
to encrypt and decrypt messages in an ideal way under a
(long-term) shared key. The functionality Fpke is standard
(see, e.g., [13], [29], [17], [25]). It may be used by many
parties to (ideally) encrypt messages under a public-key
and by one party to decrypt such messages. We provide
realizations for Fltsenc, both for the authenticated and the
unauthenticated case, and joint state theorems; for Fpke

this was done in [25]. The joint state theorems guarantee
that in different protocol sessions the same long-term and
public/private keys may be used, provided that session iden-
tifiers are added to plaintexts before encryption. At the same
time it suffices to analyze only a single protocol session in
order to get security guarantees in a scenario with multiple,
concurrent sessions. We believe that the functionality Fltsenc

that we propose and the results shown for this functionality
are of independent interest.

Our functionalities Funauth
senc and Fauth

senc have applications
both in simulation- and game-based settings. In case of
static corruption, they tremendously simplify the analysis
and (modular) design of systems, e.g., cryptographic proto-
cols, that employ symmetric encryption: the often involved
reasoning about IND-CCA games for symmetric encryption
as well as IND-CPA and INT-CTXT games is made super-
fluous; this reasoning is done once and for all in the proofs
of the realizations of these functionalities. Using Funauth

senc

and Fauth
senc more abstract and simpler information theoretic

arguments now suffice. To illustrate these points, we use
Fauth

senc to show that a variant of the Amended Needham-
Schroeder Symmetric Key Protocol [28] realizes a key
exchange functionality. We also employ both Funauth

senc and
Fauth

senc to reprove and in some respects generalize theorems
on key indistinguishability and key usability properties of
so-called secretive protocols, introduced by Roy et al. [30],
[31], in the game-based approach. While the proofs of these
theorems were quite technical and involved, these theorems
are now immediate corollaries of our main theorems, namely
the realizations of Funauth

senc and Fauth
senc . We believe that our

functionalities are also useful for establishing new compu-
tational soundness results for symmetric encryption. But we
leave this as future work.

Our results are based on the recently proposed so-called
IITM model for simulation-based security [24]. While being
in the spirit of Canetti’s UC model [13], it has certain advan-
tages over the UC model, as demonstrated and discussed in
[24], [25]. Particularly relevant for this work is that while a
joint state theorem for public-key encryption was established
in the IITM model, there are several problems with the joint
state theorems in the UC model [25]. Putting these problems
aside, the results presented here would, however, also carry
over to the UC model.

Structure of this Paper. In the next section, we recall
the computational model for simulation-based security that
we use. The functionalities for bootstrapping symmetric
encryption are presented in Section III. The functionalities,
Funauth

senc and Fauth
senc , for symmetric encryption are then

introduced in Section IV, along with their implementation.
Applications are presented in Section V. Related work is
discussed in Section VI. Full definitions and proofs can be
found in our technical report [26].

II. SIMULATION-BASED SECURITY

In this section, we recall the IITM model for simulation-
based security [24]. Based on a relatively simple, but expres-
sive general computational model, in which so-called IITMs
(inexhaustible interactive Turing machines) and systems of
IITMs are defined, simulation-based security notions are for-
malized, and general composition theorems can be proven.
We point the reader to [24] for details of the IITM model.

A. The General Computational Model

Our general computational model is defined in terms of
systems of IITMs.

An inexhaustible interactive Turing machine (IITM) M is
a probabilistic polynomial-time Turing machine with input
and output tapes. Each tape has a name associated with
it. These names determine how IITMs are connected in a
system of IITMs. If an IITM sends a message on an output
tape named c, then only an IITM with an input tape named
c can receive this message. An IITM is activated with one
message on one of its input tapes and it writes at most one
output message per activation on one of the output tapes.
The runtime of the IITM per activation is polynomially
bounded in the security parameter, the current input, and
the size of the current configuration. This allows the IITM
to “scan” the complete incoming message and its complete
current configuration, and to react to all incoming messages,
no matter how often the IITM is activated. In particular, an
IITM cannot be exhausted, i.e., forced to stop (therefore the
name inexhaustible interactive Turing machine).1 An IITM
runs in one of two modes, CheckAddress (deterministic
computation) and Compute (probabilistic computation). The
CheckAddress mode will be used to address different copies
of IITMs in a system of IITMs (see below). This generic and
flexible addressing mechanism avoids to fix up-front details
of how an IITM is addressed. Such details are rather left to
the specification (of the CheckAddress mode) of the IITM
itself.

A system S of IITMs is of the form

S = M1 | · · · |Mk | !M ′1 | · · · | !M ′k′

where the Mi and M ′j are IITMs such that the names of
input tapes of different IITMs in the system are disjoint. We

1This is not so in the UC model, which causes the joint state theorem
to fail in that model, see [25].
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say that the machines M ′j , j ∈ {1, . . . , k′}, are in the scope
of a bang. In a run of S there may be an unbounded number
of copies of these machines, but only at most one copy of
the machines Mi, i ∈ {1, . . . , k}. We will consider so-called
well-formed systems, which, due to a syntactical condition,
are guaranteed to run in polynomial time [24].

In a run of S at every time only one IITM is active and all
other IITMs wait for new input; the first IITM to be activated
in a run of S is the so-called master IITM, of which a system
has at most one. The currently active machine may write at
most one message, say m, on one of its output tapes, say
c. This message is then delivered to an IITM with an input
tape named c. By definition of a system, at most one of the
machines M1, . . . ,Mk,M

′
1, . . . ,M

′
k′ in the specification of

S have an input tape named c, say M ′i has such a tape. Now,
since M ′i is in the scope of a bang, in the run performed so
far, there may be several copies of M ′i . In the order in which
these copies were generated in the run, these copies are run
in mode CheckAddress. The first of these copies to accept
m will then get to process m (in mode Compute). If no
such copy accepts m, a new copy of M ′i is generated (with
fresh random coins) and it is checked whether it accepts
m. If yes, this copy gets to process m (in mode Compute).
Otherwise, the copy is deleted and the master IITM in S is
activated. The master IITM is also activated if the currently
active IITM does not produce output. A run stops if the
master IITM after being activated does not produce output
(and hence, does not trigger another machine) or an IITM
outputs a message on a tape named decision. Such a message
is considered to be the overall output of the system.

Two well-formed systems P and Q are called indistin-
guishable (P ≡ Q) iff the difference between the probability
that P outputs 1 (on the decision tape) and the probability
that Q outputs 1 is negligible in the security parameter.

Given an IITM M , we will often use its identifier (ID)
version M to be able to address multiple copies of M . The
identifier version M of M is an IITM which simulates M
and acts as a “wrapper” around M . The wrapper requires
that all messages received have to be prefixed by a particular
ID, e.g., a session ID (SID) or party ID (PID); other
messages will be rejected in the CheckAddress mode. Before
giving a message to M , the wrapper strips off the ID.
Messages sent out by M are prefixed with this ID by the
wrapper. The ID that M will use is the one with which M
was first activated. We often refer to M by session version
or party version of M if the ID is meant to be a SID
or PID, respectively. For example, if M specifies an ideal
functionality, then !M denotes a system which can have an
unbounded number of copies of M , all with different SIDs.
Of course an ID version M of M can be considered, in
which a copy of M is effectively addressed by a tuple of
two IDs, e.g., an SID and a PID. Clearly, this can be iterated
further. Given a system S, its identifier (ID) version S is
obtained by replacing all IITMs in S by their ID version.

For example, we obtain S = M | !M ′ for S = M | !M ′.

B. Notions of Simulation-Based Security

We need the following terminology. For a system S, the
input/output tapes of IITMs in S that do not have a matching
output/input tape are called external. We group these tapes
into I/O and network tapes. We consider three different types
of systems, modeling real/ideal protocols/functionalities, ad-
versaries/simulators, and environments, respectively: Proto-
col systems and environmental systems are systems which
have an I/O and network interface, i.e., they may have
I/O and network tapes. Adversarial systems only have a
network interface. Environmental systems may contain a
master IITM. We can now define strong simulatability, other
equivalent security notions, such as black-box simulatability
and (dummy) UC can be defined in a similar way [24].

Definition 1 (Strong Simulatability). Let P and F be well-
formed protocol systems with the same I/O interface, the
real and the ideal protocol, respectively. Then, P realizes
F (P ≤ F) iff there exists an adversarial system S (a
simulator), which may only connect to the network interface
of F , such that the systems P and S |F have the same
external interface and for all environmental systems E ,
connecting only to the external interface of P (and hence,
S |F) it holds that E | P ≡ E | S |F .

We emphasize that in this definition, no specific address-
ing or corruption mechanism is fixed. This can be defined
in a rigorous, convenient, and flexible way as part of the
specifications of P and F .

C. Composition Theorems

We restate the composition theorems from [24]. The
first composition theorem handles concurrent composition
of a fixed number of protocol systems. The second one
guarantees secure composition of an unbounded number of
copies of a protocol system.

Theorem 1. Let P1,P2,F1,F2 be protocol systems such
that P1 and P2 as well as F1 and F2 only connect via
their I/O interfaces, P1 | P2 and F1 | F2 are well-formed,
and Pi ≤ Fi, for i ∈ {1, 2}. Then, P1 | P2 ≤ F1 | F2.

Theorem 2. Let P and F be well-formed protocol systems
such that P ≤ F . Then, !P ≤ !F .

Recall that in the above theorem P and F are the session
versions of P and F , respectively. The session versions
allow to address the different copies of F and P .

Theorems 1 and 2 can be applied iteratively, to get more
and more complex systems. For example, using that ≤ is
reflexive, we obtain the following corollary.

Corollary 1. Let Q,P,F be protocol systems such that
Q | !P and Q | !F are well-formed and Q only connects
to the I/O interface of !P and !F . Then, P ≤ F implies
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Q | !P ≤ Q | !F , i.e., Q using an unbounded number of
copies of P realizesQ using an unbounded number of copies
of F .

We say that a protocol P is a sub-protocol of Q if Q
shields P from the environment, i.e., Q connects to the full
I/O interface of P , disallowing the environment or other
protocols to connect to this I/O interface.

The above corollary is in the spirit of the UC composition
theorem. Unlike that theorem, we, however, do not required
that P is a sub-protocol of Q. This may yield simpler and
potentially more efficient implementations, e.g., in case of
global setups, for which the UC model had to be extended
[15].

III. BOOTSTRAPPING SYMMETRIC KEY ENCRYPTION

In this section, we briefly describe the two functionalities
Fpke and Fltsenc for bootstrapping symmetric key encryp-
tion, as mentioned in the introduction. Both functionalities
can handle an unbounded number of encryption and de-
cryption requests. Messages and ciphertexts are arbitrary
bit strings of arbitrary length. It is up to the user how
to interpret these bit strings, e.g., as payload data, party
names, nonces, ciphertexts (including ciphertexts previously
generated by the functionalities), digital signatures, hash
values, non-interactive zero-knowledge proofs, etc.

The functionalities take as a parameter what we call
a leakage algorithm L: a probabilistic polynomial time
algorithm which takes a security parameter η and a message
m as input and returns the information that may be leaked
about m. Typical examples are i) L(1η,m) = 0|m| and
ii) the algorithm that returns a random bit string of length
|m|. Both leakage algorithms leak exactly the length of
m. We call a leakage algorithm L length preserving if
Pr[|L(1η,m)| = |m|] = 1 for all η and m.

A. The Public-Key Encryption Functionality

We use the functionality Fpke proposed in [25] for
public-key encryption. This functionality can be used by
one decryptor and arbitrarily many encryptors. It provides
ideal encryption and decryption w.r.t. one public/private key
pair. The encryptors can invoke the functionality to ideally
encrypt messages (arbitrary bit strings) under the public-
key associated with the functionality. The decryptor can
invoke the functionality to decrypt ciphertexts under the
corresponding private key. A more detailed description of
the functionality can be found in [25]. The flavor of this
functionality is similar to the functionality Fltsenc described
below.

As shown in [25], a public key encryption scheme realizes
Fpke iff it is IND-CCA secure. Moreover, it is shown that
there is a joint state realization of Fpke, which distinguishes
Fpke from other functionalities for public-key encryption.

The functionalities Funauth
senc and Fauth

senc for symmetric
encryption under short-term keys will use the multi-party

version !Fpke of Fpke as part of their bootstrapping mech-
anism. The multi-party version provides public-key en-
cryption functionalities for an unbounded number of pub-
lic/private key pairs.

B. The Symmetric Encryption Functionality with Long-Term
Keys

The functionality Fltsenc allows two parties to establish a
shared symmetric key and to encrypt and decrypt messages
in an ideal way using this key. The key is meant to
model a long-term shared key which is never given to the
parties, but rather stays in the functionality. We consider
an authenticated and an unauthenticated version of Fltsenc,
denoted Fauth

ltsenc and Funauth
ltsenc , respectively. In the following

description of Fltsenc, we point out the differences between
the two versions of Fltsenc (see [26] for full details):

Initialization: Each party declares that it is willing
to exchange a key with the other party. This information
is forwarded to the (ideal) adversary who is required to
provide encryption and decryption algorithms, enc and dec
(which implicitly contain the long-term symmetric key).
These algorithms are later applied to process encryption
and decryption requests without further involvement of the
adversary. Upon providing the algorithms, the adversary also
decides whether or not it wants to corrupt the functionality
(static corruption).

We note that no restrictions at all are put on the encryption
and decryption algorithms provided by the adversary. All
security guarantees that Fltsenc provides are made explicit
in the description of Fltsenc in a rather syntactic way, without
relying on (semantic) properties of these algorithms. As a
result, when using Fltsenc in the analysis of more complex
systems, one can completely abstract from these algorithms.
The same is true for our formulations of Fpke and Fsenc.

Encryption request: If the functionality is requested by
one of the two parties to encrypt a message m (which may
be an arbitrary bit string), it will, in case the functionality
is not corrupted, encrypt the leakage L(1η,m) of m instead
of m itself, using enc. This results in some ciphertext c.
The functionality then stores the pair (m, c) and returns c to
the calling party. Note that, by construction, c leaks at most
L(1η,m) (e.g., the length of m).

In case the functionality is corrupted, the message m
(not its leakage) is encrypted using enc and the resulting
ciphertext is returned to the calling party. There is no need
to store the ciphertext. In other words, in the corrupted case,
the functionality does not provide security guarantees.

Decryption request: Upon a decryption request by one
of the two parties for a ciphertext c (which again may be an
arbitrary bit string), an uncorrupted functionality performs
the following actions: If the functionality has stored exactly
one pair (m, c) for some plaintext m, this plaintext is
returned. In case there is more than one such pair, an error
is returned since no unique decryption is possible. If there
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is none such pair, the following is done: In the authenticated
variant of Fltsenc (Fauth

ltsenc), which is supposed to model
authenticated encryption, an error message is returned since
it should not be possible to generate valid ciphertexts outside
of Fltsenc. In the unauthenticated variant of Fltsenc (Fauth

ltsenc),
c is decrypted with the decryption algorithm dec and the
result is returned to the calling party.

In case the functionality is corrupted, c is decrypted using
dec and the result is returned to the calling party.

Corruption?: The environment can ask whether or not
the functionality is corrupted. This capability is necessary for
the functionality to make sense. Otherwise the functionality
would be realizable with any (even insecure) encryption
scheme as a simulator could simply provide the encryption
and decryption algorithms of the encryption scheme and then
corrupt the functionality. However, if the environment can
ask for the corruption status, the simulator may only corrupt
the functionality if its realization is corrupted as well.

We point out that corruption as defined above models that
no ideal encryption/decryption is guaranteed, i.e., the func-
tionality simply encrypts and decrypts messages/ciphertexts
using the algorithms provided by the adversary. It does not
model that the party itself is corrupt or dishonest. The place
to capture this kind of corruption is one layer above, in the
specification of the protocol that uses the functionality. How-
ever, one could, alternatively, specify a corruption behavior
for Fltsenc that models that the adversary takes over the
functionality completely. We have, for example, chosen this
alternative in the specification of our public-key encryption
functionality [25]. Which corruption behavior to chose is a
matter of convenience and taste.

We also note that, similarly to Fpke, since in Fltsenc the
adversary provides the encryption and decryption algorithms
(supposedly with a symmetric key embedded), Fltsenc does
not model that the key is kept secret. The point is that if
Fltsenc is uncorrupted, i.e., has not been corrupted by the
adversary in the initialization step, then messages encrypted
using Fltsenc are encrypted ideally. By this, the confidential-
ity of plaintexts is guaranteed. Of course, in a realization of
Fltsenc, the symmetric key will be kept secret; it will never
leave the realization.

The functionalities Funauth
senc and Fauth

senc for symmetric
encryption under short-term keys will use the multi-party
version !Fltsenc of Fltsenc as part of their bootstrapping
mechanism. This multi-party version provides functionali-
ties for symmetric encryption with long-term keys for an
unbounded number of pairs of parties, with one instance of
Fltsenc per pair.

Realizing Fltsenc. We show that the unauthenticated and
authenticated versions, Funauth

ltsenc and Fauth
ltsenc, of Fltsenc ex-

actly capture standard notions of security for symmetric
encryption schemes.

A symmetric encryption scheme Σ = (gen, enc,dec)

induces a realization Pltsenc(Σ) of Fltsenc. This realization
relies on the ideal functionality Fkeysetup(gen), which pro-
vides pairs of parties with the same symmetric key, gener-
ated according to gen. The functionality Fkeysetup(gen) is
considered to be a sub-protocol of Pltsenc(Σ) and does not
have a network interface, and hence, the environment cannot
interact with it. This models that long-term symmetric keys
are, for example, manually stored on the respective systems
of the parties or provided by smart cards. Alternatively, one
could use a key exchange functionality Fke [5], [18].

More precisely, Pltsenc(Σ) is specified in the following
obvious way: In the initialization phase, Fkeysetup(gen) is
used to establish a shared symmetric key between the two
parties. In case of corruption, the symmetric key provided
by the adversary is used instead of the one delivered by
Fkeysetup(gen). Encryption and decryption requests for a
plaintext m or a ciphertext c are locally answered by simply
running the encryption and decryption algorithms of Σ on m
and c, respectively, in the obvious way. No extra randomness
or tags need to be added to the plaintexts and ciphertexts.

We obtain the following theorem, which states i) equiva-
lence between a symmetric encryption scheme being IND-
CCA secure and the realization of the unauthenticated
version Funauth

ltsenc of Fltsenc and ii) equivalence between a
symmetric encryption scheme being IND-CPA and INT-
CTXT secure and the realization of the authenticated version
Fauth

ltsenc of Fltsenc. (We refer the reader to [26] for the def-
initions of IND-CCA, IND-CPA, and INT-CTXT security.)
The theorem directly captures that the multi-party version
!Pltsenc(Σ) of Pltsenc(Σ) using Fkeysetup(gen) realizes the
multi-party version !Fltsenc of Fltsenc. The proof of the
following theorem is presented in [26].

Theorem 3. Let Σ = (gen, enc,dec) be a symmetric
encryption scheme and L be a leakage algorithm, which
leaks exactly the length of a message. Then, we obtain the
following equivalences, where the directions from left to
right hold for any length preserving leakage algorithm L.

1. Σ is IND-CCA secure iff

!Pltsenc(Σ) | Fkeysetup(gen) ≤ !Funauth
ltsenc (L) .

2. Σ is IND-CPA and INT-CTXT secure iff

!Pltsenc(Σ) | Fkeysetup(gen) ≤ !Fauth
ltsenc(L) .

We obtain a multi-session version of !Fltsenc(L) by
applying ‘ · ’ and ‘ !’ to !Fltsenc(L), resulting in the sys-
tem !( !Fltsenc(L)), which is the same as !Fltsenc(L). In
every run of this system there is (at most) one instance of
Fltsenc(L) per session and pairs of parties. Using Theorem 2,
we obtain as a direct consequence of the above theorem that
!Pltsenc(Σ) | !Fkeysetup(gen) ≤ !Fltsenc(L), i.e., the multi-
session version of Fltsenc(L) is realized by the multi-session
version of !Pltsenc(Σ) | Fkeysetup(gen). However, this real-
ization is impractical: If two parties use the functionality
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in different sessions, they have to use freshly generated
long-term keys for each session, since each session uses
a new instance of Fkeysetup(gen). We therefore also prove
a joint state theorem for Fltsenc, along the lines of the joint
state theorem for public-key encryption [25]. The purpose
of PJS

ltsenc is explained following the theorem.

Theorem 4. For every leakage algorithm L we have that

!PJS
ltsenc | !Fltsenc(L′) ≤ !Fltsenc(L) ,

where L′(1η, (sid ,m)) = (sid , L(1η,m)) for all SIDs
sid and messages m, and !Fltsenc(L′) is a sub-protocol
of !PJS

ltsenc. This holds for both Fltsenc = Fauth
ltsenc and

Fltsenc = Funauth
ltsenc .

The idea behind this theorem is as follows, where for
simplicity we ignore the leakage algorithms for now. In
!Fltsenc one instance of Fltsenc per session and pair of parties
can be generated. In particular, every pair of parties (p1, p2)
uses a new instance of Fltsenc for every session. In the
realization !PJS

ltsenc | !Fltsenc there is only one instance of
Fltsenc per pair of parties. This instance of Fltsenc handles
all sessions of this pair. The purpose of PJS

ltsenc is to act
as a multiplexer between these sessions; there is only one
instance of PJS

ltsenc per pair of parties. The multiplexer
PJS

ltsenc, say for the pair of parties (p1, p2), works as follows:
If the instance of PJS

ltsenc for (p1, p2) receives an encryption
request for message m (from p1 or p2) in a session with SID
sid , then PJS

ltsenc prefixes sid to m and forwards (sid ,m)
to the instance of Fltsenc associated with (p1, p2). If PJS

ltsenc

receives a decryption request in session sid , PJS
ltsenc first

forwards the ciphertext to the instance of Fltsenc associated
with (p1, p2) and then checks whether the resulting plaintext
is of the form (sid ,m), for some m. Intuitively, prefixing
messages by SIDs in this way guarantees that different
sessions do not interfere, even though they are handled by
one instance of Fltsenc.

Note that in the above theorem, L′ leaks the SID. This
is motivated by the fact that the SID is not considered to
be secret and an adversary might be able to tell in which
session a ciphertext was generated.

Together with Theorem 1 and Theorem 3, we immediately
obtain from Theorem 4:

!PJS
ltsenc | !Pltsenc(Σ) | Fkeysetup(gen) ≤ !Fltsenc(L) .

This realization is practical in the sense that two parties use
the same long-term symmetric key across all sessions, as all
these sessions use the same instance of Fkeysetup(gen).

The proof of Theorem 4, which can be found in [26], is
similar to the one for public-key encryption [25].

IV. THE SYMMETRIC KEY ENCRYPTION
FUNCTIONALITY

In this section, we describe the ideal functionalities
Funauth

senc and Fauth
senc for (authenticated) symmetric encryp-

tion, along with their realizations (see [26] for full details).

In what follows, we write Fsenc to refer to both Funauth
senc

and Fauth
senc .

Parties can use Fsenc to generate short-term keys and to
encrypt and decrypt messages and ciphertexts, respectively,
in an ideal way under these keys. Based on the bootstrap-
ping components described in Section III, Fsenc can also
be used for public key encryption (Fpke) and encryption
under long-term symmetric keys (Fltsenc). Just as for the
functionalities presented in Section III, Fsenc can handle an
unbounded number of encryption and decryption requests,
with messages/ciphertexts being arbitrary bit strings of ar-
bitrary length.

The distinguishing feature of Fsenc compared to Fltsenc

is that short-term keys may be part of the messages to be
encrypted (under other short-term keys, long-term keys or
public keys). This allows short-term keys to travel (securely).
However, as already mentioned in the introduction, the users
of Fsenc (or its realization) do not get their hands on the
actual short-term keys, but only on pointers to keys stored
in the functionality, since otherwise no security guarantees
could be provided. These pointers may be part of the
messages given to Fsenc for encryption. They take the form
(Key, ptr), where Key is a tag and ptr is the actual pointer
to a key. The tag is used to identify the bit string ptr as a
pointer. Before a message is actually encrypted, the pointers
are replaced by the keys they point to. Keys are written in
the form (Key, k), where k is the actual key. Again, the
tag Key is used to identify the bit string k as a key. Upon
decryption of a ciphertext, keys embedded in the plaintext
are first turned into pointers before the plaintext is given to
the user.

We note that instead of using tags for pointers and keys,
we could parametrize the functionalities with encoding and
decoding functions, for identifying pointers in a message
and turning them into keys, and vice versa. The security
guarantees that Fsenc provides are not affected by the details
of the encoding. For example, in applications in which the
positions of pointers/keys in a message are known, pointers
and keys could be extracted without relying on tags.

We next describe Fsenc and its realization in more detail.

A. The Ideal Functionality

The ideal functionality Fsenc handles the key genera-
tion, encryption, and decryption requests of an unbounded
number of parties. It also provides an interface to Fltsenc

and Fpke, for bootstrapping symmetric key encryption (see
Section III). Just as these two functionalities, Fsenc is
parametrized by a leakage algorithm L.

The functionality Fsenc has to keep track of which party
has access to which keys (via pointers) and which keys
are known to the environment/adversary, i.e., have been
corrupted or have been encrypted under a known key,
and as a result became known. For this purpose, Fsenc

maintains a set K of all short-term keys stored within the
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functionality, a set Kknown ⊆ K of known keys, a set
Kunknown := K \ Kknown of unknown keys, and a set of
corrupted keys Kcorrupt ⊆ Kknown. A partial function key
yields the key key(p, ptr) ∈ K pointer ptr points to for party
p. For ideal encryption and decryption, a table decTable(k)
is kept for every key k ∈ Kunknown. It records pairs of the
form (m, c), for a ciphertext c and its plaintext m. With these
data structures, Fsenc works as follows; differences between
Funauth

senc and Fauth
senc are pointed out where necessary.

Obtain encryption and decryption algorithm: Before
encryption and decryption can be performed, Fsenc expects
to receive an encryption and decryption algorithm from the
(ideal) adversary, say enc and dec, respectively. As in the
case of Fpke and Fltsenc, we do not put any restrictions on
these algorithms; all security guarantees that Fsenc provides
are made explicit within Fsenc in a rather syntactic way,
without relying on specific properties of these algorithms. As
a result, when using Fsenc in the analysis of more complex
systems, one can completely abstract from these algorithms.

(Short-term) key generation: A party p can ask Fsenc

to generate a key. This request is forwarded to the adversary,
who is expected to provide such a key, say k. The adversary
can decide to corrupt k right away (static corruption), in
which case k is added to Kknown and Kcorrupt. In case
the key is not marked corrupted, the functionality Fsenc

only accepts k if k does not belong to K, modeling that
k is fresh. In case k is corrupted, k still may not belong
to Kunknown (no key guessing). We emphasize that the
difference between Kknown and Kunknown is not whether
or not an adversary knows the value of a key; the adversary
knows this value anyway, since he provides these values in
the ideal world. The point is that if k ∈ Kunknown, messages
encrypted under k will be encrypted ideally, i.e., the leakage
of these messages is encrypted instead of the messages
itself. Conversely, if k ∈ Kknown, the actual messages are
encrypted under k. So, no security guarantees are provided
in this case. In the realization of Fsenc, however, keys
corresponding to keys in Kunknown will of course not be
known by the adversary.

After the key k has been provided by the adversary, a
pointer to this key is created for party p, if there does not
exist such a pointer already, and this pointer is given to p.
(The value of the pointer does not need to be secret. In fact,
new pointers are created by increasing a counter.)

Key generation requests for public/private keys and long-
term symmetric keys are simply forwarded to (instances of)
Fpke and Fltsenc, respectively.

Encryption request: We first consider encryption
with short-term keys. Such a request is of the form
(p,Enc, ptr ,m), where m is the message to be encrypted, p
is the name of the party who wants to encrypt m, and ptr is
a pointer to the key under which p wants to encrypt m. Upon
such a request, Fsenc first checks whether ptr is associated
with a key, i.e., whether k = key(p, ptr) is defined. Also,

this is checked for all pointers (Key, ptr ′) in m. If these
checks are successful, these pointers are replaced by their
corresponding keys (Key, k′), resulting in a message m′.
Then, if k ∈ Kunknown, the leakage L(1η,m′) of m′ is
encrypted under k using enc (the encryption algorithm pro-
vided by the adversary). If c denotes the resulting ciphertext,
the pair (m′, c) is added to decTable(k) and c is given to
p. If k ∈ Kknown, m′ itself is encrypted, resulting in some
ciphertext c. All keys in m′ are then added to Kknown, as
they have been encrypted under a known key. The ciphertext
c is given to p.

Encryption requests for public key encryption and long-
term symmetric key encryption are handled similarly. The
main difference is that the encryption of m′ is handled
by (an instance of) Fpke and Fltsenc, respectively. If such
an instance is corrupted (this can be checked by simply
asking about the corruption status), the keys stored in m′

are marked as known in Fsenc.
Decryption requests: For brevity, we only describe

decryption requests under short-term keys here; the cases
of public/private and long-term symmetric keys are handled
similarly using (instances of) Fpke and Fltsenc, respectively
(see [26] for full details). A decryption request for a short-
term key is of the form (p,Dec, ptr , c), where c is a
ciphertext, p is the name of the party who wants to decrypt c,
and ptr is a pointer to the key with which p wants to decrypt
c. Similarly to the case of encryption, it is first checked
whether k = key(p, ptr) is defined. Then, two cases are
distinguished:

i) If k ∈ Kunknown, it is checked whether there exists
exactly one m′ such that (m′, c) ∈ decTable(k). If so, the
keys (Key, k′) in m′ are turned into pointers (Key, ptr ′) for
p; for new keys, new pointers are generated. The resulting
message m is given to p. If there is more than one m′

with (m′, c) ∈ decTable(k), an error is returned, since
unique decryption is not possible. If there is no such m′, the
following is done: In Fauth

senc , an error message is returned,
since for authenticated encryption it should not be possible
to generate valid ciphertexts outside of the functionality. In
Funauth

senc , c is decrypted under k with dec (the decryption
algorithm provided by the adversary) and then the following
is done (∗): If the resulting plaintext m′ contains a key
(Key, k′) with k′ ∈ Kunknown, an error message is given to
p, modeling that this should not happen (no key guessing).
Otherwise, the keys (Key, k′) in m′ are turned into pointers
(Key, ptr ′) for p; for new keys, new pointers are generated
and these keys are marked as known. The resulting message
m is given to p.

ii) If k ∈ Kknown, c is decrypted under k with dec and
then Fsenc proceeds as in (∗) above.

Store and reveal requests: A party p can ask Fsenc to
store some bit string k as a key. If k belongs to Kunknown,
Fsenc will return an error message (no key guessing).
Otherwise, Fsenc creates a pointer to k for party p, if there
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does not exist such a pointer already, and this pointer is
given to p. (Note that there might already exist a pointer to
k in Fsenc if k ∈ Kknown.) The key k is added to Kknown.

A party p can ask Fsenc to reveal the bit string corre-
sponding to some pointer in which case Fsenc will return
this bit string to p and add it to Kknown.

Corrupted keys?: The environment can ask, for a party
p and a pointer ptr , whether the corresponding key, if any,
is corrupted, i.e., belongs to Kcorrupt. Similar questions
for public/private keys and long-term symmetric keys are
forwarded by Fsenc to (instances of) Fpke and Fltsenc.

This concludes the description of Fsenc. As explained for
encryption requests, if a message m is encrypted under a
known key (or by a corrupted Fpke or Fltsenc), then all keys
in m are marked known in Fsenc. Yet, if in an application
the ciphertext c for m is encrypted again under an unknown
key and c is always kept encrypted under an unknown key,
the keys in m might not be revealed from the point of view
of the application. While in such a case, Fsenc would be too
pessimistic concerning the known/unknown status of keys,
this case does typically not seem to occur: First, ciphertexts
are typically sent unencrypted at some point. We are, for
example, not aware of any authentication or key exchange
protocol where this is not the case (see, e.g., [10] for a
collection of such protocols). Second, if in a session of a
protocol symmetric keys known to the adversary are used,
then typically no security guarantees are provided for that
session anyway.

B. The Realization

A symmetric encryption scheme Σ = (gen, enc,dec)
induces a realization Psenc(Σ) of Fsenc in the obvious
way: Upon key generation, the adversary is asked whether
he wants to corrupt the key, in which case he provides
the key. Otherwise, the key is generated honestly within
Psenc(Σ) using gen(1η). Upon a request for encryption
under a short-term key of the form (p,Enc, ptr ,m), it is
first checked whether there is a key k corresponding to
ptr , then pointers in m are replaced by keys (just as in
Fsenc). Unlike Fsenc, the resulting message, say m′, is
then encrypted under k by running enc, i.e., enc(k,m′) is
returned to p as ciphertext. (Note that no extra randomness or
tagging is added.) Requests for encryption under long-term
symmetric keys or public keys are forwarded by Psenc(Σ)
to (instances of) Fltsenc and Fpke. Note that while Psenc(Σ)
still makes use of these ideal functionalities, using the
composition theorem, these functionalities can be replaced
by their realizations (see also Section IV-C). Requests for
decryption of ciphertexts under short-term keys, which are
of the form (p,Dec, ptr , c), are answered by decrypting c
under the key k corresponding to ptr (if any), i.e., dec(k, c)
is computed. If the decryption is successful and returns the
message m, then keys in m are replaced by pointers (with

possibly new pointers generated). The resulting message
is returned to p. Requests for decryption under long-term
symmetric keys or public keys are forwarded to (instances)
of Fltsenc and Fpke, respectively.

C. Main Results

We would like to prove that Psenc(Σ) realizes Funauth
senc

and Fauth
senc for standard assumptions about the symmetric

encryption scheme Σ, namely IND-CCA security and au-
thenticated encryption (IND-CPA and INT-CTXT security),
respectively. However, it is easy to see that such a theorem
does not hold in the presence of environments that may
produce key cycles or cause the commitment problem, as
mentioned in the introduction: It is well-known that standard
assumptions about symmetric encryption schemes are too
weak to deal with key cycles [8], [4]. Recall that in the
context of symmetric encryption, the commitment problem
occurs if a key is revealed after it was used to encrypt a
message. Before the key is revealed, messages encrypted
under this key are encrypted ideally by the simulator, i.e.,
the leakage of the message is encrypted by the simulator.
After the key has been revealed, the simulator would have
to come up with a key such that the ciphertexts produced
so far decrypt to the original messages. However, this is
typically not possible (see, e.g., [3]). As already mentioned
in the introduction, similarly to [3], we therefore restrict the
class of environments that we consider basically to those
environments that do not produce key cycles or cause the
commitment problem.

To formulate such a class of environments that captures
what is typically encountered in applications, we observe,
as was first pointed in [3], that once a key has been used
in a protocol to encrypt a message, this key is typically
not encrypted anymore in the rest of the protocol. Let
us call these protocols standard. This observation can be
generalized to used order respecting environments, which
we formulate based on Fsenc: In what follows, we say that
an unknown key k, i.e., k ∈ Kunknown, has been used
(for encryption), if Fsenc has been instructed to encrypt
a message under k. Now, an environment is used order
respecting if runs of the following form occur only with
negligible probability: An unknown key k used for the first
time at some point is encrypted itself by an unknown key
k′ used for the first time later than k. It is clear from this
definition that used order respecting environments produce
key cycles (among unknown keys) only with negligible
probability. (We do not need to prevent key cycles among
known keys.)

We say that an environment does not cause the commit-
ment problem, if runs of the following form occur only
with negligible probability: After an unknown key k has
been used to encrypt a message, k does not become known
later on in the run, i.e., is not added to Kknown. Assuming
static corruption of keys, it is easy to see that for standard
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protocols, as introduced above, the commitment problem
does not occur.

We can now state the main theorem of this paper, which
shows that realizing Funauth

senc (Fauth
senc ) by a symmetric en-

cryption scheme is equivalent to IND-CCA security (IND-
CPA and INT-CTXT security) of that scheme. In other
words, Funauth

senc and Fauth
senc exactly capture IND-CCA secure

and authenticated encryption, respectively. In the theorem,
stated below, instead of explicitly restricting the class of
environments described above, we introduce a functionality
F∗ that provides exactly the same I/O interface as Fsenc

(and hence, Psenc), but before forwarding requests to Fsenc

checks whether the used order is still respected and the
commitment problem is not caused. Otherwise, F∗ raises
an error flag and from then on blocks all messages, i.e.,
effectively stops the run. We need an unauthenticated and
an authenticated version of F∗, called F∗unauth and F∗auth.
The authenticated version, works as just described. For
the unauthenticated version, in the definition of used order
respecting environments, we consider an unknown key to
have been used also if it has successfully been used to
decrypt a message. Typical environments are used order
respecting also with respect to this new interpretation of
“used”. For example, protocols are typically standard (see
above) also with this interpretation of “used”. The proof of
the following theorem can be found in [26].

Theorem 5. Let Σ be a symmetric encryption scheme,
L be a leakage algorithm which leaks exactly the length
of a message, and Fbs = !Fltsenc(L) | !Fpke(L) be the
bootstrapping component. Then, for both Fltsenc = Fauth

ltsenc

and Fltsenc = Funauth
ltsenc , we have that

1. Σ is IND-CCA secure iff

F∗unauth | Psenc(Σ) | Fbs ≤ F∗unauth | Funauth
senc (L) | Fbs

and
2. Σ is IND-CPA and INT-CTXT secure iff

F∗auth | Psenc(Σ) | Fbs ≤ F∗auth | Fauth
senc (L) | Fbs .

We remark that in the above theorem, Fbs is a sub-
protocol of Fsenc and Fsenc is a sub-protocol of F∗.

We note that, by Theorems 1 and 2, the bootstrapping
component Fbs on the left-hand side of ≤ can be replaced by
its realization, where for Fltsenc we can use the realization
given in Theorem 3 and for Fpke the one proposed in [25].

Theorem 5 yields the following corollary, which gets rid
of the functionality F∗, assuming that Fsenc is used by what
we call a non-committing, used order respecting protocol. A
protocol system P that uses Fsenc is called non-committing,
used order respecting if the probability that in a run of
E | P |F∗ | Fsenc(L) | Fbs the functionality F∗ raises the
error flag, is negligible for any environment E , connecting to
both I/O and network interfaces. As mentioned above, most
protocols have this property and this can typically be easily

checked by inspection of the protocol. For example, in case
of static corruption, standard protocols (see above) are non-
committing and used order respecting; see also Section V-A
for an example.

Corollary 2. Let Σ, L, and Fbs be given as in Theorem 5.
Let P be a non-committing, used order respecting protocol
system. Then, for both Fltsenc = Fauth

ltsenc and Fltsenc =
Funauth

ltsenc , we have that
1. if Σ is IND-CCA secure, then

P |Psenc(Σ) | Fbs ≤ P |Funauth
senc (L) | Fbs

and
2. if Σ is IND-CPA and INT-CTXT secure, then

P |Psenc(Σ) | Fbs ≤ P |Fauth
senc (L) | Fbs .

V. APPLICATIONS

As mentioned in the introduction, Fsenc has applications
both in the simulation- and game-based setting. We now
illustrate the usefulness of Fsenc in these settings by two
examples. In what follows, let Fenc = Fsenc | Fbs, where
Fbs is the bootstrapping component (see Theorem 5). We
write Funauth

enc , if in Fenc we set Fsenc = Funauth
senc and

Fltsenc = Funauth
ltsenc ; analogously for Fauth

enc . We write Penc

for a realization of Fenc, as obtained in the previous sec-
tions. We write Punauth

enc if Penc is based on an IND-CCA
secure symmetric encryption scheme and Pauth

enc in case of
authenticated encryption.

A. Simulation-based Analysis of a Key Exchange Protocol

In this section, we analyze a variant of the Amended
Needham Schroeder Symmetric Key (ANSSK) protocol
[28]. Compared to ANSSK, our variant, which we call
ANSSK’, is augmented by a short-term key; the analysis of
the original ANSSK protocol is even simpler. The ANSSK’
protocol is depicted in Figure 1. We show that this protocol
realizes a key exchange functionality Fke = Fke(gen) in
case authenticated encryption is used. (In [26], we show
that this is not true if the encryption scheme is merely
IND-CCA secure.) Due to our main result (Section IV-C), it
suffices to show that ANSSK’ realizes Fke when encryption
and decryption is performed based on Fauth

enc . As we will
see, the use of Fauth

enc tremendously simplifies the analysis.
Also, we only need to analyze one protocol session. The
composition theorems and the joint state theorems for the
bootstrapping component then yield a practical realization
for multiple sessions of Fke, where session identifiers are
added to plaintexts before encryption.

In what follows, let Fke be a key exchange functional-
ity, as, for example, specified in [17]. This functionality
describes one session of an ideal key exchange between
two parties. It waits for key exchange requests from the two
parties and if the (ideal) adversary sends a complete message
for one party, this party receives the key generated within
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1. B → A : {A,Kb}Kbs

2. A→ S : A,B,Na, {A,Kb}Kbs

3. S → A : {Na, B,Kab, {Kab, A}Kb}Kas

4. A→ B : {Kab, A}Kb

Kas: long-term key between A and S
Kbs: long-term key between B and S
Kb: short-term key generated by B
Na: nonce generated by A
Kab: key generated by S, the session key to be estab-

lished between A and B
Figure 1. The ANSSK’ Protocol

Fke. Upon corruption of Fke, the adversary can determine
which key to give to a party.

Let P be a protocol system that describes one session of
ANSSK’, allows for static corruption of parties, and relies
on Fenc for encryption and decryption. It is straightforward
to specify P precisely. Since Kas , Kbs , and Kb are used for
encryption in the protocol, encryption and decryption under
these keys will be handled by Fenc. If a key is corrupted in
Fenc, P is specified in such a way that the corresponding
party (or parties in case of long-term keys) is considered
to be corrupted, i.e., the adversary takes full control over
this party. (Note that P can ask whether a key in Fenc

is corrupted.) For example, if Kb is corrupted, then so is
B, and if Kas is corrupted, then so are A and S. We
assume, similarly to formulations of key exchange protocols
by Canetti et al. (see, e.g., [17]), that the entities in P ,
i.e., initiator, responder, and server, are invoked with the
same pair (A,B), which tells each entity the names of the
parties which want to exchange a session key in that session.
This information could be exchanged at the beginning of a
protocol run as part of an ID for that session. It is easy
to see that P is a standard protocol (see Section IV-C), in
particular P is non-committing and used order respecting.

We obtain the following theorem, which says that the
ANSSK’ protocol when using ideal (authenticated) encryp-
tion, realizes the ideal key exchange functionality Fke.

Theorem 6. P |Fauth
enc ≤ Fke.

Before proving this theorem, we note that by the results of
Section IV-C, we immediately obtain the following corollary,
in which Fauth

enc is replaced by its realization Pauth
enc .

Corollary 3. P |Pauth
enc ≤ Fke.

This corollary says that the ANSSK’ protocol when
implemented with authenticated encryption realizes Fke.

The above theorem and corollary are only concerned with
a single protocol session. Security w.r.t. multiple sessions
follows immediately by Theorem 2. Together with The-
orem 6 we obtain !P | !Fauth

enc ≤ !Fke. In the realization
!P | !Fauth

enc of !Fke, P uses fresh long-term keys in every

session. However, the joint state theorem (Theorem 4) allows
us to replace !Fauth

ltsenc in !Fauth
enc by its joint state realization,

in which a single long-term key between two parties is
used across all sessions. Altogether, this realization of the
ANSSK’ protocol is secure (as a key exchange protocol) in
every polynomially bounded environment and no matter how
many copies of this protocol run concurrently, even if a pair
of parties uses the same long-term symmetric key across all
sessions.

Proof sketch of Theorem 6: We first need to define a
simulator: The simulator S simulates P |Fauth

enc and sends
a completion request to Fke if P outputs a key. Upon
corruptions of any party, the simulator can corrupt Fke and
then is free to complete with exactly the same key as in the
real world. Hence, in case of corruption nothing is to show.

For the uncorrupted case, first note that, by definition of
Fauth

enc , the only plaintexts returned by Fauth
enc upon decryp-

tion are the ones “inserted” upon encryption. (We can ignore
public-key encryption as it is not used in the protocol.) Now,
in every run of E | P |Fauth

enc (without corruption), we have: i)
Since P handles only a single protocol session, say between
A, B, and S, the instance of Fauth

ltsenc for {B,S} contains
at most the plaintext (A,Kb), the instance of Fauth

ltsenc for
{A,S} contains at most the plaintext (Na ′, B,Kab′, c), and
Fauth

senc contains at most the plaintext (Kab, A) for the key
Kb. (Here we use that, in the session we consider, the
instances of A, B, and S expect a key exchange between
A and B.) The latter two plaintexts were inserted by S,
hence, by definition of S, it follows that Kab = Kab′. ii)
Since we are in the uncorrupted case, Kb is initially marked
unknown in Fauth

senc , when created for B. Also, the instance
of Fauth

ltsenc for {B,S}, which is used to encrypt Kb, is
uncorrupted. It follows that Kb is always marked unknown.
Given this and the fact that the instance Fauth

ltsenc for {A,S} is
uncorrupted, the session key Kab is only encrypted ideally,
i.e., instead of the messages containing Kab only the leakage
of these messages are encrypted. Hence, E’s view on a run
is information theoretically independent of Kab. But then,
E cannot distinguish between the session key Kab output
by P in runs of E | P |Fauth

enc and the session key generated
and output by Fke in runs of E | S | Fke. Therefore, it is easy
to establish a one-to-one correspondence between the runs
of E | P |Fauth

enc and those of E | S | Fke. Thus, we obtain:
E | P |Fauth

enc ≡ E | S |Fke.
We emphasize that due to the use of Fenc, we did not

need to reason about IND-CPA and INT-CTXT games. We
also remark that, in the above proof, we did not use the
nonce Na in our argumentation (see Appendix A for more
on this point).

B. Theorems on Secretive Protocols in the Game-based
Approach

We now use Fenc for proving general theorems about
cryptographic protocols in a game-based setting. More
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specifically, Roy et al. [31], [30] define what they call
secretive protocols for key exchange protocols that rely on
symmetric encryption and that can be corrupted statically.
Intuitively, a protocol is secretive w.r.t. some key k, typically
the session key to be exchanged, if the key is only sent
“properly” encrypted. Roy et al. show that if in a secretive
protocol the key k is never used, then this guarantees key
indistinguishability for k, in the sense of Bellare et al. [7],
[5]. In case the key is used within the protocol (e.g., in
a key confirmation phase), IND-CCA key usability is still
guaranteed. IND-CCA key usability [22] means that k can
be used securely as a key in an IND-CCA game, i.e., an
adversary first interacting with the protocol and then with
the IND-CCA game, in which k is used as a key, has only
a 1/2 plus negligible chance of winning the game. Roy
et al. also prove that if in a protocol run of a secretive
protocol an honest party successfully decrypts a ciphertext
with k, then, with overwhelming probability, this ciphertext
originates from an encryption by an honest party.

In this section, we define secretive protocols and formulate
the mentioned theorems by Roy et al. in our setting. Using
Corollary 2, the proofs of these theorems are now very
simple; they do not require to reason about IND-CCA, IND-
CPA, or INT-CTXT games. These theorems can be applied
to many protocols, including the one discussed above, the
original ANSSK protocol, and Kerberos. While Roy et al. do
not consider public-key encryption, our theorems immedi-
ately extend to protocols that use public-key encryption, as
public-key encryption is supported by Fenc/Penc.

Let P be a protocol system that relies solely on public
key and symmetric encryption, uses Penc for this purpose,
and specifies an unbounded number of sessions of a key
exchange protocol.

Definition 2. A protocol system P as above is called
secretive if P is non-committing, used order respecting, and
for every environmental system E , which may connect to
the I/O and network interfaces of P |Fenc, it holds with
overwhelming probability that the session key in some un-
corrupted session picked by E is always marked unknown in
Fenc or, for key indistinguishability (where the session key
is not a short-term key in Fenc), has never been encrypted
by a corrupted instance of Fltsenc or Fpke, or keys marked
known in Fenc.

We note that Roy et al. did not assume the protocol to
be non-committing and used order respecting, but they also
needed to prohibit key cycles.

Key indistinguishability. Following Roy et al., for key
indistinguishability, we assume that session keys are never
used as keys in the protocol itself. Therefore, in the spec-
ification of P in our setting, these keys do not have to be
handled by Penc, they can rather be modeled as bit strings
outside of Penc, generated within P itself. We also assume

that P is such that an environment interacting with P may
pick a party in a complete and uncorrupted session, and then
obtains the corresponding session key output by that party.

Key indistinguishability for P can now be formulated as
follows in our setting: Consider an environmental system E
for P |Penc consisting of two subsystems. One subsystem,
call it A, interacts with P |Penc (both on the I/O and
network interfaces) and at some point picks a party in a
complete and uncorrupted session. The other subsystem,
which is the same for all A, call it T , receives the session
key output by that party and then gives this key or a
randomly generated key to A. The task of A is to decide
which key it was given. Then, T outputs 1 if A guessed
correctly, and 0 otherwise. Key indistinguishability for P
means that the probability that T outputs 1 is bounded above
1/2 by a negligible function in the security parameter for
every A.

We obtain the following analog of the theorem by Roy et
al. on key indistinguishability. Due to the use of Fenc, the
proof of this theorem is considerably simpler than the one
by Roy et al. In particular, we do not need to reason about
IND-CCA, IND-CPA, or INT-CTXT games.

Theorem 7. Let P be a secretive protocol as described
above. Then, P satisfies key indistinguishability. This holds
both in case P relies on Punauth

enc and on Pauth
enc for en-

cryption and decryption, i.e., for both IND-CCA secure and
authenticated encryption schemes.

Proof: Let E be an environmental system as described
for key indistinguishability. Since Penc is a realization of
Fenc, by Theorem 1, Corollary 2, and the transitivity of ≤
we know that there exists a simulator S such that:

E | P |Penc ≡ E |P | S |Fenc . (1)

Since P is secretive and E | S can be considered to be
an environment for P |Fenc, it follows that in runs of
E | P | S |Fenc, the session key, say k, output by the party
picked by A has never been encrypted by a corrupted
instance of Fpke or Fltsenc, or keys marked known in Fsenc.
Moreover, by assumption, we know that k is not used to
encrypt other messages. But then, from the definition of Fenc

it follows that k has always been encrypted ideally. Hence,
the view of A in runs of E | P | S |Fenc is independent of
the value of k. Consequently, the probability that T outputs
1 is exactly 1/2. By (1), the probability that T outputs 1 in
a run of E | P |Penc is bounded above 1/2 by a negligible
function, as desired.

Key usability. Let P be a protocol as above that uses Penc

for encryption and decryption, i.e., P uses an IND-CCA
secure or authenticated encryption scheme. For key usability,
unlike key indistinguishability, session keys may be used as
keys in the protocol. Therefore, in the specification of P ,
session keys will be treated as short-term keys within Penc.

11



As mentioned above, key usability for session keys estab-
lished in uncorrupted sessions means that these keys can be
used securely as keys in IND-CCA games, i.e., an adversary
first interacting with the protocol and then with the IND-
CCA game, in which a session key of an uncorrupted session
picked by the adversary is used as a key, has only a 1/2 plus
negligible chance of winning the game.

Following Roy et al., we want to show that secretive
protocols P imply key usability. Using Fenc this is very
simple: We first consider the experiment for key usability
described above in the case where Penc is replaced by
Fenc, i.e., Fenc is used both by P and the IND-CCA
game. Now, since P is secretive, it follows by definition of
secretive protocols that when running P with Fenc session
keys in uncorrupted sessions are marked unknown in Fenc.
Consequently, the session key used in the IND-CCA game
is marked unknown in Fenc. Hence, queries of the form
(m0,m1) to the left-right-oracle of the IND-CCA game are
answered by encrypting m0 or m1 ideally in Fenc, i.e., only
the leakage of m0/m1 is encrypted. Since m0 and m1 have
the same length, the leakage of m0 and m1 is the same. But
then it follows immediately that the adversary can only win
the IND-CCA game with probability 1/2.

Now, since Penc realizes Fenc, we can replace Fenc by
Penc, and it follows that the adversary can only win the
IND-CCA game with probability 1/2 plus some negligible
function. Hence, we obtain the following analog of the
theorem by Roy et al. on key usability (see Appendix B
for more details).

Theorem 8. Let P be a secretive protocol where the session
keys are never used to encrypt other short-term keys. Then,
P satisfies key usability. This holds both in case P relies on
Punauth

enc and in case P relies on Pauth
enc for encryption and

decryption, i.e., for both IND-CCA secure and authenticated
encryption schemes.

In the above theorem, we assume that a protocol does
not use a session key to encrypt other short-term keys.
This assumption is quite natural (all protocols that we have
encountered satisfy this property). However, the assumption
did not seem to be necessary in the work by Roy et al.
Our assumption guarantees that the environment remains
non-committing after the session key has been “given” to
the IND-CCA game. A more relaxed assumption would
guarantee this as well. Nevertheless, for simplicity we state
the theorem for this simpler assumption.

Ciphertext integrity. Similarly to the above theorems, we
obtain the following theorem for ciphertext integrity.

We allow session keys to be used within the protocol.
Therefore, in the specification of P , session keys will be
treated as short-term keys within Penc.

Ciphertext integrity under session keys for P can now be
formulated as follows in our setting: Consider an environ-

mental system E running with P |Penc which picks a party
in a complete and uncorrupted session. If a ciphertext is
successfully decrypted with the session key output by that
party but the ciphertext did not originate from an encryption
by an honest party, then E outputs 1. Note that this event
cannot be observed by E alone. However, within P this event
can be observed. It is easy to extend any P to say Pint

in which this event is observed and reported to E . Now,
P satisfies ciphertext integrity under session keys for every
environmental system E as just described if the probability
that in a run of E | Pint | Penc the bit 1 is output is negligible
in the security parameter.

Theorem 9. Let P be a secretive protocol. Then, P satisfies
ciphertext integrity under session keys. This holds in case
P relies on Pauth

enc for encryption and decryption, i.e.,
authenticated encryption schemes.

Proof: Let E be an environmental system as described
for ciphertext integrity. First it is easy to see that if P is
secretive, then so is Pint.

Now, since Penc is a realization of Fenc, by Theorem 1,
Corollary 2, and the transitivity of ≤ we know that there
exists a simulator S such that:

E | Pint | Penc ≡ E |Pint | S | Fauth
enc . (2)

Since Pint is secretive and E | S can be considered to be
an environment for Pint | Fauth

enc , it follows that in runs of
E | Pint | S | Fauth

enc , the session key picked by E is always
marked unknown in Fauth

enc . But then, from the definition of
Fauth

enc it follows that if a ciphertext successfully decrypts, it
must originate from an encryption of an honest party. Hence,
E never outputs 1 in a run with Pint | S | Fauth

enc . By (2), the
probability that E outputs 1 in a run with Pint | Pauth

enc is
negligible, as desired.

VI. RELATED WORK

Backes and Pfitzmann proposed a functionality for sym-
metric encryption within their cryptographic library [3]. This
library differs from our functionality in several aspects. The
main motivation for this library was to relate Dolev-Yao style
protocol analysis with cryptographic protocol analysis. For
this purpose, the user is provided with an abstract Dolev-
Yao style interface, which, except for payload data, never
provides the user with real bit strings, but only with pointers
to Dolev-Yao terms in the library. This allows for quite
abstract, Dolev-Yao style reasoning; protocol analysis has to
be carried out w.r.t. multiple sessions, though, as Backes and
Pfitzmann do not have a joint state theorem. The Dolev-Yao
style abstraction, however, comes with a price: All operations
on messages, not only encryption and decryption, but also
concatenation of messages, nonce generation, sending and
receiving of messages, etc. have to be performed via the
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library. Also, the realization of the library requires non-
standard assumptions about the encryption scheme; authen-
ticated encryption schemes do not suffice, extra randomness
as well as identifiers for symmetric keys have to be added.
Moreover, the realization of the library assumes specific
message formats: message tags are used for all types of
messages (nonces, ciphertexts, payloads, pairs of messages).
Altogether, based on the library only those protocols can
be analyzed which merely use operations provided by the
library and these protocols can only be shown to be secure
w.r.t. the non-standard encryption schemes and assuming the
specific message formats. Conversely, our symmetric key
functionalities provide less abstraction than the library by
Backes and Pfitzmann: Arbitrary messages (bit strings) can
be encrypted, where only pointers to keys are interpreted,
and real ciphertexts are returned to the user. But not only
are the interfaces of our functionalities less abstract, also
the treatment of plaintexts and ciphertexts inside the func-
tionalities is: Rather than performing abstract manipulations
on Dolev-Yao terms, actual encryption and decryption al-
gorithms are applied to bit strings. By being lower-level
functionalities the range of applications of our functional-
ities is broader and the analysis performed based on these
functionalities makes only standard cryptographic assump-
tions, IND-CCA security and authenticated encryption, with
almost no restriction on message formats or cryptographic
primitives used alongside symmetric encryption.

Other works concerned with abstractions of symmetric
encryption include [1], [27], [19]. However, these works do
not consider simulation-based security and, just as the work
by Backes and Pfitzmann, aim at computational soundness
of Dolev-Yao style reasoning. In the full version [20] of the
work by Comon-Lundh and Cortier [19], several examples
are presented pointing out a problem that forced the authors
to make the rather unrealistic assumption that the adversary
cannot fabricate keys, except for honestly running the key
generation algorithm. In other words, dishonestly generated
keys are disallowed. The authors pointed out that they
do not know how the problem that they encountered is
solved in the cryptographic library by Backes and Pfitzmann.
Indeed the examples by Comon-Lundh and Cortier suggest
that dishonestly generated keys also have to be forbidden
for the cryptographic library, in case symmetric encryption
is considered. We note that, in our setting, dishonestly
generated keys do not cause problems, since, as mentioned
above, our functionalities provide a lower level of abstraction
of symmetric encryption.

In [22], a formal logic that enjoys a computational, game-
based semantics is used to reason about protocols that use
symmetric encryption. In [21], Datta et al. prove that certain
variants of symmetric encryption cannot have realizable
ideal functionalities.

We finally mention the tool CryptoVerif [9] by Blanchet
for analyzing protocols that employ symmetric encryption

in a game-based cryptographic setting.
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APPENDIX A.
REMARKS ON THE ANALYSIS OF THE ANSSK’

PROTOCOL

In our argumentation in the proof of Theorem 6 we did
not use Na . In fact, this nonce is not needed. The reason
is that the analysis only involved a single session of the
protocol (see below). Nevertheless, by applying Theorem 2
we obtain from Theorem 6 that !P | !Fauth

enc ≤ !Fke, i.e.,
the multi-session version of P realizes ideal key exchanges
in multiple sessions. In this realization, P uses fresh long-
term keys in every session. However, we can apply the joint
state theorem (Theorem 4) for Fauth

ltsenc to replace !Fauth
ltsenc in

!Fauth
enc by a joint state realization. We obtain that

!P | !Fauth
senc | !PJS

ltsenc | !Fauth
ltsenc ≤ !Fke .

By the composition theorems (Theorem 1 and 2), Theo-
rem 3, Corollary 2, and transitivity of ≤ we finally obtain

!P | !Pauth
senc | !PJS

ltsenc | !Pauth
ltsenc ≤ !Fke .

As explained in Section III, in this realization SIDs are
embedded into plaintexts before encryption with long-term
keys. This is why P realizes Fke also for multiple concurrent
sessions, even if the nonce Na is dropped.

We note that one could show Theorem 6 directly for the
case that P and Fke handle multiple sessions. In this case,
one does not need to resort to the joint state realization. In
the analysis one would need to make use of Na . Altogether
the analysis would become more involved. However, using
Fenc it would still be fairly simple, in particular since
the arguments would be rather straightforward information
theoretically, without the need for considering IND-CCA
and INT-CTXT games, as this has been done once and
for all in proofs of the realizations of Fsenc and Fltsenc

(Theorems 3 and 5).

APPENDIX B.
KEY USABILITY FOR SECRETIVE PROTOCOLS

Let P be a protocol as in Section V-B that uses Penc

for encryption and decryption. To define key usability more
formally, we consider an extension P ′ of P . In P ′, an
environment interacting with P may pick a party, say p,
in a complete and uncorrupted session. As a result, P ′
will provide the environment with the pointer ptr to the
session key of party p in that session. Moreover, P ′ allows
the environment to encrypt and decrypt messages under the
key corresponding to the pointer ptr . However, the protocol
P stops. Hence, from now on, the environment can only
encrypt and decrypt messages under ptr using Penc.

Key usability for P can now be formulated as follows
in our setting: Consider an environmental system E for
P ′ | Penc consisting of two subsystems. One subsystem,
call it A, interacts with P ′ | Penc (both on the I/O and

network interfaces) and at some point picks a party p in
a complete and uncorrupted session. The pointer ptr to the
corresponding session key is given to the second subsystem
of E , call it T . From now on, A cannot interact with the
protocol anymore but only with T . Moreover, T can only
use P ′ as an interface to encrypt and decrypt messages
under the key corresponding to ptr in Penc. The subsystem
T , which is the same for all A, behaves like a left-or-
right oracle for encryption and decryption under the key
corresponding to ptr : T first randomly chooses a bit b. Upon
an encryption request from A of the form (m0,m1), where
m0,m1 are arbitrary bit strings of the same length, T uses
Penc to encrypt mb with the key corresponding to ptr , where
the encryption of m0 and m1 is done in such a way that the
bit strings m0 and m1 are encrypted exactly as they are,
without interpreted substrings of the form (Key, x), if any.
(This is possible using the store and reveal commands of
Fsenc, see [26] for details). Upon a decryption request from
A of the form c, where c is a bit string which has not been
returned by T before, T uses Penc to decrypt c with the
key corresponding to ptr , the resulting plaintext (if any) is
returned to A (again uninterpreted). The task of A is to
guess b. When A sends its guess b′ to T , T outputs 1 if
b′ = b, and 0 otherwise.

Now, key usability for P means that the probability that
T outputs 1 is bounded above 1/2 by a negligible function
in the security parameter for every A. This exactly captures
the notion of key usability in [22].

Proof Sketch of Theorem 8: Let E be an environmental
system as described for key usability. First, one can show
that E | P ′ is non-committing and used order respecting [26],
using that P has these properties.

Since Penc is a realization of Fenc, by Theorem 1,
Corollary 2, and the transitivity of ≤ we know that there
exists a simulator S such that:

E | P ′ | Penc ≡ E |P ′ | S | Fenc . (3)

Since P is secretive and E | S can be considered to be an
environment for P ′ | Fenc, it follows by the definition of P ′
that in the first phase in runs of E | P ′ | S | Fenc, where the
subsystem A of E interact with P , the session key picked by
A is always marked unknown in Fenc. This does not change
in the second phase, where A interacts with the subsystem
T of E . Hence, from the definition of Fenc it follows that
encrypt requests of the form (m0,m1) from A are answered
by T using Fenc as encryption of the leakage of mb. Since
the leakages of m0 and m1 have the same distribution, as m0

and m1 have the same length, no information about bit b is
revealed to A. Consequently, the probability that T outputs
1 is exactly 1/2. By (3), the probability that T outputs 1 in
a run of E | P ′ | Penc is bounded above 1/2 by a negligible
function, as desired.
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