
Joint State Theorems for Public-Key Encryption and Digital Signature
Functionalities with Local Computation

Ralf Küsters Max Tuengerthal

University of Trier, Germany
{kuesters,tuengerthal}@uni-trier.de

Abstract

Composition theorems in simulation-based approaches
allow to build complex protocols from sub-protocols in a
modular way. However, as first pointed out and studied
by Canetti and Rabin, this modular approach often leads
to impractical implementations. For example, when using
a functionality for digital signatures within a more complex
protocol, parties have to generate new verification and sign-
ing keys for every session of the protocol. This motivates to
generalize composition theorems to so-called joint state the-
orems, where different copies of a functionality may share
some state, e.g., the same verification and signing keys.

In this paper, we present a joint state theorem which is
more general than the original theorem of Canetti and Ra-
bin, for which several problems and limitations are pointed
out. We apply our theorem to obtain joint state realiza-
tions for three functionalities: public-key encryption, re-
playable public-key encryption, and digital signatures. Un-
like most other formulations, our functionalities model that
ciphertexts and signatures are computed locally, rather
than being provided by the adversary. To obtain the joint
state realizations, the functionalities have to be designed
carefully. Other formulations are shown to be unsuitable.
Our work is based on a recently proposed, rigorous model
for simulation-based security by Küsters, called the IITM
model. Our definitions and results demonstrate the expres-
sivity and simplicity of this model. For example, unlike
Canetti’s UC model, in the IITM model no explicit joint
state operator needs to be defined and the joint state the-
orem follows immediately from the composition theorem in
the IITM model.

1. Introduction

In the simulation-based security approach (see, e.g.,
[3, 4, 6, 7, 16, 18, 19, 20, 25]) the security of pro-
tocols and functionalities is defined w.r.t. ideal proto-

cols/functionalities. Composition theorems proved within
this approach guarantee secure concurrent composition of
a protocol with arbitrary other protocols, including copies
of itself. As a result, complex protocols can be built and
analyzed in a modular fashion. However, as first pointed
out and studied by Canetti and Rabin [14] (see the related
work), this modular approach often leads to impractical im-
plementations since the composition theorems assume that
different copies of a protocol have disjoint state. In particu-
lar, the random coins used in different copies have to be cho-
sen independently. Consequently, when, for example, using
a functionality for digital signatures within a more complex
protocol, e.g., a key exchange protocol, parties have to gen-
erate new verification and signing keys for every copy of
the protocol. This is completely impractical and motivates
to generalize composition theorems to so-called joint state
theorems, where different copies of a protocol may share
some state, such as the same verification and signing keys.

The main goal of this paper is to obtain a general joint
state theorem and to apply it to (novel) public-key encryp-
tion, replayable public-key encryption, and digital signature
functionalities with local computation. In these functionali-
ties, ciphertexts and signatures are computed locally, rather
than being provided by the adversary, a feature often needed
in applications.

Contribution of this paper. In a nutshell, our contribu-
tions include i) novel and rigorous formulations of ideal (re-
playable) public-key encryption and digital signature func-
tionalities with local computation, along with their imple-
mentations, ii) a joint state theorem which is more general
than other formulations and corrects flaws in these formu-
lations, and iii) based on this theorem, joint state realiza-
tions and theorems for (replayable) public-key encryption
and digital signatures. Unfortunately, all other joint state
theorems claimed in the literature for such functionalities
with local computation can be shown to be flawed. An over-
all distinguishing feature of our work is the rigorous treat-
ment, the simplicity of our definitions, and the generality of

our results, which is due to the expressivity and simplicity
of the model for simulation-based security that we use, the
IITM model [20]. For example, unlike Canetti’s UC model,
in the IITM model no explicit joint state operator needs to
be defined and the joint state theorem follows immediately
from the composition theorem of the IITM model. More
precisely, our contributions are as follows.

We formulate three functionalities: public-key encryp-
tion, replayable public-key encryption, and digital signa-
tures. Our formulation of replayable public-key encryption
is meant to model in a simulation-based setting the recently
proposed notion of replayable CCA-security (RCCA secu-
rity) [11]. This relaxation of CCA-security permits any-
one to generate new ciphertexts that decrypt to the same
plaintext as a given ciphertext. As argued in [11], RCCA-
security suffices for most existing applications of CCA-
security. In our formulations of the above mentioned func-
tionalities ciphertexts and signatures are determined by lo-
cal computations, and hence, as needed in many applica-
tions, a priori do not reveal signed messages or ciphertexts.
In other formulations, e.g., those in [14, 5, 1, 11, 17], sig-
natures and ciphertexts are determined by interaction with
the adversary. This has the disadvantage that the adver-
sary learns all signed messages and all ciphertexts. Hence,
such functionalities cannot be used, for example, in the con-
text of secure message transmissions where a message is
first signed and then encrypted, or in protocols with nested
encryptions. Although there exist formulations of non-
replayable public-key encryption and digital signature func-
tionalities with local computation in the literature, these for-
mulations have several deficiencies, in particular, as men-
tioned, concerning joint state realizations (see below).

We show that a public-key encryption scheme imple-
ments our (replayable) public-key encryption functionality
if and only if it is CCA-secure (RCCA-secure), for a stat-
ically corruptible decryptor and adaptively corruptible en-
cryptors. We also prove equivalence between EU-CMA se-
curity of digital signatures schemes and our digital signa-
ture functionality, with adaptive corruption of both signer
and verifiers.

In the spirit of Canetti and Rabin [14], we state a general
joint state theorem. However, in contrast to Canetti’s orig-
inal UC model as employed in [14] and his new UC model
[6], within the IITM model we do not need to explicitly de-
fine a specific joint state operator. Also, our joint state the-
orem, unlike the one in the UC model, immediately follows
from the composition theorem in the IITM model, no extra
proof is needed. In addition to the seamless treatment of the
joint state theorem within the IITM model, which exempli-
fies the simplicity and expressivity of the IITM model, our
theorem is even more general than the one in [14, 6] (see
Section 3). We also note in Section 3 that, due to the kind
of ITMs used in the UC model, the assumptions of the joint

state theorems in the UC models can in many interesting
cases not be satisfied and in cases they are satisfied, the the-
orem does not necessarily hold true.

We apply our general joint state theorem to obtain joint
state theorems for our (replayable) public-key encryption
and digital signature functionalities. These joint state theo-
rems are based on our ideal functionalities alone, and hence,
work for all implementations of these functionalities. As
mentioned, all other joint state theorems claimed in the lit-
erature for such functionalities with local computation are
flawed.

Related work. As mentioned, Canetti and Rabin [14] were
the first to explicitly study the problem of joint state, based
on Canetti’s original UC model [4]. They propose a joint
state theorem and apply it to a digital signature functional-
ity with non-local computation (see also [1, 13]), i.e., the
adversary is asked to provide a signature for every message.
While the basic ideas in this work are interesting and useful,
their joint state theorem, as mentioned, has several prob-
lems and limitations, which are mainly due to the kind of
ITMs used (see Section 3).

In [6], Canetti proposes functionalities for public-key en-
cryption and digital signatures with local computation. He
sketches a functionality for replayable public-key encryp-
tion in a few lines. However, this formulation only makes
sense in a setting with non-local computation, as proposed
in [11]. As for joint state, Canetti only points to [14],
with the limitations and problems inherited from this work.
Moreover, as further discussed in Section 5, the joint state
theorems claimed for the public-key encryption and digital
signature functionalities in [6] are flawed. The same is true
for the work by Canetti and Herzog in [9], where another
public-key encryption functionality with local computation
is proposed and a joint state theorem is claimed.

We note that, despite the problems with the joint state
theorem and its application in the UC model pointed out in
this work, the basic ideas and contributions in that model
are important and useful. However, we believe that it is
crucial to equip that body of work with a more rigorous and
elegant framework. This is one of the (non-trivial) goals of
this work.

Within simulation-based models, realizations of proto-
cols with joint state across sessions were, for example, pro-
posed in [10, 23, 12, 24].

Backes, Pfitzmann, and Waidner [2] consider imple-
mentations of digital signatures and public-key encryp-
tions within their so-called cryptographic library, which re-
quires somewhat non-standard cryptographic constructions
and does not provide the user with the actual signatures and
ciphertexts. Within their proofs they use a public-key en-
cryption functionality proposed by Pfitzmann and Waidner
[25]. Joint state theorems are not considered in these works.
In fact, joint state theorems talk about copies of protocols,

but the results of Backes, Pfitzmann, and Waidner are based
on a version of the PIOA model which does not explicitly
handle copies of protocols [25, 3].

Functionalities for digital signatures and public-key en-
cryption with non-local computation, i.e. where signatures
and ciphertexts are provided by the adversary, have been
proposed in [5, 1, 4, 17]; however, joint state theorems have
not been proven in these papers.

In [8], Canetti et al. study simulation-based security with
global setup. We note that they have to extend the UC model
to allow the environment to access the functionality for the
global setup. In the IITM model, this is not necessary. The
global setup can be considered as joint state. But it is joint
state among all entities, unlike the joint state settings con-
sidered here, where the joint state is only shared within
copies of functionalities. Therefore the results proved in
[8] do not apply to the problem studied in this paper.

Structure of the paper. In the following section, we briefly
recall the IITM model. The general joint state theorem
is presented in Section 3, along with a discussion of the
joint state theorem of Canetti and Rabin [14]. In Sec-
tion 4, we present our formulations of the functionalities for
(replayable) public-key encryption and digital signatures.
Joint state realizations of these functionalities are presented
in Section 5, including a comparison with other formula-
tions in the literature. Full details and more explanations
can be found in our technical report [22].

2. The IITM Model

In this section, we briefly recall the IITM model for
simulation-based security (see [20, 21] for details). Based
on a relatively simple, but expressive general computa-
tional model in which IITMs and systems of IITMs are de-
fined, simulation-based security notions are formalized, and
a general composition theorem is stated. The IITM model
has several features which are important prerequisites for
the generality and simplicity of our definitions and results.
Among others, these features include i) a generic addressing
mechanism which does not fix details of how copies of ma-
chines are addressed, e.g., in terms of a specific use of ses-
sion and party IDs, ii) inexhaustible ITMs (IITMs) which
can be activated an unbounded number of times without ex-
hausting their resources and whose runtime may depend on
the length of their input, iii) a compact and flexible nota-
tion for systems of IITMs, and iv) a general composition
theorem.

2.1. The General Computational Model

We first define IITMs and then systems of IITMs. We
note that this general computational model is also useful in
contexts other than simulation-based security [15].

Syntax of IITMs. An (inexhaustible) interactive Turing
machine (IITM, for short, or simply ITM) M is a proba-
bilistic Turing machine with input and output tapes. These
tapes have names and, in addition, input tapes have an at-
tribute with values consuming or enriching (see below for
an explanation). We require that different tapes of M have
different names. The names of input and output tapes deter-
mine how IITMs are connected in a system of IITMs. If an
IITM sends a message on an output tape named c, then only
an IITM with an input tape named c can receive this mes-
sage. An IITM with an (enriching) input tape named start,
is called a master IITM. It will be triggered if no other IITM
was triggered. An IITM is triggered by another IITM if
the latter sends a message to the former. Each IITM comes
with an associated polynomial q which is used to bound the
computation time per activation and the length of the overall
output produced by the IITM (see below).

Computation of IITMs. An IITM is activated with one
message on one of its input tapes and it writes at most one
output message per activation on one of the output tapes.
The runtime of the IITM per activation is polynomially
bounded in the security parameter, the current input, and
the size of the current configuration. This allows the IITM
to “scan” the complete incoming message and its complete
current configuration, and to react to all incoming mes-
sages, no matter how often the IITM is activated. In par-
ticular, an IITM cannot be exhausted (therefore the name
inexhaustible interactive Turing machine). The length of the
configuration and the length of the overall output an IITM
can produce is polynomially bounded in the security param-
eter and the length of the overall input received on enrich-
ing input tapes so far, i.e., writing messages on these tapes
increases the resources (runtime, potential size of the con-
figuration, and potential length of the output) of the IITM.
An IITM runs in one of two modes, CheckAddress (deter-
ministic computation) and Compute (probabilistic compu-
tation). The CheckAddress mode will be used to address
different copies of IITMs in a system of IITMs (see below).
This is a very generic and flexible addressing mechanism:
Details of how an IITM is addressed are not fixed up-front,
but are left to the specification of the IITM itself.

Systems of IITMs. A system S of IITMs is of the
form M1 ‖ . . . ‖Mk ‖ !M ′1 ‖ . . . ‖ !M ′k′ (we use the nor-
mal form representation here) where the Mi and M ′j are
IITMs such that different IITMs have disjoint sets of names
of input tapes, and hence, the output tape of one IITM con-
nects to at most one input tape of another IITM. We say
that the machines M ′1, . . . ,M

′
k′ are in the scope of a bang.

While machines outside the scope of a bang occur at most
once in a run of a system, for those in the scope of a bang
arbitrarily many copies (with fresh randomness) can be gen-
erated.

More precisely, in a run of S at any time only one IITM,
say a copy of some M in S, is active and all other IITMs
wait for new input. The active machine may write at most
one message, say m, on one of its output tapes, say c. This
message is then delivered to an IITM with an input tape
named c. There may be several copies of an IITM M ′

in S with an input tape named c. In the order in which
these copies were generated, these copies are run in mode
CheckAddress. The first of these copies to accept m will
process m in mode Compute. If no copy accepts m, it
is checked whether a newly generated copy of M ′ (if M ′

is in the scope of a bang), would accept m. If yes, this
copy gets to process m. Otherwise, the master IITM in S
is activated. The master IITM is also activated if the cur-
rently active IITM did not produce output. A run stops if
the master IITM does not produce output (and hence, does
not trigger another machine) or an IITM outputs a message
on a tape named decision. Such a message is considered
to be the overall output of the system. We will consider
only so-called well-formed systems [20], which satisfy a
simple condition, namely, acyclicity w.r.t enriching tapes,
that guarantees polynomial runtime and suffices for appli-
cations since it allows to always provide sufficient resources
to IITMs via enriching tapes (see Section 2.2).

We write Prob[S(1η, a) 1] to denote the probabil-
ity that the overall output of a run of S with security pa-
rameter η and auxiliary input a for the master IITM is 1.
Two well-formed systems P and Q are called equivalent
(P ≡ Q) iff the function f(1η, a) = |Prob[P(1η, a)
1]− Prob[Q(1η, a) 1]| is negligible, i.e., for all polyno-
mials p and q there exists η0 ∈ N such that for all η > η0
and all bit strings a ∈ {0, 1}∗ with length |a| ≤ q(η) we
have that f(1η, a) ≤ 1

p(η) .

Given an IITM M , we will often use its identifier ver-
sion M to be able to address multiple copies of M . The
identifier version M of M is an IITM which simulates M
within a “wrapper”. The wrapper requires that all mes-
sages received have to be prefixed by a particular identi-
fier, e.g., a session ID (SID) or party ID (PID); other mes-
sages will be rejected in the CheckAddress mode. Before
giving a message to M , the wrapper strips off the identi-
fier. Messages sent out by M are prefixed with this iden-
tifier by the wrapper. The identifier that M uses is the one
with which M was first activated. We often refer to M by
session version or party version of M if the identifier is
meant to be a SID or PID, respectively. For example, if M
specifies an ideal functionality, then !M denotes a system
which can have an unbounded number of copies of M , all
with different SIDs. If M specifies the actions performed
by a party in a multi-party protocol, then !M specifies the
multi-party protocol where every copy of M has a differ-
ent PID. Note that one can consider an identifier version
M of M , which effectively means that the identifier is a

tuple of two identifiers. Of course, this can be iterated fur-
ther. Given a system S as above, its identifier version S is
M1 ‖ . . . ‖Mk ‖ !M ′1 ‖ . . . ‖ !M ′k′ . Note that for all i, all
copies of M ′i in a run of S will have different identifiers.

2.2. Notions of Simulation-Based Security

To define security notions for simulation-based security
based on the general computational model from above, we
need some terminology.

For a system S, the input/output tapes of IITMs in S
that do not have a matching output/input tape are called
external. We group these tapes into I/O and network
tapes. We consider three different types of well-formed sys-
tems, modeling real/ideal protocols/functionalities, adver-
saries/simulators, and environments, respectively: Protocol
systems are well-formed systems whose IITMs have con-
suming network and enriching I/O tapes. This is w.l.o.g., as
sufficient resources can always be provided by an environ-
ment via the I/O tapes, e.g., to forward messages between
the network and I/O interface (see below). Adversarial sys-
tems are well-formed systems whose IITMs may have en-
riching tapes. Environmental systems are well-formed sys-
tems whose IITMs have only consuming tapes. They may
use the special tapes start and decision, i.e., an environ-
mental system may contain a master IITM and determines
the overall output of a system run. It is easy to see that
combinations of these systems are again well-formed.

Two systems are called compatible if they have the same
set of I/O and network tapes, they are called I/O-compatible
if they have the same set of I/O tapes and disjoint sets of
network tapes. A system is called connectible for another
system if each common external tape has the same type in
both (network or I/O) and complementary directions (input
or output). A system S is adversarially connectible forQ if
S is connectible forQ and S connects only to network tapes
ofQ. A system S is environmentally connectible forQ if S
is connectible for Q and S connects only to I/O tapes of Q.
Note that this relationship is symmetric. We write P |Q, to
make sure thatP andQ communicate only via their external
tapes (if necessary internal tapes are renamed).

Definition 1. Let P and F be I/O compatible protocol sys-
tems, the real and the ideal protocol, respectively. Then, P
SS-realizes F (P ≤SS F , “SS” stands for strongly simu-
lates) iff there exists an adversarial system S adversarially
connectible for F such that P and S |F are compatible and
for all environmental systems E which are connectible for
P it holds that E | P ≡ E | S |F .

In a similar way, other equivalent security notions such
as black-box simulatability and (dummy) UC can be de-
fined [20]. We emphasize that in these and the above def-
initions, no specific addressing or corruption mechanism is

fixed. This can be defined in a rigorous, convenient, and
flexible way as part of the real/ideal protocol specifications,
as illustrated in Section 4.

Processing arbitrarily many messages of arbitrary
length. We note that protocol systems can process and for-
ward arbitrarily many messages of arbitrary length received
via the I/O interface (and hence, enriching tapes) because of
our definition of polynomial time (see Section 2.1). In par-
ticular, our functionalities for encryption and signing can
be used to encrypt/sign an unbounded number of messages,
each of arbitrary length.

Since the network interface of protocol systems uses
consuming tapes it is not a priori possible to process arbi-
trarily many messages of arbitrary length coming from the
network interface. However, this is no loss of expressivity.
The following solution is always possible: A functionality
can be defined in such a way that before it accepts (long)
input from the network interface, it expects to receive in-
put (resources) from the environment on the I/O interface,
e.g., on a designated “resource tape”. Note that the envi-
ronment controls part of the I/O interface, including the re-
source tape, and the complete network interface.1 Hence,
right before the environment wants to send long messages
via the network interface, it can simply provide enough re-
sources via the I/O interface. The environment does not
have to be specified explicitly, since in the security notions
one quantifies over all environments. This generic mecha-
nism of providing resources via the I/O interface can always
be employed to guarantee enough resources. In complex
systems these resources can travel from super-protocols to
the sub-protocol which needs these resources. For example,
we employ this mechanism for dealing with corruption (see
Section 4), where arbitrarily many and arbitrary long mes-
sages have to be forwarded from the network interface to
the I/O interface.

An alternative to declaring network interfaces to consist
of consuming tapes, is to use enriching tapes. However, this
leads to more involved security notions and more complex
restrictions for composing protocols (see, e.g., [19, 20]).
Whether or not to use this alternative is a matter of taste.

2.3. Composition Theorems

We restate the composition theorems from [20]. The first
composition theorem handles concurrent composition of a
fixed number of protocol systems. The second one guaran-
tees secure composition of an unbounded number of copies
of a protocol system.

1In other security notion, e.g., black-box and (dummy) UC, an adver-
sary controls the network interface. However, adversary and environment
can freely communicate, and hence, coordinate their actions, which effec-
tively gives the environment full access to the network interface.

Theorem 1. ([20]) Let P1,P2,F1,F2 be protocol systems
such that P1/F1 is environmentally connectible for P2/F2

(and hence, vice versa), P1 | P2 and F1 | F2 are well-
formed, and Pi ≤SS Fi, for i = 1, 2. Then, P1 | P2 ≤SS

F1 | F2. (Note that an environment may connect to the free
I/O tapes of both systems.)

Theorem 2. ([20]) Let P,F be protocol systems such that
P ≤SS F . Then, !P ≤SS !F . (Recall that P/F is the
session version of P/F .)

This theorem cannot only be interpreted as yielding
multi-session realizations from single session realizations,
but also as providing multi-party realizations from single
party realizations (when P and F are considered as multi-
party versions).

As an immediate consequence of the above theorems and
using that ≤SS is reflexive, we obtain:

Corollary 1. Let Q,P,F be protocol systems such that
Q | !P and Q | !F are well-formed, Q is environmentally
connectible for !P and !F , and P ≤SS F . Then,
Q | !P ≤SS Q | !F , i.e., Q using an unbounded number
of copies of P realizes Q using an unbounded number of
copies of F .

Iterated application of Theorem 1 and 2 allows to con-
struct very complex systems, e.g., protocols using several
levels of an unbounded number of copies of sub-protocols.
Unlike the UC model, super-protocols can directly access
sub-protocols across levels. This may yield simpler and
potentially more efficient implementations, e.g., in case of
global setups, for which the UC model had to be extended
[8].

3. The Joint State Theorem

In this section, we present our general joint state theorem
along the lines of the theorem by Canetti and Rabin [14].
However, as we will see, in the IITM model, the theorem
can be stated in a much more elegant and general way, and
it follows immediately from the composition theorem. We
also point out problems of the joint state theorem by Canetti
and Rabin.

Let us first recall the motivation for joint state from the
introduction, using the notation from the IITM model. As-
sume that F is an ideal protocol (formally, a protocol sys-
tem) that describes an ideal functionality used by multiple
parties in one session. For example, F = !F ′ could be a
multi-party version of a single party functionality F ′, e.g.,
a public-key encryption or signature box. Assume that the
protocol P realizes F , i.e., P ≤SS F , and that P is of the
form !P ′, where P ′ is the party version of some P ′, i.e.,
each copy of P ′ in !P ′ is “owned” by one party. Now, by

Theorem 2, we have that !P ′ = !P ≤SS !F (note that ! !Q
is equivalent to !Q), i.e., the multi-session version of P re-
alizes the multi-session version of F . Unfortunately, in the
realization !P of !F , one new copy of P ′ is created per
party per session. This is impractical. For example, if P/F
are functionalities for public-key encryption, then in !P ′
every party has to create a new key pair for every session.

To allow for more efficient realizations, Canetti and Ra-
bin [14] introduce a new composition operation, called uni-
versal composition with joint state (JUC), which takes two
protocols as arguments: First, a protocol Q, which uses
multiple sessions with multiple parties of some ideal func-
tionality F , i.e., Q works in an F-hybrid model, and sec-
ond, a realization P̂ of F̂ , where F̂ is a single machine
which simulates the multi-session multi-party version of F .
In the IITM model, instead of F̂ , one could simply write
!F , and require that P̂ ≤SS !F . However, this cannot di-
rectly be formulated in the UC model. In the resulting JUC
composed protocol Q[bP], calls from Q to F are translated
to calls to P̂ where only one copy of P̂ is created per party
and this copy handles all sessions of this party, i.e., P̂ may
make use of joint state. The general joint state theorem in
[14] then states that if P̂ realizes F̂ , thenQ[bP] realizesQ in
the F-hybrid model.

An analog of this theorem can elegantly and rigorously
be stated in the IITM model as follows:

Theorem 3. Let Q, P̂,F be protocol systems such that
Q | P̂ and Q | !F are well-formed, Q is environmentally
connectible for P̂ and !F , and P̂ ≤SS !F . Then,Q | P̂ ≤SS

Q | !F .

Proof. By Theorem 1 and the reflexivity of ≤SS , we con-
clude from P̂ ≤SS !F that Q | P̂ ≤SS Q | !F .

The fact that Theorem 3 immediately follows from The-
orem 1 shows that in the IITM model, there is no need for
an explicit joint state theorem. The reason it is needed in
the UC model lies in the restricted expressivity it provides
in certain respects: First, one has to define an ITM F̂ , and
cannot simply write !F , as multi-party, multi-session ver-
sions only exist as part of a hybrid model. In particular,
P̂ ≤SS !F cannot be stated directly. Second, the JUC oper-
ator has to be defined explicitly since it cannot be directly
stated that only one instance of P̂ is invoked by Q; in the
IITM model we can simply write Q | P̂ . Also, a composi-
tion theorem corresponding to Theorem 1, which is used to
show that P̂ can be replaced by !F , is not directly available
in the UC model, only a composition theorem correspond-
ing to Corollary 1. (To obtain a theorem similar to Theo-
rem 1, in the UC model one has to make sure that only one
instance is invoked by Q.) Finally, due to the addressing
mechanism employed in the UC model, redirection of mes-
sages have to be made explicit. While all of this makes it

necessary to have an explicitly stated joint state theorem in
the UC model, due to the kind of ITMs employed in the UC
model, there are also problems with the joint state theorem
itself (see below).

We note that despite the trivial proof of Theorem 3 in the
IITM model (given the composition theorem), the statement
that Theorem 3 makes is stronger than that of the joint state
theorem in the UC model [14, 6]. Inherited from our com-
position theorems, and unlike the theorem in the UC model,
Theorem 3 does not require that Q completely shields the
sub-protocol from the environment, and hence, from super-
protocols on higher levels. This, as mentioned, can lead to
simpler systems and more efficient implementations.

Problems of the joint state theorem in the UC model.
The ITMs used in the UC model, unlike IITMs, cannot
block useless messages without consuming resources and
their overall runtime is bounded by a polynomial in the se-
curity parameter alone in the original UC model [4] or in the
security parameter and the overall length of the input on the
I/O interface in the new UC model [6]. As a consequence,
by sending many messages to an ITM (on the network inter-
face), the ITM can be forced to stop. Moreover, in general,
a single ITM, say M , cannot simulate a concurrent compo-
sition of a fixed finite number of ITMs, say M1, . . . ,Mn,
or an unbounded number of (copies of) ITMs: By sending
many messages to M intended for M1, say, M will even-
tually stop, and hence, cannot simulate the other machines
anymore, even though, in the actual composition these ma-
chines could still take actions.

Now, this causes problems in the joint state theorem of
the UC model: Although the ITM F̂ in that joint state the-
orem is intended to simulate the multi-party, multi-session
version of F , for the reason explained above, it cannot do
this in general; it can only simulate some approximated ver-
sion. The same is true for P̂ . This, as further explained
below, has several negative consequences:

A) For many interesting functionalities, including existing
versions of digital signatures and public-key encryp-
tion, it is not always possible to find a P̂ that realizes
F̂ , and hence, in these cases the precondition of the
joint state theorem cannot be satisfied.

B) In some cases, the joint state theorem in the UC model
itself fails.

ad A) We will illustrate the problem of realizing F̂ in the
original UC model, i.e., the one presented in [4], on which
the work in [14] is based. The corresponding problem for
the new version of the UC model [6] is explained in [22].

The ITM F̂ is intended to simulate the multi-party,
multi-session version of F , e.g., a digital signature func-
tionality. The realization P̂ is intended to do the same, but it

contains an ITM for every party. Now, consider an environ-
ment that sends many requests to one party, e.g., verification
requests such that the answer to all of them is ok. Eventu-
ally, F̂ will be forced to stop, as it runs out of resources.
Consequently, requests to other parties cannot be answered
anymore. However, such requests can still be answered in
P̂ , because these requests are handled by other ITMs, which
are not exhausted. Consequently, an environment can eas-
ily distinguish between the ideal (F̂) and real world (P̂).
This argument works independently of the simulator. The
situation just described is very common. Therefore, strictly
speaking, for many functionalities of interest it is not possi-
ble to find a realization of F̂ in the original UC model.

ad B) Having discussed the problem of meeting the assump-
tions of the joint state theorem in the UC model, we now
turn to flaws of the joint state theorem itself. For this, as-
sume that P̂ realizes F̂ within the F-hybrid model, where,
as usual, at most one copy of P̂ and F per party is created.
The following arguments apply to both the original UC
model [4] and the new version [6]. According to the joint
state theorem in the UC model, we should have that Q[bP]

(real world) realizesQ in theF-hybrid model (ideal world),
where, as mentioned, we assume P̂ to work in the F-hybrid
model as well. However, the following problems occur: An
environment can directly access (via a dummy adversary)
a copy of F in the real world. By sending many messages
to this copy, this copy will be exhausted. This copy of F ,
call it F [pid], which together with a copy of P̂ handles
all sessions of a party pid , corresponds to several copies
F [pid , sid] of F , for SIDs sid , in the ideal world. Hence,
once F [pid] in the real world is exhausted, the simulator
also has to exhaust all its corresponding copies F [pid , sid]
in the ideal world for every sid , because otherwise an en-
vironment could easily distinguish the two worlds. (While
F [pid] cannot respond, some of the copies F [pid , sid] still
can.) Consequently, for the simulation to work, F will have
to provide to the simulator a way to be terminated. A feature
typically not contained in formulations of functionalities in
the UC model. Hence, for such functionalities the joint state
theorem would typically fail. However, this can be fixed
by assuming this feature for functionalities. A more seri-
ous problem is that the simulator might not know whether
F [pid] in the real model is exhausted (the simulator does
not necessarily see how much resources F [pid] gets from
the I/O interface and how much resources F [pid] has used),
and hence, the simulator does not know when to terminate
the corresponding copies in the ideal model. So, in these
cases again the joint state theorem fails. In fact, just as in
the case of realizing F̂ , it is not hard to come up with func-
tionalities where the joint state theorem fails, including rea-
sonable formulations of public-key encryption and digital
signature functionalities. So, the joint state theorem cannot
simply be applied to arbitrary functionalities. One has to

reprove this theorem on a case by case basis or characterize
classes of functionalities for which the theorem holds true.

As already mentioned in the introduction, despite of the
various problems with the joint state theorem in the UC
model, within that model useful and interesting results have
been obtained. However, it is crucial to equip that body of
work with a more rigorous and elegant framework. Com-
ing up with such a framework and applying it, is one of the
main goals of our work.

Applying the Joint State Theorem. Theorem 3, just like
the joint state theorem in the UC model, does not by it-
self yield practical realizations, as it does not answer the
question of how a practical realization P̂ can be found. A
desirable instantiation of P̂ would be of the form !Pjs | F
where !Pjs is a very basic protocol in which for every party
only one copy of Pjs is generated and this copy handles,
as a multiplexer, all sessions of this party via the single in-
stance of the ideal multi-party, single-session functionality
F . Hence, the goal is to find a protocol system !Pjs (with
one copy per party) such that

!Pjs | F ≤SS !F .2 (1)

Note that with P ≤SS F , the composition theorems to-
gether with the transitivity of ≤SS imply that !Pjs | P ≤SS

!F . Moreover, if F = !F ′ is the multi-party, single-session
version of the single-party, single-session functionality F ′
and P ′ realizes F ′, i.e., P ′ ≤SS F ′, then !Pjs | !P ′ ≤SS

!Pjs | !F ′ ≤SS !F = !F ′, where P ′ denotes the party ver-
sion of P ′, F ′ the party version of F ′, and F ′ the session
and party version of F ′.

The seamless treatment of joint state in the IITM model
allows for iterative applications of the joint state theorem.
Consider a protocol Q, e.g., a key exchange protocol, that
uses F , e.g., the multi-party version F = !F ′ of a public-
key encryption box F ′ for one party (see above), in mul-
tiple sessions for multiple parties. In short, we consider
the system Q | !F . Furthermore, assume that multiple ses-
sions of Q are used within a more complex protocol, e.g.,
a protocol for establishing secure channels. Such a proto-
col uses the system !(Q | !F) = !Q | !F . In this system, in
every session of Q several sub-sessions of F can be used.
Now iterated application of the composition theorems/joint
state theorem and (1) yields: !Q | !F = !(Q | !F) ≥SS

!(Q | (!Pjs | F)) = !Q | !Pjs | !F ≥SS !Q | !Pjs | !Pjs | F ,
i.e., !Pjs | !Pjs | F is the joint state realization of !F . Note
that in this realization only the single instance F is used for
all parties.

2Strictly speaking, one has to rename the network tapes of F on the
left-hand side, to ensure both sides to be I/O compatible.

4. The Public-Key Encryption and Digital Sig-
nature Functionalities

In this section, we present our functionalities for (re-
playable) public-key encryption and digital signatures. We
start with the functionality for public-key encryption. First,
we introduce some notation and terminology.

Sending and receiving messages. We often formulate an
IITM M parameterized by sets T of entities (e.g., adver-
sary, environment, roles of users) that may write to/read
from the IITM via some input and output tapes. We typi-
cally write “send m to T ” for T ∈ T to mean that M writes
m on some output tape connected to entity T and then waits
for new input. Similarly, we write “If received m from T
then . . . ” with the obvious meaning.

Modeling corruption. As mentioned, corruption is not hard-
wired into the IITM model, but can be specified in a rigor-
ous and flexible way as part of the specification of the pro-
tocols/functionalities. This in turn also means that the kind
of corruption one would like to model has to be made ex-
plicit in the specification. In case the same kind of corrup-
tion is used in different protocols/functionalities, it is some-
times convenient to define a “corruption macro” which can
be reused in different specifications.

One such macro is depicted in Figure 1. We use this
macro in the specification of the functionalities in this pa-
per. It models that if an IITM is corrupted, i.e., receives a
corrupt message from the adversary/simulator on the net-
work interface, it will expose the information corrMsg to
the adversary (item (b)) and from now on forwards all mes-
sages between the network and I/O interface (item (c) and
(d)), which is possible by the mechanism discussed in Sec-
tion 2.2: Right before a message is forwarded from the
network interface to the I/O interface (the user), the func-
tionality expects to receive resources from the environment,
i.e., a message of the form (Res, r) via the I/O interface
(item (e)). The environment can ask whether the IITM is
corrupted (item (a)); security notions otherwise would not
make sense: a simulator S could corrupt a functionality at
the beginning and then mimic the behavior of the real pro-
tocol. In (a) and (b) the variable initialized is used to make
sure that the functionality in which the macro is used has
already been activated. This is important for joint state re-
alizations. The variable corruptible determines whether or
not corruption is possible. If it is set to true all the time,
then our macro models adaptive corruption. However, a
functionality using our macro can set corruptible to false
at some point, e.g., after some initialization, in order to
capture non-adaptive corruption. In this paper, we use our
macro to model both adaptive and non-adaptive corruption.

We note that forms of corruption other than the ones cap-
tured by our macro can also be modeled in the IITM model.

For example, we can model that upon corruption the adver-
sary does not take over the entire functionality but only cer-
tain parts. Also, the adversary might not learn the whole
internal state of the functionality. In this case, it might
make sense to first let the functionality compute some out-
put (which the adversary might not be able to do since she
does not know the entire internal state of the functionality)
and let the adversary manipulate this output before sending
it out. To model passive adversaries, one would only in-
form the adversary about the output that has been produced,
but would not provide the adversary with means to manip-
ulate the output. Although these forms of corruption can be
easily captured in the IITM model, the kinds of corruptions
captured by our macro are best suited for the functionalities
considered in this paper.

Finally, we note that in a system which consists of sev-
eral layers of functionalities, corruption is typically speci-
fied for every functionality based on the corruption behavior
on lower layers.

The public-key encryption functionality. Our public-
key encryption functionality Fpke is in the spirit of the
one by Canetti [6] in that ciphertexts are computed and en-
crypted locally. However, as outlined below, in addition to
being specified more rigorously, our formulation has several
advantages. Let us first define Fpke. It is of the form

Fpke(L, Tdec, Tenc, p)
= Fdec(L, Tdec, Tenc, p) | !Fenc(Tenc)

(2)

and specifies a public-key encryption functionality for one
decryptor and an unbounded number of encryptors. The
decryptor part Fdec and the encryptor part Fenc are formally
specified in Figure 2 and 3, respectively. Let us first explain
the parameters of Fpke:

The parameter L = (Lη)η , called leakage, is a family
of probabilistic polynomial time algorithms (leakage algo-
rithms), where η is the security parameter. Each Lη is as-
sociated with an (efficiently decidable) domain dom(Lη).
Intuitively, these algorithms capture how much of a plain-
text may be leaked. For example, assume that the domain
of Lη is the set of all messages of length at least η and on
input m ∈ {0, 1}≥η , Lη returns 0|x|. Such a leakage L
models that the length of a message is leaked. Alternatively,
one could define Lη to return a random bit string of length
|x| on input x. The advantage of the latter formulation is
that it has, what we call, high entropy, a property that can
be useful in the formulation of Fpke (see below): L has
high entropy if for every x, y ∈ dom(Lη), the probability
that the bit strings returned by Lη on input x and y are the
same is negligible (in η). We call L length preserving if
Prob[|Lη(x)| = |x|] = 1 for all η and x ∈ dom(Lη). The
parameters Tdec and Tenc in (2) are sets of entities deter-
mining which entities may access (via tapes) the decryption

Corr(corrupted ∈ {true, false}, corruptible ∈ {true, false}, initialized ∈ {true, false}, corrMsg , Tadv, Tuser, Tenv)
Types of tapes: Tuser, Tenv are enriching, Tadv is consuming
Local variable: res (initial value: 0)
(a) Corruption Request: If received (Corrupted?) from Tenv, and initialized do: send (corrupted) to Tenv

(b) Corruption: If received (Corrupt) from Tadv, corruptible, initialized , and not corrupted do:
corrupted ← true, send (Corrupted, corrMsg) to Tadv

(c) Forward to A: If received m from T ∈ Tuser, and corrupted do: res ← 0, send (Recv,m, T) to Tadv

(d) Forward to user: If received (Send,m, T) from Tadv where T ∈ Tuser, corrupted , and 0 < |m| ≤ res do:
res ← 0, send m to T

(e) Resources: If received (Res, r) from Tenv, and corrupted do: res ← |r|, send (Res, r) to Tadv

Figure 1. Macro for modeling adaptive and non-adaptive corruption behavior.

and the encryption functionalities, respectively. Technically
speaking, these parameters determine the set of tapes at the
I/O interface of Fpke. An overview of the tapes of Fpke is
given in Figure 4. The I/O tapes of Fdec consist of a pair of
tapes (one input and one output) for each T ∈ Tdec, one out-
put tape for each T ∈ Tenc, one pair of tapes to connect to
the environment, referred to as Edec, and one pair of tapes
to connect to Fenc. Furthermore, Fdec has one pair of net-
work tapes, referred to as Adec. Similarly, the tapes of Fenc

consist of one pair of tapes for each T ∈ Tenc, the environ-
ment (Eenc), Fdec, and the network (Aenc). All I/O tapes
are enriching, except for the I/O tape from Fdec to Fenc,
while the network tapes are consuming. The parameter p
bounds the size and runtime of the encryption and decryp-
tion algorithms e and d provided by the adversary/simulator
(see Figure 2, (b)). Since every potential encryption or de-
cryption algorithm has polynomial runtime, p can always be
chosen in such a way that the algorithms run as expected.

In (2), Fenc(Tenc) is an IITM, depicted in Figure 3,
which models that every encryptor using Fpke has its
own local procedure for encryption, which can be cor-
rupted independently of the decryptors decryption boxFdec.
Upon corruption, Fenc relays all requests to/from the ad-
versary. By writing !Fenc(Tenc) we model that an un-
bounded number of parties may use Fpke for encryption,
where Fenc(Tenc) is the party version of Fenc(Tenc). If a
message m and a key k′ are sent to Fenc, then in case Fenc

is not corrupted the encryption request is forwarded to Fdec

(see Figure 2, (e) and Figure 3, (c); Fdec expects the mes-
sage from Fenc to be prefixed by some PID because it is de-
signed to run together with the party version of Fenc), where
upon first activation Fenc makes sure that Fdec is “awake”
(see Figure 2, (g) and Figure 3, (a)). If Fdec is corrupted
or k′ is not the correct public key (k′ 6= k), then m is en-
crypted by k′ using the encryption algorithm e provided by
the adversary (if any, Figure 2, (b)). Otherwise, the leakage
of m is encrypted and it is checked whether the resulting
ciphertext decrypts to the leakage again. In case of success,

m and the ciphertext are recorded.
The IITM Fdec (see Figure 2) is used by the decryptor

to decrypt messages. Before ciphertexts can be decrypted,
the decryptor has to initialize Fdec (Figure 2, (a)), upon
which the adversary is expected to provide encryption and
decryption algorithms as well as a public-key (Figure 2, (b))
and then trigger the response to the decryptor, upon which
the public key is handed to the decryptor (Figure 2, (c)).
The decryptor can decrypt ciphertexts by sending (Dec, c)
to Fdec (Figure 2, (d)). If (m, c) and (m′, c) are recorded
for plaintexts m 6= m′, the decryption of c is ambiguous.
Therefore, ⊥ is returned to the decryptor. If there is exactly
one recorded pair (m, c) for some plaintext m, Fdec returns
the plaintext m to the decryptor. Otherwise, the decryption
algorithm d is executed on c and the result is sent to the de-
cryptor. Upon corruption of the decryptor (Figure 2, (f)),
the set H is revealed to the entity connected to Adec, i.e.,
the simulator/environment. Since this entity also knows the
encryption and decryption algorithms as well as the public-
key, the entire state of the functionality is revealed. For
the joint state realization to work it is required that the rep-
resentation of H hides the order in which the encryptions
have been done, e.g., H could be represented as a list in
lexicographical order (see Section 5).

Features of Fpke. Let us point out the main features of
Fpke. Clearly, in Fpke ciphertexts are computed locally,
with the advantages discussed in the introduction. The
most important distinguishing feature of Fpke compared
to other formulations of public-key encryption functional-
ities with local computation is that Fpke is suitable for joint
state realizations (see Section 5). Another distinguishing
feature is that our formulation models the realistic setting
that encryptions can be performed even before the decryp-
tion box has been invoked for the first time by the decryp-
tor. Our functionality, including corruption, is specified
rigorously (which is the reason it might may seem more
complex than other formulations). Encryption and decryp-
tion boxes can be corrupted independently. The functional-

Functionality Fdec(L, Tdec, Tenc, p)
Initialization: state ← init, corrupted ← false, nokey ← true, e, d, k ← ⊥, H ← ∅
CheckAddress: Accept all messages on all tapes
Compute: Upon receiving a message check which case matches:

(a) Init: If received (Init) from T ∈ Tdec, and state = init do: state ← (wait, T), send (Init) to Adec

(b) Key Generation: If received (AlgAndKey, e′, d′, k′) from Adec, nokey , and |e′|, |d′|, |k′| ≤ p(η) do:
(e, d, k)← (e′, d′, k′), nokey ← false, send (Ack) to Adec

(c) Init Response: If received (Inited) from Adec, not nokey , and state = (wait, T) do:
state ← ok, send (PublicKey, k) to T

(d) Decryption: If received (Dec, c) from T ∈ Tdec, state = ok, and not corrupted do:

m←


⊥ if ∃m′,m′′ : m′ 6= m′′, (m′, c) ∈ H, (m′′, c) ∈ H
m′ if ∃!m′ : (m′, c) ∈ H
sim-detp(|c|+η) d(c) otherwise ,

send (Plaintext,m) to T
(e) Encryption: If received (pid ,Enc, k′,m, T) from Fenc where T ∈ Tenc, and not nokey do:

if m /∈ dom(Lη) then c← ⊥
else if k 6= k′ or corrupted then c← simp(|m|+η)e(k′,m)
else m← Lη(m) ; c← simp(|m|+η) e(k,m) ; m′ ← sim-detp(|c|+η) d(c) ; if m 6= m′ then c← ⊥ end ;

if c 6= ⊥ then H ← H ∪ {(m, c)} end
end ;
send (pid ,Ciphertext, c) to T

(f) Corruption: Corr(corrupted , true, state 6= init, H,Adec, Tdec, Edec) (adaptive corruption, see Figure 1)
(g) Wake up: If received (pid ,WakeUpFromEnc) from Fenc do: send (pid ,Ack) to Fenc

If no rule above fires then produce no output

Figure 2. Ideal public-key encryption functionality Fpke = Fdec | !Fenc, the decryptor’s part Fdec, where
simnA(x) means (probabilistic) simulation of A on input x for n steps. Similarly for sim-det, which
forces the simulation to be deterministic.

ity Fpke can be invoked an unbounded number of times,
with arbitrarily long messages. Together with high en-
tropy leakage, Fpke guarantees that ciphertexts can only
be guessed with negligible probability. Our functionality
does not restrict the kind of algorithms provided by the sim-
ulator. This implicit universal quantification over all en-
cryption and decryption algorithms simplifies the reason-
ing when using the functionality in a larger system and
abstracts from details of the algorithms, resulting in sim-
pler, “syntactic” proofs. For example, the proof of the joint
state theorem is a purely “syntactic argument”. We do not
need to reason about probabilities or properties of the al-
gorithms provided by the adversary/simulator. In fact, the
joint state theorem even holds in an information theoretic
setting, where no computational bounds are put on the en-
vironment. We note that Fpke specifies the public-key en-
cryption functionality for a single party (more precisely, one
decryptor, with an unbounded number of encryptors). If
Ppke realizes Fpke, i.e., Ppke ≤SS Fpke, then our composi-

tion theorem immediately implies that the multi-party ver-
sion !Ppke of Ppke realizes the multi-party version !Fpke

of Fpke, i.e., !Ppke ≤SS !Fpke. Applying the composition
theorem again yields that !Ppke ≤SS !Fpke, i.e., the multi-
party, multi-session version of Ppke realizes the multi-party,
multi-session version of Fpke.

In the following theorem, Ppke(Σ, Tdec, Tenc) denotes a
realization induced by the encryption scheme Σ with do-
main (dom(Lη))η . In this realization, we allow for non-
adaptive corruption of the decryptor and adaptive corrup-
tion of encryptors. While Fpke allows for adaptive corrup-
tion also of the decryptor, the simulator can enforce non-
adaptive corruption by blocking corrupt messages. How-
ever, formulatingFpke in this way only makes this function-
ality more general. Basically, the following theorem shows
that CCA-security is equivalent to realizing Fpke. Our tech-
nical report contains a slightly more general formulation of
this theorem, which in particular implies that for all length
preserving leakages, Fpke can be realized.

Functionality Fenc(Tenc)
Initialization: state ← init, corrupted ← false

CheckAddress: Accept all messages on all tapes
Compute: Upon receiving a message check which case matches:

(a) Initialization: If received (Init) from T ∈ Tenc, and state = init do:
send (WakeUpFromEnc) to Fdec, wait for receiving (Ack) from Fdec, state ← (wait, T), send (Init) to Aenc

(b) Initialization Response: If received (Inited) from Aenc, and state = (wait, T) do: state ← ok, send (Inited) to T
(c) Encryption: If received (Encrypt, k′,m) from T ∈ Tenc, state = ok, and not corrupted do:

send (Encrypt, k′,m, T) to Fdec

(d) Corruption: Corr(corrupted , true, state 6= init, ε, Aenc, Tenc, Eenc) (adaptive corruption, see Figure 1)
If no rule above fires then produce no output

Figure 3. Ideal public-key encryption functionality Fpke = Fdec | !Fenc, the encryptor’s part Fenc.

Fenc

EencEdec

Fdec

Adec

Aenc

TencTdec

I/O tape
network tape

enriching input tape
consuming input tape

Legend:

output tape

Figure 4. Graphical representation of the ideal public-key encryption functionality Fpke = Fdec | !Fenc.

Theorem 4. For disjoint sets Tdec and Tenc of entities, a
polynomial p, a public-key encryption scheme Σ whose al-
gorithms run in time bounded by p, and leakage L, where
exactly the length of a message is leaked, we obtain: Σ is
CCA-secure if and only if

Ppke(Σ, Tdec, Tenc) ≤SS Fpke(L, Tdec, Tenc, p) .

Replayable public-key encryption and digital signa-
tures. Recall from the introduction that replayable CCA-
security (RCCA-security) is a relaxed form of CCA-
security where modifications of the ciphertext that yield the
same plaintext are permitted (see [11, 22]). Our functional-
ity Frpke for replayable public-key encryption is similar to
Fpke. The main difference is that instead of the pair (m, c),
the pair (m,m) is stored, where m is the result of the leak-
age algorithm applied to m. We have proven a theorem
similar to Theorem 4, however, the leakage is required to
have high entropy. For the specification of our digital sig-
nature functionality and our theorem stating the equivalence
of this functionality and EU-CMA security, we also refer
the reader to [22].

5. The Joint State Realizations

In this section, we present joint state realizations of our
(replayable) public-key encryption and digital signatures
functionalities. We again start with Fpke. Recall from Sec-
tion 3 and 4 that Fpke = Fdec | !Fenc and that the goal is to
obtain a joint state realization of !Fpke, the multi-session,
multi-party version of Fpke, such that for every party only
one instance of Fpke is created.

Our joint state realization of !Fpke is of the form

!P js
pke | !F ′pke with P js

pke = P js
dec | P js

enc for IITMs P js
dec and

P js
enc, where F ′pke is obtained from Fpke by simply renam-

ing the tapes. The renaming is necessary since the two
systems— !Fpke and !P js

pke | !F ′pke—have to be I/O com-

patible. (Recall that !F ′pke is the multi-party version of

F ′pke.) The connection between P js
pke and F ′pke is pictured

in Figure 5. The tapes of P js
pke are explained below. The

CheckAddress mode of P js
dec is defined in such a way

that for a decryptor pid at most one instance of P js
dec, re-

ferred to by P js
dec[pid], is created in a run of !P js

pke | !Fpke.

Edec Tdec Tenc Eenc

P js
dec P js

enc

P js
pke

F ′enc

F ′dec

A′
dec

A′
enc F ′pke

E′
dec T ′

dec E′
encT ′

enc

I/O tape
network tape

enriching input tape
consuming input tape

Legend:

output tape

Figure 5. The joint state realization P js
pke = P js

dec |P js
enc and its connection to !F ′pke.

Also, P js
dec invokes only one instance of Fdec, referred to by

Fdec[pid]. Together, P js
dec[pid] and Fdec[pid] correspond to

a local decryption box of party pid which handles all de-
cryption requests of pid in all sessions, where P js

dec[pid]
serves as a multiplexer. It strips off the SID, say sid , be-
fore forwarding a request to Fdec[pid]. Upon receiving a
plaintext from Fdec[pid], it checks whether it is of the form
(sid ′,m) with sid ′ = sid . Similarly, the CheckAddress
mode of P js

enc is defined in such a way that for a pair of
PIDs pid and pid ′ at most one instance of P js

enc is created,
referred to by P js

enc[pid , pid
′]. This instance only invokes

one instance of Fenc, referred to by Fenc[pid , pid ′]. To-
gether P js

enc[pid , pid
′] and Fenc[pid , pid ′] correspond to the

encryption box of an encryptor pid ′ for party pid which
handles all encryption requests of pid ′ for pid in all ses-
sions, where P js

enc[pid , pid
′] serves as a multiplexer: When

receiving an encryption request, say in session sid , for mes-
sagem, P js

enc[pid , pid
′] strips off sid from this requests and

forwards the message (sid ,m) to Fenc[pid , pid ′], instead

of just m. See [22] for a precise definition of P js
pke. Al-

though the idea of prefixing messages with SIDs is simple
and not new [14, 9], several subtleties have to be taken care
of, which were overlooked in other works (see the explana-
tion after Theorem 5).

The multiplexer P js
pke (for decryption and encryption) is

parameterized by sets of entities Tdec and Tenc as well as a
polynomial p just as Fpke. In addition, another polynomial
q is used to bound the length of SIDs. This is necessary
for the joint state theorem to hold, but was overlooked in
other works (after Theorem 5 other, more important issues

are discussed). As depicted in Figure 5, the set of tapes of
P js

pke consist of all I/O tapes of Fpke plus the correspond-
ing pairs of tapes for the connection to F ′pke. In particu-
lar, P js

pke occupies the environment tapes E′dec and E′enc of
F ′pke which are used for corruption and resources (recall
Figure 1). These are use by P js

pke to forward corruption re-
quests and resources to F ′pke, where, however, the SID is
striped off first (see [22] for more details).

We can now state the joint state theorem for Fpke. As
mentioned above, the joint state realization P js

pke is based
on the multi-party version !F ′pke of the ideal functionality
F ′pke. Recall that F ′pke is obtained from Fpke by renaming
tapes. More importantly, F ′pke will use a leakage L′ that
in addition to the leakage L in the ideal world (!Fpke) also
leaks the SID of the session in which a message was en-
crypted. This, in conjunction with the decryption test per-
formed in Fpke (see Figure 2, (e)), will guarantee that ci-
phertexts generated in different sessions are different. This
is crucial for the joint state theorem to hold (see below). We
note that, as explained in Section 3, the following joint state
theorem can be applied iteratively to obtain joint state re-
alizations no matter on which sub-protocol layer Fpke is
used. Since Fpke allows for adaptive corruption of both
the decryptor and the encryptors, the theorem holds even
in this case. (Implementations of Fpke will restrict corrup-
tion of the decryptor to be non-adaptive, though.) As men-
tioned, the theorem would even hold for computationally
unbounded environments.

Theorem 5. For all polynomials p and q and disjoint sets
of entities Tdec and Tenc, there exists a polynomial p′ such

that for every leakage L we have

!P js
pke(Tdec, Tenc, p, q) | !F ′pke(L

′, Tdec, Tenc, p)

≤SS (3)
!Fpke(L, Tdec, Tenc, p

′)

where L′((sid ,m)) = (sid , L(m)) if m ∈ dom(L) for all
SIDs sid and messages m.

By our composition theorems, we can replace the ideal
functionality on the left-hand side of (3) by its realization as
stated in Theorem 4, resulting in an actual joint state real-
ization (without any ideal functionality) . We note that one
could have tried to state and prove a joint state realization
without resorting to the ideal functionality on the left-hand
side of (3). However, this would have been much more com-
plex, because we would have to state and prove a realiza-
tion (with joint state) for the multi-party, multi-session ver-
sion of Fpke directly. Also, results on the realization of the
single-party, single-session version of Fpke, such as Theo-
rem 4, would then be completely useless. In other words,
one would not take advantage of the main feature of the
simulation-based approach: composability. Finally, using
the ideal functionality yields joint state realizations for any
realization of the ideal functionality. Altogether, this is why
our joint state realizations are based on ideal functionalities.

The main idea behind the construction of the simulator
used to prove Theorem 5 is as follows (see [22] for full de-
tails and proofs): If the simulator receives the public-key k,
the encryption algorithm e, and the decryption algorithm d,
then an instance of an ideal functionality with SID sid ob-
tains the key k, the encryption algorithm esid(·, ·) and the
decryption algorithm dsid(·) from the simulator. Before en-
crypting a message, esid(·, ·) prefixes the message with sid .
Conversely, dsid(·) decrypts messages by running d(·) and
after successful decryption, dsid(·) checks whether the re-
sulting plaintext is of the form (sid ′,m) for some m. Only
if sid ′ = sid , dsid(·) returns m as plaintext. Otherwise, an
error message is returned. Upon corruption of a decryptor
or encryptor, the simulator corrupts all recorded sessions
of this decryptor or encryptor. In case a decryptor is cor-
rupted, the simulator receives the sets Hsid for all sessions
sid that are recorded. Then, the simulator returns the set
H =

⋃
sid{((sid ,m), c) | (m, c) ∈ Hsid} to the environ-

ment. For the simulation to work, it is required that the
representation of H does not reveal the order in which el-
ements have been added, e.g., a good representation would
be a list of the elements in lexicographical order.

Subtleties in proving the theorem and problems in other
joint state theorems. In the proof of this theorem, several
subtleties come up which were overlooked in other works,
in particular [6, 9]. In these works, joint state theorems,

similar to the one above, for public-key encryption func-
tionalities with local computation were mentioned. How-
ever, the joint state realizations were only sketched and no
proofs were provided. It, in fact, turns out that the joint state
theorems for these functionalities do not hold true. Let us
first explain this for [6] and then for [9]. These explanations
motivate and justify the definition of our functionality and
the way our joint state theorem is stated (see [22] for more
details).

Problems with the joint state realization in [6]. i) The
public-key encryption functionality in [6], unlike our func-
tionality, identifies the encryption algorithm e and the
public-key. Upon encryption, the environment/user presents
some message m and encryption algorithm e′. If e′ is equal
to the stored encryption algorithm e (which was given to
the functionality by the adversary) the ciphertext c is com-
puted as e(µ) (where µ is some fixed message). Other-
wise, c is computed as e′(m). But then, if the environ-
ment asks to encrypt some message m with e′ in session
sid , where, say e′ coincides with e except that e′ uses a
different public-key, and hence, e′ 6= e, the ciphertext is
computed as e′((sid ,m)), in the joint state world. In the
ideal world, the ciphertext is computed as e′(m). Since the
two ciphertexts have different lengths, the environment can
easily distinguish between the joint state and ideal world.

ii) In [6], the leakage is fixed to be the length of a mes-
sage. In particular, this is so also in the joint state world.
Hence, the SID is not leaked. This is problematic: The kind
of encryption and decryption algorithms that may be pro-
vided by the simulator/environment in the joint state and
ideal world to the public-key encryption functionality are
not restricted in any way. In particular, the encryption al-
gorithm that is provided may be deterministic. But then, if
the environment asks to encrypt two different messages of
the same length in two different sessions for the same party,
then the resulting ciphertexts will be the same, since in both
cases some fixed message µ is encrypted. In the ideal world,
the two ciphertext can be decrypted, since they are stored in
different sessions. In the joint state world, decryption will
fail: The decryption box has two entries with the same ci-
phertext but different plaintexts. (The leakage that we use
prevents this.) Consequently, the environment can easily
distinguish between the ideal and joint state world.

To circumvent this problem, one might think that re-
stricting the environment to only provide encryption and
decryption algorithms that originate from probabilistic en-
cryption schemes where the probability for clashes between
ciphertext are negligible solves the problem. However, this
is not so if, as is the case in [6], SIDs are not leaked in
the joint state world; even if the algorithms provided by
the environment/simulator are assumed to be CCA-secure:
For the sake of simplicity, let us assume that one tries to
prove the joint state theorem in this setting using the fol-

lowing obvious simulator: It works similar to the simulator
mentioned above, but in the uncorrupted case, esid(k, ·) en-
crypts a constant message µ of the given length of the plain-
text message plus the length of sid using e(k, ·). (Prefixing
sid is not an option, because this is not done in the joint
state world; sid is not leaked.) Now, consider the follow-
ing environment: It first asks to encrypt some message m
in some session sid with the correct public-key/encryption
algorithm. In both worlds, joint state and ideal, a cipher-
text c computed by applying e(k, ·) on the constant mes-
sage µ of the length of m and sid is returned. Depend-
ing on µ and how pairings are encoded, we may assume
that µ has the form of a pair (sid ′,m′′) for some sid ′, with
sid ′ 6= sid , and some plaintext m′′. This is, for example,
the case if µ is a sequence of 0’s and SIDs are assumed to
have fixed length (e.g., the length of the security parame-
ter) and are simply appended at the beginning of a message.
Now, the environment asks to decrypt c in session sid ′. In
the joint state world, c together with (sid ,m) is stored in
the public-key encryption functionality. Since sid ′ 6= sid ,
the decryption will fail. Conversely, in the instance of the
public-key encryption functionality corresponding to sid ′ in
the ideal world, c is not known, and hence, the functional-
ity will try to decrypt c with dsid′(·). This succeeds and
m′′ is returned. This behavior is different from the one in
the joint state world, and hence, the environment can dis-
tinguish between the two worlds. Generally speaking, the
above argument uses that in the joint state world, SIDs are
not leaked, and hence, ciphertexts do not contain informa-
tion about the session in which they were computed. As a
result, decryptions in the joint state and ideal world have
different observable effects. In [22] a more general argu-
ment is presented that applies to wider classes of simulators
as well as leakage (including probabilistic leakage) and en-
codings of pairings. In this sense, the argument is robust.
Even if one could define specific leakage and encodings of
pairing for which the argument would fail, it would be at
least highly unsatisfactory if the correctness of the theorem
would depend on such details.

Problems with the joint state realization in [9]. In [9],
a (certified) public-key encryption functionality with local
computation is proposed which is parameterized by (fixed)
encryption and decryption algorithms. For this functional-
ity, a theorem similar to Theorem 5 is stated only informally
and without proof. One can only hope such a theorem to
hold, if one assumes that in the ideal world the ideal func-
tionality is defined in such a way that its SID is given to
the encryption and decryption algorithms by the functional-
ity, and that the encryption and decryption algorithms make
use of the SID in a similar way as prescribed by one of the
simulators described above. So, the ideal functionality has
already to mimic the joint state realization. However, the
ideal functionality in the joint state world should be defined

differently: It should ignore SIDs, because in the joint state
world SIDs are handled outside of the ideal functionality,
namely in the joint state realization. Hence, the joint state
theorem would be defined with different ideal functionali-
ties in the joint state and ideal world. These issues have not
been mentioned in [9]. But even if this is done, the theorem
would still not hold if in the joint state world SIDs are not
leaked. The reasoning is similar to the one above for the
joint state theorem in [6].

General remark. One general remark for joint state the-
orems is that specifying corruption precisely, as we do in
our work, is vital, because some forms of corruption do not
allow for joint state realizations. For example, if upon cor-
ruption all messages encrypted so far would be given to the
adversary in order of occurrence, the joint state and ideal
world could be distinguished because the order in the joint
state world cannot be reconstructed by the simulator in the
ideal world. This is why we define corruption in such a way
that this order is not revealed.

Replayable public-key encryption and digital signa-
tures. For our replayable public-key encryption function-
ality and the digital signature functionality we also proved
joint state theorems analogous to the one above (see [22]).
For these functionalities similar subtleties occur.

Acknowledgment. We thank Ran Canetti for many helpful
discussions on the UC model.

References

[1] M. Backes and D. Hofheinz. How to Break and Re-
pair a Universally Composable Signature Functionality. In
K. Zhang and Y. Zheng, editors, Proceedings of the 7th In-
ternational Conference on Information Security (ISC 2004),
volume 3225 of Lecture Notes in Computer Science, pages
61–72. Springer, 2004.

[2] M. Backes, B. Pfitzmann, and M. Waidner. A Composable
Cryptographic Library with Nested Operations. In S. Jajo-
dia, V. Atluri, and T. Jaeger, editors, Proceedings of the 10th
ACM Conference on Computer and Communications Secu-
rity (CCS 2003), pages 220–230. ACM, 2003.

[3] M. Backes, B. Pfitzmann, and M. Waidner. Se-
cure Asynchronous Reactive Systems. Technical Report
2004/082, Cryptology ePrint Archive, 2004. Available at
http://eprint.iacr.org/2004/082.

[4] R. Canetti. Universally Composable Security: A New
Paradigm for Cryptographic Protocols. In Proceedings of
the 42nd IEEE Symposium on Foundations of Computer Sci-
ence (FOCS 2001), pages 136–145. IEEE Computer Soci-
ety, 2001.

[5] R. Canetti. Universally Composable Signature, Certifi-
cation, and Authentication. In Proceedings of the 17th
IEEE Computer Security Foundations Workshop (CSFW-17
2004), pages 219–233. IEEE Computer Society, 2004.

[6] R. Canetti. Universally Composable Security: A New
Paradigm for Cryptographic Protocols. Technical Re-
port 2000/067, Cryptology ePrint Archive, December 2005.
Available at http://eprint.iacr.org/2000/067.

[7] R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch,
O. Pereira, and R. Segala. Time-bounded Task-PIOAs: A
Framework for Analyzing Security Protocols. In S. Dolev,
editor, 20th International Symposium on Distributed Com-
puting (DISC 2006), pages 238–253. Springer, 2006.

[8] R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally
Composable Security with Global Setup. In S. P. Vadhan,
editor, Theory of Cryptography, Proceedings of TCC 2007,
volume 4392 of Lecture Notes in Computer Science, pages
61–85. Springer, 2007.

[9] R. Canetti and J. Herzog. Universally Composable Symbolic
Analysis of Mutual Authentication and Key-Exchange Pro-
tocols. In S. Halevi and T. Rabin, editors, Theory of Cryp-
tography, Third Theory of Cryptography Conference, TCC
2006, volume 3876 of Lecture Notes in Computer Science,
pages 380–403. Springer, 2006.

[10] R. Canetti and H. Krawczyk. Universally Composable No-
tions of Key Exchange and Secure Channels. In L. R.
Knudsen, editor, Advances in Cryptology – EUROCRYPT
2002, International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Proceedings, volume
2332 of Lecture Notes in Computer Science, pages 337–351.
Springer, 2002.

[11] R. Canetti, H. Krawczyk, and J. B. Nielsen. Relaxing
Chosen-Ciphertext Security. In D. Boneh, editor, Advances
in Cryptology, 23rd Annual International Cryptology Con-
ference (CRYPTO 2003), volume 2729 of Lecture Notes in
Computer Science, pages 565–582. Springer, 2003.

[12] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Univer-
sally Composable Two-Party and Multi-party Secure Com-
putation. In Proceedings of the 34th Annual ACM Sympo-
sium on Theory of Computing (STOC 2002), pages 494–503.
ACM, 2002.

[13] R. Canetti and T. Rabin. Universal Composition with
Joint State. Technical Report 2002/047, Cryptology ePrint
Archive, 2002. Version of Nov. 2003. Available at
http://eprint.iacr.org/2002/047.

[14] R. Canetti and T. Rabin. Universal Composition with Joint
State. In D. Boneh, editor, Advances in Cryptology, 23rd An-
nual International Cryptology Conference (CRYPTO 2003),
Proceedings, volume 2729 of Lecture Notes in Computer
Science, pages 265–281. Springer, 2003.

[15] V. Cortier, R. Küsters, and B. Warinschi. A Cryptographic
Model for Branching Time Security Properties – the Case
of Contract Signing Protocol. In J. Biskup and J. Lopez,
editors, Proceedings of the 12th European Symposium on
Research in Computer Security (ESORICS 2007), volume
4734 of Lecture Notes in Computer Science, pages 422–437.
Springer, 2007.

[16] A. Datta, R. Küsters, J. Mitchell, and A. Ramanathan. On
the Relationships Between Notions of Simulation-Based Se-
curity. In J. Kilian, editor, Proceedings of the 2nd Theory of
Cryptography Conference (TCC 2005), volume 3378 of Lec-
ture Notes in Computer Science, pages 476–494. Springer-

Verlag, 2005. Full version to appear in the Journal of Cryp-
tology.

[17] D. Hofheinz, J. Mueller-Quade, and R. Steinwandt. On
Modeling IND-CCA Security in Cryptographic Protocols.
Technical Report 2003/024, Cryptology ePrint Archive,
2003. Available at http://eprint.iacr.org/2003/024.

[18] D. Hofheinz, J. Müller-Quade, and D. Unruh. Polynomial
Runtime in Simulatability Definitions. In 18th IEEE Com-
puter Security Foundations Workshop (CSFW-18 2005),
pages 156–169. IEEE Computer Society, 2005.

[19] D. Hofheinz, J. Müller-Quade, and D. Unruh. A Simple
Model of Polynomial Time UC. One-page abstract of a talk
given at the Workshop on Models for Cryptographic Proto-
cols (MCP 2006), 2006.

[20] R. Küsters. Simulation-Based Security with Inexhaustible
Interactive Turing Machines. In Proceedings of the 19th
IEEE Computer Security Foundations Workshop (CSFW-19
2006), pages 309–320. IEEE Computer Society, 2006.

[21] R. Küsters. Simulation-Based Security with Inex-
haustible Interactive Turing Machines. Technical Report
2006/151, Cryptology ePrint Archive, 2006. Available at
http://eprint.iacr.org/2006/151.

[22] R. Küsters and M. Tuengerthal. Joint State Theorems
for Public-Key Encryption and Digital Signature Func-
tionalities with Local Computation. Technical Report
2008/006, Cryptology ePrint Archive, 2008. Available at
http://eprint.iacr.org/2008/006.

[23] Y. Lindell, A. Lysyanskaya, and T. Rabin. On the Composi-
tion of Authenticated Byzantine Agreement. In Proceedings
of the 34th Annual ACM Symposium on Theory of Comput-
ing (STOC 2002), pages 514–523. ACM, 2002.

[24] B. Pfitzmann, M. Schunter, and M. Waidner. Re-
actively Simulatable Certified Mail. Technical Report
2006/041, Cryptology ePrint Archive, 2006. Available at
http://eprint.iacr.org/2006/041.

[25] B. Pfitzmann and M. Waidner. A Model for Asynchronous
Reactive Systems and its Application to Secure Message
Transmission. In IEEE Symposium on Security and Privacy,
pages 184–200. IEEE Computer Society, 2001.

