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ABSTRACT

Canetti’s universal composition theorem and the joint state com-
position theorems by Canetti and Rabin are useful and widely em-
ployed tools for the modular design and analysis of cryptographic
protocols. However, these theorems assume that parties participat-
ing in a protocol session have pre-established a unique session ID
(SID). While the use of such SIDs is a good design principle, exist-
ing protocols, in particular real-world security protocols, typically
do not use pre-established SIDs, at least not explicitly and not in
the particular way stipulated by the theorems. As a result, the com-
position theorems cannot be applied for analyzing such protocols
in a modular and faithful way.

In this paper, we therefore present universal and joint state com-
position theorems which do not assume pre-established SIDs. In
our joint state composition theorem, the joint state is an ideal func-
tionality which supports several cryptographic operations, includ-
ing public-key encryption, (authenticated and unauthenticated)
symmetric encryption, MACs, digital signatures, and key deriva-
tion. This functionality has recently been proposed by Kiisters and
Tuengerthal and has been shown to be realizable under standard
cryptographic assumptions and for a reasonable class of environ-
ments. We demonstrate the usefulness of our composition theorems
by several case studies on real-world security protocols, including
IEEE 802.11i, SSL/TLS, SSH, IPsec, and EAP-PSK. While our
applications focus on real-world security protocols, our theorems,
models, and techniques should be useful beyond this domain.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network Proto-
cols—Protocol Verification

General Terms

Security, Verification

1. INTRODUCTION

Universal composition theorems, such as Canetti’s composition
theorem in the UC model [7] and Kiisters’ composition theorem in
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the IITM model [19], allow to obtain security for multiple sessions
of a protocol by analyzing just a single protocol session. These the-
orems assume that different protocol sessions have disjoint state; in
particular, each session has to use fresh randomness. This can lead
to inefficient and impractical protocols, since, for example, every
session has to use fresh long-term symmetric and public/private
keys. Canetti and Rabin [11] therefore proposed to combine univer-
sal composition theorems with what they called composition theo-
rems with joint state. As the name suggests, such theorems yield
systems in which different sessions may use some joint state, e.g.,
the same long-term and public/private keys.

However, these theorems, both for universal and joint state com-
position, assume that parties participating in a protocol session have
pre-established a unique session ID (SID), and as a result (see Sec-
tion 3), make heavy use of this SID in a specific way stipulated
by the universal and joint state composition theorems. On the one
hand, the use of such SIDs is a good design principle and as dis-
cussed by Canetti [8] and Barak et al. [2] establishing such SIDs
is simple. On the other hand, many existing protocols, including
most real-world security protocols, do not make use of such pre-es-
tablished SIDs, at least not explicitly and not in the particular way
stipulated by the theorems. As a result, these theorems cannot be
used for the faithful modular analysis of such protocols; at most
for analyzing idealized variants of the original protocols, which is
unsatisfactory and risky, in the sense that attacks on the original
protocols might be missed (see Section 4). The problems resulting
from pre-established SIDs in the existing composition theorems do
not seem to have been brought out in previous work.

The goal of this paper is therefore to obtain general universal
composition and joint state composition theorems that do not as-
sume pre-established SIDs and their use in cryptographic proto-
cols, and hence, to enable modular, yet faithful analysis of proto-
cols, without the need to modify/idealize these protocols. A main
motivation for our work comes from the analysis of real-world se-
curity protocols. While many attacks on such protocols have been
uncovered (see, e.g., [12, 15, 1, 27, 25] for recent examples), their
comprehensive analysis still poses a big challenge, as often pointed
out in the literature (see, e.g., [26, 18, 10]). A central problem is
the complexity of these protocols. In order to tame the complex-
ity, modular analysis of such protocols should be pushed as far as
possible, but without giving up on accurate modeling. Our compo-
sition theorems are useful tools for this kind of modular and faith-
ful analysis. They should be of interest also beyond the analysis of
real-world security protocols. More precisely, the main contribu-
tions of our work are as follows:

Contribution of this Paper. Our universal composition theorem
without pre-established SIDs states that if a protocol realizes an
ideal functionality for a single session, then it also realizes the ideal



functionality for multiple sessions, subject to mild restrictions on
the single-session simulator. The important point is that a user in-
vokes a protocol instance simply with a local SID, locally chosen
and managed by the user herself, rather than with an SID pre-es-
tablished with other users for that session. This not only provides
the user with a more common and convenient interface, where the
user addresses her protocol instances with the corresponding local
SIDs, but, more importantly, as explained in Section 3, frees the
real protocol from the need to use pre-established SIDs and allows
for realizations that faithfully model existing (real-world) proto-
cols.

In our joint state composition theorem without pre-established
SIDs we consider protocols that use an ideal crypto functionality
Ferypto Proposed in [23]. The functionality Feypio allows its users
to perform several cryptographic operations in an ideal way, in-
cluding public-key encryption, authenticated and unauthenticated
symmetric encryption, MACs, digital signatures, key derivation,
and establishing pre-shared keys. As shown in [23], Ferypio Can
be realized under standard cryptographic assumptions, subject to
reasonable restrictions on the environment. Now, our joint state
composition theorem states that under a certain condition on the
protocol, which we call implicit (session) disjointness, it suffices
to show that the protocol (which may use Ferypio) Tealizes an ideal
functionality for a single session of the protocol to obtain security
for multiple sessions of the protocol, where all sessions may use the
same ideal crypto functionality Ferypo; again we put mild restric-
tions on the single-session simulator. So, Ferypio (Or its realization),
with the keys stored in it, constitutes the joint state across sessions.
As in the case of the universal composition theorem, users again
invoke protocol instances with locally chosen and managed SIDs.
Unlike joint state composition theorems with pre-established SIDs,
our joint state composition theorem does not modify/idealize the
original protocol.

Given our theorems, (real-world) security protocols can be an-
alyzed with a high degree of modularity and without giving up on
precision: Once implicit disjointness is established for a protocol—
first proof step—, it suffices to carry out single-session analysis for
the protocols—second proof step—in order to obtain multi-session
security with joint state for the original protocol, not just an ideal-
ized version with pre-established SIDs added in various places, as
explained in Sections 3 and 4. We emphasize that, due to the use
of Ferypio» in all proof steps often merely information-theoretic or
purely syntactical reasoning, without reasoning about probabilities
and without reduction proofs, suffices.

We demonstrate the usefulness of our theorems and approach by
several case studies on real-world security protocols, namely (sub-
protocols of) IEEE 802.11i, SSL/TLS, SSH, IPsec, and EAP-PSK.
More precisely, we show that all these protocols satisfy implicit
disjointness, confirming our believe that this property is satisfied
by many (maybe most) real-world security protocols. While prov-
ing implicit disjointness requires to reason about multiple sessions
of a protocol, this step is nevertheless relatively easy. In fact, as
demonstrated by our case studies, to prove implicit disjointness,
typically the security properties of only a fraction of the primitives
used in a protocol need to be considered. For example, to prove that
the SSH key exchange protocol satisfies implicit disjointness, only
collision resistance of the hash function is needed, but not the secu-
rity of the encryption scheme, the MAC, or the Diffie-Hellman key
exchange used in SSH. Now since the above mentioned protocols
satisfy implicit disjointness, to show that these protocols are secure
key exchange or secure channel protocols, single-session analysis
suffices. Performing this single-session analysis for all these proto-
cols is out of the scope of this paper. (The main point of this paper

is to provide the machinery for faithful and highly modular analy-
sis, not to provide a full-fledged analysis of these protocols.) How-
ever, for some of the mentioned protocols single-session analysis
has been carried out in other works (see Section 5). For example,
this has been done for SSL/TLS by Gajek et al. in [16]. However,
they used the original joint state theorem to lift their security re-
sult to the multi-session case, resulting in an idealized version of
SSL/TLS (see Section 5.2). With our theorems and since SSL/TLS
satisfies implicit disjointness, multi-session security follows for the
original, unmodified protocol.

Structure of this Paper. In Section 2, we recall basics on sim-
ulation-based security and introduce some notation. Our universal
composition and joint state composition theorems without pre-es-
tablished SIDs are then presented in Sections 3 and 4, respectively,
with applications discussed in Section 5. Full details and proofs are
provided in our technical report [22].

2. SIMULATION-BASED SECURITY

We briefly recall the framework of simulation-based security,
following [19] (see also [22]). We provide a quite model-indepen-
dent account as the details of the model are not important to be able
to follow the rest of this paper.

The General Computational Model. The general computational
model is defined in terms of systems of interactive Turing ma-
chines. An interactive Turing machine (shortly, machine) is a prob-
abilistic polynomial-time Turing machine with named input and
output tapes. The names determine how different machines are
connected in a system of machines. A system S of machines is
of the form S = M| --- | M| M| --- | !M;, where the M; and
M’; are machines such that the names of input tapes of different
machines in the system are disjoint. We say that the machines M/,
are in the scope of a bang operator. This operator indicates that
in a run of a system an unbounded number of (fresh) copies of a
machine may be generated. Conversely, machines which are not in
the scope of a bang operator may not be copied. Systems in which
multiple copies of a machine may be generated are often needed,
e.g., in case of multi-party protocols or in case a system describes
the concurrent execution of multiple instances of a protocol. In a
run of a system S at any time only one machine is active and all
other machines wait for new input. A (copy of a) machine M can
trigger another (copy of a) machine M’ by sending a message on an
output tape corresponding to an input tape of M’. Identifiers, e.g.,
session or party identifiers, contained in the message can be used
to address a specific copy of M’. If a new identifier is used, a fresh
copy of M’ would be generated. The first machine to be triggered
is the so-called master machine. This machine is also triggered if
a machine does not produce output. A run stops if the master ma-
chine does not produce output or a machine outputs a message on
a tape named decision. Such a message is considered to be the
overall output of the system. Systems will always have polyno-
mial runtime in the security parameter (and possibly the length of
auxiliary input).

Two systems P and Q are called indistinguishable (P = Q) iff
the difference between the probability that # outputs 1 (on the de-
cision tape) and the probability that Q outputs 1 is negligible in the
security parameter.

Notions of Simulation-Based Security. We need the following
terminology. For a system S, the input/output tapes of machines
in S that do not have a matching output/input tape are called ex-
ternal. These tapes are grouped into I/O and network tapes. We
consider three different types of systems, modeling i) real and ideal
protocols/functionalities, ii) adversaries and simulators, and iii) en-



vironments: Protocol systems and environmental systems are sys-
tems which have an I/O and network interface, i.e., they may have
I/O and network tapes. Adversarial systems only have a network in-
terface. Environmental systems may contain a master machine and
may produce output on the decision tape. We can now define strong
simulatability; other equivalent security notions, such as (dummy)
UC, can be defined in a similar way [19].

Dermnition 1 ([19]). Let P and F be protocol systems with the
same IO interface, the real and the ideal protocol, respectively.
Then, P realizes & (P < F) iff there exists an adversarial sys-
tem S (a simulator or an ideal adversary) such that the systems P
and S|F have the same external interface and for all environmen-
tal systems &, connecting only to the external interface of P (and
hence, S| F), it holds that E|P = E|S|F.

Composition Theorems. We restate the composition theorems
from [19], in a slightly simplified way. The first composition theo-
rem handles concurrent composition of a fixed number of protocol
systems. The second one guarantees secure composition of an un-
bounded number of copies of a protocol system.

THeOREM 1 ([19]). Let Py, P>, F1,F2 be protocol systems such
that Py and P, as well as F, and F, only connect via their /O
interfaces and P; < F;, for i € {1,2). Then, P |Pr < F1 | Fa.

Let ¥ and P be protocol systems, which, for example, describe
one session of an ideal/real protocol. By £ and £ we denote the
so-called session versions of ¥ and #, which allow an environment
to address different sessions of 7 and %, respectively, in the multi-
session versions ! and !P of ¥ and P by prefixing messages
with session identifiers (SIDs); an instance of £/F is accessed via
a unique SID. Conversely, messages output by ¥ and £ will be
prefixed by their respective SID.

THEOREM 2 ([19]). Let P, F be protocol systems such that P <
F. Then, P <\F.

These theorems can be applied iteratively to construct more and
more complex systems. For example, using that < is reflexive, we
obtain, as a corollary of the above theorems, that for any proto-
col system Q: P < F implies Q| ! < Q| !F, i.e., Q using an
unbounded number of copies of P realizes Q using an unbounded
number of copies of #. This corollary is in the spirit of Canetti’s
universal composition theorem [7].

3. UNIVERSAL COMPOSITION
WITHOUT PRE-ESTABLISHED SIDS

Universal composition theorems, such as Theorem 2 and the
composition theorem by Canetti, allow to obtain security for mul-
tiple sessions of a protocol by analyzing just a single session. Such
theorems can therefore greatly simplify protocol analysis. How-
ever, these theorems rely on the setup assumption that the parties
participating in a protocol session agree upon a unique SID and
that they invoke their instance of the protocol with that SID. This
is due to the way multi-session versions of ideal functionalities are
defined in these composition theorems: A multi-session version of
an ideal functionality F is such that parties which want to access an
instance of F' have to agree on a unique SID in order to be able to
all invoke the same instance of F with that SID. As a consequence,
the composition theorems implicitly require that a session of a real
protocol with SID s realizes a session of the ideal functionality with
SID s. (For example, if a session of the real protocol consists of two
instances, e.g., an initiator instance and a responder instance, then

the initiator with SID s and the responder with SID s together have
to realize the ideal functionality with SID s.) This, in turn, implies
that the real protocol has to use the SID s in some way, since other-
wise there is nothing that prevents grouping instances with different
SIDs (e.g., an initiator with SID s and a responder with SID s’) into
one session. One usage of the SID s is, for example, to access a
resource for the specific session, e.g., a functionality (with SID s)
that provides the parties with fresh keys or certain communication
channels for that specific session. In realizations with joint state, s
is typically used in all messages exchanged between parties in or-
der to prevent interference with other sessions (see also Section 4).

Canetti [8] discusses three methods of how such unique SIDs
could be established, including a method proposed by Barak et
al. [2], where parties simply exchange nonces in clear and then
form a unique SID by concatenating these nonces and the party
names. We will refer to such uniquely established SIDs (using
whatever method) by pre-established SIDs. The use of pre-estab-
lished SIDs is certainly a good design principle. However, assum-
ing pre-established SIDs and, as a result, forcing their use in the
protocols greatly limits the scope of the composition theorems for
the analysis of existing protocols. In particular, they cannot be used
for the modular analysis of real-world security protocols since such
protocols typically do not make use of SIDs in this explicit and
specific way. In other words, the composition theorems could only
be used to analyze idealized/modified versions of such protocols.
However, this is dangerous: While the idealized/modified version
of a protocol might be secure, its original version may not be se-
cure (see Section 4). We note that, alternatively, protocols could of
course directly be analyzed in the multi-session settings, instead of
first analyzing the single-session setting and then lifting the analy-
sis to the multi-session setting by a composition theorem. But this
kind of analysis would be more involved and would not exploit the
potential of modular analysis, which for the comprehensive analy-
sis of complex protocols, such as real-world security protocols, is
essential.

In this section, we therefore present a general universal compo-
sition theorem that does not assume pre-established SIDs (and their
use in protocols). For this purpose, we first provide a new defini-
tion of the multi-session version of an ideal functionality. Our new
multi-session version models the more realistic scenario that a party
accesses an instance of an ideal functionality F simply by a local
SID, which is locally chosen and managed by the party itself. It is
then left to an adversary (simulator) to determine which group of
local sessions may use one instance of F, where the grouping into
what we call a (global) session is subject to certain restrictions (see
below). This seemingly harmless modification not only provides
a more realistic and common interface to the functionality (and its
realization), but, as explained above, more importantly frees the re-
alization from the need to use pre-established SIDs and allows for
realizations that faithfully model existing (real-world) protocols.
Before presenting the new multi-session versions of ideal function-
alities and our composition theorem, we fix some notation and ter-
minology for modeling arbitrary real protocols.

3.1 Multi-Session Real Protocols

A multi-session real protocol is an arbitrary real protocol with n
roles, for some n > 2, which may use arbitrary subprotocols/func-
tionalities to perform its tasks. More precisely, a multi-session
(real) protocol P is a protocol system of the form P =M, |---| |M,
for some n > 2 and machines My, ..., M,.. Each machine M, repre-
sents one role in the protocol and, since these machines are under
the scope of a bang operator, there can be multiple instances of each
machine in a run of the system (see below). Every machine M, has



1) an I/O input and output tape for communication with the environ-
ment (users), ii) a network input and output tape for communication
with the adversary (modeling the network), and iii) an I/O input and
output tape for communication with a subprotocol/ideal function-
ality 7. We require that the I/O interface of # consists of n pairs
of I/O input and output tapes, one for each role. Note that ¥ may
include several subprotocols/functionalities. We say that P uses F.

A machine M, expects inputs to be prefixed with a tuple of the
form (/sid, p) from the environment (user) and the adversary, and
it prefixes all messages it outputs with (Isid, p). Intuitively, p is a
party identifier (PID) and Isid a local SID (LSID), locally chosen
and managed by party p. In a run of # there will be at most one
instance of M, with ID (Isid, p), representing the local session Isid
of party p inrole r.

To model corruption, we assume that every (instance of) M,
stores a flag corrupted € {false,true} in its state, which initially
is false. At some point, M, might set it to true in which case we
call M, corrupted. We require that once M, sets the flag to true,
it stays true. Furthermore, whenever the environment sends the
message (Isid, p, Corrupted?) to M, (on the I/O tape), M, replies
with (Isid, p, Corrupted, corrupted). This allows the environment
to know which instances are corrupted. (As usual, this is neces-
sary in simulation-based settings.) However, we do not fix how
M, behaves when corrupted; we leave this entirely up to the def-
inition of M,. One possible behavior could be, for example, that
when corrupted, M, gives complete control to the adversary by for-
warding all messages between the environment and the adversary.
We note that the possibility of corrupting single instances of M, is
quite fine-grained and allows several forms corruption, including
complete corruption of a party: the adversary can simply corrupt
all instances of that party.

3.2 A New Multi-Session Version of
Ideal Functionalities

Let F be any machine, modeling an ideal functionality, with n
pairs of input and output I/O tapes, one for each role, and one pair
of input and output network tapes. We now define the new multi-
session version of F, informally explained above. We call this new
multi-session version multi-session local-SID (ideal) functionality
and denote it by ¥ [F] or simply 7:

A user of ¥ is identified within # by the tuple (p, Isid, r), where
p is a party identifier (PID), r < n a role, and Isid a local SID
(LSID), which can be chosen and managed by the party itself. In
particular, on the tape for role r, ¥ expects requests to be prefixed
by tuples of the form (Isid, p), and conversely, F prefixes answers
sent on that tape with a tuple of the form (Isid, p).

A user of F, say (p,Isid,r), can initiate a session by sending
a session-start message of the form (/sid, p, Start, m) where m is
an optional bit string, which can be used to set parameters of the
session, e.g., the desired partners or the name of a key distribution
server. For example, in the case of two-party key exchange, a user
with PID p who wants to exchange a key with party p’ could set
m = (p,p’). We emphasize that the interpretation of m is left to
F. Upon such a session-start request, ¥ records this request (if it
is the first such request from (p, Isid, r)) as a local session for user
(p, Isid, r) and forwards this information to the adversary.

The adversary (simulator) determines to which global session
local sessions belong, by sending a session-create message of the
form (Create, sid) to ¥ where sid = (py, Isidy, 1), ..., (pn, Isid,, n)
contains one local session for every role. (We note that # could
easily be extended to deal with multiple local sessions per role.)
The machine 7 only accepts such a message if it is consistent with
the local sessions: The mentioned local sessions all exist, are not

corrupted (see below), and are not already part of another global
session. If # accepts such a session-create message, ¥ internally
creates a new instance of F identifying it by sid. Then, # sends
the message (Create, my,...,m,) to this instance of F where, for
all r < n, m, is the optional bit string contained in the session-start
message of user (p,, Isid,,r). The adversary can address this in-
stance of F' (via the network interface) by prefixing messages with
sid; conversely, messages output by F on its network interface are
prefixed with sid.

For a message m of a user (p, Isid, r), which is not a session-
start message or a message of the form Corrupted? (see below),
F checks whether (p, Isid, r) is part of a global session. If not, ¥
drops m, i.e., this message is ignored. Otherwise, ¥ forwards m
to the corresponding instance of F. Conversely, ¥ forwards all
messages from an instance of F on tape r to the corresponding user
inrole r.

We model corruption as follows in . The adversary can send a
corrupt message of the form (Corrupt, (p, Isid, r)) for a local ses-
sion (p, Isid, r) to F. The machine ¥ only accepts this message if
the local session (p, Isid, r) is not already part of a global session,
and in this case records (p, Isid,r) as corrupted. For every cor-
rupted local session, ¥ forwards all messages from a user of that
local session to the adversary (instead of forwarding them to F)
and vice versa. This models that the adversary has full control over
corrupted local sessions. Note that once a local session is part of a
global session, the local session or its corresponding global session
can still be corrupted at any time according to the way corruption
is defined in F, which we do not restrict.

Finally, a user may ask # whether or not a local session was
corrupted before being part of a global session by sending the mes-
sage (Isid, p, Corrupted?). Then, ¥ replies accordingly with true
or false. This, as usual, guarantees that the environment is aware of
who is corrupted, preventing the simulator from simply corrupting
all local sessions. Whether or not a user can ask about the cor-
ruption status of F' is completely up to the definition of F', which,
again, we do not restrict.

We note that the above definition of a multi-session version of an
ideal functionality applies to any ideal functionality F'.

Technically, for a real protocol to realize a multi-session local-
SID functionality the simulator must be able to group instances of
the simulated real protocol into a global session before interaction
with the functionality F is possible. This means that a real protocol
needs to allow for the grouping of instances by whatever mecha-
nism (where the mechanisms is typically intertwined with the rest
of the protocol). In particular, the grouping is part of the protocol,
and hence, can now be precisely modeled and analyzed. For exam-
ple, for authentication, key exchange, secure channel protocols and
the like, being able to tell which instances are grouped together is
an essential part of what these protocols (have to) guarantee and
different protocols use different mechanisms; these mechanisms
should be part of the analysis. Conversely, before there was one
fixed mechanism for grouping instances, namely pre-established
SIDs. Real protocols needed to make sure that they in fact can be
grouped according to the SID they obtained, and hence, they had to
use the SID in some essential way. Moreover, the SIDs came from
outside of the protocol, and hence, their establishment was not part
of the protocol.

3.3 The Universal Composition Theorem
Without Pre-Established SIDs

We now present our universal composition theorem. Let P be
a multi-session protocol using a multi-session local-SID function-
ality ¥’ and let ¥ be a multi-session local-SID functionality. In-



formally, our theorem states that if | realizes ¥ in the single-
session setting, then P |F” realizes # in the multi-session setting.
The important point here is that, by the definition of multi-session
local-SID functionalities, no pre-established SIDs (nor their use in
the protocol) are required.

To formulate this theorem, we consider a machine Fijy that is
put on top of P|F’ and F, respectively, and that allows an envi-
ronment to create at most one session, i.e., only one user is allowed
per role. We note that an alternative to using Fnge Would be to
restrict the environment explicitly.

To be able to prove the composition theorem, we need to restrict
the class of simulators used to prove that | ¥ realizes ¥ in the
single-session case. For this purpose, we define the following sim-
ulation relation: We say that P|F" single-session realizes F (de-
noted by Fsingle |P | Fr < Fsingle | ?v) if 1) Fsingle |P | F' < Fsingle | 'f,
i.e., according to Definition 1, there exists a simulator Sim such
that for all & it holds that &| Fngie |P | F" = E|Sim | Fingie | F, and
ii) Sim is a machine which operators in two stages as follows: In
the first stage, Sim simply emulates the system P |F’, where ses-
sion-start messages from ¥ are forward to the emulated P. If Sim
receives a) a session-create message for the emulated ¥ from the
adversary and this message is accepted by 7 or b) the corrupted
flag of an emulated instance M, in P is set to true, then Sim en-
ters its second stage. Once in the second stage, Sim is not re-
stricted whatsoever. If, in the first stage, the emulated | ¥ pro-
duces I/O output, then Sim terminates. (In this case the simulation
fails.) This is in fact not a restriction: Every protocol that pro-
duces 1/O output if Sim is in its first stage would not realize 7, i.e.,
Fngie |P1F" £ Fange | F. The reason is that in the first stage, the
instances in # run independently. Now, if an environment emulated
all but one instance, in Fnge | ¥ no session would be created, and
hence, no output at the I/O interface would be produced.

So, altogether the only restriction we put on Sim is that it em-
ulates the real protocol in its first stage. This is what simulators
would typically do anyway. In fact, we think that for most applica-
tions Fsingle |P | 7:, < Fsingle | 7" lI’I’lplles Fsingle |7) | T/ < Fsingle | T

Moreover, our restriction seems unavoidable in order to prove
our composition theorem. First recall that for the classical univer-
sal composition theorems (Theorem 2 and Canetti’s composition
theorem) the proof is by a hybrid argument. In the i-th hybrid sys-
tem the environment emulates the first < i sessions as real protocols
(real sessions) and the last > i sessions as ideal (single-session sim-
ulator plus ideal functionality). The i-th session is external. Since
every session is identified by a pre-established SID, the environ-
ment knows exactly and from the start on which instances of ma-
chines form one session. In particular, it knows from the start on
whether a session should be emulated as real or ideal and which
messages must be relayed to the external session. In our setting,
this does not work since we do not assume pre-established SIDs:
Initially, the (hybrid) environment does not know to which session
an instance (p, Isid, r) will belong. In particular, it does not know
whether it will belong to an ideal or real session. This is only deter-
mined if (p, Isid, r) is included in a (valid) session-create message
to ¥’. So unless an instance (p, Isid, r) does not behave the same
in the ideal and real session up to this point, consistent simulation
would not be possible. Now, by our assumption that the simulator
in its first stage simulates the real protocol, the environment can
first simulate the real protocol for the instance (p, Isid,r). Once
this instance is included in a (valid) session-create message to ¥,
and hence, the environment knows whether the instance belongs to
an ideal or real session, the simulation can be continued accord-
ingly. More concretely, if it turns out that (p, Isid, r) belongs to an
ideal session, the environment starts the emulation of the simulator

for that session with the current configurations of all emulated in-
stances for that session. Again, this is possible because up to this
point the simulator too would have only simulated these instance
as real protocols. For the i-th session, the environment guesses the
instances that shall belong to it. Following this idea, we proved our
composition theorem stated next.

Tueorem 3. Let 7 and F' be two multi-session local-SID func-
tionalities and let P be a multi-session real protocol that uses F.
Istingle |P | 7:, <* Fsingle | 7:r then Plf, < 7:

We note that Theorem 3 can be applied iteratively: For example,
if we have that Fsingle |Pl |7:1 < Fsingle |772 and Fsingle |7)2 | 7:2 <*
Fingie | 73, then, by Theorem 3 and Theorem 1, P, | P | F; < F3.

4. JOINT STATE COMPOSITION
WITHOUT PRE-ESTABLISHED SIDS

Universal composition theorems, such as Theorem 2 and the
composition theorem of Canetti, assume that different protocol ses-
sions have disjoint state; in particular, each session has to use fresh
randomness. (Theorem 3 makes this assumption too, but we ex-
clude this theorem from the following discussion since it does not
assume pre-established SIDs.) This can lead to inefficient and im-
practical protocols, since, for example, in every session fresh long-
term symmetric and public/private keys have to be used. Canetti
and Rabin [11] therefore proposed to combine the universal com-
position theorems with what they called composition theorems with
joint state. By now, joint state composition theorems for several
cryptographic primitives are available, including joint state compo-
sition theorems for digital signatures [11, 20] and public-key en-
cryption [20] as well as encryption with long-term symmetric keys
[21]. These theorems provide mechanisms that allow to turn a sys-
tem with independent sessions (i.e., sessions with disjoint state)
into a system where the same (long-term symmetric and public/pri-
vate) keys may be used in different sessions. This joint state comes
“for free” in the sense that it does not require additional proofs.
However, there is a price to pay: Just as the universal composi-
tion theorems, the joint state composition theorems assume pre-
established SIDs. Moreover, the mechanisms used by existing joint
state theorems for specific cryptographic primitives, such as en-
cryption and digital signatures, prefix all plaintexts to be encrypted
(with long-term symmetric or public/private keys) and messages to
be signed by the unique pre-established SIDs; by this, interference
between different sessions is prevented. While this is a good design
principle, these theorems are unsuitable for the modular analysis
of an existing protocol that does not employ these mechanisms: If
such a protocol is secure in the single-session setting, then its multi-
session version obtained by combining universal composition with
joint state composition, and hence, the version of the protocol in
which messages are prefixed with pre-established SIDs, is secure
as well. But from this it does in general not follow that the original
protocol, which may be drastically different, is also secure in the
multi-session setting. In fact, by the above joint-state constructions
insecure protocols can be turned into secure ones (see Figure 1). In
particular, since real-world security protocols typically do not use
pre-established SIDs, at least not explicitly and not in the particular
way stipulated by the theorems, the joint state composition theo-
rems are unsuitable for the modular and faithful analysis of such
protocols; at most idealized/modified protocols, but not the origi-
nal real-world protocols, can be analyzed in this modular way. For
example, in Step 3 of the TLS Handshake Protocol (see Figure 2),
the client sends the pre-master key encrypted to the server. In the
variant of TLS obtained by the joint state theorems, a unique SID
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Figure 1: The original Needham-Schroeder Public-Key Proto-
col is insecure [24]. Its modified version, resulting from the
joint-state construction, which prefixes every plaintext with a
pre-established SID sid is secure (see [22] for details).

sid would be included in the plaintext as well. By this alone, unlike
the original version of TLS, this message is bound to session sid.

In this section, we therefore propose a joint state composition
theorem which does not require to modify the protocol under con-
sideration. In particular, it does not rely on pre-established SIDs
and the mechanism of prefixing messages with such SIDs.

In our joint state theorem we consider a multi-session real pro-
tocol P which uses an ideal crypto functionality Ferypo proposed in
[23]. The functionality Ferypo allows its users to perform the fol-
lowing operations in an ideal way: i) generate symmetric keys, in-
cluding pre-shared keys, ii) generate public/private keys, iii) derive
symmetric keys from other symmetric keys, iv) encrypt and decrypt
messages and ciphertexts, respectively (public-key encryption and
both unauthenticated and authenticated symmetric encryption are
supported), v) compute and verify MACs and digital signatures,
and vi) generate fresh nonces. All symmetric and public keys can
be part of plaintexts to be encrypted under other symmetric and
public keys. Derived keys can be used just as freshly generated
symmetric keys. As shown in [23], Ferypio can be realized under
standard cryptographic assumptions, subject to natural restrictions
on the environment. We briefly recall Ferypo and its realization in
Section 4.1.

Every instance of a machine M, in P has access to Ferypio- In
other words, Ferypio is the joint state of all sessions of P: Different
sessions may have access to the same public/private and symmetric
keys in Ferypro-

Now, informally speaking, our joint state composition theorem
states that under a certain condition on #, which we call implicit
(session) disjointness, it is sufficient to analyze # (which may use
Ferypto) 1 the single-session setting to obtain security in the multi-
session setting, where all sessions may use the same ideal crypto
functionality Ferypo. (We note that by the universal composition
theorem, Ferypio can be replaced by its realization.) It seems that
most real-world protocols satisfy implicit disjointness and that this
property can be verified easily, as illustrated by our case studies in
Section 5.

In what follows, we briefly recall the ideal crypto functionality
Ferypto and its realization. We then introduce the notion of implicit
disjointness and present our joint state composition theorem.

4.1 The Ideal Crypto Functionality

We now briefly recall the ideal functionality Frypio, proposed in
[23], which, as mentioned, supports several cryptographic opera-
tions. The formulation here is slightly modified (see below).

Description of # . Just as multi-session local-SID functional-
ities introduced in Section 3, Ferypo is parametrized by a number
n of roles. For every role, Ferypo has one 1/0 input and output
tape. Again, a user of Ferypio is identified within Ferypo by a tuple
(p, Isid, r), where p is a PID, Isid a LSID, and r a role.

Users of Ferypro» and its realization, do not get their hands on
the actual symmetric keys stored in the functionality, but only on
pointers to these keys, since otherwise no security guarantees could

be provided; users obtain the actual public keys though. A user can
perform the operations mentioned above (encryption, etc.). Upon
a key generation request, an adversary can corrupt a key, which is
then marked “known” in Frypio (see below). A user can ask whether
a key one of her pointers points to is corrupted.

The functionality Ferypio keeps track of which user has access to
which symmetric keys (via pointers) and which keys are known to
the environment/adversary, i.e., have been corrupted or have been
encrypted under a known key, and as a result became known. For
this purpose, Ferypio Maintains a set K of all symmetric keys stored
within Ferypio, @ set Kinown S K of known keys, and a set Kynknown :=
K \ Kinown of unknown keys.

To illustrate the internal behavior of F o and to point out the
mentioned modification to the original version of Feryp, We sketch
the behavior of Fryp, for authenticated encryption and decryption,
with requests (Enc, ptr, x) and (Dec, ptr, y): We first consider the
case that ptr points to an unknown key, i.e., a key in Kynknown. Lhe
plaintext x may contain pointers to symmetric keys. Before x is
actually encrypted, such pointers are replaced by the keys they re-
fer to, resulting in a message x’. Now, not the actual message, but
a random message of the same length is encrypted. If this results
in a ciphertext y’, then the pair (x’,y") is stored in Ferypo and y' is
returned to the user. Decryption of y succeeds only if exactly one
pair of the form (x”,y) is stored. In this case, x” with embedded
keys replaced by pointers is returned. In case ptr points to a key
marked known, i.e., a key in Kinown, the adversary is asked for a
ciphertext (in case of encryption) or a plaintext (in case of decryp-
tion).! Furthermore, all keys contained in x’ are marked known as
they are encrypted under a known key.

Realization of F 0. In [23], a realization Perypio Of Ferypio has
been proposed based on standard cryptographic assumptions on
schemes: IND-CCAZ2-secure schemes for public-key and unauthen-
ticated symmetric encryption, an IND-CPA- and INT-CTXT-secure
scheme for authenticated symmetric encryption, UF-CMA-secure
MAC and digital signature schemes, and pseudo-random functions
for key derivation. These schemes are used to realize Fyp, in the
expected way. To show that Py realizes Ferypio it is necessary
to restrict the environment: Environments should not cause the so-
called commitment problem (once an unknown symmetric key was
used for encryption, it should not become known) and should not
generate key cycles; without these restrictions, much stronger cryp-
tographic assumptions would be necessary, which go beyond what
is typically assumed for the security of real-world security proto-
cols. Protocols (in particular, real-world security protocols) using
Ferypto typically satisfy these restrictions and this is easy to verify
for a given protocol, as discussed and illustrated in [23].

4.2 Our Criterion: Implicit Disjointness

We now introduce the notion of implicit (session) disjointness,
already mentioned at the beginning of Section 4. Recall that we
are interested in the security of the system P | Fcrypio, Where P is
a multi-session protocol in which all sessions may use the same
Ferypto-  As explained before, implicit disjointness is a condition
on P which should allow to analyze the security of # in a single-
session setting in order to obtain security of £ in a multi-session
setting, without assuming pre-established SIDs and without mod-
ifying #. Intuitively, implicit disjointness is a condition that en-

IThis constitutes a slight modification to the original ideal func-
tionality in [23], where in this case encryption and decryption were
performed with algorithms previously provided by the adversary.
The new version helps in the proof of our joint state theorem. It is
just as useful for analyzing protocols and can be realized in exactly
the same way as the original version.



sures that different sessions of £ cannot “interfere”, even though
they share state, in the form of information stored in Frypio, includ-
ing public/private and pre-shared keys, and the information stored
along with these keys, e.g., plaintext-ciphertext pairs. In order to
define the notion of implicit disjointness, we first introduce some
notation and terminology.

Partnering Functions. In the definition of implicit disjointness, we
assume the existence of a partnering function? which groups users
(p, Isid, r), more precisely, the corresponding instances of machines
M, in a run of P, into sessions. Formally, a partnering function
7 for P | Ferypio 1S @ polynomial-time computable, partial function
that maps every sequence « of configurations of an instance of a
machine M, in # to an SID (which is an arbitrary bit string) or
L. For every environment &, (partial) run p of &P | Ferypro» and
every user (p, Isid, r), we define 7, siqa,)(p) := 7(a) where « is the
projection of p to the sequence of configurations of the machine M,
with PID p and LSID Isid. We say that (p, Isid, r) and (p’, Isid’, r’)
are partners (or belong to the same session) in a (partial) run p if
T(p,lsid,r)(p) = T(p’,lsid',r’)(p) 1.

We say that 7 is valid for P if, for every environment & for
P | Ferypro» the following holds with overwhelming probability (the
probability is taken over runs p of E|P|Feaypo): For every user
(p, Isid, r) in p, the following conditions are satisfied. i) Once an
SID is assigned, it is fixed, i.e., if 7, ia,n(0”) # L, then it holds
Tipisian(©") = Tpusian(p”) for every prefix p” of p and every pre-
fix p” of p’. ii) Corrupted users do not belong to sessions, i.e.,
if (p,lsid, r) is corrupted in p (i.e., the flag corrupted is set to
true in the corresponding instances of M,), then 7, i (0) = L.
iii) Every session contains at most one user per role, i.e., for ev-
ery partner (p’, Isid’, r’) of (p,Isid,r) in p, it holds that r # r’ or
(p,Isid', r') = (p, Isid, r).

In practice, partnering functions are typically very simple. In our
case studies (Section 5), we use conceptually the same partnering
function for all protocols; basically partners are determined based
on the exchanged nonces.

Construction and Destruction Requests. We call an encryption,
MAC, and sign request (for Feypo by an instance M, of P, i.e., a
user) a construction request and a decryption, MAC verification,
and signature verification request a destruction request.

Now, roughly speaking, implicit disjointness says that whenever
some user sends a destruction request, then the user who sent the
“corresponding” construction request belongs to the same session
according to 7. This formulation is, however, too strong. For
example, an adversary could send a ciphertext coming from one
session to a different session where it is successfully decrypted.
But further inspection of the plaintext might lead to the rejection
of the message (e.g., because excepted nonces did not appear or
MAC/signature verification failed). We therefore need to introduce
the notion of a successful destruction request. For this purpose, we
also introduce what we call zests.

Tests and Successful Destruction Requests. ~We imagine that a
user (p, Isid, r) (more precisely, the corresponding instance of M,)
after every destruction request runs some deterministic algorithm
test which outputs accept or reject, where, besides the response
received, the run of test may depend on and may even modify the
state of (p, Isid, r). We require that test satisfies the following con-
ditions: If the destruction request is a MAC/signature verification

>The concept of partnering functions has been used to define se-
curity in game-based definitions, which led to discussions whether
the obtained security notions are reasonable [4, 5, 3, 9, 13, 17].
Here, we use partnering functions as part of our criterion (implicit
disjointness) but not as part of the security definition itself; security
means realizing an ideal functionality (see Theorem 4).

request, then test simply outputs the result of the verification. If
the destruction request is a decryption request, but decryption failed
(i.e., Ferypo returned an error message), then test returns reject.
Otherwise, if decryption did not fail, and hence, a plaintext was re-
turned, test is free to output accept or reject. In the latter case—
reject—, we require the state of (p, Isid, r) to be the same as if de-
cryption had failed (i.e., as if Ferypo had returned an error message)
in the first place; this ensures that the state of (p, Isid, r) does not
depend on the plaintext that was returned. The algorithm test may
itself make destruction requests (but no construction requests), e.g.,
decrypt nested ciphertexts or verify embedded MACs/signatures,
which are subject to the same constraints. Also, key generation and
key derivation are allowed within a test. The requirements on test
reflect what protocols typically do (see Section 5.2 for an example).

Now, we say that a destruction request is accepted if the test
performed after the request returns accept. We say that it is ideal if
the key used in the destruction request is marked unknown in Frypi0
or is an uncorrupted public/private key in Frypio and, in case of a
decryption request, the ciphertext in that request is stored in Ferypio
(and hence, it was produced by Ferypo and the corresponding stored
plaintext is returned).

Correspondence Between Construction and Destruction Requests.
We now define when a construction request corresponds to a de-
struction request. Let p be a run of the system &|P | Ferypio and
let m, and m, be construction and destruction request, respectively,
such that m,. was sent by some instance to Ferypo before my; was
sent by some (possibly other) instance to Ferypo in p. Then, we
say that m, corresponds to m, in p if 1) m, is an encryption and my
a decryption request under the same key (for public-key encryp-
tion/decryption, under corresponding public/private keys) such that
the ciphertext in the response to m. from Fypo coincides with the
ciphertext in my, ii) m. is a MAC/signature and m, a MAC/sig-
nature verification request under the same key/corresponding keys
such that the message in m, coincides with the message in m, (the
MACs/signatures do not need to coincide).

Explicitly Shared (Symmetric) Keys. For implicit disjointness, we
only impose restrictions on what we call explicitly shared (symmet-
ric) keys. These are pre-shared symmetric keys or keys (directly or
indirectly) derived from such keys in different sessions with the
same seed. We note that in most protocols pre-shared keys are the
only explicitly shared keys since derived keys are typically derived
from seeds that are unique to the session.

DEFINITION 2 (IMPLICIT DISJIOINTNESS). Let P be a multi-session
protocol that uses Ferypo and T be a valid partnering function for
P| Ferypro- Then, P satisfies implicit (session) disjointness w.r.t. T
if for every environment & for P | Ferypio the following holds with
overwhelming probability for runs p of &|P | Ferypro”

(a) Every explicitly shared key is either always marked unknown
or always marked known in Ferypio.

(b) Whenever some user (p,lsid,r) (i.e., an instance of M,) per-
formed an accepted and ideal destruction request with an ex-
plicitly shared key or a public/private key at some point in p, say
after the partial run p', then there exists some user (p’, Isid’, r’)
that has sent a corresponding construction request such that
both users are partners or both users are corrupted in p’.

Most protocols can easily be seen to satisfy (a) because explicitly
shared keys are typically not sent around (i.e., encrypted by other
keys), and hence, since they can be corrupted upon generation only,
they are either corrupted (i.e., always known) or always unknown.
As already mentioned, our case studies (Section 5) demonstrate that



(b) too is typically satisfied by real-world protocols and can easily
be checked. We note that (b) can be interpreted as a specific cor-
respondence assertion, and it might be possible to check (b) using
automated techniques, such as Crypto Verif [6].

4.3 The Joint State Composition Theorem
Without Pre-Established SIDs

In this section, we present our joint state composition theorem.
To be able to prove this theorem, we need to restrict the class of
simulators used to prove that | Feypo realizes F in the single-
session case. For this purpose, similarly to Section 3.3, we de-
fine the following simulation relation, where 7 is a valid partnering
function for P | Ferypio and F is a multi-session local-SID function-
ality: We say that P | Ferypio single-session realizes ¥ w.rt. T (de-
noted by Fsingle |P | 7:crypto <’ Fsingle | 7:) if 1) Fsingle |P | 7:crypto <
Fgngie |7, ie., according to Definition 1, there exists a simula-
tor Sim, such that for all & it holds that &| Fgngie |P| Ferypro =
&E|Sim; | Fgngie | 7, and ii) Sim, is a machine which operators in
two stages: Analogously to the simulators defined in Section 3.3,
in the first stage Sim, emulates the system P | Ferypio- Just as in Sec-
tion 3.3, Sim, enters its second stage, in which Sim, is unrestricted,
if an emulated instance of M, in P set its corrupted flag to true. In
Section 3.3, simulators also entered the second stage if a session-
create message (addressed to ') was received. Such messages
do not occur here. Instead, whenever activated, Sim, computes
7(,) for all » < n, where «, is the current sequence of configu-
rations of the emulated instance of M,. If T signals a session, i.e.,
() = -+ = 7(a,) # L, then Sim, enters its second stage, in
which it is unrestricted.

Analogously to Section 3.3, we can observe that the only restric-
tion we put on Sim, is that it emulates the real protocol in its first
stage. As already argued in Section 3.3, this appears to be unavoid-
able and does not seem to be a restriction in practice.

We are now ready to present our joint state composition theorem,
with Ferypio Serving as the joint state. Since our theorem does not as-
sume pre-established SIDs, protocols analyzed using this theorem
do not need to be modify/idealize by prefixing SIDs to messages.
The usage of our theorem is discussed in more detail in Section 5.

THEOREM 4. Let ¥ be a multi-session local-SID functionality
and let P be a multi-session protocol that uses Ferypo and satisfies
implicit disjointness w.r.t. 7.

IfFSingle |p | 7_-x:rypm <r Fsingle |T, then P | ﬁrypto <F.

Proor skercH. We first construct a machine Q. which simulates
P | Ferypro €Xcept that it uses a different copy of Ferypo for every
session (according to 7). Using implicit disjointness, we can show
that &P | Ferypo = E|@Q; for every environment E. We then show
that Q. realizes 7, using Fiingte | P | Ferypto <™ Fisingte | F. [

5. APPLICATIONS

In this section, we discuss, using key exchange and secure chan-
nels as an example, how Theorems 3 and 4 can be used to analyze
protocols in a modular and faithful way. While our discussion fo-
cuses on the analysis of properties of real-world security protocols,
our theorems should be useful beyond this domain.

5.1 Proving Security of Key Exchange and Se-
cure Channel Protocols

We consider a standard secure channel ideal functionality Fi.
and an ideal functionality Fey-use for key usability. The latter func-
tionality, which is inspired by the notion of key usability proposed
in [14], is new and of independent interest. It is very similar to

a standard key exchange functionality. However, parties do not
obtain the actual exchanged key but only a pointer to this key.
They can then use this key to perform ideal cryptographic oper-
ations, e.g., encryption, MACing, key derivation, etc., similarly
t0 Ferypro- Compared to the standard key exchange functionality,
Fiey-use has two big advantages: i) One can reason about the ses-
sion key (and keys derived from it) still in an ideal way, which
greatly simplifies the analysis when used in higher level protocols.
ii) Fiey-use can be realized by protocols which use the session key
in the key exchange, e.g., for key confirmation. In what follows,
let Fye = FFs] and Freyuse = F [Frey-use] denote the multi-session
local-SID functionalities of Fy. and Fyey.yge, respectively.

To illustrate the use of Theorems 3 and 4, consider, for example,
the task of proving that a multi-session protocol Q which is based
on a multi-session key exchange protocol P realizes ¥y, where
both Q and P could be real-world security protocols.

While a proof from scratch would, similarly to proofs in a game-
based setting, require involved reduction arguments and would be
quite complex, using our framework the proof is very modular, with
every proof step being relatively small and simple: First, instead of
using the actual cryptographic schemes, # can use Ferypo (at least
for the operations supported by Ferypio)- As a result, for the rest of
the proof merely information-theoretic reasoning is needed, often
not even probabilistic reasoning, in particular no reduction proofs
(at least as far as the operations supported by Frypio are concerned).
The remaining proof steps are to show: i) P |Ferypo satisfies im-
plicit disjointness, ii) | Ferypio Single-session realizes Frey-use, and
iil) Q| Frey-use Single-session realizes F.. (Since, the session key
established by Fiey-use can be used for ideal cryptographic opera-
tions, the argument for Step iii) is still information-theoretic.) We
note that only Step i) needs some (information-theoretic) reasoning
on multiple sessions, but only to show implicit disjointness. This
is easy, as illustrated by our case studies (see below); the proof
often merely needs to consider the security properties of a small
fraction of the primitives used in the protocol. Now, by i), ii), and
Theorem 4, we obtain P | Ferypro < Fiey-use- Theorem 3 and iii) im-
ply Q| Frey-use < Fec. By Theorem 1 and since Q < @, we have
Q | P I 7__cryplo S Q | ﬂey—uses and hence, Q | 7) | 7_—c:lryptu S 7_—5(. by traHSi'
tivity of <.

5.2 Case Studies

In our case studies (see [22] for details), we consider real-world
key exchange protocols, namely IEEE 802.11i, SSH, SSL/TLS,
IPsec, and EAP-PSK. We show that these protocols, for which we
model the cryptographic core, satisfy implicit disjointness (see be-
low); we also give an example of a (secure) protocol, namely the
Needham-Schroeder-Lowe Public-Key Protocol, that does not sat-
isfy implicit disjointness. Step iii) (see above), and hence, with
Theorem 3, also Q| Frey-use < Fsc» is proved for a generic secure
channel protocol Q of which many real-world protocols are in-
stances (see [22]). Providing full proofs for Step ii) for the key
exchange protocols of our case studies is beyond the scope of this
paper. However, ii) partly follows from existing work, from [23]
for IEEE 802.11i and from [16] for SSL/TLS. For example, in [16]
Gajek et al. showed single-session security of TLS; they use the
joint state composition theorem by Canetti and Rabin to obtain se-
curity in the multi-session setting, which, however, as discussed
only proves security of a modified/idealized version of TLS (see the
remarks on TLS at the beginning of Section 4 and Figure 2). Using
our theorems and the fact that TLS satisfies implicit disjointness,
the result by Gajek et al. now also implies security of the (original)
version of TLS in the multi-session setting, without pre-established
SIDs prefixed to all plaintexts and signed messages.
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Figure 2: The TLS Handshake Protocol (Key Exchange Method: RSA) and its modified version.

For SSL/TLS and SSH, we now show that they satisfy implicit
disjointness; for details and the proofs for other protocols see [22].

Implicit Disjointness of SSL/TLS. The cryptographic core of
the TLS Handshake Protocol with RSA encryption is depicted in
Figure 2 on the left (we consider the variant where the client au-
thenticates itself using digital signatures): N¢c and Ns are nonces
generated by C and S, respectively; the premaster secret PMS is
chosen randomly by C and is encrypted under the public key of S
(§PMS}is); co, . . ., c4 are distinct constants; F is a pseudo-random
function; the master secret MS is derived from PMS as follows:
MS = F(PMS, colINc|INs); {m}i, x, denotes MAC-then-encrypt, i.e.,
{m}i, 4, = {m,macy, (m)},; the symmetric encryption and MAC
keys EKCS, EKSC, IKCS, IKSC are derived from MS using F' and
the nonces N¢ and N as a seed; handshake stands for the concate-
nation of all previous messages, that is, handshake = c¢;||Nc||S ||ks ||
¢ |INs[|Cllkc|[{PMShi,. In Step 3 of the protocol, the server per-
forms the following test (as soon as a check fails, the whole mes-
sage is dropped): It first decrypts the first ciphertext (using Ferypio)-
If successful, it checks that the signature is over the expected mes-
sage. If so, it verifies the signature sig, ” (handshake) (using Ferypio)-
If successful, S derives the keys MS, EKCS, etc. and decrypts the
second ciphertext (using Ferypo). If this succeeds, the MAC within
the plaintext is verified (using Ferypio)- If successful, the test accepts
and S continues the protocol.

Modeling this protocol as a multi-session real protocol Pris =
!Mc| !M; that uses Ferypo for all cryptographic operations (i.e.,
public-key and symmetric encryption, key derivation, digital sig-
natures, and MAC) is straightforward. The protocol Py s is meant
to realize Fiey-use, 1.€., after the keys are established, the parties
can send encryption and decryption requests to M¢ and Mg which
are MACed and encrypted under the corresponding keys. Corrup-
tion is defined such that the adversary can corrupt the public/private
keys of parties (via Ferypto) and can corrupt instances of M¢ and Mg
when they are created. In particular, the adversary can gain com-
plete control over a party by corrupting her public/private keys and
all her instances of M and My.

We provide a proof sketch that Pry s satisfies implicit disjointness
(see [22] for details). The proof does not need to exploit security
of symmetric encryption. Moreover, the proof merely requires syn-
tactic arguments (rather than probabilistic reasoning or reduction
arguments) since we can use Feypo for the cryptographic primi-
tives.

The partnering function tys for Pr.s we use is the obvious one:
Let p be a run of &| Pris | Ferypro for some environment & and a be
the projection of p to an instance of M, for some user (p, Isid, r)
(where r € {C,S}). If (p,Isid, r) is corrupted, then T (@) := L.
Otherwise, if » = C and « contains at least the first two messages
of the protocol, then 71 s(@) := (N¢, Ns), where Ng is the server’s
nonce (p, Isid, r) received and N¢ is the nonce (p, Isid, r) generated;
analogously for the case r = §. It is easy to see that Tp.g is valid
for Pris because ideal nonces (i.e., nonces generated using Ferypio)
do not collide.

THEOREM 5. Prig satisfies implicit disjointness w.r.t. TrLs.

Proor skercH. All symmetric keys (PMS, MS, EKSC, etc.) are,
by definition, not explicitly shared: PMS is not a pre-shared key but
a freshly generated symmetric key; MS is derived from PMS and all
other keys are derived from MS. Hence, we only have to show (b) of
Definition 2 for public-key encryption and digital signatures. More
precisely, the only relevant cases are when the server performs a
decryption request with kg (to obtain PMS) or when it performs a
verification request to verify the signature of the client.

We now consider the former case (decryption request with kg );
the latter follows a similar (even simpler) argumentation. In this
proof sketch, we only consider the case where the server which
makes the decryption request is uncorrupted and where the key k¢
he received is uncorrupted (in Ferypo) as well. (We refer to our
technical report [22] for the case of corruption. The argument there
requires a more precise description of our protocol and corruption
model than what we can present in this extended abstract.)

So, let us assume that an uncorrupted instance of the server, say
Mg, performed an accepted and ideal decryption request. Let N¢
be the nonce M received, let Ng be the nonce generated by M,
let ks be its public key, let k¢ be the public key received, and ct
be the ciphertext received (containing PMS) and on which M per-
formed the decryption request under consideration. Since the de-
cryption request is accepted, by the definition of the test the server
performs, we know that the handshake message has the required
format and the signature verified. From this we can conclude that
an uncorrupted instance made a signing request to Ferypo With (a
pointer to) the private key of k- and the message handshake; a
corrupted instance would not have had access to an uncorrupted
signing key. This instance must be in role C (so say the instance is
M), since uncorrupted server instances do not produce signatures.
Since handshake contains N and Ng, we know that these are the
nonces generated and received, respectively, by Mc. Consequently,
Mc and M are partners according to T s. Since the ciphertext ct
and the public key kg are contained in handshake, it follows that
M must have encrypted PMS under ks and obtained the ciphertext
ct from Ferypo. Hence, we have shown, as desired, that the partner
My of Mj has issued the corresponding encryption request. [

Implicit Disjointness of SSH. The cryptographic core of the key
exchange protocol of SSH—for which we show implicit disjoint-
ness—is depicted in Figure 3, with K = g and sid = H(N¢, Ns, ks,
g*,9’, K), where H is a hash function. The symmetric encryption
and MAC keys EKCS, EKSC, IKCS, IKSC are derived from K us-
ing H and sid as a seed. (The details are not relevant for proving
implicit disjointness.) By {m]}, «, we denote encrypt-and-MAC,
ie., {mhx, = {mjy,,macy, (m). The formal model of SSH as a
multi-session real protocol Pssy = !Mc | |My is similar to the one
for TLS. However, Pssy only uses Ferypo for digital signatures; all
other cryptographic operations (i.e., encryption, MAC, hashing) are
carried out by M¢ and My itself because Ferypio does not support
Diffie-Hellman key exchange yet, and hence, K (and all derived
keys) cannot be a key in Ferypio- Still, in the proof that Py satisfies
implicit disjointness, we only need to do a reduction argument to
the collision resistance of the hash function, since Pssy uses Ferypio



1. C—>S8: «¢,Nc

2. S—>C: Ny

3. C—-S8: 4

4. S o> C ks,g',sig (sid)

5. C—8: |(C ke,sigy (sid, C,kc))ikes xcs
6. S —C: {“success’}ikscrksc

Figure 3: The SSH Key Exchange Protocol.

for digital signatures and security of the encryption scheme, the
MAC scheme, or the Diffie-Hellman key exchange is not needed.
The partnering function 7ssy for Pssy is the obvious one: Itis de-
fined similarly to TLS except that the SID is sid = H(N¢, Ns, ks, g",
¢¥, K) instead of (N¢, Ns). To show that it is valid, we need that the
hash function is collision resistant; alternatively, one could define

sid =

(N¢, Ns), in which case collision resistance is not needed to

show that 7ggy is valid, but then collision resistance would be nec-
essary to show implicit disjointness. With 7ggy, implicit disjoint-
ness of Pssy follows very easily since sid is part of every signature.

THEOREM 6. Pssy satisfies implicit disjointness w.r.t. Tssy.
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