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Abstract. Abuse-freeness is an important security requirement for con-
tract-signing protocols. In previous work, K�ahler, K�usters, and Wilke
proposed a de�nition for o�ine abuse-freeness. In this work, we general-
ize this de�nition to online abuse-freeness and apply it to two prominent
contract-signing protocols. We demonstrate that online abuse-freeness is
strictly stronger than o�ine abuse-freeness.
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1.1 Introduction

In a (two-party) contract-signing protocol (see, e.g., [5, 4, 12]), two parties, A
(Alice) and B (Bob), aim to exchange signatures on a contractual text that
they previously agreed upon. In this paper, we consider optimistic contract-
signing protocols. In such protocols, a trusted third party T (TTP), serving as
an impartial judge, is not involved in every protocol run, but in case of a problem
only.

A central security property for optimistic contract-signing, introduced in [12],
is abuse-freeness: This property (formulated for the case of the honest signer
Alice) requires that there is no state in a protocol run in which dishonest Bob (the
prover) can convince an outside party, Charlie (the veri�er), that the protocol
is in an unbalanced state, i.e., a state in which Bob has both (i) a strategy to
prevent Alice from obtaining a valid contract and (ii) a strategy to obtain a valid
contract himself. In other words, if a contract-signing protocol is not abuse-free,
then Alice can be misused by Bob to get leverage for another contract (with
Charlie). Obviously, abuse-freeness is a highly desirable security property.

In [15], K�ahler, K�usters, and Wilke presented the �rst rigorous and protocol-
independent de�nition of abuse-free for (two-party) optimistic contract-signing.
However, their de�nition focusses on an o�ine setting: Charlie is not actively
involved in the protocol run and may receive a single message from Bob only,
based on which he has to make his decision.
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der Grant KU 1434/5-1.



The goal of this work is to generalize the de�nition from [15] to the setting
in which Charlie may be online, i.e., may be actively involved in the protocol
run, and to apply the de�nition to prominent contract-signing protocols.

Contribution of this Work. We propose a de�nition for online abuse-
freeness, generalizing the de�nition of K�ahler et al., who considered o�ine abuse-
freeness. As theirs, our de�nition is protocol-independent. More precisely, we
de�ne two variants of online abuse-freeness: Weak abuse-freeness requires that
there is no way for dishonest Bob to convince the veri�er that the protocol is cur-
rently in an unbalanced state. As will be explained in Section 1.3, in the setting
of o�ine abuse-freeness, every contract-signing protocol is weakly abuse-free.
Strong abuse-freeness requires that Bob cannot even prove to Charlie that the
protocol was in an unbalanced state at some point of the run.

We apply our de�nitions to two prominent contract signing protocols: a pro-
tocol by Asokan, Shoup, and Waidner [4] (ASW protocol), and one by Garay,
Jakobsson, and P. MacKenzie [12] (GJM protocol). The latter was explicitely de-
signed with abuse-freeness in mind. Depending on whether the veri�er is allowed
to eavesdrop on the network connection between the signers or on the channel
between the signers and the TTP, and whether the initiator or responder in the
protocol is dishonest, the protocols behave di�erently: We show that if the ver-
i�er can read the messages between the signers and the TTP, and the initiator
is dishonest, then the ASW protocol is vulnerable to a very strong attack, i.e.
it is not even weakly abuse-free. In this attack, the online aspect of our de�ni-
tion plays a crucial role, as the veri�er \dictates" parts of the messages sent by
the dishonest signer. In all other situations, ASW is weakly, but not strongly
abuse-free. The GJM protocol shows a stronger resistance against abuse: It is
weakly abuse-free in all situations, and strongly abuse free if the veri�er cannot
eavesdrop on the network channel between the signers.

Related Work. As mentioned above, K�ahler et al. [15] introduced the �rst
rigorous and protocol-independent de�nition of o�ine abuse-freeness.

Kremer et al. [16] analyzed the ASW and GJM protocol w.r.t. abuse-freeness
using a �nite-state model checking tool. They explicitly needed to specify the
behavior of dishonest principals and which states are the ones that are convincing
to Charlie.

Chadha et al. [6] introduce a stronger notion than abuse-freeness, namely
balance: A protocol is balanced, if unbalanced states (see above) do not occur
at all. Obviously, a balanced protocol is abuse-free as well. However, balance is
very di�cult to achieve. In fact, as shown by Chadha et al. [8], if principals are
optimistic, i.e., they are willing to wait for messages of other parties, balance is
impossible to achieve.

Shmatikov and Mitchell [18] employ the �nite-state model checker Mur' to
automatically analyze contract-signing protocols. They approximate the notion
of abuse-freeness by a notion similar to balance.

A cryptographic de�nition of the balance property was presented by Cortier,
K�usters, and Warinschi in [10].
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Aizatulin, Schnoor, and Wilke [3] introduced a contract signing protocol
which satis�es a probabilistic notion of balance. Wang [19] introduces an abuse-
free contract signing protocol based on the RSA signature scheme.

Structure of the Paper. In Section 1.2, we introduce our protocol model.
The de�nition of abuse-freeness is then given in Section 1.3, and applied to the
ASW and GJM protocols in Sections 1.4 and 1.5, respectively.

1.2 Protocol Model

In this section, following [17], we present a quite abstract symbolic protocol
model. In this model, processes are represented as functions that from a sequence
of input messages (the messages received so far) produce output messages. This
model is the basis of our de�nition of abuse-freeness provided in the next section.
We note, however, that the details of the model are not essential for the de�ni-
tion. The main motivation for using this model is brevity of presentation. We
could as well have used another protocol model, such as the applied pi calculus
[2].

1.2.1 Terms and Messages

Let � be some signature for cryptographic primitives (including a possibly in�-
nite set of constants for representing participant names, etc.), X = fx1; x2; : : : g
be a set of variables, and Nonce be an in�nite set of nonces, where the sets �,
X, and Nonce are pairwise disjoint. For N � Nonce, the set TN of terms over
� [ N and X is de�ned as usual. Ground terms, i.e., terms without variables,
represent messages. We assume some �xed equational theory associated with �
and denote by � the congruence relation on terms induced by this theory. The
exact de�nition of � and the equational theory will depend on the cryptographic
primitives used in the protocol under consideration. A simple example of a signa-
ture �ex and its associated equational theory is provided in Figure 1.1. A term
of the form sig(sk(k);m) represents a message m signed using the (private) key
sk(k). Checking validity of such a signature is modeled by equation (1.1). The
fact that signatures do not necessarily hide the signed message is expressed by
equation (1.2). A term of the form fxgr

pk(k) represents the ciphertext obtained

by encrypting x under the public key pk(k) using randomness r. Decryption of
such a term using the corresponding private key sk(k) is modeled by equation
(1.3). A term of the form hx; yi models the pairing of terms x and y. The com-
ponents x and y of hx; yi can be extracted by applying the operators �rst(�) and
second(�), respectively, as modeled by the equations (1.4) and (1.5). A term of
the form hash(m) represents the result of applying a hash function to a message
m. Note that hash(�) is a free symbol, i.e. there is no equation involving this
symbol in the given equational theory. For example, let �ex denote the congru-
ence relation induced by the equational theory in Figure 1.1, then we have that
dec(fagr

pk(k); �rst(hsk(k); bi)) �ex a.
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checksig(sig(sk(k);m); pk(k)) = T (1.1)

extractmsg(sig(sk(k);m)) = m (1.2)

dec(fxgrpk(k); sk(k)) = x (1.3)

�rst(hx; yi) = x; (1.4)

second(hx; yi) = y (1.5)

Fig. 1.1. The equational theory associated with the signature �ex = fsig(�; �), h�; �i,
f�g�

�
, T, checksig(�; �), extractmsg(�), �rst(�), second(�), hash(�), pk(�), sk(�)g.

1.2.2 Event Sequences and Views

Let Ch be a set of channels (channel names). An input/output event is of the
form (c : m) and (�c : m), respectively, for c 2 Ch and a message m (note that
�c =2 Ch). A �nite or in�nite sequence of events is called an event sequence. For a
sequence � = (c1 : m1) (c2 : m2); : : : of input events, we denote by chan(�) the
sequence c1; c2; : : : of channels in this sequence. For C � Ch, we denote by �jC
the subsequence of � containing only the events of the form (c : m) with c 2 C.

Let � 2 TN be a term, which may contain variables x1, x2, . . . . Then, with
� as above, we denote by � [�] the message � [m1=x1;m2=x2; : : : ], where xi is
replaced by mi. For example, assume that �ex = dec(x1; �rst(x2)) and �ex = (c1 :
fagr

pk(k)); (c2 : hsk(k); bi). Then �ex[�ex] = dec(fagr
pk(k); �rst(hsk(k); bi)) �ex a.

Borrowing the notion of static equivalence from [2], we call two event se-
quences � and �0 statically equivalent w.r.t. a set C � Ch of channels and a set
N � Nonce of nonces, written � �C

N
�0, if (i) chan(�jC) = chan(�0jC) and (ii) for

every �1; �2 2 TN we have that �1[�jC ] � �2[�jC ] i� �1[�
0
jC ] � �2[�

0
jC ]. Intuitively,

� �C
N
�0 means that a party listening on channels C and a priori knowing the

nonces in N cannot distinguish between the inputs received according to � and
�0. We call the equivalence class of � w.r.t. �C

N
, the (C;N)-view on �. For ex-

ample, if a and b are di�erent constants, k, k0, r and r0 are nonces, C = fc1; c2g,
and N = ;, then it is easy to see that �1ex = (c1 : fag

r

pk(k)); (c2 : hsk(k
0); bi); (c3 :

sk(k)) and �2ex = (c1 : fbgr
0

pk(k)); (c2 : hsk(k0); bi) yield the same (C;N)-view
w.r.t. �ex.

1.2.3 Processes

A process is, basically, a function that given a sequence of input events (rep-
resenting the history so far) produces a sequence of output events. We require
that a process behaves the same on inputs on which it has the same view. More
precisely, a process is a tuple � = (I;O;N; f) where

(i) I;O � Ch are �nite sets of input and output channels, respectively,
(ii) N � Nonce is a set of nonces used by �,
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(iii) f is a mapping which assigns a sequence f(U) = (c1 : �1) � � � (cn : �n) with
ci 2 O and �i 2 TN to each (I;N)-view U .

We note that (iii) guarantees that � performs the same computation on event
sequences that are equivalent according to �I

N
, and hence, on which � has the

same view.
For an event sequence �, we write �(�) for the output produced by � on

input �. This output is (c1 : �1[�
0]) � � � (cn : �n[�

0]), where �0 = �jI and (c1 :
�1) � � � (cn : �n) = f(U) for the equivalence class U of � w.r.t. �I

N
. For example,

let I = fc1; c2g, N = ;, U be the equivalence class of �1ex, and assume that
f(U) = (c4 : hx1; �rst(x2)i). Then, �(�

1
ex) = (c4 : hfagr

pk(k); �rst(hsk(k
0); bi)i),

which modulo �ex can be written equivalently as (c4 : hfagr
pk(k); sk(k

0)i) and

�(�2ex) = (c4 : hfbg
r
0

pk(k); �rst(hsk(k
0); bi)i), which modulo �ex can be equivalently

written as (c4 : hfbgr
0

pk(k); sk(k
0)i). Note that since �1ex and �2ex yield the same

(I;N)-view w.r.t. �ex, � performs the same transformation on �1ex and �2ex. We
refer to I, O and N by I�, O�, and N�, respectively. We note that the sets
I� and O� do not have to be disjoint, i.e., � can send messages to itself. By
Proc(I;O;N) we denote the set of all processes � with I� � I, O� � O, and
N� � N .

1.2.4 Systems and Runs

A system S is a �nite set of processes with disjoint sets of input channels and
sets of nonces, i.e., I� \ I�0 = ; and N� \N�0 = ;, for distinct �; �0 2 S. We will
write �1 k � � � k �n for the system f�1; � � � ; �ng.

Given a system S and a �nite sequence s0 of output events, a run � of S
initiated by s0 is a �nite or in�nite sequence of input and output events which
evolves from s0 in a natural way: An output event is chosen non-deterministically
(initial from s0). Once an output event has been chosen, it will not be chosen
anymore later on. By de�nition of systems, there exists at most one process, say
�, in S with an input channel corresponding to the output event. Now, � (if
any) is given the input event corresponding to the chosen output event, along
with all previous input events on channels of �. Then, � produces a sequence
of output events as described above. Now, from these or older output events an
output event is chosen non-deterministically, and the computation continues as
before.

We emphasize that s0 may induce many runs, due to the non-deterministic
delivery of messages. In what follows, we assume fair runs, i.e., every output
event in a run will eventually be chosen. A run is complete if it is either in�nite
or else all output events have been chosen at some point. For runs �; �0, we write
� � �0, if �0 is an extension of �, i.e., is obtained by continuing the run �.

1.2.5 Protocols

A protocol is a tuple P = (A; in; out ;nonce; s0; �), where
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(i) A is a �nite set of agent names. An agent a 2 A has access to his/her nonces
nonce(a), input and output channels in(a); out(a) � Ch, respectively, such
that nonce(a) \ nonce(a0) = ; and in(a) \ in(a0) = ;, for a 6= a0,

(ii) s0 is a �nite sequence of output events, the initial output sequence, for
initializing parties,

(iii) for every a 2 A,�(a) � Proc(in(a); out(a);nonce(a)) is the set of programs
or processes of a. We will write P (a) for �(a).

If A = fa1; : : : ; ang and �i 2 �(ai), then the system (�1 k � � � k �n) is an
instance of P . A run of P is a fair run of some instance of P initiated by s0. A
property 
 of P is a subset of runs of P .

We note that our model allows to express nondeterminism: To make a nonde-
terministic choice, a program can simply send two (or more) messages to itself,
and change its behaviour depending on which message arrives �rst.

1.3 Online Abuse-Freeness

We de�ne (online) abuse-freeness of a protocol P = (A; in; out ;nonce; s0; �)
with respect to two distinct agents of P : the prover p 2 A and the veri-
�er v 2 A. Both agents are considered to be dishonest, and hence, the sets
of programs of these agents will typically contain all possible processes, i.e.,
P (p) = Proc(in(p); out(p);nonce(p)) and P (v) = Proc(in(v); out(v);nonce(v));
these processes are only limited by their network interfaces, i.e., the set of in-
put/output channels available to them.

Moreover, we de�ne abuse-freeness of P with respect to two properties of P :

+ and 
�. The property 
+ is supposed to contain all the runs of P in which p

obtains a valid contract from an honest signer a and 
� is supposed to contain
all runs where the honest signer a is prevented from obtaining a valid contract
from p.

To de�ne abuse-freeness, we �rst need to formalize the notion of an unbal-
anced run. Intuitively, a run of an instance of a protocol P is unbalanced with
respect to the properties 
+ and 
� if p has both a strategy to achieve 
+ (i.e.,
enforce a continuation of the run so that the overall run belongs to 
+) and a
strategy to achieve 
�. In other words, in an unbalanced state, the prover can
unilaterally determine the outcome of the protocol: i) obtain a signed contract
from the honest signer a or ii) prevent a from obtaining a signed contract from
p.

To model the choice made by the prover to either achieve 
+ or 
�, we
introduce the following notation. We assume that the prover p has a distinct
input channel chchoice which is not an output channel of any agent in the protocol
P . Moreover, we assume that the events (chchoice : 0) and (chchoice : 1) belong to
the initial event sequence s0 of P . Intuitively, if in a run p receives 1 on chchoice,
then p will try to achieve 
+. If p receives 0 on chchoice, then p will try to achieve

�. More precisely, a run � in which neither (chchoice : 0) nor (chchoice : 1) has
been delivered is called open; intuitively, in such a run the prover has not yet
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made a decision. Otherwise the run is called closed. In such a run, p tries to
achieve 
+ or 
� depending on the message received; note that only the �rst
message received on chchoice will set p's goal.

In the following de�nition, given a �nite open run �, we denote by �(chchoice:0)

the run obtained from � by delivering 0 on channel chchoice to p, i.e., in �(chchoice:0)

the prover p is now determined to achieve 
�. The run �(chchoice:1) is de�ned
analogously. We say that a run �0 is a complete extension of � if �0 is an extension
of � and is complete.

We are now ready to formally de�ne unbalanced runs.

De�nition 1. Given an instance S of a protocol P as above with a prover p and
two properties 
+ and 
�, we say that a �nite open run � of S is unbalanced,
if the following two conditions hold true:

(i) 
� holds in every complete extension of �(chchoice:0).
(ii) 
+ holds in every complete extension of �(chchoice:1).

Now, intuitively, a protocol is abusive if a prover p can convince the veri�er v

that the current run is unbalanced. In other words, p can convince v that in the
current run he, the prover, has a strategy to obtain a valid contract from the
honest signer (and hence, close the deal) and a strategy to prevent the honest
signer from obtaining a valid contract (and hence, cancel the deal). This may
convince v to agree into a deal with p that for p is more pro�table than the one
with the honest signer. Thus, in an abusive protocol, p can take advantage of
the honest signer.

Since we consider online abuse-freeness in this paper, we allow v to be actively
involved in the protocol run. In particular, p and v can freely exchange messages
during a run. For example, v could dictate (parts of the) messages p is supposed
to send to the honest signer, and v could request to receive the private keys of p.
The veri�er v may even control some of the network tra�c. However, this is not
hard-wired in our de�nition. The power of p and v can be modeled in a 
exible
way in terms of the programs p and v may run and the network interface they
have.

We will consider two forms of abuse-freeness, namely strong and weak abuse-
freeness. In the strong form, p merely needs to convince v that the run was
unbalanced at some point. In contrast, for the weak form, p needs to convince
v that the run is unbalanced in the current state of the run. Since in the latter
case, the task of p is harder, the latter form of abuse-freeness is weaker. It is
desirable that a protocol is abuse-free in the strong sense since the fact that a
run was and potentially still is unbalanced might already be su�cient incentive
for v to agree into a deal with p.

In the formal de�nition of (online) abuse-freeness, we assume that the veri�er
v can accept a run by sending the message accept on the designated channel
chaccept, indicating that v is convinced that the run is/was unbalanced. We say
that a �nite run is freshly accepted, if the message accept is sent by v in the last
step of this run.
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We also use the following notation in the de�nition of abuse-freeness: Let
P = (A; in; out ;nonce; s0; �) be a protocol. For a program v 2 �(v) of the
veri�er, we write Pjv for the protocol that coincides with P except that the set
�(v) of programs of v is restricted to fvg. In particular, in every instance of Pjv

the veri�er runs the program v.
We are now ready to de�ne (online) abuse-freeness. We start with the strong

form of abuse-freeness.

De�nition 2. Let P = (A; in; out ;nonce; s0; �) with p; v 2 A. Let 
+ and 
�

be properties of P . Then, the protocol P is called (
+; 
�)-abusive w.r.t. the
prover p and the veri�er v, if there is a program v 2 �(v) of v such that the
following conditions are satis�ed:

(i) If an open run � of Pjv is accepted by v, then there is an unbalanced run
�0 with �0 � �.

(ii) There exists an open, freshly accepted, unbalanced run � of Pjv.

The protocol P is (strongly) (
+; 
�)-abuse-free w.r.t. p and v, if P is not
(
+; 
�)-abusive w.r.t. p and v.

Condition (i) in the above de�nition says that if v accepts a run, i.e., is convinced
that the run was unbalanced at some point, then this is in fact the case. Note
that according to the de�nition of unbalanced runs, v may help p to achieve his
goals (
+ or 
�). One could as well consider a variant where p has to achieve
these goals against v (and in fact, our negative results, presented in Sections 1.4
and 1.5, use a prover that works without the help of the veri�er). However, this
would make the de�nition only weaker. We note that it would not make sense
to consider closed runs in Condition (i): The de�nition of unbalanced runs only
applies to open runs. Moreover, the restriction to open runs does not limit the
power of any agent.

While Condition (i) is the core of the above de�nition, it would not make
sense without Condition (ii): A veri�er who never accepts a run would satisfy
Condition (i) trivially. Moreover, a veri�er who only accepts runs which are not
unbalanced anymore would potentially also su�ce to meet Condition (i). By
Condition (ii) we require that the strategy of the veri�er for accepting a run
is reasonable in the sense that there is at least one run which is accepted and
which is still unbalanced.

Altogether the above de�nition says that a protocol is abuse-free if there is
no program a veri�er could run which i) reliably tells, for any dishonest prover
(which the veri�er does not trust), whether a run was unbalanced and ii) accepts
an actual unbalanced run.

We note that the above de�nition is possibilistic. It does, for example, not
take into account the probability with which unbalanced runs occur or a veri�er
accepts an (unbalanced) run. As mentioned in the introduction, a cryptographic,
in particular probabilistic de�nition of the balance property, which is stronger
than abuse-freeness in that it does not require a dishonest signer to convince an
outside party of the fact that he is in an unbalanced state, was presented in [10].

Given De�nition 2, it is now straightforward to de�ne weak abuse-freeness:
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De�nition 3. Let P; p; v; 
+; and 
� be given as in De�nition 2. Then protocol
P is strongly (
+; 
�)-abusive w.r.t. p and v, if there is a program v such that
the following conditions are satis�ed:

(i) If an open run � of Pjv is freshly accepted, then � is unbalanced,
(ii) There exists an open, freshly accepted, unbalanced run � of Pjv.

The protocol P is weakly (
+; 
�)-abuse-free w.r.t. p and v, if P is not strongly
(
+; 
�)-abusive w.r.t. p and v.

This notion di�ers from the (strong) abuse-freenes only in Condition (i): Now
we require that the accepted run is unbalanced, not only that it was unbalanced
at some previous point. Clearly, (strong) abuse-freeness implies weak abuse-
freeness.

Note that a notion like weak abuse-freeness does not make sense in the o�ine
setting considered in [15]: If the veri�er receives only a single message from the
prover, this message can only prove that the protocol was in an unbalanced
state at some point during the protocol run; since the prover may withhold that
evidence for as long as he wishes, it does not prove that the current state is
unbalanced.

1.4 The ASW Protocol

In this section, we study abuse-freeness of the contract-signing protocol proposed
by Asokan, Shoup, and Waidner (ASW protocol) in [4].

In [15], it has been shown (in a synchronous communication model without
optimistic honest parties, see below) that the ASW protocol is o�ine abusive.
Not surprisingly, the protocol is also abusive in the online setting. More precisely,
we show that the protocol is weakly abusive. Interestingly, we can show that the
protocol is, in some cases, even strongly abusive. For this attack, it is crucial that
the veri�er is online, i.e., can interact with the prover. In fact, the veri�er will
dictate part of the message the prover sends to the honest signer.

1.4.1 Description of the Protocol

The ASW protocol assumes the following scenario: Alice and Bob want to
sign a contract and a TTP is present. The following two types of messages,
the standard contract (SC) and the replacement contract (RC), will be rec-
ognized as valid contracts between Alice and Bob with contractual text text:
SC = hme1; NA;me2; NBi and RC = sig(sk(kt); hme1;me2i) where NA and
NB stand for nonces, me1 = sig(sk(ka); hA;B; text; hash(NA)i), and me2 =
sig(sk(kb); hme1; hash(NB)i), with sk(kt), sk(ka), and sk(kb) denoting the pri-
vate keys of the TTP, Alice, and Bob, respectively. In addition to SC and RC,
the variants of SC and RC which one obtains by exchanging the roles of A and
B are regarded as valid contracts.
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There are three interdependent parts to the protocol: an exchange protocol,
an abort protocol, and a resolve protocol. The exchange protocol consists of
four steps, which, in Alice-Bob notation, are displayed in Fig. 2. The �rst two
messages, me1 and me2, serve as respective promises of Alice and Bob to sign
the contract, and NA and NB serve as contract authenticators: After they have
been revealed, Alice and Bob can compose the standard contract, SC.

The abort protocol is run between Alice and the
TTP and is used by Alice to abort the contract sign-
ing process when she does not receive Bob's promise.
Alice will obtain (from the TTP) an abort receipt
or, if the protocol instance has already been resolved
(see below), a replacement contract. The �rst step is

A! B : me1
B ! A : me2
A! B : NA

B ! A : NB

Fig. 1.2: ASW exchange
protocol

A ! T : ma1, where ma1 = sig(sk(ka); haborted;me1i) is Alice's abort request ;
the second step is the TTP's reply, which is either sig(sk(kt); haborted;ma1i), the
abort receipt, if the protocol has not been resolved, or the replacement contract,
RC.

The resolve protocol can be used by Alice and Bob to resolve the proto-
col, which either results in a replacement contract or, if the protocol has al-
ready been aborted, in an abort receipt. When Bob runs the protocol (be-
cause Alice has not sent her contract authenticator yet), the �rst step is
B ! T : hme1;me2i; the second step is the TTP's reply, which is either the abort
receipt sig(sk(kt); haborted;ma1i), if the protocol has already been aborted, or
the replacement contract, RC. The same protocol (with roles of A and B ex-
changed) is also used by Alice.

1.4.2 Modeling

Our modeling of the ASW protocol uses the equational theory presented in
Section 1.2 (however, without encryption, which is not used in the protocol).
We consider, besides the regular protocol participants of the protocol|Alice,
Bob, and the trusted third party|two additional parties, the veri�er and a key
distribution center. We will consider four cases depending on (a) which signer
(Alice or Bob) is dishonest and plays the role of the prover and (b) which part
of the network is controlled by the veri�er.

In each case we assume that the honest signer is optimistic in the sense that
he/she only contacts the TTP if the dishonest signer allows the honest signer to
do so. In other words, the dishonest signer can buy himself as much time as he
needs, before the honest signer contacts the TTP. This assumption, also made in
[8], seems realistic. In any case, it only makes the dishonest party more powerful,
and hence, strengthens our positive results.

Let PA
ASW-Net

denote the speci�cation of the ASW protocol, as a protocol in
the sense of our de�nition (see Section 1.2.5), with dishonest Alice and honest
Bob, where the veri�er can eavesdrop on (but not block) the network tra�c be-
tween Alice and Bob. Analogously, PB

ASW-Net
denotes the protocol with dishonest

Bob and honest Alice, where again the veri�er can eavesdrop on the network
tra�c between Alice and Bob. Let PA

ASW-TTP
(PB

ASW-TTP
) be the protocols with
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dishonest Alice (Bob) and honest Bob (Alice), where the veri�er can eavesdrop
on (but not block) the communication between the signers and the TTP.

In the modeling of these protocols (see below), we allow an honest signer to
not be engaged in the protocol run. This is of course realistic; also, otherwise
the initial state of the protocol would already be unbalanced before a signer
has committed to the contract. To model this, we assume that an honest signer
decides nondeterministically (see end of Section 1.2.5) as to whether he/she will
participate in the protocol run.

More formally, the set of programs of the protocol participants are de�ned
as follows:

Key Distribution Center. The set of programs for this party consists of
exactly one program, which generates key pairs (using its set of nonces) for
all other parties. Private keys, modeled as terms of the form sk(k), where k is
a nonce, are sent, via dedicated channels, only to the respective parties. Public
keys, modeled as terms of the form pk(k), are distributed to all parties, including
the veri�er. Honest parties will �rst wait to receive their public/private key pair
and the public keys of the other protocol participants. In the speci�cation of
honest parties below this is assumed implicitly.

Dishonest parties (prover and veri�er). The sets of programs of dishon-
est parties contain all the possible processes, only constrained by the network
con�guration and, possibly, some additional constrains, as described below. We
allow the prover and veri�er to communicate directly with each other via a direct
(asynchronous) channel.

Network con�guration. In the protocols PA
ASW-TTP

and PB
ASW-TTP

(in which
the veri�er can eavesdrop on messages between the signers and the TTP) we
assume that the messages that Alice and Bob want to send to the TTP are
routed through the veri�er. We require the veri�er to forward these messages to
the recipient, i.e. we restrict the set of program of the veri�er to those programs
which comply with this constraint. However, we assume direct (asynchronous)
channels between Alice and Bob.

Similarly, in PA
ASW-TTP

and PB
ASW-TTP

messages between Alice and Bob are
routed through the veri�er, who, as above, can only eavesdrop on these messages.
Message between the signers and the TTP can be sent via direct (asynchronous)
channels.

TTP. The set of programs of TTP consists of only one program (process),
namely the one that performs exactly the steps de�ned by the protocol as de-
scribed in Section 1.4.1.

Honest Alice or Bob. The set of programs of Alice in PA
ASW-TTP

and PA
ASW-Net

consists of only one program, namely the one described in Section 1.4.1. As men-
tioned above, at the beginning Alice �rst nondeterministically chooses whether
to participate in the contract signing. Also, she contacts the TTP only if she
receives a message from Bob that she is allowed to contact the TTP. The case
of honest Bob is analogous.
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Remark 1. One could also study the case where the veri�er can eavesdrop on all
channels. However in this case, both the ASW and GJM protocols clearly are
strongly abusive, since the veri�er always knows the exact stage of the protocol
run.

1.4.3 Security Analysis

We de�ne 
+ as the set of all runs where the prover is able to construct the
standard contract or has received the replacement contract. Analogously, 
�

consists of those runs in which the honest signer is not able to construct the
standard contract and has not received the replacement contract. For the ASW
protocol, we prove the following results.

Theorem 1. The protocol PA
ASW-TTP

is not weakly (
+; 
�)-abuse-free (and
hence also not abuse-free). PB

ASW-TTP
, PA

ASW-Net
, and PB

ASW-Net
are weakly

(
+; 
�)-abuse-free but not abuse-free.

A proof sketch of this theorem is presented in Appendix A. We note that the
�rst result exhibits a particularly devastating attack, which makes heavy use of
the fact that the veri�er is an online agent. This result shows that under certain
conditions the ASW protocol is not even weakly abuse-free. The above results
also show that weak abuse-freeness is a much weaker security property than
strong abuse-freeness.

Remark 2. The proofs for PA
ASW-Net

and PB
ASW-Net

easily carry over to the case
when the veri�er not only eavesdrops on the channels between Alice and Bob,
but also controls these channels.

1.5 The GJM Protocol

In [15], it has been shown that, in a synchronous communication model, the
GJM protocol is o�ine abuse-free. In this section, we show that whether it is
online abuse-free depends on assumptions about what part of the network the
veri�er can eavesdrop on. In particular, we show that in some cases the GJM
protocol is not online abuse-free, which, again, illustrates the fact that online
abuse-freeness is stronger than o�ine abuse-freeness.

1.5.1 Informal Description and Model of the Protocol

The structure of the GJM protocol is the same as the one of the ASW protocol.
However, the actual messages exchanged are di�erent. In particular, the ex-
change protocol of the GJM protocol the �rst two messages are so-called private
contract signatures (PCS) [12] and the last two messages are actual signatures
(obtained by converting the private contract signatures into universally veri�able
signatures).
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pcsver(w; pk(x); pk(y); pk(z); pcs(u; sk(x); w; pk(y); pk(z))) = pcsok; (1.6)

pcsver(w; pk(x); pk(y); pk(z); fake(u; sk(y); w; pk(x); pk(z))) = pcsok; (1.7)

sver(w; pk(x); pk(z); sconv(u; sk(x); pcs(v; sk(x); w; pk(y); pk(z)))) = sok; (1.8)

tpver(w; pk(x); pk(z); tpconv(u; sk(z); pcs(v; sk(x); w; pk(y); pk(z)))) = tpok: (1.9)

Fig. 1.3. Equations for private contract signatures.

For the GJM protocol we consider the signature �GJM = f
sig(�; �; �), sigcheck(�; �; �), pk(�), sk(�), fake(�; �; �; �; �), pcs(�; �; �; �; �), pcsver(�; �; �; �; �),
sconv(�; �; �), tpconv(�; �; �), sver(�; �; �; �), tpver(�; �; �; �), h�; �i, �rst(�), second(�), A,
B, T , text, initiator, responder, ok, pcsok, sok, tpok, abortedg.

The equational theory for GJM contains, in addition to the equations for
pairing and signatures, equations for modeling private contract signatures, as
depicted in Figure 1.3. A term of the form pcs(u; sk(x); w; pk(y); pk(z)) stands
for a PCS computed by x (with sk(x)) involving the text w, the party y, and the
TTP z, while u models the random coins used to compute the PCS. Everybody
can verify the PCS with the public keys involved (equation (1.6)), but cannot
determine whether the PCS was computed by x or y (equation (1.7)): instead
of x computing the \real" PCS, y could have computed a \fake" PCS which
would also pass the veri�cation with pcsver. Using sconv and tpconv, see (1.8)
and (1.9), a \real" PCS can be converted by x and the TTP z, respectively, into
a universally veri�able signature (veri�able by everyone who possesses pk(x) and
pk(z)).

We study the version of the GJM protocol with the modi�cation pro-
posed in [18] to obtain fairness. In the protocol, the following messages are
exchanged: The initial messages containing the private contract signatures
are me1 = pcs(u; sk(A); contract; pk(B); pk(TTP)) and me2 = pcs(u0; sk(B);
contract; pk(A); pk(TTP)), where sk(A), pk(A), sk(B), pk(B), and pk(TTP) are
the private and public keys of Alice, Bob, and the TTP. The abort request sent
by Alice is of the form ma1 = sig(w; sk(A); hcontract; A;B; abortedi), where w
are random coins (for the GJM protocol, we consider randomized signatures).
The resolve request sent by Alice is hme1;me2i, the resolve request from Bob is
hme2;me1i. As mentioned earlier, the structure of the protocol is the same as
for the ASW protocol (see Section 1.4).

1.5.2 Security Analysis

We study the cases PA
GJM-TTP

, PB
GJM-TTP

, PA
GJM-Net

and PB
GJM-Net

, which are de�ned
analogously to the case of ASW (see Section 1.4.2). The properties 
+ and 
�

are also de�ned analogously to the case of the ASW protocol (see Section 1.4.3).

Theorem 2. 1. PA
GJM-TTP

and PB
GJM-TTP

are (
+; 
�)-abuse-free.
2. PA

GJM-Net
and PB

GJM-Net
are weakly (
+; 
�)-abuse-free but not (
+; 
�)-abuse-

free.
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As made precise by this theorem, abuse-freeness of the GJM protocol in the
online setting depends on the assumptions about what part of the network the
veri�er can eavesdrop on. In the o�ine case, the veri�er was not allowed to
easvesdrop on any part of the network (and of course, was also not allowed to
be actively involved in the protocol run). Therefore, and just as in the case of
the ASW protocol, our positive results are stronger than those shown for o�ine
abuse-freeness. Conversely, our negative results exhibit the extra power of online
veri�ers. A proof sketch of Theorem 2 is presented in Appendix B.
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A Proof Sketch of Theorem 1 (ASW Protocol)

Proof for PA
ASW-TTP

: In this case, Alice is the prover p, and the veri�er v is able
to observe the network tra�c between the signers and the TTP. We describe the
program v for the veri�er v that satis�es the de�nition of strong abusiveness.
This program is de�ned as follows:

(1) Choose a nonce Nv. (2) Send hash(Nv) to A. (3) Wait for the mes-
sage me0

2 = sig(sk(kb); hme0

1; hash(NB)i), where me0

1 = sig(sk(ka); hA;B;
text; hash(Nv)i) (me0

2 is like the message me2, as speci�ed by the protocol,
but with NV instead of NA). (4) Accept if and only if neither Alice nor Bob
has contacted the TTP (recall that the veri�er can see this).

We claim that, for this program v, conditions (i) and (ii) of De�nition 3
are satis�ed. For showing that condition (i) holds, let us assume that � is a
freshly accepted open run of Pv. We need to show that � is unbalanced. For
this we give strategies for Alice to achieve 
� and 
+, starting from �. The
strategy for 
� is to run the abort subprotocol with the TTP, the strategy for

+ is to run the resolve subprotocol. Since � is accepted, Alice has received me02
and therefore she can run these subprotocols. Furthermore, because the veri�er
accepted the protocol run, we know that neither Alice nor Bob has contacted the
TTP. Therefore the abort/resolve subprotocol run by Alice will succeed, yielding

� and 
+, respectively, in every complete run obtained with these strategies
(note that, in this case, since Bob is optimistic, he will not run neither the abort
nor the resolve subprotocol).

For showing that condition (ii) holds, it is enough to show that there exists
an accepted run of Pv, this run is then unbalanced due to condition (i) as just
proved. As the programs of Bob and TTP are determined by the protocol, and
the program for the veri�er is speci�ed above, it remains to de�ne the program
for Alice.

This program, having received the nonce Nv from the veri�er, sends the
message me01, as de�ned above, to Bob, and then forwards to the prover Bob's
response (if Bob does indeed reply, i.e., decides to participate in the protocol).
For this instance, we consider a run in which Bob decides to perform the protocol.
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Since Bob follows the protocol, he replies with the messageme02, which Alice then
forwards to the veri�er. Since Alice and Bob did not contact the TTP (Alice by
construction, and Bob since he is optimistic), the veri�er will accept the protocol
run.

Proof for PB
ASW-TTP

: This case corresponds to the situation where Bob is the
prover, and the veri�er can eavesdrop on the channel between the signers and the
TTP. We �rst show that PB

ASW-TTP
is weakly abuse-free, i.e., not strongly abusive.

Hence assume that the protocol is strongly abusive, and let v be a corresponding
program of the veri�er v. By de�nition, there is a freshly accepted unbalanced
run � of Pjv. We can assume w.l.o.g. that Alice, in this run, nondeterministically
chose to sign the contract and initiated the exchange by sending me1 to Bob (if
v accepted a run in which Alice had not initiated this exchange, then v clearly
would also accept runs that are not unbalanced).

We will construct a run �0 of Pjv which is not unbalanced, but, from the
veri�er's point of view, is indistinguishable from �, and therefore also accepted.
In �0, Bob runs the program which, having obtainedme1, completes the standard
protocol exchange with Alice (which means that the run is not unbalanced; note
that this exchange cannot be noticed by the TTP) and then behaves exactly
like the program used in � (in particular, all the messages that Bob sends to
the veri�er are exactly the same in both runs � and �0). Hence the protocol is
weakly abuse-free.

We now show that the protocol is not abuse-free, i.e., that there is a program
v of the veri�er v satisfying the necessary conditions.

The program v simply expects a message conforming to the format of me1,
i.e., a message of the form sig(sk(ka); hA;B; text; hash(t)i) for some term t, and
then accepts. Obviously, there is a freshly accepted protocol run that is un-
balanced: When Alice starts the protocol run, and Bob forwards the message
me1 to the veri�er, the run is accepted. It is also unbalanced, since Bob can
obtain a contract by performing the resolve protocol with the TTP, and abort
the protocol by simply stopping to send messages.

Now let � be an open protocol run accepted by the veri�er. Since � is accepted,
the prover did send a message to the veri�er that contains Alice's signature. Since
Alice follows the protocol run, this means that Alice did send the message me1,
and the prover Bob received it. Hence at one point during the protocol run, Bob
was able to send a resolve request to the TTP to obtain a contract (by which he
achieves 
+), as well as to abort by simply not sending any messages (by which
he enforces 
�). Hence there is an unbalanced pre�x of �.

Proof for PA
ASW-Net

: Here we consider the situation where Alice is the prover, and
the veri�er can eavesdrop on the network channel between Alice and Bob, but
does not have access to the communication between the signers and the TTP.
We �rst show that the protocol is abusive. For this, let v be the program of the
veri�er that accepts any protocol run in which Bob did send a message to Alice
(note that the veri�er has read-access to the channel between Alice and Bob).
Obviously, there is a freshly accepted run that is unbalanced, namely the run
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in which the prover Alice sends a message of the correct form me1 to Bob, and
Bob responds with a well-formed me2.

Now let � be an accepted open run. By de�nition of v, Bob did send a
message to Alice. Since Bob follows the protocol, this message is of the form
me02 = sig(sk(kb); hme01; hash(NB)i), where me01 is the message that, from the
point of view of Bob (and thus also from the point of view of the TTP), conforms
to the protocol speci�cation, i.e., me01 = sig(sk(ka); hA;B; text;mi) for some
message m. Hence after receiving me02, Alice is able to form a resolve request to
the TTP, and thus has a strategy to obtain a contract. She also has an abort-
strategy by simply quitting the protocol. This strategy will be successful since
Bob is optimistic. Hence there is an unbalanced pre�x of �.

It remains to show that PA
ASW-Net

is weakly abuse-free, i.e., not strongly abu-
sive. Hence assume that there is a program v of the veri�er satisfying the def-
inition of strong abusiveness. Again, then there is an instance S of Pjv and an
unbalanced, freshly accepted protocol run �. Without loss of generality, in the
run �, Bob sent a message to Alice, which v can read since he has access to the
corresponding channel (if v accepted a run in which Bob had not sent a message,
then v clearly also would accept runs that are not unbalanced). In particular,
Alice has access to messages me1 and me2, that allow her to form a resolve
request for the TTP. Hence a run �0 of an instance S0 obtained by letting Alice,
additionally, send a resolve request for the TTP is indistinguishable for v, and
thus he accepts this run which clearly is not unbalanced.

Proof for PB
ASW-Net

: In this case Bob is the prover, and the veri�er again has read
access to the network channel between Alice and Bob. The proof of abusiveness
is almost the same as in case (3): Since the veri�er observes network tra�c
between Alice and Bob, he knows whether Alice has initiated the protocol run
by sending me1, which leads to an unbalanced pre�x of the protocol run. Also,
the proof for weak abuse-freeness is very similar to the one in case (3) above:
Again, without loss of generality, we can assume that a program v of the veri�er
v only accepts runs in which Alice did send a message to Bob, which allows Bob
to send a resolve request to the TTP without the veri�er noticing this, hence if
there is an accepted run, there also is one that is not unbalanced. ut

B Proof Sketch of Theorem 2 (GJM Protocol)

We �rst show that PA
GJM-TTP

and PB
GJM-TTP

are abuse-free. In this case the veri�er
has read-access to the channels between the signers and the TTP. Assume that
the protocols are not abuse-free, and let v be a program for the veri�er that sat-
is�es the de�nition. Then there must be an open protocol run � that is freshly
accepted and unbalanced. In particular, since the run is unbalanced, no request
has been sent to the TTP, and the prover received a message from the honest
signer, but did not complete the exchange protocol with the honest signer. Ad-
ditionally, since the veri�er accepted the protocol run, the prover must have sent
to v the private contract signature produced by the honest signer (obviously, the
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veri�er cannot accept a run, if he is not provided with any evidence that the
honest signer has committed to the contract). Now, from the equational theory
for private contract signatures it follows that if the prover sends to the veri�er
the fake signature instead, the veri�er accepts as well. Since the latter message
can be constructed by the prover without participation of the honest signer, this
means that there is an accepted open protocol run in which the honest signer did
not even start a protocol session. This shows that there is an accepted run that
does not have an unbalanced pre�x. Therefore, the protocol is not weakly abu-
sive, i.e., it is strongly abuse-free if the veri�er can read network tra�c between
the signers and the TTP but not the tra�c between the signers.

We now consider the cases PA
GJM-Net

and PB
GJM-Net

, which are very similar to
their ASW counterparts (see Theorem 1). Since the veri�er can observe network
tra�c between the signers, he knows, in particular, whether the honest signer
has sent his private contract signature. Hence if the veri�er simply accepts any
protocol run in which the honest signer did send a message to the prover, then
there is a freshly accepted open protocol run that is unbalanced, and every
accepted protocol run has an unbalanced pre�x (note again that the honest
signer is optimistic and, thus, does not send an abort request, if not instructed
by the prover), hence the protocol is abusive.

To prove that these cases do not lead to strong abusiveness, we use the same
argument as in ASW: There is no way for the prover to convince the veri�er
that he has not performed the resolve protocol with the TTP, hence the veri�er
cannot be sure that the current state of the protocol run is unbalanced.

18


