Implementing a Constraint Solving Algorithm for
Checking Game-Theoretic Security Requirements

Ralf Kiisters, Thomas Schmidt, and Tomasz Truderung

University of Trier, Germany

Abstract. Contract-signing and related protocols have to satisfy game-theoretic
security properties. Based on an algorithm proposed by Kéhler and Kiisters for
checking such security properties, in this work we report on the implementa-
tion of this algorithm and its performance.

1 Introduction

One of the central results in the area of automatic analysis of cryptographic protocols
is that the security of cryptographic protocols is decidable when analyzed w.r.t. a
finite number of sessions, without a bound on the message size, and in presence of
the so-called Dolev-Yao intruder (see, e.g., [17, 1]). Based on this result, many fully
automatic tools (see, e.g., [2,9,16]) have been developed and successfully applied
to find flaws in published protocols, where many of these tools employ so-called
constraint solving procedures (see, e.g., [16,9,5]). However, the mentioned decid-
ability result and tools are restricted to security properties such as authentication
and secrecy which are reachability properties of the transition system associated
with a given protocol.

In contrast, crucial properties required of contract-signing and related protocols
(see, e.g., [11,4]), for instance abuse-freeness [11] and balance [6], are game-
theoretic properties of the structure of the transition system associated with a
protocol. Balance, for instance, requires that in no stage of a protocol run, the
intruder or a dishonest party has both a strategy to abort the run and a strategy to
successfully complete the run and thus obtain a valid contract.

In [13], the central decidability result mentioned above was extended to such
game-theoretic security properties, including balance. However, similar to the result
by Rusinowitch and Turuani [17] for reachability properties, the decision algorithm
presented in [13] is merely based on the fact that the size of attacks can be bounded,
and hence, all potential attacks up to a certain size have to be enumerated and
checked. In [12,14], a constraint-based decision procedure for game-theoretic se-
curity properties of the kind considered in [13] was proposed. The main feature of
this procedure is that it can be built on top of standard constraint solving procedures
(see, e.g., [16,9, 5] and references therein). As mentioned, such procedures have
successfully been employed for reachability properties in the past and proved to be
a good basis for practical implementations. Hence, the constraint-based procedure
presented in [12, 14] appeared to be a promising basis for extending existing imple-
mentations and tools for reachability properties to deal with game-theoretic security
properties.

The main goal of this work is to turn the algorithm proposed in [12, 14] into a
practical implementation. This is a challenging task for several reasons: First, proto-
cols which try to satisfy game-theoretic security properties, such as contract-signing
protocols, tend to be quite complex. For instance, the ASW contract-signing protocol
[4] consists of four sub-protocols, which, in addition, have a branching structure,
instead of a simpler linear structure, as common, for example, for authentication
and key exchange protocols. This leads to a bigger number of constraint systems to
be checked. Second, while for secrecy and authentication it suffices to analyze single
protocol runs, for game-theoretic security requirement more complex strategy trees
need to be considered, leading to complex constraint systems.

Contribution of this paper. We implemented the algorithm proposed in [12,14] in
Prolog based on the constraint solver by Corin and FEtalle [10] (which in turn is
based on the constraint solver by Millen and Shmatikov [16]). Our implementation
contains several optimizations. We applied our implementation to check various
balance properties for, among others, the ASW protocol. It turned out that the number
of generated constraint systems, although indeed quite big, was not a significant
obstacle in the verification process. More problematic was the size of the single
constraint systems, which, for the ASW protocol, overwhelmed the constraint solver
we used. For this protocol, we therefore introduced some sound simplifications,
which reduced the size of the terms in the generated constraint systems. With these
simplifications the verification process was successful.

Altogether, our implementation is promising in that it shows that, in principle,
automatic analysis of game-theoretic security properties is possible for non-trivial
contract-signing protocols. However, more work is necessary to optimize our imple-
mentation. Moreover, while we used the constraint solver by Corin and Etalle [10]
since it could be easily integrated into our Prolog implementation, more efficient
constraint solvers, such as those in [3], should yield better results.

Structure of this paper. In Section 2 we recall definitions and results from [12, 14].
Our implementation is described in Section 3, with the evaluation presented in
Section 4. We conclude in Section 5.

2 Constraint Solving Algorithm for Contract-Signing Protocols

In this section we recall definitions and results from [12, 14].

2.1 The Protocol and Intruder Model

In the model proposed in [12, 14], a protocol is a finite set of principals and every
principal is a finite tree, which represents all possible behaviors of the principal,
including all subprotocols a principal can carry out. Each edge of such a tree is
labeled by a rewrite rule, which describes the receive-send action that is performed
when the principal takes this edge in a run of the protocol.

When a principal carries out a protocol, it traverses its tree, starting at the root.
In every node, the principal takes its current input, chooses one of the edges leaving

the node, matches the current input with the left-hand side of the rule the edge is
labeled with, sends out the message which is determined by the right-hand side of
the rule, and moves to the node the chosen edge leads to. While in the standard
Dolev-Yao model (see, e.g., [17]) inputs to principals are always provided by the
intruder, in this model inputs can also come from the secure channel which are
not controlled by the intruder, i.e., the intruder cannot delay, duplicate, remove
messages, or write messages onto this channel under a fake identity (unless he has
corrupted a party).

Terms and Messages. As usual, we have a finite set ¥ of variables, a finite set .o/
of atoms, a finite set .# of public and private keys equipped with a bijection -~*
assigning public to private keys and vice versa. In addition, we have a finite set
A of principal addresses for the secure channels and an infinite set .of; of intruder
atoms, containing nonces and symmetric keys the intruder can generate. All of the
mentioned sets are assumed to be disjoint.

We define two kinds of terms by the following grammar, namely plain terms and
secure channel terms:

plain-terms ::= ¥ | o | ./, | (plain-terms, plain-terms) | {plain-terms}, i orms |

{plain-terms}‘,, | hash(plain-terms) | sig,, (plain-terms)
sec-terms ::= sc(N, N, plain-terms)

terms ::= plain-terms | sec-terms | A

While the plain terms are standard in Dolev-Yao models, a secure channel term of the
form sc(n,n’, t) stands for feeding the secure channel from n to n’ with t. Knowing
n grants access to secure channels with sender address n. A (plain/secure channel)
message is a (plain/secure channel) ground term, i.e., a term without variables.

Intruder. Given a set .# of messages, the (infinite) set d(.#) of messages the intruder
can derive from .# is defined in a standard way (see [14]) with the additional
rule handling secure channels: if m € d(#), n € d(#)N A, and n’ € A, then
sc(n,n’,m) € d(#) (writing onto the secure channel). Intuitively, n € d(#) N N
means that the intruder has corrupted the principal with address n and therefore
can impersonate this principal when writing onto the secure channel.

In this model, all dishonest parties are subsumed by the intruder.

Principals and Protocols. Principal rules are of the form L = R where L is a term or ¢
and R is a term.

A rule tree IT = (V,E,r,£) is a finite tree rooted at r € V where £ maps every
edge (v,v") € E of II to a principal rule £(v,v’). A principal is a rule tree that satisfies
some additional conditions (namely well-formedness and feasibility; see [14] for
details).

For v € V, we write IT|v to denote the subtree of IT rooted at v. For a substitution
o, we write ITo for the principal obtained from IT by substituting all variables x
occurring in the principal rules of IT by o(x).

A protocol P = ((I14,...,1I,), #) consists of a finite sequence of principals IT;
and a finite set .# of messages, the initial intruder knowledge. We require that each
variable occurs in the rules of only one principal, i.e., different principals must have
disjoint sets of variables. We assume that intruder atoms, i.e., elements of .«;, do
not occur in P.

Transition Graph Induced by a Protocol A transition graph %, induced by a protocol
P comprises all runs of a protocol. To define this graph, we first introduce states and
transitions between these states.

A state is of the form ((ITy,...,11,),0,%,5) where o is a ground substitution,
for each i, II; is a rule tree such that II;o is a principal, .# is a finite set of messages,
the intruder knowledge, and & is a finite multi-set of secure channel messages, the
secure channel. The idea is that when the transition system gets to such a state, then
the substitution o has been performed, the accumulated intruder knowledge is what
can be derived from .#, the secure channels hold the messages in &, and for each
i, I1; is the “remaining protocol” to be carried out by principal i. This also explains
why & is a multi-set: messages sent several times should be delivered several times.
Given a protocol P = ((I14, ..., I,), #) the initial state of P is ((ITy,...,1I,),0,.%,0)
where o is the substitution with empty domain.

There are three kinds of transitions: intruder, secure channel, and e-transitions.
In what follows, let IT; = (V;, E;, r;,¢;) and IT{ = (V/,E/,r],{}) denote rule trees. A
transition

(M,...,0,),0,9,) — ((IT},...,IT}),0",.9', ") €Y
with label 7 exists if one of the three following conditions is satisfied:

1. Intruder transition, T = [i,m,I]: There exists a vertex v € V; such that (r;,v) € E;
and £;(r;,v) =R =S, and there exists a ground substitution o’ with dom(c”) €
¥ (Ro) such that
(@) med(s),

(b) o'=0cuUc”,

(¢) Ro'=m,

(d ij = II; for every j # i, IT, = IT;|v,

(e) either S € 7,,,, and .#' = # U {So’}, or S = sc(, -, t) for some term t and
#' = uU{to’}, and

(f) either S € T, and &' =, 0r S € J, and &' =S U{So'}.

This transition models that principal i receives the message m from the intruder

(i.e., from the public network). Note that the second clause in (e) accounts for

the fact that our secure channels are not read-protected.

2. Secure channel transition, T = [i,m,sc]: There exists a vertex v € V; with
(r;,v) € E; and {,(r;,v) = R = S, and there exists a ground substitution o”
with dom(c”) € ¥(Ro) such that (a) m € &, (b)—(e) as above, and (f) either
S € Fyan and " = S\ {m}, or S € 7, and &' = (& \ {m}) U {So’'}. This
transition models that principal i reads message m from a secure channel.

3. e-transition, T = [i]: There exists a vertex v € V; with (r;,v) € E; and {;(r;,v) =
& = S such that o’ = o and (d)-(f) as given above for intruder transitions.
This transition models that principal i performs a step where neither a message
is read from the intruder nor from a secure channel.

Given a protocol P, the transition graph %, induced by P is the tuple (Sp,Ep,qp)
where qp is the initial state of P, Sp is the set of states reachable from g, by a
sequence of transitions, and E; is the set of all transitions among states in Sp. We

write g € %, if q is a state in 9p and ¢ — ¢/ € 9p if ¢ — ¢’ is a transition in %p.

2.2 Intruder Strategies and Strategy Properties

We now define intruder strategies on transition graphs and the goal the intruder
tries to achieve following his strategy. To define intruder strategies, we introduce
the notion of a strategy tree, which captures that the intruder has a way of acting
such that regardless of how the other principals act he achieves a certain goal, where
goal in our context means that a state will be reached where the intruder can derive
certain constants and cannot derive others (e.g., for balance, the intruder tries to
obtain IntruderHasContract but tries to prevent HonestPartyHasContract from occurring).

Definition 1. For q € %, a g-strategy tree 7, = (V,E,r,Ly,Lg) is an unordered tree
where every vertex v € V is mapped to a state £, (v) € ¥» and every edge (v,v') €E is
mapped to a label of a transition such that the following conditions are satisfied for all
v,V €V, principals j, messages m, and states q’,q":

1. Ly(r)=gq.

Le(v,y' ..

2. 4y(v) e Ly (v') € 9, for all (v,v') € E. (Edges correspond to transitions.)

3. Ifty(v)=q and ¢’ L, q" € 4, then there exists v"' € V such that (v,v") € E,
L,(v")=q", and Lz(v,v") = j. (All e-transitions originating in q' must be present
inJ,.)

q

4. If6,(v) =q and ¢ =5 g € 9p, then there exists v’ € V such that (v,v") €
E, (,(v) = q”, and Lgz(v,v") = j,m,sc. (The same as 3. for secure channel
transitions.)

5. If v,v')€E, Lx(v,v')=j,m,I, and there exists q”" # £, (v') with £,(v) L] q’ €
4, then there exists v"’ with (v,v") € E, Lg(v,v")=j,m,I and £,(v"") =q". (The
intruder cannot choose which principal rule is taken by j if several are possible
given the input provided by the intruder.)

A strategy property, i.e., the goal the intruder tries to achieve, is a tuple ((C;, C}),
...,(C,C))) where C;,C/ € .o/ UX UN. A state g € %p satisfies ((Cy,C)),...,
(C;,C))) if there exist g-strategy trees 7, ..., 7] such that every Z; satisfies (C;, C))
where ; satisfies (C;, C}) if for all leaves v of ; all elements from C; can be derived
by the intruder and all elements from C; cannot, i.e., C; € d(.#) and C! Nd(.#) =0
where ¢ denotes the intruder knowledge in state £ (v).

The decision problem STRATEGY asks, given a protocol P and a strategy property
((Cy,C1),..., (C, C))), whether there exists a state g € ¥ that satisfies the property.
In this case we write (B,(Cy,C}),...,(C;,C/)) € STRATEGY.

Note that in a g-strategy tree 7, there may exist vertices v #vwith £,(v') =
£y (v) such that the subtrees 7, |v and 7, v’ of 7, rooted at v and v’, respectively,
are not isomorphic. In other words, the intruder’s strategy may depend on the path
that leads to a state (i.e., the history) rather than on the state alone, as is the case
for positional strategies. We note that the strategies defined in [13] are positional.
However, it is easy to see that in our setting both notions of strategies are equivalent.
The motivation for using history dependent strategies is that the constraint-based
algorithm (Section 2.4) becomes considerably simpler.

2.3 Constraint Solving

In this section, we introduce constraint systems and state the well-known fact that
procedures for solving these systems exist (see, e.g., [16, 14] for more details). In
Section 2.4, we will then use such a procedure as a black-box for our constraint-based
algorithm.

A constraint is of the form t : T where ¢ is a plain term and T is a finite non-empty
set of plain terms. Since we will take care of secure channel terms when turning
the symbolic branching structure into a constraint system, we can disallow secure
channel terms in constraints.

A constraint system C is a tuple consisting of a sequence s =t; : Ty,..., t, : T, of
constraints and a substitution T such that i) the domain of 7 is disjoint from the set
of variables occurring in s and, ii) for all x in the domain of 7, 7(x) only contains
variables also occurring in s. We call C simple if t; is a variable for all i. We call
C valid if it satisfies the origination and monotonicity property as defined in [16].
The precise definition of valid constraint systems is not needed for the rest of the
paper. Let us only note that origination and monotonicity are standard restrictions
on constraint systems imposed by constraint solving procedures. Valid constraint
systems are all that is needed in our setting.

A ground substitution o where the domain of ¢ is the set of variables in ¢ :
Ti,...,t, : T, is a solution of C (o F C) if t;0 € d(T;o) for every i. We call oot (the
composition of o and 7T read from right to left) a complete solution of C (o o7 |-, C)
with 7 as above.

A simple constraint system C obviously has a solution. One such solution, which
we denote by o, replaces all variables in C by new intruder atoms a € .«f; where
different variables are replaced by different atoms. We call o the solution associated
with C and o o T the complete solution associated with C.

Given a constraint system C, a finite set {C,...,C,} of simple constraint systems
is called a sound and complete solution set for Cif {v |v F. C} ={v | Jis.t. v . C;}.
Note that C does not have a solution iff n = 0.

From results shown, for example, in [9, 16, 5] it follows:

Fact 1. There exists a procedure which given a valid constraint system C outputs a
sound and complete solution set for C.

While different constraint solving procedures (and implementations thereof)
may compute different sound and complete solution sets, our constraint-based
algorithm introduced in Section 2.4 works with any of these procedures. It is only
important that the set computed is sound and complete. As already mentioned in the
introduction, to decide reachability properties it suffices if the procedure only returns
one simple constraint system in the sound and complete set. However, the constraint
solving procedures proposed in the literature are typically capable of returning a
sound and complete solution set.

In what follows, we fix one such procedure and call it the constraint solver.
More precisely, w.l.0.g., we consider the constraint solver to be a non-deterministic
algorithm which non-deterministically chooses a simple constraint system from the
sound and complete solution set and returns this system as output. We require that
for every simple constraint system in the sound and complete solution set, there is a
run of the constraint solver that returns this system. If the sound and complete set is
empty, the constraint solver always returns no.

2.4 The Constraint-Based Algorithm

We now present our constraint-based algorithm, called SolveStrategy, for deciding
STRATEGY. As mentioned, it uses a standard constraint solver (Fact 1) as a subproce-
dure.

In what follows, we present the main steps performed by SolveStrategy, with
more details given below. The input to SolveStrategy is a protocol P and a strategy

property ((Cy, €, .., (€, C)).

1. Guess a symbolic branching structure B, i.e., guess a symbolic path 7° from the
initial state of P to a symbolic state ¢° and a symbolic g°-strategy tree ﬂiqu for
every (C;, Ci’) starting from this state (see below for more details).

2. Derive from B = 7'55,915’(15, e, qus and the strategy property ((C;,C;),...,
(C;,C))) the induced and valid constraint system C = Cg (see below for the
definition). Then, run the constraint solver on C. If it returns no, then halt.
Otherwise, let C’ be the simple constraint system returned by the solver. (Recall
that C’ belongs to the sound and complete solution set and is chosen non-
deterministically by the solver.)

3. Let v be the complete solution associated with C’. Check whether v when
applied to B yields a valid path in ¥, from the initial state of P to a state q¢ and
q-strategy trees 7 ; satisfying (C;, C!) for every i. If so, output yes and B with
v applied, and otherwise return no (see below for more details). In case yes is
returned, B with v applied yields a concrete solution of the problem instance

(B(Cy,C)),..,(C, C)).

We emphasize that, for simplicity of presentation, SolveStrategy is formulated as a
non-deterministic algorithm. Hence, the overall decision of SolveStrategy is yes if
there exists at least one computation path where yes is returned. Otherwise, the
overall decision is no (i.e., (B (Cy,C}),...,(C;, C))) ¢ STRATEGY).

In the following, the three steps of SolveStrategy are further explained. The main
result of [12, 14], is the following theorem:

Theorem 1. SolveStrategy is a decision procedure for STRATEGY.

Guess the Symbolic Branching Structure To describe the first step of SolveStrategy
in more detail, we first define symbolic branching structures, which consist of
symbolic paths and symbolic strategy trees. To define symbolic paths and strategy
trees, we need to introduce symbolic states, transitions, and trees (see [14] for full
details).

A symbolic state ¢° = ((I14,...,II,), #,) is defined just as a concrete state (see
Section 2.1) except that the substitution is omitted and the intruder knowledge .¢ and
the secure channel & may contain terms (with variables) instead of only messages.
The symbolic initial state of a protocol P = ((IT4,...,I1,), %) is (11, ..., II,), %, 0).

A symbolic transition, analogously to concrete transitions, is a transition between
symbolic states and is of the form

(L., IT,),.9,5) > ((IT,..., 1), 9", 5") @)

with £ an appropriate label where again we distinguish between symbolic intruder,
secure channel, and e-transitions. Informally speaking, these transitions are of the
following form (see [14] for details): For symbolic intruder transitions the label £
is of the form i, f,I where now f is not the message delivered by the intruder, as
was the case for concrete intruder transitions, but a direct successor of the root r;
of IT;. The intuition is that the principal rule L = R the edge (r;, f) is labeled with
in II; is applied. The symbolic state ((I1;,...,II,),.#,5) is updated accordingly to
((1y,...,1I,), %', %"). We call L = R the principal rule associated with the symbolic
transition. Similarly, the label of a symbolic secure channel transition is of the form
i,f,L’,sc where f is interpreted as before and L’ is the term read from the secure
channel. If L = R is the principal rule associated with the transition, then &’ is
obtained by removing L’ from % and adding R if R is a secure channel term. When
constructing the constraint system, we will guarantee that L’ unifies with L. Finally,
the label of symbolic e-transitions is of the form i, f with the obvious meaning.

A symbolic q°-tree gqi = (V,E,r,£y,L5) is an unordered finite tree where the
vertices are labeled with symbolic states, the root is labeled with ¢°, and the edges
are labeled with labels of symbolic transitions such that an edge (v, v’) of the tree,
more precisely, the labels of v and v’ and the label of (v, v’) correspond to symbolic
transitions. We call the principal rule associated with such a symbolic transition the
principal rule associated with (v,v"). Note that the symbolic transitions of different
edges may be associated with the same principal rule. Now, since the same rule
may occur at different positions in the tree, its variables may later be substituted
differently. We therefore need a mechanism to consistently rename variables.

A symbolic path * of a protocol P is a symbolic qj-tree where every vertex has
at most one successor and g is the symbolic initial state of P.

A symbolic q°-strategy tree 9:; =(V,E,r,Ly,Lg) is a symbolic ¢*-tree which satis-
fies additional conditions. Among others, we require that in one node of this tree the
intruder may only send a message to one principal II;; we show that this is w.l.o.g.
Also, all e-transitions applicable in one node are present. Symbolic strategy trees

are defined in such a way that for every symbolic state ¢° the number of symbolic
q°-strategy trees is finite and all such trees can effectively be generated.

For a protocol P and strategy property ((Cy,Cy),...,(C;,C))), a symbolic branch-
ing structure is of the form B® = n*,77,..., 7 where ©* is a symbolic path of P
and the 7 are symbolic g*-strategy trees where ¢’ is the symbolic state the leaf of
1° is labeled with. Given a protocol and a strategy property, there are only a finite
number of symbolic branching structures and these structures can be generated by
an algorithm. In particular, there is a non-deterministic algorithm which can guess
one symbolic branching structure B° among all possible such structures.

Construct and Solve the Induced Constraint System In this step the constraint
system C = Cp is derived from the symbolic branching structure B = n°, 7,
..., (guessed in the first step of SolveStrategy) and the given strategy property
((C1,C),...,(C;, C))). This constraint system can be shown to be valid, and hence,
by Fact 1, a constraint solver can be used to solve it.

We skip the details of this procedure (see [14] for full definition) and only infor-
mally explain how communication involving secure channels is handled. The basic
idea is that messages intended for secure channel are written into the knowledge of
the intruder’s who may then deliver these messages. The problem is that while every
message in the secure channel can only be read once, the intruder could try to deliver
the same message several times. To prevent this, every such message when written
into the intruder’s knowledge is encrypted with a new key not known to the intruder
and this key is also (and only) used in the principal rule which according to the
symbolic branching structure is supposed to read the message. This guarantees that
the intruder cannot abusively deliver the same message several times to unintended
recipients or make use of these encrypted messages in other contexts.

Check the Induced Substitutions Let B° = 7°, 7',..., 7" be the symbolic branch-
ing structure obtained in the first step of SolveStrategy and let C’ be the simple
constraint system returned by the constraint solver when applied to C = Cg: in the
second step of SolveStrategy. Let v be the complete solution associated with C’ (see
Section 2.4). We emphasize that for our algorithm to work, it is important that v
replaces the variables in C’ by new intruder atoms from ./, not occurring in B°.
Basically, we want to check that when applying v to B®, which yields B’v =
v, I'v,...,7’v, we obtain a solution of the problem instance (B, (C;, C1)soes
(C;,C))). Hence, we need to check whether i) 7°v corresponds to a path in ¥, from
the initial state of ¥, to a state ¢ € % and ii) J’v corresponds to a g-strategy
tree for (C;, C;) for every i. However, since v is a complete solution of C, some of
these conditions are satisfied by construction. In particular, 7°v is guaranteed to
be a path in ¥, starting from the initial state. Also, the conditions 1.-3. of strategy
trees (Definition 1) do not need to be checked and we know that 9;51/ satisfies
(C;,0). Hence, SolveStrategy only needs to make sure that 4. and 5. of Definition 1
are satisfied for every Z°v and that 7°v fulfills (9, C/). Using that the derivation
problem is decidable in polynomial time [8] (given a message m and a finite set of

10

messages .#, decide whether m € d(.#)), all of these remaining conditions can easily
be checked (see [14] for details).

3 Implementation

We have implemented the algorithm proposed in [12, 14], along with several op-
timizations (see [15] for our implementation). The implementation is written in
Prolog and consists of about 2500 lines of code. In our implementation we used
the constraint solver by Corin and Etalle [10] (which is based on the constraint
solver by Millen and Shmatikov [16]). This constraint solver, although not the most
efficient one, is written also in Prolog and therefore could easily be integrate with
our implementation.

3.1 Optimizations

Our first, naive implementation of the constraint solving algorithm presented in [12,
14] was hardly usable, due to severe performance problems. As discussed in the
introduction, this was expected: the algorithm needs to test exponentially many
strategy tries, each of which inducing a constraint system of significant size to be
solved by the constraint solver (note that solving a constraint system is an NP-hard
problem).

Therefore we had to introduce several optimizations in order to make the algo-
rithm usable. In the following, we describe the main optimizations.

Constructing strategy trees: To describe this optimization, we first need to introduce
what we call standard strategy trees and standard symbolic branching structures. A
strategy tree (a symbolic branching structure) is standard if the following condition
is satisfied: a (symbolic) intruder transition can originate from a given (symbolic)
state only if there is no epsilon or secure-channel transition originating from this
state.

It is easy to show that it suffices to consider only standard strategy trees (symbolic
branching structures): If there exists a strategy tree T that satisfies a given property
(C,C"), there also exists a standard strategy tree T’ that satisfies (C, C’). In fact, we
can obtain T’ from T by simply removing all the intruder transitions originating
from states which have also some outgoing epsilon or secure-channel transitions. We
can note that in this way we obtain a valid strategy tree (assuming that T is a valid
strategy tree), i.e. T’ satisfies all the conditions of Definition 1, if T does. Moreover,
every leaf of T’ is also a leaf of T. This immediately implies that whenever T satisfies
(C,C"), then T’ satisfies (C,C’) as well.

This observation allows us to make the following optimization: when a symbolic
branching structure is guessed (see page 8), we consider only standard symbolic
branching structures. This significantly reduces the number of branching structures
to be tested, as well as their size.

11

Secure channel encoding: The algorithm, as described in [12, 14], handles secure
channels in the following way: When a constraint system is built for a given strategy
tree, communication through secure channels is modelled by introducing a fresh key
kq p, for every secure channel (a, b). Then, a message sent over such a channel is
encrypted using k, , and added to the intruder knowledge and, for each participant
rule R = S that reads from this channel (i.e. with R of the form sc(a, b, t)), the term
R is encoded as {t}s

Although this is a sound encoding, it introduces some overhead to the constraint
solving algorithm: The constraint solver, when deriving {t}s , tries two possibilities:
First, it tries to unify {t}s with some other message m (Whlch is possible only if

={m’ }s and m’ unlﬁes with t). Second, it tries to derive t and k, , separately.
As one can show the constraint solver never succeeds in the latter case (as the key
kq p is never revealed) and therefore this step can safely be omitted.

In our implementation, we handle secure channel in a similar, but slightly differ-
ent way: instead of using the message {t}s , as described above, we use f(t,k,),

where f is a free function symbol (i.e. there is no decomposing rule for f in the
constraint solver). Owing to this modification, the constraint solver avoids spending
time trying to derive t and k, , (the only way to derive f(t,k, ;) is now to unify it
with some m = f(m’, k, ;) such that m’ unifies with t).

Treatment of secure channels: This simplification is based on the observation that
typically the following is true for every channel from a to b, where both a and b are
honest protocol participants: whenever some message has been sent on this channel
(technically, in a given state a message of the form sc(a, b, m) is in &) and b is ready
to read a message from this channel (technically, there is a principal rule R = S of b
in this state, with R of the form sc(a, b, t)), then this message can be delivered to b
(technically, t matches with m).

This observation allows us to determine, already in a symbolic strategy branching
structure, which secure channel transition must be present. Owing to this, after the
second step of SolveStrategy, when the algorithm checks the induced substitution
as described on page 9, not only condition 1.-3. of strategy trees (Definition 1) do
not need to be checked, but also condition 4. is satisfied by the construction of the
branching structure and does not need to be checked. Therefore, in this step, only
condition 5. of Definition 1 has to be checked.

This modification allows us to eliminate some strategy trees before the constraint-
solving algorithm is executed. We note that while the modification does not preserve
soundness of our procedure in general, it is sound for the cases typically encountered
in applications; and this can be checked easily.

4 Experiments

We applied our implementation to two protocols. The first one is a simple, toy
protocol given in [14]. We used this protocol to test and debug our implementation.
The second one is the ASW protocol, a contract-signing protocol proposed in [4].

12

I, : fi II, : g
sc(2,1, (x, b)) = xl e=sc(2,1, (a, b)y \e = sc(2,1, (b, b))
£y &2 &3
U=y

f3
a ﬁ%%Nﬁ Cy
fa fs fe

Fig. 1. Protocol P,, = ({11}, I, }, .%,) with %, = {{a};, {b};}

4.1 The Simple Protocol

This protocol, depicted in Figure 1, consists of two principals II; and I, and the
initial knowledge %, = {{a};, {b};} of the intruder. Informally speaking, IT, can,
without waiting for input from the secure channel or the intruder, decide whether to
write (a, b) or (b, b) into the secure channel from IT, to IT,. While the intruder can
read the message written into this channel, he cannot modify or delay this message.
Also, he cannot insert his own message into this channel as he does not have the
principal address 2 in his intruder knowledge, and hence, cannot generate messages
of the form sc(2, -, t). Consequently, such messages must come from II,. Principal II;
first waits for a message of the form (x, b) in the secure channel from IT, to IT;. In
case I, wrote, say, (a, b) into this channel, x is substituted by a, and this message
is written into the network, and hence, given to the intruder. Next, IT; waits for
input of the form {y};. This is not a secure channel term, and thus, comes from the
intruder. In case the intruder sends {b};, say, then y is substituted by b. Finally, IT,
waits for input of the form a (in the edges from f; to f; and f; to f5) or b (in the
edge from f; to fg). Recall that x was substituted by a and y by b. If the intruder
sends b, say, then I, takes the edge from f; to fg and outputs ¢, into the network.
If the intruder had sent a, IT; could have chosen between the first two edges.

We tested this protocol for several natural strategy properties. In each case, the
run-time of our tool was very short (a fraction of a second).

4.2 ASW
Before describing the results of our experiments, we briefly recall the ASW protocol

[4].

Overview of the Protocol: Our informal description of the ASW protocol follows
[18] (see this work or [4] for more details). For ease in notation, we will write
sig[m, k] instead of (m,sig,(m)).

13

The ASW protocol enables two principals O (originator) and R (responder) to
obtain each other’s commitment on a previously agreed contractual text, say text,
with the help of a trusted third party T, which, however, is only invoked in case
of problems. In other words, the ASW protocol is an optimistic two-party contract-
signing protocol.

There are two kinds of valid contracts: the standard contract,

<Sig[m0: kO]:NOa Sig[mRJ kR]aNR>)
and the replacement contract, sig[(sig[mg, ko1, sig[mg, kz1) , k;1, where

mgp = <ko, kR’ kT,teXt, haSh(No)> B
mp = <Sig[m09 kO]) haSh(NR)>)

and kg, kg, and k; are the public keys of O, R, and T, respectively, and N, and Ny
represent nonces generated by O and R, respectively. Note that a signed contractual
text (sig[text, ko] or sig[text, kz]) is not considered a valid contract.

The ASW protocol consists of four subprotocols: the exchange, abort, and two
resolve protocols. However, we can describe every principal—O, R, and T—in terms
of a single tree as introduced in Section 2.1.

The basic idea of the exchange protocol is that O first indicates his/her interest
to sign the contract. To this end, O hashes a nonce N, and signs it together with
text and the keys of the principals involved. The resulting message is the message
sig[mg, ko] from above. By sending it to R, the originator O commits to the contract.
Then, similarly, R indicates his/her interest to sign the contract by hashing a nonce
Ny and signing it together with what he/she received from O and the keys of the
involved principals. This is the message sig[mg, kz] from above. By sending it to O,
the responder R commiits to the contract. Finally, first O and then R reveal N, and N,
respectively. This is why a standard contract is only valid if N, and Ny are included.

If, after O has sent the first message, R does not respond, O may contact T to
abort. Also, if after O has sent the second message, the nonce N,, and R does not
respond, then O may contact T to resolve. Similarly, R may contact T to resolve
the protocol after having sent the message sig[mg, kz]. However, R may not abort
the protocol. In case the protocol is successfully resolved, the replacement contract
sig[(sig[mo, ko1, siglmg, kg]) , k1] is issued. While this version of the contract only
contains the message indicating O’s and R’s intention to sign the contract (and
neither N, nor Np), the signature of T validates the contract. For T to respond to
incoming resolve or abort requests appropriately it needs to store the requests in
some kind of database. For example, if O has sent an abort request and afterwards R
sends a resolve request T has to answer by an abort token to act consistently.

As we will see in the next subsection the model of the originator O of the ASW
protocol as a rule tree is straightforward. To model the TTP T as a rule tree one has
to encode the database which is needed to distinguish between different possible
interleavings of resolve and abort requests. This can be done by unwinding these
possible interleavings into a rule tree.

14

‘31

/\
/\

Fig. 2. A model of the Originator O in the ASW protocol

The Principal O: The principal O is defined by the tree II, depicted in Figure 2 where
the edge labels for the principal rules defined below. Rules e1, €2, and e3 belong to
the exchange protocol, rules al, a2, and a3 belong to the abort protocol, and rules
r1, r2, and r3 belong to the resolve protocol of O.

Exchange protocol. The actions performed in the exchange protocol have infor-
mally been discussed above.

Abort protocol. If, after the first step of the exchange protocol, O does not get an
answer back from R, the principal O may start the abort protocol, i.e., send an abort
request via a secure channel to T (rule al). Then, T will either confirm the abort
of the protocol by returning an abort token—in this case O will continue with rule
a3—or send a replacement contract—in this case O will continue with rule a2. (The
trusted third party T sends a replacement contract if R previously contacted T to
resolve the protocol run.)

Resolve protocol. If after rule e2, i. e., after sending N, the principal O does not
get an answer back from R, then O can start the resolve protocol by sending a resolve
request to T via the secure channel (rule r1). After that, depending on the answer
returned from T (which again will return an abort token or a replacement contract),
one of the rules r2 or r3 is performed.

We now present the principal rules for O where the numbering corresponds to the
one in Figure 2. In some of these rules we use extra constants which indicate certain
events. We therefore call these constants signal constants. If, for example, principal
O performs rule es, i.e., it gets the signature of the responder on the contract, it
sends the signal constant OHasValidContract on the network, indicating that O now
has a valid contract. Then, the property that at the end of a protocol execution
the originator O does not have a valid contract is formalized by requiring that
the intruder cannot derive the constant OHasValidContract at the end of a protocol
execution. How security properties are modeled in our framework is described below.

(e;) &€ = me; where
me; =sig[mey, ko] and me, = (ko, kg, kr, text, hash(Ny)) .

(e5) sig[mes, kg] = N, where me; = (me;, hash(x)).

15

(e3) x = OHasValidContract.
(a;) €= sc(0, T, ma,) where ma, = sig[(aborted, me;) ,ko].
(ay) sc(T,0, ma,) = OHasValidContract where

ma, = sig[(me,, me,) ,kr] and me, =sig[(mey,2;),kg].

(ag) sc(T,0,sig[(aborted, ma,) , ky]) = OHasAbortToken.
(r1) & =sc(0, T, (mey,sigmes, kg])).

(ry) sc(T,0,sig[(aborted, ma,) , k;]) = OHasAbortToken.
(r3) sc(T,0, mr;) = OHasValidContract where

mry =sig[(me,, mry) ,kr] and mry, =sig[(me,,2,) ,kg].

Experiments: We have applied our tool to the ASW protocol considering the follow-
ing scenarios:

1. Honest Alice: In this scenario we assume the originator (Alice), as well as the
trusted third party, to be honest. Bob is assumed to be dishonest and is subsumed
by the intruder.

2. Honest optimistic Alice: In this scenario, as before, we assume the originator
(Alice) and the trusted third party to be honest, with dishonest Bob subsumed
by the intruder. This time, however, Alice is assumed to be optimistic, i.e., she is
willing to wait for messages of other parties. Technically, Alice only contacts the
TTP if the dishonest responder (the intruder) allows her to do so. In other words,
the dishonest responder can buy himself as much time as he needs, before the
honest signer contacts the TTP. This is a reasonable assumption, also made in
[7].

3. Honest Bob: In this scenario we assume the responder (Bob) as well as the trusted
third party to be honest. The originator (Alice) is assumed to be dishonest and is
subsumed by the intruder.

We verified these scenarios against the well known balance property which
requires that in no state of a protocol execution the intruder (a dishonest party) has
both (a) a strategy to obtain a valid contract and (b) a strategy to prevent the second
(honest) participant from obtaining a valid contract. In the case of honest originator
(Alice), this property is captured by the strategy property

¢o = (({RHasValidContract}, 0), (0, {OHasValidContract})).

More precisely, to guarantee the balance property, we require that the above strategy
property is not satisfied in the protocol. Similarly, in the case of honest responder,
balance is captured by the strategy property

¢r = (({OHasValidContract}, @), (0, {RHasValidContract})).

Note that the ASW protocol is supposed to guarantee the balance property in the
first and the third scenario above. Only if Alice is honest and optimistic (the second

16

scenario), the balance property is known to be violated (and hence, one can expect
that the corresponding strategy property ¢, is satisfied).

When we applied our tool to the three scenarios described above, the program,
unfortunately, did not terminate (in reasonable time). The reason for this was that
the constraint systems generated by the algorithm turned out to be too big for the
constrained solver we used. Therefore, we applied some sound simplifications to our
modeling:

1. We removed signatures generated by dishonest parties (the honest parties after
this simplification, instead of messages signed by the dishonest party, expect
unsigned messages). It is easy to see that this is a sound modification: if there
exists an attack (a strategy tree) in the original protocol, then there also exists
an attack in the modified variant (the same strategy tree but with stripped off
signatures of dishonest participants). Moreover, we can note that this modification
does not introduce any new attacks, as the intruder is able to generate signatures
of dishonest parties for any message he generates.

2. Whenever, in the original protocol, a message sig[m, k] = (m, sig,(m)) is sent or
received by an honest party, where k is a signing key of an honest party and m
is some message known to the intruder, then we send/receive sig,(m), instead.
Note that, by this modification, we do not restrict the intruder in any way, as m
is known to him. Therefore, whenever some message can be sent/delivered in
the original protocol, the corresponding message (where sig[m, k] is replaced
by sig,(m)) can be sent/delivered in the modified version. This shows that the
modification is sound.

After these (sound) modifications, we were able to successfully apply our tool
to all the mentioned variants of the protocol. The experiments were carried on a
PC with 2,4 Ghz Intel CoreTM 2 Duo E6700 processor and 2GB RAM. The results
were obtained in less than 2 minutes in each case (in fact, for honest Alice and
honest optimistic Alice, the running times were about 10 seconds). The results were
as expected: in the second scenario an attack was found; in the remaining two, no
attack was detected.

As mentioned, the efficiency problem for the original ASW protocol does not stem
from a too big number of strategy trees to be checked, but rather from the size of the
generated constraint systems which turned out to be too big for the constraint solver
we used. This solver, however, is not the most efficient one. Therefore we believe
that using a more efficient constraint solver could improve the overall performance
of our tool in such a significant way that the above mentioned modification of ASW
would not be necessary. But we leave this as future work.

5 Conclusion

We have implemented the constraint-solving algorithm for checking game-theoretic
security properties proposed in [12, 14] along with several optimizations. Our im-
plementation is promising in that it shows that in principle automatic analysis of

17

game-theoretic security properties is possible for non-trivial contract-signing proto-
cols. However, further efforts are necessary to optimize our implementation. Also,
new cryptographic primitives, such as private contract signatures, should be con-
sidered to be able to broaden the scope of our implementation. Finally, while our
implementation is based on a hardly optimized constraint solver, it seems fruitful to
base our implementation on a more efficient constraint solver in order to be able to
handle more complex constraint systems.

References

10.

. R.M. Amadio, D. Lugiez, and V. Vanackere. On the symbolic reduction of processes with

cryptographic functions. Theoretical Computer Science, 290(1):695-740, 2002.

. A. Armando, D. Basin, M. Bouallagui, Y. Chevalier, L. Compagna, S. Modersheim, M. Rusi-

nowitch, M. Turuani, L. Vigano, and L. Vigneron. The AVISS Security Protocol Analysis
Tool. In E. Brinksma and K. G. Larsen, editors, Proceedings of the 14th International
Conference on Computer Aided Verification (CAV 2002), volume 2404 of Lecture Notes in
Computer Science, pages 349-353. Springer, 2002.

. A. Armando, D.A. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuéllar, PH. Drielsma, P-

C. Héam, O. Kouchnarenko, J. Mantovani, S. Médersheim, D. von Oheimb, M. Rusinowitch,
J. Santiago, M. Turuani, L. Vigano, and L. Vigneron. The AVISPA Tool for the Automated
Validation of Internet Security Protocols and Applications. In K. Etessami and S.K.
Rajamani, editors, Computer Aided Verification, 17th International Conference (CAV 2005),
volume 3576 of Lecture Notes in Computer Science, pages 281-285. Springer-Verlag, 2005.

. N. Asokan, V. Shoup, and M. Waidner. Asynchronous protocols for optimistic fair exchange.

In Proceedings of the IEEE Symposium on Research in Security and Privacy, pages 86-99.
IEEE Computer Society, 1998.

. D. Basin, S. Modersheim, and L. Vigano. An On-The-Fly Model-Checker for Security

Protocol Analysis. In E. Snekkenes and D. Gollmann, editors, Proceedings of the 8th
European Symposium on Research in Computer Security (ESORICS 2003), volume 2808 of
Lecture Notes in Computer Science, pages 253-270. Springer, 2003.

. R. Chadha, M.I. Kanovich, and A.Scedrov. Inductive methods and contract-signing

protocols. In P Samarati, editor, 8-th ACM Conference on Computer and Communications
Security (CCS 2001), pages 176-185. ACM Press, 2001.

. R. Chadha, J.C. Mitchell, A. Scedrov, and V. Shmatikov:. Contract Signing, Optimism, and

Advantage. In R.M. Amadio and D. Lugiez, editors, CONCUR 2003 - Concurrency Theory,
14th International Conference, volume 2761 of Lecture Notes in Computer Science, pages
361-377. Springer, 2003.

. Y. Chevalier, R. Kiisters, M. Rusinowitch, and M. Turuani. An NP Decision Procedure for

Protocol Insecurity with XOR. In Proceedings of the Eighteenth Annual IEEE Symposium on
Logic in Computer Science (LICS 2003), pages 261-270. IEEE Computer Society, 2003.

. Y. Chevalier and L. Vigneron. A Tool for Lazy Verification of Security Protocols. In

Proceedings of the 16th IEEE Conference on Automated Software Engineering (ASE 2001),
pages 373-376. IEEE CS Press, 2001.

R. Corin and S. Etalle. An Improved Constraint-Based System for the Verification of
Security Protocols. In M.V. Hermenegildo and G. Puebla, editors, Proceedings of the 9th
International Symposium on Static Analysis (SAS 2002), volume 2477 of Lecture Notes in
Computer Science, pages 326-341. Springer, 2002.

18

11.

12.

13.

14.

15.

16.

17.

18.

J.A. Garay, M. Jakobsson, and P MacKenzie. Abuse-free optimistic contract signing. In
Advances in Cryptology — CRYPTO’99, 19th Annual International Cryptology Conference,
volume 1666 of Lecture Notes in Computer Science, pages 449-466. Springer-Verlag, 1999.
D. Kéhler and R. Kiisters. Constraint Solving for Contract-Signing Protocols. In M. Abadi
and L. de Alfaro, editors, Proceedings of the 16th International Conference on Concurrency
Theory (CONCUR 2005), volume 3653 of Lecture Notes in Computer Science, pages 233—
247. Springer, 2005.

D. Kéhler, R. Kiisters, and Th. Wilke. Deciding Properties of Contract-Signing Protocols.
In V. Diekert and B. Durand, editors, Proceedings of the 22nd Symposium on Theoretical
Aspects of Computer Science (STACS 2005), volume 3404 of Lecture Notes in Computer
Science, pages 158-169. Springer-Verlag, 2005.

D. Kéhler, R. Kiisters, and Th. Wilke. Deciding Strategy Properties of Contract-Signing
Protocols. ACM Transactions on Computational Logic (TOCL), 11(3), 2010. Printed version
to appear.

Ralf Kiisters, Thomas Schmidt, and Tomasz Truderung. CSVer: a Protocol Verifier for
Contract-Signing Protocols, 2011. Available at http://infsec.uni-trier.de/tools.html.

J. K. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic pro-
tocol analysis. In Proceedings of the 8th ACM conference on Computer and Communications
Security, pages 166-175. ACM Press, 2001.

M. Rusinowitch and M. Turuani. Protocol insecurity with a finite number of sessions and
composed keys is NP-complete. Theoretical Computer Science, 299(1-3):451-475, 2003.
V. Shmatikov and J.C. Mitchell. Finite-state analysis of two contract signing protocols.
Theoretical Computer Science (TCS), special issue on Theoretical Foundations of Security
Analysis and Design, 283(2):419-450, 2002.

