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Abstract

The analysis of real-world protocols, in particular key exchange protocols and protocols building on
these protocols, is a very complex, error-prone, and tedious task. Besides the complexity of the protocols
itself, one important reason for this is that the security of the protocols has to be reduced to the security
of the underlying cryptographic primitives for every protocol time and again.

We would therefore like to get rid of reduction proofs for real-world key exchange protocols as much
as possible and in many cases altogether, also for higher-level protocols which use the exchanged keys.
So far some first steps have been taken in this direction. But existing work is still quite limited, and, for
example, does not support Diffie-Hellman (DH) key exchange, a prevalent cryptographic primitive for
real-world protocols.

In this paper, building on work by Küsters and Tuengerthal, we provide an ideal functionality in the
universal composability setting which supports several common cryptographic primitives, including DH
key exchange. This functionality helps to avoid reduction proofs in the analysis of real-world protocols
and often eliminates them completely. We also propose a new general ideal key exchange functionality
which allows higher-level protocols to use exchanged keys in an ideal way. As a proof of concept, we
apply our framework to three practical DH key exchange protocols, namely ISO 9798-3, SIGMA, and
OPTLS.

Keywords: protocol security, universal composability, Diffie-Hellman key exchange, reduction proofs,
IITM model
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1 Introduction

The analysis of security protocols, in particular real-world security protocols is a very complex and challenging
task, which has gained a lot of attention in the past few years (see, e.g., [3, 7–9, 21, 22, 25, 28, 29, 32, 38, 47]).
Several approaches for the analysis of such protocols exist, ranging from manual to tool-supported approaches
and from symbolic (Dolev-Yao-style) approaches, which abstract from cryptographic details, to approaches
based on cryptographic games and those which perform cryptographic reasoning on implementations directly.
In this work, our focus lies on cryptographic approaches.

All such approaches strive to achieve some kind of modularity in order to tame the complexity of the
analysis (see, e.g., [8,12,13,29]). But security proofs are typically still very complex, tedious, and error-prone.
Besides the complexity of the protocols itself, an important reason for this is that for every protocol one
has to carry out reduction proofs from the security notions of the protocols to the cryptographic primitives
employed time and again. Even in universal composability models [15,26,34,41], for which modularity is the
driving force, protocol designers typically have to carry out (tedious, repetitive, and error-prone) reduction
proofs.

One important goal of this work is therefore to provide a framework within the setting of universal
composability (cf. Section 2) which gets rid of reduction proofs as much as possible or ideally even altogether,
and which is applicable to a wide range of real-world security protocols. This should lead to proofs that are
shorter, without being imprecise, as well as easier to understand and carry out. Being based in the setting of
universal composability, the framework should also facilitate modular reasoning, allow for re-using existing
results, and of course provide security in arbitrary adversarial environments (universal composition).

The main idea behind our framework, which builds on and extends work by Küsters and Tuengerthal
[38, 39] (see below), is as follows. First recall that in models for universal composability security properties
are expressed by so-called ideal functionalities, which perform their tasks in an ideal secure way. A real
protocol P ′ may use an ideal functionality F (or several such functionalities) as a subroutine to perform its
task. Typically one shows that P ′ (along with F) realizes another (higher-level) ideal functionality, say F ′.
Composition theorems available in models for universal composability then allow one to replace F by its
realization P, which then implies that P ′ using P realizes F ′. Now, in our framework we provide an ideal
functionality Fcrypto which covers various cryptographic primitives, including standard Diffie-Hellman (DH)
key exchanges based on the DDH assumption, symmetric/asymmetric encryption, key derivation, MACing,
and signing. We show that Fcrypto can be realized by standard cryptographic assumptions, which is a once
and for all effort. In essentially all other approaches for protocol analysis this kind of reduction to the
cryptographic assumptions of primitives has to be carried out time and again in the analysis of every single
protocol. In contrast, in our framework one can prove the security of a protocol P using Fcrypto without
using any reduction proofs or hybrid arguments (at least not for the primitives supported by Fcrypto). In a
last step, by composition theorems, Fcrypto can be replaced by its realization so that the ideal cryptographic
primitives are replaced by their real counterparts.

All primitives provided by Fcrypto can be used with each other in an idealized way. For example, a protocol
P using Fcrypto can first exchange a key via an ideal Diffie-Hellman key exchange where some messages are
(ideally) signed and then derive a MAC and a symmetric encryption key from the DH key. Importantly,
both keys can still be used in an idealized way, i.e., one can perform ideal MACing and encryption using
these keys.

In addition to Fcrypto, our framework also provides new functionalities for ideal key exchange that allow
a higher level protocol to still use a session key in an idealized way.

Altogether, when using these functionalities, the need for reduction proofs is greatly reduced or such
proofs are avoided completely in many cases. Protocol designers can argue on an intuitive information
theoretic level while being able to analyze a protocol in a very modular way with universally composable
security guarantees.

Contributions. More specifically, our contributions are as follows.

- We extend the ideal functionality Fcrypto from [39] to also support standard DH key exchange with two key
shares ga and gb. This is a crucial step as many real-world protocols support Diffie-Hellman key exchanges
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and thus could not have been analyzed before using Fcrypto. Designing such an extension requires care in
order for the extension to, on the one hand, provide all expected properties and, on the other hand, still
be realizable under standard cryptographic assumptions.

- Our functionality Fcrypto ensures that the adversary on the network cannot interfere with higher level
protocols while they use Fcrypto to perform local computations. While this is expected and natural for such
an ideal functionality, it previously was impossible to model this property. Leveraging fundamental results
of recent work by Camenisch et al. [14], who have introduced the concept of responsive environments, we
can now indeed provide this property for Fcrypto, which further simplifies security proofs.

- We propose and prove a realization for Fcrypto based on standard cryptographic assumptions. The proof
is quite involved, with several hybrid arguments, as Fcrypto allows for a wide range of operations. But, as
explained above, due to the modularity of our framework this is a once and for all effort.

- Inspired by an ideal functionality from [38], we propose two new functionalities for both mutually and
unilaterally authenticated key exchange with perfect forward secrecy. Unlike most other key exchange
functionalities, which output the key, our functionalities allow higher-level protocols to still use the ex-
changed key in an ideal way, namely for idealized key derivation, symmetric encryption, and MACing.
Hence, as mentioned, one can avoid reductions proofs also for the higher-level protocols, such as secure
channel protocols. Further discussion and comparison with other key exchange functionalities is provided
in Section 5.

- We illustrate the usefulness of our framework by showing for three different real-world key exchange
protocols that they realize our key exchange functionalities with mutual or unilateral authentication.
Due to the use of Fcrypto, none of the security proofs require any reductions, hybrid arguments, or even
probabilistic reasoning.

– We provide the first analyses of unaltered versions of the ISO 9798-3 [27] and the SIGMA [30] key
exchange protocols in an universal composability model (see also Section 7).

– We analyze the 1-RTT non-static mode of the OPTLS key exchange protocol [33] and find a subtle
bug in the original reduction proof. We show that, under the original security assumptions, a slight
variation of the protocol is a secure unilaterally authenticated and universally composable key exchange
protocol.

Structure of the Paper. In Section 2, we briefly recall the IITM model, which is the universal composabil-
ity model we use in this paper. Section 3 details the ideal functionality Fcrypto, with a realization proposed
and proven in Section 4. Our ideal key exchange functionalities are presented in Section 5. The case studies
are carried out in Section 6. We further discuss advantages and limitations of our framework along with
related work in Section 7. We conclude in Section 8. Further details are provided in the appendix.

2 The IITM Model

In this section, we briefly recall the IITM model with responsive environments from [14]. This is the model
for universal composability we use in this paper. This model in turn is based on the IITM model proposed
in [34,40]. We provide a simplified and high level overview only as the details of this model are not important
to follow the rest of the paper. In the IITM model, notions of universal composability are defined based on
a general computational model. The model also comes with general composition theorems.

Before we recall the IITM model, we first briefly recall the general idea behind universal composability.

The General Idea Behind Universal Composability. In universal composability models, one considers
real and ideal protocols. An ideal protocol, also called ideal functionality, specifies the desired behavior of
a protocol, and in particular, its intended security properties. The real protocol, which is the protocol one
would like to analyze, is supposed to realize the ideal protocol, i.e., it should be at least as secure as the ideal
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protocol. More specifically, for every adversary on the real protocol, called the real adversary, there should
exist an adversary on the ideal protocol, the ideal adversary (or simulator), such that no environment can
distinguish the real from the ideal setting. Now, since, by definition, there exists no successful attack on the
ideal protocol, attacks on the real protocol cannot be successful either.

The General Computational Model. The general computational model of the IITM model is defined
in terms of systems of interactive Turing machines. An interactive Turing machine (machine, for short) is
a probabilistic polynomial-time Turing machine with named bidirectional tapes. The names determine how
different machines are connected in a system of machines.

A system S of IITMs is of the form S = M1 | · · · |Mk | !M ′1 | · · · | !M ′k′ where the Mi and M ′j are
machines. The operator ‘ !’ indicates that in a run of a system an unbounded number of (fresh) copies of a
machine may be generated; for machines without this operator there is at most one instance of this machine
in every run of the system. Systems in which multiple copies of machines may be generated are often needed,
e.g., for multi-party protocols or for systems describing the concurrent execution of multiple instances of a
protocol. In a run of a system S, at any time only one machine is active and all other machines wait for
new input. A (copy of a) machine M can trigger another (copy of a) machine M ′ by sending a message
on a tape that connects both machines. Identifiers, e.g., session and/or party identifiers, contained in the
message can be used to address a specific copy of M ′.1 If a new identifier is used, a fresh copy of M ′ will be
generated (if M ′ is prefixed with ‘ !’). The first machine to be triggered in a run of a system is the so-called
master machine. This machine is also triggered if a machine does not produce output. In this paper, the
environment (see below) will always play the role of the master machine. A run stops if the master machine
does not produce output or a machine outputs a message on a special tape named decision. Such a message
is considered to be the overall output of the system.

Two systems P and Q are called indistinguishable (P ≡ Q) if the difference between the probability
that P outputs 1 (on the decision tape) and the probability that Q outputs 1 is negligible in the security
parameter η.

Types of Systems. We need the following terminology. For a system S, the tapes of machines in S that
do not have a matching tape (belonging to another machine in S) are called external. These tapes are
grouped into I/O and network tapes. We consider three different types of systems, modeling i) real and
ideal protocols/functionalities, ii) adversaries and simulators, and iii) environments: Protocol systems and
environmental systems are systems which have an I/O and network interface, i.e., they may have I/O and
network tapes. Adversarial systems only have a network interface. Environmental systems may contain a
master machine and may produce output on the decision tape.

An environmental system must be universally bounded, i.e., the runtime of an environmental system must
be bounded by a polynomial (in the security parameter) even when running with arbitrary systems. Protocol
systems are required to be environmentally bounded, i.e., when combined with an environmental system, the
overall system must run in polynomial time, except for a negligle set of runs. Adversarial systems (for some
protocol system) are required to be such that the combination of an adversarial system and a protocol system
is environmentally bounded.

Environmental systems and adversarial systems are called responsive if they answer so-called restricting
messages on the network immediately. Restricting messages are of the form (Respond, id ,m) where id and m
are arbitrary bit strings. When a responsive environment/adversary receives such a message from a system
Q on some network tape t, it has to ensure that the next message that Q receives is of the form (id ,m′),
for some bit string m′, and that this message is received on tape t (except for a negligible set of runs).
In this sense, responsive environments/adversaries have to respond immediately to restricting messages,
i.e., if an environment wants to continue its interaction with Q it first has to send the expected response
m′. Restricting messages are useful for exchanging purely modeling related information with the adversary
without letting the adversary interfere with the protocol in-between. For example, one can use a restricting
message to ask the adversary whether he wants to corrupt a new protocol instance. Note that such a request
does not actually exist in reality and thus no real adversary can abuse it to disrupt the protocol execution.

1The IITM model contains a general addressing mechanisms. In this paper, we use a specific instantiation of this mechanism
as will be clear from the subsequent sections.
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Consequently, in a security model, the adversary should also not have this ability. Restricting messages allow
us enforce this very natural expectation. Overall, restricting messages are a very convenient mechanism that
adds extra expressivity to universal composability models and that allows for a natural modeling when
adversaries and protocols have to exchange meta information (see [14] for an in depth discussion). In the
rest of the paper, we always assume that environmental and adversarial systems are responsive.

Notions of Simulation-Based Security. We can now define strong simulatability; other equivalent
security notions, such as (dummy) UC, can be defined in a similar way.

Definition 1. Let P and F be protocol systems with the same I/O interface, the real and the ideal protocol,
respectively. Then, P realizes F (P ≤R F) if there exists an adversarial system S (a simulator or an ideal
adversary) such that the systems P and S |F have the same external interface and for all environmental
systems E, connecting only to the external interface of P (and hence, S |F), it holds true that E | P ≡
E | S |F .2

Composition Theorems. The IITM model provides several composition theorems. One theorem (see
Theorem 1 below) handles concurrent composition of a fixed number of protocol systems. Other theorems
guarantee secure composition of an unbounded number of copies of a protocol system.

Theorem 1. Let P1,P2,F1,F2 be protocol systems such that P1 and P2 as well as F1 and F2 only connect
via their I/O interfaces with each other and Pi ≤R Fi, for i ∈ {1, 2}. Then, P1 | P2 ≤R F1 | F2.

Other composition theorems provided by the IITM model can be found in [34,38]. These theorems allow
one to analyze a single session of a protocol in isolation in order to conclude security of an unbounded number
of sessions. All composition theorems of the IITM can be combined and applied iteratively to construct more
and more complex systems.

3 Ideal Functionality for Cryptographic Primitives

We now present our ideal functionality Fcrypto for cryptographic primitives. As already mentioned in the
introduction, a higher-level protocol P can use Fcrypto for its cryptographic operations. Then, in order to
show that P |Fcrypto ≤R F , i.e., that P (using Fcrypto for its cryptographic operations) realizes some ideal
functionality F (e.g., a key exchange functionality), one can argue on a purely information theoretic level,
without resorting to reductions or hybrid arguments (at least for those primitives supported by Fcrypto). For
example, Fcrypto guarantees that only the (honest) owner of a Diffie-Hellman key can get access to keys that
are derived from it, and only parties with access to these keys can, e.g., create a MAC with such keys. In
all other cryptographic approaches for security protocols, one has to reduce these properties to the security
assumptions for Diffie-Hellman key exchange, key derivation, and MAC schemes. Once P |Fcrypto ≤R F has
been proven, using the composition theorems of the IITM model one can replace Fcrypto with its realization
Pcrypto (see Section 4) by which the ideal operations provided by Fcrypto are replaced by the real counterparts.

As mentioned in the introduction, in [39] a first version of Fcrypto was proposed, which, however, does
not support DH key exchange, a fundamental primitive for most real-world key exchange protocols. We also
improve Fcrypto in various other ways in order to overcome shortcomings of the previous version, as discussed
below. Our extension of Fcrypto, in particular the treatment of DH key exchange, is non-trivial and needs
care in order for it to be widely usable and realizable. In the following, we first recall the version of Fcrypto

from [39] and then present our extension.

3.1 The ideal functionality Fcrypto

On a high level, the ideal functionality Fcrypto allows its users to perform the following operations in an
ideal way: i) generate symmetric keys, including pre-shared keys, ii) generate public/private keys, iii) derive
symmetric keys from other symmetric keys, iv) encrypt and decrypt messages and ciphertexts, respectively

2Note that strong simulatability omits the adversary in the real world as he can be subsumed by the environment.
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(public-key encryption and both unauthenticated and authenticated symmetric encryption are supported),
v) compute and verify MACs and digital signatures, and vi) generate fresh nonces. All symmetric and public
keys can be part of plaintexts to be encrypted under other symmetric and public keys. Derived keys can be
used just as freshly generated symmetric keys.

Formally, the ideal functionality Fcrypto is a machine with n I/O tapes, representing different roles in a
higher level protocol, and a network tape for communicating with the adversary. In runs of a system which
contains Fcrypto there will always be one instance of Fcrypto only. This instance handles all requests.

A user of Fcrypto is identified by a tuple (pid , lsid , r), where r is the role/tape which connects the user
to Fcrypto, pid is a party identifier (PID), and lsid is a local session identifier (local SID). The local session
ID is chosen and managed by higher level protocols and not further interpreted by Fcrypto. For example, it
could be some session identifier that was established during a protocol run. All messages on I/O tapes are
prefixed with (pid , lsid ) so Fcrypto can identify the user who sent/receives a message.

Users of Fcrypto, and its realization, do not get their hands on the actual (private) keys but rather get
pointers to such keys which can then be used to perform several cryptographic operations (see below).

The adversary can statically corrupt asymmetric (signing/encryption) keys,3 i.e., he can corrupt them
before they are used for the first time but not afterwards. The corruption status of asymmetric keys
determines whether operations with these keys are performed ideally or without ideal security guarantees.
Similarly, the adversary can statically corrupt symmetric keys when they are generated or, in the case of
pre-shared keys, when they are retrieved for the first time. In the case of symmetric keys, the functionality
keeps track of whether a key might be known to the adversary/environment (e.g., because it was explicitly
corrupted or because it was encrypted with a corrupted key). For this purpose, Fcrypto maintains a set
Keys of all symmetric keys and a set Keysknown ⊆ Keys which contains all keys that might be known to the
environment. The known/unknown status of symmetric keys is then used to determine whether symmetric
operations are performed ideally or without ideal security guarantees. In the following, we will call a key
known if it is in Keysknown and unknown if it is in Keys\Keysknown.

Symmetric keys in Fcrypto are equipped with a key type that determines their usage. That is, a key
k is of the form (t, k′) where k′ is the actual bit string used in algorithms while t is the key type. Keys
of type pre-key are used to derive other keys, keys of type unauthenc-key and authenc-key are used for
(un)authenticated encryption and decryption, and keys of type mac-key are used to create and verify MACs.
This models the practice of using keys for a single purpose only.

The ideal functionality Fcrypto is parameterized with a leakage algorithm L that is used to determine
the information that is leaked when a plaintext x is encrypted ideally. For example L(x, 1η) = 1|x| can be
used to leak exactly the length of x. We call such a leakage algorithm length preserving. The adversary
is supposed to provide algorithms for authenticated and unauthenticated symmetric encryption, MACing,
public key encryption, and signing. The adversary also provides the actual bit strings of all keys generated by
Fcrypto. The functionality Fcrypto ensures only that a new unknown symmetric key k is fresh (i.e., k 6∈ Keys)
and prevents key guessing of unknown keys when receiving a new known key k (i.e., k 6∈ Keys\Keysknown).
Note that, as the adversary provides the keys, he knows the actual value of symmetric keys that are marked
as unknown in Fcrypto. This is not a contradiction as the known/unknown status determines only whether
operations are performed ideally; of course, in the realization a key that is marked unknown will indeed be
unknown to the environment.

The functionality Fcrypto offers the following list of commands to a user (pid , lsid , r) (see [39] for a detailed
definition of every command):

- Generating fresh, symmetric keys [(New, t)]. A user can generate a new symmetric key of type t.

- Establishing pre-shared keys [(GetPSK, t,name)]. A user can ask for a pointer to a pre-shared sym-
metric key of type t, which can be used for modeling setup assumptions. If another user creates a key
with the same input name, then this means that the two users share the created key.

3In our extension of Fcrypto, corruption of asymmetric signing keys is dynamic. That is, the adversary can corrupt signing
keys at any point in time.
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- Store [(Store, t, k)]. A user can manually store a (known) key k of type t in Fcrypto.

- Retrieve [(Retrieve, ptr)]. A user can retrieve the key k a pointer ptr refers to, by which k is marked
as known.

- Equality test [(Equal?, ptr , ptr ′)]. A user can test whether two of her pointers refer to the same key
(same type and same bit string).

- Public key requests [(GetPubKeyPKE, p′) or (GetPub−KeySig, p′)]. A user can ask for the public en-
cryption/verification key, if any, of another party p′.

- Key derivation [(Derive, ptr , t′, s)]. A user can derive a new symmetric key of type t′ from salt s and
key k of type pre-key to which ptr points.

- Encryption/decryption under symmetric keys [(Enc, ptr , x) and (Dec, ptr , y)]. A user can encrypt
a plaintext x and decrypt a ciphertext y using a key k of type t ∈ {unauthenc-key, authenc-key} to which
ptr points. The plaintext x may contain (pointers to) symmetric keys. As the result of the decryption of
y, a user may learn symmetric keys. The exact operations depend, among others, on whether or not k is
known. For example, if k is unkown, encryption is ideal, i.e., a ciphertext is produced which depends on
L(x, 1η) only.

- Encryption/Decryption under public keys [(PKEnc, p′, pk , x) and (PKDec, y)]. Asymmetric encryp-
tion/decryption works just as symmetric encryption/decryption, with the main difference being that the
encryption command takes as input the PID p′ and the public key pk of the intended recipient.

- Creating and verifying MACs [(Mac, ptr , x) and (MacVerify, ptr , x, σ)]. A user can create a MAC for
or verify a MAC σ on a message x with key k of type mac-key to which ptr points.

- Creating and verifying signatures [(Sign, x) and (SigVerify, p′, pk , x, σ)]. A user can create or verify
a signature σ on a message x using his own private signing key or the public verification key pk of party
p′, respectively.

- Generating fresh nonces [(NewNonce)]. A user can ask for a fresh nonce that does not collide with any
previously generated nonces.

- Corruption status request. A user can ask whether one of her symmetric keys, or a public key of some
party p′ was corrupted by the adversary. This is used for modeling corruption: the environment can make
sure that the corruption status of a key is the same in the real and ideal worlds.

3.2 Diffie-Hellman KE in Fcrypto

We now present our extension to Fcrypto that supports Diffie-Hellman key exchange. On a high level, the
extension lets users generate secret Diffie-Hellman exponents (e) and the corresponding public key shares
(ge), called DH shares in what follows. Exponents can be combined with arbitrary DH shares, not necessarily
generated by Fcrypto, to produce a new symmetric key. If an exponent is combined with a DH share created
by Fcrypto, then the resulting key will only be accessible by the owners of the two exponents that were used
to create the key. The resulting key can then be used to derive other keys, e.g., for encryption or MACing.
Whether or not this key derivation is performed ideally depends on several factors, such as whether any of
the exponents is known to the environment/adversary (see below). Furthermore, Fcrypto guarantees that
new exponents/DH shares are fresh, i.e., no other user has access to the same exponent and no keys were
already created from the share.

Before we describe our extension in detail, we first have to explain how we use restricting messages (cf.
Section 2). There are many situations where Fcrypto needs to retrieve some information from the adversary,
such as cryptographic algorithms or values of fresh keys. The adversary might use such requests to interfere
with the run of Fcrypto in an unintended way by, e.g., never responding to some of the requests. Importantly,
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such attacks do not relate to anything in reality: Fcrypto models local computations that always succeed in
reality. Our extension of Fcrypto leverages the power of restricting messages to guarantee that an adversary
cannot interfere with local computations, while still being able to provide cryptographic values to Fcrypto.
In the following, for brevity, we will say that a message m is restricting when we mean that the message
(Respond,⊥,m) is sent on the network. Recall from Section 2 that an environment has to respond to such
a message immediately. We will implicitly assume that Fcrypto repeats these messages until an expected
response is received (e.g., when the response needs to be a value within a certain range).

We can now detail our extension. Formally, we parameterize Fcrypto with a GroupGen(1η) algorithm that
is used to generate the Diffie-Hellman group. This algorithm takes as input the current security parameter
η, runs in polynomial time in η (except with negligible probability), and outputs a description (G,n, g) of a
cyclic group G where |G| = n and g is a generator of G. We require that it is possible in polynomial time
(in η) to check whether a bit string encodes a group member of such a group, and that the group operation
is efficiently computable.

Diffie-Hellman exponents are modeled analogously to keys in Fcrypto. That is, a user gets pointers to her
exponents, never the actual exponent, and can use these pointers to perform Diffie-Hellman key exchange.
However, users do get the DH share ge belonging to an exponent e. The actual values of exponents are
stored in two sets, Exp and Expknown ⊆ Exp. An exponent in Expknown is called known, while an exponent
in Exp\Expknown is called unknown. The known/unknown status of exponents is used to determine whether
keys created from them are considered known/unknown. Just as for keys, the environment provides the
actual values of exponents, even if they are considered unknown. Of course, an exponent that is marked
unknown in Fcrypto will in fact be unknown to the environment in the realization Pcrypto. Fcrypto prevents
exponent collisions (i.e., if a new unknown exponent e is created, then e 6∈ Exp) and exponent guessing (i.e.,
if a new known exponent e is created, then e 6∈ Exp\Expknown). Additionally, Fcrypto also maintains a set
BlockedElements of blocked DH shares that contains group elements h that may not be generated when a
new exponent e is created, i.e., ge 6= h. In particular, this set contains all DH shares that have been used
to create a Diffie-Hellman key (see Section 3.3 for an explanation).

We add another symmetric key type dh-key to Fcrypto which represents Diffie-Hellman keys. Keys of
this type may only be generated via a new GenDHKey command (see below) or be inserted into Fcrypto via
the existing Store command; they may not be created by any other commands. These keys can be used to
derive new symmetric keys of arbitrary types, but they may not be used for encryption or creating MACs
directly. Furthermore, just as all other key types, they can be encrypted as part of a plaintext.

Upon the first activation of Fcrypto, we now let Fcrypto execute GroupGen(1η) and store the generated
group (G,n, g). Then, Fcrypto sends both the group (G,n, g) and a request for cryptographic algorithms
to the adversary via a restricting message. When this initialization is complete, Fcrypto either continues to
process the original message that activated it (if the first message was received on an I/O tape) or returns
control to the adversary (if the first message was received on a network tape).

Our extension of Fcrypto provides the following additional commands to a user (pid , lsid , r) on the I/O
interface:

- Get generated group [(GetDHGroup)]. The user can request the group (G,n, g) that was generated by
Fcrypto during initialization. Fcrypto responds by sending (DHGroup, (G,n, g)) to the user.

- Generate a fresh exponent [(GenExp)]. The user can request a pointer to a new unknown exponent
e. This request is forwarded to the adversary via a restricting message, who is supposed to provide an
exponent e ∈ {1, . . . , n}. The functionality Fcrypto then ensures that this exponent e is fresh, i.e., it
does not collide with existing exponents (e 6∈ Exp), and that ge is not blocked from being generated (i.e.,
ge 6∈ BlockedElements). If the freshness check fails, Fcrypto asks the adversary again for another e until
the check succeeds. Then, Fcrypto adds e to Exp, stores a pointer ptr for user (pid , lsid , r) pointing to e,
and returns (ExpPointer, ptr , ge) to the user.

- Mark group element as used [(BlockGroupElement, h)]. The user can instruct Fcrypto to manually
block a group element h from being generated during a GenExp request. This is useful for higher level
protocols to ensure that, if they receive some DH share h, no future GenExp request will output the same
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DH share even if h was not originally created by Fcrypto. Upon receiving this command, Fcrypto checks
that h is a valid group element and, if so, adds it to BlockedElements. In any case, Fcrypto returns OK. See
Section 3.3 for a discussion of this command.

- Retrieve an exponent [(RetrieveExp, ptr)]. The user can retrieve the exponent e a pointer ptr refers
to. In this case, Fcrypto adds e to Expknown and outputs (Exponent, e) to the user.

- Store an exponent [(StoreExp, e)]. The user can also insert a new (known) exponent e ∈ {1, . . . , n}
into Fcrypto. Upon receiving this request, Fcrypto prevents guessing of unknown exponents by ensuring
that e 6∈ Exp\Expknown. If the check succeeds, e is added to Expknown, a new pointer ptr for this exponent
is created, and (ExpPointer, ptr) is returned to the user. If the check fails, (ExpPointer,⊥) is returned
to the user.

- Generate a new Diffie-Hellman key [(GenDHKey, ptr , h)]. A user can ask Fcrypto to create a new key
of type dh-key from some group element h and the exponent e to which ptr points. When receiving this
request, Fcrypto first ensures that h actually is a group element and returns (Pointer,⊥) to the user
otherwise. If the check succeeds, Fcrypto adds h to the set BlockedElements to ensure that h will not be
output by future GenExp requests (cf. Section 3.3 for a discussion). Furthermore, if h = ge, then e is
marked as known, i.e., is added to the set Expknown (cf. Section 3.3). A new pointer ptr ′ to the DH key
is created as follows:

First, Fcrypto checks whether a key has already been generated by the group elements ge and h. If so,
then the pointer ptr ′ is set to this key. Otherwise, a new key is generated as follows.

If h belongs to an unknown exponent (i.e., there exists d ∈ Exp\Expknown such that h = gd) and e is
marked unknown, then the adversary is asked via a restricting message to provide a fresh unknown key k ∈
G of type dh-key. Formally, this is done by sending the restricting message (ProvideDHKey, unknown, e, d)
on the network.4 The functionality Fcrypto ensures that k is fresh, i.e., k 6∈ Keys (and keeps asking for a
new k if this is not the case), and then sets the pointer ptr ′ to k.

If the checks regarding the exponents fail, i.e., there is no d ∈ Exp\Expknown such that h = gd or e is
marked known, then the adversary is asked via a restricting message to provide a known key k ∈ G of
type dh-key. Formally, this is done by sending the restricting message (ProvideDHKey, known, e, h) on the
network. The functionality Fcrypto prevents key-guessing of unknown keys, i.e., if k ∈ Keys\Keysknown, the
functionality asks for another key. The pointer ptr ′ is then set to k. Furthermore, if there is no d ∈ Exp
such that h = gd, then the exponent e is marked known by adding it to Expknown even if it was unknown
before (we explain this in the remarks below).

In any case, Fcrypto records that ge and h have been used to create a key k and returns (Pointer, ptr ′)
to the user.

In addition to these commands, we improve the overall expressivity and usability of Fcrypto as follows:

- In [39], the adversary was allowed to corrupt a fresh key generated via the New command. As this command
models a local computation performed by honest parties, we remove this ability. Keys generated by this
command are now always uncorrupted and thus unknown.

- Every time Fcrypto adds a symmetric key k to Keysknown, it sends a restricting message (AddedKnownKey, k)
to the adversary and waits for any response on the network before continuing. This makes explicit that
Fcrypto does not provide any guarantees on the secrecy of actual values or the status of keys. As the
adversary is already asked to provide unknown keys, there is no need to also leak them. While this change
is not necessary for realizing Fcrypto (see Section 4), it reduces the burden imposed on simulators when
using Fcrypto as part of a higher-level protocol.

4We note that it is important to tell the adversary the known/unknown status for our realization as this determines whether

our simulator responds with ged or gc, c
$← {1, . . . , n}. Also note that the adversary knows the actual values of e and d anyway,

so there is no security loss by directly sending these values on the network.
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- As mentioned in Section 3.1, the adversary may statically corrupt private keys. We now allow the adversary
to corrupt signing keys adaptively, i.e., these keys can be corrupted by the adversary at any time.

- As mentioned above, our extension uses the power of restricting messages to guarantee that the environ-
ment/adversary cannot interfere with a higher level protocol while using Fcrypto (for DH related and other
operations) by defining all network messages to be restricting if they are sent while some operation is in
progress.

3.3 Remarks

The ideal functionality Fcrypto marks DH keys as unknown only if they were generated from two unknown
exponents. In particular, if an unknown exponent e is used with a group element h which was not created
by Fcrypto, then the resulting key is marked known and hence no security guarantees are given for this
key. Otherwise, Fcrypto would not be realizable: In a realization of Fcrypto, an environment might know the
exponent d such that h = gd, in which case it is trivial to compute the DH key ged. Hence, if Fcrypto used
such a key to derive other keys ideally, an environment could easily distinguish Fcrypto and its realization
Pcrypto.

We want to use the Decisional Diffie-Hellman (DDH) assumption for realizing Fcrypto. However, Fcrypto

provides operations that are not covered by the DDH experiment. To be more precise, the environment
can use Fcrypto to compute (ge)e=ge

2

and he (where e is a secret exponent stored in Fcrypto and h is an
arbitrary group element not generated by Fcrypto). By the DDH assumption, we cannot guarantee that
the environment does not learn anything about e itself or keys created with e in these cases. Indeed, if
an adversary is able to calculate the function fa(h)→ha or the function f ′(ge)→g(e2) (where a is one of
the exponents from the DDH experiment and h, ge are arbitrary group elements) he can break the DDH
assumption (see, e.g., [1, 42] for details). Thus, we have to consider e to be known in these cases.

The need for the BlockedElements set and the BlockGroupElement command might seem surprising at
first: Typically, cryptographic libraries in real world protocols do not keep track of “seen” DH shares and then
block them from being generated. However, this set and the corresponding command are necessary to lift an
important property from the realization Pcrypto to the case of the idealization. In the realization, it happens
with negligible probability only that ge for some fresh exponent e equals some DH share h which might already
have been used to create a key. However, Fcrypto allows the adversary to choose the actual value of e, i.e.,
he might choose the exponent such that ge = h. To get the same guarantees as or even stronger guarantees
than in the realization, Fcrypto uses the set BlockedElements to record all DH shares it has seen so far. With
this set Fcrypto makes sure that when creating a new exponent the corresponding DH share is “fresh”, i.e.,
does not belong to BlockedElements. The command BlockGroupElement allows higher level protocols to
notify Fcrypto about DH shares they obtain such that Fcrypto can add these shares to BlockedElements. For
example, when a responder in a DH-based key exchange protocol receives a DH share h, she would first
add this share to Fcrypto using the command BlockGroupElement and then create her own share. By this,
Fcrypto can make sure that the responder’s share is indeed fresh, and in particular, different from h. The
responder can then use the GenDHKey command to derive a fresh DH key from h and her own DH share. We
note that the BlockedElements set does not exist in Pcrypto while the BlockGroupElement command in fact
does nothing. Thus, after replacing Fcrypto with Pcrypto, every call of the BlockGroupElement command
can be omitted entirely, yielding a natural protocol implementation.

While we opted for a definition of Fcrypto with a single DH key type for simplicity, it is trivial to extend
Fcrypto to multiple DH key types to model two or more groups that are used simultaneously. Such an
extension uses one set Exp and Expknown and separate pointers to exponents for every DH key type. All
results presented in the following carry over to this setting.

4 Realization

In this section, we construct a realization Pcrypto of Fcrypto. This realization, which we describe in Section 4.1
in detail, implements all operations of Fcrypto via common cryptographic schemes in a natural and expected
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way. In Section 4.2, we then prove that Pcrypto indeed realizes Fcrypto under standard cryptographic assump-
tions. This proof is quite involved and includes several reductions and hybrid arguments, but due to the
composition theorems this is a once and for all effort. As mentioned in the introduction, protocol designers
can use Fcrypto for their security analysis and then replace it with Pcrypto without re-doing any proofs.

4.1 Formal Definition of Pcrypto

Formally, the machine Pcrypto has the same network and I/O interface as Fcrypto. It is parameterized with
three schemes Σauthenc,Σunauthenc,Σpub for (un-)authenticated symmetric and public key encryption, a MAC
scheme ΣMAC, an algorithm GroupGen(η) with the same properties as for Fcrypto, and two families of pseudo-
random functions (PRF) F = {Fη}η∈N and F ′ = {F ′η}η∈N that take as input a key and a salt and output a
key (see Appendix A for formal definitions of these primitives). When activated for the first time by some
message m, Pcrypto initializes itself by executing GroupGen and storing the result before processing m. Just
as Fcrypto, the machine Pcrypto keeps track of symmetric key types and uses them to decide which primitives
may be excuted with a given key (the family F is used for deriving keys from keys of type pre-key, while F ′

is used for key derivation from keys of type dh-key). The realization keeps track of the corruption status of
keys in order to answer corruption status requests from the environment, but its behavior is independent of
the corruption status otherwise. In particular, it does not maintain the sets Keys,Keysknown,Exp,Expknown

and does not include any checks on freshness or key/exponent collisions.
We now give a detailed description of how each of the DH related commands is implemented in Pcrypto;

see [39] for the remaining commands.

- Get generated group [(GetDHGroup)]. Outputs the group description (G,n, g) that was generated
during the initialization of Pcrypto.

- Generate a fresh exponent [(GenExp)]. Pcrypto chooses e
$← {1, . . . , n}, creates a pointer to e, and

outputs (ptr , ge) to the user.

- Mark group element as used [(BlockGroupElement, h)]. Pcrypto returns OK.

- Retrieve an exponent [(RetrieveExp, ptr)]. Pcrypto outputs the exponent e to which ptr points.

- Store an exponent [(StoreExp, e)]. Pcrypto stores e ∈ {1, . . . , n}, creates a new pointer ptr for this
exponent, and returns ptr to the user.

- Generate a new Diffie-Hellman key [(GenDHKey, ptr , h)]. Pcrypto ensures that h ∈ G and returns
(Pointer,⊥) to the user if this is not the case. Then, Pcrypto calculates the key k := he where e is the
exponent to which ptr points to. A new pointer ptr ′ pointing to k is created and returned to the user.

The realization Pcrypto also adopts all usability improvements from Fcrypto described at the end of Section 3.2.

4.2 Showing that Pcrypto realizes Fcrypto

In this section, we state and prove our core theorem, namely, that Pcrypto realizes Fcrypto. We want to
use standard cryptographic assumptions for this, but these assumptions provide security only in a certain
context. For example, standard assumptions for symmetric encryption do not provide any security guarantees
in the presence of key cycles where a key is (indirectly) encrypted by itself. This is why reasonable higher
level protocols generally avoid situations that are not covered by cryptographic assumptions; in contrast,
environments in universal composability models are free to use Pcrypto and Fcrypto in any way they want and,
in particular, they may create settings where the assumptions fail. In order to capture the expected use of
Pcrypto/Fcrypto as a subroutine of a reasonable higher level protocol, we thus slightly restrict environments
such that they expose certain natural properties of higher level protocols. We note that this approach is
established in the literature (see, e.g., [2]). The next paragraphs describe and discuss our restriction in more
detail.
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Recall that we want to use the DDH assumption in order to prove Pcrypto ≤R Fcrypto. The general idea
is that the simulator in the proof of this statement will provide gab when asked for a known DH key, and

gc (for c
$← {1, . . . , n}) in case of an unknown DH key. However, this leads to the so-called commitment

problem: Once the simulator has committed to gc for an unknown key, neither a nor b may become known;
otherwise the environment could calculate gab on its own and distinguish the real from the ideal world. We
note that the commitment problem is not specific to our modeling of DH keys, but rather is a general issue
in universal composability models (see, e.g., [16]). To adress this problem, we restrict the environment (the
higher level protocol that uses Fcrypto) to not cause the commitment problem. That is, once an unknown
exponent e has been used to create an unknown DH key gc, the environment may no longer manually retrieve
e from Fcrypto, create a DH key from e and the corresponding DH share ge (yielding ge

2

), or use e with a
DH share h where Fcrypto does not know the secret exponent of h. Observe, however, that most real-world
protocols meant to achieve perfect forward secrecy fulfill this restriction: In such protocols, an exponent e is
generated, used exactly once to generate a DH key, and then deleted from memory. Hence, after a key was
created, the protocol will never access the exponent in any way, and thus, also never cause the commitment
problem. For example, this holds true for all protocols analyzed in Section 6. It might be possible to relax
these restrictions, enabling an analysis of protocols that re-use the same exponent, by using the non-standard
PRF-ODH assumption5 [28,32] instead of the DDH assumption. We want to explore a formulation of Fcrypto

based on this assumption in future work.
A similar commitment problem exists for encryption and key derivation. However, again most real-world

protocols do not cause this problem (see also [39]). This leads us to the following formal restriction of
environments:

We say that an environment E does not cause the commitment problem (is non-committing), if the
following happens with negligible probability only: i) in a run of E |Fcrypto, after an unknown key k has
been used to encrypt a message or derive a new key, k becomes known later on in the run, i.e., is marked
known by Fcrypto, and ii) in a run of E |Fcrypto, after an unknown exponent e or the corresponding group
element ge has been used to create an unknown DH key k, e becomes known later on in the run, i.e., is
marked known by Fcrypto.

Besides the commitment problem, we also have to take care of key cycles. As mentioned, standard security
definitions such as IND-CCA2, which we want to use for our realization, do not provide any security in this
case. Indeed, security in the presence of key cycles is usually not required: real-world protocols generally do
not encrypt keys anymore once these keys have been used for the first time. Obviously, such protocols also
do not produce key cycles. This observation leads to the following natural restriction of environments:

An environment E is called used-order respecting if the following happens with negligible probability only:
in a run of E |Fcrypto an unknown key k (i.e., k is marked unknown in Fcrypto) which has been used for
encryption or key derivation at some point is encrypted itself by an unknown key k′ used for the first time
later than k.

We call an environment well-behaved if it is used-order respecting and does not cause the commitment
problem. For such well-behaved environments, we can show that Pcrypto ≤R Fcrypto if all cryptographic
primitives fulfill the standard cryptographic assumptions. As explained above, many real world protocols
fulfill the requirements of well-behaved environments, and hence, if they are analyzed using Fcrypto, one can
replace Fcrypto with its realization afterwards.

In the following theorem, formally, instead of considering a specific set of environments, we use a machine
F∗ to manually enforce the properties of well-behaved environments for all environments. The machine F∗
is plugged between the environment and the I/O interface of Pcrypto/Fcrypto and forwards all messages while
checking that the conditions of well-behaved environments are fulfilled.6 If at some point one of the conditions
is violated, instead of forwarding the current message, F∗ stops and blocks all future communication. We
obtain the following theorem:

5Informally, the PRF-ODH assumption states that, given a Diffie-Hellman key gab which is used to key a pseudo random
function f(gab, s), no adversary that knows ga and gb can distinguish a challenge output of the PRF from random, even when
given access to an oracle O(h, s) := f((h)a, s) (where h is a group element and s is a salt).

6Note that this can be done by observing the I/O traffic and asking Fcrypto about the corruption status of keys.
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Theorem 2. Let Σunauth-enc, Σauth-enc, Σpub be encryption schemes, Σmac be a MAC scheme, Σsig be a
signature scheme, GroupGen be an algorithm as above, F be a family of pseudo-random functions, and F ′

be a family of pseudo-random functions for GroupGen. Let Pcrypto be parameterized with these algorithms.
Let Fcrypto be parameterized with GroupGen and a leakage algorithm L which leaks exactly the length of a
message. Then,

F∗ | Pcrypto ≤R F∗ | Fcrypto

if Σunauth-enc and Σpub are IND-CCA2 secure, Σauth-enc is IND-CPA and INT-CTXT secure, Σmac and Σsig

are UF-CMA secure, GroupGen always outputs groups with n ≥ 2 and such that the DDH assumption holds
true for GroupGen.7

As mentioned, the proof of this theorem is quite involved. It consists of a series of hybrid systems where
we replace parts of Pcrypto with the ideal versions used in Fcrypto and then show that no environment can
distinguish these replacements. Each of these steps involves several reductions and hybrid arguments itself.
In particular, some of these reductions are intertwined with each other, as, e.g., the security of symmetric
encryption and key derivation rely on each other. Here we only provide a proof sketch, the full proof can be
found in Appendix B.

Proof (Sketch). As mentioned before, one of the key ideas for the definition of the simulator S is to provide
gc for unknown Diffie-Hellman keys, where c is choosen uniformly at random from {1, . . . , n}, and gab for
known ones. The proof itself consists of series of hybrid systems where we replace parts of the realization with
the version used in the ideal protocol and then show that no environment can distinguish this replacement
with more than a negligible probability.

In the first step, one defines a hybrid system P1
crypto where all asymmetric operations and nonce generation

is handled as in Fcrypto while all other operations are performed as in Pcrypto. Because we did not modify any
of these operations, the original proof still holds, which reduced this step to the security of the asymmetric
operations.

Next, one defines a hybrid system P2
crypto where also exponent handling is replaced with the ideal version.

In particular, P2
crypto prevents exponent guessing and collisions. Any distinguishing environment on this

system can be reduced to the DDH assumption: If the environment manages to guess an exponent, or
an unknown exponent is generated that is not fresh, then this can be used by an attacker on the DDH
assumption to calculate the secret exponent a from the experiment. We note that this reduction requires
a lot of attention to details and is more involved than usual reductions to the DDH assumption. This is
because P2

crypto can be used by the environment to perform several operations with a and ga that are not
available in the DDH experiment; an adversary must be able to simulate all of these operations without
actually knowing a.

In the the third hybrid system P3
crypto one replaces real with ideal Diffie-Hellman key generation, however,

without preventing key collisions or key guessing. That is, the simulator provides the Diffie-Hellman keys
as described above. This step requires a hybrid argument itself, as we have to replace a polynomial number
of unknown keys in the order of their creation. We can then reduce the distinguishing advantage of an
environment for the r-th and r + 1-th hybrid system to the DDH assumption. Importantly, we have to
establish a single negligible bound for the distinguishing advantage that is independent of r, as the sum of
polynomially many different negligible functions is not necessarily negligible. Just as in the previous step,
the reduction in this step requires a lot of care for details as there are several operations in the hybrid systems
that an adversary on the DDH assumption has to simulate without knowing the secret exponents a and b of
the DDH experiment.

In the fourth hybrid system P4
crypto, symmetric encryption and key derivation are replaced with their

ideal versions, and key guessing and key collision are prevented. Again, this step requires a hybrid argument
which is quite involved as we have to consider symmetric encryption and key derivation simultaneously:

7See Appendix A for the formal definitions of these security notions. We have to require n ≥ 2 because the trivial group
which contains only the neutral element fulfills the DDH assumption, but is not suitable for realizing Fcrypto. In particular,
collisions of randomly chosen exponents do not happen with a negligible probability if there is only one element.
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All symmetric keys can be encrypted, thus the security of symmetric keys depends on the security of the
encryption scheme. However, Diffie-Hellman keys and key derivation keys can be used to create new sym-
metric keys, i.e., the security of the encryption scheme in turn depends on the security of the key derivation
schemes. In the hybrid argument, we track the order in which unknown keys are used for the first time.
The r-th hybrid system performs operations with the first r unknown keys ideally, and all other operations
as in the realization. One can then reduce the distinguishing advantage of an environment for the r-th and
r + 1-th hybrid system to the security games of the encryption and key derivation schemes. Again, it is
important to establish a negligible bound for the distinguishing advantage that is independent of r.

In the final step, we have to replace MACs with their ideal versions. As this step is unaffected by our
extension, just as the first step, the original proof still holds, which reduced this step to the security of the
MAC scheme.

5 Ideal Functionalities for Key Exchange with Key Usability

In this section, we present our ideal functionalities for key exchange, one functionality for mutual authentica-
tion, denoted by FMA

key-use, and one for unilateral authentication, FUA
key-use. These functionalities are of general

interest and should be widely applicable. In Section 6, we use them in our case studies. In the following, we
first present FMA

key-use and then describe how FUA
key-use differs.

The functionality FMA
key-use. The ideal functionality FMA

key-use is inspired by an ideal key exchange function-
ality from [38], but has important differences, which among others makes it more widely applicable (see the
comparison at the end of this section). In particular, neither unilateral authentication nor perfect forward
secrecy were considered in [38].

Similar to other exchange functionalities (e.g., [20]), FMA
key-use guarantees that an uncorrupted instance

that outputs a session key is in a session with an instance of its intended communication partner and only
uncorrupted instances from the same session will have access to the session key. However, FMA

key-use (and also

FUA
key-use) has several features that distinguishes it from key exchange functionalities typically considered in

the literature.
First, FMA

key-use never directly outputs session keys to users. Instead it provides a user with a pointer
and allows the user to perform ideal cryptographic operations with it (among others, symmetric encryption,
MACing, deriving new keys from the session key which can then be used further). This is an important
feature as higher level protocols that use FMA

key-use, such as secure channel protocols, can use the session key
still in an ideal way, which simplifies the analysis of higher level protocols and avoids reduction proofs.

Second, unlike most other formulations of key exchange functionalities in the literature, the above feature
also makes it possible to realize FMA

key-use by key exchange protocols that use the session key during the key
exchange. Most key exchange functionalities simply output a session key that was chosen uniformly at
random, and thus, a realization must ensure that the session key is indistinguishable from a random one.
However, this is not the case if the key was used during the actual key exchange, e.g., to encrypt a message,
as then the environment can check whether the key that is output after a successful key exchange can decrypt
said message. In contrast, our functionality does not output the session key but only gives access to idealized
cryptographic operations. As long as a key exchange protocol ensures separate domains of messages that
are, e.g., encrypted with the session key during and after the key establishment phase, it can realize FMA

key-use.
Third, almost all formulations of functionalities (including key exchange functionalities) in the universal

composability literature use so-called pre-established session IDs [38]: users somehow, outside of the protocol,
agree on a (global) unique session ID and then use that session ID to access the same ideal functionality.
As argued in [38], this hinders the faithful analysis of real-world protocols where such global session IDs are
not a priori available; session IDs are often rather implicitly established during the protocol run. In fact, as
illustrated in [38], an insecure key establishment protocol can be transformed into a secure one by assuming
that global session IDs have been established prior to the actual protocol run. Therefore, FMA

key-use does not
rely on pre-established session IDs. Instead, just as Fcrypto, it uses local session IDs that are chosen and
managed by the higher level instances. Local sessions (of an initiator and a responder) are combined by the
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adversary/simulator into a global session sharing one key during the protocol run.
Formally, FMA

key-use is a machine that has two I/O tapes tI and tR (initiator and responder role), one

network tape, and two I/O tapes t′I and t′R that connect to Fcrypto, which is used as a subroutine by FMA
key-use.

FMA
key-use is parameterized with a symmetric key type tkey ∈ {pre-key, unauthenc-key, authenc-key, mac-key}

which determines the type of the keys that are output after a successful key exchange. Similarly to Fcrypto,
FMA

key-use handles all (local) sessions for all users. Messages from/to any I/O tape are expected to be prefixed
with (pid , lsid ) where pid ∈ {0, 1}∗ is a party ID and lsid ∈ {0, 1}∗ is a local session ID managed by the
higher level protocol. Thus, a user participating in a key exchange can be fully identified by (pid , lsid , r),
where r ∈ {I,R} specifies the role of that user (and the tape she is using).

The functionality FMA
key-use maintains a map state : {0, 1}∗ → {⊥, started, inSession, exchangeFinished,

sessionClosed, corrupted}, initially set to ⊥ for every input, which stores the current state for every user
(pid , lsid , r). The functionality also stores the PID of the intended partner of a user (pid , lsid , r) via a
mapping partner : {0, 1}∗ → {0, 1}∗. The functionality provides the following operations to higher level
protocols:

- A user (pid , lsid , r) with state(pid , lsid , r) = ⊥ can start a key exchange by sending m = (InitKE, pid ′,m′),
where pid ′ denotes the party ID of the intended partner and m′ ∈ {0, 1}∗ is an arbitrary bit string
which the realization might use in the key exchange protocol. Upon receiving this message, FMA

key-use

sets state(pid , lsid , r) := started, sets partner(pid , lsid , r) := pid ′, and forwards (m, (pid , lsid , r)) to the
adversary.

- A user (pid , lsid , r) with state(pid , lsid , r) = exchangeFinished can use FMA
key-use to access symmetric

operations of the subroutine Fcrypto. To be more precise, FMA
key-use forwards the commands New, Equal?,

Enc, Dec, Mac, MacVerify, and Derive to Fcrypto on tape t′r, r ∈ {I,R}. Upon receiving a response of
Fcrypto, FMA

key-use forwards this response to the user while internally keeping track of all pointers that the
user has access to.

- A user (pid , lsid , r) with state(pid , lsid , r) = exchangeFinished can close her session in FMA
key-use by

sending CloseSession, by which she loses access to all of her keys. FMA
key-use sets state(pid , lsid , r) :=

sessionClosed, notifies the adversary with a restricting message (CloseSession, (pid , lsid , r)),8 and,
after receiving any response from the adversary, returns OK to the user.

Corruption is modeled in such a way that the adversary may corrupt instances before a key exchange and
after they have closed a session, but not while a session is active (see the discussion below). More precisely:

- The adversary can send the message (Corrupt, (pid , lsid , r)) to corrupt a user where state(pid , lsid , r) ∈
{⊥, sessionClosed}. The user’s state is updated accordingly.

- FMA
key-use forwards messages to/from corrupted users (in role r) between the I/O tape tr and the network

tape. It does not give the adversary access to the subroutine Fcrypto. This models perfect forward secrecy
as the adversary should not gain access to any keys after the session is closed, even if he corrupts one of
the parties.

- A user (pid , lsid , r) may at any time ask for its corruption status by sending Corrupt?. FMA
key-use answers

this request immediately without contacting the adversary. However, if state(pid , lsid , r) = ⊥, FMA
key-use

first asks the adversary whether he wants to corrupt the user by sending him the restricting message
(CorruptUser?, (pid , lsid , r)), expects a response b and, if b = true, sets state(pid , lsid , r) := corrupted.
In any case, FMA

key-use then returns the corruption status of (pid , lsid , r) to the user.

The adversary can also declare two local sessions to belong to a global session and he decides when a user
has successfully established a key:

8This models that one can usually observe whether some session is still active by monitoring the network of a party. Keeping
this information secret is typically not a goal of secure key exchange protocols.
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- The adversary may send the message (GroupSession, (pidI , lsidI), (pidR, lsidR)) to FMA
key-use if the following

holds true: state(pidI , lsidI , I) ∈ {started, corrupted}, state(pidR, lsidR, R) ∈ {started, corrupted},
and both users are not yet part of a global session. The functionality FMA

key-use then sets the state of
uncorrupted users to inSession and stores that (pidI , lsidI , I) and (pidR, lsidR, R) are in the same global
session. It then uses the GetPSK command of Fcrypto to get pointers to an unknown key k of type tkey

for the two users (if the received key is corrupted, then FMA
key-use asks for another key until its gets an

uncorrupted one). Finally, it sends OK to the adversary. We note that, while we allow the adversary to
pair an uncorrupted user with a corrupted one, the corrupted user will not get access to the session key
in Fcrypto (as already explained above).

- The adversary may send (FinishKE, (pid , lsid , r)) where state(pid , lsid , r) = inSession to complete the
key exchange for an uncorrupted user. This message is accepted only if the user (pid , lsid , r) is in a
session with its intended partner, i.e., he is in a session with a user (pid ′, lsid ′, r′) such that pid ′ =
partner(pid , lsid , r). The functionality FMA

key-use then sets state(pid , lsid , r) := exchangeFinished and
outputs (Established, ptr), where ptr is the pointer to the previously established session key k.

The functionality FUA
key-use. The functionality FUA

key-use is similar but models unilateral authentication of

the responder only. That is, it gives an initiator the same guarantees as FMA
key-use, while a responder may

accept any connection without authentication. More formally, FUA
key-use differes from FMA

key-use as follows:

- Responders no longer indicate an intended session partner when starting a key exchange.

- The adversary may instruct FUA
key-use to output a key (FinishKE) for an uncorrupted instance of a responder

that has already started a key exchange even if that instance is not yet part of a global session.

- If an honest responder instance is instructed to output a session key, no checks regarding the identity of
the session partner are performed. Furthermore, unless the responder is in a global session with an honest
initiator, the session key may be corrupted/marked known.

- Responder instances that have already output a key may still be mapped into a global session if i) they are
not yet part of a global session and ii) their session key is uncorrupted/unknown. Their session partner
will receive the same session key.

Discussion. The functionality FMA
key-use assumes that responders know the identity of the initiator at the

start of the key exchange. One could easily define a variant FMA
key-use

′
where the responder learns the identity

of the initiator only at the end of the key exchange. Note, however, that an environment for FMA
key-use is free

to choose the expected identities of peers of the responder instances anyway, so it can always choose the
identities at the start of a run appropriately.

The corruption model of both FMA
key-use and FUA

key-use requires the corruption status of instances to stay
unchanged during the key exchange. This is not strictly necessary for the ideal functionalities themselves (we
could easily define them to model full dynamic corruption). But due to the commitment problem realizations
typically have to adopt the same corruption model anyway. Therefore, we chose to also restrict the corruption
model of FMA

key-use/FUA
key-use as this makes these functionalities easier to use by higher level protocols. We note

that this is not a strong restriction compared to full adaptive corruption, as session keys from key exchange
protocols are usually very short lived, and hence, the window for corruption is small.

While FMA
key-use/FUA

key-use are inspired by a functionality proposed in [38], the functionalities differ in sev-
eral important aspects: As mentioned before, unilateral authentication is not considered in [38]. Also,
FMA

key-use/FUA
key-use model perfect forward secrecy, unlike the functionality in [38]. The functionality in [38]

supports only symmetric encryption as an operation for higher-level protocols, and hence, is insufficient for
modeling the cryptographic operations of most higher-level protocols. Furthermore, most common ideal
functionalities for key exchange in the literature, including the functionality of [38] but also, e.g., the one
from the CK model [20], impose overly strict security requirements. Thus, there are some reasonable pro-
tocols that cannot realize these functionalities. To be more precise, those functionalities require that the

17



A BA, gx

B, gy,SIGB(gx, gy, A)

SIGA(gy, gx, B)

Figure 1: The ISO 9798-3 protocol for mutual authentication. At the end of the protocol, users share a key
gxy that is then used to derive a session key.

views of both parties are identical when the first party outputs its key. In other words, if, e.g., Alice wants
to talk to Bob and outputs a session key, then the protocol must not only ensure that Alice’s session partner
is indeed Bob, but also that Bob believes he is talking to Alice (even if Bob has not even finished his part
of the protocol yet). However, this is not the case in protocols such as the SIGMA protocol family. While
the initiator knows that she is talking to her intended communication partner when she outputs a key, the
responder has not yet confirmed the identity of the initiator, and thus their views may differ. Even though
these protocols cannot realize the functionality in [38] and the like, the SIGMA protocol family is still rea-
sonable as this protocol family ensures that the responder learns the correct identity of the initiator before
outputting her own session key (as we show in Section 6.2). By relaxing the requirements on establishing a
global session and instead performing additional checks when a session key is output, FMA

key-use allows for the
analysis of a wider variety of protocols.

6 Case studies

In this section, we carry out several case studies to illustrate the usefulness of our framework. We analyze
one of the ISO 9798-3 protocols [27] and the SIGMA protocol with identity protection [30]. Both protocols
are meant to provide mutually authenticated key exchange. We also analyze one mode of OPTLS [33] for
unilaterally authenticated key exchange that served as the basis for the key exchange protocol in TLS 1.3
draft-09 [44], and point out a subtle bug in the original game-based proof.

We show that these protocols realize FMA
key-use and FUA

key-use, respectively. In our modeling of these protocols,
we use Fcrypto to perform all cryptographic operations. By Theorem 2, Fcrypto can then be replaced by its
realization Pcrypto so that the protocols use the actual cryptographic primitives. Due to the use of Fcrypto,
the proofs are quite simple as they rely on high level information theoretic arguments only; they do not
need a single reduction, not even any probabilistic reasoning. At the same time, we obtain strong universal
composability guarantees for the protocols. Moreover, the use of local session IDs in our framework allows for
a faithful modeling of the protocols. As discussed at the beginning of Section 5, other universal composability
approaches impose pre-established (global) session IDs on the protocols, and hence, modify the protocols
quite severely.

6.1 ISO protocol

The ISO 9798-3 [27] protocol for mutual authentication is depicted in Figure 1. It is based on Diffie-Hellman
key exchange and uses signatures to ensure mutual authentication.

The modeling of the ISO protocol in our framework is straightforward. We use two machines MI and
MR to model the initiator and responder role, respectively. These machines provide the same I/O interface
as FMA

key-use and each one has a network tape. They use Fcrypto as a subroutine to perform all cryptographic
operations. In every run of the protocol, there is one instance of MI/MR per user (pid , lsid ), with each
instance executing the protocol according to Figure 1. As soon as an instance receives some DH share, it uses
the BlockGroupElement command to ensure that Fcrypto “knows” this share, and hence, fresh exponents
do not collide with it.9 At the end of the protocol, instances create a DH key from gx and gy and use this

9As mentioned earlier, this operation can be omitted when Fcrypto is replaced with its realization. The resulting protocol is

18



to derive the session key of type unauthenc-key.10 They then output a pointer to that session key and
subsequently provide the same interface as FMA

key-use, i.e., they allow a user to use Fcrypto to perform (ideal)
cryptographic operations with the session key.

There is one technicality regarding the modeling: When an initiator instance receives (and accepts) the
final message, it must output both a pointer to the exchanged key to the environment, and a message m on
the network. We model this by having the instance output just the pointer to the environment and, upon
receiving the next message on the network, outputting the message m to the adversary.

Corruption of MI/MR is modeled analogously to FMA
key-use. That is, protocol participants might be

corrupted by the adversary (by sending a special message) before the start of the protocol run or after a
session has been closed, but not while a key exchange/session is active. While this is more restricted than
full adaptive corruption, it is still a reasonable and meaningful modeling, as already discussed in Section 5.
Besides directly being corrupted by the adversary, an instance of MI/MR also considers itself corrupted (even
though not directly controlled by the adversary) if its own signing key or the signing key of its intended peer
is corrupted. This models that no security guarantees, and in particular no guarantees about authentication,
can be given if the adversary has access to the long term secrets. See Appendix C for a detailed definition
of the corruption behavior.

The following theorem states that the ISO protocol is a secure universally composable mutually authen-
ticated key exchange protocol. As mentioned before, our modeling allows one to use session keys returned
by this protocol to be used by higher level protocol in an ideal way.

Theorem 3. Let MI and MR be machines modeling the ISO protocol as described above, let Fcrypto and
F ′crypto be two versions of the ideal crypto functionality with the same parameters, and let FMA

key-use be the
ideal functionality for mutually authenticated key exchanges with parameter tkey = unauthenc-key. Then
the following holds true:

MI |MR | Fcrypto ≤R FMA
key-use | F ′crypto.

As mentioned before, the proof of this theorem does not require any reductions, not even probabilistic
reasoning, which greatly simplifies the overall proof. We note that we directly show this theorem in the
multi session setting. While there exists a single session theorem for local session IDs [38], in our case the
analysis is already simple in the multi session setting.

Proof. In the following, we say that a party pid is corrupted if the signing key of party pid is corrupted.
We call an instance (pid , lsid , r) corrupted if it outputs true when asked for its corruption status by the
environment, and we say that an instance (pid , lsid , r) is explicitly corrupted if the adversary took control
of this instance by sending the special Corrupt message.

We have to define a simulator S and show that E |MI |MR | Fcrypto ≡ E | S |FMA
key-use | F ′crypto for all envi-

ronments E ∈ EnvR(MI |MR | Fcrypto). The simulator S internally simulates the protocol MI |MR | Fcrypto

and keeps the corruption statuses of user instances in FMA
key-use and simulated instances of MI/MR synchro-

nized. When S has to initialize Fcrypto, S first sends a message to F ′crypto to initialize it and receives a
group (G,n, g) in response which is used for the simulation of Fcrypto. S then asks the environment for the
cryptographic algorithms and forwards them to F ′crypto.

If FMA
key-use indicates that a user (pid , lsid , r) has started a key exchange, S does the same in its internal

simulation. If an uncorrupted initiator (pidI , lsidI , I) accepts a group element gy and outputs a pointer to a
session key, then S instructs FMA

key-use to create a session from (pidI , lsidI , I) and the instance (pidR, lsidR, R)

that created the signature in the second protocol message. The subroutine F ′crypto of FMA
key-use will then ask

S to provide the value for the session key; S provides the same value that is used in its simulation as session
key. Finally, S instructs FMA

key-use to output the session key pointer for (pidI , lsidI , I). If an uncorrupted

instance (pidR, lsidR, R) outputs a pointer to a session key, S instructs FMA
key-use to output the session key

pointer for (pidR, lsidR, R). While a session key is used, the simulator may be asked by F ′crypto to provide
new unknown keys (e.g., when deriving keys). In this case, S simulates the same operation in Fcrypto

a natural implementation of the ISO protocol.
10We could also have chosen any other symmetric key type supported by FMA

key-use. The security proof is independent of this.
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and forwards the keys to F ′crypto. If S is notified that some instance (pid , lsid , r) has closed its session, S
updates the internal simulation accordingly and responds with OK. S uses the internal simulation to process
inputs/outputs for/from corrupted instances.

We now show that S is a good simulator. As explained in Section 3.2, due to the use of restricting
messages, we can conveniently assume that all operations performed by Fcrypto are atomic, without any side
effects on the machines MI or MR. This simplifies the overall proof.

First, observe that S keeps the key sets of Fcrypto and F ′crypto “synchronized”, i.e., the set of keys of
F ′crypto is a subset of all keys of Fcrypto and all keys in F ′crypto have the same known/unknown status in
Fcrypto. This is easy to see, as the simulator provides all unknown keys for F ′crypto while it is not possible
for the environment to insert any known keys. As both key sets are synchronized, F ′crypto will accept all
keys that have been accepted by the internally simulated Fcrypto and thus the environment cannot use the
freshness check on new keys to distinguish real from ideal world.

The following argument is split into four cases, for which we argue that the simulation is perfect: Honest
initiator instances during key establishment, honest responder instances during key establishment, honest
instances after key establishment, and corrupted instances.

Let (pidI , lsidI , I) be an uncorrupted instance of MI that wants to establish a session with party pid ′.
It is easy to see that the simulator can perfectly simulate the behavior of such an instance up to the point
when it outputs a key as the behavior does not depend on any data present in F ′crypto. In particular, honest
instances will use Fcrypto only to create/verify signatures, and exchange Diffie-Hellman keys; both of these
operations are unavailable in F ′crypto and thus can separately be simulated by S.

We have to argue that S finds an instance of a responder that can be paired with (pidI , lsidI , I): If
(pidI , lsidI , I) outputs a session key pointer, then it must have accepted the second message of the ISO
protocol and the signing key of its intended partner pid ′ must still be uncorrupted (otherwise, the pro-
tocol would block according to our modeling of corruption). Hence, there is some instance belonging to
pid ′, say (pid ′, lsid ′, r ′), that has signed the message m = (gx, gy, pidI), where x is the secret exponent of
(pidI , lsidI , I) and y is the secret exponent of (pid ′, lsid ′, r ′). This instance is uncorrupted: On the one
hand, it cannot be explicitly corrupted by the adversary as the party pid ′ is still uncorrupted. On the other
hand, as (pid ′, lsid ′, r ′) considers pidI to be the partner of the key exchange (which is acknowledged in
the signature), we know that (pid ′, lsid ′, r ′) also does not consider itself corrupted due to corrupted signing
keys. Next, we argue that this instance is a responder, i.e., r ′ = R: If it were an initiator, then the signed
message m would imply that this instance received and accepted the second protocol message containing a
message m′ = (gy, gx, pid ′) signed by an uncorrupted instance of pidI , where x is the secret exponent of
the instance of pidI . However, as x/gx is created ideally, there is only one honest instance that would sign
such a message, namely (pidI , lsidI , I), which does not output any signatures before accepting the second
message. This implies r ′ = R. We still have to show that (pid ′, lsid ′, r ′) was not yet assigned to a session
by S: The simulator pairs (honest) responder instances with those (honest) initiator instances that accept
the second message, but as x/gx is unique, the only honest initiator instance that accepts this message is
(pidI , lsidI , I). Hence, we have that (pid ′, lsid ′, r ′) is not yet part of a global session and can be paired with
(pidI , lsidI , I). Finally, observe that both x/gx and y/gy have been created ideally (with x 6= y) and thus the
key derived from them will be considered unknown in Fcrypto. The simulator can provide the exact same key
from the simulation to F ′crypto as the key sets are synchronized. Note in particular that only (pidI , lsidI , I)

and (pid ′, lsid ′, r ′) can get a pointer to this key, which matches the behavior of FMA
key-use.

Now, let (pidR, lsidR, R) be an uncorrupted instance of MR that wants to establish a session with pid ′.
We only have to show that (pidR, lsidR, R) is already part of a global session in FMA

key-use when it outputs
a pointer to the session key, as every action up to that point can be simulated perfectly. Observe that,
if (pidR, lsidR, R) outputs such a pointer, then it has accepted the third protocol message and pid ′ must
still be uncorrupted. In other words, there is an instance of pid ′, say (pid ′, lsid ′, r ′), that has signed the
message m = (gy, gx, pidR), where y is the secret exponent of (pidR, lsidR, R) and x is the secret exponent
of (pid ′, lsid ′, r ′). This instance is uncorrupted by the same argument as above. We now argue that this
instance is an initiator, i.e., r ′ = I: Suppose by contradiction that r ′ = R, i.e., the message was signed
by a responder whose secret exponent is x and who has received the group element gy. Recall that, when
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such an instance receives gy, it first uses the BlockGroupElement command on gy. Thus, afterwards no
instance will be able to generate gy via a GenExp command. Hence, the instance (pid ′, lsid ′, r ′) cannot have
received its first protocol message before the instance (pidR, lsidR, R) has received its first protocol message,
as in this case (pidR, lsidR, R) would no longer be able to create the exponent y. By the same argument,
(pid ′, lsid ′, r ′) also cannot have received its first protocol message after (pidR, lsidR, R) has received its first
protocol message, as in this case (pid ′, lsid ′, r ′) would not be able to create the secret exponent x. Of course,
we also have that (pidR, lsidR, R) 6= (pid ′, lsid ′, r ′) as x 6= y (gx is blocked when gy is generated). Thus,
we conclude that r ′ = I. We still have to argue that (pidR, lsidR, R) is already in a global session with
(pid ′, lsid ′, r ′): As (pid ′, lsid ′, r ′) has signed a message, it has already completed its part of the key exchange
and thus is in a session with some responder. By the definition of S, this will be the honest instance of a
responder that signed the message m′ = (gx, gy, pid ′). However, the instance (pidR, lsidR, R) is the only one
that would sign such a message as y/gy is unique, so (pid ′, lsid ′, r ′) is in a session with (pidR, lsidR, R). Note
that both instances use the same unknown exponents x and y to derive a session key, with x 6= y, and they
are never paired with any other DH shares. Thus both instances will output pointers to the same unknown
session key.

Now consider an honest instance in the key usage phase. As shown above, such an instance in the real
world/internal simulation will have a pointer to an unknown session key in Fcrypto. Furthermore, no instance
besides the two instances in the same session will have access to this pointer as no other instances have a
pointer to x or y. Thus, instances in the real world behave just like instances in the ideal world that use
F ′crypto, i.e., the simulation is perfect also in this case.

Finally consider a corrupted instance. The simulator has full control over the I/O interface of such
an instance. If the instance was explicitly corrupted by the adversary (i.e., it is under the control of the
adversary) either before or after the key exchange, the adversary gets access only to known keys which do
not exist in F ′crypto. Thus, the simulator is able to simulate the exact behavior of Fcrypto for such explicitly
corrupted instances. In the case of a corrupted instance that was not explicitly corrupted by the adversary
(i.e., where one of the signing keys is corrupted), the simulator also has to simulate unknown keys. However,
these unknown keys will never be inserted into/used in F ′crypto as no honest instance will complete a KE
with a corrupted instance (as shown above). Thus, the simulator can also easily simulate this case.

We note that S is a responsive simulator as it fulfills the runtime conditions and it responds immediately to
restricting messages as long as the environment does the same, which happens with overwhelming probability.
This concludes the proof.

By Theorem 2, we can now replace Fcrypto by its realization Pcrypto which yields that the ISO protocol
(when using the actual cryptographic operations) is a universally composable mutual authenticated key
exchange protocol. In the formulation of the following corollary we use F∗ as introduced in Theorem 2.
More specifically, we modify F∗ in a straightforward way and put it on top of the system MI |MR in the real
world and on top of FMA

key-use in the ideal world in order to make sure that for every environmental system E ,

the systems E |F∗ |MI |MR and E |F∗ | FMA
key-use constitute well-behaved environments for Pcrypto/Fcrypto,

respectively.

Corollary 1. Let MI ,MR as defined above, let Fcrypto, Pcrypto, and F∗ as in Theorem 2, in particular, we
have that Pcrypto ≤R Fcrypto and F∗ enforces well-behaved environments. Then the following holds true:

F∗ |MI |MR | Pcrypto ≤R F∗ | FMA
key-use | Fcrypto.

Proof. This statement follows easily from Theorem 1, Theorem 2, Theorem 3, and transitivity of the ≤R
relation as well as the fact that the machines MI and MR constitute a well-behaved environment when
combined with F∗ and any another environment E : corrupted instances do not have access to unknown
keys, so they cannot violate the well-behaved property. Uncorrupted instances during the key usage phase
are well-behaved due to F∗. Uncorrupted instances during the key establishment phase can violate the well-
behaved property only by causing the commitment problem for Diffie-Hellman keys, i.e., set an unknown
exponent to known after it was used to create an unknown key. This case does not occur as exponents are
never accessed/used after one key has been created with them.

21



A Bgx

gy, {B, SIGB(gx, gy),MACkm(B)}ke

{A,SIGA(gy, gx),MACkm(A)}ke

Figure 2: The SIGMA protocol with identity protection. The keys ke and km are derived from gab, where ke
is used to encrypt and km is used to mac messages during the key exchange. Another key ks is also derived
from gab and used as session key.

6.2 SIGMA Protocol

The SIGMA protocol with identity protection [30] is depicted in Figure 2. Unlike the ISO protocol, it uses
the exchanged DH key to derive three other keys, two of which are used during the key exchange to ensure
authentication and confidentiality of party IDs, while the third is used as session key.

We model the SIGMA protocol analogously to the ISO protocol. We use unauthenticated encryption to
encrypt messages in the protocol; authenticated encryption is not necessary. The following theorem states
that the SIGMA protocol is a secure universally composable mutually authenticated key exchange protocol.

Theorem 4. Let MI and MR be the machines modeling the SIGMA protocol, let Fcrypto and F ′crypto be two

versions of the ideal crypto functionality with the same parameters, and let FMA
key-use be the ideal functionality

for mutually authenticated key exchanges with parameter tkey = unauthenc-key. Then the following holds
true:

MI |MR | Fcrypto ≤R FMA
key-use | F ′crypto.

Proof. In the following, we re-use the terminology for corrupted instances/parties from the proof of Theo-
rem 3. We also use the simulator S from that proof, except that S now internally simulates the SIGMA
protocol during the key exchange phase. The simulator creates global sessions by combining an uncorrupted
instance of an initiator with the instance of a responder that created the signature on m = (gx, gy) in the sec-
ond message. Just as for the ISO protocol, in the following we will not consider runs where the environment
does not answer restricting messages immediately, as this happens with negligible probability.

By the same argument as in the proof of Theorem 3, we have that the key sets of Fcrypto and F ′crypto

are synchronized. In the following, we will first consider an uncorrupted instance of an initiator, then an
uncorrupted instance of a responder, and finally corrupted instances.

Let (pidI , lsidI , I) be an uncorrupted instance of an initiator that wants to exchange a key with party
pid ′. This instance is simulated perfectly until it outputs a session key as no I/O traffic is unvolved.
If (pidI , lsidI , I) outputs a pointer to a session key, it must hold true that pidI and pid ′ must still be
uncorrupted (otherwise the instance would block according to our corruption modeling). Furthermore, it
has accepted a signature by pid ′ on the message m = (gx, gy). Thus we have that there must be an instance
of pid ′, say (pid ′, lsid ′, r ′), that has generated this signature. Suppose that this instance wants to establish
a session with the party pid ′′. Observe that this instance was not explicitly corrupted by the adversary,
as this requires pid ′ to be corrupted first. Note, however, that the instance (pid ′, lsid ′, r ′) might consider
itself corrupted nevertheless because its intended session partner pid ′′ might be corrupted. In any case, as
it was not explicitly corrupted, we have that y is marked unknown. Thus all keys derived from the DH key
created from gx and gy are also unknown (note in particular that gy was never paired with any DH shares
besides gx). We proceed to show that (pid ′, lsid ′, r ′) is an instance of a responder, i.e., r′ = R: Suppose
by contradiction that it was an initiator. As it has output a signature and a MAC, it must have already
accepted the second protocol message. In particular, it has accepted a MAC on the message m′ = pid ′′. As
the MAC is created from a honest key which can only be created by the instances that own the exponents x
or y, the MAC must have been created by (pidI , lsidI , I). However, that instance does not create any MACs
prior to outputting the session key. This implies that (pid ′, lsid ′, r ′) is not an initiator but a responder. We
still need to show that (pid ′, lsid ′, r ′) is not yet part of another session: By definition of S, (pid ′, lsid ′, r ′)
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can only be in another session if an honest instance of an initiator has already accepted the signature on m
before. However, the only instance that accepts such a message is the single instance that owns a pointer to
x. Thus, the simulator can actually create a session from (pidI , lsidI , I) and (pid ′, lsid ′, r ′). As the session
key in the realization is marked unknown, the real and ideal world behave identical when (pidI , lsidI , I) uses
the session key.

Now consider an uncorrupted instance (pidR, lsidR, R) of a responder that wants to exchange a key with
party pid ′. We have to show that if (pidR, lsidR, R) outputs a pointer to a session key, the simulator can
instruct FMA

key-use to also do so, i.e., (pidR, lsidR, R) must already be in a global session with pid ′ and both
must have access to the same unknown key. Suppose that (pidR, lsidR, R) outputs a pointer, i.e., accepts
the third protocol message. Note that this implies that both pidR and pidI are uncorrupted at this point.
There must be some instance of pid ′, say (pid ′, lsid ′, r ′), that has created the signature on m = (gy, gx).
Observe that this instance cannot be explicitly corrupted as this requires pid ′ to also be corrupted. Thus
we have that x is unknown. As y 6= x (recall that gy is blocked when gx is generated), this implies that
all keys generated from gx and gy are also unknown. We need to show that (pid ′, lsid ′, r ′) is an initiator,
i.e., r′ = I: Assume by contradiction that it was a responder. The instance cannot have created a signature
on m after (pidR, lsidR, R) has received the first protocol message, as then gx would already have been
blocked via the BlockGroupElement command, i.e., (pid ′, lsid ′, r ′) would have create an exponent 6= x.
By the same reasoning it also cannot have created the signature before (pidR, lsidR, R) has received the
first protocol message, as then (pidR, lsidR, R) would have created an exponent 6= y. Finally, we also have
(pidR, lsidR, R) 6= (pid ′, lsid ′, r ′) as honest instances of responders will never sign a message where gx = gy

(as gx is blocked when gy is generated). Thus we have that (pid ′, lsid ′, r ′) is an initiator. We now argue that
(pidR, lsidR, R) is indeed in a session with (pid ′, lsid ′, r ′); in particular, we have to show that (pid ′, lsid ′, r ′)
is uncorrupted as the simulator only pairs uncorrupted instances of initiators: Let pid ′′ be the intended
session partner of (pid ′, lsid ′, r ′). As (pid ′, lsid ′, r ′) has created a signature, it has already output a session
key after accepting a signature on m′ = (gx, gy) and a MAC on pid ′′. However, only (pidR, lsidR, R) and
(pid ′, lsid ′, r ′) can create such a MAC (as no one else has access to the same key), and (pid ′, lsid ′, r ′) does
not create any MACs prior to accepting the second message. As (pidR, lsidR, R) will MAC pidR only, we
conclude pid ′′ = pidR. As both pidI and pidR are uncorrupted by assumption, and (pid ′, lsid ′, r ′) was never
explicitly corrupted, we conclude that (pid ′, lsid ′, r ′) is uncorrupted and thus assigned to a session by S.
Furthermore, it was paired into a session with (pidR, lsidR, R) as no other instance of pid ′ would create a
signature on m′ (it is the only instance that has a pointer to x). Thus, the simulator is able to instruct
FMA

key-use to output a session key for (pidR, lsidR, R). Note that both (pidR, lsidR, R) and (pid ′, lsid ′, r ′) have
the same session key in the realization, as that key was derived from the same unknown DH key, and no
other instance can get a pointer to that key.

Now consider a corrupted instance. With the same argument as in the proof of Theorem 3, we have that
the simulation is perfect for corrupted instances that do not share a session key is an uncorrupted instance.
However, recall from above that a corrupted instance (pidR, lsidR, R) of a responder might be paired into a
session with an honest instance (pidI , lsidI , I) of an initiator where both instances share the same session
key. We now show that the simulation of the responder still works in this case as the responder never enters
the key usage phase, i.e., it is no problem that S cannot instruct FMA

key-use to output a session key for that
instance. As shown above, such an instance (pidR, lsidR, R) is not explicitly corrupted but considers itself
corrupted as its intended partner pid ′ is corrupted. Suppose by contradiction that (pidR, lsidR, R) does
accept the third protocol message and outputs a session key. Recall that both x and y are unknown and thus
all keys derived from the corresponding DH key are also unknown. So (pidR, lsidR, R) has accepted a MAC
on pid ′ created with an unknown key, where pid ′ is different from pidI and pidR as those parties are not
corrupted. However, the only instances that can create such a MAC are (pidI , lsidI , I) and (pidR, lsidR, R)
which will only MAC pidR or pidI , respectively. Thus we can conclude that (pidR, lsidR, R) will never
receive a third protocol message that it accepts.

Finally, it is easy to see that S is a responsive simulator as it fulfills the runtime requirements and answers
restricting messages immediately if the environment also does so.

Just as for the ISO protocol, by Theorem 4.1 we can replace Fcrypto by its realization Pcrypto.
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A Bchello, gx

shello, gy, {SIGB(gy), sfin}ke

Figure 3: The 1-RTT non-static mode of OPTLS. Both chello and shello are arbitrary bit strings that are
exchanged during the protocol (they can be used to negotiate parameters for a higher level protocol). The
message sfin is a MAC on the whole key exchange, i.e., sfin = MACkm(chello, gx, shello, gy,SIGB(gy)). The
keys ke (for encryption), km (for MACing) and the session key ks are derived from the DH key gxy as shown
in Figure 4.

HKDFgxy

shello “0”

ke

HKDFgxy

chello “0”

km
HKDF

ε

ks

Figure 4: Key derivation in the 1-RTT non-static mode of OPTLS. HKDF [31] is a key derivation function
that takes as input a key (arrows on the left), context information (upper left arrows), and a salt (upper
right arrows). It outputs a variable number of keys (bottom arrows).

Corollary 2. Let MI ,MR as defined above, let Fcrypto, Pcrypto, and F∗ as in Theorem 2, in particular, we
have that Pcrypto ≤R Fcrypto and F∗ enforces well-behaved environments. Then the following holds true:

F∗ |MI |MR | Pcrypto ≤R F∗ | FMA
key-use | Fcrypto.

6.3 OPTLS

The OPTLS protocol family [33] specifies several key exchange protocols with unilateral authentication. It
was built to meet the specific requirements of TLS 1.3 for key exchange; a slightly modified version was
included in draft-09 of TLS 1.3 [44]. In Figure 3, we show the so-called non-static mode of OPTLS. Unlike
the ISO and SIGMA protocols, OPTLS also specifies the exact key derivation procedure, which we depict
in Figure 4.

We model OPTLS in the same way as the ISO and SIGMA protocols, but with the following changes: The
machines MI and MR execute the protocol from Figure 3 to exchange a key. Instances of responders do not
specify an intended session partner at the beginning (as the protocol does not authenticate the initiator to
the responder) and thus also do not consider themselves to be corrupted if their session partner is corrupted.
We use the optional bit string m′, which is part of the InitKE message expected by FUA

key-use, to provide
instances of MI with the chello message, and instances of MR with the shello message.

We model HKDF via the Derive command of Fcrypto. As Fcrypto provides a single argument for key
derivation, we concatenate both context information and salt and use the resulting string as salt for Fcrypto.
This models that HKDF should provide independent keys if either salt or context information is changed.
Another technical difference is that HKDF outputs a variable number of keys, while Fcrypto outputs a single
key for every salt. It is easy to extend Fcrypto to also support deriving multiple keys from a single salt and
then realize it with a secure variable length output PRF. Nevertheless, for simplicity, we use the current
formulation of Fcrypto and instead call the Derive command twice to obtain two keys. Formally, we use two
different salts which are obtained by prefixing the original salt with 0 or 1, depending on whether the first
or second key is derived.
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Surprisingly, OPTLS does not realize FUA
key-use. To see this, consider the following setting: an honest

initiator outputs a session key which was generated from its own DH share gx and the responders DH share
gy. The responder instance that signed gy might have received a different group element, say h 6= gx, in the
first protocol message. If h was not honestly generated by Fcrypto, then y will be marked known after the
calculation of hy because the DDH assumption does not guarantee that an attacker learns nothing from y in
this case. As y is marked known, the key gxy and all keys derived from it will also be marked known. Thus,
we have no security guarantees for the MAC and an attacker can easily let the initiator instance accept, even
though there is no instance of a responder that can be paired with it (the responder that signed gy outputs
a different session key).

We note that this is not a direct attack against the protocol but rather shows that assuming hardness of
DDH and security of the PRF family is not sufficient to prove the security of this protocol mode. Indeed,
we found that the original game-based security proof of this protocol from [33] is flawed: In the proof, where

the authors use the same cryptographic assumptions, gxy is replaced by gz, z
$← {1, . . . , n} during a hybrid

argument (cf. game 2). The authors claim that this can be reduced to the DDH assumption. But a simulator
in the reduction to DDH would have to simulate the game where gx of the initiator and gy of the responder
are replaced with the challenges from the DDH game. Now, the simulator might have to calculate hy (for
some group element h) and derive keys from it, if the responder received h in its first message. This is
impossible with just the DDH assumption as the simulator neither knows y nor has an oracle to compute
hy, i.e., he cannot simulate the game faithfully.

To fix this problem both in the original paper and in our setting, one can use stronger assumptions. For
example, one could use the PRF-ODH assumption [28, 32], where the adversary additionally gets access to
an oracle for calculating keys derived from hy (where y is one of the secret exponents and h is provided by
the adversary). As mentioned earlier, we leave a formulation of Fcrypto based on the PRF-ODH assumption
for future work. An alternative fix for this problem (again for both settings) is to have gx signed as well,
i.e., signing (gx, gy) as in the SIGMA protocol. This allows for an analysis using the DDH assumption, as
now the signature guarantees that the responder paired gy with gx only. The following theorem states that
this variant is a secure universally composable unilaterally authenticated key exchange.

Theorem 5. Let MI and MR be machines modeling the variant of the 1-RTT non-static mode of OPTLS
that signs both gx and gy. Let Fcrypto and F ′crypto be two versions of the ideal crypto functionality with the

same parameters, and let FUA
key-use be the ideal functionality for unilaterally authenticated key exchanges with

parameter tkey = unauthenc-key. Then the following holds true:

MI |MR | Fcrypto ≤R FMA
key-use | F ′crypto.

Proof. The proof is similar to the one for the ISO protocol (cf. Theorem 3). We will use the same terminology
regarding corruption and the same simulator S, except for the following changes: S now internally simulates
the 1-RTT non-static mode of OPTLS. If an honest initiator outputs a key in the simulation, S creates a
session from that instance and the instance of a responder that created the MAC in the second message. If
an honest responder outputs a key, S instructs FUA

key-use to also do so (without creating a session). In the
following, we only have to reason about runs where the environment answers restricting messages immediately
as this happens with overwhelming probability.

Just as for the ISO and SIGMA protocols, we first argue that S keeps the symmetric key sets of Fcrypto and
F ′crypto synchronized. This is a bit more involved in case of FUA

key-use as keys might be/might become known
(e.g., because the simulator had to provide a known session key, or a key was derived from a known key).
Note, however, that the simulator still provides all keys except for known keys inserted upon unauthenticed
decryption with a known key. As the simulator is notified of all keys that are added to the set of known
keys, both when they did not previously existed in F ′crypto and if they were previously marked unknown, it
is easy to see that the simulator can keep the key sets synchronized.

We can now argue why the simulation of instances of MI/MR is identical to the real world. This is easy
to see in case of honest instances that have not yet output a key as the simulator gets to know chello and
shello, which are part of the InitKE message.
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Let (pidI , lsidI , I) be an uncorrupted instance of an initiator that wants to establish a key with party
pid ′ and outputs a key in the realization/simulation. We have to show that S can group this instance with
an instance of a responder in FUA

key-use. In particular, this instance must have output the same (unknown)
session key in the realization. We start by arguing that the MAC key is marked unknown. As (pidI , lsidI , I)
is uncorrupted, we have that its intended session partner pid ′ is also uncorrupted. Thus, there must be
an instance (pid ′, lsid ′, r ′) that created the signature on (gx, gy) in the second message. Furthermore, this
instance is a responder (as initiators do not sign any messages) and is uncorrupted (as pid ′ is uncorrupted).
Thus, we have that gy was honestly created, different from gx, and gy was used only with gx to create a DH
key. We conclude that gy is still marked unknown, just as gx, at the time when the second protocol message
is received. This implies that all keys derived from gxy are also marked unknown. Hence, we have that the
MAC in the second protocol must have been created by (pid ′, lsid ′, r ′) as forgery is prevented and no other
instance has access to the same MAC key. We conclude that both (pidI , lsidI , I) and (pid ′, lsid ′, r ′) use
the same session parameters, namely, gx, gy, shello, and chello, to establish a session key. This implies that
they output the same (unknown) session key. Finally, observe that (pid ′, lsid ′, r ′) is not yet part of another
session: By the definition of S, it gets only paired with an honest instance of an initiator that accepts the
MAC. However, no other instance besides (pidI , lsidI , I) will accept the MAC on gx as all other honest
instances have different DH shares. Thus, S can pair these instances in FUA

key-use and they will behave just
as in the realization.

Observe that also the key usage phase of both (pidI , lsidI , I) and (pid ′, lsid ′, r ′), which are part of the
same session, is simulated perfectly: First, as the key sets are synchronized, F ′crypto accepts the session key.
Second, in the realization there are no other instances with access to the session key as no other instance has
a pointer to x or y. Third, no other key that is created during the key usage phase by one of the instances
will ever be shared with any other instance that is not in the session (as the only way to share a key is
to derive it from another shared key, or encrypt it with a shared key). Thus, all keys from (pidI , lsidI , I)
and (pid ′, lsid ′, r ′) are handled entirely inside F ′crypto, which, by definition, behaves just as Fcrypto in the
realization.

Now consider an uncorrupted instance (pidR, lsidR, R) of a responder that outputs a session key. The
simulator instructs FUA

key-use to output the same key with the same known/unknown state (by optionally
corrupting the key in F ′crypto if it is known). As the key sets are synchronized, F ′crypto accepts this key. So
the output of session keys is simulated perfectly also for responders.

We still have to argue that the key usage phase is simulated perfectly for a responder (pidR, lsidR, R)
that is not (yet) part of a session. We first argue the case where the session key of (pidR, lsidR, R) is
uncorrupted/unknown. We have that there is at most one instance that shares the same session key, and
that instance is an honest initiator: As the session key is uncorrupted, it was created from unknown DH
shares gx and gy, i.e., there is only one instance besides (pidR, lsidR, R) that can create a pointer to the
session key. If the DH share gx was generated by an honest instance of a responder, then that instance will
not have used gy to create its session key (as y is guaranteed to be fresh by Fcrypto) and thus will have a
different session key. If gx belongs to an initiator, then this initator might output the same session key if it
receives the DH share gy in the second message. However, as soon as it does output the session key, it will
be paired with (pidR, lsidR, R) into a global session by the simulator as there is just one honest responder
instance that signs gy. Thus, the same instances in the real and ideal world share the same key. In particular,
there is no other instance that shares any keys with (pidR, lsidR, R), so all keys during the key usage phase
are handled entirely inside F ′crypto. By definition of F ′crypto, the ideal world behaves the same as the real
world.

Now consider the case where (pidR, lsidR, R) outputs a corrupted session key. This key, which is handled
in F ′crypto, might be shared with other honest responders (which are also handled by F ′crypto) and corrupted
instances (handled by S). However it cannot be shared with an honest initiator as argued above. First,
observe that S is able to provide the same key to different instances of honest responders as the key is marked
known. Second, observe that the behavior of Fcrypto/F ′crypto depends only on the actual value of the key in
case of known keys. That is, even though the same key is handled by both Fcrypto and F ′crypto in the ideal
world, the resulting behavior is identical to the realization where known keys are handled within the same
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subroutine. Thus, all known keys that can be accessed by (pidR, lsidR, R) are simulated perfectly. Note that
there is one technicality: (pidR, lsidR, R) might create a new unknown key via the New command. However,
there will never be any other instance that can access the same key. The only way for another instance to
get a pointer to this key would be to encrypt it with a key shared between both instances. However, as the
session key is marked known, encrypting it under that key would also mark the new key as known, i.e., the
simulation is successful.

We still have to argue that S simulates corrupted instances perfectly. By the above argument, a corrupted
instance will never share a symmetric (session) key with an honest initiator, while keys shared with a
responder will be marked known and thus can be simulated perfectly. In particular, as all keys from a
session are deleted after the session is closed, the adversary also does not get access to those keys if he
corrupts an instance afterwards. All other keys, such as signature keys, are handled internally by S. As
the key sets are synchronized (preventing distinguishing attacks via the freshness and collision checks), it is
impossible to distinguish the simulation from the realization.

Finally, observe that S is a responsive simulator as it fulfills the runtime requirements and guarantees
immediate answers in those runs where the environment also answers immediately.

As before, we can again replace Fcrypto by its realization Pcrypto.

Corollary 3. Let MI ,MR as defined above, let Fcrypto, Pcrypto, and F∗ as in Theorem 2, in particular, we
have that Pcrypto ≤R Fcrypto and F∗ enforces well-behaved environments. Then the following holds true:

F∗ |MI |MR | Pcrypto ≤R F∗ | FMA
key-use | Fcrypto.

7 Discussion and Related Work

There are several different approaches for analyzing security protocols, with the main approaches being
symbolic, game-based, implementation-based, and universal composability. All of these approaches have
different advantages and shortcomings; there is no silver bullet, as can be seen, for example, by the fact that
real-world protocols, such as TLS, have been studied in the literature using all of these approaches (often
computer-aided), taking different views and making use of the specific merits thereof (see, e.g., [3, 7–9, 22,
25,28,29,32]).

- Symbolic (Dolev-Yao-style) approaches abstract from low level cryptographic details in order to offer a
very high degree of automation (see, e.g., [10, 23,43]).

- Implementation-based analysis captures details of the actual implementations of protocols, which is very
desirable, but of course also makes the analysis more involved (see, e.g., [6, 35,45,46]).

- Game-based models are very expressive and flexible in defining security properties of a protocol (see,
e.g., [5, 18, 24] and [4, 11] for tools). While they do not enjoy built in modularity, efforts have been made
to improve the modularity provided by these models (see, e.g., [12, 13]).

- Universal composability approaches come with modularity built in and allow one to show that protocols
are secure in arbitrary (polynomially bounded) environments (see, e.g. [15, 26, 34, 41]). But due to the
commitment problem, they can be more limited in their corruption modeling. In some cases, instead of
allowing for full adaptive corruption, one might have to model corruption in a more restricted, but still
reasonable way (see also the discussions in Sections 5 and 6).

Our framework adds the feature of avoiding or limiting the need for tedious and error-prone reductions, while
at the same time allowing to establish universally composable security guarantees. In particular, proofs are
simplified and results can easily be re-used and built upon.

In the remainder of this section, we discuss closely related work in more detail. The works [38, 39] have
been discussed in detail before already.
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In [17], Canetti and Gajek abstract Diffie-Hellman key exchange via an ideal key encapsulation functional-
ity. There are two key differences to our framework. First, unlike Fcrypto and our key usability functionalities,
the ideal key encapsulation functionality does not allow a user/higher-level protocol to use the exchanged key
in an idealized way or to use it with other primitives, which entails reductions proofs. Second, a large class
of protocols cannot be analyzed with their key encapsulation functionality: in order to prove the realization,
they impose a very strong restriction on the environment/higher-level protocols, namely, an initiator may
use her secret exponent a only with DH shares gb that have been honestly generated by a responder. Many
protocols, including all case studies considered in this paper, do not fulfill this requirement: If, for example,
the responder is corrupted, then the environment may sign arbitrary DH shares that were not honestly
generated. These DH shares will be accepted by the initiator, which violates the requirement.

Our case studies have not yet been faithfully analyzed in a universal composability setting (see [18,19,33]
for game-based analyses). Variants of the ISO 9798-3 and SIGMA protocols have been analyzed in the UC
model in [17, 19, 20]. These variants assume that protocol participants have already established a global,
unique SID prior to running the actual protocol, and then either use different signing keys for every new
session (which is unrealistic) or, if they re-use the same key across different sessions, prefix all signed messages
with the SID. The latter is a so-called joint-state realization, which, however, results in a protocol that differs
from the actual protocol. As illustrated in [38], such modifications can potentially create a secure protocol
from an insecure one.

Moreover, the analysis of the (variant of the) SIGMA protocol in [19] needed a modified version of the
ideal key exchange functionality Fke where initiators and responders cannot specify their intended peers.
Our functionality FMA

key-use is the first that allows for proving security of the SIGMA protocol in a setting
where the initiator and the responder can specify their intended peers.

8 Conclusion

In this paper, we have proposed an ideal functionality Fcrypto that models various cryptographic primitives
which can be combined with each other and can be used in an idealized way. Importantly, Fcrypto supports
Diffie-Hellman key exchange, a widely and extensively used primitive in real-world protocols. We also
provided new functionalities, FMA

key-use and FUA
key-use, for ideal mutual and unilateral authenticated key exchange

which lift the properties of Fcrypto to the next protocol level. Notably, these functionalities allow for analyzing
a wider range of key exchange protocols than traditional formulations of ideal key exchange functionalities.

Altogether, our approach gets rid of reductions and hybrid arguments for primitives that are supported
by Fcrypto. Instead, proofs rely on simpler information theoretic arguments only, which facilitates proofs and
makes it easier to uncover subtle problems that otherwise might get lost in sequences of reductions. At the
same time, our approach offers very high modularity and strong universal composable security guarantees.

We have illustrated the usefulness of our framework in three case studies. In the case of OPTLS, we
uncovered a subtle problem in the original reduction due to the simplicity of Fcrypto, which makes very
explicit in which cases security can be guaranteed.

In future work, we will apply our framework to other real world protocols and extend the framework to
further facilitate their cryptographic analysis.
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Responsive Environments. In J. H. Cheon and T. Takagi, editors, Advances in Cryptology - ASIACRYPT
2016 - 22nd International Conference on the Theory and Application of Cryptology and Information
Security, volume 10032 of Lecture Notes in Computer Science, pages 807–840. Springer, 2016.

29



[15] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In
Proceedings of the 42nd Annual Symposium on Foundations of Computer Science (FOCS 2001), pages
136–145. IEEE Computer Society, 2001.

[16] R. Canetti and M. Fischlin. Universally Composable Commitments. In Advances in Cryptology—
CRYPTO 2001, 21st Annual International Cryptology Conference, volume 2139 of Lecture Notes in
Computer Science, pages 19–40. Springer, 2001.

[17] R. Canetti and S. Gajek. Universally Composable Symbolic Analysis of Diffie-Hellman based Key
Exchange. Technical Report 2010/303, Cryptology ePrint Archive, 2010. Available at http://eprint.
iacr.org/2010/303.

[18] R. Canetti and H. Krawczyk. Analysis of Key-Exchange Protocols and Their Use for Building Secure
Channels. In B. Pfitzmann, editor, Advances in Cryptology – EUROCRYPT 2001, volume 2045 of
Lecture Notes in Computer Science, pages 453–474. Springer, 2001.

[19] R. Canetti and H. Krawczyk. Security Analysis of IKE’s Signature-Based Key-Exchange Protocol.
In M. Yung, editor, Advances in Cryptology - CRYPTO 2002, 22nd Annual International Cryptology
Conference, volume 2442 of Lecture Notes in Computer Science, pages 143–161. Springer, 2002.

[20] R. Canetti and H. Krawczyk. Universally Composable Notions of Key Exchange and Secure Channels. In
Advances in Cryptology - EUROCRYPT 2002, International Conference on the Theory and Applications
of Cryptographic Techniques, Proceedings, volume 2332 of Lecture Notes in Computer Science, pages
337–351. Springer, 2002.

[21] K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt, and D. Stebila. A Formal Security Analysis of
the Signal Messaging Protocol. IACR Cryptology ePrint Archive, 2016:1013, 2016.

[22] C. Cremers, M. Horvat, S. Scott, and T. van der Merwe. Automated Analysis and Verification of TLS
1.3: 0-RTT, Resumption and Delayed Authentication. In IEEE Symposium on Security and Privacy,
SP 2016, San Jose, CA, USA, May 22-26, 2016, pages 470–485. IEEE Computer Society, 2016.

[23] C. J. F. Cremers. The Scyther Tool: Verification, Falsification, and Analysis of Security Protocols.
In Computer Aided Verification, 20th International Conference, CAV 2008, Princeton, NJ, USA, July
7-14, 2008, Proceedings, volume 5123 of Lecture Notes in Computer Science, pages 414–418. Springer,
2008.

[24] C. J. F. Cremers and M. Feltz. Beyond eCK: Perfect Forward Secrecy under Actor Compromise and
Ephemeral-Key Reveal. In S. Foresti, M. Yung, and F. Martinelli, editors, Computer Security - ES-
ORICS 2012 - 17th European Symposium on Research in Computer Security, volume 7459 of Lecture
Notes in Computer Science, pages 734–751. Springer, 2012.

[25] B. Dowling, M. Fischlin, F. Günther, and D. Stebila. A Cryptographic Analysis of the TLS 1.3 Hand-
shake Protocol Candidates. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, CO, USA, October 12-6, 2015, pages 1197–1210. ACM, 2015.

[26] D. Hofheinz and V. Shoup. GNUC: A New Universal Composability Framework. J. Cryptology,
28(3):423–508, 2015.

[27] ISO/IEC IS 9798-3, Entity authentication mechanisms — Part 3: Entity authentication using assymetric
techniques, 1993.
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A Security Definitions

In this section, we present the security notions which we use to realize Fcrypto. All these notions are standard.
We note that traditionally game based security notions consider uniform adversaries, i.e., adversaries that
do not obtain an additional external input. In contrast, universal composability models usually consider
non-uniform environments that do obtain some external input. In order to reduce security both settings
have to be compatible. Hence, we use adapted versions of the security notions where non-uniform adversaries
are considered. Of course, all results of this paper also carry over to the uniform setting.

A.1 Symmetric encryption

Here we recall the definition of symmetric encryption schemes and the IND-CPA, IND-CCA2, and INT-
CTXT security notions.

Definition 2. A symmetric encryption scheme Σ = (gen, enc, dec) with plaintext domain dom(Σ) ⊆ {0, 1}∗
consists of three polynomial-time algorithms. The probabilistic key generation algorithm gen expects a security
parameter η and returns a key gen(1η). The probabilistic encryption algorithm enc expects a key k and a
plaintext m and returns a ciphertext enc(k,m) ∈ {0, 1}∗ or enc(k,m) = ⊥ (where ⊥ 6∈ {0, 1}∗ is a special
error symbol) if encryption fails. The deterministic decryption algorithm dec expects a key k and a ciphertext
c ∈ {0, 1}∗ and returns the plaintext dec(k, c) ∈ {0, 1}∗ or dec(k, c) = ⊥ if decryption fails.

It is required that for every security parameter η and key k generated by gen(1η) it holds that i) enc(k,m) =
⊥ if and only if m 6∈ dom(Σ) and ii) dec(k, enc(k,m)) = m for every plaintext m ∈ dom(Σ).

We assume that every encryption scheme is associated with a polynomial q that bounds the runtime of
the algorithms and the length of their description in some standard encoding. We say that Σ is q-bounded.
For all symmetric encryption schemes considered in this paper, we assume that the key generation algorithm
chooses keys uniformly at random from {0, 1}η.

We define LR(m0,m1, b) = mb for every b ∈ {0, 1} and m0,m1 ∈ {0, 1}∗ of the same length. If m0 and
m1 are not of the same length, we define LR(m0,m1, b) = ⊥.
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Definition 3 (IND-CPA security). A symmetric encryption scheme Σ is called IND-CPA secure if for every
probabilistic polynomial-time algorithm AO(·,·) with access to an oracle O, the IND-CPA advantage of A with
respect to Σ

AdvIND-CPA
A,Σ (1η, a) :=

∣∣∣ Pr
[
ExpIND-CPA−1

A,Σ (1η, a) = 1
]

− Pr
[
ExpIND-CPA−0

A,Σ (1η, a) = 1
] ∣∣∣

is negligible as a function in η and a, where the experiment ExpIND-CPA−b
A,Σ (b ∈ {0, 1}) is defined as follows:

function ExpIND-CPA−b
A,Σ (1η, a)

k := gen(1η)
return Aenc(k,LR(·,·,b))(1η, a)

end function

Definition 4 (IND-CCA2 security). A symmetric encryption scheme Σ is called IND-CCA2 secure if for
every probabilistic polynomial-time algorithm AO1(·,·),O2(·) with access to two oracles O1, O2 which never
queries O2 with a bit string returned by O1, the IND-CCA2 advantage of A with respect to Σ

AdvIND-CCA2
A,Σ (1η, a) :=

∣∣∣ Pr
[
ExpIND-CCA2−1

A,Σ (1η, a) = 1
]

− Pr
[
ExpIND-CCA2−0

A,Σ (1η, a) = 1
] ∣∣∣

is negligible as a function in η and a, where the experiment ExpIND-CCA2−b
A,Σ (b ∈ {0, 1}) is defined as follows:

function ExpIND-CCA2−b
A,Σ (1η, a)

k := gen(1η)
return Aenc(k,LR(·,·,b)),dec(k,·)(1η, a)

end function

Definition 5 (INT-CTXT security). A symmetric encryption scheme Σ is called INT-CTXT secure if for
every probabilistic polynomial-time algorithm AO1(·),O2(·) with access to two oracles O1, O2, the INT-CTXT
advantage of A with respect to Σ

AdvINT-CTXT
A,Σ (1η, a) := Pr

[
ExpINT-CTXT

A,Σ (1η, a) = 1
]

is negligible as a function in η and a, where the experiment ExpINT-CTXT
A,Σ is defined as follows:

function ExpINT-CTXT
A,Σ (1η, a)

k := gen(1η)
Run Aenc(k,·),dec(k,·)(1η, a)
return 1 if A makes a query c to dec(k, ·) such that dec(k, c) 6= ⊥ and c was not previously

returned by enc(k, ·).
return 0, otherwise

end function

A.2 Public-Key Encryption

Here we recall the definition of public-key encryption schemes and IND-CCA2 security notion.

Definition 6. A public-key encryption scheme Σ = (gen, enc, dec) with plaintext domain dom(Σ) ⊆ {0, 1}∗
consists of three polynomial-time algorithms. The probabilistic key generation algorithm gen expects a security
parameter η and returns a pair of keys (kd, ke), the secret (or decryption) key kd and the public (or encryption)
key ke. The probabilistic encryption algorithm enc expects a public key ke and a plaintext m and returns a
ciphertext enc(ke,m) ∈ {0, 1}∗ or enc(ke,m) = ⊥ (where ⊥ 6∈ {0, 1}∗ is a special error symbol) if encryption
fails. The deterministic decryption algorithm dec expects a private key kd and a ciphertext c ∈ {0, 1}∗ and
returns the plaintext dec(kd, c) ∈ {0, 1}∗ or dec(kd, c) = ⊥ if decryption fails.
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It is required that for every security parameter η and key pair (Kd, ke) generated by gen(1η) it holds that i)
enc(ke,m) = ⊥ if and only if m 6∈ dom(Σ) and ii) dec(kd, enc(ke,m)) = m for every plaintext m ∈ dom(Σ).

We assume that every encryption scheme is associated with a polynomial q that bounds the runtime of
the algorithms and the length of their description in some standard encoding. We say that Σ is q-bounded.

We define LR(m0,m1, b) = mb for every b ∈ {0, 1} and m0,m1 ∈ {0, 1}∗ of the same length. If m0 and
m1 are not of the same length, we define LR(m0,m1, b) = ⊥.

Definition 7 (IND-CCA2 security). A public-key encryption scheme Σ is called IND-CCA2 secure if for
every probabilistic polynomial-time algorithm AO1(·,·),O2(·) with access to two oracles O1, O2 which never
queries O2 with a bit string returned by O1, the IND-CCA2 advantage of A with respect to Σ

AdvIND-CCA2
A,Σ (1η, a) :=

∣∣∣ Pr
[
ExpIND-CCA2−1

A,Σ (1η, a) = 1
]

− Pr
[
ExpIND-CCA2−0

A,Σ (1η, a) = 1
] ∣∣∣

is negligible as a function in η and a, where the experiment ExpIND-CCA2−b
A,Σ (b ∈ {0, 1}) is defined as follows:

function ExpIND-CCA2−b
A,Σ (1η, a)

(ke, kd) := gen(1η)
return Aenc(ke,LR(·,·,b)),dec(kd,·)(1η, a)

end function

A.3 Message Authentication Codes (MACs)

In this section, we recall the defintion of MACS and the UF-CMA security notion.

Definition 8. A message authentication code (MAC) scheme Σ = (gen,mac, verify) consists of three poly-
time algorithms. The probabilistic key generation algorithm gen expects a security parameter η and returns a
key gen(1η). The (possibly) probabilistic MAC algorithm mac expects a key k and a message m and returns
a message authentication code mac(k,m). The deterministic verification algorithm verify expects a key k, a
message m, and a message authentication code σ and returns verify(k,m, σ) ∈ {true, false}.

It is required that for every security paramater η ∈ N, key k generated by gen(1η), and message m ∈ {0, 1}∗
it holds that verify(k,m,mac(k,m)) = true.

For all MAC schemes considered in this paper, we assume that the key generation algorithm chooses keys
uniformly at random from {0, 1}η

Definition 9 (UF-CMA security). A MAC scheme Σ is called UF-CMA secure if for every probabilistic
polynomial-time algorithm AO1(·,·),O2(·) with access to two oracles O1, O2, the UF-CMA advantage of A with
respect to Σ

AdvUF-CMA
A,Σ (1η, a) := Pr

[
ExpUF-CMA

A,Σ (1η, a) = 1
]

is negligible as a function in η and a, where the experiment ExpUF-CMA
A,Σ is defined as follows:

function ExpUF-CMA
A,Σ (1η, a)

k := gen(1η)
(m,σ) = Amac(k,·),verify(k,·,·)(1η, a)
return 1 iff verify(k,m, σ) = true and A has not previously called mac(k,m).
return 0, otherwise.

end function
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A.4 Digital Signature Schemes

In this section, we recall the defintion of digital signature schemes and the UF-CMA security notion.

Definition 10. A (digital) signature scheme Σ = (gen, sig, verify) consists of three polynomial-time algo-
rithms. The probabilistic key generation algorithm gen expects a security parameter η and returns a pair of
keys (ks, kv), the secret (or signing) key ks and the public (or verifcation) key kv. The (possibly) probabilistic
signing algorithm sig expects a private key ks and a message m ∈ {0, 1}∗ and returns a signature sig(ks,m).
The deterministic verification algorithm verify expects a public key kv, a message m ∈ {0, 1}∗, and a message
authentication code σ and returns verify(kv,m, σ) ∈ {true, false}.

It is required that for every security paramater η ∈ N, key pair (ks, kv) generated by gen(1η), and message
m ∈ {0, 1}∗ it holds that verify(kv,m, sig(ks,m)) = true.

Definition 11 (UF-CMA security). A digital signature scheme Σ is called UF-CMA secure if for every
probabilistic polynomial-time algorithm AO with access to a signing oracle O, the UF-CMA advantage of A
with respect to Σ

AdvUF-CMA
A,Σ (1η, a) := Pr

[
ExpUF-CMA

A,Σ (1η, a) = 1
]

is negligible as a function in η and a, where the experiment ExpUF-CMA
A,Σ is defined as follows:

function ExpUF-CMA
A,Σ (1η, a)

(ks, kv) := gen(1η)
(m,σ) = Asig(ks,·)(1η, a, kv)
return 1 iff verify(kv,m, σ) = true and A has not previously called sig(ks,m).
return 0, otherwise.

end function

A.5 Decisional Diffie Hellman

In this section, we recall the Decisional Diffie Hellman (DDH) assumption. The DDH assumption is defined
with respect to an algorithm GroupGen(1η) that runs in polynomial time in η (except for a negligible proba-
bility) and outputs a tuple of the form (G,n, g) of polynomial length (in η), where G is a group description,
n = |G|, and g is a generator of G.

Definition 12 (DDH assumption). Let GroupGen be an algorithm as above. The DDH assumption holds
for GroupGen if for every polynomial time algorithm A (in η and |a|) the DDH advantage of A

AdvDDH
A,GroupGen(1

η, a) :=
∣∣∣ Pr

[
ExpDDH−1

A,GroupGen(1
η, a) = 1

]
− Pr

[
ExpDDH−0

A,GroupGen(1
η, a) = 1

] ∣∣∣
is negligible as a function in η and a, where the experiment ExpDDH−b

A,Σ (b ∈ {0, 1}) is defined as follows:

function ExpDDH−b′
A,GroupGen(1η, a)

(G,n, g) := GroupGen(1η)

a
$← {1, . . . , n}, b $← {1, . . . , n}, c $← {1, . . . , n}

if b′ = 1 then
return A(1η, a, (G,n, g, ga, gb, gab))

else
return A(1η, a, (G,n, g, ga, gb, gc))

end if
end function
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A.6 Pseudo-Random Functions

In this section, we recall the definition of secure PRFs, and define secure PRFs keyed with Diffie-Hellman
group elements.

Let h : {0, 1}∗ → {0, 1}η be the following probabilistic, stateful algorithm. It maintains a set H which is
initially empty. Upon input s ∈ {0, 1}∗, h returns x if there exists an x such that (x, s) ∈ H. Otherwise, h
chooses x uniformly at random from {0, 1}η, adds (x, s) to H, and returns x. Furthermore, let GroupGen(1η)
be an algorithm that runs in polynomial time in η (except for a negligible probability) and outputs a tuple of
the form (G,n, g) of polynomial length (in η), where G is a group description, n = |G|, and g is a generator
of G.

Definition 13 (PRF security). Let F = {Fη}η∈N with Fη : {0, 1}η × {0, 1}∗ → {0, 1}η be a family of
efficiently computable functions. F is called a pseudo-random function family if for every polynomial time
algorithm A (in η and |a|) the PRF advantage of A

AdvPRF
A,F,GroupGen(1

η, a) :=
∣∣∣ Pr

[
ExpPRF−1

A,F,GroupGen(1
η, a) = 1

]
− Pr

[
ExpPRF−0

A,F,GroupGen(1
η, a) = 1

] ∣∣∣
is negligible as a function in η and a, where the experiment ExpPRF−b

A,F,GroupGen (b ∈ {0, 1}) is defined as follows:

function ExpPRF−b
A,F,GroupGen(1η, a)

k
$← {0, 1}η

if b = 1 then
O(·) := Fη(k, ·)

else
O(·) := h(·)

end if
return AO(·)(1η, a)

end function

Definition 14 (PRF security on groups). Let F = {Fη}η∈N with Fη : {0, 1}∗ × {0, 1}∗ → {0, 1}η be a
family of efficiently computable functions and let GroupGen be an algorithm as defined above. F is called
a pseudo-random function family for GroupGen if for every polynomial time algorithm A (in η and |a|) the
group PRF advantage of A

AdvG-PRF
A,F,GroupGen(1

η, a) :=
∣∣∣ Pr

[
ExpG-PRF−1

A,F,GroupGen(1
η, a) = 1

]
− Pr

[
ExpG-PRF−0

A,F,GroupGen(1
η, a) = 1

] ∣∣∣
is negligible as a function in η and a, where the experiment ExpG-PRF−b

A,F,GroupGen (b ∈ {0, 1}) is defined as follows:

function ExpG-PRF−b
A,F,GroupGen(1η, a)

(G,n, g) := GroupGen(1η)

k
$← G

if b = 1 then
O(·) := Fη(k, ·)

else
O(·) := h(·)

end if
return AO(·)(1η, a, (G,n, g))

end function
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B Full proof of Theorem 2

Proof. We use the same simulator S as in the original proof from [39], but extend it as follows: When it
receives the group (G,n, g) that was generated via GroupGen by Fcrypto, it stores this group to use it for
the simulation of Pcrypto. S responds by sending the algorithms from the parameters of Pcrypto to Fcrypto.

If Fcrypto asks for an exponent, S returns e
$← {1, . . . , n}; if it asks for an unknown DH key, S returns gc

for c
$← {1, . . . , n}; if it asks for a known DH key, S returns he (where h and e are provided by Fcrypto).

Key derivation for keys of type dh-key is handled exactly as key derivation for keys of type pre-key but
using the F ′ family instead of the F family. If Fcrypto refuses to accept a response locally generated by the
simulator (e.g., a new exponent for the GenExp command is not fresh und thus rejected), then S resigns the
simulation, i.e., it stops and blocks all future messages.

Observe that all runtime conditions are fulfilled: Pcrypto, Fcrypto, and the system S |Fcrypto are envi-
ronmentally bounded. Here we need the requirements imposed on GroupGen, i.e., the algorithm runs in
polynomial time (except for a negligible set of runs) and group membership is efficiently decidable.

The following proof proceeds in five steps steps which replace one part of Pcrypto with the version used
in Fcrypto. In the first step, all asymmetric operations and nonce generation from Pcrypto are replaced with
their ideal versions from Fcrypto. In the second step, real DH exponent handling is replaced with ideal
DH exponent handling. In the third step, a hybrid argument is used to replace DH key generation from
Pcrypto with the ideal version from Fcrypto. In the the fourth step, a hybrid argument is used to replace
real symmetric encryption and key derivation, and prevent key guessing and key collisions. This hybrid
argument is necessary since Pcrypto/Fcrypto allows encryption of symmetric keys, i.e., security of these keys
depends on the security of the encryption scheme. At the same time, key derivation keys and encryption
keys can be used (either directly or indirectly) to encrypt other messages, i.e., the security of the encryption
also depends on the security of the key derivation. In the fifth step, we replace real MACs with their ideal
form. We conclude the proof by combining all steps and showing that the simulator is responsive.

Step 1 For this step, we define a machine P1
crypto that works just as Pcrypto except for signature handling,

asymmetric encryption and decryption, and nonce generation, which work just as in Fcrypto. As these
operations are unaffected by our extension concerning Diffie-Hellman key exchanges, we can use the same
argument as in [39] to show

E |F∗ | Pcrypto ≡ E | S |F∗ | P1
crypto (1)

for all responsive environments E ∈ EnvR(F∗ | Pcrypto). Note that there are two differences compared to the
original proof: First, here we use responsive environments. However, because the original proof held for
all environments, it holds for all responsive environments in particular. Second, we use adaptive instead of
static corruption for signatures. The same proof still holds in this case, as it relies on a result from [36] that
was also proven for adaptive corruption.

Step 2 We define another machine P2
crypto that works as P1

crypto, except for creating and storing exponents,
which is handled as in Fcrypto. That is, P2

crypto maintains the sets Exp and Expknown. The GenExp command
asks the simulator to provide an exponent e which has to be fresh (i.e., e 6∈ Exp and ge 6∈ BlockedElements),
and for StoreExp commands key guessing is prevented (i.e., e 6∈ Exp\Expknown). Upon receiving a GenDHKey

command, P2
crypto marks the involved exponent as known iff Fcrypto would mark it as known. Upon receiving

a BlockGroupElement command, P2
crypto adds the group element to BlockedElements. We have to show that

E | S | F∗ | P1
crypto ≡ E | S |F∗ | P2

crypto (2)

for all responsive environments E ∈ EnvR(S |F∗ | P1
crypto).

For any such environment E let Enot-fresh be the event that, in a run of E | S | F∗ | P1
crypto, while processing

a GenExp command the simulator provides an exponent e that is not fresh and thus rejected. Furthermore,
let Eexp-guessing be the event that, in a run of E | S | F∗ | P1

crypto, the StoreExp command is used to store
an exponent that already is in Exp\Expknown. Since both P1

crypto and P2
crypto behave exactly the same in
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runs that belong to neither Enot-fresh nor Eexp-guessing, it suffices to show that both events have a negligible
probability to prove (2).

Suppose Enot-fresh was non-negligible, i.e., some exponent e is not fresh in a non-negligible set of runs. As
the runtime of the environment E is bounded by a polynomial pE , we have that there are at most polynomial
many exponents ei created during a run. When an exponent e is created, there is at most a polynomial
number of group elements gei and h ∈ BlockedElements that ge it can collide with (note that gei = ge iff
ei = e, i.e., we can talk about collisions of group elements only). As e is also chosen independently of these

group elements, we conclude that when choosing a single e
$← {1, . . . , n} the probability for a collision of ge

with a single (fixed) group element h is also be non-negligible.
This allows for constructing an adversary A on the DDH assumption (cf. Section A.5 in the Appendix).

Recall that A receives the security parameter η, external input a, a group description (G,n, g), and a

challenge (ga, gb, h) where either h = gab (if b′ = 1) or h = gc for c
$← {1, . . . , n} (if b′ = 0). A has to guess

the correct bit b′. It proceeds as follows: First, it generates an exponent e
$← {1, . . . , n} and checks whether

ga = ge. If not, A resigns by outputting 1. Otherwise, A uses e = a to check whether h = (gb)a and outputs
1 if this check succeeds; it outputs 0 otherwise. It is trivial to see that the runtime of A is bounded by a
polynomial.

We have that AdvDDH
A,GroupGen ≥ f(1η, a) · 1

2 where f is a non-negligible function: Observe that A resigns
for both b′ = 0 and b′ = 1 with the same probability and hence these runs do not influence the advantage
of A. The adversary does not resign with a non-negligible probability f (as ge collides with ga with non-
negligible probability, as explained above), in which case he will always guess correctly if b′ = 1 and only
guess incorrectly in case of b′ = 0 if c = a · b. As we assumed n ≥ 2 in Theorem 2, this happens with
probability at most 1

2 , which gives the claim. Because A violates the DDH assumption, we conclude that
Enot-fresh is negligible.

We still have to show that the event Eexp-guessing is negligible. Suppose that it was non-negligible by
contradiction. Then there is a non-negligible set of runs where there is some unknown exponent e such that
the environment tries to use the StoreExp command to store e. This can be used by an adversary A to
violate the DDH assumption.

Before we define A, observe that S |F∗ | P1
crypto is environmentally bounded, as one easily verifies, and

hence there is a polynomial q that bounds the runtime of E | S | F∗ | P1
crypto with overwhelming probability.

Thus, there is a non-negligible set of runs that are in Eexp-guessing and that do not exceed the runtime bound
q.

We can now define A: The adversary first guesses when the exponent e is created. Say, A guesses e to
be created via the i-th GenExp command, where 1 ≤ i ≤ pE(η, |a|) (recall that there are at most pE(η, |a|)
exponents as the runtime of E is bounded by pE). A then simulates a run of E | S | F∗ | P1

crypto but with the
group (G,n, g) from the experiment. The output of the i-th GenExp command is replaced with ga. If at some
point E tries to store a in P1

crypto, A remembers a for the next step and stops the simulation. Otherwise, A
continues until either the i-th exponent is marked known, the runtime bound q is violated, or the run ends,
in which case A resigns and outputs 1. If A does not resign, he can use a to calculate (gb)a and output 1 iff
h = gab. The adversary A runs in polynomial time as it simulates at most q steps of the system.

Observe that A is in fact able to simulate the system E | S | F∗ | P1
crypto in the way described above, even

though it replaced e with a without knowing the actual value of a: If E tries to retrieve a, then A resigns
since event Eexp-guessing cannot occur anymore. If E tries to generate a known DH key from exponent a and
DH share h, where the secret exponent d such that gd = h is not stored in Exp, then again A resigns as the
exponent a will be marked known. The same holds if E tries to generate a DH key from a with ga. In every
other case of DH key generation from a, the exponent will be used with some DH share gd where d ∈ Exp
and d 6= a. Hence, A knows d and can calculate (ga)d even without knowing a.

Overall, we have that AdvDDH
A,GroupGen ≥ 1

pE(η,|a|) · f(1η, a) · 1
2 for a polynomial pE and a non-negligible

function f : First observe that A resigns for both b′ = 0 and b′ = 1 with the same probability, so these runs
do not affect its advantage. The adversary does not resign if he simulates a run where Eexp-guessing occurs
and the runtime bound p′ is not violated (which happens with non-negligible probability f) and he guessed
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correctly when the event Eexp-guessing occurs (which happens with probability at least 1
pE(η,|a|) , where pE is

the runtime bound of E). In runs where A does not resign, he will always guess the correct bit in case of

b′ = 1, and will only be incorrect in case of b′ = 0 if c = a · b for c
$← {1, . . . , n}. As we require n ≥ 2, this

implies that he will be wrong for b′ = 0 with probability at most 1
2 , which gives the claim.

Because A violates the DDH assumption with its non-negligible advantage, we conclude that Eexp-guessing

is negligible. This concludes step 2 as both Enot-fresh and Eexp-guessing are negligible.

Step 3 In this step, we replace real Diffie Hellman keys with ideal ones, however, without preventing key
collisions or key guessing for DH keys. To be more precise, let P3

crypto be the system that works just as P2
crypto

except for creating DH keys, which is done as in Fcrypto. That is, upon receiving a GenDHKey command,
P3

crypto asks the simulator to provide the actual value k for the DH key. The key k is then used without
checking for key collisions or key guessing (this is done in a later step as resistance to key guessing also
depends on the security of the key derivation and symmetric encryption scheme). In the following, we will
show that

E | S | F∗ | P2
crypto ≡ E | S |F∗ | P3

crypto (3)

for all E ∈ EnvR(S |F∗ | P2
crypto).

We prove (3) via a hybrid argument where we replace real with ideal unknown DH keys in the order of
their creation. For this we define hybrid systems Hr, r ∈ N, which behave just as P3

crypto for unknown DH
keys up to (and including) the r-th unknown DH key, and otherwise behave as P2

crypto. More specifically, Hr
keeps track of the order in which unknown DH keys are created. If an unknown DH key of order i is created
and i <= r, then the DH key is created as in P3

crypto, otherwise it is created as in P2
crypto. For brevity of

presentation, we define the following combined system:

Dr := S |F∗ |Hr

Now let E ∈ EnvR(S |F∗ | P2
crypto). Recall that we write R ≡f Q if the difference in the probabilities for

outputting 1 in runs of R and Q is bounded from above by a function f . It is trivial to see that there is a
negligible function f0 such that

E | S | F∗ | P2
crypto ≡f0 E |D0 (4)

as both systems behave in exactly the same way. Furthermore, as there is a polynomial pE that bounds
the runtime of E in runs with any system, there will be at most pE(η, |a|) DH keys generated in runs of
E | S | F∗ | P3

crypto. Hence, there must be a negligible function fpE such that

E | S | F∗ | P3
crypto ≡fpE E |DpE(η,|a|) (5)

as both systems behave exactly the same if no more than pE(η, |a|) DH keys are created.
We now show a lemma that says that the systems E |Dr and E |Dr+1 are indistinguishable for 0 ≤ r ≤

pE(η, |a|), where the negligible function that bounds the distinguishing advantage is independent of r. This
will immediately imply (3).

Lemma 1. There exists a negligible function f ′ such that for all 0 ≤ r ≤ pE(η, |a|) the following holds true:

E |Dr ≡f ′ E |Dr+1

Proof. We start by showing that for every 0 ≤ r ≤ pE(η, |a|) there is a negligible function f ′r that bounds
the distinguishing advantage. We then show how the argument can be extended to obtain a single negligible
function f ′ that bounds the advantage for all 0 ≤ r ≤ pE(η, |a|).

First, observe that we can find a single polynomial q and a single negligible function f such that for all
0 ≤ r ≤ pE(η, |a|) the runtime of E |Dr is bounded by q except for a negligible set of runs, where f bounds
the probability of these runs from above. This is because E has the same runtime pE in all runs with any
system, so can use at most pE commands. Thus, the runtime of Dr can be bounded by pE · t + c where t
is a worst case bound for any command and c bounds the runtime of the initialization. Note that c does
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not depend on r as initialization occurs before any keys can be created. Also, the runtime bound is violated
only if GroupGen does not run in polynomial time, which happens with at most negligible probability.

Let 0 ≤ r ≤ pE(η, |a|) and suppose by contradiction that there is no negligible function f ′r such that∣∣ Pr [E |Dr = 1] − Pr [E |Dr+1 = 1]
∣∣≤ f ′r. Note that the systems Dr and Dr+1 are almost identical in their

behavior; the only difference is the handling of unknown DH keys of order r + 1, which are generated by

calculating gab in Dr while Dr+1 uses gc, c
$← {1, . . . , n}. We can use this to construct an adversary A on

the DDH assumption; but first, we need to introduce some terminology.
In the following, let [E |Dr]q denote the system that behaves just as E |Dr but runs at most q(η, |a|)

steps and, if this bound is violated, stops with output 1. As this bound is reached with at most negligible
probability, we have that

∣∣ Pr [[E |Dr]q = 1] − Pr [[E |Dr+1]q = 1]
∣∣ is also non-negligible. Furthermore, let

Ekey-created be the event that in a run of [E |Dr]q or [E |Dr+1]q an unknown DH key of order r+ 1 is created.
As the systems Dr and Dr+1 behave exactly the same until an unknown DH key of order r + 1 is created,
the event Ekey-created has the same probability in both systems and an environment can use only runs from
Ekey-created to distinguish these systems. That is, we have∣∣ Pr [[E |Dr]q = 1]− Pr [[E |Dr+1]q = 1]

∣∣
=
∣∣ Pr [([E |Dr]q = 1) ∧ Ekey-created]

− Pr [([E |Dr+1]q = 1) ∧ Ekey-created]
∣∣

= Pr [Ekey-created] ·
∣∣ Pr [([E |Dr]q = 1)|Ekey-created]

− Pr [([E |Dr+1]q = 1)|Ekey-created]
∣∣ (6)

We can now define the adversary A. Recall that an adversary on the DDH experiment (cf. Section A.5
in the Appendix) gets as input (1η, a, (G,n, g, ga, gb, h)) where either h = gab (if b′ = 1) or h = gc (if b′ = 0).
The adversary A guesses which exponents will be used to create the unknown DH key of order r+ 1. To be
more precise, as E will create at most pE(η, |a|) exponents, A has to guess an order i ∈ {1, . . . , pE(η, |a|)− 1}
for the first exponent and an order j ∈ {i+1, . . . , pE(η, |a|)} for the second one. A then continues to simulate
a run of [E |Dr]q with the following changes: Instead of executing GroupGen, it uses the group (G,n, g) from
the DDH experiment. Instead of generating the i-th exponent as in Dr, A uses ga from the DDH experiment.
When the j-th exponent is generated, A uses gb from the DDH experiment. The unknown DH key of order
r+ 1 is replaced with h from the DDH experiment. If no unknown DH key of order r+ 1 is generated, or it
is not generated from the i-th and j-th exponent, the adversary aborts the simulation and outputs 1. If the
simulation finishes without A aborting, then A forwards the bit that is output by [E |Dr]q at the end of the
run. It is easy to see that A runs in polynomial time as the runtime of [E |Dr]q is bounded by q.

Observe that this simulation is possible even without knowing the actual values of a and b: The checks
on exponent collisions and exponent guessing can be performed by using ga and gb instead, as a collides
with some other exponent e ∈ {1, . . . , n} if and only if ga collides with ge (as g is a generator of G). If the
environment tries to retrieve a or b before an unknown DH key of order r+ 1 was created, then A aborts the
run as one of the exponents gets marked known and cannot be used to created unknown keys anymore. If a
or b are used to create an unknown DH key of order smaller than r+ 1, then this is easy to simulate as such
keys are created ideally. If a or b are used to created a known DH key before the r + 1-st one, then either
they become known or they are created with a DH share ge where e ∈ Exp and e 6= a or e 6= b, respectively.
In the former case, A aborts, while in the latter case, it can calculate (ga)e or (gb)e, respectively, as it knows
e. If A guessed correctly and ga and gb have been used to create an unknown DH key of order r + 1, then
both a and b will stay unknown during the whole run as the environment does not cause the commitment
problem. Thus, neither of them will be retrieved, and if ga or gb are used to create another key after the
r + 1-st one, it will be created with a DH share ge where e ∈ Exp and e 6= a or e 6= b, respectively. As
explained above, A can simulate key generation in this case as it knows e.

Let Eno-abort be the event that A does not abort. Observe that this event does not depend on the bit b′

from the DDH experiment as the simulation is independent of b′ until an unknown DH key of order r+1 has
been created, at which point A will no longer abort. This implies that runs where A aborts do not influence
AdvDDH

A,GroupGen at all. Furthermore, we have that Pr [Eno-abort] ≥ pE−2 · Pr [Ekey-created] as A will not abort if,
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in the run it simulates, an unknown DH key of order r+ 1 is created and he guessed the exponents correctly
(we use pE

−2 to bound the probability for a correct guess from below. This estimation can still be improved,
but is sufficient for the proof).

In every run where A does not abort, it perfectly simulates one run of either [E |Dr]q (if b′ = 1) or
[E |Dr+1]q (if b′ = 0) from Ekey-created. Formally, we can establish a bijection from runs in Ekey-created to

runs of ExpDDH−1
A,GroupGen/ExpDDH−0

A,GroupGen where A does not abort as follows: Let α be a run from Ekey-created.

Then there are two different exponents ā and b̄ that have been used to create an unknown DH key of order
r + 1; let ī be the position of the first and j̄ be the position of the second one. We map α to the run β of
ExpDDH−1

A,GroupGen/ExpDDH−0
A,GroupGen where a = ā, b = b̄, i = ī, j = j̄. It is easy to verify that β is a run of A where

the adversary does not abort.
Note that we can only define this bijection as unknown DH keys are always created from two different

exponents, i.e., Fcrypto does not allow creating unknown keys by pairing some unknown exponent e with ge.
If Fcrypto did allow this, then there might be runs where ī = j̄, which cannot occur in A. It is impossible
to extend A to also cover this case, as a might have to calculate (ga)a without knowing a if b′ = 1 and
i = ī = j̄ = j.

Overall, we have that

AdvDDH
A,GroupGen

=
∣∣∣ Pr

[
ExpDDH−1

A,GroupGen = 1
]
− Pr

[
ExpDDH−0

A,GroupGen = 1
] ∣∣∣

= Pr [Eno-abort] ·
∣∣∣ Pr

[
(ExpDDH−1

A,GroupGen = 1)|Eno-abort

]
− Pr

[
(ExpDDH−0

A,GroupGen = 1)|Eno-abort

] ∣∣∣
= Pr [Eno-abort] ·

∣∣∣ Pr [([E |Dr]q = 1)|Ekey-created]

− Pr [([E |Dr+1]q = 1)|Ekey-created]
∣∣∣

≥ pE−2 · Pr [Ekey-created] ·
∣∣∣ Pr [([E |Dr]q = 1)|Ekey-created]

− Pr [([E |Dr+1]q = 1)|Ekey-created]
∣∣∣

(6)
= pE

−2·
∣∣∣ Pr [[E |Dr]q = 1]− Pr [[E |Dr+1]q = 1]

∣∣∣
, which is non-negligible by assumption. As this breaks the DDH assumption, we conclude that there must
be a negligible function f ′r such that E |Dr ≡f ′

r
E |Dr+1.

To receive a negligible bound f ′ that holds for all 0 ≤ r ≤ pE(η, |a|), one uses the same argument with
an adversary A that first guesses r and then simulates [E |Dr]q. Note that here we need that q bounds the
runtime of E |Dr with the same negligible probability independently of r.

With Lemma 1 we can now conclude the proof of the third step. We have that∣∣∣ Pr
[
E | S | F∗ | P2

crypto = 1
]
− Pr

[
E | S | F∗ | P3

crypto = 1
] ∣∣∣

≤ f0 + fq+
∣∣∣ Pr [E |D0 = 1]− Pr

[
E |DpE(η,|a|) = 1

] ∣∣∣
≤ f0 + fq +

pE(η,|a|)−1∑
r=0

∣∣∣ Pr [E |Dr = 1]− Pr [E |Dr+1 = 1]
∣∣∣

≤ f0 + fq + pE(η, |a|) · f ′

, where f0 is the negligible function from (4), fq is the negligible function from (5), pE is the polynomial that
bounds the runtime of E , and f ′ is the negligible function from Lemma 1. As this is negligible, we conclude
that E | S | F∗ | P2

crypto ≡ E | S |F∗ | P3
crypto
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Step 4 In this step we replace real symmetric encryption/decryption and key derivation with their ideal
versions; MACs are handled in the next step. Furthermore, we prevent key collisions for fresh unknown
keys, and key guessing of unknown keys for known keys inserted by the environment/adversary. This step is
mostly the same as in [39] with the following adjustments: (i) all hybrid systems have to be extended to also
include DH key handling, (ii) we have to show that real key derivation from DH keys is indistinguishable
from ideal key derivation from DH keys, and (iii) we have to show that key collisions and key guessing happen
only with negligible probability for DH keys. We will reuse the original notation from [39] and only sketch
the proof where it remains (mostly) unchanged, such that the reader can refer to the original proof for full
details.

Let F ′crypto be the machine that behaves exactly as Fcrypto except for creating and verifying MACs, which
is handled as in Pcrypto. In this step we prove that

E | S | F∗ | P3
crypto ≡ E | S |F∗ | F ′crypto

for all E ∈ EnvR(S |F∗ | P3
crypto). This is done via a hybrid argument where one replaces real with ideal key

handling in the order in which unknown keys of type t 6= mac-key are used for the first time. Just as in [39],
in our proof we will not explicitly deal with keys of type unauthenc-key for simplicity of presentation. The
proof for keys of this type is analogous to the one for keys of type authenc-key but involves some additional
technicalities. We refer the reader to [39] and [37] for details on how to deal with keys of type unauthenc-key.

For r ∈ N let F (r)
crypto be the hybrid machine that behaves as F ′crypto but additionally keeps track of the

order in which unknown keys are used for the first time to encrypt a message or derive a key. That is, F (r)
crypto

maintains a variable nextused (initially set to 1) that stores the order of the next unknown key that is used

for the first time. Furthermore, F (r)
crypto has a partial function used that maps unknown keys to their order,

or ⊥ if they have not been used yet. If an unknown key k of order i < r is used, then F (r)
crypto performs the

operation ideally, i.e., as in F ′crypto, while operations with keys of order i ≥ r are performed as in P3
crypto.

Key collisions in F (r)
crypto are prevented for unknown keys that are provided by the simulator. Additionally,

key guessing is relaxed as follows in F (r)
crypto: If nextused ≤ r, then key guessing is prevented for all unknown

keys. If nextused > r (i.e., at least one operation with an unknown key has been performed non-ideally),
then key guessing is prevented only for unknown keys of order j ≤ r.

We also need an oracle Ob that is parameterized with b ∈ {real, ideal}. This oracle models usage of a
single symmetric key of type t 6= mac-key either in a real or ideal way, depending on b. Compared to the
version of [39], our oracle has to be extended to also deal with keys of type dh-key. More formally, Ob
is a single machine that has at most one instance. Upon its first activation, it runs GroupGen and saves
the result. The environment can ask Ob at any time for the generated group. Except for this request, the
oracle does not allow the environment to perform any tasks until it has initialized Ob with a single key type

t 6= mac-key. Upon receiving a key type t, O either generates a key k = gc, c
$← {1, . . . , n} if t = dh-key,

or k
$← {0, 1}η otherwise. Then, Ob provides the environment with an interface to use the generated key to

perform real (i.e., as in Pcrypto) or ideal operations (i.e., as in Fcrypto), depending on b. The following lemma
states that no environment can distinguish the real and ideal oracle because the underlying primitives are
secure:

Lemma 2. Let Oreal and Oideal be as above. Then it holds that

E |Oreal ≡ E |Oideal

for all E ∈ EnvR(Oreal).

Proof. This lemma is easy to prove with standard reduction techniques as all primitives are secure in their
respective security games. In [39] this lemma was already proven for encryption and key derivation from
keys of type pre-key. The proof for key derivation from DH keys is the same as for key derivation from keys
of type pre-key. Note in particular that DH keys in Ob and the security experiment (see Appendix A.6) are
sampled in the same way, which allows for a reduction from one setting to the other.
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Finally, we recall the hybrid system F̂ (r)
crypto that works as F (r)

crypto but connects to Ob. Instead of running

GroupGen itself, F̂ (r)
crypto requests the group from Ob. Furthermore, F̂ (r)

crypto uses Ob to handle operations
performed with unknown keys of order r (i.e., the first key for which operations are performed real in

F (r)
crypto). That is, F̂ (r)

crypto still internally maintains a key k of order r, which might be encrypted by other

keys as part of a plain text; however, if this key is used at some point, F̂ (r)
crypto relays the call to the subroutine

Ob instead and forwards the output (if Ob has not been initialized with a key type yet, then this is done
first).

Now let E ∈ EnvR(S |F∗ | P3
crypto). Let pE be a polynomial such that the runtime of E (in any run with

any system) is bounded by pE(η, |a|) − 1; such a polynomial exists as E is an environment. For brevity, we
define the following combined systems for r ∈ N and b ∈ {real, ideal}:

C(r) := E | S | F∗ | F (r)
crypto

Ĉ(r)
b := E | S | F∗ | F̂ (r)

crypto | Ob
We first show an auxiliary lemma that allows us to ignore key collisions in our proofs. More formally, let

B
(r)
coll be the event that in a run of C(r) the simulator S generates an unknown symmetric key (of any type)

such that F (r)
crypto rejects the key as it collides with some other existing key in Keys. The following lemma

states that this happens with negligible probability where the probability is independent of r.

Lemma 3. There exists a single negligible function fcoll such that for all 0 ≤ r ≤ pE(η, |a|) it holds true that

Pr
[
B

(r)
coll(1

η, a)
]
≤ fcoll(1η, a)

Proof. This lemma was already proven for symmetric keys of type t 6= dh-key.
For keys of type t = dh-key, observe that such a key is generated by choosing a random exponent

c
$← {1, . . . , n} independently of the other keys (which are group elements themselves) that are currently

stored in F (r)
crypto. This is the same setting as in step 2), where we have shown that, when randomly choosing

polynomially many exponents ei, there is only a negligible chance that any of the group elements gei collides
with one of polynomially many of group elements.

Thus, by the same argument as in step 2), we have that collisions of fresh unknown keys of type dh-key
also happen with negligible probability if the DDH assumption holds and groups always have size n ≥ 2.
Note in particular that the probability of a collision only depends on the size of the group n and the number

of group elements contained in F (r)
crypto, which is upper bounded by the polynomial pE . As both of these are

independent of r, we have that the negligible bound of B
(r)
coll(1

η, a) is also independent of r.

We can use Lemma 3 to show that C(0) is indistinguishable from E | S | F∗ | P3
crypto and that C(pE(η,|a|)) is

indistinguishable from E | S | F∗ | F ′crypto.

Lemma 4. There exist negligible function f0 and fpE such that:

C(0) ≡f0 E | S | F∗ | P3
crypto

C(pE(η,|a|)) ≡fpE E | S | F
∗ | F ′crypto

Proof. As the original proof from [39] relies only on Lemma 3, which we have already shown to hold for our
extension, one can re-use the same proof to show Lemma 4.

We still have to show that the r-th hybrid is indistinguishable from the (r + 1)-th hybrid. The next

lemma is used for this as it allows us to consider Ĉ(r)
real and Ĉ(r)

ideal instead of C(r) and C(r+1).

Lemma 5. There exist negligible functions freal and fideal such that for 0 ≤ r ≤ pE(η, |a|)

C(r) ≡freal Ĉ
(r)
real (7)

C(r+1) ≡fideal Ĉ
(r)
ideal (8)
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Proof. We show (7), the proof of (8) is analogous.

Observe that the systems C(r) and Ĉ(r)
real are already very similar, with the only difference being the

handling of the r-th key, which is relayed to Oreal in Ĉ(r)
real. Note that the distribution of the r-th key in C(r)

is the same as the one of keys in Oreal: Even if the key was derived, then it was derived ideally (as it must
have been derived from a key of order < r). Also note that the r-th key was always encrypted ideally (as the
environment is used order respecting by the definition of F∗). Hence, the only way to distinguish C(r) and

Ĉ(r)
real is when either a key collision of a fresh key occurs (as F (r)

crypto in C(r) ensures that the r-th key is fresh,

while the key used in Oreal may collide with some other key of order < r in F̂ (r)
crypto) or the environment can

guess the key (as F (r)
crypto in C(r) prevents guessing of the r-th key, but F̂ (r)

crypto in Ĉ(r) cannot do this for the

key in Oreal). See [39] for a formal mapping of runs from C(r) to Ĉ(r)
real where neither a key collision or key

guessing occurred.
As we have already shown that key collisions happen with a negligible probability (by Lemma 3), we

only have to show that this also holds for key guessing of the r-th unknown key. More specifically, let the

event B
(r)
guess be set of all runs of C(r) where the r-th key is guessed, i.e., after the r-th key has been created,

the environment tries to insert the r-th key as a known key (e.g., via the Store command or when asked to

provide the value for a corrupted key). The original proof of [39] already showed that B
(r)
guess can be bounded

by a negligible function that is independent of r for keys of type t 6= dh-key, we will now prove the same for
keys of type t = dh-key.

We will do so by reducing the probability for key guessing of a key of type t = dh-key to the security
of the PRF family F ′. Observe that, just as in the proof of Lemma 1, we can find a single polynomial q
and a single negligible function f such that for all 0 ≤ r ≤ pE(η, |a|) the runtime of C(r) is bounded by q
except for a negligible set of runs, where f bounds the probability of these runs from above. Hence, by the
same argument as in Lemma 1, we only need to show how to construct an adversary on the PRF family F ′

for a single r (and thus finding a negligible function that bounds B
(r)
guess only for that specific r). One can

obtain a universal negligible bound that is independent of r by using an adversary that first guesses r and
the proceeds in the same way.

Now let 0 ≤ r ≤ pE(η, |a|). Suppose that B
(r)
guess contains a non-negligible set of runs where the r-th key

is of type dh-key. As B
(r)
coll is negligible, this implies that B

(r)
guess\B(r)

coll must also contain a non-negligible set

of runs where the r-th key is of type dh-key. Let B
(r)
dh-key-guess denote this set of runs in the following. We

use this to construct an adversary A on the security of the PRF F ′ (see Appendix A.6).
Recall that A gets an oracle O(·) that allows the adversary to perform either real key derivation (if

b = 1) or ideal key derivation (if b = 0), and a description (G,n, g) of a group generated via GroupGen. The
adversary A first guesses two positions 1 ≤ i, j ≤ pE(η, |a|): The number i marks the i-th known key inserted
by the environment and is used to guess which of the inserted keys will collide with an existing unknown
key. The number j marks the j-th unknown key of type dh-key created by a GenDHKey request and is used
to guess which DH key will be used as r-th unknown key. The adversary then internally simulates E | C(r),
except that A does not prevent any key collisions and does not prevent key guessing for the j-th unknown

key of type dh-key. Instead of simulating GroupGen in F (r)
crypto, A uses the group (G,n, g). If the r-th key

in the simulation is the j-th unknown key of type dh-key, then A uses O(s) when asked to derive a key
from salt s and the r-th unknown key. Otherwise, A derives keys just as in C(r). At the end of the run, A
chooses a fresh salt s′ that has never been queried to the oracle O before, calculates kreal := F ′η(ki, s), queries
koracle := O(s), and outputs 1 iff kreal = koracle; otherwise, A outputs 0. Note that A is a polynomial time
algorithm as the runtime of E | C(r) exceeds q only if GroupGen does not run in polynomial time, however, A
does not simulate GroupGen.

For brevity, we define Ereal to be the event that A outputs 1 when running in the real experiment (i.e.,
b = 1) and Eideal to be the event that A outputs 1 when running in the ideal experiment (i.e., b = 0), i.e.,

AdvG-PRF
A,F,GroupGen =

∣∣ Pr [Ereal]− Pr [Eideal]
∣∣

We first calculate Pr [Eideal]. Recall that in the ideal world, O(·) calculates the key koracle for a fresh salt
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s by sampling it uniformly at random from {0, 1}η. Because this is independent of the calculation of kreal,
the probability of kreal = koracle is 2−η, no matter how kreal is distributed. As the adversary outputs 1 only
if kreal = koracle, we have

Pr [Eideal] = 2−η

For Pr [Ereal], let e be a run from B
(r)
dh-key-guess. In the run e there is some unknown key k of type dh-key,

say the j̄-th unknown key that was created of this type, that is used as r-th unknown key. Furthermore,
the environment will at some point try to insert k into C(r) as a known key, say, as the ī-th known key.
Now observe that, if A guesses i = ī and j = j̄ correctly, then A perfectly simulates the run e up to the
point when the environment inserts the ī-th known key. This is because of the following: Observe that no
collisions of fresh unknown keys occur in e by requirement, and hence it is no problem that A does not check
for collisions. Also note that A guessed correctly that the j = j̄-th key of type dh-key is used as the r-th
key, and key guessing of the r-th unknown key does not occur until the ī-th known key is inserted. Thus
even without preventing key guessing for the j-th key of type dh-key, the run e is still simulated perfectly
up to the insertion of the ī-th unknown key. Furthermore, observe that the view of the environment in
the simulation (before the key guessing occurs) is exactly the same as in a run with C(r) even though key
derivation for the r-th key is handled by the oracle O of A. This is because the r-th key is always encrypted
ideally as the environment is used-order respecting (and hence the resulting ciphertext does not depend on
the actual value of the r-th key), and as soon as a single key is derived from the r-th key, it will no longer
become known as the environment does not cause the commitment problem.

As A simulates such a run e perfectly up to the point of the key guessing if it guessed i and j correctly
(which happens with probability pE(η, |a|)−2), we have that in this case ki equals the secret key of the
experiment. Thus the check kreal = koracle will always be true and A will output 1. This gives

Pr [Ereal] ≥ pE(η, |a|)−2 · Pr
[
B

(r)
dh-key-guess

]
Overall, we have

AdvG-PRF
A,F,GroupGen

= Pr [Ereal]− Pr [Eideal]

≥ pE(η, |a|)−2 · Pr
[
B

(r)
dh-key-guess

]
− 2−η

, which is non-negligible by assumption. This violates the security of the PRF F ′, so we conclude that there

is a negligible function fr that bounds Pr
[
B

(r)
guess

]
. As explained above, by using an adversary that first

guesses 0 ≤ r ≤ pE(η, |a|), we obtain a negligible bound for B
(r)
guess that is independent of r.

As both B
(r)
coll and B

(r)
guess are bound by negligible functions independent of r, and the systems C(r) and

Ĉ(r)
real only differ if one of the events occurs, we have that there exists freal such that for all 0 ≤ r ≤ pE(η, |a|):

C(r) ≡freal Ĉ
(r)
real

This concludes the proof of Lemma 5.

We need just one more lemma to show step 4. This lemma states that there also is a single negligible

function that bounds the distinguishing probability of the systems Ĉ(r)
real and Ĉ(r)

ideal.

Lemma 6. There exists a negligible function f ′ such that for all 0 ≤ r ≤ pE(η, |a|) the following holds true:

Ĉ(r)
real ≡f ′ Ĉ(r)

ideal
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Proof. Observe that the system E$ that first chooses r
$← {0, . . . , pE(η, |a|)} and then simulates the system

E | S | F∗ | F̂ (r)
crypto is a responsive environment for Oreal and Oideal, respectively. Hence, by Lemma 2, we have

that there is foracle such that
E$ | Oreal ≡foracle E$ | Oideal

As E$ simulates the system E | S | F∗ | F̂ (r)
crypto with probability (pE(η, |a|)+1)−1, we have for the negligible

function f ′ = (pE(η, |a|) + 1) · foracle:

Ĉ(r)
real ≡f ′ Ĉ(r)

ideal

This concludes the proof of Lemma 6.

We can now conclude the proof of step 4. Let f0, fpE be the negligible functions from Lemma 4, let
freal, fideal be the negligible functions from Lemma 5, and let f ′ be the negligible function from Lemma 6.
We have that ∣∣ Pr

[
E | S | F∗ | P3

crypto = 1
]
− Pr

[
E | S | F∗ | F ′crypto = 1

] ∣∣
≤ f0 + fpE +

∣∣ Pr
[
C(0) = 1

]
− Pr

[
C(pE) = 1

] ∣∣
≤ f0 + fpE +

pE−1∑
r=0

∣∣ Pr
[
C(r) = 1

]
− Pr

[
C(r+1) = 1

] ∣∣
≤ f0 + fpE + pE · (freal + fideal)

+

pE−1∑
r=0

∣∣ Pr
[
Ĉ(r)

real = 1
]
− Pr

[
Ĉ(r)

ideal = 1
] ∣∣

≤ f0 + fpE + pE · (freal + fideal + f ′)

Because f0 + fpE + pE · (freal + fideal + f ′) is negligible, we have that

E | S | F∗ | P3
crypto ≡ E | S |F∗ | F ′crypto

This concludes the proof of step 4.

Step 5 In this step we replace real MACs with their ideal versions. That is, we show that

E | S | F∗ | F ′crypto ≡ E | S |F∗ | Fcrypto

for all E ∈ EnvR(S |F∗ | F ′crypto). The proof from [39] still applies as our extension did not modify this
step (except for using responsive environments, however, the original proof held even for non-responsive
environments).

Final step We now combine the results from steps 1 to 5. By Lemma 4.4 from [14], we have that the set
of responsive environments for a system Q is the same as the set of responsive environments for a system
Q′ if no responsive environment can distinguish Q and Q′. Using this lemma, the results from steps 1 to 5,
and transitivity of the ≡ relation, we conclude that for all E ∈ EnvR(F∗ | Pcrypto):

E |F∗ | Pcrypto ≡ E | S |F∗ | Fcrypto

We still have to show that S is a responsive simulator. By Lemma D.25 from [14] it is sufficient to show
that with overwhelming probability S sends an expected answer either immediately or after sending some
restricting messages to the environment. Observe that S violates this behavior only if it resigns the simulation
(e.g., after a key was rejected by Fcrypto). However, this happens with at most negligible probability as E
can use this to distinguish F∗ | Pcrypto and S |F∗ | Fcrypto. This implies that S is responsive, which concludes
the proof of Theorem 2.
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C Detailed description of the corruption model of MI/MR

Formally, corruption of MI/MR is modeled as follows. The adversary may send a special message on the
network to corrupt an instance either before a key exchange has been started or after the session has been
closed. An instance (pid , lsid ) can be corrupted only if the signing key of pid (in Fcrypto) is corrupted,
modeling that the adversary has access to the signing key via the corrupted instance and thus the signing
key must be considered corrupted. A corrupted instance forwards all messages from/to the I/O interface
to/from the adversary. The adversary may also access the subroutine Fcrypto in the name of the corrupted
user, except for establishing pre-shared keys, asymmetric encryption, and nonce generation.11. However, the
adversary may only create new pointers to known keys/exponents in Fcrypto. That is, the adversary may not
use the New or GenExp commands; instead, he can use the Store and StoreExp commands to insert a new
known key/exponent into Fcrypto. Also, the corrupted instance ensures that the adversary cannot access
any pointers to symmetric keys/exponents of a closed key exchange session, as the ISO protocol deletes this
information after a session. The environment may ask instances of MI/MR at any point in time for their
current corruption status; these instances will respond with their current corruption status, overriding all
other behavior.

In addition to the above, an instance of (pid , lsid , r) that has not yet completed a key exchange and
intends to exchange a key with party pid ′ also considers itself corrupted (even if it is not directly controlled
by the adversary) if the signing key of pid or pid ′ is corrupted. This models that no security guarantees are
given if any of the long term secrets of the session peers is corrupted, a common practice when analyzing key
exchange protocols (such as, e.g., in the CK model [18]). As we model that corruption is possible before a
key exchange has started or after the protocol is finished but not during the actual key exchange, we have to
deal with the situation that long term secrets, namely, the signing keys, are corrupted within Fcrypto during
a key exchange. We address this as follows: When the key exchange is started, an instance determines its
corruption status once (based on its own corruption status and the corruption status of the involved signing
keys in Fcrypto) and stores this status. Upon finishing the key exchange, right before outputting the key,
the instance checks that its corruption status did not change and only then outputs the key. Otherwise,
the instance blocks all requests as the adversary “did not adhere to the rules”. If the environment asks an
instance for its corruption status during the key exchange, while using an established key, or while blocking,
the instance responds with the stored corruption status.

11We ignore/block access to these operations as they are not used in the ISO protocol or after the key exchange, and thus
they do not affect security.
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