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Abstract. Rigorous cryptographic security analysis plays an important
role in the design of modern e-voting systems by now. There has been
huge progress in this field in the last decade or so in terms of formaliz-
ing security requirements and formally analyzing e-voting systems. This
paper summarizes some of the achievements and lessons learned, which,
among others, challenge common believes about the role of and the rela-
tionships between central security requirements.

1 Introduction

Privacy, verifiability, accountability, and coercion-resistance are fundamental
security requirements for modern e-voting systems. Privacy ensures that the
way a particular voter voted is not revealed to anybody. Intuitively, verifiabil-
ity guarantees that it is possible to verify that the published election result is
correct, even if voting machines/authorities are (partially) untrusted. In the lit-
erature, one often finds that verifiability is divided into individual and universal
verifiability. Accountability is a stronger form of verifiability: accountability does
not only require that it is detected if the published result is incorrect, but that
misbehaving parties can be singled out and thus held accountable. This notion
so far has gained much less attention than verifiability, although rather than
aiming for mere verifiability, modern e-voting system should really strive for
accountability in order to be useful in practice, as later explained and further
emphasized in this paper. Coercion-resistance protects voters against vote buy-
ing and coercion. A weaker form of coercion-resistance is called receipt-freeness.

In order to find out whether a given voting system achieves its desired secu-
rity properties, informally analyzing its security is not sufficient since critical
aspects can easily be overlooked. Therefore, it is necessary to formally ana-
lyze the security of voting systems based on reasonable and formal security
definitions.

There have been major achievements in the field of rigorous cryptographic
analysis of e-voting systems in the last decade or so. Formal definitions for the
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central security requirements have been proposed and intensively been stud-
ied (see, e.g., [5,12,31,32,35]). Some of these definitions are formulated in gen-
eral and widely applicable frameworks so that they can be applied to virtu-
ally any e-voting protocols. These frameworks and definitions have been applied
to perform rigorous security analysis of various existing e-voting systems (see,
e.g., [2,10,13,14,29,31,32,34,35,37,38]), often with surprising results, and newly
proposed systems more and more come with security proofs right away (see,
e.g., [7,25–28]).

The rigorous approach also has helped to reveal some confusions and common
misconceptions concerning security requirements and their relationships, and
by this aided the deeper understanding of such requirements, providing a solid
formal basis for the design and analysis of e-voting systems.

In this paper, some of these confusions and misconceptions will be highlighted
and explained. In particular, based on various works from the literature, we point
out the following:

– The still popular notions of individual and universal verifiability together are
neither sufficient nor necessary to achieve end-to-end (E2E) verifiability, as
explained in Sect. 2.

– E2E verifiability alone is typically insufficient for practical purposes. E-voting
systems should really be designed with accountability in mind, a notion pre-
sented in Sect. 3.

– While it is commonly believed that coercion-resistance implies privacy, sur-
prisingly, this is not true in general. Moreover, improving the level of privacy
can lead to a lower level of coercion resistance (see Sect. 4).

Throughout the paper, we also emphasize the importance of widely applicable
security definitions. The definitions which we recall in this paper are all based
on a common general framework where systems and protocols are formulated as
sets of interactive probabilistic polynomial time Turing machines (see Sect. 2.1).
By this, virtually any e-voting system can be modeled in such a framework.
All definitions presented here are cryptographic game-based definitions. The
definitions also allow one to measure the level of security an e-voting system
provides. This is crucial as security typically is not perfect, since, for example,
only a fraction of voters perform certain checks.

Before we conclude in Sect. 6, we briefly discuss limitations of the crypto-
graphic analysis of e-voting systems in Sect. 5, such as usability aspects, legal
requirements, implementation and deployment issues.

2 Verifiability

E-voting systems are complex hardware/software systems. In such systems, as in
all complex systems, it is almost impossible to avoid programming errors. Even
worse, components of e-voting systems, such as voters’ devices, voting machines,
and voting servers, might have deliberately been tampered with. In fact, it has
been demonstrated that numerous e-voting systems suffer from flaws that make it
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possible for more or less sophisticated attackers to change the election result (see,
e.g., [19,49,51,52]). Such manipulations are often hard or virtually impossible
to detect. In some occasions, announced results were incorrect and/or elections
had to be rerun (see, e.g., [23]).

Therefore, besides vote privacy, modern e-voting systems strive for what is
called verifiability, more precisely end-to-end (E2E) verifiability. Roughly speak-
ing, E2E verifiability means that voters and possibly external auditors should be
able to check whether the published election result is correct, i.e., corresponds to
the votes cast by the voters, even if voting devices and servers have programming
errors or are outright malicious.

In the remainder of this section, we first recapitulate the notion of E2E verifi-
ability and its formal definition. We then discuss other notions of verifiability, in
particular the prominent notions of individual and universal verifiability. Follow-
ing [28,35,37], we show that, unlike commonly believed, these two notions fail
to provide a solid basis for verifiability. In particular, they are neither necessary
nor sufficient to achieve E2E verifiability.

2.1 E2E Verifiability

About 30 years ago, Benaloh already provided a first definition of E2E verifi-
ability [4]. As discussed in [12], while Benaloh’s definition is fairly simple and
captures the essence of verifiability, it requires unrealistically strong properties
so that it would reject even reasonable e-voting systems.

In [32], Küsters, Truderung, and Vogt introduced a generic framework (the
KTV framework) for verifiability and, more precisely, the even stronger notion of
accountability (see Sect. 3). They also instantiated the framework to define E2E
verifiability; also called global verifiability in [32], in contrast to individual and
universal verifiability (see Sect. 2.2). This framework and definition since then
have been used to analyze several e-voting protocols and mix nets [28,29,32,35,
37,38], such as Helios, ThreeBallot, VAV, Wombat Voting, sElect, Chaumian
RPC mix nets, and re-encryption RPC mix nets. It can also be applied to other
domains, such as auctions and contract signing [32].

Cortier et al. [12] demonstrated that it is possible to cast all formal verifia-
bility definitions from the literature into the generic KTV framework (see also
below).

E2E Verifiability in Short. In short, Küsters et al. capture E2E verifiability in the
KTV framework as follows: The probability that a run is accepted (by a judge
or other observers), but the published result of the election does not correspond
to the actual votes cast by the voters is small (bounded by some parameter δ).
More specifically, the result should contain all votes of the honest voters, except
for at most k honest votes (for some parameter k ≥ 0), and it should contain at
most one vote for every dishonest voter.

In what follows, we first briefly recall the generic KTV framework and then
its instantiation which captures E2E verifiability (see [32] for details or the pre-
sentation of this framework in [12]). In [32], formalizations both in a symbolic as



24 R. Küsters and J. Müller

well as a computational model were presented. Here, as throughout the paper,
we concentrate on the computational model.
Protocol Model of the KTV Framework. A protocol is simply modeled as a set
of probabilistic polynomial-time interactive Turing machines (ITMs) where the
ITMs are connected via named tapes. We also refer to such a set as a process.
By this, arbitrary protocols can be modeled.

More specifically, a protocol P is defined by a set of agents/parties Σ and
an ITM πa for each agent a in Σ. The set Σ may contain voters, voting devices,
bulletin board(s), various tellers, auditors, etc. Note that one can easily model
voters and voting devices as separate entities (ITMs) in this framework. The
program πa is called the honest program of a. By πP we denote the process
consisting of all of these (connected) ITMs. This process is always run with an
adversary A which may run an arbitrary (probabilistic polynomial-time) program
πA and which is connected to all other parties. The adversary can model the
network and/or dishonest parties. Also, A may statically or dynamically corrupt
parties (by sending a corrupt messages to these parties); parties who should not
be corruptable would simply ignore corruption messages by the adversary. A run
of P with adversary πA is a run of the process πP ‖πA (the union of the ITMs in
πP and the ITM πA).
A Generic Verifiability Definition in the KTV Framework. The KTV framework
provides a general definition of verifiability, which in particular can be instan-
tiated to model E2E verifiability (see below). The definition assumes a judge J
whose role is to accept or reject a protocol run by outputting accept or reject (on
some tape). To make a decision, the judge runs a so-called judging procedure,
which performs certain checks (depending on the protocol specification), such
as verification of zero-knowledge proofs (if any) and taking voter complaints
into account. Typically, the judging procedure can be carried out by any party,
including external observers and even voters themselves, as the information to
be checked is public. Hence, the judge might just be a “virtual” entity.

The generic KTV verifiability definition is centered around a goal γ of the
protocol. Formally, γ is a set of protocol runs.1 The goal γ specifies those runs
which are correct or desired in some protocol-specific sense. In the context of
e-voting and for E2E verifiability, the goal would contain those runs where the
announced election result corresponds to the actual choices of the voters.

Now, the idea behind the definition of verifiability in the KTV framework is
very simple. Only those runs r should be accepted by the judge in which the goal
γ is met, i.e., r ∈ γ. In the context of e-voting, if in a run the published result
does not correspond to the actual choices of the voters, then the judge should
reject the run. More precisely, the definition requires that for all adversaries
the probability (over the set of all protocol runs) that a run is accepted by the
judge but the goal is not met is bounded by some constant δ (plus a negligible
function). Although δ = 0 is desirable, this would be too strong for almost
all e-voting protocols. For example, typically not all voters check whether their

1 Note that a single run is determined by the random coins used by the parties involved
in the run.
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ballots appear on the bulletin board. This give the adversary the opportunity to
manipulate or drop some votes without being detected. Therefore, δ = 0 cannot
be achieved in general. The parameter δ is called the verifiability tolerance of
the protocol.

By Pr(π(�) �→ ¬γ, (J : accept)) we denote the probability that the process π,
with security parameter 1�, produces a run which is not in γ but nevertheless
accepted by J.

Definition 1 (Verifiability). Let P be a protocol with the set of agents Σ. Let
δ ∈ [0, 1] be the tolerance, J ∈ Σ be the judge, and γ be a goal. Then, we say
that the protocol P is (γ, δ)-verifiable by the judge J if for all adversaries πA

and π = (πP ‖πA), the probability

Pr(π(�) �→ ¬γ, (J : accept))

is δ-bounded2 as a function of �.

We note that the original definition in [32] also captures soundness/fairness:
if the protocol runs with a benign adversary, which, in particular, would not
corrupt parties, then the judge accepts all runs. This kinds of fairness/soundness
can be considered to be a sanity check of the protocol, including the judging
procedure, and is typically easy to check.

We note that Definition 1 does not (need to) assume any specific protocol
structure, and hence, is widely applicable. It also takes into account real-world
uncertainties. As mentioned before and shown in [12], all definitions of verifia-
bility from the literature can be captured by appropriate choices of the goal γ.
The specific protocol structures often assumed in such definitions can also easily
be captured.

E2E Verifiability in the KTV Framework. In [32], Küsters et al. proposed an
instantiation of the generic verifiability definition to capture E2E verifiability.
To this end, they introduce a family of goals {γk}k≥0:3 the goal γk contains
exactly those runs of the voting protocol in which (i) all but up to k votes of the
honest voters are counted correctly, and (ii) every dishonest voter votes at most
once (see the technical report [33] of [32] or [12] for the formal definition). For
example, consider a run of an e-voting protocol with three honest voters and two
dishonest voters. Assume that there are two candidates/choices A and B, and
that the tallying function returns the number of votes for each candidate. Now,
if all honest voters vote for, say, A and the final result is (A,B) = (2, 2), then
γk is achieved for all k ≥ 1 but γ0 is not achieved: one vote of an honest voter
is missing (dropped or flipped to a vote for B), and there is at most one vote
for every dishonest voter; γ0 is not satisfied because it requires that all votes of
honest voters are counted, which is not the case here.

With this definition of goals, Definition 1 captures E2E verifiability: the prob-
ability that the judge accepts a run where more than k votes of honest voters
2 Bounded by δ, plus some negligible function in the security parameter �.
3 In [12] (Subsect. 10.2), these goals have been refined.
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were manipulated or dishonest voters could cast too many votes, is bounded
by δ. In security statements about concrete e-voting protocols, δ will typically
depend on various parameters, such as k and the probability that voters per-
forms certain checks. While k = 0 is desirable, this is in most cases impossible
to achieve because, for example, voters might not always perform the required
checks, and hence, there is a chance that manipulation of votes goes undetected.

Importantly, this definition of E2E verifiability allows one to measure the
level of E2E verifiability an e-voting protocol provides.

2.2 Individual and Universal Verifiability

Sako and Kilian [45] introduced the notions of individual and universal verifi-
ability. These requirements (and subsequent notions, such as cast-as-intended,
etc.) have become very popular and are still used to design and analyze e-voting
systems. According to Sako and Kilian, an e-voting system achieves individual
verifiability if “a sender can verify whether or not his message has reached its
destination, but cannot determine if this is true for the other voters”. Universal
verifiability guarantees that it is possible to publicly verify that the tallying of
the ballots is correct. That means that the final election result exactly reflects
the content of those ballots that have been accepted to be tallied.

The notions of individual and universal verifiability have later been for-
malized by Chevallier-Mames et al. [8] (only universal verifiability), Cortier
et al. [10], and Smyth et al. [48]. As mention in [32] and demonstrated in [12],
these notions can also be captured in the KTV framework.
A Common Misconception. Unfortunately, it is often believed that individual
together with universal verifiability implies E2E verifiability, which is the security
property that e-voting systems should achieve. However, in [32,37], and [28],
Küsters et al. have demonstrated that individual and universal verifiability are
neither sufficient nor necessary for E2E verifiability.

In short, there are e-voting systems, such as ThreeBallot and VAV [42] as well
as variants of Helios, that arguably provide individual and universal verifiability
but whose verifiability is nevertheless broken, i.e., they do not provide E2E
verifiability. Conversely, there are e-voting systems, such as sElect [28], which
provide E2E verifiability without having to rely on universal verifiability.

In what follows, we explain these results in more detail.

2.3 Not Sufficient

We recall several attacks that break the E2E verifiability of e-voting systems,
even though these systems provide individual and universal verifiability. The first
class of attacks uses that (dishonest) voters possibly with the help of malicious
authorities might cast malformed ballots. In the second class of attacks (so-called
clash attacks), the same receipt is shown to different voters who voted for the
same candidate, allowing malicious voting devices and authorities to drop or
manipulate ballots.
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An Illustrative Example: A Modification of Helios. Helios [1] is one of the most
prominent remote e-voting systems which, on a high level, works as follows.
Trustees share a secret key sk which belongs to a public/private ElGamal key
pair (pk, sk). Voters encrypt the candidate of their choice under the public key
pk and submit the resulting ciphertext to the bulletin board. Then all ciphertexts
are publicly multiplied so that, by the homomorphic property of the ElGamal
public-key encryption scheme, the resulting ciphertext encrypts the number of
votes for each candidate. Finally, the trustees perform distributed and verifiable
decryption of this ciphertext and publish the resulting plaintext as the outcome
of the election.

In order to guarantee the integrity of the final result, several zero-knowledge
proofs (ZKP) are used. Among others, a voter has to prove that her ciphertext
encrypts a valid choice, and, for privacy reasons, that she knows which choice it
encrypts.

It has been formally proven that under certain assumptions Helios is E2E
verifiable (see, [11,37]). Furthermore, assuming that the voting devices are hon-
est, Helios provides individual verifiability because each voter can check whether
her ballot appears on the bulletin board. Universal verifiability follows from the
fact that the multiplication of the ciphertexts on the bulletin board is public
and that the tellers perform verifiable decryption. Thus, Helios provides E2E
verifiability as well as individual and universal verifiability.

To see that individual and universal verifiability together do not imply E2E
verifiability consider a modification of Helios in which voters do not have to prove
that their votes are correct, i.e., dishonest voters may cast malformed ballots
without being detected. Then a (single!) dishonest voter could completely spoil
the election result by encrypting an invalid choice. Such a malformed ballot might
contain negative votes for certain candidates, and hence, effectively subtracting
votes from candidates, or the malformed ballot might contain many more votes
for a candidate then allowed. So, such a system certainly does not provide E2E
verifiability. At the same time, such a system can still be considered to provide
individual and universal verifiability. Voters can still check that their ballots
appear on the bulletin board (individual verifiability), and ballots on the bulletin
board can still be tallied in a universally verifiable way. But dishonest voters
might have spoiled the election result completely and this is not detected.4

This simple example demonstrates that, even if an e-voting system achieves
individual and universal verifiability, its overall verifiability can nevertheless
completely and trivially be broken.
Another Example: ThreeBallot. The attack illustrated above conceptually also
applies to the ThreeBallot voting system [42] (also to VAV), but the details of
the attack differ. We start by briefly describing how ThreeBallot works.

In ThreeBallot, a voter is given a multi-ballot consisting of three simple
ballots. On every simple ballot, the candidates, say A and B, are printed in
the same fixed order, say A is listed first and B is listed second. In the secrecy

4 Note that the arguments hold true even when assuming that only eligible voters
(honest or dishonest) may vote.
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of a voting booth, the voter is supposed to fill out all three simple ballots in
the following way: she marks the candidate of her choice on exactly two simple
ballots and every other candidate on exactly one simple ballot. Assume, for
example, that a voter votes for candidate A. Then

(
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o
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,
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would be valid multi-ballots to vote for A. After this, the voter feeds all three
simple ballots to a voting machine (a scanner) and indicates the simple ballot
she wants to get as a receipt. The machine checks the well-formedness of the
multi-ballot, prints secretly (pairwise independent) random numbers on each
simple ballot, and provides the voter with a copy of the chosen simple ballot,
with the random number printed on it. Note that the voter does not get to see
the random numbers of the remaining two simple ballots. The scanner keeps all
simple ballots (now separated) in a ballot box.

In the tallying phase, the voting machine posts on the bulletin board (elec-
tronic copies of) all the cast simple ballots in random order. From the ballots
shown on the bulletin board, the result can easily be computed: The number of
votes for the ith candidate is the number of simple ballots with the ith position
marked minus the total number of votes (since every voter marks every candidate
at least ones).

ThreeBallot offers (some level of) individual verifiability because each voter
may check whether the simple ballot she has taken as a receipt appears on
the bulletin board. Thus, it should be risky for any party to remove or alter
simple ballots. Additionally, ThreeBallot offers universal verifiability because the
tallying is completely public. However, as Küsters et al. [35] have pointed out,
ThreeBallot does not offer E2E verifiability. One variant of the attack presented
in [35] assumes that the scanner is dishonest. To illustrate the attack, assume
that an honest voter votes for, say, candidate A by submitting a multi-ballot of
one of the forms shown above. Now, a dishonest voter which collaborates with
the dishonest scanner could create a malformed ballot of the form(

o
x

)
,

(
o
x

)
,

(
o
x

)
,

which, together with the ballot of the honest voter (no matter which one of the
two kinds shown above), yields two (valid!) votes for candidate B and no vote for
candidate A. Clearly, E2E verifiability is broken: a vote for A and one invalid bal-
lot result in two valid votes for B. But no honest voter would complain because
none of their single/multi-ballots were manipulated. So, this attack neither inval-
idates individual verifiability nor universal verifiability, showing again that these
notions together do not imply E2E verifiability, and are really insufficient.

Clash Attacks. The idea of individual and universal verifiability not only fails
due to undetected malformed ballots. Another problem are clash attacks [37],
which might break E2E verifiability, while individual and universal verifiability
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together again do not detect such attacks. As demonstrated in [37], several e-
voting system are vulnerable to clash attacks, including several variants of Helios.

To illustrate the attack, consider the Helios voting system, where the voting
devices might be dishonest and where the ballots of the voters are published
on the bulletin board without voter names or pseudonyms attached to them.
Now, if two voters vote for the same candidate, the voting devices might use the
same randomness to create the ballots, and hence, the two ballots are identi-
cal. However, instead of putting both ballots on the bulletin board, authorities
might add only one of them to the bulletin board and the other ballot might
be replaced by one for another candidate. The two voters can check individually
that “their” ballot appears on the bulletin board (individual verifiability); they
do not realize that they are looking at the same ballot, i.e., they do not realize
the “clash”. Universal verifiability is obviously guaranteed as well. Still, the sys-
tem does not provide E2E verifiability: a vote of an honest voter was replaced
in an undetectable way by another vote.
Adding More Subproperties? Now that we have seen that individual and universal
verifiability do not imply the desired security property E2E verifiability, it might
be tempting to search for more subproperties that would then, eventually, yield
a sufficiently strong verifiability notion.

In [12], it has been demonstrated that all verifiability notions proposed in
the literature so far that are split up into additional subproperties, such as
individual and universal verifiability, do not provide E2E verifiability, even if
more subproperties are added. In [10], for example, a subproperty was introduced
that rules out clash attacks but the resulting verifiability notion is still too weak
(see [12], Appendix B, for details).

When existing systems are analyzed w.r.t. verifiability or new systems are
proposed, one should always check for E2E verifiability as introduced above, as
E2E verifiability is the kind of verifiability modern e-voting systems ultimately
should aim for. While subproperties, such as individual and universal verifiabil-
ity, can guide the design of e-voting systems, unless formally proven that their
combination in fact implies E2E verifiability, such properties alone might miss
important aspects and can therefore not replace E2E verifiability.

2.4 Not Necessary

The examples and attacks above illustrate that the notions of individual and
universal verifiability are not sufficient to provide E2E verifiability. Following
[28], we now demonstrate that they are not necessary to achieve E2E verifia-
bility either. More specifically, in [28] the remote e-voting system sElect was
proposed, and it was shown that it provides E2E verifiability (under reasonable
assumptions). But sElect is not universally verifiable.

sElect. sElect [28] is a conceptually simple remote voting system which is based
on a Chaumian mix net.
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A Chaumian mix net consists of mix servers M1, . . . ,Mn where each one of
them holds a public/secret key pair (pki, ski) of a (CCA2-)secure public-key
encryption scheme. The input to the mix net is a set of ciphertexts c1, . . . , cl

where each ciphertext ci is a nested encryption of a plaintext mi under the
public keys of the mix servers in reverse order, i.e.,

ci = Enc (. . .Enc (mi, pkn) . . . , pk1) .

When the mix net is executed, the first mix server decrypts the outer encryption
layer with its secret key sk1, shuffles the result,5 and forwards it to the sec-
ond mix server, which decrypts the next encryption layer with sk2, shuffles the
resulting ciphertexts, and so on. Finally, the output of the mix net is a random
permutation π of the input plaintexts m1, . . . ,ml. As long as one of the mix
servers is honest, the permutation π remains secret. That is, it is not possible to
connect the input ciphertexts to their corresponding plaintexts.

Note that there are no ZKPs for correct shuffling or correct decryption, which
means that Chaumian mix nets are not universally verifiable.

Now, roughly speaking, sElect works as follows. A voter uses her voting
device (a browser) to select the candidate of her choice mi. Then, the voting
device creates a random nonce ni (which can be done jointly with the voter to
decrease trust in the voting device). Afterwards, the device encrypts (mi, ni)
under the public keys of the mix servers as explained above. For verification
purposes, the voter memorizes or writes down the nonce ni. In addition, the
voting device stores this information and the random coins that were used for
encryption. In the tallying phase, all input ciphertexts are processed by the
mix net as explained above, and the final result is, as well as all intermediate
ciphertexts, published on the bulletin board. Each voter is finally invited to use
her voting device in order to check whether her candidate mi appears next to
her personal nonce ni. In addition, the voting device performs a fully automated
verification procedure. In particular, if the voter’s vote and nonce do not appear
together in the final result, the voting device can provably single out the mix
servers that misbehaved because it has stored all information needed to follow
the trace of the voter’s ballot through the mix net (and because the mix servers
signed certain information).

E2E Verifiability Without Universal Verifiability. It has been formally proven [28]
that sElect provides a reasonable level of E2E verifiability (and even account-
ability) because it is extremely risky for an adversary to manipulate or drop even
only a few votes. At the same time, sElect does not rely on universal verifiability.
The Chaumian mix net is not verifiable by itself: it takes the voters to perform a
simple check. Therefore, the example of sElect shows that universal verifiability
is not necessary for E2E verifiability.

5 In order to protect against replay attacks [13], duplicates are removed, keeping one
copy only (see [28] for details.).



Cryptographic Security Analysis of E-voting Systems 31

3 Accountability

In e-voting systems, and for many other cryptographic tasks and protocols (e.g.,
secure multi-party computation, identity-based encryption, and auctions), it is
extremely important that (semi-)trusted parties can be held accountable in case
they misbehave. This fundamental security property is called accountability,6 and
it is a stronger form of verifiability: it not only allows one to verify whether a
desired property is guaranteed, for example that the election outcome is correct,
but it also ensures that misbehaving parties can be identified if this is not the
case.

Accountability is important for several practical reasons. First of all, account-
ability strengthens the incentive of all parties to follow their roles because they
can be singled out in case they misbehave and then might have to face, for
example, severe financial or legal penalties, or might lose their reputation. Fur-
thermore, accountability can resolve disputes that occur when it is only known
that some party misbehaved but not which one. This can, for instance, help to
increase the robustness of cryptographic protocols because misbehaving parties,
such as a dishonest trustee in an e-voting protocol, can be excluded and the
protocol can be re-run without the parties that misbehaved.

Unfortunately, despite its importance, accountability is often not taken into
account (at least not explicitly), neither to design e-voting protocols nor to
analyze their security (see, e.g., [1,7,9,11,15,25–27,43,44]).

In [32], Küsters et al. provided a general formal definition of accountabil-
ity and emphasized its importance. This formal definition has since been used
to analyze different e-voting protocols (Helios, sElect, Bingo Voting), mix nets
(re-encryption and Chaumian mix nets with random partial checking), auction
schemes (PRST [41]), and contract signing protocols (ASW [3]). These analy-
ses brought forward several accountability issues, e.g., for different versions of
Helios [37]. In what follows, we give a brief summary of the accountability defi-
nition, for details see the original paper [32].

A Formal Accountability Definition. The accountability definition by Küsters
et al. [32] is based on the same generic and expressive protocol model as the
verifiability definition (see Sect. 2), and can therefore be applied to all classes of
voting protocols and also to other domains.

In contrast to the verifiability definition, the judge now not only accepts or
rejects a run, but may output detailed verdicts. A verdict is a positive Boolean
formula ψ built from propositions of the form dis(a), for an agent a, where dis(a)
means that (the judge thinks that) agent a misbehaved, i.e., did not follow the
prescribed protocol. For example, in a voting protocol with voters V1, . . . ,Vn,
a bulletin board B, and trustees T1, . . . ,Tm, if the judge J states, say, dis(B) ∧
dis(T1)∧ . . .∧dis(Tm), then this expresses that the judge beliefs that the bulletin
board and all trustees misbehaved; the judge would state dis(Vi) ∨ dis(B) ∨

6 In the context of secure MPC, accountability is sometimes called identifiable
abort [22].
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(dis(T1) ∧ . . . ∧ dis(Tm)) if she is not sure whether voter Vi. the bulletin board,
or all trustees misbehaved.

Who should be blamed in which situation is expressed by a set Ψ of what
are called accountability constraints. These constrains are of the form

C = α ⇒ ψ1| · · · |ψk,

where α is a property of the voting system, similar to the goal γ in Sect. 2.1 (a
set of runs of the system, where one run is determined by the random coins used
by the parties), and ψ1, . . . , ψk are verdicts. Intuitively, the set α contains runs
in which some desired goal γ of the protocol is not met (due to the misbehavior
of some protocol participant). The formulas ψ1, . . . , ψk are the possible minimal
verdicts that are supposed to be stated by J in such a case; J is free to state
stronger verdicts (by the fairness condition these verdicts will be true). That is,
if a run belongs to α, then C requires that in this run the judge outputs a verdict
ψ which logically implies one of ψi.

To illustrate the notion of accountability constraints, let us continue the
example from above. Let α contain all runs in which the published election
result is incorrect, e.g., α = αk = ¬γk with the goal γk as defined in Sect. 2.
Now, consider the following constraints:

C1 = α ⇒ dis(B)|dis(T1)| · · · |dis(Tm), (1)
C2 = α ⇒ dis(V1) ∨ · · · ∨ dis(Vn) ∨ dis(B) ∨ (dis(T1) ∧ · · · ∧ dis(Tm)), (2)
C3 = α ⇒ dis(B)|dis(T1) ∧ · · · ∧ dis(Tm). (3)

Constraint C1 requires that if in a run the published election result is incorrect,
then at least one (individual) party among B,T1, . . . ,Tm can be held account-
able by the judge J; note that different parties can be blamed in different runs.
Constraint C2 states that if the published election result is not correct, then the
judge J can leave it open whether one of the voters, the bulletin board B, or all
trustees misbehaved. Constraint C3 requires that it is possible to hold B or all
trustees accountable.

As pointed out in [32], accountability constraints should provide at least indi-
vidual accountability. That is, the postulated minimal verdicts should at least
single out one misbehaving party. In the above example, C1 and C3 provide
individual accountability, but C2 does not. In fact, C2 is very weak, too weak for
practical purposes. If a judge states exactly this verdict, there are no real con-
sequences for any party, since no individual party can be held accountable. This
is particular problematic if in such a “fuzzy” verdict not only voting authorities
are involved but also voters.

A set Φ of constraints for a protocol P is called an accountability property
of P . Typically, an accountability property Φ covers all relevant cases in which
a desired goal γ for P is not met, i.e., whenever γ is not satisfied in a given
run r due to some misbehavior of some protocol participant, then there exists
a constraint C in Φ which covers r. We write Pr (π(�) → ¬(J : Φ)) to denote
the probability that π, with security parameter 1�, produces a run r such that
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J does not satisfies all accountability constrains for this run, i.e., there exists
C = α ⇒ ψ1| · · · |ψk with r ∈ α but the judge outputs a verdict which does not
imply some ψi.

Definition 2 (Accountability). Let P be a protocol with the set of agents Σ.
Let δ ∈ [0, 1] be the tolerance, J ∈ Σ be the judge, and Φ be an accountability
property of P . Then, we say that the protocol P is (Φ, δ)-accountable by the
judge J if for all adversaries πA and π = (πP ‖πA), the probability

Pr (π(�) → ¬(J : Φ))

is δ-bounded as a function of �.

Just as for the verifiability definition (Definition 1), the full definition in [32]
additionally requires that the judge J is fair, i.e., that she states false verdicts
only with negligible probability.

Küsters et al. also showed that verifiability (as defined in Definition 1) can
be considered to be a weak form of accountability, and, as mentioned before,
verifiability alone is typically too weak for practical purposes.

Instead of explicitly specifying Ψ as necessary in the above definition, there
have been attempts to find generic ways to define who actually caused a goal
to fail and ideally to blame all of these parties. There has been work pointing
into this direction (see, e.g., [16,20,21]). But this problem turns out to be very
tricky and has not been solved yet.

4 Coercion-Resistance and Privacy

To achieve verifiability, a voter typically obtains some kind of receipt which,
together with additional data published in the election, she can use to check
that her vote was counted. This, however, potentially opens up the possibility
for vote buying and voter coercion. Besides verifiability, many voting systems
therefore also intend to provide so-called coercion-resistance.

One would expect that privacy and coercion-resistance are closely related: If
the level of privacy is low, i.e., there is a good chance of correctly determining
how a voter voted, then this should give the coercer leverage to coerce a voter.
Some works in the literature (e.g., [17,39]) indeed suggest a close connection.
However, Küsters et al. [35] demonstrated that the relationship between privacy
and coercion-resistance is more subtle.

Among others, it turns out that improving the level of privacy of a protocol
in a natural way (e.g., by changing the way honest voters fill out ballots) can lead
to a lower level of coercion-resistance. Clearly, in general, one does not expect
privacy to imply coercion-resistance. Still, the effect is quite surprising.

A maybe even more important and unexpected finding that comes out of
the case studies in [35] is that the level of privacy of a protocol can be much
lower than its level of coercion-resistance. The reason behind this phenomenon
is basically that it may happen that the counter-strategy a coerced voter may
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carry out to defend against coercion hides the behavior of the coerced voter,
including her vote, better than the honest voting program.

On the positive side, in [35] Küsters et al. proved a theorem which states that
under a certain additional assumption a coercion-resistant protocol provides at
least the same level of privacy. This is the case when the counter-strategy does
not “outperform” the honest voting program in the above sense. The theorem is
applicable to a broad class of voting protocols.

In what follows, we explain the subtle relationships between coercion-
resistance and privacy in more detail. The findings are based on formal privacy
and coercion-resistance definitions proposed in [35] and [31,36], respectively.
These definitions build upon the same general protocol model as the one for ver-
ifiability, and hence, they are applicable to all classes of voting systems (see, e.g.,
[28,31,32,34–37]), and they also have been applied to analyze mix nets [29,38].
We only informally introduce the privacy and coercion-resistance definitions in
what follows and point to the reader to [31,35,36] for the formal definitions.

Intuitively, the privacy definition in [35] says that no (probabilistic
polynomial-time) observer, who may control some parties, such as some author-
ities or voters, should be able to tell how an honest voter, the voter under
observation, voted. More specifically, one considers two systems: in one system
the voter under consideration votes for candidate c and in the other system
the voter votes for candidate c′; all other honest voters vote according to some
probability distribution known by the observer. Now, the probability that the
observer correctly says with which system he interacts should be bounded by
some constant δ (plus some negligible function in the security parameter). Due
to the parameter δ, the definition allows one to measure privacy. As discussed
in [28], this ability is crucial in the analysis of protocols which provide a rea-
sonable but not perfect level of privacy. In fact, strictly speaking, most remote
e-voting protocols do not provide a perfect level of privacy: this is because there
is always a certain probability that voters do not check their receipts. Hence, the
probability that malicious servers/authorities drop or manipulate votes without
being detected is non-negligible. By dropping or manipulating votes, an adver-
saries obtains some non-negligible advantage in breaking privacy. Therefore, it
is essential to be able to precisely tell how much an adversary can actually learn.

For the definition of coercion-resistance (see [31,36]), the voter under obser-
vation considered for privacy is now replaced by a coerced voter and the observer
O is replaced by the coercer C. We imagine that the coercer demands full control
over the voting interface of the coerced users, i.e., the coercer wants the coerced
voter to run a dummy strategy dum which simply forwards all messages between
the coerced voter and the coercer C. If the coerced voter in fact runs dum, the
coercer can effectively vote on behalf of the coerced voter or decide to abstain
from voting. Of course, the coercer is not bound to follow the specified voting
procedure. Now, informally speaking, a protocol is called coercion-resistant if the
coerced voter, instead of running the dummy strategy, can run some counter-
strategy cs such that (i) by running this counter-strategy, the coerced voter
achieves her own goal γ (formally, again a set of runs), e.g., successfully votes
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for a specific candidate, and (ii) the coercer is not able to distinguish whether
the coerced voter followed his instructions (i.e., run dum) or tried to achieve her
own goal (by running cs). Similarly to the privacy definition, the probability in
(ii) is bounded by some constant δ (plus some negligible function). Again, δ is
important in order to be able to measure the level of coercion-resistance a pro-
tocol provides: there is always a non-negligible chance for the coercer to know
for sure whether the coerced voter followed his instructions or not (e.g., when
all voteres voted for the same candidate).

Improving Privacy Can Lower the Level of Coercion-Resistance. To illustrate
this phenomenon, we consider the following variant of ThreeBallot (for details
of ThreeBallot see Sect. 2). An honest voter is supposed to submit, according to
her favorite candidate,
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in terms of privacy because the bulletin board and the receipts do not leak any
information apart from the pure election result. However, this scheme does not
provide any coercion-resistance. Assume that the coerced voter is instructed to
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and take the first single ballot as receipt (which is allowed but never done by
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the coercer could easily detect that he was cheated, by counting the number of

ballots of type
(

o
o

)
on the bulletin board.

Coercion-Resistance Does Not Imply Privacy. For the original variant of Three-
Ballot and the simple variant of VAV, Küsters et al. proved that the level of
privacy is much lower than its level of coercion-resistance. The reason behind
this phenomenon is basically that the counter-strategy hides the behavior of
the coerced voter, including her vote, better than the honest voting program
hides the vote. In these voting systems, a receipt an honest voter obtains indeed
discloses more information than necessary (for details see [35]).

The following simple, but unlike ThreeBallot and VAV, artificial example,
carries this effect to extremes: Consider the ideal voting protocol which collects
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all votes and publishes the correct result. Now, imagine a voting protocol in
which voters use the ideal voting protocol to cast their vote, but where half of
the voters publish how they voted (e.g., based on a coin flip). Clearly, the privacy
level this protocol provides is very low, namely δ ≥ 1

2 . However, a coerced voter
can be more clever and simply lie about how she voted. This protocol indeed
provides a high level of coercion-resistance.

As mentioned at the beginning of Sect. 4, in [35] it is shown that if the
counter-strategy does not “outperform” the honest voting program (or con-
versely, the honest voting program does not leak more information than the
counter-strategy), then indeed if a voting system provides a certain level of
coercion-resistance, then it provides the same level of privacy. Fortunately, in
most systems which are supposed to provide coercion-resistance, the counter-
strategy indeed does not outperform the honest program.

5 Limitations of Cryptographic Security Analysis

The previous sections were concerned with and highlighted the importance of
formally analyzing the security of e-voting systems. However, to obtain a full
picture of an e-voting system and to carry out an election, many more aspects
have to be taken into account which are beyond formal/cryptographic analysis.
Some of these aspects are specific to the field of e-voting, while others apply to
virtually all complex systems.

In what follows, we briefly discuss some of these aspects. We start with
usability issues and legal requirements, as they are particularly important for
e-voting systems.

Usability and Its Relationship to Security. E-voting systems are used by human
beings, such as voters, administrators, and auditors. Therefore, the security an
e-voting system provides in practice crucially depends on whether, or at least to
which degree, the involved human parties follow the protocol.

For example, it is, by now, well-known that many voters are not sensitized
enough to verify whether their voting devices created a correct ballot, and even
if they are, they often fail to do so because the individual verification procedures,
such as Benaloh challenges, are too complex (see, e.g., [24,40]). Similarly to these
verification issues, many coercion-resistant e-voting protocols (e.g., Civitas [9])
require that coerced voters successfully deceive their coercer, e.g., by creating
faked receipts. It is questionable whether average voters are able to do this.

Therefore, usability of e-voting systems is not only important to ensure that
all voters can participate, but it also determines whether an e-voting system is
secure in the real world: if a security procedure is difficult to use, it worsens the
security of the system and may render it insecure. However, it is hard to measure
usability; instead, certain usability attributes can be measured and empirically
be tested, for example, how often users make the same error.

In order to analyze the impact of a system’s usability w.r.t. its security,
security notions are necessary which allow one to take usability attributes into
account. To some degree, this is incorporated in the security definition presented



Cryptographic Security Analysis of E-voting Systems 37

in the previous sections. For example, Küsters et al. have studied the verifiability
levels of Helios, sElect, Bingo Voting, ThreeBallot, and VAV as functions of the
probability that a voter (successfully) carries out her verification procedure. For
example, for the system sElect [28]. Küsters et al. formally proved that sElect
(roughly) provides a verifiability level of δ ≈ (1−p)k+1 where p is the probability
that an honest voter carries out the verification procedure, i.e., checks whether
her vote along with the verification code is in the final result, and where k is the
tolerated number of manipulated (honest) votes (see Sect. 2 for details). Hence,
the probability that no one complains but more than k votes of honest voters
have been manipulated is bounded by (1 − p)k+1. Using results from usability
studies one can now estimate what realistic values for p are, and hence, better
assess the security of a system.

Perceived vs. Provable Security. In addition to the provable security a system
provides, the level of security perceived by regular voters might be just as impor-
tant and even more important for a system to be accepted. Regular voters simply
do not understand what a zero-knowledge proof is and for that reason might not
trust it. Therefore simplicity and comprehensibility are very crucial, which, for
example, was a driving factor for the system sElect [28]. This system features
a simple and easy to understand verification procedure, allows for fully auto-
mated verification, and uses asymmetric encryption and signatures as the only
cryptographic primitives.

Legal Requirements. Since e-voting systems are used in many countries for polit-
ical elections, they have to provide certain legal requirements which depend on
the political system. Unfortunately, it is difficult to formally capture all legal
requirements in order to rigorously analyze whether a given e-voting system
achieves them. Vice versa, it is also challenging to express formal security defin-
itions in legal terms. There are some approaches that address this problem (see,
e.g., [46,47,50]).

Cryptographic Analysis vs. Code-Level Analysis. Cryptographic analysis as con-
sidered in this paper, typically does not analyze the actual code of a system but
a more abstract (cryptographic) model. Hence, implementation flaws can easily
go undetected. While carrying out a full-fledged cryptographic security analysis
of an e-voting system is already far from trivial, performing such an analysis on
the code-level is even more challenging. A first such analysis for a simple e-voting
system implemented in Java has been carried out in [30]. In recent years, there
has also been successful code-level analysis of cryptographic protocols, such as
TLS (see, e.g., [6,18] for some of the most recent work in this direction).

Implementation and Deployment. It is possible to model strong adversaries and
capture potentially flawed program code in a formal model by weak trust assump-
tions and various kinds of corruptions. However, at least some parties have to
be assumed to be honest in essentially all voting systems to achieve a reasonable
security level. With the diverse ways systems can be and are attacked within
and outside the domain of e-voting, actually guaranteeing the trust assumptions
is highly non-trivial. This is even more true in political elections where e-voting
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systems can be targets of extremely powerful adversaries, such as intelligence
agencies and hostile states (see, e.g., [49]).

Even without assuming such powerful adversaries, securely deploying an
e-voting system in practice is non-trivial and involves a lot of organizational
issues which are not captured nor considered by formal analysis. For exam-
ple, abstract system descriptions assume that trust is distributed among several
trustees and that keys are securely generated and distributed. But it might not
always be clear in practice, who the trustees should be. Again, it is therefore
important to keep e-voting systems as simple as possible to avoid organizational
and technical overheads in order to improve the practical security of systems.

6 Conclusion

The development of secure e-voting systems that are also easy to use, to under-
stand, and to implement is still a big challenge. Rigorous formal analysis is an
important piece of the puzzle. This research area has made huge progress in the
last decade or so. Many central security requirements have been formulated by
now and their relationships have been studied intensively. As explained in this
paper, this helped to obtain a better understanding of desired security proper-
ties and to overcome some common misconceptions. This alone is already very
important to help thinking about the security of e-voting systems and shaping
the design of these systems. For newly proposed systems it is more and more
common and expected that they come with a cryptographic security analysis.
The general formal frameworks and solid formulations of fundamental security
requirements are available for such analyses. While rigorous analysis is highly
non-trivial and certainly does not and cannot cover all aspects in the design,
implementation, and deployment of e-voting systems, it forms an important and
indispensable corner stone.
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32. Küsters, R., Truderung, T., Vogt, A.: Accountability: definition and relationship
to verifiability. In: CCS 2010, pp. 526–535 (2010)
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II. In: Soriano, M., Qing, S., López, J. (eds.) ICICS 2010. LNCS, vol. 6476, pp.
281–295. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17650-0 20
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38. Küsters, R., Truderung, T., Vogt, A.: Formal analysis of chaumian mix nets with
randomized partial checking. In: S&P 2014, pp. 343–358 (2014)

39. Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting pri-
vacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392. Springer,
Heidelberg (2006). doi:10.1007/11818175 22

40. Olembo, M.M., Bartsch, S., Volkamer, M.: Mental models of verifiability in voting.
In: Vote-ID 2013, pp. 142–155 (2013)

41. Parkes, D., Rabin, M., Shieber, S., Thorpe, C.: Practical secrecy-preserving, veri-
fiably correct and trustworthy auctions. In: ICEC 2006, pp. 70–81 (2006)

42. Rivest, R.L., Smith, W.D.: Three voting protocols: threeballot, VAV and twin. In:
EVT 2007 (2007)

43. Ryan, P.Y.A., Rønne, P.B., Iovino, V.: Selene: voting with transparent verifiability
and coercion-mitigation. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D.,
Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 176–192. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-53357-4 12

44. Peter, Y.A., Ryan, D., Heather, J., Schneider, S., Xia, Z.: The prêt à voter verifiable
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