
Int J Inf Secur (2004) / Digital Object Identifier (DOI) 10.1007/s10207-004-0050-z

On the decidability of cryptographic protocols
with open-endeddata structures

Ralf Küsters∗

Institut für Informatik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
e-mail: kuesters@ti.informatik.uni-kiel.de

Published online: 20 October 2004 – Springer-Verlag 2004

Abstract. Formal analysis of cryptographic protocols
has concentrated mainly on protocols with closed-ended
data structures, i.e., protocols where the messages ex-
changed between principals have fixed and finite format.
In many protocols, however, the data structures used are
open-ended, i.e., messages have an unbounded number of
data fields. In this paper, decidability issues for such pro-
tocols are studied. We propose a protocol model in which
principals are described by transducers, i.e., finite auto-
mata with output, and show that in this model security is
decidable and PSPACE-hard in presence of the standard
Dolev-Yao intruder.

Keywords: Cryptographic protocols – Decidability –
Complexity – Transducers

1 Introduction

Cryptographic protocols are communication protocols
that use cryptographic primitives, such as encryption and
digital signatures, to achieve certain goals. For example,
to buy and sell goods or to carry out bank transactions
over the Internet, it is necessary that principals (e.g.,
the bank and the customer) authenticate each other, i.e.,
make sure that they are really talking to each other, and
that a secret key is exchanged between the principals for
secure communication.Well-known examples of such pro-
tocols are the Secure Socket Layer [24], Kerberos [28], and
the Secure Shell [6].
It is very hard to prove cryptographic protocols se-

cure or to find attacks on these protocols. This is because
cryptographic protocols are supposed to be secure even in
a “hostile” environment in which an intruder has control

∗ Part of this work was carried out while the author was at
Stanford University supported by the “Deutsche Forschungsge-
meinschaft” (DFG).

over the whole network. Such an intruder can insert new
messages into the network, impersonate other principals,
and read, modify, replay, and delete all messages sent over
the network. In addition, several sessions of a protocol
may run interleaved and the intruder can combine mes-
sages coming from different sessions.
For this reason informal arguments about the security

of cryptographic protocols often turned out to be incom-
plete, and attacks on these protocols were discovered only
years after they were proposed [29].

Formal methods. In contrast to informal arguments, for-
mal methods are very successful in analyzing the security
of cryptographic protocols. Using these methods, many
flaws have been found in published protocols [14]. Most
of these methods are based on the so-called Dolev-Yao
model [18] – models such as special-purpose logics [12] or
complexity theoretic and probabilistic models [7] are not
discussed here.
In the Dolev-Yao model messages are represented as

terms. For instance, the term enck(m) denotes the mes-
sage m encrypted by k. The general assumption is that
the cryptographic primitives used in a protocol work per-
fectly (perfect cryptography assumption): for instance,
given the term enck(m) an intruder can get hold of m if
and only if he knows k. Without k no partial information
aboutm is leaked. Also, the intruder cannot guess keys or
perform statistical tests.
By now, a large variety of different formalisms, meth-

ods, and tools for cryptographic protocol analysis based
on the Dolev-Yao model is available [16, 32]. The for-
malisms include rewriting [13, 39], process algebras [1,
3, 19, 30, 40], first- and higher-order predicate logics [15,
37], and different special-purpose formalisms [16]. The
methods and tools include those based on theorem prov-
ing [10, 15, 37], model checking [30, 34], and special-
purpose algorithms for automatic analysis of protocols [3,
4, 9, 27, 41].

R. Küsters: On the decidability of cryptographic protocols with open-ended data structures

Decidability. For different interesting classes of proto-
cols and intruders, security has been shown to be decid-
able, where in this context security usually means secrecy.
A protocol preserves secrecy if the intruder cannot get
hold of a message that should only be known by the hon-
est principals.
Decidability depends on the following parameters.

The number of interleaved sessions considered in the an-
alysis of a protocol may be bounded or unbounded; the
size of messages exchanged between principals and pro-
duced by the intruder may be bounded or unbounded;
and pairing of messages, nonces (random numbers mod-
eled as fresh constants), and complex keys (complex
terms used as keys) may or may not be allowed.
More specifically, if one allows for an unbounded num-

ber of sessions, security is in general undecidable [2, 3,
20, 21], except when the message size is bounded and
nonces are disallowed (then security is EXPTIME-com-
plete [20]), or pairing is disallowed (then security is
in P [3, 17]). The situation is much better if one puts
a bound on the number of sessions and disallows nonces.
Then, even with pairing and unbounded message size,
security is decidable [3, 27, 39] and NP-hard [3, 39]; Rusi-
nowitch and Turuani [39] show NP-completeness with
complex keys. As further discussed below, except for com-
plex keys, we make similar assumptions in our models.

Open-ended data structures. Research on protocol analy-
sis has concentrated mainly on protocols with closed-
ended data structures, where messages exchanged be-
tween principals have fixed and finite format. In what
follows, we will refer to these protocols as closed-ended
protocols. However, in many protocols the data structures
are open-ended : the number of data fields that must be
processed by a principal in one receive-send action is un-
bounded, where receive-send action means that a princi-
pal receives a message and, after some internal computa-
tion, reacts by sending a message. We will call protocols
with open-ended data structures open-ended.
One example of an open-ended protocol is the Inter-

net Key Exchange protocol (IKE) [26], in which a prin-
cipal needs to pick a security association (SA) among an
a priori unbounded list of SAs, where an SA is the col-
lection of algorithms and other information used for en-
cryption and authentication. Such a list of SAs is an open-
ended data structure since it has an unbounded number
of data fields to be examined by a principal. An attack
on IKE, found by Zhou [43] and, independently, Fergu-
son and Schneier [22], shows that when modeling open-
ended protocols, the open-ended data structures must be
taken into account, since otherwise some attacks might
not be found. In other words, as also pointed out by
Meadows [32], open-endedness is security relevant.
Other typical open-ended protocols are group proto-

cols, for example, the recursive authentication protocol
(RA protocol) [11] and A-GDH.2 [5], which is part of the
CLIQUES project [42]. In the RA protocol a key distribu-

tion server receives, in one receive-send action, an a priori
unbounded sequence of request messages, where each re-
quest message contains a pair of principals who want to
share session keys. From this sequence the server needs to
generate a corresponding sequence of certificates contain-
ing the session keys. These sequences are open-ended data
structures: in one receive-send action the server needs to
process an unbounded number of data fields, namely, the
sequence of pairs of principals. In Appendix A, the RA
protocol is described in detail.
To the best of our knowledge, the only contributions

on formal analysis of open-ended protocols are the fol-
lowing. The RA protocol [11] has been analyzed by Paul-
son [36], using the Isabelle theorem prover, as well as
by Bryans and Schneider [10], using the PVS theorem
prover. The A-GDH.2 protocol [5] has been analyzed
by Meadows [31] with NRL Analyzer and manually by
Pereira and Quisquater [38] based on a model similar to
the strand spaces model. Decidability issues for open-
ended protocols have not been studied up until now.

Contribution of the paper. This paper addresses open-
ended protocols, and thus deals with one of the challenges
pointed out by Meadows [32]. The goal is to devise a pro-
tocol model rich enough to capture a large class of open-
ended protocols such that security is decidable; the long-
term goal is to develop tools for automatic verification of
open-ended protocols.
As discussed above, open-ended protocols make it

necessary to model principals who can perform in one
receive-send action an unbounded number of internal ac-
tions; only then can they handle open-ended data struc-
tures. Thus, the first problem is to find a suitable compu-
tational model for receive-send actions.
It turns out that one cannot simply extend the ex-

isting models. More specifically, Rusinowitch and Turu-
ani [39] describe receive-send actions by single rewrite
rules and show security to be NP-complete. The rewrite
rules may contain nonlinear terms (in particular, mes-
sages can be checked for equality and can be copied)
and the principals have unbounded memory. To deal
with open-ended protocols, we generalize their model in
a straightforward way and show that if receive-send ac-
tions are described by sets of rewrite rules, security is
undecidable. The reason for the undecidability is that
principals can compare or copy messages of arbitrary size,
which in particular is possible if they have unbounded
memory. Therefore, we need a computational model in
which principals have finite memory and cannot compare
or copy messages of arbitrary size.
For this reason, we propose to use transducers, i.e., fi-

nite automata with output, as the computational model
for receive-sendactions, since transducers satisfy theabove
restrictions and can still deal with open-ended data struc-
tures. Section 4.1 contains a detailed discussion on our so-
called transducer-based protocol model and Appendix B
provides a description of the RA protocol in this model.

R. Küsters: On the decidability of cryptographic protocols with open-ended data structures

The main result of this paper is that in the transducer-
based model, security is decidable and PSPACE-hard
under the following assumptions: the number of sessions
is bounded, i.e., a protocol is analyzed assuming a fixed
number of interleaved protocol runs, and nonces and com-
plex keys are not allowed. We, however, put no restric-
tions on the Dolev-Yao intruder; in particular, the mes-
sage size is unbounded. These assumptions are quite close
to those made in decidable models for closed-ended pro-
tocols [3, 8, 23, 27, 33, 39]; nevertheless, in some respects
they are more restrictive. First, we note that in most
models for closed-ended protocols, complex keys are al-
lowed. Second, these models usually include asymmetric
encryption, while here we only have symmetric encryp-
tion. However, extending our models and results to in-
clude asymmetric encryption seems straightforward. Fi-
nally, we remark that even though in models for closed-
ended protocols nonces are in most cases not modeled
explicitly, they can be simulated as the messages returned
by principals have fixed and finite format, which is not the
case for open-ended protocols.
The results presented here indicate that from a com-

putational point of view, the analysis of open-ended pro-
tocols is harder than for closed-ended protocols, for which
security is “only” NP-complete [39]. The additional com-
plexity derives from the fact that now we have, besides
the Dolev-Yao intruder, another source of infinite behav-
ior: the unbounded number of internal actions, that is,
paths in the transducers of unbounded length. This re-
quires devising new proof techniques to show decidability.
Roughly speaking, using that transducers only have finite
memory we will use a pumping argument showing that
the length of paths in the transducers can be bounded in
the size of the problem instance.

Structure of the paper. In Sect. 2, we define a generic
protocol model to describe open-ended protocols. In this
model, receive-send actions can be arbitrary computa-
tions. In Sect. 3, we consider an instance of the generic
model in which receive-send actions are specified by sets
of rewrite rules and show the abovementioned undecid-
ability result. Then, the transducer-based model, i.e., the
instance of the generic protocol model in which receive-
send actions are given by transducers, is introduced in
Sect. 4. This section also contains the discussion men-
tioned above. Section 5 contains the actual decidability
result, which is proved in the subsequent sections. Sec-
tion 11 contains the proof of the complexity lower bound.
Finally, we conclude in Sect. 12. Appendix A provides
a detailed description of the RA protocol and in Ap-
pendix B a formalization of the key distribution server in
the transducer-based protocol model is given.

2 A generic protocol model

The generic protocol model will serve in this paper as
a general framework for protocol models. It has many

decidable models for closed-ended protocols as instance.
In particular, the underlying assumptions basically co-
incide with those in [3, 8, 27, 33, 39]. It also includes
the models for open-ended protocols considered in the
present work. The most important characteristic of the
generic protocol model is that receive-send actions are,
roughly speaking, binary relations over the message
space and thus can be interpreted as arbitrary com-
putations. The different instances of the generic pro-
tocol model can be distinguished in the kind of com-
putational model used to describe receive-send actions.
For example, receive-send actions could be described
as rewrite rules [39] or transducers, as proposed in
Sect. 4.
The main features of the generic protocol model can

be summarized as follows:

– A generic protocol is described by a finite set of princi-
pals;
– The internal state space of a principal may be infinite
(which, for example, enables a principal to store arbi-
trary long messages);
– Every principal is described by a finite sequence of
receive-send actions;
– Receive-send actions are arbitrary computations.

We make the following assumptions:

– The intruder is the standard Dolev-Yao intruder; in
particular, we do not put restrictions on the size of
messages.
– Principals and the intruder cannot generate nonces.
– Keys are atomic messages, i.e., constants.
– The number of sessions is bounded. More precisely,
the sessions considered in the analysis are only those
encoded in the protocol description itself.

As mentioned earlier, except for the restriction to atomic
keys, these are standard assumptions also made in decid-
able models for closed-ended protocols.
We now provide a formal definition of the generic pro-

tocol model.

2.1 Messages

Let N denote a finite set of atomic messages contain-
ing keys, names of principals, etc. as well as the special
atomic message secret. The set of messages (over N) is
the least setM that satisfies the following properties:

– N ⊆M;
– Ifm,m′ ∈M, thenmm′ ∈M;
– Ifm ∈M and a ∈N , then enca(m) ∈M;
– Ifm ∈M, then hash(m) ∈M.

Concatenation is an associative operation, and thus we
require (mm′)m′′ =m(m′m′′).We point out that inmany
other approaches (see, e.g., [3, 8, 16, 20, 27, 39]) concate-
nation is modeled by a free binary operator, which in
particular is not associative. Due to this simplification, in
these models some attacks discovered in our model might
not be detected. Conversely, other models are more accu-

R. Küsters: On the decidability of cryptographic protocols with open-ended data structures

rate in that they allow keys to be complex messages, while
here we assume keys to be atomic messages.
Let ε denote the empty message. Then, defineMε :=

M∪{ε}. Note that ε is not allowed inside encryptions or
hashes, that is, enca() �∈Mε and hash() �∈Mε.
The size |m| of a message m is the number of occur-

rences of atomic messages, encryption, and hash func-
tions inm; |ε| := 0.
Later, we will also consider terms, i.e., messages with

variables. Let V be a set of variables disjoint from N .
A term t over V (and N) is a message over the atomic
messagesN ∪V , where variables are not allowed as keys,
i.e., terms of the form encv(·) for some variable v are for-
bidden. We write t(v0, . . . , vn−1) to say that the set of
variables occurring in t is a subset of {v0, . . . , vn−1}. Let
T (V) denote the set of terms over V and Tε(V) := T (V)∪
{ε}. We call a term t linear if every variable in t occurs at
most once. Given t(v0, . . . , vn−1) and terms t0, . . . , tn−1,
t[v0/t0, . . . , vn−1/tn−1] denotes the term obtained from
t by simultaneously substituting the variables vi by ti.
Sometimes we simply write t[t0, . . . , tn−1]. A term t

′ ∈
Tε(V) is a subterm of t∈ Tε(V) if there exists a linear term
t′′(v) containing the variable v such that t= t′′[t′]. A sub-
stitution σ is a mapping from V into Mε. If t ∈ Tε(V),
then σ(t) denotes the message obtained from t by replac-
ing every variable v in t by σ(v).
The depth depth(t) of a term t is the maximum number

of nested hashes and encryptions in t, i.e.,

– depth(ε) := 0, depth(a) := 0 for every a ∈N ∪V ;
– depth(tt′) :=max{depth(t), depth(t′)};
– depth(enca(t)) := depth(hash(t)) := 1+depth(t).

Given a finite subset of messages K ⊆Mε, the max-
imum depth of messages in K is denoted by depth(K) :=
max{depth(m) |m ∈ K}.

2.2 The intruder model

We use the standard Dolev-Yao intruder [18]. That is, an
intruder has complete control over the network and can
derive new messages from his current knowledge by com-
posing, decomposing, encrypting, decrypting, and hash-
ing messages. We do not impose any restrictions on the
size of messages.
The (possibly infinite) set d(K) of messages the in-

truder can derive from K ⊆Mε is the smallest set satis-
fying the following conditions:

– K ⊆ d(K);
– Ifmm′ ∈ d(K), thenm ∈ d(K) andm′ ∈ d(K) (decom-
position);
– If enca(m) ∈ d(K) and a ∈ d(K), then m ∈ d(K) (de-
cryption);
– Ifm ∈ d(K) andm′ ∈ d(K), thenmm′ ∈ d(K) (compo-
sition);
– Ifm ∈ d(K),m �= ε, and a ∈N ∩d(K), then enca(m) ∈
d(K) (encryption);
– Ifm ∈ d(K) andm �= ε, thenhash(m)∈ d(K) (hashing).

Let an(K) denote the closure of K under decomposition
and decryption, and syn(K) the closure of K under com-
position, encryption, and hashing. It easy to see that,
since we only allow for atomic keys, d(K) can be obtained
by first taking the closure of K under decomposition and
decryption, and from this the closure under composition,
encryption, and hashing. Formally (see, for instance, [37]
for a proof):

Lemma 1. d(K) = syn(an(K)) for every K ⊆Mε.

We point out that in case of complex keys, i.e., if terms of
the form encm(m′) are allowed where both m and m′ are
arbitrary messages, the lemma does not hold since, for in-
stance, to derive m′ from encm(m

′) it may be necessary
to construct m before decrypting encm(m′) using m [33].
The decidability result presented in this paper will make
use of the above lemma.

2.3 Protocols

Protocols are described by sets of principals, and every
principal is defined by a sequence of receive-send actions,
which are performed one after the other. Since we are
interested in attacks, the definition of a protocol also con-
tains the initial intruder knowledge. Formally, principals
and protocols are defined as follows.

Definition 1. A generic principal Π is a tuple (Q, I, n,
α), where

– Q is the (possibly infinite) set of states of Π;
– I is the set of initial states of Π;
– n is the number of receive-send actions to be performed
by Π;
– α is a mapping assigning to every j ∈ {0, . . . , n−1}
a receive-send action α(j) ⊆Q×Mε×Mε×Q.

A generic protocol P is a tuple ({Πi}i<l,K), where

– {Πi}i<l is a family of l generic principals, and
– K ⊆Mε is the initial intruder knowledge.

Note that receive-send actions are arbitrary relations.
Intuitively, they take an input message (2. component)
and nondeterministically, depending on the current state
(1. component), return an output message (3. compon-
ent) plus a new state (4. component). Later, when we con-
sider instances of the generic protocol model, one receive-
send action of a principal will consist of an unbounded
number of internal actions. By allowing receive-send ac-
tions to be nondeterministic and principals to have a set
of initial states, instead of a single initial state, one can
model more flexible principals: for instance, those that
nondeterministically choose one principal who they want
to talk to or one SA from the list of SAs in IKE.

2.4 Attacks on protocols

In an attack on a protocol, the receive-send actions of the
principals are interleaved in some way and the intruder,

R. Küsters: On the decidability of cryptographic protocols with open-ended data structures

who has complete control over the communication, tries
to produce inputs for the principals such that from the
corresponding outputs and his initial knowledge he can
derive the secret message secret. Formally, an attack is de-
fined as follows.

Definition 2. Let P = ({Πi}i<l,K) be a generic proto-
col with Πi = (Qi, Ii, ni, αi), for i < l. An attack on P is
a tuple consisting of the following components:

– A total ordering < on the set {(i, j) | i < l, j < ni} such
that (i, j)< (i, j′) implies j < j′ (the execution order of
the receive-send actions);1

– A mapping ψ assigning to every (i, j), i < l, j < ni,
a tuple

ψ(i, j) = (qji ,m
j
i ,m

′j
i , q
j+1
i)

with

– qji , q
j+1
i ∈Qi (the state of Πi before and after per-

forming αi(j)); and
– mji ,m

′j
i ∈Mε (the input message received and out-

put message sent by the action αi(j));

such that

– q0i ∈ Ii for every i < l;

– mji ∈ d(K∪{m
′j
′

i′ | (i
′, j′)< (i, j)}) for every i < l, j <

ni;
– (qji ,m

j
i ,m

′j
i , q
j+1
i) ∈ αi(j) for every i < l, j < ni.

An attack is called successful if secret ∈ d(K∪{m′ji | i <
l, j < ni}).

The decision problem we are interested in is the following:

Attack: Given a protocol P , decide whether there exists
a successful attack on P .

A protocol guarantees secrecy if there does not exist
a successful attack. In this case, we say that the protocol
is secure.
Whether Attack is decidable or not heavily depends

on what kinds of receive-send actions a principal is al-
lowed to perform. In the following sections, we look at
different instances of generic protocols, i.e., different com-
putational models for receive-send actions, and study
the problem Attack for the classes of protocols thus
obtained.

3 The undecidability result

We extend the model proposed by Rusinowitch and Tu-
ruani [39] in a straightforward way such that open-ended
protocols can be handled, and we show that this extension
leads to undecidability of security.

1 Although we assume a linear ordering on the receive-send ac-
tions performed by a principal, we could just as well allow partial
orderings (as in [39]) without any impact on the decidability and
complexity results.

The model by Rusinowitch and Turuani can be con-
sidered as the instance of the generic protocol model in
which receive-send actions are described by single rewrite
rules of the form t→ t′, where t and t′ are terms.2 The in-
ternal state of a principal is given implicitly by the values
assigned to the variables occurring in the rewrite rules –
different rules may share variables. In particular, a prin-
cipal has unbounded memory to store information for
use in subsequent receive-send actions. Roughly speak-
ing, a message m is transformed by a receive-send action
of the form t→ t′ into the message σ(t′), where σ is a sub-
stitution satisfying m= σ(t). In [39], it is shown that in
this setting, Attack is NP-complete.
Of course, in this model open-ended data structures

cannot be handled since the left-hand side t of a rewrite
rule has a fixed and finite format, and thus one can only
process messages with a fixed number of data fields.
A straightforward and rather näıve extension of this

model, which allows one to deal with open-ended data
structures, is to describe receive-send actions by sets of
rewrite rules, which can nondeterministically be applied
to the input message. This extension yields what we call
the rule-based protocols.
More specifically, a receive-send action in a rule-based

protocol will be defined by a set of input, output, and so-
called process rules. A message is processed by such an
action as follows. First, one of the input rules is applied,
resulting in a new message. Then, Nondeterministically,
process rules are applied to this message, and, finally, one
of the output rules is used to produce the actual output.
In a more powerful model, one could allow a principal
to produce output when applying a process rule as well.
However, to obtain a stronger undecidability result, we
stick to the more restricted model.
Formally, as already mentioned, a rewrite rule is of

the form t→ t′, where t and t′ are terms. A (rule-based)
action A of a principal is a tuple (I,O,R), where I, O,
and R are finite sets of rewrite rules (the input, output,
and process rules, respectively). For every rule t→ t′ ∈R
we require that for all substitutions σ, |σ(t′)| < |σ(t)|.
This guarantees that process rules can only be applied to
a message a finite number of times.
A rule-based action A defines the following binary

relation RA on Mε: (m,m
′) ∈ RA iff there exist sub-

stitutions σ0, . . . , σn and rewrite rules r0, . . . , rn with
ri = ti→ t′i, for every i≤ n, such that

– r0 ∈ I, rn ∈O, and ri ∈R for every 0< i < n;
– σ0(t0) =m; σn(t

′
n) =m

′; and
– σi(t

′
i) = σi+1(ti+1) for every i < n.

A generic protocol for which the receive-send actions can
be described by rule-based actions is called a rule-based
protocol. Note that, since in this setting principals do not

2 Since Rusinowitch and Turuani allow for complex keys, the
terms are more general than the ones we use here. However, we will
only consider terms as defined in Sect. 2.1.

R. Küsters: On the decidability of cryptographic protocols with open-ended data structures

have states, receive-send actions are simply subsets of
Mε×Mε instead of Q×Mε×Mε×Q.

Theorem 1. Attack is undecidable for rule-based pro-
tocols.

The proof is rather straightforward. It is by reduction
from Post’s correspondence problem (PCP), which is de-
fined as follows. Given an alphabet Σ with at least two
letters and two sequences u0, . . . , un−1 and v0, . . . , vn−1
of words over Σ (including the empty word ε), decide
whether there exist indices i0, . . . , ik−1, k > 0, with
ui0 . . . uik−1 = vi0 . . . vik−1 .
Given an instance I of PCP, we define the correspond-

ing rule-based protocol P as follows. We construct P in
such a way that the intruder only obtains a secret if he
can guess a solution of I. Formally, P has one principal
performing one action A= (I,O,R) with

– I := {x→ x= x};
– O := {ui = vi→ secret | i < k};
– R := {uix= viy→ x= y | i < k},

where x and y are variables. The initial intruder know-
ledge is K := Σ∪{=}. Now it is easy to see that P allows
a successful attack iff the instance of PCP has a solution.
In this reduction we merely used that a principal can

copy messages (see the input rule). A reduction to PCP
is also possible if nonlinear terms may only occur on the
left-hand side of a rewrite rule, and thus principals can
only test submessages for equality. We also remark that,
even when we restrict rewrite rules to contain only linear
terms but allow a principal to store one message and com-
pare this message to the message currently processed, this
again allows equality tests and, therefore, leads to unde-
cidability.

4 Transducer-based protocol model

As just discussed, when, roughly speaking, principals can
process open-ended data structures and, in addition, can
compare submessages of arbitrary size for equality, copy
messages, or having unbounded memory, then security
is undecidable. To obtain decidability, we need a device
with only finite memory and that does not allow one to
compare or copy messages of arbitrary size. One such de-
vice is a transducer, i.e., a finite automaton with output.
In what follows, we define the instance of the generic

protocol model in which receive-send actions are de-
scribed by transducers. Section 4.1 contains a discussion
of this model.
If Σ is a finite alphabet, Σ∗ will denote the set of finite

words over Σ, including the empty word ε; Σ+ := Σ∗ \{ε}.

Definition 3. A transducer A is a tuple (Q,Σ,Ω, I,∆,
F) where

– Q is the finite set of states of A;
– Σ is the finite input alphabet;

– Ω is the finite output alphabet;
– I ⊆Q is the set of initial states of A;
– ∆ ⊆Q×Σ∗×Ω∗×Q is the finite set of transitions of
A; and
– F ⊆Q is the set of final states of A.

A path π (of length n) in A from p to q is of the form
q0(v0, w0)q1 . . . (vn−1, wn−1)qn with q0 = p, qn = q, and
(qi, vi, wi, qi+1) ∈∆ for every i < n; π is called strict if
n > 0, and v0 and vn−1 are nonempty words. The word
v0 . . . vn−1 is the input label and w0 . . . wn−1 is the out-
put label of π. A path of length 0 has input and output
label ε. We write p(v, w)q ∈A (p(v, w)q ∈s A) if there ex-
ists a (strict) path from p to q in A with input label v and
output label w.
If S, T ⊆Q, thenA(S, T) := {(p, v, w, q) | p ∈ S, q ∈ T ,

p(v, w)q ∈ A} ⊆Q×Σ∗×Ω∗×Q. The output of A on in-
put v ∈Σ∗ is defined byA(v) := {w | there exist p ∈ I and
q ∈ F with (p, v, w, q) ∈A(I, F)}.
If ∆⊆Q× (Σ∪{ε})× (Ω∪{ε})×Q, then A is called

transducer with letter transitions in contrast to transduc-
ers with word transitions. The following lemma shows
that it suffices to consider transducers with letter transi-
tions. The proof is straightforward.

Lemma 2. Let A = (Q,Σ,Ω, I,∆, F) be a transducer.
Then there exists a transducer A′ = (Q′,Σ,Ω, I,∆′, F)
with letter transitions such that Q ⊆ Q′ and for every
S, T ⊆Q:A′(S, T) =A(S, T).

In order to specify the receive-send actions of a principal,
we consider special transducers, so-called message trans-
ducers, that satisfy certain properties. Message transduc-
ers interpret messages as words over the finite alphabet
ΣN , consisting of the atomic messages as well as the let-
ters “enca(”, “hash(”, and “)”, that is,

ΣN :=N ∪{enca(| a ∈N}∪{hash(,)}.

Messages considered as words over ΣN have always a bal-
anced number of opening parentheses, i.e., “enca(” and
“hash(”, and closing parentheses, i.e., “)”. Often these
letters will occur in expressions in the text (as in the
definition of ΣN) without matching opening and closing
parentheses.
A message transducer reads a message (interpreted

as a word) from left to right, thereby producing some
output. If messages are considered as finite trees (where
leaves are labeled with atomic messages and internal
nodes are labeled with the encryption or hash symbol),
a message transducer traverses such a tree from top to
bottom and from left to right.
We assume that if a message transducer reads a mes-

sage, then the resulting outputs are messages rather than
arbitrary words. A message transducer has to meet this
condition both “externally” (see condition 1) and “inter-
nally” (condition 2).

R. Küsters: On the decidability of cryptographic protocols with open-ended data structures

Definition 4. Amessage transducerA (overN) is a tu-
ple (Q,ΣN , I,∆, F) such that (Q,ΣN ,ΣN , I,∆, F) is
a transducer with letter transitions, and

1. For every x ∈Mε, A(x) ⊆Mε; and
2. For all p, q ∈Q, x ∈M, and y ∈ Σ∗N , if p(x, y)q ∈s A,
then y ∈Mε.

It remains to investigate whether conditions 1 and 2 are
decidable. Nevertheless, for the transducer describing
the server in the recursive authentication protocol (Ap-
pendix B), it is easy to see that these conditions are
satisfied.
For S, T ⊆ Q, we define MA(S, T) := A(S, T)∩ (Q×

Mε×Σ∗N ×Q). By the definition of message transducers,
MA(I, F) ⊆ (Q×Mε×Mε×Q) if I is the set of initial
states and F is the set of final states of A. Thus, message
transducers specify receive-send actions of principals (in
the sense of Definition 1) in a natural way.
In order to define one principal (i.e., the whole se-

quence of receive-send actions a principal performs)
by a single transducer, we consider extended message
transducers: A = (Q,ΣN ,∆, (I0, . . . , In)) is an extended
message transducer if AIj ,Ij+1 := (Q,ΣN , Ij ,∆, Ij+1)
is a message transducer for all j < n. Given such an
extended message transducer, it defines the principal
(Q, I0, n, α), where α(j) =MAIj ,Ij+1

(Ij , Ij+1) for j < n.

In this setting, an internal action of a principal
corresponds to applying one transition in the extended
message transducer.

Definition 5. A transducer-based protocol P is a ge-
neric protocol where the principals are defined by extended
message transducers.

4.1 Discussion of the transducer-based
protocol model

We discuss capabilities and limitations of the transducer-
based protocol model. To this end, we compare this
model with the models usually used for closed-ended
protocols. To make the discussion more concrete, we
concentrate on the model proposed by Rusinowitch
and Turuani (see Sect. 3), subsequently called rewrit-
ing model, a model that contains the main features –
we also could have used models proposed, for instance,
in [3, 8, 27, 33]. In the introduction, differences regard-
ing basic assumptions such as complex keys and nonces
have been discussed already. Here we concentrate on the
main differences between the two models with respect
to the way receive-send actions are described. In the
rewriting model, receive-send actions are single rewrite
rules, while in the transducer-based model they are mes-
sage transducers.
Let us explain the capabilities of message transducers

compared to rewrite rules.

Open-ended data structures. As mentioned in Sect. 3,
with a single rewrite rule one cannot process an un-

bounded number of data fields. This is, however, possible
with transducers.
For example, considering IKE (see introduction), it is

easy to specify a transducer that (i) reads a list of SAs,
each given as a sequence of atomic messages, (ii) picks one
SA, and (iii) returns it. With a single rewrite rule, one
could not parse the whole list of SAs. One can, however,
consider this problem as matching modulo associativity.
Unfortunately, as mentioned in Sect. 2.1, in models for
closed-ended protocols, concatenation is usually consid-
ered a free binary operator, and thus this kind of match-
ing is not supported.
The transducer-based model of the RA protocol (Ap-

pendix B) shows that transducers can also handle more
involved open-ended data structures: the key distribution
server in this protocol generates a sequence of certificates
from a request message of the form

hash(m0hash(m1· · · hash(mn) · · ·) ,

where the mi’s are sequences of atomic messages and the
nesting depth of the hashes is a priori unbounded (see
Appendices A and B for the exact definition of the mes-
sages).
Clearly, a transducer cannot match opening and clos-

ing parenthesis if they are nested arbitrarily deep since
messages are interpreted as words. However, often this is
not necessary: in IKE, the list of SAs is a message without
any nesting. In the RA protocol, the structure of request
messages is very simple and can be parsed by a trans-
ducer. Note that a transducer does not need to check
whether the number of closing parentheses in the request
message matches the number of hashes because all words
sent to a message transducer are sent by the intruder, who
can only deal with messages, and thus well-formed words.

Simulating rewrite rules. Transducers can simulate cer-
tain receive-send actions described by single rewrite rules.
Consider, for example, the rule enck(x)→ hash(kx),
where x is a variable and k an atomic message: first, the
transducer would read “enck(” and output “hash(k”, and
then reads, letter by letter, the rest of the input message,
i.e., “x)” – more precisely, the message substituted for x
– and simultaneously writes it into the output. The trans-
ducer can also check whether the last letter of the input is
a closing parenthesis; again, this is not necessary because
all words sent to a message transducer (by the intruder)
are well formed.

We now turn to the limitations of the transducer-based
model compared to the rewriting model. The main limita-
tions are the following:

1. Finite memory: In the rewriting model, principals can
store messages of arbitrary size to use them in subse-
quent receive-send actions. This is not possible with
transducers since they only have finite memory.

2. Comparing messages: In the rewriting model, princi-
pals can check whether submessages of the input mes-

R. Küsters: On the decidability of cryptographic protocols with open-ended data structures

sage coincide; for example, if t= hash(kx)x, with k an
atomic message and x a variable, a principal can check
whether plain text and hash match. Transducers can-
not do this.

3. Copying messages: In the rewriting model, principals
can copy messages of arbitrary size; for example, in
the rule enck(x)→ hash(kx)x, the message x is copied.
Again, a transducer would need to store x in some way,
which is not possible because of the finite memory. As
illustrated above, a transducer could, however, simu-
late a rule such as enck(x)→ hash(kx).

4. Linear terms: A transducer cannot simulate all re-
write rules with linear left- and right-hand side. Con-
sider, for example, the rule enck(xAy)→ hash(yAx),
where x and y are variables and A is an atomic mes-
sage. Since in the output the order of x and y is
switched, a transducer would have to store the mes-
sages substituted for x and y. However, this requires
unbounded memory.

The undecidability result presented in Sect. 3 indicates
that, if open-ended data structures are involved, restric-
tions 1, 2, and 3 seem to be unavoidable. However, in
Sect. 3 we extended the rewriting model in a quite näıve
way. One question is whether there are better suited ex-
tensions. Also, it remains to be seen whether the last
restriction can be lifted. Future work will investigate to
what extent tree transducers can help here and if so what
kinds of tree transducers are best suited. In addition,
it might be possible to combine different computational
models for receive-send actions. For instance, a hybrid
model in which some receive actions are described by
rewrite rules and others by transducers might still be
decidable.
The model of the RA protocol (presented in Ap-

pendix B) illustrates that, even with the restrictions
listed above, some protocols, including those not amenable
to models for closed-ended protocols, can be captured
within the transducer-based protocol model. Typing of
messages, which for example means that a principal
accepts a message only if principal names and nonces
are atomic messages, often helps to overcome the re-
strictions. For instance, assuming typed messages in the
RA protocol allows one to model a server with finite
memory.

5 Decidability result

We prove the following theorem.

Theorem 2. Attack is decidable for transducer-based
protocols.

Obviously, it suffices to show that the following problem
is decidable since in attacks interleavings of receive-send
actions and initial and final states of the message trans-
ducers can be guessed.

PathProblem. Given a finite set K ⊆Mε and message
transducersA0, . . . , Ak−1, k ≥ 0, with

Ai = (Qi,ΣN , {q
I
i },∆i, {q

F
i }),

decide whether there exist messages mi,m
′
i ∈Mε, i < k

such that

1. mi ∈ d(K∪{m′0, . . . ,m
′
i−1}) for every i < k,

2. qIi (mi,m
′
i)q
F
i ∈Ai for every i < k, and

3. secret ∈ d(K∪{m′0, . . . ,m
′
k−1}).

We write an instance of the PathProblem as

(K,A0, . . . ,Ak−1)

and a solution of such an instance as a tuple

(m0,m
′
0, . . . ,mk−1,m

′
k−1)

of messages. The size of instances is defined as the size of
the representation for K and A0, . . . , Ak−1.
To show decidability, we have to cope with two sources

of infinite behavior. First, the intruder can perform an un-
bounded number of steps to derive a new message (mi
or secret). Second, to perform one receive-send action,
a principal can carry out an unbounded number of inter-
nal actions, i.e., the length of the paths qIi (mi,m

′
i)q
F
i ∈Ai

is unbounded. Note that, because transducers may have
ε-transitions, i.e., not in every transition is a letter read
from the input, the number of transitions taken in one
receive-send action is not even bounded in the size of the
input message.
While the former source of infinite behavior was al-

ready present in the (decidable) models for closed-ended
protocols [3, 27, 39], the latter source is new. To prove
Theorem 2, one therefore needs to show not only that
the number of actions performed by the intruder can be
bounded, but also that the number of internal actions of
principals can be bounded. In fact, it suffices to show the
latter: if we can bound the number of internal actions,
a principal only reads messages of bounded length and
therefore the intruder need only produce messages of size
bounded by this length.
To bound the number of internal actions, we apply

a pumping argument showing that long paths in a mes-
sage transducer can be truncated. This argument uses
the fact that principals (the extended message transduc-
ers describing them) have only finite memory. More pre-
cisely, we show that in order to find the messages mi, m

′
i

for every i < k, it suffices to consider paths from qIi to
qFi in Ai bounded in length by the size of the problem
instance; the argument will also show that the bounds
can be computed effectively. Thus, a decision procedure
can enumerate all paths of length restricted by the (com-
puted) bound and check whether their labels satisfy the
conditions. [Note that for every message m and finite set
K′ ⊆Mε, m ∈ d(K′) can be decided.] In particular, as a
“by-product” our decision procedure will yield an actual
attack (if any).

R. Küsters: On the decidability of cryptographic protocols with open-ended data structures

The pumping argument: To show that paths can be
truncated, we first define a solvability preserving (quasi-
)ordering on messages, which allows us to replace single
messages in the intruder knowledge by new ones such that
if in the original problem a successful attack exists, then
it exists in the modified problem as well. This reduces the
pumping argument to the following problem: Truncate
paths in message transducers in such a way that the out-
put of the original path is equivalent (w.r.t. the solvability
preserving ordering) to the output of the truncated path.
Thus, it remains to find criteria for truncating paths in
this way. To this end, we introduce another quasiordering,
the so-called path truncation ordering, which indicates at
which positions a path can be truncated. To actually ob-
tain a bound on the length of paths, one then needs to
show that the equivalence relation induced by the path
truncation ordering has a finite index – more accurately,
an index that can be bounded in the size of the problem
instance.
In what follows, the argument is described in more de-

tail. The formal definition of the orderings are, however,
postponed to later sections in order to focus on the main
ideas.

Preserving solvability of instances of the path problem
(cf. Sect. 6). For every i≤ k, we define a quasiordering3

on messages 	i (the so-called solvability preserving or-
dering) that depends on the transducers Ai, . . . , Ak−1
and has the following property (Proposition 1): For every
solvable instance (K,Ai, . . . , Ak−1) of the path problem,
everym∈K andm∈Mε withm	im, the instance ((K\
{m})∪{m},Ai, . . . , Ak−1) is solvable as well.
Having established this property, assume that a path

qIi (mi,m
′
i)q
F
i ∈Ai is replaced by a shorter path such that

the corresponding input and output labels of the shorter
path, say,mi andm

′
i, satisfy

mi ∈ d(K∪{m
′
0, . . . ,m

′
i−1})

and m′i 	i+1 m
′
i. Then, after Ai has returned m

′
i on in-

putmi, the resulting intruder knowledge isK :=K∪{m′0,
. . . ,m′i−1,m

′
i}, i.e.,m

′
i was replaced bym

′
i. Using Propo-

sition 1, we conclude that there still exists a solution for
the rest of the instance, i.e., (K,Ai+1, . . . ,Ak−1).
Consequently, it remains to find criteria for trun-

cating long paths qIi (mi,m
′
i)q
F
i ∈ Ai to shorter ones

qIi (mi,m
′
i)q
F
i ∈ Ai such that

1. mi ∈ d(K∪{m′0, . . . ,m
′
i−1}) and

2. m′i 	i+1 m
′
i.

Truncating paths such that the first criterion is satisfied is
rather easy. The involved part is to guarantee the second
criterion. To this end, we introduce the path truncation
ordering that indicates at which positions a path can be
truncated such that criterion 2 is satisfied.

3 A reflexive and transitive ordering

Truncating paths (cf. Sect. 9). We extend 	i to a qua-
siordering 	li (the path truncation ordering) on so-called
left half-messages. Left half-messages are prefixes of mes-
sages (considered as words over ΣN). In particular, left
half-messages may lack some closing parentheses. The “l”
in 	li is the number of missing parentheses (the level of
left half-messages); 	li only relates left half-messages of
level l. Analogously, right half-messages are suffixes of
messages. Thus, they may have too many closing paren-
theses; the number of additional parentheses determines
the level of right half-messages. The equivalence relation
≡li on left half-messages corresponding to 	

l
i has the fol-

lowing property (Proposition 5): For all left half-messages
α, α′ of level l and right half-messages γ of level l, α≡li α

′

implies αγ ≡i α′γ. (Note that αγ and α′γ are messages.)
Now consider two positions x < y in the path π =

qIi (mi,m
′
i)q
F
i) ∈ Ai such that αx, αy are the output la-

bels up to these positions and γx, γy are the output la-
bels beginning at these positions, i.e.,m′i = αxγx = αyγy.
Clearly, αx, αy are left half-messages and γx, γy are right
half-messages. Assume that αx, αy have the same level l
(in particular, γx, γy have level l) and αx ≡li+1 αy. Then,
Proposition 5 implies that m′i = αyγy ≡i+1 αxγy =:m

′
i,

wherem′i is the output label of the path obtained by cut-
ting out the subpath in π between x and y.4 Thus, ≡li+1
provides us with the desired criterion for truncating paths
such that condition 2 is satisfied. In order to conclude
that the length of paths can be bounded in the size of the
problem instance, it remains to show that l and the index
of ≡li+1 (i.e., the number of equivalence classes modulo
≡li+1 on left half-messages of level l) can be bounded in
the size of the problem instance. To this end, the following
point is demonstrated.

Bounding the depth of messages (cf. Sects. 7 and 8). We
show that for every solvable instance

I = (K,A0, . . . ,Ak−1)

of the PathProblem there exists a solution

(m0,m
′
0, . . . ,mk−1,m

′
k−1)

such that the depth of the messagesmi,m
′
i, i < k, can be

bounded in the size of I (Corollary 3). To this end, we first
show that the depth of input messages can be bounded
(Sect. 7) and then that the depth of output messages can
be bounded in the depth of input messages (Sect. 8).
It follows that l is bounded, and one can also show that

the index of ≡li+1 is bounded (Proposition 6). Therefore,
≡li+1 can serve as a finite criterion for truncating paths.

Following these steps, we now provide a detailed proof.
We will define the different orderings and prove the prop-
erties needed. In Sect. 10 everything will be put together
to show decidability of the path problem.

4 One minor technical problem is that αxγy does not need to be
a message since it may contain a word of the form enca(), which is
not a message. However, if one considers three positions x < y < z,
then one can show that either αxγy or αyγz is a message.

R. Küsters: On the decidability of cryptographic protocols with open-ended data structures

In order to simplify the presentation, we will not con-
sider hashing, i.e., from now on, ΣN does not contain the
symbol “hash(”. All definitions and results, however, eas-
ily carry over to this more general case.

6 Solvability preserving ordering

In this section, we formally define the solvability preserv-
ing ordering 	i. In Sect. 6.2 we show that 	i is in fact
solvability preserving. To do so, we first need to prove
that 	i is closed under substitution (Sect. 6.1). Finally,
it is shown that the index of the equivalence relation in-
duced by 	i is finite (Sect. 6.3).
For messagesm0, . . . ,mn−1, and K,K′ ⊆M we write

an(m0, . . . ,mn−1,K) instead of an({m0, . . . ,mn−1}∪
K) and anK′(m0, . . . , mn−1,K) instead of an({m0, . . . ,
mn−1}∪K)∩K′. To define 	i, we need the ordering	.

Definition 6. For messages m,m′ ∈Mε, define: m 	
m′ iff anN (m,N)⊆ anN (m′, N) for all N ⊆N .

Intuitively, m 	m′ says that in every context the set
of atomic messages derivable from m is a subset of the
atomic messages derivable from m′. For example, for
a, a′, a′′ ∈N , enca(enca′(a

′′))	 a′enca′(enca(a
′′)).

Obviously,	 is a quasiordering, i.e., it is reflexive and
transitive.
The relation 	i, i≤ k depends on the message trans-

ducers Ai, . . . ,Ak−1 and uses the relation �i. To un-
derstand the definition of 	i, recall that we want to
guarantee that if (K,Ai, . . . ,Ak−1) has a solution, say,
(mi,m

′
i, . . . ,mk−1,m

′
k−1), then so does (K\{m}∪{m

′},
Ai, . . . ,Ak−1). The messagemi may have been construc-
ted from submessages x ofm. Now, ifm is replaced bym′,
we need to make sure that in m′ there is a submessage x′

that can be used instead of x. This is why we need condi-
tion 2 in the definition below.We also need that	i refines
	i+1 (condition 1). Finally, in order to show that 	i is
closed under substitution, condition 3 is required. In what
follows, the relations 	i and �i are defined recursively
and mutually.

Definition 7. For every i ≤ k, the solvability preserv-
ing ordering 	i is defined as follows. For all m,m′ ∈Mε:
m	im′ iff (i)m=m′ = ε or (ii)m �= ε,m′ �= ε,m	m′,
and if i < k, then

1. m	i+1 m′,
2. For every N ⊆N and x ∈ an(m,N) with x= enca(z)
for some a∈N and z∈M, there exists x′ := enca′(z

′)∈
an(m′, N) for some a′ ∈ N and z′ ∈M such that
x�i x′, and

3. m�i m′.

For i < k and messages m,m′ ∈Mε, we define m�i m′

iff (i) m =m′ = ε or (ii) m �= ε, m′ �= ε, and for every
p, q ∈ Qi and y ∈Mε, p(m, y)q ∈s Ai implies that there
exists y′ ∈Mε with p(m

′, y′)q ∈s Ai and y 	i+1 y′.

One easily shows by induction on i≤ k:

Lemma 3. For every i < k, 	k, �i, and 	i are qua-
siorderings.

6.1 Closure under substitution

To show that 	i in fact preserves solvability (in the sense
explained above), we first show that 	i is closed under
substitution. This is done by induction on i≤ k. The base
case, i = k, amounts to showing that 	 is closed under
substitution. This requires some notation.
For a set of terms T , we define anc(T) to be the clo-

sure of T under decomposition, ane(T) to be the set of
messages obtained by decrypting messages in T using
keys already present in T , and ancec(T) to be the iter-
ated application of anc, ane, and anc on T (in this order).
Formally,

anc(T) := {y ∈M | ∃x, z ∈Mε : xyz ∈ T},

ane(T) := {x ∈M | ∃a ∈ T ∩N :

enca(x) ∈ T}∪T,

ancec(T) := anc(ane(anc(T))).

It is easy to see that

an(T) =
⋃
i≥0

anicec(T), (1)

where an0cec(T) := T and

ani+1cec (T) := ancec(an
i
cec(T)).

We write anicec(t0, . . . , tn−1, T) for an
i
cec({t0, . . . ,

tn−1}∪T) and anicec,N (t0, . . . , tn−1, T) for an
i
cec(t0, . . . ,

tn−1, T)∩N .
Given a term t and N ⊆N , we say that a subterm t′

of t is N -accessible5 in t if

1. t′ ∈ anc(t) or
2. there exists enca(t′′) ∈ anc(t), a ∈ N , and t′ is N -
accessible in t′′.

Lemma 4. Let x0, x
′
0, . . . , xn−1, x

′
n−1 ∈ M be mes-

sages, t(v0, . . . , vn−1) be a term, m := t[x0, . . . , xn−1],
and m′ := t[x′0, . . . , x

′
n−1]. If xi 	 x

′
i for all i < n, then

m	m′.

Proof. Because of (1) it suffices to show

Ni := an
i
cec,N (m,N)⊆ anN (m

′, N) =:Nm′

for every i≥ 0 andN ⊆N .
Let i = 0 and a ∈ N0. If a ∈ N , there is nothing to

show. Otherwise, t = a or there exists i < n with xi =
a (i.e., t = vi). In the former case it immediately fol-
lows that a ∈ Nm′ . In the latter case, xi 	 x

′
i implies

a ∈ anN (x′i, N), and thus a ∈Nm′ .

5 This notion was also defined in [3].

R. Küsters: On the decidability of cryptographic protocols with open-ended data structures

Let i ≥ 0 and a ∈ Ni+1. If a ∈ Ni, the induction hy-
pothesis yields a ∈Nm′ . Otherwise, there must exist x ∈
anicec(m,N), a message z, and b∈Ni with x= encb(z) and
a ∈ anc(z). We distinguish two cases.
(i) There exists t′(v0, . . . , vn−1) such that encb(t′) is

a subterm of t, z = t′[x0, . . . , xn−1], and t
′ isNi-accessible

in t. Thus, by the induction hypothesis, t′ is Nm′-acces-
sible in t. Consequently, if a ∈ anc(t′), then a ∈Nm′ . Oth-
erwise, there must exist i < n, and terms t0, t1 such that
t′ = t0vit1, and a ∈ anc({xi}). Now xi 	 x′i implies a ∈
an(x′i), and thus a ∈Nm′ .
(ii) There exists i < n such that x, and thus z, is a sub-

message of xi. By the induction hypothesis Ni ⊆ Nm′ .
We know that z and xi are Ni-accessible in m. Thus,
x′i is Ni-accessible in m

′, and therefore also Nm′-ac-
cessible. Now xi 	 x′i implies an(xi, Ni)⊆ an(x

′
i, Ni), and

thus a ∈ an(xi, Ni) yields a ∈ an(x′i, Ni). Consequently,
a ∈ an(x′i, Nm′). Finally, since x

′
i is Nm′-accessible in m

′,
we obtain a ∈Nm′ . �

We generalize Lemma 4 to 	i and �i.

Lemma 5. Let x0, x
′
0, . . . , xn−1, x

′
n−1 ∈Mε, i≤ k, and

t(v0, . . . , vn−1) be a linear term. Letm := t[x0, . . . , xn−1]
and m′ := t[x′0, . . . , x

′
n−1]. Then, xj 	i x

′
j (xj �i x

′
j) for

all j < n impliesm	im′ (m�im′).

Proof. W.l.o.g., we can assume that xj �= ε and x′j �= ε
for all j < n, since otherwise xj = x

′
j = ε, and we can re-

move vj from t altogether.
We prove the claim simultaneously for �i and 	i by

induction on i. If k = i, the statement for 	i follows im-
mediately from Lemma 4. For�i there is nothing to show.
Let i < k.

Claim I. From xj �i x′j for all j < n it followsm�im
′.

Proof of Claim I. Let p, q ∈ Qi, y ∈ Mε with π :=
p(m, y)q ∈s Ai. If vj occurs in t, then π contains a sub-
path of the form pj(xj , yj)p

′
j ∈s Ai. The definition of

message transducer guarantees that yj ∈Mε. Moreover,
there exists a linear term t′(v0, . . . , vn−1) such that y =
t′[v0/y0, . . . , vn−1/yn−1]. Because xj �i x′j , there exists
y′j ∈Mε with pj(x

′
j , y

′
j), p

′
j ∈s Ai and yj 	i+1 y

′
j . Define

y′ := t′[v0/y
′
0, . . . , vn−1/y

′
n−1]. By the induction hypoth-

esis, y 	i+1 y′. Finally, replacing the subpaths pj(xj , yj)p′j
in π by pj(x

′
j , y

′
j), p

′
j shows that p(m

′, y′)q ∈s Ai. Thus,
m�i m′.

Claim II. From xj 	i x′j for all j < n it follows that
m	i m′.

Proof of Claim II. From xj 	i x′j , j < n, it follows that
xj 	i+1 x′j . Thus, by the induction hypothesis, m 	i+1
m′. Since xj 	i x′j implies xj �i x

′
j , Claim I yieldsm�im

′.
Let N ⊆ N and x ∈ an(m,N) with x = enca(z) for

some message z and a ∈ N . Let Nm := anN (m,N) and
Nm′ := anN (m

′, N). Lemma 4 implies Nm ⊆ Nm′ . Note
that since x is of the form enca(·), it cannot happen that
just part of some xi belongs to x, and therefore it suffices
to consider the two following cases.

(i) There exists a subterm t′(v0, . . . , vn−1) of t such
that x = t′[x0, . . . , xn−1] and t

′ �∈ {v0, . . . , vn−1}. Let
x′ := t′[x′0, . . . , x

′
n−1]. We know that t

′ is Nm-accessible
in t. Thus, t′ is also Nm′-accessible in t. In particular,
x′ ∈ an(m′, N). Since t′ is not a variable, it follows that
t′ is of the form enca(t

′′) for some term t′′(v0, . . . , vn−1).
Thus, x′ has the form enca(z′) for some message z′. Fi-
nally, Claim I implies x�i x′.
(ii) There exists j < n such that x is a subterm of

xj . In particular, xj is Nm-accessible in m. Thus, x
′
j is

Nm′-accessible in m
′. We know x ∈ an(xj , Nm). Then,

xj 	i x′j implies that there exists x
′ ∈ an(x′j , Nm) of the

form encb(z′) for some message z′ and b ∈N with x�i x′.
In particular, x′ ∈ an(x′j , Nm′), and given that x

′
j is Nm′-

accessible inm′, we conclude x′ ∈ an(m′, N). �

6.2 The ordering 	i is solvability preserving

We show that 	i is solvability preserving by induction on
i≤ k. The base case, i= k, is a consequence of the follow-
ing lemma.

Lemma 6. For allm,m′ ∈M,K⊆Mε, ifm	m′, then
anN (m,K) ⊆ anN (m′,K).

Proof. We show

Ni := an
i
cec,N (m,K)⊆ anN (m

′,K) =:Nm′

for every i≥ 0 by induction on i.
Let i= 0 and a∈N0. If a ∈K, nothing is to show. Oth-

erwise, m = a, and m 	m′ implies anN (m) ⊆ anN (m′),
and thus a ∈Nm′ .
Let i ≥ 0 and a ∈ Ni+1. If a ∈ Ni, the induction hy-

pothesis yields a ∈Nm′ . Otherwise, there must exist x ∈
anicec(m,K), a message z, and b ∈Ni with x= encb(z) and
a ∈ anc(z). We distinguish two cases.
(i) The messages x and z are submessages of some

message x′ in K. In particular, x and z are Ni-accessible
in x′, and thus x and z are Nm′ -accessible in x

′. Conse-
quently, a ∈Nm′ .
(ii) The messages x and z are submessages of m. We

know a ∈ anN (m,Ni) and anN (m,Ni) ⊆ anN (m′, Ni).
Now Ni ⊆Nm′ implies a ∈ anN (m

′, Nm′) =Nm′ . �

Using Lemmas 5 and 6 we prove the main statement of
this section.

Proposition 1. Let (K,Ai, . . . ,Ak−1), i≤ k, be a solv-
able instance of PathProblem and m ∈ K. Then, for
every m ∈Mε with m 	i m, the instance (K,Ai, . . . ,
Ak−1) with K :=K\{m}∪{m} is also solvable.

Proof. The proof is by induction on i ≤ k. If m = ε,
then, by definition of 	i, m= ε and there is nothing to
show. Therefore, assume m �= ε, and thus m �= ε. The in-
duction basis, i= k, immediately follows from Lemma 6.
Let i < k. Define N := anN (K) and M := {enca(z) ∈

an(m,N) | z ∈M and a ∈ N }. Let (mi,m′i, . . . ,mk−1,

R. Küsters: On the decidability of cryptographic protocols with open-ended data structures

m′k−1) be a solution of (K,Ai, . . . ,Ak−1). Thus, mi ∈
d(K). Since d(K) = syn(an(K)), the derivation of mi can
be divided into an analysis phase and a synthesis phase.
We may assume that in the analysis phase messages are
decomposed as far as possible and that to construct mi
only those messages are used that in the analysis phase
could not further be decomposed. Let {x0, . . . , xn−1} be
the multiset of the messages in M that have been used
to construct mi where an xj ∈M occurs in this mul-
tiset as many times as it was used in the construction
of mi. Then, there exists a linear term t(v0, . . . , vn−1)
with mi = t[x0, . . . , xn−1]. Since m 	i m, for every xj ,
j < n, there exists xj ∈ an(m,N) with xj �i xj . Define
mi := t[x0, . . . , xn−1]. Since, by Lemma 6,N ⊆ an(K), we
can conclude xj ∈ an(K), and it follows mi ∈ d(K), since
to construct mi one only has to replace xj by xj in the
synthesis phase of the derivation ofmi.
We may assume that xj �= ε, because otherwise xj =

xj = ε, and we can remove vj from t altogether. Using
that qIi (mi,m

′
i)q
F
i ∈ Ai, one shows, similar to the proof

of Claim I in Lemma 5, that there exists a message m′i
with qIi (mi,m

′
i)q
F
i ∈ Ai and m

′
i 	i+1 m

′
i. Thus, since

(K∪{m′i},Ai+1, . . . ,Ak−1) has a solution, by the in-
duction hypothesis, the instance (K∪{m′i},Ai+1, . . . ,
Ak−1) is also solvable. Finally, since m 	i m implies
that m 	i+1 m, induction yields a solution for (K∪
{m′i},Ai+1, . . . , Ak−1), and addingmi andm

′
i to this so-

lution solves the instance (K,Ai, . . . ,Ak−1). �

6.3 Index of the solvability preserving
equivalence relation

If ≤ is a quasiordering on a set S, then the relation ≡
with a ≡ b iff a≤ b and b≤ a for all a, b ∈ S is an equiv-
alence relation on S. The equivalence class of a modulo
≡ is denoted [a]≡ := {b | a≡ b}. The index I(≡) of ≡ is
the number of different equivalence classes over S. In this
section we show for different equivalence relations that
their index is finite. This is done as follows. We first de-
fine a mapping f from S into a finite set T . Then, we show
that f(a) = f(b) implies a≡ b for every a, b∈ S. From this
it immediately follows that I(≡)≤ |T |. We will call f an
index mapping of ≡. If S′ ⊆ S is a finite subset of S and
f(a) = f(b) implies a ≡ b for every a, b ∈ S \S′, then we
call f an S′-index mapping of ≡. Note that in this case
we can conclude I(≡) ≤ |T |+ |S′|. If S′ = {s} we write
s-index mapping instead of {s}-index mapping.
In what follows, let ≡, ≡i, and =i denote the equiv-

alence relations corresponding to 	, 	i, and �i, respec-
tively. We show that the index of these relations is finite.
To this end, we first consider≡.
Clearly, f≡(m) := (anN (m,N)|N ⊆ N) is an index

mapping of ≡. Thus:

Lemma 7.

I(≡)≤ 2|N|·2
|N|
.

The following proposition generalizes the lemma to≡i
and =i. Note that =i is only defined for i < k.

Proposition 2. We have I(≡k) = I(≡)+ 1 and for
every i < k:

I(=i)≤ 2
I(≡i+1)·2

|Qi|
2

+1,

I(≡i)≤ I(≡i+1) ·2
I(=i)·2

|N|
· I(=i)+1.

Proof. Obviously, I(≡k) = I(≡)+1. (Note that ε is
handled differently for≡k and ≡.) Assume that i < k and
the claim holds for ≡i+1. We first bound the index of =i
and then that of≡i.
We introduce a new equivalence relation on tuples

(x, y) with x, y ∈Mε. For every x, x
′, y, y′ ∈Mε define:

(x, y) =ti (x
′, y′) iff

– y ≡i+1 y′, and
– p(x, y)q ∈s Ai iff p(x′, y′)q ∈s Ai, for every p, q ∈Qi.

It is easy to see that f=t
i
(x, y) := ([y]≡i+1 , {(p, q) | p(x, y)q

∈s Ai}) is an index mapping of =ti. It follows that

I(=ti)≤ I(≡i+1) ·2
|Qi|

2
.

Using =ti, one easily concludes that f=i(x) := {[(x, y)]=ti
|

y ∈Mε} is an ε-index mapping of =i. This yields:

I(=i)≤ 2
I(=ti)+1≤ 2I(≡i+1)·2

|Qi|
2

+1.

We now consider I(≡i). Define Mi,m,N := {[x]=i | x ∈
an(m,N) and x = enca(z) for z ∈M and a ∈ N}, and
f≡i(m) := ([m]≡i+1 , (Mi,m,N | N ⊆ N), [m]=i). It is not
hard to see that f≡i is an ε-index mapping of ≡i. As an
immediate consequence, we obtain that

I(≡i)≤ I(≡i+1) ·2
I(=i)·2

|N|
· I(=i)+1.

�

7 Bounding the depth of input messages

We show the following proposition.

Proposition 3. If (mi,m
′
i, . . . , mk−1,m

′
k−1) is a so-

lution of the instance (K,Ai, . . . ,Ak−1) of PathProb-
lem, then there exists a solution (mi,m

′
i, . . . , mk−1,

m′k−1) of this instance with depth(mi) ≤ I(=i)+
depth(K)+1.

In the following section, it is shown that the depth of m′i
can be bounded. As an immediate consequence, we will
obtain that to find solutions for the path problem it suf-
fices to consider only messages of depth bounded in the
size of the problem instance.
To prove Proposition 3, let (mi,m

′
i, . . . , mk−1,m

′
k−1)

be a solution of the instance (K,Ai, . . . ,Ak−1) of the
path problem and assume that depth(mi) > I(=i) +
depth(K)+1.

R. Küsters: On the decidability of cryptographic protocols with open-ended data structures

Then, there exist linear terms t and t′ each containing
exactly one variable and messages x, x′ such that t′ and x′

start with an encryption symbol,mi = t[t
′[x′]], x= t′[x′],

depth(x′)> depth(K), and x=i x′. Note that depth(x′)<
depth(x). Definemi := t[x′].
Since mi ∈ d(K) and x′ is a subterm of mi with

depth(x′) > depth(K), it follows that x′ ∈ d(K) and all
terms in d(K) containing x′ as a subterm have been ob-
tained in the synthesis phase, i.e., by composition and
encryption. From this it follows thatmi ∈ d(K).
We know that there exist words x, y, y, z, z ∈ Σ∗N

and states q, q′ such that mi = yxz, m
′
i = yxz and

qIi (y, y)q(x, x)q
′(z, z)qFi ∈ Ai, where q(x, x)q

′ ∈s Ai. In
particular, x is a message. Since x=i x

′, we conclude that
there exists x′ with q(x′, x′)q′ ∈s Ai and x 	i+1 x

′. De-
fine m′i := yx

′z. By Lemma 5, m′i 	i+1 m
′
i. Proposition 1

implies that the problem (K∪{m′i},Ai+1, . . . , Ak−1)
has a solution, say, (mi+1,m

′
i+1, . . . ,mk−1,m

′
k−1). Thus,

(mi,m
′
i, . . . ,mk−1,m

′
k−1) is a solution of (K,Ai, . . . ,

Ak−1).
By iterating this argument, the proposition follows.

8 Bounding the depth of output messages

In this section we show that the depth of output messages
of a message transducer can be bounded by the depth of
input messages. Standard arguments for word transduc-
ers do not apply here since a message transducer reads
and returns messages rather than arbitrary words.
We first need to introduce some notions. A word α ∈

Σ∗N is a left half-message if α is a prefix of a message,
i.e., there exists a word γ ∈ Σ∗N such that αγ is a mes-
sage. In Sect. 9, we also consider right half-messages, i.e.,
suffices of messages. For a left half-message α, the level
l(α) of α is defined as the number of symbols “enca(”, for
some a ∈N , without matching closing parentheses. Anal-
ogously, for a right half-message γ, the level l(γ) of γ is
the number of closing parenthesis in γ without amatching
encryption symbol “enca(”, for some a ∈N .
In what follows, let A be a message transducer and π

be a path in A of the form

q0(a0, b0)q1(a1, b1) · · · (ar−1, br−1)qr (2)

with r > 0 and ai, bi ∈ ΣN ∪{ε} for every i < r such
that a0 · · · ar−1, b0 · · · br−1 ∈ Mε. We define lπ(i) :=
l(a0 · · ·ai−1) and l′π(i) := l(b0 · · · bi−1) for all i≤ r to be
the input and output level function of π, respectively. Fur-
thermore, we define lm(i) := l(c0 · · · ci−1), > i < s, as the
level function ofm withm= c0 · · · cs−1.
The following proposition says that at any position

in π, the level of the output at this position is bounded
by the level of the input, and thus the depth of the out-
put message can be bounded by the depth of the input
message. This is not obvious since message transducers
can have transitions in which no input is read but output

is produced and these transitions may form cycles. The
proof uses the fact that when reading a message, a mes-
sage transducer always outputs a message rather than an
arbitrary word.

Proposition 4. LetA=(Q,ΣN , {qI},∆, {qF }) be a mes-
sage transducer, n := |Q|, and π be a path in A of the form
of (2) such that q0 = qI and qr = qF , or π is strict, i.e.,
π ∈s A. Then, it follows that l′π(i) ≤ (n

2 · (2n+1)+1) ·
(lπ(i)+1) for every i≤ r.

We define

depth(A) := n2 · (2n+1)+1.

As a corollary of the proposition, we obtain that the
depth of the output of a message transducer is bounded
by the depth of the input.

Corollary 1. Let A = (Q,ΣN , I,∆, F) be a message
transducer. Then, for everym,m′ ∈Mε withm

′ ∈ A(m),
or p(m,m′)q ∈s A, for p, q ∈ Q: depth(m′) ≤ depth(A) ·
(depth(m)+1).

Together with Proposition 5, this yields:

Corollary 2. If (K,Ai, . . . ,Ak−1) is a solvable in-
stance of the PathProblem, then there exists a so-
lution (mi, m

′
i, . . . ,mk−1,m

′
k−1) of this instance such

that the depth of mi and m
′
i is bounded in the size

of the instance: depth(mi) ≤ I(=i)+ depth(K)+ 1 and
depth(m′i)≤ depth(Ai) · (depth(mi)+1).

By induction, we can deduce that the depth of all mes-
sages in a solution of an instance of the path problem can
be bounded. Formally:

Corollary 3. There exists a (computable) function depth
such that for every solvable instance I = (K,A0, . . . ,
Ak−1) of PathProblem, there exists a solution (m0,
m′0, . . . ,mk−1,m

′
k−1) with depth(mi) ≤ depth(I) and

depth(m′i)≤ depth(I) for every i < k.

Proof of Proposition 4. First, we show that the length of
paths in A can be restricted by depth(A). To do so, we
cannot simply use the usual pumping argument on finite
automata since if we truncate a path, we need to guar-
antee that the input label of the resulting path is still
a message. Therefore, the path can only be cut at certain
positions. One possibility is that the path is cut such that
an input label of the form enca(· · · encb(·) · · ·) is replaced
by encb(·). Alternatively, one can cut a path such that if
the input label is of the form xwγ, it is replaced by xγ,
where x and xw are left half-messages of the same level
(and thus γ is a right half-message of this level). A lit-
tle technical problem in this case is that xγ may not be
a message since it can contain a word of the form enca(),
which is not a message. The following lemma shows how
to solve this problem.

R. Küsters: On the decidability of cryptographic protocols with open-ended data structures

Lemma 8. Let m = c0 · · · cr−1 ∈M be a message with
ci ∈ ΣN for all i < r.

1. If for 0≤ i < j ≤ r, lm(i) = lm(j) = 0, then c0 · · · ci−1
cj · · · cr−1 ∈Mε.

2. If 0< i < j < r with lm(i) = lm(j), then ci−1 �= enca(
for every a ∈ N , or cj �=) iff c0 · · · ci−1cj · · · cr−1 ∈
Mε.

3. Given 0 < i0 < i1 < i2 < r with lm(i0) = lm(i1) =
lm(i2), then c0 · · · ci0−1ci1 · · · cr−1 ∈ Mε or c0 · · ·
ci1−1ci2 · · · cr−1 ∈Mε.

Proof. The first statement is obvious. To prove the sec-
ond statement, observe that the condition ci−1 �= enca(,
for every a ∈ N , or cj �=) guarantees that ci−1cj is not
of the form encb(), for some b ∈ N . Having ruled out this
possibility, it is easy to show that c0 · · · ci−1cj · · · cr−1 is
a message. Conversely, if c0 · · · ci−1cj · · · cr−1 is a mes-
sage, then, since it does not contain a submessage of the
form encb(), it follows that ci−1 �= enca(, for every a ∈N ,
or cj �=).
To prove statement 3, assume that neither c0 · · ·

ci0−1ci1 · · · cr−1 ∈Mε nor c0 · · · ci1−1ci2 · · · cr−1 ∈Mε.
From statement 2 it follows that ci0 = enca(, for some
a ∈N , ci1 =), ci1−1 = encb(, for some b ∈N , and ci2 =).
But then c contains as the submessage ci1−1ci1 = encb(),
in contradiction to the fact that c is a message. �

Now we show how to bound the length of paths by
depth(A).

Lemma 9. Let π be a path of the form given by (2) in
a message transducerA, where the input label is a message
(not necessarily the output label), and let n be the number
of states of A. Then, there exists a path π′ from q0 to qr in
A such that the length of π′ is< depth(A) and the input la-
bel of π′ is a message. Moreover, if ar−1 �= ε, then the input
label of the last transition in π′ is distinct from ε.

Proof. Let m := a0 · · ·ar−1. We first show that we can
restrict the depth of an input label of a path from q0 to qr
by n2.
Assume that depth(m) > n2. Then, there exist i0 <

j0 < j1 < i1 ≤ r such that qi0 = qj0 , qj1 = qi1 , ai0 = enca(,
for some a ∈ N , ai1−1 =) (the corresponding closing
parenthesis to ai0), and, analogously, aj0 = encb(, for
some b ∈ N , and aj1−1 =). It follows that the path π

′

given as

q0(a0, b0)q1 · · · qi0(aj0 , bj0)qj0+1 · · ·

(aj1−1, bj1−1)qj1(ai1 , bi1)qi1+1 · · · qr

is also a path inA from q0 to qr such that its input label is
a message. Note that the input label of the last transition
of π and the one of π′ coincide. Iterating this argument,
we obtain a path from q0 to qr such that the input label
is a message of depth ≤ n2.
Thus, from now on we may assume that depth(m) ≤

n2. In particular, lπ(i) ≤ n2 for every i ≤ r. Now as-
sume r≥ depth(A). Then, there must exist an l≤ n2 such

that lπ(i) = l for > 2n+1 many i≤ r. Thus, there exist
0≤ i0 < i1 < i2 < r such that qi0 = qi1 = qi2 and lπ(i0) =
lπ(i1) = lπ(i2) = l. It follows that for j ∈ {0, 1} the path π′j
given as

q0(a0, b0)q1 · · · qij (aij+1 , bij+1)qij+1+1

(aij+1+1, bij+1+1)qij+1+2 · · · qr

is a path in A from q0 to qr. Lemma 8 implies that the in-
put label of π′0 or π

′
1 is a message. Finally, since i2 < r, the

last transition in π′j , for j ∈ {0, 1}, coincides with the one
for π.
Iterating this construction, we obtain a path π′ with

the desired properties. �

Now we can prove Proposition 4. Let π be a path as
stipulated in the proposition, and assume that there ex-
ists i≤ r such that l′π(i)> depth(A) · (lπ(i)+1). We may
assume that lπ(i) is minimal, i.e., there exists no j ≤ r
such that lπ(j) < lπ(i) and l

′
π(j) > depth(A) · (lπ(j)+1).

We distinguish two cases.
First, assume lπ(i) > 0. Let j > i be minimal with

lπ(j) = lπ(i)−1. From the minimality of lπ(i) it follows
that l′π(j) ≤ depth(A) · (lπ(j)+1). But then there must
exist more than depth(A) many positions s with i≤ s≤
j− 1 and bs =). [Otherwise, l′π(j) = l

′
π(i)− g for some

g ≤ depth(A)]. Consequently, l′π(j) > depth(A) · (lπ(i)+
1)−depth(A) = depth(A) · (lπ(j)+1), in contradiction to
the minimality of lπ(i).)
By the choice of j we know that the word ai · · ·aj−2

is a message and that it is the input label of the subpath
π′ of π from qi to qj−1. [Note that aj−1 =).] Lemma 9
implies that there is also a path π′′ in A from qi to
qj−1 of length < depth(A) such that the input label of
π′′ is a message. Replacing π′ in π by π′′ yields a new,
shorter path, say, π, from q0 to qr, with the properties re-
quired in the proposition. In particular, the input label
of π is a message. Let lπ(j) and l

′
π(j) be the input and

output level functions of π, respectively. Moreover, let j
denote the position in π corresponding to j in π. Then,
we have l′π(j) > depth(A) · (lπ(j)+1) and lπ(j)< lπ(i) =
lπ(i) since < depth(A) parentheses have been closed be-
tween position i and j−1 in π, i.e., ≤ depth(A) paren-
theses between i and j. Iterating this argument shows
that there exists a path π with the desired properties such
that lπ(i), as chosen above, is 0. Thus, the case lπ(i) = 0
applies. (However, we will see that this case leads to
a contradiction.)
Now assume lπ(i) = 0. Let π

′ be the path from qi to qr
with input label ai · · · ar−1 and output label bi · · · br−1.
Note that ai · · ·ar−1 is a message. Since we have that
l′π(i) > depth(A) · (lπ(i)+1), the output label must con-
tain > depth(A) closing parentheses. However, according
to Lemma 9, there exists a path π′′ from qi to qr in A
such that the input label of π′′ is a message and the length
of π′′ is < depth(A). Then, replacing π′ in π by π′′ yields
a new path π from q0 to qr such that the input label is
a message. Moreover, if π is strict, then the new path is

R. Küsters: On the decidability of cryptographic protocols with open-ended data structures

also strict: if the last transition in π′ ended with an in-
put label distinct from ε, then, according to Lemma 9,
this can be achieved for π′′ as well. Now, since the input
label of π is a message, the conditions on message-trans-
ducers imply that the output label must also be a mes-
sage. However, this is not true, since closing parentheses
are missing.

9 The path truncation ordering

We extend 	i to the path truncation ordering	li on half-
messages and show that 	li is compatible with right con-
catenation of right half-messages (Sect. 9.1). In Sect. 9.2
we prove that the index of the equivalence relation corres-
ponding to 	li is finite.
For the definition of left and right half-messages and

their levels l(·), see Sect. 8. If α is a left half-message,
then there exist unique messages x0, . . . , xl(α) ∈Mε and
a1, . . . , al(α)−1 ∈N such that

α= xl(α)encal(α)(xl(α)−1encal(α)−1(xl(α)−2

· · · enca1(x0. (3)

We define the j-level half-message of α to be

αj := encaj (xj−1encaj−1(xj−2 · · ·

enca1(x0 (4)

for 1≤ j ≤ l(α). Note that l(αj) = j. For convenience of
notation, define α0 := xl(α) to be the 0-level half message
of α. Note that α0 is a message, i.e., l(α0) = 0, and that
if α is a message, then α = α0. Moreover, we define α

∗ to
be the message obtained from α by adding the missing
closing parentheses, i.e.,

α∗ := α) · · ·)︸ ︷︷ ︸
l(α)

.

Finally, let p(α) := al(α) · · · a1. In order to define 	
l
i, we

first introduce the ordering	l.

Definition 8. Let l ≥ 0 and α, α′ be nonempty left half-
messages of level l, i.e., α �= ε, α′ �= ε, and l(α) = l(α′) = l.
Define α	l α′ iff α∗ 	 α′∗ and p(α) = p(α′).

Clearly, 	l is a quasiordering. For the definition of 	li
we need some more notation. If α and β are left half-
messages, and p, q ∈Qi, then p(α, β)q ∈h Ai means that
(i) p(α, β)q ∈s Ai, and (ii) there exist right half-messages
γ and γ′ and a state q′ ∈Qi such that l(γ) = l(α), l(γ′) =
l(β), and p(α, β)q(γ, γ′)q′ is a strict path in Ai. In other
words, the strict path p(α, β)q can be extended to a strict
path such that the input and output labels are messages.
The definition of the path truncation ordering is quite

similar to the solvability preserving ordering. The main
difference is that additional restrictions are imposed on
j-level half-messages αj .

Definition 9. For every l ≥ 0 and i≤ k, the path trun-
cation ordering 	li is defined as follows. For left half-
messages α, α′ of level l: α 	li α

′ iff (i) α= α′ = ε or (ii)
α �= ε, α′ �= ε, α	l α′, and if i < k, then

1. α	li+1 α
′,

2. α∗ 	i α′
∗
,

3. αj �
j
i α
′
j for every j ≤ l with αj and α

′
j the j-level half

messages of α and α′, respectively.

For i < k, l ≥ 0, left half-messages α, α′ of level l, we de-
fine: α�li α

′ iff i) α= α′ = ε, or ii) α �= ε, α′ �= ε, and for
every left half-message β and every p, q ∈Qi, p(α, β)q ∈h
Ai implies that there exists a left half-message β′ with
l(β′) = l(β) such that p(α′, β′)q ∈h Ai and β 	

l(β)
i+1 β

′.

9.1 Right concatenation of right half-messages

We now show, by induction on i, that 	li is compatible
with right concatenation of right half-messages. The case
i= k follows from:

Lemma 10. Let α, α′ be left half-messages of level l ≥
0. Then, α 	l α′ implies αγ 	 α′γ for every right half-
message γ of level l.

Proof. Assume α 	l α′. If l = 0, then α, α′, and γ are
messages. Thus, with t := v0v1, Lemma 4 implies αγ =
t[α, γ]	 t[α′, γ] = α′γ. In what follows we assume l > 0.
We show anN (αγ,N) ⊆ anN (α′γ,N) for every N ⊆

N . To this end, we define twomappings F and F ′ from 2N

into 2N , where 2N denotes the powerset of N . For every
N ⊆N ,

F (N) := anN (encp(α)(γ), anN (α
∗, N)) and

F ′(N) := anN (encp(α′)(γ), anN (α
′∗, N)),

where encw(γ) for some nonempty word w= a0 · · · al−1 ∈
N+ denotes the message

enca0(enca1(· · · encal−1(γ.

(Note that the corresponding closing parentheses to
“encaj (” are contained in γ).

Because α	l α′, we know that p(α) = p(α′) and α∗ 	
α′
∗
. Thus, anN (α∗, N) ⊆ anN (α′

∗
, N). Consequently,

F (N)⊆ F ′(N). It is easy to verify that

anN (αγ,N) =
⋃
j≥0

F j(N), and

anN (α
′γ,N) =

⋃
j≥0

F ′
j
(N).

From this the lemma follows. �

We can now prove the main proposition of this section.

Proposition 5. Let α, α′ be left half-messages of level
l ≥ 0 and let i≤ k. Then, α 	li α

′ implies αγ 	i α′γ for
every right half-message γ of level l.

R. Küsters: On the decidability of cryptographic protocols with open-ended data structures

Proof. Assume α	li α
′. If α= ε, then α′ = ε, and thus

αγ 	i α′γ. Assume α �= ε and α′ �= ε. The rest of the proof
is by induction on i≤ k. The base case, i= k, follows from
Lemma 10.
Now assume i < k. If l = 0, then α, α′, and γ are mes-

sages, and αγ 	i α′γ follows from Lemma 5 with t= v0v1.
Therefore, we may assume that l > 0. To prove αγ 	i α′γ,
we show that the conditions in Definition 7 are met.
Denote by αj and α

′
j the j-level half-messages of α and

α′. Let p(α) = al · · ·a1. Note that p(α′) = p(α).
First, α	li α

′ implies α	li+1 α
′, and thus, with the in-

duction hypothesis, we obtain αγ 	i+1 α′γ.
Second, let N ⊆ N and x ∈ an(αγ,N) with x =

enca(z) for some message z and a ∈ N . We distinguish
three cases:

1. x is a submessage of γ. Due to Lemma 10, αγ 	
α′γ. Consequently, anN (αγ,N)⊆ anN (α′γ,N). Using
p(α) = p(α′), it follows that x ∈ an(α′γ,N), and we
can simply choose x′ := x.

2. x is a submessage of α. It follows that x ∈ an(α∗,
anN (αγ,N)). Because α∗ 	i α′

∗, there exists x′ ∈
an(α′∗, an(αγ,N)) such that x′ is of the form encb(z′)
for some message z′ and b ∈ N and x �i x′. Fi-
nally, since anN (αγ,N) ⊆ anN (α′γ,N) (Lemma 10),
x′ ∈ an(α′∗, an(α′γ,N)), and thus x′ ∈ an(α′γ,N).

3. x is of the form αjγ
′ for some 1≤ j ≤ l and a right half-

message γ′ such that γ′ is a prefix of γ with l(γ′) =
l(αj). Note that a = aj . Define x

′ := α′jγ
′. Obviously,

x′ is a message of the form enca(z
′) for some mes-

sage z′. Since anN (αγ,N) ⊆ anN (α′γ,N) and p(α) =
p(α′), it follows that x′ ∈ an(α′γ,N). We need to show
x�i x′.
Let p, q ∈Qi, y ∈Mε with p(x, y)q ∈s Ai. There exists
p′ ∈Qi, a left half-message β, and a right half-message
β′ such that y = ββ′, l(β) = l(β′), p(αj , β)p

′ ∈s Ai,
and p′(γ′, β′)q ∈ Ai. We know that p(αj , β)p′(γ′, β′)q
is a strict path in Ai and that x = αjγ′ and y =
ββ′ are messages. Thus, p(αj , β)p

′ ∈h Ai. From α 	li
α′ we obtain αj �

j
i α
′
j , and hence there exists a left

half-message β′′ with l(β) = l(β′′), p(α′j , β
′′)p′ ∈h Ai,

and β 	l(β)i+1 β
′′. This yields that p(α′j , β

′′)p′(γ′, β′)q is
a strict path from p to q in Ai with input label x′ and
output label y′ := β′′β′. By the induction hypothesis,
y = ββ′ 	i+1 β′′β′ = y′.

Finally, we show αγ �i α′γ. Let p, q ∈ Qi and y ∈Mε

with p(αγ, y)q ∈s Ai. Since l > 0, α has the form xαl
for some message x, i.e., x = α0. We first assume x �= ε.
Thus, there exist words y0, y1, β, β

′ ∈ Σ∗N and states
p0, p1, p2 such that p(x, y0)p0 ∈s Ai, p0(ε, y1)p1 ∈ Ai,
p1(αl, β)p2 ∈s Ai, and p2(γ, β′)q ∈ Ai, where the input
label of the last transition of the latter path is �= ε.
Since the first path is strict and x is a message, by

the definition of message transducers it follows y0 ∈Mε.
Since the path from p1 to q is strict and αlγ is a message,
we know that ββ′ is a message. In particular, β is a left
half-message and β′ is a right half-message with l(β) =

l(β′). Finally, since y = y0y1ββ
′ ∈Mε and y0, ββ

′ ∈Mε,
we can conclude y1 ∈Mε.
Now α 	li α

′ implies αl �li α
′
l, and we know that

p1(αl, β)p2(γ, β
′)q is a strict path in Ai, and αlγ and

ββ′ are messages. Thus, p1(αl, β)p2 ∈h Ai. As a result,
there exists a left half-message β′′ with l(β′′) = l(β),

p1(α
′
l, β
′′)p2 ∈s Ai, and β 	

l(β)
i+1 β

′′. Moreover, if α′ = x′α′l,
then α	li α

′ implies α0 = x�i x′ = α′0. Thus there exists
y′0 ∈Mε with p(x

′, y′0), p0 ∈s Ai and y0 	i+1 y
′
0. Con-

sequently, replacing in the path p(αγ, y)q the subpath
p(x, y0)p0 by p(x

′, y′0)p0 and the subpath p1(αl, β)p2 by
p1(α

′
l, β
′′)p2 yields a strict path from p to q with input

label α′γ and output label y′ := y′0y1β
′′β′ ∈Mε.

It remains to show y 	i+1 y′. By induction, β 	
l(β)
i+1

β′′ implies ββ′ 	i+1 β′′β′. We also know y0 	i+1 y′0 and
y1 	i+1 y1. Thus, by Lemma 5, with t= v0v1v2 we obtain
y = t[y0, y1, ββ

′]	i+1 t[y′0, y1, β
′′β′] = y′.

If x= ε and x′ is defined as above, it follows that x′ =
ε, because x�i x′. The rest of the proof is similar to the
case x �= ε. �

9.2 Index of the path truncation ordering

Let ≡l, ≡li, and =
l
i denote the equivalence relations cor-

responding to 	l, 	li, and �
l
i, respectively. We show that

these relations have finite index.
We start with ≡l. Obviously, f≡l with f≡l(α) :=

([α∗]≡, p(α)) for every left half-message α of level l is an
index mapping (Sect. 6.3) for ≡l. It follows that:

Lemma 11. For every l ≥ 0:

I(≡l)≤ I(≡) · |N |l.

The proof of the following proposition is very similar to
the one for Proposition 2. However, it requires Proposi-
tion 4.

Proposition 6. For every l ≥ 0: I(≡lk) = I(≡
l)+1 and

I(=li)≤ 2

(
I(≡

depthl(Ai)
i+1)·2|Qi|

2
)
·depthl(Ai)

+1

I(≡li)≤ I(≡
l
i+1) · I(≡i) · I(=

l
i)
l · I(=i)+1

for every i < k and depthl(Ai) := depth(Ai) · (l+1).

Proof. For ≡lk the claim is obvious. Assume that i < k
and that the claim holds for ≡li+1. We first consider =

l
i.

For every l, l′ ≥ 0, we introduce a new equivalence rela-
tion on tuples of left half-messages: For left half-messages
α, α′, β, β′ with l(α) = l(α′) = l and l(β) = l(β′) = l′ we

define: (α, β) =l,l
′

i (α
′, β′) iff

– β ≡l
′

i+1 β
′ and

– p(α, β)q ∈h Ai iff p(α′, β′)q ∈h Ai for every p, q ∈Qi.

Just as for =ti, in the proof of Proposition 2 one shows

I(=l,l
′

i)≤ I(≡
l′

i+1) ·2
|Qi|

2
.

R. Küsters: On the decidability of cryptographic protocols with open-ended data structures

To show that =li has a finite index, define for l, l
′ ≥ 0 and

a left half-message α of level l the set

M l,l
′

i,α := {[(α, β)]=l,l′
i

| β left half-message

of level l′}

and the tuple

M li,α := (M
l,l′

i,α | l
′ ≤ depthl(Ai)).

Define f=l
i
(α) :=M li,α for every nonempty left half-

message α.

Claim. f=l
i
is an ε-index mapping for =li.

Proof of the claim. Obviously, the range of f=l
i
is finite.

AssumeM li,α =M
l
i,α′ for nonempty left half-messages α,

α′ of level l. We show α �li α
′; α′ �li α follows by sym-

metry. Let p, q ∈ Qi and β be a left half-message with
p(α, β)q ∈h Ai. By definition of ∈h, there exist right
half-messages γ and γ′ and a state q′ ∈ Qi such that
p(α, β)q(γ, γ′)q′ is a strict path in Ai. Then, Proposi-
tion 4 implies l′ := l(β)≤ depthl(Ai). Now, usingM li,α =

M li,α′ , it follows [(α, β)]=l,l
′

i

∈M l,l
′

i,α =M
l,l′

i,α′
. Thus, there

exists a left half-messageβ′ with l(β′) = l′ with [(α, β)]
=
l,l′

i

=

[(α′, β′)]
=
l,l′

i

. In particular, β ≡l
′

i+1 β
′, and from p(α, β)q ∈h

Ai it follows that p(α′, β′)q ∈h Ai. This concludes the
proof of the claim.

By induction on r simultaneously for ≡ri and =
r
i , it is

easy to see that I(≡ri) ≤ I(≡
r′

i) and I(=
r
i) ≤ I(=

r′

i) for
every r ≤ r′. Now, from the claim it follows:

I(=li)≤ 2
I
(
=
l,depthl(Ai)
i

)
·depthl(Ai)+1

≤ 2

(
I
(
≡
depthl(Ai)
i+1

)
·2|Qi|

2
)
·depthl(Ai)

+1.

Finally, let f≡l
i
(α) := ([α]≡l

i+1
, [α∗]≡i, [α0]=1i

, . . . , [αl]=l
i
)

for every nonempty left half-message α of level l. It is easy
to see that f≡l

i
is an ε-index mapping of ≡li. From this,

the bound on I(≡li) claimed in the proposition follows
immediately. �

10 Proof of Theorem 2

Putting everything together, we now show that the path
problem is decidable. This will conclude the proof of
Theorem 2.
We show that to find a solution of an instance of

PathProblem, it suffices to consider paths (and thus
messages) of length restricted in the size of the prob-
lem instance. To this end, we assume that the instance
(K,Ai, . . . ,Ak−1) has the solution (mi,m′i, . . . ,mk−1,
m′k−1) and then construct a solution with short paths.We
do so by induction on i ≤ k. For i= k, nothing is to be
shown. For the induction step we need some notation.

Assume

π = q0(a0, b0)q1(a1, b1) · · · (ar−1, br−1)qr

is a path in Ai with a0 · · ·ar−1 =mi, b0 · · · br−1 =m′i,
q0 = q

I
i , and qr = q

F
i . Define mi(j, j

′) := aj · · · aj′−1 and
m′i(j, j

′) := bj · · · bj′−1 for all 0 ≤ j ≤ j
′ ≤ r. We define

lj := lπ(j) and l
′
j := l

′
π(j), where lπ and l

′
π are the input

and output level functions of π (cf. Sect. 8).
Due to Corollary 3, we may assume that the depth of

mi andm
′
i is bounded in the size of the problem instance.

Define N := anN (K) andM := {enca(z) ∈ an(K) | z ∈
M and a ∈N }. Similar to the proof of Proposition 1, let
n be the number of times a message in M was used to
construct mi ∈ d(K) from K, and let {x0, . . . , xn−1} be
the multiset of these messages; an xj ∈M occurs in this
multiset as many times as it was used in the derivation
of mi. Then, there exists a linear term t(v0, . . . , vn−1) ∈
d(N ∪{v0, . . . , vn−1}) with mi = t[x0, . . . , xn−1]. More-
over, there exist positions ij , i

′
j ≤ r in π such that xj =

aijaij+1 · · · ai′j−1
, aij �= ε, and ai′j−1

�= ε, for every j < n.

That is, the subpath in π between the positions ij and i
′
j

is a strict path in Ai with input label xj .
Finally, we define a mapping fπ that indicates at

which positions π can be truncated. It distinguishes be-
tween positions “inside” and “outside” an xj . For every
j ≤ r, fπ(j) is defined to be

(qj , lj , l
′
j , [m

′
i(0, j)]

≡
l′
j
i+1

, xs,mi(is, j))

if there exists s < n such that is < j < i
′
s, and

(qj , lj , l
′
j , [m

′
i(0, j)]

≡
l′
j
i+1

)

otherwise. The following lemma shows how to truncate
paths using fπ.

Lemma 12. If there exist j0, j1, and j2 with 0 ≤ j0 <
j1 < j2 ≤ r and fπ(j0) = fπ(j1) = fπ(j2), then there ex-
ists u ∈ {0, 1} and a solution (mi,m

′
i, . . . ,mk−1,m

′
k−1) of

(K,Ai, . . . , Ak−1) such that the path π :=

q0(a0, b0)q1 · · · qju(aju+1 , bju+1)qju+1+1

(aju+1+1, bju+1+1) · · · (ar−1, br−1)qr

is a path in Ai from qIi to q
F
i with input label mi =

mi(0, ju)mi(ju+1, r) and output label m
′
i = m

′
i(0, ju)

m′i(ju+1, r).

Proof. From fπ(j0) = fπ(j1) = fπ(j2) it follows that
lj0 = lj1 = lj2 . Now, Lemma 8 implies that there exists
u ∈ {0, 1} such that mi :=mi(0, ju)mi(ju+1, r) is a mes-
sage. Since π is a path from qIi to q

F
i with input label

mi, from the properties of message transducers (cf. Defin-
ition 4) it follows thatm′i :=m

′
i(0, ju)m

′
0(ju+1, r) must be

a message.

R. Küsters: On the decidability of cryptographic protocols with open-ended data structures

It remains to show that there exist messages mi+1,
m′i+1, . . . ,mk−1,m

′
k−1 such that (mi,m

′
i, . . . ,mk−1,

m′k−1) is a solution of (K, Ai, . . . , Ak−1).
We first showmi ∈ d(K). Note that, if is < ju < i′s for

some s < n, then fπ(ju) = fπ(ju+1) implies that there ex-
ists s′ < n with xs = xs′ and mi(is, ju) =mi(is′ , ju+1).
Thus, xs =mi(is, ju)mi(ju+1, is′). That is, after remov-
ing the subpath in π between ju and ju+1, we still have
xs as a submessage. If there is no s < n with is < ju < i

′
s,

then in mi only parts of t are removed, which when in-
stantiated may or may not contain xi’s.
In either case, it is easy to conclude that there ex-

ists a linear term t(v0, . . . , vn−1) ∈ d(N ∪{v0, . . . , vn−1})
such thatmi := t[x0, . . . , xn−1]. Thus,mi ∈ d(K).
Because fπ(ju) = fπ(ju+1), we know [m

′
i(0, ju)]≡l′i+1

=

[m′i(0, ju+1)]≡l′
i+1
with l′ := l′ju = l

′
ju+1
. Moreover, since

we havem′i =m
′
i(0, ju+1)m

′
i(ju+1, r) andm

′
i =m

′
i(0, ju)

m′i(ju+1, r), Proposition 5 impliesm
′
i ≡i+1 m

′
i.

Now Proposition 1 guarantees that the instance
(K, Ai+1, . . . , Ak−1) with K := K∪{m

′
i} has a solution

(mi+1,m
′
i+1, . . . ,mk−1, m

′
k−1). Thus, (mi,m

′
i,mi+1,

m′i+1, . . . ,mk−1, m
′
k−1) solves (K,Ai, . . . ,Ak−1). �

It remains to show that the range of fπ can be bounded
in the size of the problem instance (and that this bound
can be computed effectively). Then, Lemma 12 implies
that the length of the paths qIi (mi,m

′
i)q
F
i ∈ Ai can be

bounded as well, and by induction this holds for every
path qIj (mj ,m

′
j)q
F
j ∈ Aj , i ≤ j < k. Thus, given an in-

stance (K,A0, . . . ,Ak−1) of the path problem, a deci-
sion algorithm can first compute the bound on the length
of the paths and then enumerate all paths of length re-
stricted by the (computed) bound and check whether
their labels satisfy the required conditions.
To show that the range of fπ is bounded, recall that

the depth ofmi andm
′
i is (effectively) bounded in the size

of the problem instance, and thus so are lj and l
′
j for every

j ≤ r. Now Proposition 6 implies that the range of fπ is
bounded in the size of the problem instance.We conclude:

Proposition 7. PathProblem is decidable.

From this, Theorem 2 follows immediately.
We note that the runtime of the decision algorithm

proposed here is nonelementary in the number of receive-
send actions. This is because the index of the solvabil-
ity preserving and path truncation ordering grows non-
elementary in the number of receive-send actions. Thus,
it remains to investigate whether the complexity lower
bound shown in the following section is tight.

11 A complexity lower bound

We prove the following theorem.

Theorem 3. For transducer-based protocols,Attack is
PSPACE-hard.

We first show:

Theorem 4. PathProblem is a PSPACE-hard prob-
lem.

This is done by reduction from the finite automata
intersection problem, which is known to be PSPACE-
complete [25].
Recall that a deterministic finite automaton B is a tu-

ple (Q,Σ, qI , δ, F), where Q is a finite set of states, Σ
a finite alphabet, qI ∈Q the initial state, F ⊆Q the set
of final states, and δ a partial mapping taking a tuple
(q, a) ∈Q×Σ to a state q′ ∈Q. If δ is extended to words
with δ(q, ε) := q and δ(q, aw) := δ(δ(q, a), w), then w is
accepted by B if δ(qI , w) ∈ F .
The finite automata intersection problem is defined

as follows: Given k ≥ 0 deterministic finite automata
B0, . . . ,Bk−1 with Bi = (Qi,Σ, qIi , δi, Fi), decide whether
there exists a word w ∈ Σ∗ accepted by Bi for all i < k.6

Given the Bi’s, we define the corresponding path prob-
lem as follows. The set N of atomic messages is Σ∪
{a, secret}, where a and secret are new atomic messages.
The initial intruder knowledgeK is Σ. The message trans-
ducersAi will correspond to Bi, and they work as follows:
A0 is constructed in such a way that A0 outputs enca(w)
on input w iff w is accepted by B0. That is, A0 works just
like B0 except that it encrypts w with a. The message
transducers Ai, 0< i < k−1, do the same, but they ex-
pect the input messages to be of the form enca(w), and
they only output this message if w is accepted by Bi. Fi-
nally, Ak−1 works in the same way but also returns secret
if w is accepted by Bk−1. The encryption of w guarantees
that the intruder must send the same wordw (enca(w)) to
all the Ai’s. Without encryption, the intruder could send
different words w′ to every Ai. Formally,A0 is

(Q0∪{q
0
0, q
1
0},ΣN , {q

0
0},∆0, {q

1
0})

with

∆0 := {(q
0
0, ε, enca(, q

I
0)}∪

{(q, b, b, q′) | δ0(q, b) = q
′}∪

{(q, ε,), q10) | q ∈ F0}

and for 0< i < k−1,Ai is

(Qi∪{q
0
i , q

1
i },ΣN , {q

0
i },∆i, {q

1
i })

with

∆i := {(q
0
i , enca(, enca(, q

I
i)}∪

{(q, b, b, q′) | δi(q, b) = q
′}∪

{(q,),), q1i) | q ∈ Fi}.

Finally,Ak−1 is defined just asAi for 0< i < k−2 except
that the transition (q1i , ε, secret, q

2
i) and the state q

2
i is

6 If k is fixed, this problem can be decided in polynomial time.

R. Küsters: On the decidability of cryptographic protocols with open-ended data structures

added and q2i is the only final state of Ak−1. Now it is not
hard to verify that there exists a wordw ∈Σ∗ accepted by
Bi for all i < k iff the instance (K,A0, . . . ,Ak−1) of the
path problem has a solution. This proves Theorem 4.
We can basically employ the same argument for the

problem Attack. We simply conjoin the message trans-
ducers Ai into one extended message transducer A =
(Q,ΣN ,∆, (I0, . . . , Ik)), where Q and ∆ are the union of
the states and transitions of the Ai’s, respectively, and
Ii := {q0i } for i < k, and Ik := {q

2
k−1}. We assume that the

set of states of the Ai’s are disjoint, except that we iden-
tify q1i−1 and q

0
i for 0< i < k. Again, it is easy to see that

there exists a word w ∈ Σ∗ accepted by Bi for all i < k iff
the transducer-based protocol with one principal defined
by A allows a successful attack. Thus, Theorem 3 follows.

12 Conclusion

We have introduced a generic protocol model for analyz-
ing the security of open-ended protocols, i.e., protocols
with open-ended data structures, and investigated the
decidability of different instances of this model. In one in-
stance, receive-send actions are modeled by sets of rewrite
rules. We have shown that in this instance, security is
undecidable. This result indicated that to obtain decid-
ability, principals should only have finite memory and
should not be able to compare or copy messages of arbi-
trary size. This motivated our transducer-based model,
which complies with these restrictions but still captures
certain open-ended protocols. We have shown that in this
model security is decidable and PSPACE-hard.
While in this paper we have concentrated on the

shared key setting and secrecy properties, we conjecture
that our results carry over rather easily to public key en-
cryption and authentication.
An open problem is the establishment of a tight com-

plexity bound. So far, the decision algorithm proposed is
nonelementary in the number of receive-send actions and
is merely based on the fact that in attacks the length of
computations in receive-send actions and the size of mes-
sages can be bounded. Thus, it also remains to develop
a more practical algorithm. As pointed out in Sect. 4.1,
another promising future direction is to combine the
transducer-based model with the models for closed-ended
protocols and to devise tree transducers suitable for de-
scribing receive-send actions. We will also try to incor-
porate complex keys since they are used in many proto-
cols. While we strongly conjecture that the proof tech-
niques and the results presented here carry over to the
case where keys are messages of bounded size, instead
of only atomic messages, the techniques do not apply
in the general case where no bound is put on the size
of keys.

Acknowledgements. Thanks to Thomas Wilke and the anonymous
referees for helpful comments on this work and to Catherine Mead-
ows for directing me to the paper by Pereira and Quisquater.

References

1. Abadi M, Gordon AD (1997) A calculus for cryptographic
protocols: the spi calculus. In: 4th ACM conference on com-
puter and communications security. ACM Press, New York,
pp 36–47

2. Amadio RM, Charatonik W (2002) On name generation and
set-based analysis in the Dolev-Yao model. In: Brim L, Jan-
car P, Kretinsky M, Kucera A (eds) 13th international confer-
ence on concurrency theory (CONCUR 2002). Springer, Berlin
Heidelberg New York, 2421:499–514

3. Amadio RM, Lugiez D, Vanackère V (2001) On the symbolic
reduction of processes with cryptographic functions. Technical
Report RR-4147, INRIA

4. Armando A, Basin D, Bouallagui M, Chevalier Y, Com-
pagna L, Mödersheim S, Rusinowitch M, Turuani M, Vi-
ganò L, Vigneron L (2002) The AVISS security protocol analy-
sis tool. In: Brinksma E, Larsen KG (eds) 14th international
conference on computer aided verification (CAV 2002). Lec-
ture notes in computer science, vol 2404. Springer, Berlin
Heidelberg New York, pp 349–353

5. Ateniese G, Steiner M, Tsudik G (1998) Authenticated
group key agreement and friends. In: Proceedings of the 5th
ACM conference on computer and communication security
(CCS’98), San Francisco. ACM Press, New York, pp 17–26

6. Barrett DJ, Silverman R, Loukides M (2001) SSH, the Secure
Shell: the definitive guide. O’Reilly, UK

7. Bellare M, Rogaway P (1994) Entity authentication and key
distribution. In: Stinson D (ed) Advances in Cryptology –
Crypto ’93, 13th annual international cryptology conference.
Lecture notes in computer science, vol 773. Springer, Berlin
Heidelberg New York

8. Boreale M (2001) Symbolic trace analysis of cryptographic
protocols. In: Automata, languages and programming, 28th
international colloquium (ICALP 2001). Lecture notes in com-
puter science, vol 2076. Springer, Berlin Heidelberg New York,
pp 667–681

9. Boreale M, Buscemi MG (2002) Experimenting with STA,
a tool for automatic analysis of security protocols. In: Pro-
ceedings of the 2002 ACM symposium on applied computing
(SAC 2002). ACM Press, New York, pp 281–285

10. Bryans J, Schneider SA (1997) CSP, PVS, and a recursive
authentication protocol. In: DIMACS workshop on formal ver-
ification of security protocols

11. Bull JA, Otway DJ (1997) The authentication protocol. Tech-
nical Report DRA/CIS3/PROJ/CORBA/SC/1/ CSM/436-
04/03, Defence Research Agency, Malvern, UK

12. Burrows M, Abadi M, Needham R (1990) A logic of authenti-
cation. ACM Trans Comput Syst 8(1):18–36

13. Cervesato I, Durgin NA, Lincoln PD, Mitchell JC, Scedrov A
(1999) A meta-notation for protocol analysis. In: 12th IEEE
Computer Security Foundations Workshop (CSFW-12)

14. Clark J, Jacob J (1997) A survey of authentication protocol
literature. Web Draft Version 1.0 available at
http://citeseer.nj.nec.com/

15. Cohen E (2000) TAPS: First-order verification of crypto-
graphic protocols. In: 13th Computer Security Foundations
Workshop (CSFW 2000). IEEE Press, New York, pp 144–158
(2002) Goubault-Larrecq J (ed) J Telecommun Inf Technol
4:5–15

16. Comon H, Shmatikov V (2002) Is it possible to decide whether
a cryptographic protocol is secure or not? In: Goubault-
Larrecq J (ed) J Telecommun Inf Technol (Special Issue on
Cryptographic Protocol Verification) 4:5–15

17. Dolev D, Even S, Karp RM (1982) On the security of ping-
pong protocols. Inf Control 55:57–68

18. Dolev D, Yao AC (1983) On the security of public-key proto-
cols. IEEE Trans Inf Theory 29(2):198–208

19. Durante A, Focardi R, Gorrieri R (1999) Cvs: a compiler for
the analysis of cryptographic protocols. In: Syverson P (ed)
Proceedings of the 12th IEEE Computer Security Foundations
Workshop (CSFW’99). IEEE Press, New York, pp 203–212

20. Durgin NA, Lincoln PD, Mitchell JC, Scedrov A (1999) Un-
decidability of bounded security protocols. In: Workshop on
formal methods and security protocols (FMSP’99)

R. Küsters: On the decidability of cryptographic protocols with open-ended data structures

21. Even S, Goldreich O (1983) On the security of multi-party
ping-pong protocols. In: IEEE symposium on foundations of
computer science (FOCS’83), pp 34–39

22. Ferguson N, Schneier B (2000) A cryptographic evaluation of
IPsec. Technical report.
http://www.counterpane.com/ipsec.pdf

23. Fiore MP, Abadi M (2001) Computing symbolic models for
verifying cryptographic protocols. In: 14th Computer Security
Foundations Workshop (CSFW-14). IEEE Press, New York,
pp 160–173

24. Freier A, Karlton P, Kocher P (1996) The SSL protocol ver-
sion 3.0. draft-ietf-tls-ssl-version3-00.txt, 18 November 1996

25. Garey MR, Johnson DS (1979) Computers and intractabil-
ity: a guide to the theory of NP-completeness. Freeman, San
Francisco

26. Harkins D, Carrel D (1998) The Internet Key Exchange
(IKE), The Internet Engineering Task Force, November 1998.
RFC 2409

27. Huima A (1999) Efficient infinite-state analysis of security
protocols. In: Workshop on formal methods and security pro-
tocols (FMSP’99)

28. Kohl J, Neuman B, Ts’o T (1994) The evolution of the Ker-
beros authentication service. In: Brazier F, Johansen D (eds)
Distributed open systems. IEEE Press, New York

29. Lowe G (1995) An attack on the Needham-Schroeder public-
key authentication protocol. Inf Process Lett 56:131–133

30. Lowe G (1996) Breaking and fixing the Needham-Schroeder
public-key protocol using FDR. In: Tools and algorithms for
the construction and analysis of systems (TACAS 1996). Lec-
ture notes in computer science, vol 1055. Springer, Berlin Hei-
delberg New York, pp 147–166

31. Meadows C (2000) Extending formal cryptographic protocol
analysis techniques for group protocols and low-level cryp-
tographic primitives. In: Degano P (ed) Proceedings of the
1st workshop on issues in the theory of security (WITS’00),
pp 87–92

32. Meadows C (2000) Open issues in formal methods for cryp-
tographic protocol analysis. In: Proceedings of DISCEX 2000.
IEEE Press, New York, pp 237–250

33. Millen JK, Shmatikov V (2001) Constraint solving for
bounded-process cryptographic protocol analysis. In: Proceed-
ings of the 8th ACM conference on computer and communica-
tions security. ACM Press, New York, pp 166–175

34. Mitchell J, Mitchell M, Stern U (1997) Automated analysis of
cryptographic protocols using Murphi. In: Proceedings of the
1997 IEEE symposium on security and privacy. IEEE Press,
New York, pp 141–151

35. Otway D, Rees O (1987) Efficient and timely mutual authen-
tication. Oper Syst Rev 21(1):8–10

36. Paulson LC (1997) Mechanized proofs for a recursive authen-
tication protocol. In: 10th IEEE Computer Security Founda-
tions Workshop (CSFW-10), pp 84–95

37. Paulson LC (1997) Proving properties of security protocols by
induction. In: 10th Computer Security Foundations Workshop
(CSFW-10). IEEE Press, New York, pp 70–83

38. Pereira O, Quisquater J-J (2001) A security analysis of
the Cliques Protocols suites. In: Proceedings of the 14th
IEEE Computer Security Foundations Workshop (CSFW-14),
pp 73–81

Fig. 1. The recursive authentication protocol

39. Rusinowitch M, Turuani M (2001) Protocol insecurity with
finite number of sessions is NP-complete. In 14th IEEE Com-
puter Security Foundations Workshop (CSFW-14),
pp 174–190

40. Schneider S (1996) Security Properties and CSP. In: Proceed-
ings of the 1996 IEEE symposium on security and privacy.
IEEE Press, New York, pp 174–187

41. Song DX, Berezin S, Perrig A (2001) Athena: a novel approach
to efficient automatic security protocol analysis. J Comput Se-
cur 9(1/2):47–74

42. Steiner M, Tsudik G, Waidner M (1998) CLIQUES: A new
approach to key agreement. In: IEEE international conference
on distributed computing systems. IEEE Press, New York,
pp 380–387

43. Zhou J (1999) Fixing a security flaw in IKE protocols. Elec-
tron Lett 35(13):1072–1073

Appendices

A The recursive authentication protocol

The recursive authentication protocol (RA protocol) was
proposed by Bull and Otway [11], and it extends the au-
thentication protocol by Otway and Rees [35] in that it
allows one to establish session keys between an a priori
unbounded number of principals in one protocol run. Our
description of the RA protocol follows Paulson [36].
In the RA protocol one assumes that a key distribu-

tion server S shares long-term keys with the principals.
In Fig. 1 a typical protocol run is depicted. In this run, A
wants to establish a session key with B and B wants to
establish a session key with C. The number of principals
involved in a protocol run is not bounded. In particular,
C could send a message to some principal D in order to
establish a session key with D and D could continue and
send a message to E and so on. In the protocol run de-
picted in Fig. 1, we assume that C does not want to talk
to another principal and therefore sends a message to the
key distribution server S who is involved in every proto-
col run.
In Fig. 1, Ka denotes the long-term keys shared be-

tween A and S. Similarly, Kb and Kc are the long-term
keys shared between B, C, and S, respectively. With Na,
Nb, andNc we denote nonces (i.e., random numbers) gen-
erated by A, B, and C, respectively. Finally, Kab, Kbc,
and Kcs are the session keys generated by the server and

R. Küsters: On the decidability of cryptographic protocols with open-ended data structures

used by the principals for secure communication between
A and B, B and C, and C and S, respectively. The num-
bers (1–6) attached to the messages only indicate the
order in which the messages are sent and do not belong to
the protocol.
The message hashk(m) for a key k and some message

m stands for hash(km)m. In other words, hashk(m) con-
tains a keyed hash ofm (the message authentication code
ofm) plusm itself.
We now take a closer look at the messages exchanged

between the principals in the order they are sent: In the
first messages (1), principal A indicates that she requests
a session key from the server for secure communication
with B. The symbol “−” says that this message started
the protocol run. Now, in the secondmessage (2),B sends
something similar to C but with A’s message instead of
“−”, indicating that he wants to share a session key with
C. As mentioned, this step could be repeated as many
times as desired, yielding an ever-growing stack of re-
quests. The process is terminated if one principal contacts
S. In this example, we assume that C does not request
another session key and therefore sends the message re-
ceived from B to S (3). This message is now processed
by S.
The outer two hashes indicate that C has called S

and was called by B. Therefore, the server generates
fresh keys Kcs and Kbc, intended to be used as a ses-
sion key between C and S and between B and C, re-
spectively. Then, S prepares certificates encKc(KcsSNc)
and encKc(KbcBNc), which together with the certifi-
cates prepared later will be sent to C. Note that the key
Kcs is redundant since C and S already share a key.
But including it allows one to treat the last principal in
the chain like all others, except the first, who only re-
ceives one session key. Having dealt with C’s request,
the server discards the outer level and proceeds with
the message hashKb(BCNb hashKa(ABNa−)). It says
that B has called C and was called by A. Therefore,
the server prepares two certificates encKb(KbcCNb) and
encKb(KabANb), both intended for B, the former con-
taining the session key for communication with C and
the latter containing the one for communication with A.
Note that Kbc is the same key sent to C, and Kab is
a fresh key generated by the server. It remains to process
hashKa(ABNa−). It indicates that A requests a session
key for communication with B, and because it contains
“−”, A must have initiated the protocol run. Thus, the
server prepares only one certificate: encKa(KabBNa),
where Kab is the same key as the one sent to B. Hav-
ing prepared all necessary certificates, the server sends
all of them to C (4). The line break is only for lay-
out purposes and does not have any meaning in the
protocol.
Principal C accepts the first two certificates, extracts

the two session keys, and forwards the rest of the message
to its predecessor in the chain (5). Then,B does the same,
and forwards the last certificate to A (6).

B Modeling the recursive
authentication protocol

In this section, a formalization of the key distribution
server in terms of the transducer-based protocol model is
provided. Although in the recursive authentication proto-
col the number of receive-send actions performed in one
protocol run is unbounded, in ourmodel we assume a fixed
bound – extending the transducer-based protocol model
to handle an unbounded number of receive-send actions
would lead to undecidability, just as for an unbounded
number of sessions. Nevertheless, even with such a fixed
bound it is still necessary to model open-ended data struc-
tures. The most important reason is that the intruder can
generate messages with an unbounded number of data
fields, which must be processed by the principals. Also
note that in other protocols, such as IKE, open-ended data
structures may occur even without an intruder.
To provide a formal description of the RA proto-

col in the transducer-based model, we simplify the mes-
sages exchanged between the principals a bit. We as-
sume that instead of hash(km)m a message of the form
hash(km) is sent. With this, we implicitly assume that,
together with a hash, the corresponding message is sent.
To make sure that the intruder gets hold of m, even if
only hash(km) is sent, the principals will send some ad-
ditional information. For instance, in the first message,
A would send ABNahash(KaABNa−). In the second
step, B expects a message of the form hash(KaABNa−),
i.e., from the messages A sent the first part, namely,
ABNa, is removed by the intruder. Principal B does
not need this information because he can extract it from
hash(KaABNa−). The message sent out by B is of the
form BCNbhash(KbBCNB hash(KaABNa−)).
In what follows, we give a formal description of the key

distribution server S within the transducer-based model.
The server is the only principal who needs to process
open-ended data structures. In their first receive-send ac-
tion, the other principals take only the message received,
examine the outermost request (ignoring the others), and
add their request, or, in the second receive-send action,
only extract their certificates from the message received
and forward the remainingmessage, regardless of the con-
tent. For this reason, we just present a description of the
server in order to illustrate the use of the transducer-
based protocol model.
Let P0, . . . , Pn be the principals participating in the

RA protocol. We assume that Pn = S is the server.
Every Pi, i < n, shares a long-term key Ki with S. The
nonce sent by Pi in the request message is denoted
Ni, i < n.
The set of atomic messages isN := {Pi | i≤ n}∪{Ki |

i < n}∪{Ni | i < n}∪{Kjj′ | j < n, j
′ ≤ n}∪{−}. The

initial intruder knowledge K contains all the principal
names plus the symbol “−” and the empty word ε. One
could also add keysKi and noncesNi in case the intruder
controls Pi.

R. Küsters: On the decidability of cryptographic protocols with open-ended data structures

Fig. 2. Transitions of the key distribution server An

The extended message transducer An for the server S
is defined as follows. Recall that S expects messages of the
form

hash(aiPiSbihash(ajPjPibjhash(· · ·) · · ·)

with ai, bi, aj , bj , . . . ∈ N . The states of S consist of three
components. The first takes the values start, read, readpar,
and accept. In state start, An reads the first symbols
of the message, checks whether this message is really
addressed to S, and generates the first certificates. In
state read, An processes the rest of the requests. At
the end, An needs to read remaining closing parenthe-
ses. This is done in state readpar. If everything is ok,
S goes into the state accept. In the second compon-
ent, An memorizes whose certificates are to be gener-
ated, and the third component stores the corresponding
nonce.
The transitions of S are depicted in Fig. 2. To increase

readability, a transition (p, v, w, q) is written in the fol-

lowing form:

p
v

w
> q .

Note that words read/written in one transition are not
necessarily messages, i.e., the number of parentheses may
be unbalanced.
Since S only performs a single action, we only need

to define two sets I0 and I1: I0 := {(start,⊥,⊥)}, I1 :=
{(accept,⊥,⊥)}. It is easy to turn An into a transducer
with letter transitions such that the conditions on mes-
sage transducers are satisfied.
Note that the nonces sent by the principals to S

must be stored by S since they may occur in two certifi-
cates. That is, S must copy submessages. As discussed
in Sect. 4.1, because transducers have only finite mem-
ory, this is only possible if the submessages to be copied
have bounded size. Therefore, S, as modeled here, as-
sumes nonces to be atomic.

