
Simulation-Based Security with Inexhaustible Interactive Turing Machines

Ralf Küsters
Institut für Informatik

Christian-Albrechts-Universität zu Kiel
24098 Kiel, Germany

kuesters@ti.informatik.uni-kiel.de

Abstract

Recently, there has been much interest in extending mod-
els for simulation-based security in such a way that the
runtime of protocols may depend on the length of their in-
put. Finding such extensions has turned out to be a non-
trivial task. In this work, we propose a simple, yet expres-
sive general computational model for systems of Interac-
tive Turing Machines (ITMs) where the runtime of the ITMs
may be polynomial per activation and may depend on the
length of the input received. One distinguishing feature of
our model is that the systems of ITMs that we consider in-
volve a generic mechanism for addressing dynamically gen-
erated copies of ITMs. We study properties of such systems
and, in particular, show that systems satisfying a certain
acyclicity condition run in polynomial time. Based on our
general computational model, we state different notions of
simulation-based security in a uniform and concise way,
study their relationships, and prove a general composition
theorem for composing a polynomial number of copies of
protocols, where the polynomial is determined by the envi-
ronment. The simplicity of our model is demonstrated by the
fact that many of our results can be proved by mere equa-
tional reasoning based on a few equational principles on
systems.

1. Introduction

In the simulation-based security paradigm the security
of protocols is defined in such a way that security is pre-
served even if the protocols are used as components of an
arbitrary (polynomially bounded) distributed system. This
strong composability property allows the modular design
and analysis of protocols. The main idea behind simulation-
based security is that the security of a protocol is defined
in terms of an ideal protocol (also called, ideal function-
ality). A real protocol securely realizes the ideal protocol
if every attack on the real protocol can be translated into an

“equivalent” attack on the ideal protocol, where equivalence
is specified based on an environment trying to distinguish
the real attack from the ideal one.

Several related models for simulation-based security
have been proposed [5, 19, 4, 3, 18, 10] (see [10] for a com-
parison of the models). In these models, systems of Inter-
active Turing Machines (ITMs) are considered. However,
in the various models the ITMs can have different forms:
rather standard ITMs, as used in [5], probabilistic I/O au-
tomata [4], and process calculus expressions [18, 10]. De-
pending on the kind of entities running in a system (envi-
ronment, real/ideal adversary, simulator, real/ideal proto-
col) and the order of quantification over these entities, dif-
ferent security notions for simulation-based security are ob-
tained, including strong [11, 10] (see also [5]), black-box
[19], (dummy) universal [5, 19], and reactive simulatability
[19].

The mentioned models have in common that the total
runtime of the ITMs, i.e., the runtime summed over all acti-
vations, is bounded by a polynomial in the security parame-
ter alone and may not depend on the length of the input that
the ITMs receive from other ITMs. (We call these ITMs ex-
haustible in the following.) This is a mainly technically mo-
tivated restriction which guarantees that a system of ITMs
runs in polynomial time in the security parameter. However,
as explained below, it significantly limits the expressivity of
the models and in some cases results in unintuitive behavior.

Recently, there has therefore been much interest in devel-
oping models for simulation-based security involving ITMs
whose runtime may depend on the length of the input re-
ceived from other ITMs. Canetti [7] and Hofheinz et al. [14]
were the first to propose and study models for simulation-
based security with such ITMs. Developing such models
is a non-trivial task. As already pointed out in [4, 7, 14],
naı̈ve extensions of the existing models do not work: In a
system of ITMs (whose runtime may depend on the length
of their input), two ITMs can send messages back and forth
among each other. Hence, such a system would not termi-
nate, let alone perform a polynomially bounded computa-

tion, which is, however, required to guarantee the security
of cryptographic primitives. Canetti [7] and Hofheinz et
al. [14] have pointed out that globally bounding the runtime
of an otherwise possibly non-terminating system by a poly-
nomial, i.e., stopping the system after a polynomial bound
has been reached, also does not yield a reasonable computa-
tional model for simulation-based security: an environment
could (artificially) distinguish a real attack from an ideal
one by measuring the overall number of steps taken in the
different attacks.

Contribution of this Paper. In this paper, we propose a
model for simulation-based security which extends and sim-
plifies several aspects of previous models (see also the re-
lated work). More precisely, the main contributions of this
work are twofold: First, we propose a simple, yet expres-
sive general computational model for systems of what we
call inexhaustible ITMs independent of the application to
simulation-based security. A distinguishing feature of this
model is a generic mechanism for addressing dynamically
generated ITMs. Second, we demonstrate the flexibility and
simplicity of our model by formalizing several notions of
simulation-based security in it, along with a study of the re-
lationships of the security notions and general composition
theorems. In previous models, the formulations of the se-
curity notions were much more cumbersome or the security
notions could not be formalized at all. Also, the compo-
sition theorems were more restricted in different respects.
The simplicity of our model is reflected in the fact that many
proofs can be carried out by mere equational reasoning on
systems based on a few equational principles. Let us ex-
plain our general computational model and the application
to simulation-based security in more detail.

The general computational model. The main building
blocks of our computational model are the already men-
tioned inexhaustible ITMs. The runtime of these ITMs is
only polynomially bounded per activation where the poly-
nomial is in the length of the current input, the security pa-
rameter, and the size of the current configuration, i.e., the
length of the current content written on the work tapes of the
machine. This enables a machine to read every input and in
every activation scan its entire current configuration. It also
prevents machines from being exhausted by other machines
sending useless messages; we note that in Canetti’s model
[7], ITMs can be exhausted. Inexhaustible ITMs have two
main features that distinguish them from weakly polyno-
mial machines [4, 14]: First, they may run in one of two
modes (CheckAddress and Compute). These modes are
used within a generic mechanism for addressing copies of
ITMs. This avoids to fix specific details of an addressing
mechanism (such as session IDs) in the general computa-
tional model. Second, we distinguish between enriching
and consuming input tapes of an ITM and require that the

output produced by a single ITM and the size of its current
configuration (i.e., the length of the content written on the
work tapes of the machine) is bounded by a polynomial in
the security parameter plus the length of the input that has
been received on enriching tapes so far.

The systems of ITMs that we consider may contain an
unbounded number of copies of ITMs. In a run of a system,
ITMs may create new copies of ITMs by invoking other
machines. In other words, the number of copies of ITMs
is determined dynamically. As mentioned, using the two
modes in which ITMs may run, we employ a generic mech-
anism for addressing copies of ITMs. In the application
for simulation-based security, this mechanism allows us to
model multi-party protocols and to talk about different ses-
sions of a protocol (as needed in the composition theorems).
We identify semantic and syntactic conditions on systems of
ITMs which guarantee that these systems run in polynomial
time. The syntactic condition is an acyclicity condition on
the way ITMs are connected via the mentioned enriching
tapes.

We prove several equational properties of systems in our
general computational model which in the application for
simulation-based security allows us to carry out many of the
proofs by mere equational reasoning on systems. We also
show that any (sub-)system can be simulated by a single
ITM (the simulation is independent of the environment in
which the system may run). In particular, this is true for
those systems describing an unbounded number of sessions
of a protocol. This is the core of the joint state theorem
[9, 7].

While, as we will see, our general computational model
forms a solid and flexible basis for studying different forms
of simulation-based security, we believe that our model and
the properties shown are of interest independent of the ap-
plication to simulation-based security.

Simulation-based security. Based on our computational
model, we state and investigate different notions of
simulation-based security and prove general composition
theorems. One important feature of our model is that the
security notions can be stated in a uniform and concise way
and that many proofs can be carried out based on the men-
tioned equational principles for (general) systems of ITMs.

More precisely, we consider two classes of systems
for describing (real/ideal) protocols, while the latter class
is only briefly discussed due to space limitations: IO-
enriching protocol systems and IO-network-enriching pro-
tocol systems.

In IO-enriching protocol systems tapes which are part of
the I/O interface of the (real/ideal) protocol may be enrich-
ing while those that are part of the network interface are
consuming. This enables parties to produce output whose
length is only polynomially bounded in the security param-
eter plus the length of the workload received on their I/O

interface, such as messages to be encrypted, signed, or se-
curely transmitted. For this class of protocol systems we
formulate the security notions strong, black-box, (dummy)
universal, and reactive simulatability and identify sufficient
conditions under which these notions are equivalent. We
also prove a general composition theorem for composing a
polynomial number of copies of protocols where the poly-
nomial can be determined by the environment (and/or supe-
rior protocols).

In IO-network-enriching protocol systems not only the
tapes of the I/O interface but also of the network interface
may be enriching, yielding a more general class of protocol
systems, but with somewhat restricted security notions.

Drawbacks of models with exhaustible ITMs. Models
for simulation-based security based on exhaustible ITMs
have several drawbacks:

First, their expressivity is limited. For example, when
specifying an ideal protocol for modeling encryption (see,
e.g., [5, 2]) the number and length of messages that can be
encrypted using this protocol has to be bounded by some
fixed polynomial in the security parameter; the same is true
for other ideal protocols, such as those for modeling signa-
tures [5, 8, 6, 1, 2] and secure message transmission [19].
Such a fixed bound is quite artificial and also restricts the
security guarantees. Inexhaustible ITMs overcome these
problems. Another example that illustrates the limited ex-
pressivity in models with exhaustible ITMs is the follow-
ing: A party, modeled as an ITM, running a protocol is not
able to block useless messages. It first has to examine the
incoming message to decide whether to drop or to further
process the message. This task consumes resources, and
hence, by swamping an ITM with useless messages, exter-
nal parties, including the adversary and the environment,
can exhaust the total runtime available to a party and force
it to stop. A partial solution to this problem of blocking use-
less messages is the length function in the model by Backes,
Pfitzmann, and Waidner [4]. A more general approach is
the concept of guards introduced in [10]. However, inex-
haustible ITMs supersede such constructions.

Second, models with exhaustible ITMs exhibit in some
cases unintuitive and unexpected behavior. For example, al-
most identical protocols may not be simulatable w.r.t. black-
box simulatability, while they are with universal simulata-
bility. More concretely, consider an ideal and real protocol
which are identical except that on the network interface the
ideal protocol sends the bit-wise complement of messages
the real protocol would send. While the real protocol re-
alizes the ideal protocol w.r.t. universal simulatability, this
is, in general, not the case w.r.t. black-box simulatability.
The main reason for this peculiarity is that if the runtime
of ITMs is polynomially bounded in the security parameter,
then in general it is not possible to plug an entity, say D,

between two other entities, sayQ1 andQ2, such that D can
be chosen independently of at least one of the entitiesQ1 or
Q2, and such thatD forwards messages betweenQ1 andQ2

(this property is called FORWARDER property in [10]): D
can be exhausted by these entities, i.e., the runtime available
to D might not suffice to forward all messages between Q1

and Q2. As shown in [10], this property has a great impact
on the relationships between the different security notions.
When using ITMs where all tapes are enriching, the FOR-
WARDER property can be satisfied. Another unexpected
behavior is that when considering systems where the num-
ber of ITMs in the system is unbounded and is determined
by the environment, then such a system cannot be simu-
lated by a single ITM. For example, one cannot simulate an
unbounded number of copies of protocols within one ITM.
This is, however, what is required by the joint state theorem
as stated in [7, 9]. In our model, every (sub-)system can be
simulated by a single ITM.

Related Work. As mentioned above, Canetti [7] and
Hofheinz et al. [14] were the first to study models for
simulation-based security where the runtime of ITMs may
depend on the length of their input. Let us discuss the main
differences to the present work.

The results proved by Hofheinz et al. are most closely
related to the results presented in this paper for IO-network-
enriching protocol systems. These protocol systems are
similar in expressivity to the polynomially shaped weakly
polynomial collections considered in [14]. However, the
way the security notions are defined is quite different from
the definitions presented here. Hofheinz et al. do not con-
sider IO-enriching protocol systems. The study of these sys-
tems is the core of the present paper, and as shown here,
these systems allow to formulate all simulation-based secu-
rity notions considered in the literature in a concise and uni-
form way, while, for instance, strong and black-box simu-
latability have not been investigated by Hofheinz et al. Also,
the computational model employed in [14] does not explic-
itly allow to talk about systems with an unbounded number
of dynamically generated ITMs (such systems would have
to be simulated within a fixed and finite number of ITMs).
Hence, without further extending the model by Hofheinz
et al., a composition theorem for composing a polynomial
number of machines can not be stated (let alone proved) in
their setting.

The model by Canetti [7] has been evolving over time
and is still subject to change. Canetti’s model and the one
proposed here are orthogonal. On the one hand, Canetti’s
model has the following main features that our model does
not have: ITMs may generate the code of machines they in-
voke, the depth of invocations of “subroutine ITMs” may
be linear in the security parameter and the auxiliary input
given to the system, and a description of a system involves

a control function which oversees whether or not an ITM
is allowed to communicate with another ITM. On the other
hand, our model is simpler, and yet, more expressive and
flexible in the following respects: The total runtime of the
ITMs that Canetti employs is bounded by a polynomial in
the security parameter and the length of the input received
on I/O tapes (minus the runtime provided to “subroutine
ITMs”). In particular, the runtime of these ITMs may not
be polynomial per activation, and in fact, these ITMs can be
exhausted by other ITMs sending useless messages. This
limits the expressivity of the model in the sense that cer-
tain protocols can not be formulated, e.g., protocols that,
without consuming resources, simply ignore messages of
unexpected format. Also, the exhaustion of ITM leads to
much more involved constructions for the security notions
and proofs. By using inexhaustible ITMs, we avoid these
problems in our model. To guarantee that systems as de-
fined by Canetti run in polynomial time, the length of the
output of ITMs when invoking new ITMs must be strictly
decreasing compared to the length of the input received.
The number of ITMs that may be invoked by a machine
is also restricted in a certain way. We do not have these
restrictions in our model. Another difference between the
two models is that Canetti explicitly defines as part of his
computational model how session and party IDs are used
to address specific copies of protocols. In the present work
we instead have developed a more general mechanism for
this purpose and do not fix details of the addressing mecha-
nism in the general computational model. We also note that
our composition theorems are more flexible in the way we
allow protocols to connect to subprotocols. We finally men-
tion that in the version of [7] from January 2005, Canetti
considers ITMs whose runtime may depend on the input re-
ceived on all tapes (he called such ITMs A-PPT). In our
terminology, these are ITMs where all of the tapes are en-
riching. Canetti formulated different security notions using
these ITMs. However, the proofs for establishing the rela-
tionships between these notions were flawed.

Structure of the Paper. In Section 2, we present our gen-
eral computational model, including the definition of (in-
exhaustible) ITMs and systems of such ITMs, with impor-
tant properties presented in Section 3. Based on the general
computation model, we introduce the mentioned security
notions for IO-enriching protocol systems in Section 4, with
their relationships studied in Section 5. The composition
theorems for this class of protocol systems are presented in
Section 6. IO-network-enriching protocol systems are in-
vestigated in Section 7. We conclude in Section 8. We refer
the reader to [16] for a full version of this paper.

Notation and Basic Terminology. For a bit string a ∈
{0, 1}∗ we denote by |a| the length of a. Following [7],

a function f : {1}∗ × {0, 1}∗ → R≥0 is negligible if for
every polynomial p and q there exists k0 such that for all
k > k0 and all bit strings a ∈

⋃
k′≤q(k){0, 1}k

′
we have

that f(1k, a) ≤ 1
p(k) .

2. The General Computational Model

In this section, we define our general computational
model independent of the application to simulation-based
security. We introduce single interactive Turing machines
and systems of such machines, define runs of systems, and
state basic properties. We also introduce further notation
and terminology, used in subsequent sections.

2.1. Inexhaustible Interactive Turing Ma-
chines

We first introduce the syntax of (inexhaustible) interac-
tive Turing machines and then the way these machines per-
form their computations.

Syntax. An (inexhaustible) interactive Turing machine
(ITM, for short) M is a probabilistic Turing machine with
the following tapes and a polynomial q associated with it
where q will be used as a bound in computations of M : a
read-only tape on which the mode the ITM M is supposed
to run is written (the mode tape)—the possible modes are
CheckAddress and Compute (see below)—, a read-only
tape on which the security parameter is written (the secu-
rity parameter tape), a write-only tape (the address deci-
sion tape, used in mode CheckAddress), zero or more in-
put and output tapes, and work tapes. The input and output
tapes have names and, in addition, input tapes have an at-
tribute whose possible values are consuming or enriching
(see below). We require that different tapes of M have dif-
ferent names. We allow M to randomly choose transitions.
Alternatively, one could equip M with a random tape (see,
e.g., [12]).

The set of input and output tapes of M is denoted by
T (M), the set of input tapes by Tin(M), and the set of
output tapes by Tout(M).

The names of input and output tapes will determine how
ITMs are connected in a system of ITMs: If an ITM sends a
message on an output tape named c, then only (a copy of) an
ITM with an input tape named c can receive this message.
We will use input tapes with attribute enriching (enriching
input tapes, for short) to bound both the length of the output
that may be produced by an ITM and the size of its current
configuration.

Tapes named start and decision will serve a particular
purpose. We require that only input tapes can be named
start and only output tapes can be named decision. We will

later use start to provide a system with external input and
to trigger an ITM if no other ITM was triggered. An ITM
is triggered by another ITM if the latter sends a message to
the former. An ITM with an input tape named start will
be called master ITM. On tapes named decision the final
output of a system of ITMs will be written.

An ITM M runs in one of two modes, CheckAddress
or Compute. The mode in which M is supposed to run is
written on the mode tape of M .

Computation. We describe the computation of an ITM
M in mode CheckAddress and Compute, respectively.
Informally speaking, in mode CheckAddress an ITM M
checks whether the incoming message is in fact addressed
to it. Typically, this mode is used for the following pur-
pose: In a system of ITMs there may be several copies of
M (belonging to different parties in a multi-party protocol
or to different copies of a protocol). To address the dif-
ferent copies one can prefix messages with identifiers (for
example, session identifiers (SIDs) and/or party identifiers
(PIDs)). Now, in mode CheckAddress,M checks whether
the incoming message is prefixed with the expected iden-
tifier, and either accepts or rejects that message. This al-
lows to establish an unbounded number of virtual channels
between ITMs. In mode Compute, the ITM actually pro-
cesses an incoming message and possibly writes output on
one of the output tapes, i.e., sends a message to another
ITM. More formally, the computation in the two modes is
defined as follows:

Mode CheckAddress: When M is activated in mode
CheckAddress, it is the case that CheckAddress is writ-
ten on the mode tape ofM , the security parameter η is writ-
ten on the security parameter tape, and one message, say
m, is written on one of the input tapes, say c (the other
input tapes and the output tapes are empty—or otherwise
will be emptied before M starts to run—and the content on
the work tapes represent the current configuration of M).
We require that (i) at the end of the activation M has writ-
ten accept or reject on the address decision tape; accord-
ingly, we write M(CheckAddress, η, c,m) = accept and
M(CheckAddress, η, c,m) = reject, respectively, (ii) the
computation performed by M in this mode is determinis-
tic, i.e., is independent of internal coin tosses, and (iii) the
number of transitions taken in the activation is bounded by
q(n) where q is the polynomial associated with M and n is
the security parameter plus the length of the content of the
input and work tapes at the beginning of the activation.

Mode Compute: To specify the computation in mode
Compute, let l denote the length of the security parameter
plus the accumulated length of all inputs written on enrich-
ing input tapes ofM in mode Compute so far (i.e., the sum
of the lengths of inputs written on enriching input tapes in

the current activation in mode Compute and all previous
activations in mode Compute).

When M is activated in mode Compute, it is the case
that Compute is written on the mode tape of M , the se-
curity parameter η is written on the security parameter tape,
and one message, saym, is written on one of the input tapes,
say c (the other input tapes and the output tapes are empty—
or otherwise will be emptied before M starts to run—and
the content on the work tapes represent the current config-
uration of M). We require that the computation in every
activation of M satisfies the following conditions: (i) Sim-
ilar to other models [4, 7, 10], at the end of the activation,
M has written at most one message on one of its output
tapes (i.e., only one message can be sent to another ITM at
a time), (ii) the number of transitions taken in the activation
is bounded by q(n) where q is the polynomial associated
with M and n is the security parameter tape plus the length
of the content of the input and work tapes at the beginning
of the activation, (iii) the sum of the lengths of all outputs
written on output tapes so far by M (in all activations) is
bounded by q(l), (iv) at the end of the current activation,
the length of the content of the work tapes is bounded by
q(l).

We emphasize that in mode CheckAddress and Compute,
M can not be exhausted: Whenever M is activated in one
of the two modes, M is able to “scan” its complete current
configuration, including the incoming message. Require-
ments (iii) and (iv) in mode Compute bound the length of
the output that can be produced and the size of the internal
configuration. This will be used to guarantee that a system
of ITMs runs in polynomial time. Note that the bounds in
(iii) and (iv) may depend on the length of the input given to
the machine on enriching input tapes. When modeling pro-
tocols, this will enable parties to produce output which is
only polynomially bounded in the security parameter plus
the length of the input received on the I/O interface (see
Section 4 and 7), such as messages to be encrypted, signed,
or transmitted.

Of course, inexhaustible ITMs can simulate exhaustible
ITMs (which might be useful for modeling denial-of-
service attacks) since inexhaustible ITMs can count the
number of steps performed so far and halt if a certain bound
has been reached.

2.2. Systems of ITMs

A system of ITMs can be built according to the following
grammar where M ranges over (descriptions of) ITMs:

S ::= M | (S || S) | !S.

We require that the set of names of input tapes of differ-
ent occurrences of ITMs in a system S are disjoint. This

implies that in S only at most one ITM may be a master
ITM, i.e., may have start as input tape. For example, if
S = M1 ||M2 || !M3, then the above restriction says that
Tin(Mi) ∩ Tin(Mj) = ∅ for every i 6= j.

Intuitively, S1 || S2 stands for the parallel composition of
the systems S1 and S2, and !S stands for the parallel com-
position of an unbounded number of copies of (machines
in) the system S, where the actual number of copies is de-
termined by the environment, i.e., external or internal ma-
chines invoking (machines of) S. Following the common
terminology of process calculus [13, 17], we call ‘! ’ the
bang operator.

We say that an ITM M occurs in the scope of a bang
in S if S contains a subexpression of the form !S ′ such
that M occurs in S ′. It will be clear from the seman-
tics of systems, i.e., the way a system of ITMs runs,
that every system S can equivalently be written as S =
M1 || · · · ||Mk || !M ′1 || · · · || !M ′k′ where the Mi’s and
M ′i ’s are ITMs.

We will mainly be concerned with what we call well-
formed systems. These systems are guaranteed to run in
polynomial time (see Section 2.3) and they satisfy a certain
acyclicity condition in the way ITMs are connected via en-
riching tapes. To define well-formed systems, we associate
a graph with a system.

A system S induces a graph GS which is defined as fol-
lows: The nodes of GS are the ITMs occurring in S. If M1

and M2 are two nodes in GS , then there is an edge from
M1 to M2 in GS if M1 has an output tape c and M2 has
an enriching input tape c. For example, the graph GS of
S = M1 ||M2 || !M3 has three nodes, M1,M2,M3, and
there is an edge from Mi to Mj if Mi has an output tape c
and Mj an enriching input tape c.

Definition 1 We call a system S well-formed if GS is
acyclic and the master ITM (if any) occurring in S is not
in the scope of a bang.

2.3. Running a System

We now define how a system S runs given a security
parameter η and a bit string a as external input. We denote
such systems by S(1η, a).

Informally speaking, in a run of S(1η, a) at every time
only one ITM is active and all other ITMs wait for new in-
put. The active machine may write at most one message
on one of its output tapes, say c. This message is then de-
livered to another ITM (which has an input tape named c).
The previously active machine goes into a wait state and the
receiver of the message is activated, resulting, after some
internal computation, into a new output which is sent to an-
other ITM, and so on. The first ITM to be activated in a
run is the master ITM. It gets a as external input (on tape

start). A run stops if the master ITM, after being activated,
does not produce output or output was written on an output
tape named decision. If a message is sent on an output tape
c but no previously activated ITM is willing to accept the
message, then a new ITM (with input tape named c) might
be created. If this is not possible, the master ITM will be
triggered. More formally, a run of S(1η, a) is defined as
follows:

The current (global) configuration of a system in a run
is described by a tuple (A,P) where A is a sequence of
configurations of ITMs, the sequence of (previously) acti-
vated machines, and P is a system. The ITMs occurring
in P are called passive. (In what follows, we often do
not distinguish between an ITM and its current configura-
tion.) We emphasize that the machines inA are not the ones
that are currently active, i.e., currently performing some
computation—only one of these machines was just active.
The machines in A are rather those machines that were ac-
tive at some point in the run so far. If a message is output
without a machine in A willing to accept this message (this
is tested by running the machines in mode CheckAddress
starting with the first machine in A), it is tested if there is
an ITM in P that would accept the message. If so, this ma-
chine will be copied from P to A. Also, it will be removed
from P if it is not in the scope of a bang, and otherwise, it
will stay in P . The intuition is that there is an unbounded
supply of those ITMs in P that are in the scope of an ITM.

A run ρ of a system S(1η, a) is a sequence of tuples of
the form (A,P). The initial configuration is (A0, P0) where
A0 is the empty sequence—no machine has been activated
yet—, and P0 = S. Roughly speaking, one gets from one
configuration (A,P) to the next configuration (A′, P ′) by
one machine (either among A or a new machine obtained
from P) reading a message from its input tape, thereby up-
dating its current configuration, and possibly writing a mes-
sage on one of its output tapes (which is then read in the
next step by another ITM).

The first step in a run is to read the external input a,
which is provided on tape start. Since initially A0 is
empty, it is checked whether P0 contains a master ITM,
i.e., an ITM with input tape start (recall that the mas-
ter ITM is uniquely determined in S). If this is not the
case, the run stops. Otherwise, if there is a master ITM,
say M , and M accepts a in mode CheckAddress, i.e.,
M(CheckAddress, η, start, a) = accept, then a (writ-
ten on start) is processed by M in mode Compute and M
(more precisely, the current configuration of M) is moved
to A0, and removed from P0 if it is not in the scope of a
bang. If M did not produce output, the run stops. If M pro-
duced output, say m was written on tape c, then in the next
step this output is read by another ITM yielding a successor
configuration.

More precisely, to define a successor configuration

of a configuration, assume that the current configura-
tion is (A,P) where A is the sequence of configurations
M1, . . . ,Mn and P is some system, and that in the previ-
ous step the messagem was written by some machine on an
output tape c. (As explained above, after the first step of the
run, we have that A = M1 where M1 is the current config-
uration of the master ITM and P coincides with P0, except
that possibly the master ITM might have been removed de-
pending on whether it was in the scope of a bang in P .). We
now describe how the successor configuration of (A,P) is
obtained. We distinguish three cases:

1. There exists a machine Mi in A (where i is chosen to
be minimal) with an input tape named c which accepts
m on c, i.e., Mi(CheckAddress, η, c,m) = accept.
Then, Mi is activated in mode Compute to process
the input m on tape c. Now, A is updated with the new
configuration of Mi (note that in this new configura-
tion a new output message may be written on one of
the output tapes); P remains unchanged.

2. No machine in A with an input tape named c accepts
m on tape c. But there is a passive machine M (in P)
with an input tape named c such that c is an enriching
tape of M and M accepts m on tape c. We activate
M in mode Compute to process m on tape c and add
the new configuration of M at the end of A. (This new
configuration may contain a new output message on
one of the output tapes.) If M is not in the scope of a
bang, then M is removed from P .

3. If neither 1. nor 2. is satisfied, the configuration does
not change.

If in one step no output is produced (in 1. by Mi, in 2. by
M), then in the next step the empty input ε is read from
start, i.e., the master ITM is triggered.

A run immediately stops if the master ITM after being
activated has not produced output or some machine wrote
output on a tape named decision—this output is the overall
output of the system.

We emphasize that a copy of an ITM can only be gener-
ated if a message is sent to an ITM via its enriching input
tape (see 2. above). For simulation-based security, this re-
quirement is not an essential restriction, but it is important
to guarantee that well-formed systems run in polynomial
time (see below).

Definition 2 Let p be a polynomial p and ρ be a run of
S(1η, a). Then, ρ is p-bounded if the accumulated length
of all outputs written on output tapes during the run is
≤ p(η + |a|). A system S is p-bounded if for all security
parameters η and external inputs a all runs of S(1η, a) are
p-bounded. A system S is (polynomially) bounded if there
exists a polynomial p such that S is p-bounded.

We can prove that the length of every run of a bounded sys-
tem S(1η, a), the number of activated ITMs in such a run,
the size of the configurations in a run, and the overall num-
ber of transitions taken by ITMs in a run of S(1η, a) can be
bounded by a polynomial in η+ |a|. As a result one obtains:

Proposition 3 Every bounded system can be simulated by
a single ITM.

We call a system S almost p-bounded if the probability
Prob[run of S(1η, a) is not p-bounded] as a function of η
and a is negligible. For such systems, Proposition 3 also
holds, except that a simulated run may deviate from a run in
the original system with negligible probability.

We note that not all systems are (almost) bounded. For
example, consider the system S = M1 ||M2 where M1 and
M2 are connected via enriching tapes in both directions and
one of the two machines is the master ITM. Then, M1 and
M2 could send messages back and forth forever. Another
example is the system S =!M where M is a master ITM.
If M in mode CheckAddress only accepts a message in
its first activation and in mode Compute always produces
some fixed output, then after every activation of M a new
copy of M will be generated and the run of the system does
not terminate.

Note that the systems in the examples are not well-
formed. We can prove:

Theorem 4 Well-formed systems are bounded.

We note that if new ITMs could be generated when in-
voked not only via enriching but also via consuming in-
put tapes, then well-formed systems would not necessar-
ily be bounded (see [16] for an example). If, however, we
restricted ourselves to the simpler case where the number
of copies of ITMs is bounded by a fixed polynomial in the
security parameter (rather than determined by invoking ma-
chines), Theorem 4 would still hold. All other results (with
appropriate reformulations) proved in this paper would also
carry over to this simpler setting.

For bounded systems S, we denote by

Prob[S(1η, a) ; 1]

the probability that a run of S(1η, a) returns 1, i.e., 1 is writ-
ten on decision. This definition can be extended to almost
bounded systems. Basically, one only considers bounded
runs and ignores all others.

2.4. Further Notation and Terminology

To state properties of systems and to apply our general
computational model to simulation-based security, we now
introduce some more notation and terminology.

The set of tapes of a system S is the set of all tapes of
ITMs occurring in S. We call a tape of S internal if it occurs

both as an input tape of an ITM in S and an output tape of
(another) ITM in S . Otherwise, a tape is called external. We
will distinguish between the I/O- and network interface of
a system. We therfore partition the set of external tapes of
S into two types: network and I/O tapes. A network (I/O)
tape can be an input or output tape depending on whether it
only occurs as an input or an output tape in S.

We will write P |Q instead of P ||Q to denote the paral-
lel composition of P and Q where the set of internal tapes
of P and Q are disjoint (this can always be achieved by re-
naming internal tapes). The intuition is thatP andQ are dif-
ferent systems (e.g., a protocol and its environment) which
communicate via their external tapes; they should not inter-
fere on their internal tapes.

Two systems P and Q are compatible if they have the
same set of external tapes. They are I/O-compatible if they
have the same set of I/O tapes and disjoint sets of network
tapes. A systemQ is connectible for P if each common ex-
ternal tape of P and Q has the same type in both (network
or I/O) and complementary directions (input or output). A
system A is adversarially connectible for P if A is con-
nectible for P and the set of external tapes of A is disjoint
from the set of I/O tapes of P . Thus, an adversary can only
connect on the network tapes of a protocol. Similarly, E is
environmentally connectible for P if it can only connect on
the I/O tapes of P . Given a set B of systems, we denote
by ConB(Q) (AdvB(Q)/EnvB(Q)) the set of all systems in
B that are (adversarially/environmentally) connectible for
Q. We denote by SimPB(Q) the set of all systems S in B
such that S is adversarially connectible for Q and S |Q is
compatible with P .

Two almost bounded systems P and Q are equivalent
or indistinguishable (P ≡ Q) iff the function f(1η, a) =
|Prob[P(1η, a) ; 1] − Prob[Q(1η, a) ; 1]| is negligible
(in the sense defined at the end of Section 1).

We will later consider what we call a dummy ITM D
which simply forwards messages between entities: The
dummy ITM has for all of its input tapes a corresponding
output tape and all input tapes are enriching. The concrete
set of input and output tapes that D has depends on the en-
tities between which D is put. The dummy ITM accepts
all messages on input tapes in mode CheckAddress and in
mode Compute it simply copies a message received on an
input tape to the corresponding output tape. Note that this
is possible since all input tapes are enriching. We also em-
phasize that, except for the set of input and output tapes, D
does not depend on the entities between which it is put.

3. Properties of Systems

In this section, we summarize some useful properties of
systems.

The following lemma says that the dummy ITM can be

plugged between two systems without changing the behav-
ior of the overall system. In particular, using this dummy
ITM the FORWARDER property mentioned in the intro-
duction can be satisfied.

Lemma 5 Let P and Q be two systems such that P is
connectible for Q and P |Q is (almost) bounded. Then,
we have that the system P |D |Q is (almost) bounded and
P |Q ≡ P |D |Q′, where D is the dummy ITM (which only
depends on the tapes connecting P and Q, not on the sys-
tems themselves) and Q′ is obtained from Q by renaming
some tapes according to D.

We now show that every well-formed system within a more
complex system can be replaced by a single ITM. This is the
core of the joint state theorem as stated in [9, 7]. In what
follows, we say that an input tape c is enriching in a system
Q if there is an ITM M in Q such that c is an enriching
input tape of M .

Lemma 6 LetQ1 andQ2 be well-formed systems such that
Q1 is connectible for Q2 and Q1 | Q2 is (almost) bounded.
Then, there exists an ITM M compatible with Q2 such that
a tape c of M is enriching iff c is enriching in Q2 and
Q1 | Q2 ≡ Q1 |M . Moreover, the construction of M only
depends onQ2 and in mode CheckAddressM accepts ev-
ery message.

The following lemma shows how the parallel composition
of systems can be combined into one system with only con-
suming external tapes. This is used for moving entities
(such as adversarial systems) into an environmental system.

Lemma 7 Let Q1,Q2,Q3 be systems such that Q3 does
not contain a master ITM, Q2 is connectible for Q3, Q1

is connectible forQ2 | Q3, andQ1 | Q2 | Q3 is well-formed.
Then, there exists a systemQ compatible withQ1 | Q2 such
that Q1 | Q2 | Q3 ≡ Q |Q3 and all external tapes of Q are
consuming, except for start, which may be enriching (if it
occurs in Q).

If in the above lemma, every external tape ofQ1 | Q2 is con-
suming, then we can simply set Q = Q1 | Q2. Otherwise,
Q is an ITM which simulates Q1 | Q2 (in the environment
Q3). In what follows, we denote Q as constructed in the
proof of Lemma 7 by [Q1 | Q2]Q3 . The next lemma will al-
low us to “open” [Q1 | Q2]Q3 , i.e., replace [Q1 | Q2]Q3 by
Q1 | Q2, in a context different from Q3.

Lemma 8 LetQ1 andQ2 be two systems which do not con-
tain a master ITM, are well-formed and compatible, and
satisfy the following condition: E |Q1 ≡ E |Q2 for ev-
ery E ∈ ConE(Q1). (Note that E |Q1 and E |Q2 are
well-formed.) Then for every system E1 connectible for
Q1 and every system E2 connectible for E1 | Q1 such that
E2 | E1 | Q1 is well-formed, we have that [E2 | E1]Q1 | Q2 ≡
E2 | E1 | Q2 and E2 | E1 | Q2 is almost bounded.

4. Notions of Simulation-Based Security

In this section, we define the notions of simulation-based
security mentioned in the introduction.

We first need to define protocol, adversarial, and envi-
ronmental systems to specify the corresponding classes of
entities. Here we define what we call IO-enriching proto-
col systems (or simply protocol systems) and IO-network-
enriching adversarial systems (or simply adversarial sys-
tems). In this and the following two sections, we will study
simulation-based security w.r.t. these classes of protocol
and adversarial systems. In Section 7, different classes of
protocol and adversarial systems will be considered. The
definition of the environmental systems will stay the same
in both settings.

An (IO-enriching) protocol system P is a well-formed
system such that i) no tape in P is named start or decision,
ii) all network tapes of P are consuming (I/O-tapes may be
enriching), and iii) for every ITM M occurring in P such
that M is not in the scope of a bang, we require that M
accepts every incoming message in mode CheckAddress.
We denote the set of protocol systems by P. The motiva-
tion behind condition iii) is that if M does not occur in the
scope of a bang, then in every run of P (in some environ-
ment) there will be at most one copy of M . Hence, there is
no reason to address different copies of M , and therefore,
in mode CheckAddress, M should accept every incoming
message. This condition will be used in the proof of the
composition theorem (Theorem 13 and Corollary 14).

An (IO-network-enriching) adversarial system A is a
well-formed system such that no tape in A is named start
or decision. We denote the set of adversarial systems by A
or by S. Note that we allow all external tapes of A to be
enriching.

An environmental system E is a well-formed system such
that all external tapes are consuming, except for start which
may be enriching. We denote the set of environmental sys-
tems by E. Note that E may contain start and decision. In
particular, E may contain a master ITM (while protocol and
adversarial systems may not). This choice is justified by re-
sults shown in [10] and corresponds to the choice made in
other models (see, e.g., [5, 7]).

The security notions can now be defined in a concise
and simple way. Note that from the definition of the dif-
ferent entities (in particular, the restrictions regarding what
tapes may be enriching), it follows easily that all systems in
the following definition, except for E |A | S |F , are well-
formed, and hence, bounded.

Definition 9 Let P and F be I/O-compatible protocol sys-
tems, the real and ideal protocol, respectively.

Strong Simulatability (SS). P ≤SS F iff
∃ S∈SimPS (F) ∀ E∈ConE(P): E | P ≡ E | S |F .

Black-box Simulatability (BB). P ≤BB F iff
∃S∈ SimPS (F) ∀A∈AdvA(P) ∀E∈EnvE(A |P):
E |A |P ≡ E |A | S |F and E |A | S |F is almost
bounded.

Universal Simulatability/Composability (UC). P≤UCF
iff ∀A∈AdvA(P) ∃I∈SimA |PS (F) ∀E∈EnvE(A |P):
E |A |P ≡ E | I | F .

Dummy Version of UC (UCdummy). P ≤UCdum F iff
∃I∈SimD |PS (F) ∀E∈EnvE(D |P): E |D |P ≡
E | I | F .

Reactive Simulatability (RS). P ≤RS F iff
∀A∈AdvA(P) ∀E∈EnvE(A |P) ∃I∈SimA |PS (F):
E |A |P ≡ E | I | F .

Using the property of dummy ITMs (Lemma 5), it is easy
to see that all security notions introduced above are reflex-
ive (modulo renaming of tapes), i.e., every protocol can be
simulated by itself. Also, unlike in previous models, the
above security notions do not exhibit the unintuitive proper-
ties anymore mentioned in the introduction: a real protocol
in fact realizes almost identical ideal protocols. (Recall the
example from the introduction where an ideal protocol co-
incides with the ideal protocol except that the ideal protocol
outputs the bit-wise complement of messages the real pro-
tocol outputs on the network interface.)

5. Relationships Between Notions of Simu-
lation-Based Security

We study the relationships between the different security
notions. In a nutshell, we have two classes of uncondition-
ally equivalent notions: i) strong, black-box, and dummy
universal simulatability, and ii) universal and reactive simu-
latability. All notions are equivalent if the ideal protocol is
what we call generous.

To define generous protocols, we need the following no-
tion: Given a security parameter η and a polynomial p, we
say that a non-negative integer n is polynomially at least as
big as a non-negative integer i w.r.t. η and p if p(η+n) ≥ i.

Now, roughly speaking, an (ideal) protocol is generous
if the length of the output it writes on network tapes is poly-
nomially at least as big as the length of the input it receives
on I/O tapes. In other words, a generous protocol gives
at least as much computation power to a simulator as it re-
ceives on its I/O interface. If this property is not satisfied
for a given ideal protocol, it is often possible to have the
ideal protocol output dummy messages without changing
the desired security properties of the protocol (see, e.g., the
functionality for signatures in [6]). If the ideal protocols
are formulated in a “non-interactive way”, i.e., the simula-
tor hardly interacts with the functionality (see, e.g., the new

formulation of signatures and encryption in [7]), then in or-
der to make these ideal protocols generous one could, for
example, modify the ideal protocol in such a way that it ini-
tially expects to receive the overall length of messages it is
supposed to handle on the I/O interface (per party) and have
the ideal protocol forward this information to the simulator
in an initial phase. Such an ideal protocol would still be
more flexible than an ideal protocol with an a priori bound
on the number and length of messages it can handle.

Formally, generous protocols are defined as follows:

Definition 10 We call a protocol systemF generous if there
exists a polynomial p such that for every E ∈ ConE(F), η,
a, and in every run of (E |F)(η, a), whenever F sends a
message on an external tape, then the lengths of the output
written so far byF on network tapes is polynomially at least
as big as the length of the input received so far by F on
enriching I/O tapes w.r.t. η and p.

The following theorem summarizes the relationships be-
tween the security notions.

Theorem 11 LetP andF be I/O compatible protocol sys-
tems. We have that:

1. P ≤SS F iff P ≤BB F iff P ≤UCdum F .

2. P ≤UC F iff P ≤RS F .

3. If F is generous, then: P ≤SS F iff P ≤BB F iff
P ≤UCdum F iff P ≤UC F iff P ≤RS F .

Most of the above equivalences can be proved by equa-
tional reasoning using the equational principles established
in Section 3. The flavor of these proofs is similar to the
proof of the composition theorem for a constant number of
copies of protocols (see the proof of Theorem 12). We note
that for the equivalence of universal and reactive simulata-
bility we use that the environment gets auxiliary input, i.e.,
is non-uniform. As shown in [15], the two notions are not
equivalent in the uniform case; this is also true if, in case of
reactive simulatability, the auxiliary input provided to the
environment is chosen before the ideal adversary.

6. Composition Theorems

We first state a composition theorem for composing a
constant number of protocols and present the proof, which
is based on the equational principles established in Sec-
tion 5. We then extend this theorem to an unbounded num-
ber of copies of protocols.

Theorem 12 Let P1, . . . ,Pk,F1, . . . ,Fk be protocol sys-
tems such that P1 | · · · | Pk and F1 | · · · | Fk are well-
formed and for every j the following conditions are satis-
fied:

1. Pj is environmentally connectible for Pj+1 | · · · | Pk.

2. Fj is environmentally connectible for Fj+1 | · · · | Fk.

3. Pj and Fj are I/O-compatible.

4. Pj ≤SS Fj .

Then, P1 | · · · | Pk ≤SS F1 | · · · | Fk.

PROOF. We prove the theorem for k = 2. For k > 2 the
statement follows by induction on k.

Let E ∈ ConE(P1 | P2). Since P1 ≤SS F1 and
P2 ≤SS F2 we have

1. ∃ S1∈SimP1
S (F1) ∀ E ′∈ConE(P1): E ′ | P1 ≡

E ′ | S1 | F1, and

2. ∃ S2∈SimP2
S (F2) ∀ E ′∈ConE(P2): E ′ | P2 ≡

E ′ | S2 | F2.

Define S = S1 | S2. Because the set of network tapes
of S1 and S2 are disjoint, it easily follows that S is well-
formed; more precisely, S ∈ SimP1 | P2

S (F1 | F2). Now, we
obtain

E | P2 | P1 ≡ [E | P2]P1 | P1 (Lemma 7)
≡ [E | P2]P1 | S1 | F1 (1.)
≡ E |P2 | S1 | F1 (1., Lemma 8)
≡ E | S1 | F1 | P2

≡ [E | S1 | F1]P2 | P2 (Lemma 7)
≡ [E | S1 | F1]P2 | S2 | F2 (2.)
≡ E | S1 | F1 | S2 | F2 (2., Lemma 8)
≡ E | S1 | S2 | F1 | F2

≡ E | S |F1 | F2 (Definition of S)

2

Next we present a general composition theorem for com-
posing a polynomial number of copies of protocols where
the polynomial is determined by the environment. To ad-
dress the different copies of a protocol, we use the mode
CheckAddress of ITMs combined with session identifiers
(SIDs)

More precisely, we turn a system Q into its session ver-
sionQ, which allows us to address different copies of (ITMs
occurring in) Q by a particular SID. We first define the ses-
sion version of a single ITM.

The session versionM of an ITMM is obtained fromM
as follows: Basically, M simulates M except that all mes-
sages received have to be prefixed by a particular SID (i.e.,
in mode CheckAddress the ITM M will reject all mes-
sages not prefixed by the particular SID) and all messages
sent out are prefixed by this SID. The SID M will use is
the one with which M is first activated (hence, in the first
activation, M will accept the incoming message in mode
CheckAddress and then store the SID).

Now, the session version Q of a system Q is obtained
from Q by replacing every ITM occurring in Q by its ses-
sion version.

The following theorem says that if a real protocol se-
curely realizes an ideal protocol, then an unbounded num-
ber of copies of the real protocol securely realize an un-
bounded number of copies of ideal protocol.

Theorem 13 Let P,F be protocol systems such that P and
F are I/O-compatible and P ≤SS F . Then, !P ≤SS !F .

We remark that in the above composition theorem, the ses-
sion versions and the SIDs are simply used as a means to
address certain (ITMs belonging to) copies of protocols. A
protocol itself is not and does not need to be aware of the
SID used to address ITMs belonging to it, and the specific
addressing mechanism used.

As an immediate consequence of Theorem 12 and 13 we
obtain the following corollary.

Corollary 14 Let P1,P2,F1,F2 be protocol systems such
that the systems P1 | !P2 and F1 | !F2 are well-formed
and the following conditions are satisfied for j ∈ {1, 2}:

1. P1 is environmentally connectible for !P2.

2. F1 is environmentally connectible for !F2.

3. Pj and Fj are I/O compatible.

4. Pj ≤SS Fj .

Then, P1 | !P2 ≤SS F1 | !F2. If P1 and F1 coincide up
to the names of the network tapes (to ensure that P1 and
F1 are I/O compatible), we do not need to require 4. for
j = 1.

In this corollary, for the case that P1 and F1 coincide up to
the names of the network tapes, we use that P1 ≤SS F1:
one can choose the simulator to be the dummy ITM. In this
setting, the corollary says that if (an unbounded number of
copies of) an ideal protocol F2 is used as a component in a
more complex systemP1 (F1), then it can be replaced by its
realization P2. Clearly, by iteratively applying Theorem 12
and 13, one can construct much more complex systems than
those described in the above corollary.

Using the equivalences between the security notions
stated in Section 5, the above composition theorems imme-
diately carry over to the other security notions considered in
this paper. (Note that if the ideal protocols F , F1, . . . ,Fk
are generous, then so are !F and F1 | · · · | Fk.)

7. IO-Network-Enriching Protocol Systems

In this section, we briefly discuss how our general com-
putational model can be applied to a different class of proto-
col systems, called IO-network-enriching protocol systems.

In IO-network-enriching protocol systems not only I/O
tapes but also network tapes may be enriching. The class
of IO-network-enriching protocol systems is quite similar
in terms of expressivity to the class of polynomially shaped
weakly polynomial collections defined in [14].

The security notions universal and reactive simulatability
for IO-network-enriching protocol systems can be defined
just as in the case of IO-enriching protocol systems (see
Definition 9). However, to ensure that the systems E |A |P
and E | I | P are well-formed, we need to restrict the class
of adversarial systems (the definition of environmental sys-
tems remains unchanged). Note that with the current defini-
tion of (IO-network-enriching) adversarial systems the sys-
tems A |P and I |F might not be well-formed anymore if
P andF may be IO-network-enriching protocol systems: A
(I) may connect to P (F) by enriching network tapes, and
vice versa. One therefore has to restrict adversarial systems
to be IO-enriching, i.e., network tapes have to be consum-
ing.

As in the case of IO-enriching protocols, it is not hard to
show that the notions universal and reactive simulatability
as defined above are equivalent (where, as in the case of
IO-enriching protocol systems, we use that the environment
is non-uniform). Also, a composition theorem similar to
Theorem 12 can be proved.

Comparing IO-Network-Enriching and IO-Enriching
Protocol Systems. The obvious advantage of IO-
network-enriching protocol systems compared to IO-
enriching protocol systems is that the runtime of such sys-
tems may depend on the length of the input received on net-
work tapes and I/O tapes (rather than only on I/O tapes).
Hence, IO-network-enriching protocol systems can forward
arbitrarily long messages from the adversary. However, this
can be mimiced by IO-enriching protocol systems since ad-
ditional resources for forwarding messages coming from
network tapes can be supplied by the environment. Hence,
the additional feature of IO-network-enriching protocol sys-
tems does not seem to be essential. In fact, IO-enriching
protocol systems and the security notions defined for them
in this paper appear to be the more favorable and useful set-
ting for several reasons:

As demonstrated in this paper, IO-enriching protocol
systems allow for natural and simple definitions of all five
security notions: strong, black-box, dummy universal, uni-
versal, and reactive simulatability. It remains to be investi-
gated whether for the former three notions—which are often
prefered over universal and reactive simulatability as they
typically greatly simply proofs—equally natural definitions
exist also for IO-network-enriching protocol systems. We
note that in the model by Hofheinz et al. [14] dummy uni-
versal simulatability can be formulated for a class of pro-
tocols similar to IO-network-enriching protocols. However,

the definitions are much more complex than those presented
here for IO-enriching protocol systems. (Strong and black-
box simulatability have not been defined in their setting.)

The notion of universal simulatability for IO-network-
enriching protocols as defined here is problematic if the
ideal adversary is invoked often by the ideal protocol (e.g.,
to supply ciphertexts) since the ideal adversary could run
out of resources. (Recall that the tapes with which the ideal
adversary connects to the ideal protocol are consuming.)
Hence, certain natural ideal protocols are not realizable. In
the setting for IO-enriching protocols, where all tapes of the
ideal adversary may be enriching, such problems do not oc-
cur.

8. Conclusion

We have proposed an expressive general computational
model for systems containing an unbounded number of in-
exhaustible ITMs and involving a generic addressing mech-
anism for copies of ITMs. This model extends and sim-
plifies certain aspects of previous models. Based on this
model, we demonstrated that several security notions for
different classes of protocol systems can be formulated in
a simple and uniform way and that, unlike in previous mod-
els, these security notions exhibit intuitive properties. We
also proved general composition theorems. Many of the
proofs could be carried out by mere equational reasoning
based on a few equational principles on systems of ITMs.

Almost all models for simulation-based security (includ-
ing our model) are sequential in the sense that at any time
in a run at most one machine is active (an exception is the
model in [18]). While, in order to concentrate on crypto-
graphic issues, this is a good abstraction of distributed sys-
tems, the computation in real distributed systems is concur-
rent, i.e., many machines can be active at the same time. It
would be interesting to see in how far the model presented
here, including the security notions considered, could be ex-
tended to a real concurrent model.

Acknowledgments. We would like to thank Ran Canetti
for many interesting discussions on models for simulation-
based security. We also thank Michael Backes, Anupam
Datta, John Mitchell, and the anonymous reviewers for
helpful discussions and comments.

References

[1] M. Backes and D. Hofheinz. How to Break and Repair a
Universally Composable Signature Functionality. In ISC
2004, volume 3225 of Lecture Notes in Computer Science,
pages 61–72. Springer, 2004.

[2] M. Backes, B. Pfitzmann, and M. Waidner. A composable
cryptographic library with nested operations. In CCS 2003,
pages 220–230. ACM, 2003.

[3] M. Backes, B. Pfitzmann, and M. Waidner. A General Com-
position Theorem for Secure Reactive Systems. In TCC
2004, volume 2951 of Lecture Notes in Computer Science,
pages 336–354. Springer, 2004.

[4] M. Backes, B. Pfitzmann, and M. Waidner. Secure Asyn-
chronous Reactive Systems. Technical Report 082, Cryptol-
ogy ePrint Archive, 2004.

[5] R. Canetti. Universally Composable Security: A New
Paradigm for Cryptographic Protocols. In FOCS 2001,
pages 136–145. IEEE Computer Society, 2001.

[6] R. Canetti. Universally Composable Signature, Certifica-
tion, and Authentication. In CSFW 2004, pages 219–233.
IEEE Computer Society, 2004.

[7] R. Canetti. Universally Composable Security: A New
Paradigm for Cryptographic Protocols. Technical report,
Cryptology ePrint Archive, December 2005. Online avail-
able at http://eprint.iacr.org/2000/067.ps.

[8] R. Canetti and H. Krawczyk. Universally Composable No-
tions of Key Exchange and Secure Channels. In EURO-
CRYPT 2002, volume 2332 of Lecture Notes in Computer
Science, pages 337–351. Springer, 2002.

[9] R. Canetti and T. Rabin. Universal Composition with Joint
State. In CRYPTO 2003, volume 2729 of Lecture Notes in
Computer Science, pages 265–281. Springer, 2003.

[10] A. Datta, R. Küsters, J. Mitchell, and A. Ramanathan. On
the Relationships Between Notions of Simulation-Based Se-
curity. In TCC 2005, volume 3378 of Lecture Notes in Com-
puter Science, pages 476–494. Springer-Verlag, 2005.

[11] A. Datta, R. Küsters, J. Mitchell, A. Ramanathan, and
V. Shmatikov. Unifying Equivalence-Based Definitions of
Protocol Security. In WITS 2004, 2004.

[12] O. Goldreich. Foundations of Cryptography, volume 1.
Cambridge Press, 2001.

[13] C. Hoare. Communicating Sequential Processes. Prentice-
Hall, 1985.

[14] D. Hofheinz, J. Müller-Quade, and D. Unruh. Polynomial
Runtime in Simulatability Definitions. In CSFW 2005, pages
156–169. IEEE Computer Society, 2005.

[15] D. Hofheinz and D. Unruh. Comparing two notions of sim-
ulatability. In TCC 2005, volume 3378 of Lecture Notes in
Computer Science, pages 86–103. Springer-Verlag, 2005.

[16] R. Küsters. Simulation-Based Security with Inexhaus-
tible Interactive Turing Machines. To appear in the
Cryptology ePrint Archive, 2006. Also available from
http://www.ti.informatik.uni-kiel.de/˜kuesters/.

[17] R. Milner. A Calculus of Communicating Systems. Springer-
Verlag, 1980.

[18] J. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague. A
probabilistic polynomial-time calculus for analysis of cryp-
tographic protocols (preliminary report). In 17th Annual
Conference on the Mathematical Foundations of Program-
ming Semantics, 2001.

[19] B. Pfitzmann and M. Waidner. A Model for Asynchronous
Reactive Systems and its Application to Secure Message
Transmission. In IEEE Symposium on Security and Privacy,
pages 184–201. IEEE Computer Society Press, 2001.

