
ZK-SNARKs for Ballot Validity:
A Feasibility Study

Nicolas Huber(B) , Ralf Küsters , Julian Liedtke , and Daniel Rausch

University of Stuttgart, Stuttgart, Germany

firstname.secondname@sec.uni-stuttgart.de

Abstract. Electronic voting (e-voting) systems have become more
prevalent in recent years, but security concerns have also increased,
especially regarding the privacy and verifiability of votes. As an essen-
tial ingredient for constructing secure e-voting systems, designers often
employ zero-knowledge proofs (ZKPs), allowing voters to prove their
votes are valid without revealing them. Invalid votes can then be dis-
carded to protect verifiability without compromising the privacy of valid
votes. General purpose zero-knowledge proofs (GPZKPs) such as ZK-
SNARKs can be used to prove arbitrary statements, including ballot
validity. While a specialized ZKP that is constructed only for a specific
election type/voting method, ballot format, and encryption/commitment
scheme can be more efficient than a GPZKP, the flexibility offered by
GPZKPs would allow for quickly constructing e-voting systems for new
voting methods and new ballot formats. So far, however, the viability of
GPZKPs for showing ballot validity for various ballot formats, in par-
ticular, whether and in how far they are practical for voters to compute,
has only recently been investigated for ballots that are computed as
Pedersen vector commitments in an ACM CCS 2022 paper by Huber
et al. Here, we continue this line of research by performing a feasibility
study of GPZKPs for the more common case of ballots encrypted via
Exponential ElGamal encryption. Specifically, building on the work by
Huber et al., we describe how the Groth16 ZK-SNARK can be instan-
tiated to show ballot validity for arbitrary election types and ballot for-
mats encrypted via Exponential ElGamal. As our main contribution, we
implement, benchmark, and compare several such instances for a wide
range of voting methods and ballot formats. Our benchmarks not only
establish a basis for protocol designers to make an educated choice for or
against such a GPZKP, but also show that GPZKPs are actually viable
for showing ballot validity in voting systems using Exponential ElGamal.

1 Introduction

A prominent approach for constructing secure e-voting systems is the homomor-
phic aggregation of ballots. In such systems, a vote/ballot is a vector of numbers,
with one number per possible choice in the election. Typically, a choice corre-
sponds to a candidate that the voter can give one or several votes/points, so

c© The Author(s) 2025
D. Duenas-Cid et al. (Eds.): E-Vote-ID 2024, LNCS 15014, pp. 107–123, 2025.
https://doi.org/10.1007/978-3-031-72244-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72244-8_7&domain=pdf
http://orcid.org/0000-0001-6905-3571
http://orcid.org/0000-0002-9071-9312
http://orcid.org/0000-0002-8289-4970
http://orcid.org/0000-0002-1901-3659
https://doi.org/10.1007/978-3-031-72244-8_7

108 N. Huber et al.

in an election with ncand candidates, a vote would be a vector of length ncand.
An additively homomorphic encryption or commitment scheme is then used
to hide the vote. This scheme is typically applied component-wise, i.e., a vote
vector of length ncand results in an encrypted ballot1 consisting of ncand many
ciphertexts/commitments. When using commitment schemes for hiding votes,
voters have to send (shares of) an (encrypted) opening of their commitment.
Currently, Exponential ElGamal (EEG) encryption is the most relevant option
in practice [2,11]. To tally the election, all encrypted ballots are first homomor-
phically aggregated (component-wise) to obtain a single aggregated encrypted
ballot that hides individual votes. This aggregated ballot is decrypted to obtain
the aggregated tally consisting of a list of the total votes/points for each candi-
date.

Proofs for Ballot Validity. For the above approach of aggregation-based e-
voting to be reasonable, one needs to ensure that all encrypted ballots used for
aggregation are well-formed, i.e., that they contain a valid vote. The standard
approach is to have voters use zero-knowledge proofs (ZKPs) to prove ballot
validity during ballot submission.

A ZKP for ballot validity proves that the vote contained in an encrypted
ballot belongs to the set of votes permitted by the current election. We call this
set a choice space in the following. For instance, consider the straightforward
case of single-vote elections, where a voter can cast a single vote for one out of
ncand candidates. A corresponding choice space can be defined as follows, where
vi denotes the number of votes given to candidate i in a ballot:

Csingle :=
{

(v1, . . . , vncand
)
∣∣∣vi ∈ {0, 1},

ncand∑
i=1

vi ∈ {0, 1}
}

.

A voter is supposed to choose her ballot b as a vector from this set, i.e., b ∈ Csingle.
The voter then computes an encrypted ballot c from b and submits c alongside
a ZKP which shows that c was obtained by encrypting a ballot b ∈ Csingle.
Ballots without valid ZKP are discarded by the voting system, ensuring that
even malicious voters can contribute only one vote for one candidate.
State of the Art. A ZKP for ballot validity depends on the underlying choice
space and the encryption/commitment scheme used to obtain c. Therefore, ZKPs
for ballot validity have usually been designed and proven secure only for specific
combinations of choice spaces and (classes of) encryption/commitment schemes.

For example, Helios 2.0 [2] and Belenios [11,18] support Csingle with
component-wise EEG encryption. That is, c is a vector of EEG ciphertexts
ci, each encrypting one vi. The ballot validity ZKPs in Helios and Belenios are
based on disjunctive Chaum-Pedersen proofs [9,13], which show that an EEG
ciphertext encrypts a value from a specific set S. Concretely, for Csingle one con-
siders the set S = {0, 1}. Voters then compute a full proof for ballot validity by
combining (i) one proof for each ciphertext ci showing that the corresponding

1 For simplicity of presentation, we will often only say “encrypted ballot” to refer to
both cases, i.e., encryption or commitments.

ZK-SNARKs for Ballot Validity: A Feasibility Study 109

plaintext vi is from S, and (ii) one proof for the homomorphic sum of all ncand

ciphertexts ci showing that the decryption lies in S. Generalizing single-vote, one
can also use disjunctive Chaum-Pedersen proofs for showing ballot validity for
multi-vote elections, where voters can assign up to nmax votes to candidates of
their choice (up to a limit t for any individual candidate)[2,11,18]. However, for
larger values of nmax (and t) this quickly becomes too inefficient. In such cases,
one can replace disjunctive Chaum-Pedersen proofs with range-proofs [31].

Designing efficient ZKPs for ballot validity becomes an increasingly diffi-
cult task for more complex voting methods and ballot formats. As an example,
consider the class of Borda count election methods, where points are assigned
to candidates based on a ranking chosen by the voter. Such a ranking creates
dependencies between points assigned to different candidates which cannot be
captured by the above approach but requires different ZKPs. The ZKPs for
Borda Ballots proposed in [21] only work when ties between candidates are not
allowed. The proofs in [27] work for Borda ballots that allow ties at the last
place. Both constructions are based on arguments for the correctness of a shuf-
fle. To the best of our knowledge, the only work that has considered ZKPs for
Borda ballots with ties at arbitrary positions is the Kryvos system [25], which
uses GPZKPs (see below).

Condorcet methods are another class of elections that use very complex choice
spaces and thus require advanced validity proofs. These ranked voting methods
aim to determine a Condorcet winner who would win against every other candi-
date in a direct comparison. In [12], two ZKPs for validity of Condorcet ballots
have been described. Both ZKPs are for ballots that are encrypted using EEG,
but they differ in the ballot formats that are used to encode a vote.

Altogether, while efficient ZKPs for proving ballot validity exist for many
election types, they are generally designed only for a specific voting method,
ballot format/choice space, and (class of) encryption or commitment scheme.
Designing an e-voting system for new types of elections with new ballot formats,
therefore, usually entails constructing and proving the security of suitable ZKPs.
Using GPZKPs for Ballot Validity. A promising alternative which we
investigate in this work are general purpose zero-knowledge proofs (GPZKPs).
GPZKPs can, in theory, show arbitrary statements, including ballot validity
for any ballot and election. The main task left for a protocol designer using a
GPZKP is to propose an optimized circuit for computing the statement that
should be proven so that the resulting GPZKP instance is sufficiently efficient.
Thus, GPZKPs have the potential to simplify the process of designing electronic
election systems, enable faster prototyping if a new type of election with a differ-
ent ballot format is implemented, and allow for supporting ballot formats that
are so far out of reach of current specialized ZKPs which are constructed for
showing a specific statement.

While GPZKPs such as ZK-SNARKs (zero-knowledge succinct non-interac-
tive arguments of knowledge, called just SNARKs in the following) have recently
gained traction in several areas such as blockchains [24], they have so far mostly
gone unnoticed in the area of e-voting. In [15], techniques based on inner product

110 N. Huber et al.

arguments (which are commonly used for constructing GPZKPs [8]) are used for
proving that a vector of ciphertexts encrypts bits. This can be used for proving
validity of, e.g., single-vote ballots and can drastically outperform the Chaum-
Pedersen-based approach we described above. The first (and so far the only) work
that considered GPZKPs for more complex relations in encrypted ballots is the
Kryvos system [25]. While not their primary focus, as a side result the authors
of [25] were able to show that and how the state-of-the-art Groth16 SNARK [22]
can be instantiated to obtain practical ballot validity proofs for a wide variety
of common election types as long as encrypted ballots are computed by using
Pedersen Vector Commitments (PVCs). Among others, and as mentioned above,
using this GPZKP, they obtained the first (practical) ZKP for showing validity
of Borda ballots that allow ties at arbitrary positions. However, the focus of the
Kryvos system is the design of a publicly tally-hiding system rather than the
design of ballot validity proofs. Hence, the authors did not further investigate
the viability of GPZKPs for ballot validity beyond the uncommon case of PVCs.

It remains unclear if GPZKPs for ballot validity are practical beyond these
specific settings, notably for complex ballots in the standard case of (component-
wise) EEG. We note that specialized ZKPs, which have been constructed for
and are tailored towards a specific election system, voting method, ballot for-
mat/choice space, and encryption/commitment scheme, can, of course, be more
optimized and hence more efficient than GPZKPs. The advantage of GPZKPs
lies in their generality, which, if shown to be practical in at least some settings,
would open up a simple and generic approach to building new e-voting systems.
Contributions. In this work we perform a feasibility study that investigates
viability and limits of GPZKPs for ballot validity for many ballot formats in
commonly used EEG-based e-voting systems. On a technical level, we build on
the techniques for instantiating the Groth16 SNARK established in Kryvos [25]
and explain how they can, in principle, be used for proving ballot validity when
ballots are encrypted component-wise via EEG. As part of this, we also provide a
detailed description of their techniques for proving ballot validity, which had only
been briefly sketched in [25] with most information left to their implementation.

As the main contribution of our feasibility study, we have implemented sev-
eral circuits and benchmarked and compared the corresponding Groth16 SNARK
instances for showing ballot validity for EEG encryption for a wide range of vot-
ing methods and corresponding choice spaces.2 This includes not only major
existing ones: Single- and Multi-Vote, Borda Count, and Condorcet methods.
To investigate the potential and limits of GPZKPs for developing and sup-
porting new voting methods and systems, we also consider two new variants
of Multi-Vote. These variants introduce non-trivial conditions on ballot formats
and mainly serve demonstration purposes. We are not aware that they are cur-
rently used in real elections.

To summarize our findings, our benchmarks show that all of these instances
are actually practical, both for simple and complex voting methods and choice
spaces. Performance depends mainly on the number of candidates. Interestingly,

2 All of our implementations are available at [26].

ZK-SNARKs for Ballot Validity: A Feasibility Study 111

however, the performance of these Groth16 instances is otherwise essentially
independent of the complexity of the underlying choice space. That is, introduc-
ing and proving additional conditions on the format of ballots, even multiple
highly complex ones, barely changes overall performance.

Altogether our work establishes for the first time that current GPZKPs are
a viable option even for complex ballot formats for commonly used Exponetial
ElGamal-based e-voting systems, which opens up new options for supporting
different voting methods. Our benchmarks further provide a basis for protocol
designers to make an educated choice for or against a Groth16-based ballot
validity ZKPs.

2 Preliminaries: GPZKPs, SNARKs, Groth16

A general purpose zero-knowledge proof (GPZKP) system takes as input an arbi-
trary indicator function fR : {0, 1}∗ × {0, 1}∗ → {0, 1} for some binary relation
R such that fR(x,w) = 1 iff (x,w) ∈ R for a public statement x and a secret
witness w. It then allows for computing a zero-knowledge proof (ZKP) which
shows the existence/knowledge of w such that fR(x,w) = 1. In the following, we
only consider proofs of knowledge as typically needed in e-voting [30].

To be practical for showing ballot validity, good prover efficiency and small
proof sizes are crucial: Impatient voters have to be able to compute and then
transmit the GPZKP using their own personal devices within reasonable time
and possibly having only little bandwidth available. While election verification is
less time critical, verification speed should at least be moderately fast and, again,
proof sizes should be small since proofs from all voters need to be downloaded.

Of the various GPZKP systems [3,6,10,17,20,22,29], SNARKs fit these
requirements best. Following [25], we use the highly efficient state-of-the-art
Groth16 SNARK [22] that offers constant small proof size of less than 1 kilobyte
with (almost) constant verification time of about a few milliseconds on a stan-
dard PC3 - independently of the function fR. It further achieves fast polynomial
proving time and thus scales well even for highly complex functions fR. The
Groth16 SNARK is therefore an ideal candidate for showing ballot validity.

A bit simplified, Groth16 consists of three algorithms: Setup, Prove, and
Verify. The Setup(fR) algorithm generates two common reference strings, CRSEK
(evaluation key CRS) and CRSVK (verification key CRS) that depend on fR.
CRSVK is a much smaller substring of CRSEK. This creates an instance of Groth16
that is specific to the function fR.4 The CRSEK can be used by anyone to create a
proof π

$←− Prove(CRSEK, x, w) for fR(x,w) = 1. One can use Verify(CRSVK, x, π)
to verify the proof, which requires only the smaller CRSVK. Groth16 SNARKs are
based on pairing groups of elliptic curves; a proof consists of 3 group elements.
3 All of our benchmarks were obtained on an ESPRIMO Q957 (64-bit, i5-7500T CPU

@ 2.70GHz, 16 GB RAM).
4 Some other SNARK constructions, such as [17] have a universal setup ceremony,

i.e., the CRS only needs to be generated once and can then be updated for different
indicator functions. This comes at the cost of increasing proof size and proving times.

112 N. Huber et al.

We use the common curve BN254, which is defined over a base field of size
∼ 2254 and provides ∼ 100 bits of security. Concretely, and following [25,28], we
use the libsnark implementation [34] of Groth16 for obtaining our benchmarks.
Other implementations [4,19] support curves for higher security levels, such as
BLS12-381 or BLS24-317 for 128 − 160 bits of security.

Groth16 uses the language of quadratic arithmetic programs (QAPs) to spec-
ify the indicator function fR and hence the underlying relation R. Typically, in
order to obtain a QAP, fR(x,w) is first expressed as an arithmetic circuit where
each input/output/internal wire is represented either by a variable or a constant.
The public input x is a list of values assigned to some wire variables (not neces-
sarily only input wires). A valid witness w then consists of values assigned to all
remaining wire variables such that all of these values, together with constants,
describe a correct computation of the circuit.5 This circuit is then converted to
a set of so-called constraints that can in turn be compiled into a QAP instance,
which we will not discuss further in this paper. A constraint over n variables
a1, . . . , an is an equation

∑n
i=1 aiui ·

∑n
i=1 aivi =

∑n
i=1 aiwi, where ui, vi and wi

are constants defining the constraint. For describing instantiations of concrete
indicator functions fR one can thus use both arithmetic circuits and constraints
mostly interchangeably. We will usually describe an instantiation as a circuit
yielding a certain number of constraints.

The time required to create a proof and the size of CRSEK of a Groth16
SNARK instance depend linearly on the number of inputs and the number of
constraints, i.e., the size of the circuit. Concretely, CRSEK consists of 3ν + μ + 6
group elements, where ν denotes the number of constraints and μ denotes the
number of inputs. As the number of inputs only has a minor effect on these
benchmarks, typically only the number of constraints is considered. To get an
idea, here are some figures using the libsnark instantiation over BN254 for a
standard PC (cf. Footnote 3): For 100, 000, 500, 000, and 1, 250, 000 constraints,
the size of the CRSEK is about 162 MB, 810 MB, and 2 GB, respectively. Note
that these CRSEK sizes are uncompressed sizes and can usually be reduced by a
factor of at least 2 via standard compression methods. Proofs can be computed
in about 4.46, 22.3, and 55.75 seconds, respectively. As mentioned above, proof
size and verification time are small and independent of the circuit while CRSVK
is a small subset of CRSEK which only contains � + 4 group elements, where �
is the number of wires assigned to the public input (e.g., for 3, 000 such wires -
far more than we will need - CRSVK is smaller than 500 KB). In this paper we
therefore mainly focus on determining and optimizing prover runtime and size
of CRSEK.
CRS Generation and Soundness. We note that soundness of our ZKPs
breaks down if the CRSs are not generated honestly. One can mitigate this
issue by computing the CRSs in a distributed fashion before an election; see,
e.g., [1,5,7]. We note that it is of course desirable to minimize trust assumptions
for verifiability. However, in practice one often still has some trust assumptions,

5 Usually, a valid w is described only in terms of input wire variables as this already
fully defines the remaining witness values for internal and output wire variables.

ZK-SNARKs for Ballot Validity: A Feasibility Study 113

e.g., trusted bulletin boards, authentication/registration servers, or a trusted
PKI. Alternatively, there are other GPZKPs, such as [3,8], which do not require
a trusted CRS generation and are in principle compatible with our constructions,
as they use a similar underlying language as Groth16, while being less efficient
in terms of computation and proof size.

3 Proving Ballot Validity Using Groth16

To construct ballot validity proofs using Groth16, we follow the approach from
Kryvos [25] for PVC-based encrypted ballots. In this section, we give a complete
overview of their approach, explain how the same techniques can be used for
EEG-based ballots, and provide the first benchmarks for several subcomponents.
Our benchmarks for complete ballot validity proofs are then given in Sect. 4.

Recall that voters choose their plain ballot b as a length-N -vector from some
choice space C and then use an (additively) homomorphic encryption or commit-
ment scheme Enc(·) to obtain an encrypted ballot c ← Enc(b). To show ballot
validity via a GPZKP such as Groth16, a voter uses the following indicator
function fR(x,w): the public statement x contains the encrypted ballot c. The
witness w contains a plain ballot b and randomness rw such that fR(x,w) = 1
iff Enc(b, rw) = c and b ∈ C.

We construct a corresponding arithmetic circuit C for ballot validity from
two separate sub-circuits as shown in Fig. 1. The encryption subcircuit CEnc

re-computes the encrypted ballot from the plain ballot b and randomness rw
contained in the witness w and from the public encryption key contained in
a public input auxEnc. The public encrypted ballot c is assigned to the output
wires of CEnc, which implies that Enc(b, rw) = c holds in a valid proof for this
circuit. The voting subcircuit CVoting takes as input the plain ballot b from the
input witness w and then outputs a bit indicating whether b ∈ C. The constant
1 is assigned to the output wire of CVoting, which implies that b ∈ C holds for
valid proofs. Both subcircuits might take additional auxiliary public and witness
values as input which can be used to improve efficiency or to generalize circuits.

This modular design of C simplifies circuit design and optimization while
enabling the re-use of components shared by circuits for different voting methods,
most notably CEnc, which does not depend on C (except for the length of the
vote vector). In the following subsections, we will explain how we construct
both subcircuits while keeping the number of constraints small. We note that
the overall number of constraints and, hence, the overall performance of C is
essentially the sum of CEnc and CVoting. To compare their relative impact we
therefore also provide benchmarks for all subcomponents.

3.1 Constructing and Optimizing CEnc

Due to the complexity of encryption/commitment schemes, designing an efficient
CEnc with a small and hence practical number of constraints is a highly non-trivial
task that makes or breaks the practicality of the overall ballot validity proof. The

114 N. Huber et al.

authors of Kryvos [25] spent much effort on designing a highly optimized CPVC
Enc

for PVCs which we will first recall and then show how it can be transformed
into a circuit CEEG

Enc for EEG. This transformation is mostly straightforward on a
technical level as both primitives use the same operations. The main question we
investigate rather is the resulting performance and practicality, which is unclear
for CEEG

Enc due to the reasons detailed at the end of the next paragraph.
Existing Building Blocks for PVCs from [25]. Let G be a (multiplicative)
group of prime order q and let h, g1, . . . , gN be generators of G such that no
relation between these generators is known. A PVC on a plaintext vector v =
(v1, . . . , vN) ∈ Z

N
q is defined as c =, (v, r) = gv1

1 · . . . · gvN

N · hr ∈ G for (uniform)

randomness r
$←− Zq. The case N = 1 gives a standard Pedersen commitment.

A major factor for the size and hence performance of CPVC
Enc is exponentiation.

Building on results from [28], Kryvos uses an instantiation of the common Mont-
gomery elliptic curve Curve25591 over the scalar field of BN254 (the curve used
for Groth16 by libsnark [34], see Sect. 2), which allows for an efficient implemen-
tation of exponentiation via the Montgomery ladder algorithm.6 More precisely,
as described in [28], we set G to be the large prime-order subgroup of this curve,
which has size q ≈ 2251. A group element is a curve point that can be represented
in affine or equivalently projective coordinates consisting of two resp. three coor-
dinates in Zq. In CPVC

Enc , a point is represented by one wire per coordinate. For
affine coordinates, a third wire is used to indicate whether the given point is
the special point at infinity. The number of constraints needed for implementing
the Montgomery ladder algorithm then depends on the (maximal) size of the
exponent. According to [25], an exponentiation with an arbitrary 255 bit ran-
domness r requires 5, 084 constraints. However, valid votes v usually have much
smaller entries vi, typically just a few bits (depending on the choice space).
Kryvos bounds the size of a (valid) vi by 32 bits, which covers all interesting
choice spaces and requires only 624 constraints for one exponentiation.

Based on this choice of G, Kryvos designed and reported constraint numbers
for the following subcircuits: (i) The aforementioned circuit for computing an
exponentiation gm of an elliptic curve point g with m ≤ q using Montgomery’s
ladder. This only gives the (projective) X- and Z-coordinate of gm. (ii) A circuit
for computing the (projective) Y -coordinate from output of the Montgomery
ladder and the (projective) Y -coordinate of g following Okea and Sakurai [32]
(39 constraints). (iii) A circuit for converting projective to affine coordinates (15
constraints). (iv) A circuit for multiplying two points given in affine coordinates
(86 constraints). These subcircuits are then combined to obtain CPVC

Enc .
Observe that the exponentiation with large randomness is by far the most

expensive step. This is why this approach scales particularly well for PVCs: For
committing to a vector of size N , only a single expensive exponentiation (hr) is
needed (N+1 exponentiations overall). In contrast, EEG requires more exponen-
tiations (3N) for encrypting a vector of size N and 2N of those exponentiations
are for the large randomness. So this raises the question whether we can obtain
reasonably efficient ballot validity SNARKS for EEG.
6 We stick with multiplicative notion of the group law also for elliptic curve groups.

ZK-SNARKs for Ballot Validity: A Feasibility Study 115

Fig. 1. The arithmetic circuit C for proving ballot validity. Secret/witness values are
shown in orange, public values are blue, and constants are black. (Color figure online)

Fig. 2. Circuit CEnc for computing an EEG ciphertext c from plaintext v with random-
ness r. The secret witness (marked in orange) is w := (v, r). The public statements
(marked in blue) are the ciphertext c = (gr, gvpkr) and auxEnc, which contains the pub-
lic key pk and the generator g. Where important, we show wires with individual coor-
dinates, e.g., g.X denotes the projective X-coordinate of g. We also use purple/black
color for projective/affine coordinates. When no individual coordinate but just a point
is given, e.g., gv, then this represents the three wires for that point’s coordinates. The
numbers (i) − (iv) refer to the sub-circuits from Sect. 3.1. (Color figure online)

Proving Plaintext Knowledge for a Vector of EEG Ciphertexts. Again,
let G be a (multiplicative) group of prime order q and generator g. An EEG
ciphertext for a plaintext v ∈ Zq and a given public key pk ∈ G is obtained by

sampling a randomness r
$←− Zq and returning c = (c0, c1) = (gr, gv · pkr).

We constructed a circuit CEEG
Enc for computing N such ciphertexts from N

plaintexts vi, N randomnesses ri, and a public key pk from the subcircuits
established in Kryvos. We depict the resulting circuit in Fig. 2 for the case N = 1.
For N > 1, this circuit is copied N times with separate input and output wires,
except for the input wires corresponding to pk and g which are shared by all
copies.
Benchmarks and Comparison. After implementing our new circuit CEEG

Enc for
EEG ciphertexts, we have benchmarked the performance of Groth16 for this
circuit and various sizes N of the plaintext vector, as well as various upper
bounds on the bit length of individual plaintexts. We have also benchmarked the
existing implementation of CPVC

Enc for PVCs on the same machine (see Footnote 3
on Page 111) to obtain a fair comparison, with all results shown in Fig. 3.

116 N. Huber et al.

Fig. 3. Prover runtime, CRSEK size, and constraints for CEEG
Enc and CPVC

Enc

As expected, creating a SNARK proof for validating a vector of EEG cipher-
texts instead of a PVC is much less efficient for large vector lengths N . However,
and perhaps unexpected, even for a vector consisting of 50 EEG ciphertexts a
voter can still compute a proof in less than 30 seconds using a CRSEK of about
1 GB, which is already good enough to be viable in a wide range of settings and
election types. For a more detailed discussion of practicality in various situations,
see Sect. 4.

Interestingly, our prover runtimes for CPVC
Enc significantly outperformed the

ones that we obtained in [25] by a factor of 2 to 3 on a comparable machine.
After investigating the issue, it turns out that in [25], we accidentally used a
custom version of the libsnark library that performs additional computations for
debugging purposes and hence is much slower.

3.2 Constructing and Optimizing CVoting

Since the subcircuit CVoting checks that a (plain) ballot belongs to a given choice
space, its design depends on the voting method/choice space. Here, we describe
and benchmark circuits for the following common voting methods/choice spaces:
Single-Vote, Multi-Vote, Borda Count, and Condorcet. To investigate the poten-
tial and limits of GPZKPs for developing and supporting new voting methods
and systems, we further construct and benchmark circuits for two additional
(somewhat artificial) complex choice spaces - both variants of Multi-Vote, which
we call Line-Vote and Multi-Vote with Rules. We provide the benchmarks for
CVoting for all of our choice spaces in Fig. 4.

Since CVoting is independent of the method used for encrypting ballots - thanks
to the modularity of C - we can reuse the existing sub-circuits for Single-Vote,
Multi-Vote, Borda Count, and Condorcet from [25] with some minor optimiza-
tions and extensions. We briefly recall their designs for completeness and provide
some additional details, such as constraint numbers. We also provide the first
benchmarks for these subcircuits, which were not benchmarked separately in [25].
Single-Vote. Recall that in a single-vote election, a voter can give only one
vote for their preferred candidate, with the corresponding choice space Csingle

ZK-SNARKs for Ballot Validity: A Feasibility Study 117

Fig. 4. Prover runtime, CRSEK size, and constraints of CVoting for several voting methods.
For Pointlist-Borda, we use L = {1, . . . , npoints}, for Multi-Vote and MWR, we use
t = 232 − 1 and nmax = ncand · t.

defined in Sect. 1. Checking that b ∈ Csingle entails two substeps: (i) Checking that
each ballot entry is a bit, which requires one constraint per candidate, and (ii)
checking that the sum of all ballot entries equals 1, which requires one constraint.
To allow abstention by casting a ballot without a vote, one can instead check
that the sum is a bit, which also requires one constraint.

For ncand candidates, Csingle
Voting thus consists of ncand +1 constraints. This yields

a very small CRSEK of less than 1 MB and proof times of less than 0.05 seconds
for any realistic number of candidates (see Fig. 4).

Multi-vote. Multi-vote generalizes single-vote by letting voters allocate up to
nmax votes among ncand candidates, with a maximum of t votes assigned to any
candidate. Analogous to Csingle, we define the following choice space:

Cmulti(nmax, t) :=

{
(v1, . . . , vncand

) | ∀i : vi ∈ {0, 1, . . . , t} ∧ 0 ≤
ncand∑
i=1

vi ≤ nmax

}
.

The circuit Cmulti
Voting for Cmulti then checks that each vi is in the allowed range

(between 0 and t) and that the sum of all vi is in the correct range (between 0 and
nmax). Such range checks require converting the respective value into individual
bits. Therefore, the number of constraints depends on the maximal possible bit
size nbits of

∑ncand

i=1 vi which is, in turn, determined by the bit sizes of t and nmax.
The complete circuit requires about (nbits +1) · (ncand +1) constraints (the exact
number depends on t and nmax), which - even for unrealistically high values of
nbits such as nbits = 41 - is still very small for any realistic number of candidates.
Hence, performance of Cmulti

Voting is essentially the same as for Csingle
Voting (see Fig. 4).

Supporting New Choice Spaces: Line-Vote and Multi-Vote with Rules.
We consider two modifications of multi-vote that are somewhat artificial but
represent cases where one might want to use GPZKPs: they are novel choice
spaces, so no ballot validity ZKPs exist, and as they are obtained by adding
non-trivial interdependencies between the votes for individual candidates, it is
hard to construct new specialized ZKPs.
Line-Vote: In Line-Vote, voters are given ncand many (ordered) options to vote
YES or NO. Voters can vote YES for any number of those options subject to the

118 N. Huber et al.

restriction that all YES-votes must form a continuous line, i.e., if two options
receive a YES-vote, then all options in-between must receive a YES-vote as well.
The choice space can be formalized as follows:

Cline := {(v1, . . . , vncand) | vi ∈ {0, 1} ∧ (i < j ∧ vi, vj = 1 ⇒ ∀i < k < j : vk = 1)} .

A corresponding circuit Cline
Voting can be built easily analogous to Cmulti

Voting: C
line
Voting

uses an additional “helper” wire which is first set to v1 and is then incremented
for all non-zero vi that occur directly after a zero entry vi−1. A ballot is then valid
iff all vi and the helper wire are bits. This circuit consists of 2ncand constraints.
Multi-Vote with Rules (MWR): In MWR, we consider multi-vote ballots whose
entries are subject to additional arithmetic rule(s). One can add arbitrary (num-
bers of) rules. As a concrete example, we consider a rule where the product of
the second and the third ballot entry equals the first one:

CMWR(nmax, t) := {b = (v1, . . . , vncand
) ∈ Cmulti(nmax, t) | v1 = v2 · v3} .

The corresponding circuit CMWR
Voting is again easy to construct: use Cmulti

Voting as a
basis and add additional constraints for each rule. In the above example, just 2
additional constraints are needed.

Altogether, both examples confirm that it is indeed simple to support new
choice spaces via GPZKPs and that, depending on the additional conditions
imposed on the vi, this might not even come at a noticeable cost (see Fig. 4).
Pointlist-Borda and Borda Tournament Style (BTS). Borda is a ranked
election method where voters rank the candidates according to their preference
and, based on this ranking, points are assigned to each candidate. Variants of
Borda are used, e.g., for parliamentary elections in Nauru [33] and the Eurovision
Song Contest (ESC) [16]. As suggested in [25], such variants used in practice
can be captured as instances of what they call Pointlist-Borda. A Pointlist-
Borda instance is defined via a fixed point list L that contains npoints many
distinct positive numbers. Voters then construct their ballots by assigning each
number in L to one candidate and, if npoints < ncand, 0 points to all remaining
candidates. Observe that this represents a ranking where the highest-ranked
candidate receives the most points and so on with ncand − npoints candidates tied
for the last place. Formally, the choice space is as follows:

CBordaPointList(L) :=
{

(v1, . . . , vncand)
∣∣∣(∀p ∈ L ∃i : vi = p)

∧ |{i ∈ [1, ncand] | vi = 0}| = ncand − npoints

}
.

The size of CBordaPointList
Voting depends on npoints = |L| but is not affected by the

concrete values in L (hence, we simply take L = [1, npoints] for benchmarking).
For small constants, such as npoints = 10, the size of CBordaPointList

Voting scales linearly
in ncand, similar to single-/multi-vote. The worst case is npoints = ncand, which
scales quadratically in ncand but remains practical. For example, in an extreme
case of npoints = ncand = 100, computing a proof still only requires less than 2
seconds and a CRSEK of less than 100 MB (see Fig. 4 for both cases).

ZK-SNARKs for Ballot Validity: A Feasibility Study 119

There are many ways to design generalized (academical) Borda variants
that allow for ties between candidates at arbitrary positions. For example,
[25]considers an even more complex Borda variant they call Borda tournament
style (BTS) which we include in our benchmarks using their circuit CBTS

Voting (see
Fig. 4). Due to space limitations, we refer to [25] for details of BTS.

Condorcet Methods. In Condorcet methods, which are, e.g., used for internal
elections of the Debian project [14], a voter submits a ranking of candidates.
Condorcet methods differ in how they determine the winner but, if such a candi-
date exists, they will return the candidate who wins against all other candidates
in a direct comparison. To make rankings compatible with aggregation of ballots,
they are typically represented as comparison matrices [12,23,25].

Specifically, given a ranking r = (r1, . . . , rncand
) ∈ N

ncand of candidates (where
ri > rj means that candidate i is ranked worse than candidate j), a voter con-
structs her ballot as an ncand×ncand matrix A with 1 at position (i, j) if candidate
i is ranked better than candidate j and 0 otherwise. Note that hence ncand

2 many
values are used for a ballot, unlike all aforementioned voting methods that used
one value per candidate. Also note that, if candidates are tied, then this is rep-
resented by Aij and Aji both being 0, i.e., a ballot is a positive preference matrix
as defined in [12]. The choice space then is:

CCondorcet =
{

A ∈ {0, 1}ncand×ncand

∣∣∣∃(r1, . . . , rncand
) ∈ N

ncand s.t. ∀i, j ∈ [1, ncand] :

ri > rj ⇒ Aij = 0, Aji = 1 ∧
ri = rj ⇒ Aij = Aji = 0

}

The circuit CCondorcet
Voting extends the one proposed in [25], which did not support

ties. It first checks that all matrix entries are bits and that for i �= j also Aij+Aji

is a bit.7 It remains to check transitivity (i.e., that, for any triple (i, j, k) of
distinct candidates, it holds that ri ≤ rj and rj ≤ rk imply ri ≤ rk, with ri = rk
iff ri = rj and rj = rk). Checking both cases, i.e., ≤ and =, turns out to be easier
if ties through 1-entries instead of 0-entries. For this, CVoting computes a “check
matrix” B with Bij := 1 − Aji, which does not require any new constraints.
Note that B equals A everywhere except that 1-entries replace the 0-entries that
represent ties in A. Then, the circuit checks whether Bij ·Bjk ·(1−Bik) = 0, which
is true iff A is transitive (observe that this check indeed covers both the ≤ and
the = case). The resulting circuit scales cubically in the number of candidates,
where, e.g., 25 candidates require a CRSEK of about 90 MB and a proof time of
about 2.5 seconds (see Fig. 4).

7 One can instead check that Aij + Aji = 1 to prevent ties as proposed in [25]. This
yields the same number of constraints.

120 N. Huber et al.

Fig. 5. Comparison of full ballot validity proofs. Condorcet, Single-, and Line-Vote use
CEnc with 1-bit plaintexts; all other choice spaces use 32-bit plaintexts.

4 Overall Benchmarks for Proving Ballot Validity

Following the outline given in Sect. 3, we can now combine the encryption subcir-
cuit CEnc with a suitable plaintext bit size from Sect. 3.1 and a voting subcircuit
CVoting from Sect. 3.2 to obtain complete circuits C for proving ballot validity.
Our benchmarks of prover runtime, CRSEK size, and constraints for these cir-
cuits using EEG encryption and depending on the number of candidates ncand

are given in the top half of Fig. 5. For comparison, in the bottom half of Fig. 5 we
provide our benchmarks for ballots computed as PVCs using the constructions
of [25]. As mentioned in Sect. 2, the proof size is less than 1 KB, and verification
requires only about 7 ms as both are mostly independent of the circuit. Since
the CRSVK is a subset of CRSEK we do not provide separate benchmarks, but its
size is always in the order of ∼ 20 KB and hence negligible.

The performance of the Groth16 proof for the combined circuit C is essentially
the sum of the subcircuits CEnc and CVoting and thus dominated by the much
slower CEnc. Note that the performance of CEnc in Fig. 3 was given depending
on the number N of plaintexts, while for the combined circuit C we consider
performance depending on number ncand of candidates. All but one choice space
use one plaintext per candidate, i.e., N = ncand, so the benchmarks given in Fig. 5
mostly retain the linear behavior of CEnc, potentially plus some small non-linear
overhead caused by CVoting. The exception are Condorcet ballots, where N =
ncand

2. This causes visibly quadratic behavior in the combined circuit due to
CEnc (plus some much smaller cubic overhead due to CCondorcet

Voting).
To summarize our benchmarks, for most election types with EEG, Groth16

ballot validity proofs can be computed by voters within a reasonable time on
standard PCs, even for large numbers of candidates. Since runtime is dominated
by CEnc, it stays mostly the same even for new ballot formats with potentially

ZK-SNARKs for Ballot Validity: A Feasibility Study 121

very complex validity rules, as shown by Line-Vote, MWR, and BTS. The only
outlier is Condorcet, for which computing a proof quickly becomes impractical
due to the quadratic number of ciphertexts. We note, however, that real-world
Condorcet elections, such as [14], rarely have more than 10 candidates. For such
cases, a proof of ballot validity can still be computed in less than a minute. As
for the size of CRSEK, it is non-negligible in all cases but still within ranges that
can reasonably be downloaded once as part of the election software. Also, recall
that the presented CRSEK sizes are uncompressed sizes. We also note that the
same CRS can then be re-used for multiple elections.

In conclusion, our results establish that Groth16 and, hence, GPZKPs are a
viable option for showing ballot validity in EEG-based voting systems. We have
further shown the potential of GPZKPs for supporting new voting methods with
novel complex ballot formats. While specialized ZKPs, where available, can still
be preferable to GPZKPs, e.g., due to better efficiency, our results show that
GPZKPs can be a viable and, importantly, quite generic and uniform option.
A detailed performance comparison between GPZKPs and specialized ZKPs for
various ballot formats and group choices would be an interesting future work.

Acknowledgements. This research was funded in part by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation), grant 411720488.

References

1. Abdolmaleki, B., et al.: UC-Secure CRS Generation for SNARKs. In:
AFRICACRYPT 2019, Proceedings. LNCS, vol. 11627, pp. 99–117. Springer (2019)

2. Adida, B., et al.: Electing a university president using open-audit voting: analysis
of real-world use of helios. In: USENIX/ACCURATE Electronic Voting Technology
(EVT 2009) (2009)

3. Ames, S., et al.: Ligero: lightweight sublinear arguments without a trusted setup.
In: ACM CCS 2017, pp. 2087–2104 (2017)

4. Bellés-Muñoz, M., et al.: Circom: a circuit description language for building zero-
knowledge applications. IEEE Trans. Dependable Secur. Comput. 20(6), 4733–
4751 (2023)

5. Ben-Sasson, E., et al.: Secure sampling of public parameters for succinct zero knowl-
edge proofs. In: IEEE SP 2015, pp. 287–304. IEEE Computer Society (2015)

6. Ben-Sasson, E., et al.: Scalable, transparent, and post-quantum secure computa-
tional integrity. IACR Cryptology ePrint Archive 2018, 46 (2018)

7. Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-SNARK
parameters in the random beacon model. IACR Cryptol. ePrint Arch. 2017, 1050
(2017)

8. Bünz, B., et al.: Bulletproofs: short proofs for confidential transactions and more.
In: SP 2018, pp. 315–334 (2018)

9. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: CRYPTO ’92.
LNCS, vol. 740, pp. 89–105. Springer (1992)

10. Chiesa, A., Ojha, D., Spooner, N.: Fractal: post-quantum and transparent recursive
proofs from holography. In: EUROCRYPT 2020, pp. 769–793 (2020)

122 N. Huber et al.

11. Cortier, V., Gaudry, P., Glondu, S.: Belenios: a simple private and verifiable elec-
tronic voting system. In: Guttman, J.D., Landwehr, C.E., Meseguer, J., Pavlovic,
D. (eds.) Foundations of Security, Protocols, and Equational Reasoning. LNCS,
vol. 11565, pp. 214–238. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-19052-1 14

12. Cortier, V., Gaudry, P., Yang, Q.: A toolbox for verifiable tally-hiding e-voting
systems. In: ESORICS 2022. LNCS, vol. 13555, pp. 631–652. Springer (2022)

13. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: CRYPTO 1994, pp.174–187. Springer
(1994)

14. Debian Project: Debian Voting Information (2024). https://www.debian.org/vote/
15. Devillez, H., Pereira, O., Peters, T.: How to verifiably encrypt many bits for an

election? In: ESORICS 2022. LNCS, vol. 13555, pp. 653–671. Springer (2022)
16. European Broadcasting Union: Eurovision Song Contest - How it works (2024).

https://eurovision.tv/about/how-it-works
17. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: permutations over lagrange-

bases for oecumenical noninteractive arguments of knowledge. IACR Cryptol.
ePrint Arch. 2019, 953 (2019)

18. Gaudry, P.: Some ZK security proofs for belenios (2017)
19. Gautam Botrel and Others: Consensys/gnark: v0.10.0 (2024). https://doi.org/10.

5281/zenodo.11034183
20. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster Zero-Knowledge for boolean

circuits. In: USENIX Security Symposium 2016, pp. 1069–1083. USENIX Associ-
ation (2016)

21. Groth, J.: Non-interactive zero-knowledge arguments for voting. In: ACNS 2005.
LNCS, vol. 3531, pp. 467–482 (2005)

22. Groth, J.: On the size of pairing-based non-interactive arguments. In: EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer (2016)

23. Hertel, F., et al.: Extending the tally-hiding ordinos system: implementations for
borda, hare-niemeyer, condorcet, and instant-runoff voting. In: E-Vote-ID 2021,
pp. 269–284. University of Tartu Press (2021)

24. Hopwood, D.E., et al.: Zcash Protocol Specification (2024). https://zips.z.cash/
protocol/protocol.pdf

25. Huber, N., et al.: Kryvos: publicly tally-hiding verifiable e-voting. In: CCS 2022,
pp. 1443–1457. ACM (2022)

26. Huber, N., et al.: Implementation of our Circuits (2024). https://github.com/
HicolasNuber/ballotsnarks

27. Joaquim, R.: How to prove the validity of a complex ballot encryption to the voter
and the public. JISA 19(2), 130–142 (2014)

28. Kosba, A., et al.: C∅C∅: A framework for building composable zero-knowledge
proofs. Cryptology ePrint Archive (2015)

29. Maller, M., et al.: Sonic: zero-knowledge SNARKs from linear-size universal and
updatable structured reference strings. In: Proceedings of the 2019 ACM CCS, pp.
2111–2128 (2019)

30. Mestel, D., Müller, J., Reisert, P.: How efficient are replay attacks against vote
privacy? A formal quantitative analysis. J. Comput. Secur. 31(5), 421–467 (2023)

31. Morais, E., Koens, T., van Wijk, C., Koren, A.: A survey on zero knowledge range
proofs and applications. SN Appl. Sci. 1(8), 1–17 (2019). https://doi.org/10.1007/
s42452-019-0989-z

https://doi.org/10.1007/978-3-030-19052-1_14
https://doi.org/10.1007/978-3-030-19052-1_14
https://www.debian.org/vote/
https://eurovision.tv/about/how-it-works
https://doi.org/10.5281/zenodo.11034183
https://doi.org/10.5281/zenodo.11034183
https://zips.z.cash/protocol/protocol.pdf
https://zips.z.cash/protocol/protocol.pdf
https://github.com/HicolasNuber/ballotsnarks
https://github.com/HicolasNuber/ballotsnarks
https://doi.org/10.1007/s42452-019-0989-z
https://doi.org/10.1007/s42452-019-0989-z

ZK-SNARKs for Ballot Validity: A Feasibility Study 123

32. Okeya, K., Sakurai, K.: Efficient elliptic curve cryptosystems from a scalar multipli-
cation algorithm with recovery of the y-coordinate on a montgomery-form elliptic
curve. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162,
pp. 126–141. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-
1 12

33. Republic of Nauru: Electoral Act No. 15 (2024). http://ronlaw.gov.nr/nauru lpms/
files/acts/d83250a1ebdc56c1701fa7aa245af5b1.pdf

34. scipr-lab: libsnark (2024). https://github.com/scipr-lab/libsnark

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/3-540-44709-1_12
https://doi.org/10.1007/3-540-44709-1_12
http://ronlaw.gov.nr/nauru_lpms/files/acts/d83250a1ebdc56c1701fa7aa245af5b1.pdf
http://ronlaw.gov.nr/nauru_lpms/files/acts/d83250a1ebdc56c1701fa7aa245af5b1.pdf
https://github.com/scipr-lab/libsnark
http://creativecommons.org/licenses/by/4.0/

	ZK-SNARKs for Ballot Validity: A Feasibility Study
	1 Introduction
	2 Preliminaries: GPZKPs, SNARKs, Groth16
	3 Proving Ballot Validity Using Groth16
	3.1 Constructing and Optimizing CEnc
	3.2 Constructing and Optimizing CVoting

	4 Overall Benchmarks for Proving Ballot Validity
	References

