
Kryvos: Publicly Tally-Hiding Verifiable E-Voting
Nicolas Huber

nicolas.huber@sec.uni-stuttgart.de

Institute of Information Security and

Center for Integrated Quantum

Science and Technology (IQ
ST
)

University of Stuttgart, Germany

Ralf Küsters

ralf.kuesters@sec.uni-stuttgart.de

Institute of Information Security and

Center for Integrated Quantum

Science and Technology (IQ
ST
)

University of Stuttgart, Germany

Toomas Krips

toomas.krips@ut.ee

University of Tartu

Tartu, Estonia

Julian Liedtke

julian.liedtke@sec.uni-stuttgart.de

Institute of Information Security

University of Stuttgart, Germany

Johannes Müller

johannes.mueller@uni.lu

Interdisciplinary Centre for Security,

Reliability and Trust

University of Luxembourg

Daniel Rausch

daniel.rausch@sec.uni-stuttgart.de

Institute of Information Security

University of Stuttgart, Germany

Pascal Reisert

pascal.reisert@sec.uni-stuttgart.de

Institute of Information Security

University of Stuttgart, Germany

Andreas Vogt

andreas.vogt@fhnw.ch

University of Applied Sciences and

Arts Northwestern Switzerland

Windisch, Switzerland

ABSTRACT
Elections are an important corner stone of democratic processes.

In addition to publishing the final result (e.g., the overall winner),

elections typically publish the full tally consisting of all (aggregated)

individual votes. This causes several issues, including loss of privacy

for both voters and election candidates as well as so-called Italian

attacks that allow for easily coercing voters.

Several e-voting systems have been proposed to address these

issues by hiding (parts of) the tally. This property is called tally-
hiding. Existing tally-hiding e-voting systems in the literature aim

at hiding (part of) the tally from everyone, including voting au-

thorities, while at the same time offering verifiability, an important

and standard feature of modern e-voting systems which allows

voters and external observers to check that the published election

result indeed corresponds to how voters actually voted. In contrast,

real elections often follow a different common practice for hiding

the tally: the voting authorities internally compute (and learn) the

full tally but publish only the final result (e.g., the winner). This

practice, which we coin publicly tally-hiding, indeed solves the

aforementioned issues for the public, but currently has to sacrifice

verifiability due to a lack of practical systems.

In this paper, we close this gap. We formalize the common no-

tion of publicly tally-hiding and propose the first provably secure

verifiable e-voting system, called Kryvos, which directly targets

publicly tally-hiding elections. We instantiate our system for a wide

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00

https://doi.org/10.1145/3548606.3560701

range of both simple and complex voting methods and various

result functions. We provide an extensive evaluation which shows

that Kryvos is practical and able to handle a large number of can-

didates, complex voting methods and result functions. Altogether,

Kryvos shows that the concept of publicly tally-hiding offers a new

trade-off between privacy and efficiency that is different from all

previous tally-hiding systems and which allows for a radically new

protocol design resulting in a practical e-voting system.

CCS CONCEPTS
• Applied computing→ Voting / election technologies; • Se-
curity and privacy→ Human and societal aspects of security and
privacy; Cryptography.

KEYWORDS
e-voting; publicly tally-hiding; verifiability; zk-snark, homomorphic

commitments

ACM Reference Format:
Nicolas Huber, Ralf Küsters, Toomas Krips, Julian Liedtke, Johannes Müller,

Daniel Rausch, Pascal Reisert, and Andreas Vogt. 2022. Kryvos: Publicly
Tally-Hiding Verifiable E-Voting. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’22), November
7–11, 2022, Los Angeles, CA, USA. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3548606.3560701

1 INTRODUCTION
Elections are an import corner stone of democratic processes. Be-

sides national or local political elections, elections also often are

and have to be carried out in companies, organizations, associations,

etc. There exists a multitude of different voting methods ranging

from relatively simple voting methods, such as plurality/single-

choice voting, to more complicated ones, such as cumulative voting

with multiple votes, and very complex ones, like preferential elec-

tions and multi-round votings. In practice, not just simple voting

1443

https://orcid.org/0000-0001-6905-3571
https://orcid.org/0000-0002-9071-9312
https://orcid.org/0000-0003-0981-3553
https://orcid.org/0000-0002-8289-4970
https://orcid.org/0000-0003-2134-3099
https://orcid.org/0000-0002-1901-3659
https://orcid.org/0000-0003-1808-6140
https://orcid.org/0000-0001-8517-1965
https://doi.org/10.1145/3548606.3560701
https://doi.org/10.1145/3548606.3560701

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Nicolas Huber et al.

methods are used but often also more complex ones as they allow

for capturing the voters’ preferences more accurately. For exam-

ple, Instant-Runoff Voting (IRV) [79] is an important preferential

voting method that is used in many countries for municipal or na-

tional political elections, including Australia, India, the UK, and the

US [44, 70, 73, 85]. Also, there are many different result functions

used in elections. For example, one might only be interested in the

winner of the election (e.g., for presidential elections) or the 𝑛 best

or worst candidates (ranked or not ranked), e.g., to fill positions or

decide who moves on to a runoff election.

Verifiability. A fundamental security property of elections is ver-
ifiability [2, 8, 11, 22, 24, 26, 56, 59, 60, 63], i.e., voters should be

able to verify that their votes were actually counted and every ob-

server, including voters, election officials, and external observers,

should be able to verify whether the final election outcome indeed

corresponds to the votes submitted by the voters. This property is

not just required for traditional paper-based elections, where votes

are typically tallied by several (mutually distrusting) talliers and

observers can monitor the tallying process, but it is particularly

crucial for electronic voting (e-voting) systems: numerous problems

with e-voting systems have been reported in many countries, where

votes have been dropped or miscounted (see, e.g., [37, 46, 83, 87] and

references therein). This does not come as a surprise since e-voting

systems are among the most complex hardware and software sys-

tems. Hence, it is virtually impossible to avoid programming errors

or subtle security vulnerabilities. Verifiability enables external and

internal observers to detect and reject false election results, even

when the underlying cause is an unknown programming error or

vulnerability. Verifiability therefore has been studied intensively

for e-voting systems (see, e.g., [27] for an overview), with Helios

[3] being one of the most prominent verifiable e-voting systems

used in practice.

Publishing the Full Tally. In purely paper-based elections and

tallying processes, in order to obtain verifiability it appears unavoid-

able to publicly reveal the full tally consisting of all (aggregated)

individual votes, rather than just the actual election result, such as

the winner of the election or the 𝑛 best candidates: arbitrary ob-

servers (both voters and external observers) should be able to verify

the election outcome, and hence, they have to watch the tallying

process and by this learn the full tally. While this is not strictly

necessary for e-voting systems, currently most verifiable e-voting

systems also have to publish the full tally by design, including, for

example, the prominent Helios system. This, however, comes with

several downsides:

• Biased voters: As mentioned above, some elections consist of

several rounds. In particular, they might involve runoff elections.

Revealing the intermediate tallies for the candidates during such

an election introduces biases that are likely to influence voters’

choices for the following rounds, which might be unintended.

• Embarrassed candidates: In some elections, for example, within

companies or associations, it is unnecessarily embarrassing for

the losing candidates to publish the (possibly low) number of

votes they received.

• Weak mandates: If the winning margin is small, then revealing

the full tally can undermine the power of the elected candidate.

This might be undesirable.

• Gerrymandering: If the distribution of votes in different dis-

tricts/groups is published, then this information can be used

to adjust the specifications of those districts/groups for future

elections so that one of the parties has an advantage.

• Italian attacks: In preferential voting (e.g., IRV), the individual

choices of voters can be essentially unique and thus be regarded

as “fingerprints”, even if the number of candidates is moderate.

This privacy loss can be exploited to perform so-called Italian
attacks [13, 49]: even a passive adversary, who merely sees the

full tally, is able to easily coerce any voter to vote in a specific

(unlikely) way and then use the tally to check whether the voter

complied.

These issues can be mitigated or resolved by hiding (part of) the

tally, except for the election result. Voting systems with this prop-

erty are called tally-hiding. We classify them as follows, depending

on their specific objectives and approaches.

Fully and Partially Tally-Hiding. Several (verifiable) e-voting
systems, see, e.g., [14, 21, 51, 62, 84, 86], have been proposed to

address all of the aforementioned issues at once. They only pub-

lish the actual election result (e.g., only the name of the winner

or the names of the 𝑛 best candidates), and no party, neither inter-

nal nor external, gets to know any intermediate results. We call

this strong notion of tally-hiding fully tally-hiding. They typically

employ heavy-weight cryptography, such as universally verifiable

Multi-Party Computation (MPC). As a result, existing fully tally-

hiding e-voting systems are limited to rather simple voting methods

and elections with only a few candidates. They quickly become

inefficient for larger numbers of candidates or complex result func-

tions and voting methods, such as ranked voting, say, via IRV (see

Section 6 for more discussion).

There are also verifiable e-voting systems that focus on specific

issues due to publishing the tally, most notably Italian attacks. They

hide exactly those parts of the tally which cause the respective

issues (see, e.g., [13, 25, 49, 55, 79]). We call this approach partially
tally-hiding. Such systems can be more efficient than fully tally-

hiding ones. For example, the e-voting system proposed in [79] can

handle even complex IRV elections for real world data. But hiding

the tally partially comes with the trade-off that some information is

still revealed, such as the order of candidates, and hence, some of the

problems of publishing the tally remain, such as biased voters and

embarrassed candidates (see also Section 6). Thus, these systems

are useful to solve certain aspects, but not others.

Publicly Tally-Hiding. In this work, we follow an approach that

offers a trade-off between privacy and efficiency which is different

from all previous fully and partially tally-hiding solutions. This

approach is motivated by and enhances existing practices: There

have been many cases where voting authorities chose to internally

compute but not publish the full tally. They rather only published

the final election result, e.g., the winner of the election or the 𝑛

best candidates, as they wanted to mitigate some of the above

issues, including privacy issues for voters (Italian attacks), for can-

didates (embarrassment, weak mandates), and/or manipulations

(gerrymandering). Hence, while the talliers learn the full tally, the

public learns only the election result. We call this approach publicly
tally-hiding elections. Such publicly tally-hiding elections are car-

ried out, among others, by ACM Special Interest Groups (SIG) [1],

1444

Kryvos: Publicly Tally-Hiding Verifiable E-Voting CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

the German Computer Science Association [42], CrossRef [32], the

Society for Industrial and Applied Mathematics (SIAM) [82], or

the German Research Fund [35], as confirmed by websites and/or

personal communication. Civica Election Services (CES), a large

e-voting provider, conducts several dozen elections per year where

costumers demand to obtain only the actual election result from

CES [78], according to CES, for example, to protect against weak

mandates or gerrymandering issues. So while publicly tally-hiding

elections are quite common, they, however, so far do not offer verifi-

ability, i.e., it is impossible for a voter or external observer to verify

that the election result was computed correctly.

In this work, we close this gap by proposing the first verifiable
voting system that follows the common practice of publicly tally-

hiding elections. More specifically, we propose a publicly tally-

hiding e-voting system which follows a radically different approach

than all previous tally-hiding ones.We allow each tallier to learn the

homomorphically aggregated votes, while the public merely learns

the final election result.
1
This allows for a completely different

design of the e-voting system and the use of different cryptographic

techniques compared to previous systems for tally hiding elections.

For example, we can employ relatively lightweight zero-knowledge

proofs as opposed to more heavy-weight universally verifiable

MPC. Our publicly tally-hiding e-voting system achieves practical

efficiency for dramatically larger numbers of candidates and more

complex votingmethods than all previous fully tally-hiding systems,

while still hiding the full tally from the public, unlike partially tally-

hiding systems. This of course comes with the trade-off that now

the talliers learn the aggregated votes. Altogether, our paper opens

a new line of research that allows for enhancing already existing

practices, where voting authorities compute but do not publish the

tally, with the fundamental and crucial property of verifiability.

Contributions.

• We formalize the notion of publicly tally-hiding.
• We propose Kryvos, the first provably secure verifiable e-voting

system that explicitly targets the common practice of publicly

tally-hiding elections, with the advantages mentioned before.

Our system is designed in a completely different way than previ-

ous e-voting systems for (fully) tally-hiding. It builds on general

purpose zero-knowledge proofs, more specifically, the highly ef-

ficient Groth16 SNARKs [45]. The core idea is that talliers prove

the correctness of the election outcome according to the result

function using these SNARKs. While the idea itself is simple,

putting this idea to practice is non-trivial:

– Kryvos follows the general design philosophy of Helios, one

of the most prominent and practical verifiable e-voting sys-

tems which forms the basis of many other systems. Unfortu-

nately, it is not possible to apply the above idea directly to

Helios (cf. Section 2.2). Therefore, Kryvos is a fundamental

redesign of Helios.

– To be of practical use, also with performance that improves

upon existing fully tally-hiding systems, the design of Kryvos

1
This aggregated tally might still reveal individual votes to the talliers, depending on

how ballots are encoded and aggregations are performed. For simple voting methods,

the aggregated tally effectively hides individual votes from the talliers, but it might

not for complex voting methods, such as IRV.

requires care and dealing with a number of pitfalls (see Sec-

tion 2 and Section 4). We carefully evaluate various imple-

mentation and design options to come up with a suitable

implementation.

• We provide instantiations of Kryvos for various voting methods,

including plurality voting, various forms of cumulative elections

with multiple votes, and ranked elections, such as IRV. These

instantiations come with extensive evaluation and benchmarks,

demonstrating the practicality of the system. Among others, we

test our system with real-world data of complex IRV elections

from Australia. Our benchmarks show that Kryvos can handle

all of these voting methods more efficiently than existing fully

tally-hiding solutions.

Structure. In Section 2, we sketch our design rationale, discuss

various design choices, and derive efficient realizations of core

building blocks. We then, in Section 3, introduce Kryvos, with its

implementation and detailed evaluation presented in Section 4. In

Section 5, security and privacy of Kryvos is formally stated and

proven. Related work is discussed in Section 6. We conclude in

Section 7. Full details and proofs are given in our technical report

[54], with the implementation provided in [53].

2 DESIGN RATIONALE
Many verifiable e-voting systems follow the concept of the promi-

nent Helios system [3]. Helios is based on a (𝑡,𝑛𝑡)-threshold IND-

CPA-secure additively homomorphic public-key encryption scheme,

such as exponential ElGamal. Essentially, given the encrypted votes

of the voters, these encrypted votes are homomorphically aggre-

gated to compute the publicly known encrypted tally Enc(T) con-
sisting of a sequence of ciphertexts containing the total number

of votes for each candidate/choice, i.e., there is one ciphertext per

candidate/choice. By aggregating votes, Helios breaks the link be-

tween voters and their votes, thereby achieving ballot privacy, and

additionally hides individual votes within the tally T. The talliers
then decrypt Enc(T), i.e., all ciphertexts therein, in a distributed

way and publish T along with proofs of correct decryption, which

reveals the full tally T and allows everyone to publicly compute

the result of the election 𝑓res (T), e.g., the winner of the election.
In systems which aim for full tally-hiding, i.e., where only 𝑓res (T),
but not T is revealed, talliers essentially perform certain forms of

MPC on Enc(T) in order to compute 𝑓res (T). As already mentioned

and further discussed in Section 6, this has several shortcomings,

which is why in this work we, for the first time, directly follow

the common approach of public tally-hiding, i.e., while talliers may

learn T, everybody else should only learn 𝑓res (T).
Intuitively, our idea for Kryvos is to build a system similar to

Helios where encrypted votes can still be publicly aggregated and

the talliers can then compute T from Enc(T). The aggregation guar-

antees that talliers do not learn more about individual votes than

talliers in a regular privacy-preserving (non tally-hiding) system,

such as Helios. However, instead of publishing T, talliers rather
internally compute and then publish only the result 𝑓res (T). To
still obtain verifiability in this situation, we employ non-interactive

zero-knowledge proofs (NIZKPs) to let (one of) the talliers show

that 𝑓res (T) was computed correctly from Enc(T). Since NIZKPs are
rather lightweight compared to MPC, the hope and rationale is that

1445

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Nicolas Huber et al.

this should allow for constructing more efficient e-voting systems

that support more kinds of elections in a (publicly) tally-hiding way

than existing (full) tally-hiding systems. To support a multitude of

existing election types with different result functions, we make use

of recent advances in the field of general purpose zero knowledge
proof systems (cf. Section 2.1), which allow for proving statements

with respect to essentially arbitrary functions. While this general

idea might seem conceptually simple, it requires careful design

and optimization to achieve not only a secure but also a practical

solution as outlined in this section and Section 4.

2.1 General Purpose Proof Systems
A general purpose proof system takes as input an arbitrary in-

dicator function 𝑓𝑅 : {0,1}∗ × {0,1}∗ → {0,1} for some binary

relation 𝑅, such that 𝑓𝑅 (𝑥,𝑤) = 1 iff (𝑥,𝑤) ∈ 𝑅 for public state-

ment 𝑥 and secret knowledge/witness 𝑤 . It then allows for com-

puting a zero-knowledge proof that proves knowledge of𝑤 such

that 𝑓𝑅 (𝑥,𝑤) = 1. In our setting, a tallier can use 𝑥 = (Enc(T), 𝑦)
as public input along with a suitable witness (which, among oth-

ers, contains some tally T𝑤) and the function 𝑓𝑅 : 𝑓𝑅 (𝑥,𝑤) = 1

iff T𝑤 corresponds to the plaintext in Enc(T) and 𝑦 = 𝑓res (T𝑤).
The chosen proof system should be able to handle complex result

functions even for a large number of candidates/choices, which,

among others, requires reasonably low proof creation and verifica-

tion times. Of the various different general purpose proof systems

[4, 9, 23, 40, 43, 45, 71], zero-knowledge succinct non-interactive

arguments of knowledge (SNARKs, for short, where we implicitly

assume the zero-knowledge property) currently fit these require-

ments best. More specifically, we use the highly efficient state-of-

the-art Groth16 SNARK [45] as, offers constant proof size with

constant verification time (independently of the function 𝑓𝑅), while

achieving quite fast polynomial proving time and thus scaling well

even for highly complex functions. We briefly discuss our choice of

the Groth16 SNARK in comparison with alternative proof systems

in Section 6. We note that our construction is based on arithmetic

circuits (see next paragraph) and hence is not limited to the Groth16

SNARK. In fact, every proof system which is based on arithmetic

circuits (such as [4, 10, 18]) can be used to instantiate Kryvos.
A Groth16 SNARK uses the language of quadratic arithmetic

programs (QAPs) to specify the underlying relation 𝑅 respectively

indicator function 𝑓𝑅 . Typically, in order to obtain a QAP, 𝑓𝑅 is first

expressed as an arithmetic circuit which is then converted to a set of

constraints that is finally compiled into a QAP instance. A constraint

over 𝑛 variables is an equation

∑𝑛
𝑖=1 𝑎𝑖𝑢𝑖 ·

∑𝑛
𝑖=1 𝑎𝑖𝑣𝑖 =

∑𝑛
𝑖=1 𝑎𝑖𝑤𝑖 ,

where 𝑢𝑖 , 𝑣𝑖 and 𝑤𝑖 are constants that define the constraint. The

overall performance (runtime, bandwidth, memory overhead) of a

Groth16 SNARK is directly determined by the number of constraints

and hence the size of the arithmetic circuit.

A bit simplified, the Groth16 SNARK consists of three algorithms:

(Setup,Prove,Verify). The Setup(𝑓𝑅) algorithm generates two com-

mon reference strings,CRSEK (evaluation key CRS, needed to create

proofs) and CRSVK (verification key CRS, needed to verify proofs)

that depend on 𝑓𝑅 . This creates an instance of Groth16 that is spe-

cific to the function 𝑓𝑅 . The CRSEK can then be used by anyone

to create a proof 𝜋
$←− Prove(CRSEK, 𝑥,𝑤) with properties as de-

scribed above. One can use Verify(CRSVK, 𝑥, 𝜋) to verify the proof,

which requires only a very small CRSVK. We note that Groth16

SNARKs are based on bilinear groups whose order depends on the

size of the input values. The currently most efficient implementa-

tion [81], which we use, uses bilinear groups of size up to 256 bits

and supports operations in F∗𝑝 with 𝑝 of size up to 255 bits.

2.2 Public Tally-Hiding for Systems With
Homomorphic Encryption

Our approach of obtaining a verifiable publicly tally-hiding e-voting

system by having talliers prove in ZK that 𝑓res (T) was computed

correctly from Enc(T) does not directly apply to all existing e-

voting systems, which often use homomorphic encryption for tally-

ing votes. For example, simply modifying Helios by letting talliers

publish only 𝑓res (T) plus a ZKP showing correctness of the result,

instead of publishing T, does not yield a secure system. Such a

ZKP would have to be computed locally by one of the talliers, who

would require as witnesses all private key shares in order to prove

knowledge of T𝑤 such that T𝑤 = Dec(Enc(T)). Revealing those

key shares would in turn allow that tallier to decrypt individual

votes and hence break ballot privacy entirely. One interesting op-

tion to tackle this problem might be to use the very recent concept

of distributed SNARKs which permit several parties, each holding

a share of a witness, to compute a SNARK in a distributed and

privacy preserving fashion [57, 75]. However, to protect the secrecy

of witness shares, these constructions heavily rely on MPC compo-

nents, so it is unclear whether and in how far this approach would

yield voting systems that are more efficient than fully tally-hiding

ones. Indeed, benchmarks by [75] indicate that currently available

distributed SNARKs are still too slow for our purposes.

In this work, we therefore propose a different approach, namely,

constructing an e-voting system based on an additively homomor-

phic commitment scheme. This follows a line of commitment-based

e-voting systems initiated by [30]. In Section 3 we show that using

this approach it is possible to build a publicly tally-hiding system

such that a single tallier is able to locally and thus efficiently com-

pute a SNARK showing correctness of the result.

2.3 Efficiently Proving Knowledge of the Tally
A SNARK can in principle be used to prove statements for arbitrary

NP-relations, however, the resulting performance (in terms of run-

time, memory overhead, bandwidth, etc.) quickly deteriorates and

becomes impractical for large circuits such as, e.g., cryptographic

algorithms (see, e.g., [39, 61]). Therefore, a main challenge in using

SNARKs consists of carefully constructing suitable circuits with

minimal numbers of constrains for the intended relations such that

the resulting SNARKs are practical. While we discuss the overall

circuits for our SNARKs in Section 4, we need as a central build-

ing block for all of our SNARKs an efficient circuit for verifying

decommitments, which we construct in the following.

Commitment Scheme. We use Pedersen commitments over a

group (G, ·) of order 𝑞 with generator𝑔 as introduced in [77]. Recall
that to compute a Pedersen commitment, one first takes an auxiliary

valueℎ defined byℎ = 𝑔𝑎 for a uniform𝑎
$←− F𝑞 and then commits to

a value 𝑣 ∈ F𝑞 with Com(𝑣,𝑟) = 𝑔𝑣ℎ𝑟 using a uniform 𝑟
$←− F𝑞 \ {0}.

1446

Kryvos: Publicly Tally-Hiding Verifiable E-Voting CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

Pedersen commitments are a standard solution that have a simple

structure and hence also rather small computational complexity.

The choice of the group G significantly affects efficiency of

the corresponding SNARK, with some groups being more favor-

able than others. We use a Montgomery elliptic curve, specifically

Curve25591, which is well known to provide good synergy with

Groth16 SNARKs. Specifically, coordinates of points on this curve

use only 255 bit as provided by [81]. Furthermore, the Montgomery

ladder algorithm allows for relatively cheap exponentiation within

the SNARK as discussed next.
2

Designing the Circuit. A Pedersen commitment 𝑔𝑣 · ℎ𝑟 requires
exponentiations and multiplications, with exponentiations being

the most expensive operation. We leverage results from the C∅C∅-
framework [61], which observes that the highly efficient Mont-

gomery ladder algorithm for exponentiations can be implemented

with relatively few constraints. However, a major limitation of this

approach is that the resulting values cannot directly be multiplied.

We therefore extend this approach to also support efficient mul-

tiplication of such values. Among others, we achieve this by design-

ing small circuits for the fast 𝑦-coordinate recovery algorithm by

Okeya and Sakurai [74], conversion between projective and affine

coordinates, and point multiplication. We construct the overall cir-

cuit for computing a Pedersen commitment by combining these

components, where combinations are chosen in such a way that

they require the least number of constraints. We provide full details

of our circuit, including a discussion of choices, in our technical

report [54].

Optimizing Constraints. A crucial and labor intensive step for

obtaining an efficient SNARK is to optimize the implementation via

constraints (see e.g., [61, 76]). While one can in principle, specify an

arithmetic circuit defined in a suitable language and then automati-

cally compute a representation via constraints, such a generic con-

version results in needlessly large numbers of constraints and can

lead to impractical SNARKs. Obtaining efficient SNARK proofs is

crucial for our voting system. We therefore manually implemented

and optimized our circuit via constraints. This includes individual

gates and operations such as various comparison and branching

operations, elliptic curve point conversions, and multiplications

as well as combinations of those gates within specific algorithms,

like the Montgomery ladder and the Okea-Sakurai algorithm, and

within the overall commitment circuit.

As an example of themany optimizations that we have performed

— all of which, even if small, add up quickly — consider a division

gate. For divisions, one has to handle the special case of a divisor

of value zero. Such cases can occur while evaluating a path not

taken by the control flow during branching. Using multiple such

divisions is costly. However, it is possible to optimize the number

of constraints for the divisions by reusing intermediate results for

specific values for multiple divisions. With this, one only needs to

perform the error handling once. The same technique can be applied

for various other error handling cases, for example for dealing with

the point at infinity. Using knowledge of the nesting of the gates

allows for even more efficient error handling. For example, if the

2
To stay compatible with the usual notation for Pedersen commitments, we denote the

group operation on an elliptic curve with · instead of the usual +. The wording addition
and multiplication is consequentially changed to multiplication and exponentiation.

𝑁 Pedersen Commitments 1 Pedersen Vector Commitment

Choices/ Constraints Prove CRSEK CRSVK Constraints Prove CRSEK CRSVK
𝑁 [s] [GB] [MB] [s] [GB] [MB]

1 6,549 0.903 0.01 0.98 6,549 0.903 0.01 0.98

5 32,745 3.472 0.05 4.9 10,077 1.249 0.01 1.5

10 65,490 6.684 0.09 9.8 14,487 1.681 0.02 2.17

25 163,725 13.107 0.18 24 27,717 2.546 0.03 4.15

50 327,450 32.376 0.46 49 49,767 5.142 0.07 7.45

100 654,900 64.491 0.91 98 93,867 9.467 0.13 14

150 982,350 96.606 1.37 147 137,967 13.792 0.19 20

200 1,309,800 128.722 1.82 196 182,067 18.117 0.25 27

250 1,637,250 160.837 2.28 245 226,167 22.442 0.31 34

Table 1: Comparison of Pedersen commitments and Peder-
sen vector commitments in a single Groth16 SNARK. We
consider inputs 𝑣 of at most 32 bits.

output of a gate is an elliptic curve point that cannot be the point

at infinity, independently of the input values, no such checks have

to be performed for the following gate.

Further Optimizing The Commitment Circuit. Even with the

Montgomery ladder and an optimized QAP representation, the ex-

ponentiation step is still very expensive. In our and similar settings,

we can further improve this step via two additional optimizations:

Firstly, we can upper bound the length of the input 𝑣 of the com-

mitment scheme with 32 bits (instead of the full 255 bits), which

is sufficient for our application. We discuss the effects of this opti-

mization in our technical report [54].

Secondly, as part of our system, we will need to commit to mul-

tiple input values 𝑣𝑖 , say, 𝑁 many. If one implements this in a

straightforward manner via standard Pedersen commitments, then

there will be 𝑁 separate commitments com(𝑣𝑖 ,𝑟𝑖), one per 𝑣𝑖 . Each
of these commitments introduces another exponentiation for some

randomness 𝑟𝑖 to obtain ℎ
𝑟𝑖
, which becomes very costly for large 𝑁

(cf. left side of Table 1). We solve this issue by using Pedersen vector
commitments [16]. Essentially, these commitments allow for com-

mitting to a vector 𝒗 = (𝑣1, . . . ,𝑣𝑁) with entries in F𝑞 by computing

Com(𝒗,𝑟) = 𝑔
𝑣1
1
· . . . ·𝑔𝑣𝑁

𝑁
·ℎ𝑟 for generators 𝑔1, . . . , 𝑔𝑁 of G chosen

uniformly at random. In this case, we say that 𝑁 is the slot size of
the commitment. One observes that Pedersen vector commitments

are also additively homomorphic, perfectly hiding, and computa-

tionally binding under the discrete logarithm assumption [5]. This

construction requires just one exponentiation with randomness of

255 bits to commit to all 𝑁 inputs. This in turn drastically improves

both the computational cost but also the sizes of the CRSs of the

SNARK as shown in Table 1. We will further discuss the optimal

choice of 𝑁 in the context of our voting scheme in Section 4, and

our technical report [54] illustrates further possible tradeoffs.

3 THE Kryvos SYSTEM
In this section, we present the Kryvos e-voting system, which is the

first verifiable e-voting system which directly follows the publicly

tally-hiding paradigm. Kryvos is a generic framework that supports

many different voting methods and result functions. We present its

implementation and benchmarks for specific voting methods and

result functions in Section 4.

3.1 System description
We now describe the Kryvos e-voting system. Our description fo-

cuses on those parts of Kryvos that are at the core of the public
tally-hiding property. Well-known and standard enhancements

1447

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Nicolas Huber et al.

to security, in particular distributed implementations of bulletin

boards (e.g., [33, 52, 58]) and mechanisms to mitigate trust on the

voting devices (e.g., [12, 41]), are orthogonal to and fully compatible

with Kryvos.

Participants. The Kryvos protocol is run among a voting author-

ityAuth, votersV1, . . . ,V𝑛𝑣
, talliers T1, . . . , T𝑛𝑡 , and a bulletin board

(BB). We assume that for each party there exists a mutually authen-

ticated channel to the BB.

Votingmethod. Kryvos is parameterized by𝑛choices ∈ N denoting

the number of choices of an election and a set of valid voting

options 𝐶 ⊆ (F𝑞)𝑛choices
, the choice space over the prime field F𝑞 .

Both parameters are instantiated depending on the specific voting

method that should be captured. For example, for a single-vote

election, where each voter can give a single vote to one out of three

candidates, we have 𝑛choices = 3 and the choice space 𝐶single =

{(𝑎,𝑏,𝑐) | 𝑎,𝑏,𝑐 ∈ {0,1}, 𝑎 + 𝑏 + 𝑐 = 1}.
Kryvos is further parameterized by a deterministic polynomial

time function 𝑓res : {0,1}∗ → {0,1}∗ which computes the final result
of the election based on a set of aggregated votes, i.e., the tally

of the election. For example, if we are interested only in the win-

ner/winners of the election, then 𝑓res returns the index/indices of

the highest entry/entries. The tuple (𝐶, 𝑓res) defines the abstract
voting method for which we describe Kryvos; specific instantiations
are given in Section 4.

Setup phase. In this phase, all election parameters are fixed and

posted on the BB by Auth: the list
®id of eligible voters, opening

and closing times, the election ID id
election

, and the voting method

(𝐶, 𝑓res). Additionally, Auth publishes a decomposition 𝑛choices =

𝑛tuples · 𝑁 that induces a decomposition on the choice space 𝐶 ⊆
(F𝑞)𝑛choices = (F𝑞)𝑁 × . . .×(F𝑞)𝑁 yielding a splitting of a vote 𝑣 ∈ 𝐶
into 𝑛tuples tuples, each of size 𝑁 . The reason for this splitting lies

in the usage of homomorphic vector commitments as introduced

in Section 2. Splitting allows for decomposing a commitment to a

vote 𝑣 into 𝑛tuples vector commitments with 𝑁 slots. We will argue

in Section 4 that this decomposition can be necessary for very

large values of 𝑛choices. A vote 𝑣 = (𝑣1, . . . , 𝑣𝑛tuples) then contains

in 𝑣1 the respective entries for the first 𝑁 choices, in 𝑣2 the next

𝑁 choices and so on.
3
This assignment is published by Auth on B.

Furthermore, Auth creates and publishes the CRSs required for the

Groth16 SNARK proofs onB. Each tallier T𝑘 runs the key generation

algorithm KeyGenE of an IND-CCA2-secure public-key encryption

scheme E = (KeyGenE , Enc,Dec) to generate its public/private

(encryption/decryption) key pair (pk𝑘 , sk𝑘) and posts (𝑘, pk𝑘) on
B.

Voting phase. Let𝑚𝑖 = (𝑚𝑖,1, . . . ,𝑚𝑖,𝑛choices) ∈ 𝐶 be the vote of

voter V𝑖 . The voter creates full-threshold secret sharings of every

component 𝑚𝑖, 𝑗
of her vote to share 𝑚𝑖, 𝑗

among the 𝑛𝑡 talliers:

(𝑚𝑖, 𝑗

1
, . . . ,𝑚

𝑖, 𝑗
𝑛𝑡) with

∑𝑛𝑡
𝑘=1

𝑚
𝑖, 𝑗

𝑘
mod𝑞 =𝑚𝑖, 𝑗

.

Then, for each tallier T𝑘 , the voter decomposes (𝑚𝑖,1

𝑘
, . . . ,𝑚

𝑖,𝑛choices
𝑘

)
into (𝑡𝑖,1

𝑘
, . . . , 𝑡

𝑖,𝑛tuples

𝑘
), where 𝑛choices = 𝑛tuples · 𝑁 is as defined by

Auth in the setup phase (see above). Now the voter creates a com-

mitment to each tuple: 𝑐
𝑖,𝑙

𝑘
← Com(𝑡𝑖,𝑙

𝑘
; 𝑟
𝑖,𝑙

𝑘
).

3
If 𝑛choices is not divisible by 𝑁 , we can artificially grow the choice space so that

𝑛choices is a multiple of 𝑁 by appending zeros to a vote.

Observe that since the commitment scheme is additively ho-

momorphic, the commitment 𝑐𝑖,𝑙 :=
∑𝑛𝑡
𝑘=1

𝑐
𝑖,𝑙

𝑘
opens to the tuple

(𝑚𝑖,1+(𝑙−1) ·𝑁 , . . . ,𝑚𝑖,𝑙 ·𝑁), i.e., the votes for the choices belonging
to the 𝑙-th factor in the decomposition of (F𝑞)𝑛choices

specified by

Auth, using opening value 𝑟 𝑖,𝑙 :=
∑𝑛𝑡
𝑘=1

𝑟
𝑖,𝑙

𝑘
. That is, one can obtain

commitments on the original vote of V𝑖 by combining all of the

commitments on the full-threshold shares.

To guarantee the well-formedness of all commitments and the

vote contained therein, the voter creates a Groth16 SNARK proof

Π𝑖
ballot proving that (𝑐𝑖,1, · · · , 𝑐𝑖,𝑛tuples) commits to a vote𝑚𝑖 ∈ 𝐶;

we provide more information, including formal definitions of the

relations shown by the proof, in our technical report [54].

For each tallier T𝑘 , the voter uses T𝑘 ’s public key pk𝑘 to securely

send the opening values for (𝑐𝑖,1
𝑘
, . . . ,𝑐

𝑖,𝑛tuples

𝑘
) to T𝑘 :

𝑒𝑖
𝑘
← Enc(pk𝑘 , ((𝑡

𝑖,1

𝑘
, . . . , 𝑡

𝑖,𝑛choices
𝑘

), (𝑟 𝑖,1
𝑘
, . . . , 𝑟

𝑖,𝑛tuples

𝑘
))) .4

To complete the voting process, V𝑖 submits her ballot b𝑖 =

(𝑖, (𝑐𝑖,𝑙
𝑘
)𝑙,𝑘 ,Π𝑖

ballot, (𝑒
𝑖
𝑘
)𝑘) to the bulletin board. B then verifies that

i) the voter is eligible to vote, ii) has not submitted a valid ballot

before, iii) the voter’s SNARK proof is valid, and iv) no voter has

previously submitted a vector containing any of the ciphertexts

in (𝑒𝑖
𝑘
)𝑘 .5 If all checks succeed, then the BB adds b𝑖 to the list of

ballots
®b and publicly updates

®b.
Now, the list

®b needs to be prepared by the talliers for the tallying
phase. Each tallier T𝑘 decrypts every 𝑒𝑖

𝑘
posted on B:

((𝑡𝑖,1
𝑘
, . . . , 𝑡

𝑖,𝑛tuples

𝑘
), (𝑟 𝑖,1

𝑘
, . . . , 𝑟

𝑖,𝑛tuples

𝑘
)) ← Dec(sk𝑘 , 𝑒𝑖𝑘).

Then T𝑘 checks whether each pair (𝑡𝑖,𝑙
𝑘
, 𝑟
𝑖,𝑙

𝑘
) is a valid opening for

𝑐
𝑖,𝑙

𝑘
. If this is not the case, then T𝑘 publishes a NIZKP of correct

decryption of 𝑒𝑖
𝑘
on B so that one can verify that 𝑒𝑖

𝑘
is invalid; as

a consequence, the corresponding ballot will not be counted.
6
All

of the following steps, including the tallying phase, are performed

only for those ballots that have passed this check; for simplicity of

presentation, we therefore assume that all voters have submitted a

valid ballot.

Tallying phase. Everyone can homomorphically aggregate the

public commitments on B by computing 𝑐⊥,𝑙 ← ∑𝑛𝑡
𝑘=1

∑𝑛𝑣

𝑖=1
𝑐
𝑖,𝑙

𝑘
for

each 1 ≤ 𝑙 ≤ 𝑛tuples. In parallel, the talliers homomorpically aggre-

gate the corresponding opening values. First, each tallier T𝑘 inter-

nally computes for each 1 ≤ 𝑙 ≤ 𝑛tuples : 𝑡
⊥,𝑙
𝑘
← ∑𝑛𝑣

𝑖=1
𝑡
𝑖,𝑙

𝑘
; 𝑟

⊥,𝑙
𝑘
←∑𝑛𝑣

𝑖=1
𝑟
𝑖,𝑙

𝑘
,where the 𝑡

𝑖,𝑙

𝑘
’s and 𝑟

𝑖,𝑙

𝑘
’s are the opening values decrypted

above. Next, each tallier T𝑘 shares (𝑡⊥,𝑙
𝑘
)𝑙 and (𝑟⊥,𝑙𝑘

)𝑙 with the other

4
We assume that all plaintexts have fixed length. This can easily be guaranteed here.

This is necessary to provide privacy for the votes.

5
This so-called ballot weeding process prevents malicious voters from submitting

ballots that are related to the ballots from honest voters, which would break privacy.

In particular, due to the CCA2-secure encryption, which must contain the correct

randomness for the commitments, the only way to submit a valid related ballot is

by creating a new ballot that re-uses some of the (unmodified) ciphertexts from the

honest ballots. This is caught by the ballot weeding procedure if at least one tallier is

honest (which is always assumed for privacy).

6
For example, one can combine the IND-CCA2-secure PKE by Cramer-Shoup [31]

with the NIZKP by Camenisch-Shoup [19]. See our technical report [54] for the precise

relation to be proven.

1448

Kryvos: Publicly Tally-Hiding Verifiable E-Voting CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

talliers so that for each 1 ≤ 𝑙 ≤ 𝑛tuples, the trustees can inter-

nally compute 𝑡⊥,𝑙 ← ∑𝑛𝑡
𝑘=1

𝑡
⊥,𝑙
𝑘

; 𝑟⊥,𝑙 ← ∑𝑛𝑡
𝑘=1

𝑟
⊥,𝑙
𝑘

. After this

step, all talliers can compute the (aggregated) tally of all votes

T := (𝑚⊥,1, . . . ,𝑚⊥,𝑛choices), where𝑚⊥, 𝑗 is the total number of votes

for choice 𝑗 .

The final step is then performed by a designated tallier. First, this

tallier computes the election result res ← 𝑓res (T). She then com-

putes a Groth16 SNARK on public inputs 𝑐⊥,1, . . . , 𝑐⊥,𝑛tuples
and res

that proves knowledge of T (as well as knowledge of randomness)

such that 𝑐⊥,1, . . . , 𝑐⊥,𝑛tuples
is a list of commitments on T and res is

the output of 𝑓res (T) (cf. our technical report [54] for the formal

definition of the relation). The result res and the SNARK proof are

then published on the BB.

Public verification phase. In this phase, every participant, in-

cluding the voters or external observers, can verify the correctness

of the tallying procedure, in particular, the correctness of all ZKPs.

Note in particular that homomorphic aggregations of commitments

can be re-computed by external observers without knowing any

openings.

3.2 Discussion
Using SNARKs to prove ballot validity.Using a general Groth16
SNARK to prove ballot validity has the advantage that Kryvos can
support essentially arbitrary choice spaces and hence voting meth-

ods, including very complex ones such as ranked voting methods

and methods that assign points from a specific set and according to

certain rules to each candidate. As we show in Section 4.2, this ap-

proach is indeed practical. This support for arbitrary ballot formats

is also of interest beyond the area of (publicly) tally-hiding systems.

For example, as far as we are aware Kryvos is the first e-voting

system that supports ZKPs for Borda tournament style ballots. For

Condorcet ballots, Kryvos improves over previous efficient ZKPs

that even required talliers to perform part of the proof [48].

Kryvos can in principle also be combined with other existing

ZKPs for ballot correctness that are designed for a specific choice

space, where such ZKPs are available (e.g., [29]).

Generating CRSs. Note that our system requires honestly gener-

ated CRSs for the Groth16 SNARKs. There are several well-known

mechanisms that are practical with the parameters we need, such

as distributed generation of the CRS by multiple parties. We briefly

discuss such mechanisms in our technical report [54] for complete-

ness. For simplicity and since this is an orthogonal issue, we here

compute CRSs on a local computer.

4 IMPLEMENTATION OF Kryvos AND
EVALUATION

We provide a proof of concept implementation of Kryvos that we
have instantiated for a wide range of both simple and complex

voting methods as well as various result functions; our implemen-

tation is available at [53]. We make use of the libsnark library [81]

for the Groth16 SNARK. While in Section 3 we gave a high-level

description of Kryvos, there are various ways in how Kryvos can
be implemented, involving among others fixing a slot size 𝑁 , a suit-

able choice space, designing and optimizing circuits for both ballot

and tallying SNARKs. Coming up with an efficient implementa-

tion needs care. We follow various implementation paths, carefully

evaluate them, and by this develop a practical implementation.

All of the following benchmarks, were obtained using Ubuntu

20.04 with 16 GB of RAM and eight cores. All benchmarks are

performed without leveraging parallelism, i.e., we use just a single

core to make the results independent of the specific core count,

thereby making it easier to compare with other benchmarks. Of

course, in practice one would parallelize, e.g., if multiple SNARK

proofs need to be computed, thereby reducing the overall runtime

depending on the number of cores available.

4.1 The Optimal Slot Size
Recall from Section 3.1 that Kryvos uses Pedersen vector commit-

ments, where the number of inputs (slot size) 𝑁 can be chosen ar-

bitrarily and in particular independently of the number of choices

𝑛choices. Before we present our concrete instantiations, we first

discuss and evaluate the choice of 𝑁 in relationship to 𝑛choices.

The slot size 𝑁 heavily influences the circuit size for proving

a correct opening of the commitments, which is also the main

determining factor for the size and hence the performance of the

overall ballot and tallying SNARKs (cf. in Section 4.2). Hence, the

runtime and bandwidth of ballot/tallying SNARKs for 𝑁 = 1 and

𝑁 = 𝑛choices roughly corresponds to the left and right columns

of Table 1, with each row indicating a possible value for 𝑛choices.

We have evaluated the exact performance of showing an opening

of an entire ballot/tally (possibly consisting of several separate

commitments) via a SNARK not just for these extremes but also for

possible intermediate choices, e.g., having two commitments with

𝑁 =
𝑛choices

2
, and provide full results with an in-depth discussion in

our technical report [54].

To summarize our findings, the combined runtime and band-

width used for ballot and tallying SNARKs for both proving cor-

rectness of a ballot and correctness of SNARKs is minimal for

𝑁 = 𝑛choices. As per Table 1, this yields practical performance

up to 𝑛choices = 250 choices, which is sufficient for most of our use

cases and will therefore be used in what follows. The only excep-

tion are IRV elections, where 𝑛choices ≫ 250 (e.g., 𝑛choices = 1,957

for 6 candidates). The limiting factor in this setting is the ballot

SNARK: For 𝑁 = 𝑛choices, computing the SNARK would require

downloading a CRS of size 2.4 GB and computing 170 seconds,

which is typically not considered acceptable for a voter. By setting

𝑁 to instead be a large fraction of 𝑛choices, say, 𝑁 =
𝑛choices

8
, the

overall runtime for proving knowledge of a ballot will be slightly

larger but one can compute this statement in parallel using multiple

much smaller SNARKs. This leads to a smaller CRS and reduces

overall runtime to an acceptable level for voters with multi core

CPUs. We discuss this in detail in Section 4.3.

4.2 Implementation and Evaluation of Kryvos
for various voting methods/result functions

We have instantiated and evaluated Kryvos for a variety of voting

systems and result functions. As it turns out, there are essentially

two main requirements for a voting method to be supported by

Kryvos in practice: Firstly, the voting method must support a ballot

format that allows for homomorphic aggregation of ballots. This

1449

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Nicolas Huber et al.

is necessary to protect the privacy of voters against the talliers.

Secondly, it must be possible to define a choice space such that the

resulting ballots, including the corresponding ballot SNARKS, can

be created efficiently.

We note that a voting method essentially defines a choice space

which is in turn required for proving ballot validity. More precisely,

proving ballot validity includes proving that a vote belongs to the

respective choice space. An election result function, however, does

not (only) depend on the voting method and its corresponding

choice space. Some result functions only make sense for certain

choice spaces though. For systems like Single-Vote and Multi-Vote,

we consider various result functions that e.g. compute only the

candidate with the most votes or all candidates that gained at least

a certain threshold of votes. The chosen result function only influ-

ences the tallying SNARK but not the ballot SNARK.

Concretely, we have implemented the following popular and

widely used voting methods and result functions for Kryvos with
full details provided in our technical report [54]: (i) Single-Vote and
Multi-Vote with the result functions Most Votes, Vote Threshold

and Best 𝑛 (unordered), (ii) Borda Count (as used in the Eurovision

Song Contest [38] and for parliamentary elections in the Republic

of Nauru [80]) with the same result functions as Single-Vote and

Multi-Vote, (iii) Majority Judgement [6] (used for example in po-

litical research polling in the US, France and Germany [7]) with

result functions to compute a Median Grade and complete Majority

Judgement Evaluation, (iv) Condorcet Methods (as used for internal

elections by the Debian Project [34]) with a result function for the

computation of the Smith Set, (v) and Instant Runoff-Voting (IRV)

(as used used for example in political elections in Australia [73],

India [44], the UK [85], and the US [70]) where we implemented

the result function used for the New South Wales Legislative As-

sembly election [73]. In what follows, we give an overview of our

benchmarking results. The IRV election method is then discussed

in detail in Section 4.3. Full details of the remaining voting methods

and result functions, including descriptions of those methods and

formal definitions of the corresponding choice spaces, are available

in our technical report [54].

Tallying for various result functions. The tallying phasemainly

consists of aggregating the ballots and computing the final Groth16

SNARK proof that shows correctness of the election result. Ag-

gregation of Pedersen (vector) commitments is very fast and can

mostly be performed already during the previous voting phase.

Hence, the driving factor and focus of our benchmarks lies in the

final Groth16 SNARK creation. For all result functions, the tallying

SNARK essentially takes the aggregated commitment(s) on the tally

and the election result as public input, the commitment opening(s)

as secret input, and then proves that the opening corresponds to

the commitment and that the election result was obtained by ap-

plying 𝑓res to the tally contained in the opening. In our technical

report [54], we provide formal definitions of all relations shown by

the SNARKs and NIZKPs (for the encryptions of the ballots) used

for our instantiations.

The runtime for computing the resulting tallying SNARKS for all

of our result functions, including IRV, is shown in Figure 1, where

the runtime scales linearly in the number of choices 𝑛choices. Our

benchmarks show that SNARK computation and hence the tallying

Figure 1: Benchmarks of all implemented election result
functions in comparison toOrdinos. Note that the 𝑥-axis uses
the number of choices instead of the number of candidates.
phase of Kryvos is very fast even for large numbers of choices, e.g.,

almost all voting methods and result functions (green line) require

only about 100s for 𝑛choices = 1000 choices. Furthermore, we can

see that in most cases the result function has only a negligible

impact on the overall runtime, which is rather dominated by proving

knowledge of a decommitment and hence practically identical in

almost all cases. The only exception is the majority judgment voting

method with 6 grades and full result evaluation returning a single

winner. The algorithm for computing the result is so complex that

it has a small but noticeable effect on the overall runtime, as can

between seen in Figure 1. Figure 1 also shows the runtime of the

tallying phase of two instantiations of Ordinos, the most current

fully implemented and provably secure verifiable and fully tally-
hiding voting system, which illustrates that Kryvos indeed achieves
its goal of much better performance over fully tally-hiding systems.

We give a more detailed comparison of Kryvos with Ordinos and
the system by Canard et al. [21] for Majority Judgement in Section 6.

While in many voting methods, such as single and multi vote

elections, a single choice directly corresponds to one candidate, this

is not always the case. E.g., the in case of majority judgement with

𝑟 grades, we need 𝑟 choices to represent each candidate (essentially,

the voter sets one out of 𝑟 choices to 1 with all other choices being

0 to indicate a grade in such a way that it can be aggregated). In

the case of Condorcet voting, which is a ranked voting method

where every candidate is compared with every other candidate, the

number of choices is even quadratic in the number of candidates.

Therefore, Figure 2 translates the runtime results of Figure 1 from

numbers of choices 𝑛choices to the corresponding number of sup-

ported candidates. Additionally, Figure 2 also shows the sizes of the

CRSs. As can be seen, in most cases even elections with more than

80 candidates can still be tallied in under 3 minutes. This candidate

size should already cover most elections from practice. But our

system also scales quite well for much larger numbers. The only

exceptions are IRV (not shown in this figure but discussed sepa-

rately in Section 4.3) and Condorcet (with the Smith set evaluation

function, but the same should also apply for other result functions),

which scales worse due to the quadratic translation from choices

to candidates. We note, however, that Condorcet elections are typi-

cally performed only for small to moderate numbers of candidates

(less than a dozen) since voters have to fully rank all candidates
on their ballot, which beyond already 20 candidates becomes very

tedious and impractical. So for practical purposes the performance

of Kryvos when applied to Condorcet appears to be sufficient.

Ballot validity. To show validity of a ballot (for all voting methods

except IRV, which is discussed in Section 4.3), a voter computes

1450

Kryvos: Publicly Tally-Hiding Verifiable E-Voting CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

Figure 2: Benchmarks of Different Election Result Func-
tions.

Figure 3: Benchmarks of SNARKs for proving Ballot validity.
Note that the line for Single-Vote coincides with the line for
Multi-Vote.

a single Groth16 SNARK that takes the single Pedersen vector

commitment of slot size 𝑁 = 𝑛choices obtained by aggregating the

commitments on all vote shares of a voter as public input, the

opening as secret input, and then proves that the opening is from

the correct choice space and corresponds to the commitment. Just as

for the tallying SNARK, the runtime for computing a ballot SNARK

is dominated by proving knowledge of a decommitment. Hence,

runtime is linear in the number of choices 𝑛choices and essentially

independent of the choice space. In Figure 3, we show the runtime

translated to the number of candidates as well as the sizes of the

CRSs. As this figure shows, voters can efficiently prove the validity

of their ballots for all voting methods. Even in the worst case of

Condorcet in an election with, say, 20 candidates (which is at the

very high end for Condorcet), a voter can prove ballot validity in

less than 40 seconds using a CRSEK of less than 0.5 GB.

Public Verification Phase. Each Groth16 SNARK proof can be

verified in ∼15 ms using the smaller CRSVK, where a single proof
is of size ∼ 5 KB. As an example, consider a single vote election

(𝐶single) with an arbitrary number of talliers and up to 𝑛choices =

1,000 candidates and 𝑛𝑣 = 100,000 voters. Such an election requires

100,000 Groth16 SNARK proofs for showing well-formedness of

ballots and a single Groth16 SNARK proof for showing correctness

of the election result. In total, the size of all proofs is ∼500MB with

a total sequential verification time of ∼ 25 minutes. Verification

requires two CRSVKs, both of them having size less than 150MB.

We note that this verification can be highly parallelized and also

already performed while other phases, such as the voting phase,

are still running.

4.3 Instantiation of Instant-Runoff Voting
Instant-runoff-voting (IRV) is a quite complex ranked votingmethod

used for example in political elections in Australia [73], India [44],

the UK [85], and the US [70]. In IRV, the ballot of a voter contains a

(full or partial) ranking of all of the candidates according to her pref-

erences. Tallying of these ballots is then done in multiple rounds:

in each round, if a candidate is ranked first by an absolute majority

of voters, this candidate immediately wins the election. Otherwise,

the candidate who is ranked first by the least number of voters is

eliminated. As a result of this elimination, all ballots are edited by

removing the eliminated candidate, allowing all of the following

candidates to move up in the ranking. This process is then iterated.

To handle possible ties, IRV versions include different tie-breaker

mechanisms to decide how the round proceeds. One of the more

complex versions of IRV is used for the New SouthWales Legislative

Assembly election [73] (called NSW-IRV in the following), which

not only supports partial rankings of candidates but also includes a

sophisticated tie-breaking mechanism (cf. our technical report [54]).

We therefore use NSW-IRV for our benchmarks.

For an IRV instantiation of Kryvos, we need to be able to aggre-

gate the tally. This ensures a minimal level of vote privacy towards

the talliers and that runtime of the tallying phase is independent

of the number of voters. We achieve this by using the choice space

𝐶single from the single vote method but interpret each choice as a

(full or partial) ranking of candidates. For example, for 𝑛cand = 5,

we have 𝑛choices = 120(= 5!) choices for fully ranked IRV, where

each choice represents a permutation of the full set of candidates,

and 𝑛choices = 326 for partially ranked IRV (as in NSW-IRV), where

each choice represents a permutation of a partial set of candidates.

The result function 𝑓res of Kryvos is set to capture the multiple

tallying rounds, including modifications to the ballots after each

round as well as tie breaker mechanisms of the specific IRV version.

However, this choice space grows exponentially in the number

of candidates and thus quickly leads to situations where voters

cannot prove validity of their ballots in reasonable time (for the

slot size 𝑁 = 𝑛choices). E.g., while the case of 𝑛cand = 5 and hence

𝑛choices = 326 is still manageable for voters (the ballot SNARK

requires only 30 seconds to compute), for 𝑛cand = 6 and hence

𝑛choices = 1,957 computing the ballot SNARK already requires 3

minutes, which is typically not considered acceptable. One option

to try and improve this situation would be to replace the ballot

SNARKs with traditional specialized ZKPs that are optimized for

the choice space 𝐶single. However, as we show in our technical

report [54], this approach only improves ballot ZKP runtime for

very small slot sizes 𝑁 close to 1, in which case the runtime of the

tallying SNARK becomes entirely impractical.

However, we can actually improve the runtime of the ballot

SNARK by splitting the ballot into a small number of parts and

then showing multiple SNARKs in parallel. Specifically, encoding a

ballot via 𝑛tuples > 1 separate commitments, each having slot size

𝑁 ≈ 𝑛choices/𝑛tuples, one can show the well-formedness of a ballot

belonging to 𝐶single := {(𝑥1, . . . , 𝑥𝑛choices) | 𝑥𝑖 ∈ {0,1},
∑𝑛choices
𝑖=1

𝑥𝑖 =

1}7 via multiple sub-statements, where each statement is concerned

only with one commitment, namely:

(a) For each commitment 𝑐𝑖, 𝑗 , 1 ≤ 𝑗 < 𝑛tuples:

all slots 𝑥 (𝑗−1) ·𝑁+1, . . . , 𝑥 𝑗 ·𝑁 in 𝑐𝑖, 𝑗 are either 0 or 1.

7
This approach is also applicable to certain other choice spaces.

1451

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Nicolas Huber et al.

Commitments (= 𝑛tuples) 1 2 3 5 10

Slot Size 𝑁 1,957 979 653 392 196

Ballot SNARK: # Constraints 1,741,532 874,046 584,884 353,377 179,525

Ballot SNARK: CRSEK [GB] 2.42 1.22 0.81 0.49 0.25

Ballot SNARK: CRSVK [MB] 261 131 88 53 27

Ballot SNARK: Prove [s] 171 85 57 34 17

Ballot SNARK: Total Time 171 257 230 209 196

Tallying SNARK: # Constraints 1,748,926 1,755,475 1,762,024 1,774,240 1,802,575

Tallying SNARK: CRSEK [GB] 2.43 2.44 2.45 2.47 2.5

Tallying SNARK: CRSVK [MB] 262 263 264 266 270

Tallying SNARK: Prove [s] 171 172 173 174 177

Table 2: Comparison of various slot sizes for NSW-IRV with
𝑛cand = 6 and thus 𝑛choices = 1,957.

(b) For 𝑐𝑖,𝑛tuples
: the first slots 𝑥 (𝑛tuples−1) ·𝑁+1, . . . , 𝑥𝑛choices are ei-

ther 0 or 1, and all remaining slots 𝑥𝑛choices+1, . . . , 𝑥𝑛tuples ·𝑁
are 0.

(c) For 𝑐𝑖 :=
∑𝑛tuples

𝑗=1
𝑐𝑖, 𝑗 : The commitment contains a single slot

with value 1 and all other slots are 0.
8

In our technical report [54] we describe a mechanism that allows

for using single CRS for showing all of the above statements, in-

stead of having three separate CRS each of them with roughly the

same size. Using this method, we have to determine a suitable slot

size 𝑁 (and hence corresponding 𝑛tuples). A smaller 𝑁 allows for

higher parallelism up to the number of CPU cores available and

hence improves runtime for the ballot SNARK. At the same time, a

smaller 𝑁 increases the combined runtime of all ballot sub-SNARKs

(as shown in Section 4.1 but also since (c) introduces an additional

decommitment over a new aggregated commitment, which is not

necessary if all statements are shown in a single SNARK) and of the

single tallying SNARK, which cannot be parallelized. Table 2 shows

the benchmarks for various possible slot sizes for an IRV election

with 6 candidates. The line “Ballot SNARK: Prove” indicates the run-

time for computing a single substatement and hence also indicates

the overall runtime if all statements (1 statement for 𝑛tuples = 1 and

𝑛tuples + 1 statements otherwise due to the addition of (c)) can be

computed in parallel. The line “Ballot SNARK: Total Time” gives

the combined sequential runtime. As the table shows, even if we

use only 𝑛tuples = 3 and hence 𝑁 ≈ 𝑛choices/3, then a voter with a

commonly available quad core CPU can already construct a ballot

in less than a minute, which is manageable. The performance pro-

gressively improves as a larger number of cores is available, while

the tallying SNARK remains almost as efficient as for 𝑛tuples = 1,

i.e., 𝑁 = 𝑛choices. Hence, using the above construction Kryvos can
also handle IRV elections with 6 candidates.

Following the case study of [79], we illustrate the overall per-

formance of Kryvos by using real election data from the 2015 New

South Wales state election for the Legislative Assembly [36]. More

specifically, we consider the electoral districts of Albury (five candi-

dates) and Auburn (six candidates), which were also target elections

for a partially tally-hiding election system proposed in [79]. Our

results are given in Table 3, showing that such (complex) elections

8
While (a), (b), and (c) in conjunction prove the well-formedness of a ballot in ZK,

they actually do not prove knowledge of a witness. Intuitively, this is because one

can re-arrange the components of a ballot with valid proofs to create a new ballot

with valid proofs, even without knowing the contents of the commitments. However,

Kryvos actually only requires a zero knowledge proof of correctness in order to be

secure (cf. Section 5). Alternatively, one could add the position of each commitment as

additional public input.

District Albury Auburn

Number of Candidates 5 6

Number of Voters 46347 43783

Kryvos [79] Kryvos [79]

Tallying 30 s 2h 177 s 15 h

Tallying: SNARK Proof [s] 30 177

Tallying: SNARK CRSEK Size [MB] 450 2,500

Tallying: SNARK CRSVK Size [MB] 47 270

Table 3: Benchmarks of NSW-IRV. We note that the bench-
marks of [79] are taken directly from [79]which uses a setup
comparable to the one we used for Kryvos, cf. our technical
report [54]. For Kryvos, we used a slot size of 196.

can be performed in a publicly tally-hiding way using Kryvos. con-
sidered.

5 SECURITY
In this section, we formally show that Kryvos enjoys verifiability
and privacy properties as desired. For this purpose, we, for the first

time, define the notion of publicly tally-hiding e-voting (Section 5.3).

5.1 Computational Model of Kryvos
We start by formally modeling Kryvos using a general and estab-

lished computational framework (see, e.g., [27, 65, 66]) that we can

use both for analyzing verifiability and privacy of Kryvos.
The computational model introduces the notion of a process

which can be used to model protocols (we recall some details in

our technical report [54].). Essentially, a process 𝜋P modeling some

protocol P is a set of interacting ppt Turing machines which capture

the honest behavior of protocol participants. The protocol P runs

alongside an adversary A, modeled via another process 𝜋A, which

controls the network and may corrupt protocol participants; here

we assume static corruption. We write 𝜋=(𝜋P∥𝜋A) for the com-

bined process. Kryvos can be modeled in a straightforward way as

a protocol PKryvos (𝑛𝑣,𝑛𝑡 ,𝐶,𝑓res,𝜇) in the above sense. Recall from

Section 3 that we denote the number of voters by 𝑛𝑣 , the number

of talliers by 𝑛𝑡 , and the voting method by (𝐶,𝑓res). By 𝜇 we denote

a probability distribution over 𝐶 according to which each honest

voter makes her choice. (Note that by this we model that the ad-

versary knows this distribution.) This choice is called the actual
choice of the voter. Besides the parties mentioned above, Kryvos
contains a BB. In our model of Kryvos, the voting authority Auth
is part of an additional agent, the scheduler S. Besides playing the
role of the authority, S schedules all other agents in a run according

to the protocol phases. The trust assumptions are as explained and

motivated at the beginning of Section 3.1 and the end of Section 3.2.

In particular, we assume that the voting authority Auth (more gen-

erally, the scheduler S) and the BB are honest, i.e., are not corrupted

by the adversary.

5.2 Verifiability
In this section, we establish the level of verifiability provided by

Kryvos. To this end, we use the generic and widely used verifiabil-

ity definition proposed in [65] which we briefly recall first. This

definition has already been applied to numerous e-voting protocols

and building blocks thereof [17, 47, 62–68].

Verifiability Framework. The verifiability definition [65] as-

sumes a “virtual” entity, called the judge J, whose role is to either

1452

Kryvos: Publicly Tally-Hiding Verifiable E-Voting CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

accept or reject a protocol run. In a real election, the program of the

judge can be executed by any party, including external observers

and even voters themselves. The judge takes as input solely public

information (e.g., the zero-knowledge proofs in Kryvos published
on the BB to perform certain checks). In the context of e-voting,

for verifiability to hold, the judge should only accept a run if “the

announced election result corresponds to the actual choices of the

voters”. This statement is formalized via the notion of a goal 𝛾 of

a protocol P. A goal 𝛾 is simply a set of protocol runs for which

the mentioned statement is true, where the description of a run

contains the description of the protocol, the adversary with which

the protocol runs, and the random coins used by these entities.

Now, following [65] (see also our technical report [54]), we say

that a goal 𝛾 is verifiable by the judge J in a protocol P, if the
probability that J accepts a run 𝑟 of P even though the goal 𝛾 is

violated (i.e., 𝑟 ∉ 𝛾) is negligible in the security parameter.

Analysis. We prove the verifiability result for Kryvos under the
following assumptions:

(V1) The encryption scheme is correct, the commitment scheme

is homomorphic and computationally binding, and all NIZKPs are

(computationally) sound.

(V2) The scheduler S, the judge J (see our technical report [54]),
and the BB are honest: 𝜑 = hon(S) ∧ hon(J) ∧ hon(B).9

Note that an arbitrary number of voters and talliers may be con-

trolled by the adversary.

We instantiate the verifiability definition with the goal 𝛾 (𝜑)
proposed in [27], which captures the intuition of 𝛾 given before

and with 𝜑 as above (see our technical report [54]).

Theorem 5.1 (Verifiability). Under the assumptions (V1) and
(V2), the goal𝛾 (𝜑) is verifiable by the judge J in the protocol PKryvos (𝑛𝑣,
𝑛𝑡 ,𝐶, 𝑓res, 𝜇).

Our formal proof of the verifiability theorem is provided in our

technical report [54]. This result mainly uses the soundness of the

NIZKPs/SNARKs employed in Kryvos. The underlying relations of

these proofs (see our technical report [54]) yield a “global” relation

which effectively ensures the goal 𝛾 (𝜑).

5.3 Privacy
Our privacy analysis of Kryvos makes use of the privacy definition

for e-voting protocols proposed in [66]. This definition is particu-

larly useful for our purposes as it allows us to measure the level of
privacy a protocol provides, especially compared to protocols that

publish the full tally, unlike other definitions (see, e.g., [15]). We

first briefly recall the privacy definition from [66] (Definition 5.2).

We then formally introduce the novel notion of publicly tally-hiding

e-voting (Definition 5.3) and show that Kryvos meets this notion.

Privacy Framework. The definition proposed in [66] formalizes

privacy of an e-voting protocol as the inability of an adversary to

distinguish whether some voter Vobs (the voter under observation)
who runs her honest program voted for choice𝑚0 or choice𝑚1.

To define this notion formally, we first introduce the following

notation for an arbitrary e-voting protocol P for voting method

(𝐶,𝑓res). Given a voterVobs and𝑚 ∈ 𝐶 , we consider instances of P of
9
See our technical report [54] for more details on 𝜑 .

the form (𝜋Vobs (𝑚)∥𝜋∗∥𝜋A) where 𝜋Vobs (𝑚) is the honest program
of the voter Vobs under observation who takes 𝑚 as her choice,

𝜋∗ is the composition of programs of the remaining parties in P,
and 𝜋A is the program of the adversary. In the case of Kryvos, 𝜋∗

includes the scheduler, the BB, all other voters, and all talliers.

Let Pr[(𝜋Vobs (𝑚)∥𝜋∗∥𝜋A) (ℓ) ↦→ 1] denote the probability that

the adversary writes the output 1 on some dedicated tape in a run

of (𝜋Vobs (𝑚)∥𝜋∗∥𝜋A) with security parameter ℓ and some𝑚 ∈ 𝐶 ,
where the probability is taken over the random coins used by the

parties in (𝜋Vobs (𝑚)∥𝜋∗∥𝜋A).
Now, vote privacy is defined as follows, where for Kryvos we

quantify over all adversaries 𝜋A which neither corrupt the BB nor

the scheduler S.

Definition 5.2 (Privacy). Let P be a voting protocol, Vobs be the
voter under observation, and 𝛿 ∈ [0,1]. Then, P achieves 𝛿-privacy,
if for all choices𝑚0,𝑚1 ∈ 𝐶 and all adversaries 𝜋A the difference

Pr[(𝜋Vobs (𝑚0) ∥𝜋∗ ∥𝜋A) (ℓ) ↦→ 1] − Pr[(𝜋Vobs (𝑚1) ∥𝜋∗ ∥𝜋A) (ℓ) ↦→ 1]

is 𝛿-bounded as a function of the security parameter 1
ℓ
.
10

In other words, the level 𝛿 is an upper bound of an arbitrary

adversary’s advantage to “break” vote privacy. Therefore, 𝛿 should

be as small as possible. Note, however, that even for an ideal e-

voting protocol with a completely passive adversary, 𝛿 might not be

0 (depending on the result function): for example, if the full tally is

published as part of the result, then there might be a non-negligible

chance that all honest voters, including the voter under observation,

voted for the same candidate, in which case the adversary can easily

derive from the final tally how the voter under observation voted.

Ideal Privacy. Often, and this will also be the case for Kryvos, for-
mal privacy results are formulated w.r.t. the privacy level 𝛿 ideal

(𝑛𝑣 ,𝑛
ℎ
𝑣 ,𝜇)

(𝐶, 𝑓res) an ideal voting protocol Ivoting (𝑛𝑣, 𝑛ℎ𝑣 ,𝐶, 𝑓res, 𝜇) for vot-
ing method (𝐶,𝑓res) provides. In this protocol (cf. our technical

report [54]), honest voters pick their choices according to the dis-

tribution 𝜇. In every run, there are 𝑛ℎ𝑣 many honest voters and 𝑛𝑣
voters overall. The ideal protocol collects the votes of the honest vot-

ers and the dishonest ones (where the latter ones are independent

of the votes of the honest voters) and outputs the result according

to the function 𝑓res.

A generic formula of 𝛿 ideal
(𝑛𝑣 ,𝑛

ℎ
𝑣 ,𝜇)
(𝐶, 𝑓res) for arbitrary voting meth-

ods (𝐶, 𝑓res) was published in [62]. In this work, for the first time,

we instantiate 𝛿 ideal
(𝑛𝑣 ,𝑛

ℎ
𝑣 ,𝜇)
(𝐶, 𝑓res) for complex ranked-choice voting

methods, such as IRV. We depict concrete values of the ideal privacy

level for the IRV function 𝑓IRV for two different distributions in Fig-

ure 4. While one distribution is uniform, the other is modeled more

realistically: we sorted the candidates into a political spectrum and

assumed that if a voter chooses a candidate as her first preference,

she will most likely rank a candidate with a similar political opinion

as rank 2 (see our technical report [54] for details). As the figure

shows, revealing the full tally leads to a very low level of privacy,

as expected, causing severe privacy issues, like for example Italian

attacks. Comparing these levels with the ones revealing only the

winner demonstrates that voting systems which hide the tally for

10
A function 𝑓 is 𝛿-bounded if, for every 𝑐 > 0, there exists ℓ0 such that 𝑓 (ℓ) ≤ 𝛿+ℓ−𝑐

for all ℓ > ℓ0 . Also see e.g. [72] for an explicit formula for 𝛿 .

1453

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Nicolas Huber et al.

0

0.2

0.4

0.6

0.8

1

1 10 50 100 200 500

number of honest voters (without the observed voter)

p
r
i
v
a
c
y
l
e
v
e
l
(
𝛿
)

𝑓IRVcomplete (uniform)

𝑓IRV (uniform)

𝑓IRVcomplete (non-uniform)

𝑓IRV (non-uniform)

Figure 4: Level of privacy (𝛿) for the ideal protocol with 5
candidates, IRV voting, and no dishonest voters. 𝑓IRVcomplete
reveals the complete tally and 𝑓IRV only reveals the winner
of the election.

ranked-choice voting methods provide dramatically better vote pri-

vacy than those voting systems which always reveal the complete

tally. Even more: we see that hiding the tally is in fact necessary to

achieve a reasonable privacy level for IRV elections that include

more than just a few candidates. For simple voting methods, privacy

levels comparing tally-hiding and non-tally-hiding systems can be

found in [62].

Publicly Tally-Hiding. We now introduce the novel notion of

publicly tally-hiding e-voting. Intuitively, an e-voting protocol

P (like Kryvos) is publicly tally-hiding for some voting method

(𝐶, 𝑓res) if the following two conditions hold true:

(1) Public privacy: Under the assumption that all talliers are

honest, P provides the same level of privacy as the ideal

voting protocol Ivoting for voting method (𝐶, 𝑓res), which
reveals nothing but the actual election result by definition.

That is, no one, except for the talliers, learns anything beyond

the published election result.

(2) Internal privacy: Under the assumption that less talliers than

a certain threshold 𝑡 are dishonest, P provides the same

level of privacy as the ideal voting protocol Ivoting for vot-
ing method (𝐶, 𝑓

complete
), where 𝑓

complete
is the function

that returns the full tally (e.g., the number of votes for all

choices/candidates). In other words, the talliers do not learn

more than they would for a non-tally-hiding secure e-voting

protocol.

We now define this notion formally. We assume some set T of

talliers and some threshold 𝑡 ; for Kryvos we have T = {T, . . . ,T𝑛𝑡 }
and 𝑡 = 𝑛𝑡 .

Definition 5.3 (Publicly Tally-Hiding). Let P be a voting protocol

with a set of talliers T and 𝑡 ≤ |T |. We say that P is (𝛿𝑝 , 𝛿𝑖)-publicly
tally-hiding w.r.t. (T , 𝑡) iff the following two conditions hold true:

Public Privacy: If all parties 𝑇 ∈ T are honest, then P achieves

𝛿𝑝 -privacy.

Internal Privacy: If at most 𝑡 − 1 parties 𝑇 ∈ T are dishonest,

then P achieves 𝛿𝑖 -privacy.

We call 𝛿𝑝 the public and 𝛿𝑖 the internal privacy level.

As explained, the public and internal privacy levels of a secure

protocol should correspond to privacy levels of the ideal protocols

mentioned above. However, we do not explicitly require this in the

definition in order to be able to use this definition to measure the

privacy level of an e-voting system. Moreover, we note that for

all “reasonable” publicly tally-hiding voting protocols, the public

privacy level 𝛿𝑝 should be much better (closer to 0) than the internal

privacy level 𝛿𝑖 .

Analysis. To analyze the publicly tally-hiding property of Kryvos,
we make the following assumptions about the primitives we use

(see also Section 3):

(P1) The public-key encryption scheme is IND-CCA2-secure, the

SNARKs and the NIZKPs are perfectly zero-knowledge, and the

commitment scheme is perfectly hiding.

(P2) An adversary 𝜋A does neither corrupt the scheduler S nor

the BB, and at least 𝑛ℎ𝑣 voters are honest.

Theorem 5.4 (Publicly Tally-Hiding). Let T = {T, . . . , T𝑛𝑡 }
and 𝑡 = 𝑛𝑡 . Then, assuming (P1) and (P2) hold, the voting protocol
PKryvos (𝑛𝑣, 𝑛𝑡 ,𝐶, 𝑓res, 𝜇) is (𝛿 ideal(𝑛𝑣 ,𝑛

ℎ
𝑣 ,𝜇)
(𝐶, 𝑓res), 𝛿 ideal(𝑛𝑣 ,𝑛

ℎ
𝑣 ,𝜇)
(𝐶, 𝑓complete))-

publicly tally-hiding w.r.t. (T ,𝑛𝑡).

Theorem 5.4 essentially states that the public privacy level 𝛿𝑝 of

Kryvos is the ideal one for (𝐶,𝑓res), and its internal privacy level 𝛿𝑖
is the ideal one for (𝐶,𝑓

complete
) where 𝑓

complete
returns the number

of votes for each choice/candidate. Figure 4 illustrates that for IRV

Kryvos dramatically improves public privacy compared to non-

tally-hiding systems (for which 𝛿𝑖 = 𝛿𝑝 ≥ 𝛿 ideal (𝐶, 𝑓
complete

)).
The formal proof of Theorem 5.4 is provided in our technical

report [54].

6 RELATEDWORK
In this section, we discuss and compareKryvoswith related e-voting
systems that were designed to be tally-hiding [14, 21, 28, 50, 51, 62,

84, 86] or to protect against Italian attacks [13, 25, 49, 55, 79, 86],

respectively. We also briefly discuss our choice of the Groth16

SNARK in comparison with alternative proof systems.

Fully tally-hiding e-voting. The idea of fully tally-hiding e-

voting and the first such system was proposed by Benaloh [14].

Hevia and Kiwi [51] published a fully tally-hiding e-voting system

specifically tailored to jury votings. Wen and Buckland were the

first to show how the tally can be fully hidden in IRV elections [86].

However, unlike Kryvos, the aforementioned protocols [14, 51, 86]

were neither formally proven secure nor were they implemented to

show their practicality (e.g., the computational complexity of [86]

suggests that it is actually not truly practical). Another fully tally-

hiding e-voting protocol has been proposed by Szepieniec and Pre-

neel [84], but unfortunately, their protocol is insecure. The authors

discuss some mitigations but do not solve the problem (see [84],

Appendix A, for details). Cortier et al. [28] have proposed fully

tally-hiding MPC components for the tallying phase of a multitude

of result functions and studied their asymptotic complexity but do

not provide an implementation for showing their practicality. We

therefore concentrate our discussion regarding fully tally-hiding

systems on [21, 62] in what follows. The design of these systems is

quite different to Kryvos as they are based on MPC.

Canard et al. [21] proposed a fully tally-hiding e-voting sys-

tem specifically for Majority Judgement. However, there is a non-

negligible chance that the system does not output a result.
11

They

11
The reason for this is due to the underlying evaluation algorithm that does not

provide a result for every possible tally. Kryvos uses a different algorithm that always

outputs the correct result.

1454

Kryvos: Publicly Tally-Hiding Verifiable E-Voting CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

implemented their system and provide benchmarks which demon-

strate that their system can handle large numbers of voters, just like

Kryvos. While their system needs almost 20 minutes to tally 5 can-

didates with 5 possible grades and up to 2
20 − 1 voters, Kryvos can

handle all practically relevant numbers of candidates and grades

with up to 2
32 − 1 voters, as shown in Figure 2. For example, 7 can-

didates and 6 grades are evaluated in 5.678 seconds. Hence, Kryvos
shows for the first time that publicly tally-hiding systems can not

only realize majority judgement but also, as initially hoped, indeed

achieve much better efficiency than a fully tally hiding system (by

providing weaker privacy towards talliers). We further note that, in

contrast to Kryvos, the security of [21] was not formally analyzed

and the implementation was not tested in a distributed network

but on a single computer only. Due to the online complexity of the

underlying MPC protocol employed in [21], it is not clear how [21]

performs in real-world distributed tallying scenarios.

Ordinos [50, 62] is the first provably secure verifiable fully tally-

hiding e-voting system. It has been implemented for a wide range of

voting methods and result functions with detailed benchmarks pro-

vided in [50, 62]. The main difference between Kryvos and Ordinos
is their balance between efficiency and the tally-hiding property

they provide: Ordinos provides the stronger notion of fully tally-

hiding and is practical for rather simple voting methods (single

and certain multi votes), simple result functions, and only a limited

number of choices (yet large numbers of voters), whereas Kryvos
provides the relaxed notion of public tally-hiding and is practical

even for very complex voting methods (e.g., Borda or Condorcet

methods) and result functions (e.g., IRV) and large numbers of possi-

ble choices. This is also illustrated in Figure 1 where we compare the

runtime of various result functions of Ordinos and Kryvos. Unlike
for Kryvos, the result function has a strong impact on performance

in Ordinos. The benchmarks of the vote threshold result function

of Ordinos provide a lower bound for all other result functions that
Ordinos supports. We also include benchmarks of the Condorcet

Smith set result function from the extension of Ordinos [50] to

illustrate that this is indeed the case.

We again note that both publicly tally-hiding and fully tally-

hiding protocols offer the same level of privacy w.r.t. the public.

However, fully tally-hiding protocols offer a better level of privacy

w.r.t. talliers, whereas publicly tally-hiding systems can provide

better efficiency, as demonstrated by Kryvos.

Partially tally-hiding e-voting. A number of partially tally-

hiding protocols have been proposed that solve the long-standing

issue of Italian attacks for complex voting methods, such as Con-

dorcet, Borda, IRV, and STV (e.g., [13, 25, 49, 55, 79]). In fact, as far

as we are aware, all existing partially tally-hiding systems focus on

mitigating Italian attacks. Some of these systems are quite efficient

and able to handle real world elections, such as [79], which is one

of the most efficient ones and has been shown to be practical for

the 2015 New South Wales IRV elections.

As already described in Section 1, partially and publicly tally-

hiding systems offer different trade-offs between privacy and effi-

ciency compared to fully tally-hiding ones. These trade-offs lead to

incomparable privacy properties. Specifically, while publicly tally

hiding protocols hide the full tally from the public, partially tally-

hiding systems still reveal some intermediate information about

the tally to the public. For example, in the voting protocol for IRV

elections by Ramchen et al. [79], the public learns, among oth-

ers, the order of the weakest candidates, which might embarrass

those candidates. On the other hand, partially tally-hiding protocols

hide parts of the tally even from internal parties, whereas publicly

tally-hiding protocols reveal the full aggregated tally to the talliers.

Hence, Kryvos does not protect against Italian attacks performed

by (one of) the talliers. This is in contrast to the partially and fully

tally-hiding systems mentioned above, which protect against Italian

attacks also in this situation.

In terms of efficiency, Table 3 illustrates that Kryvos is well able
to handle the same real world IRV elections as [79]. Hence, both

protocols are practical solutions for IRV elections that provide

different incomparable balances in terms of privacy.

Regarding the choice of the Groth16 SNARK. There are many

other possibilities for instantiating the zero-knowledge proofs for

Kryvos. However, in comparison with Groth16, many existing con-

structions have significantly worse benchmarks in terms of proof

size and/or verification time [10, 18]. Furthermore, constructing

a secure e-voting system requires care and not every proof sys-

tem is directly applicable in this context. For example, [69] tries to

construct a secure e-voting system based on Commit-and-Prove-

SNARKs [20] but faces several challenges in breaking the link be-

tween ballot and voter. However, we emphasize that the (results for

the) efficient combination of algorithms for computing Pedersen

commitments will also carry over to other SNARKs as long as the

base field of the elliptic curve for the Pedersen commitments is

compatible with the base field of the SNARK. This is the case for

Groth16, but might require some work for other SNARKs.

7 CONCLUSION
With Kryvos, we proposed the first provably secure verifiable e-

voting system which directly follows the common practice of pub-

licly tally-hiding elections. This enabled us to come up with a

radically different design which offers a new, practically relevant

balance between privacy and efficiency compared to all previous

approaches.

Along the way, we presented and carefully evaluated various de-

sign and implementation options for publicly tally-hiding systems,

which does motivate and justify the current system.

We finally note that Kryvos is of interest also beyond its tally-

hiding property since it is the first verifiable homomorphic e-voting

system that supports very complex ballot formats, along with com-

plex well-formedness conditions. By this, Kryvos also opens new
options for homomorphic e-voting systems in general.

ACKNOWLEDGEMENTS
This research was supported by the DFG through grant KU 1434/11-

1, by the CRYPTECS project, which has received funding from the

German BMBF through grant 16KIS1441 and from the French ANR

through grant ANR-20-CYAL-0006, by the European Social Fund

via IT Academy programme, by the Carl Zeiss Foundation, and

by the Centre for Integrated Quantum Science and Technology

(IQ
ST
). Johannes Müller was supported by the Luxembourg Na-

tional Research Fund (FNR), under the CORE Junior project FP2

(C20/IS/14698166/FP2/Mueller).

1455

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Nicolas Huber et al.

REFERENCES
[1] ACM. 2020. Q&A on ACM’s Internet Voting. https://www.acm.org/binaries/

content/assets/acmelections/acminternetvoting-1.pdf.

[2] B. Adida. 2008. Helios: Web-based Open-Audit Voting. In USENIX 2008. 335–348.
[3] Ben Adida, Olivier de Marneffe, Olivier Pereira, and Jean-Jaques Quisquater. 2009.

Electing a University President Using Open-Audit Voting: Analysis of Real-World

Use of Helios. In USENIX/ACCURATE Electronic Voting Technology (EVT 2009).
[4] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasub-

ramaniam. 2017. Ligero: Lightweight Sublinear Arguments Without a Trusted

Setup. In Proceedings of the 2017 ACM CCS. 2087–2104.
[5] Thomas Attema, Ignacio Cascudo, Ronald Cramer, Ivan Bjerre Damgård, and

Daniel Escudero. 2022. Vector Commitments over Rings and Compressed Σ-
Protocols. Cryptology ePrint Archive (2022).

[6] Michel Balinski and Rida Laraki. 2007. A Theory of Measuring, Electing, and

Ranking. Proceedings of the National Academy of Sciences 104, 21 (2007), 8720–
8725.

[7] Michel Balinski and Rida Laraki. 2014. Judge: Don’t Vote! Operations Research
62, 3 (2014), 483–511.

[8] Susan Bell, Josh Benaloh, Mike Byrne, Dana DeBeauvoir, Bryce Eakin, Gail

Fischer, Philip Kortum, Neal McBurnett, Julian Montoya, Michelle Parker, Olivier

Pereira, Philip Stark, DanWallach, andMichael Winn. 2013. STAR-Vote: A Secure,

Transparent, Auditable, and Reliable Voting System. USENIX Journal of Election
Technology and Systems (JETS) 1 (August 2013), 18–37.

[9] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2018. Scal-

able, Transparent, and Post-Quantum Secure Computational Integrity. IACR
Cryptology ePrint Archive 2018 (2018), 46.

[10] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars

Virza, and Nicholas P. Ward. 2019. Aurora: Transparent Succinct Arguments for

R1CS. In Advances in Cryptology - EUROCRYPT 2019 - 38th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt,
Germany, May 19-23, 2019, Proceedings, Part I (Lecture Notes in Computer Science,
Vol. 11476). Springer, 103–128.

[11] J.G. Benaloh. 1987. Verifiable Secret Ballot Elections. Ph. D. Dissertation. Yale

University.

[12] Josh Benaloh. 2007. Ballot Casting Assurance via Voter-Initiated Poll Station

Auditing. In 2007 USENIX/ACCURATE Electronic Voting Technology Workshop,
EVT’07, Boston, MA, USA, August 6, 2007.

[13] Josh Benaloh, Tal Moran, Lee Naish, Kim Ramchen, and Vanessa Teague. 2009.

Shuffle-Sum: Coercion-Resistant Verifiable Tallying for STV Voting. IEEE Trans.
Information Forensics and Security 4, 4 (2009), 685–698.

[14] J. D. Benaloh. 1986. Improving Privacy in Cryptographic Elections (Technical
Report). Technical Report. Technical report.

[15] D. Bernhard, V. Cortier, D. Galindo, O. Pereira, and B. Warinschi. 2015. SoK: A

Comprehensive Analysis of Game-Based Ballot Privacy Definitions. In IEEE S&P
2015. 499–516.

[16] Jonathan Bootle and Jens Groth. 2018. Efficient Batch Zero-Knowledge Argu-

ments for Low Degree Polynomials. In Public-Key Cryptography - PKC 2018 - 21st
IACR International Conference on Practice and Theory of Public-Key Cryptography,
Rio de Janeiro, Brazil, March 25-29, 2018, Proceedings, Part II (Lecture Notes in
Computer Science, Vol. 10770). Springer, 561–588.

[17] Xavier Boyen, Thomas Haines, and Johannes Müller. 2020. A Verifiable and

Practical Lattice-Based Decryption Mix Net with External Auditing. In Computer
Security - 25th European Symposium on Research in Computer Security, ESORICS
2020.

[18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and

Gregory Maxwell. 2018. Bulletproofs: Short Proofs for Confidential Transactions

and More. In 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings,
21-23 May 2018, San Francisco, California, USA. IEEE Computer Society, 315–334.

[19] Jan Camenisch and Victor Shoup. 2003. Practical Verifiable Encryption and

Decryption of Discrete Logarithms. In CRYPTO 2003, Proceedings (LNCS, Vol. 2729).
Springer, 126–144.

[20] Matteo Campanelli, Dario Fiore, and Anaïs Querol. 2019. LegoSNARK: Modular

Design and Composition of Succinct Zero-Knowledge Proofs. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS
2019, London, UK, November 11-15, 2019. ACM, 2075–2092.

[21] Sébastien Canard, David Pointcheval, Quentin Santos, and Jacques Traoré. 2018.

Practical Strategy-Resistant Privacy-Preserving Elections. In ESORICS 2018. 331–
349.

[22] D. Chaum, R. Carback, J. Clark, A. Essex, S. Popoveniuc, R. L. Rivest, P. Y. A.

Ryan, E. Shen, and A. T. Sherman. 2008. Scantegrity II: End-to-End Verifiability

for Optical Scan Election Systems using Invisible Ink Confirmation Codes. In

USENIX/ACCURATE Electronic Voting Technology (EVT 2008). USENIX Associa-

tion.

[23] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. 2020. Fractal: Post-quantum

and Transparent Recursive Proofs from Holography. In EUROCRYPT 2020, Pro-
ceedings, Part I (LNCS, Vol. 12105). Springer, 769–793.

[24] M. R. Clarkson, S. Chong, and A. C. Myers. 2008. Civitas: Toward a Secure Voting

System. In S&P 2008. 354–368.

[25] Michael R. Clarkson and Andrew C. Myers. 2005. Coercion-Resistant Remote

Voting Using Decryption Mixes. In In Frontiers in Electronic Elections (FEE 2005).
[26] V. Cortier, D. Galindo, S. Glondu, and M. Izabachène. 2014. Election Verifiability

for Helios under Weaker Trust Assumptions. In ESORICS 2014. 327–344.
[27] V. Cortier, D. Galindo, R. Küsters, J. Müller, and T. Truderung. 2016. SoK: Verifia-

bility Notions for E-Voting Protocols. In S&P 2016. 779–798.
[28] Véronique Cortier, Pierrick Gaudry, and Quentin Yang. 2021. A toolbox for

verifiable tally-hiding e-voting systems. IACR Cryptol. ePrint Arch. 2021 (2021),
491.

[29] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. 1994. Proofs of Partial

Knowledge and Simplified Design of Witness Hiding Protocols. In Advances in
Cryptology - CRYPTO ’94, Proceedings. 174–187.

[30] Ronald Cramer, Matthew K. Franklin, Berry Schoenmakers, and Moti Yung. 1996.

Multi-Authority Secret-Ballot Elections with Linear Work. In EUROCRYPT 1996.
72–83.

[31] Ronald Cramer and Victor Shoup. 1998. A Practical Public Key Cryptosystem

Provably Secure Against Adaptive Chosen Ciphertext Attack. In Advances in
Cryptology - CRYPTO ’98, 18th Annual International Cryptology Conference, Pro-
ceedings (Lecture Notes in Computer Science, Vol. 1462), Hugo Krawczyk (Ed.).

Springer, 13–25.

[32] CrossRef. 2019. Election process and results. https://www.crossref.org/board-

and-governance/elections/.

[33] Chris Culnane and Steve A. Schneider. 2014. A Peered Bulletin Board for Robust

Use in Verifiable Voting Systems. In IEEE CSF 2014. 169–183.
[34] Debian Project. 2012. Ubuntu IRC Council Position. https://www.debian.org/

vote/.

[35] Deutsche Forschungsgemeinschaft (DFG). 2019. DFG Fachkollegienwahl

2019. https://www.dfg.de/download/pdf/dfg_im_profil/gremien/fachkollegien/

fk-wahl2019/fkwahl_2019_wahlergebnis_endgueltig_200218.pdf.

[36] Electoral Commission NSW. 2015. NSW State Electoin Results 2015.

https://pastvtr.elections.nsw.gov.au/SGE2015/la-home.htm.

[37] Jeremy Epstein. 2015. Weakness in Depth: A Voting Machine’s Demise. IEEE
Secur. Priv. 13, 3 (2015), 55–58.

[38] European Broadcasting Union. 2020. Eurovision Song Contest - How it works.

https://eurovision.tv/about/how-it-works.

[39] Boyuan Feng, Lianke Qin, Zhenfei Zhang, Yufei Ding, and Shumo Chu. 2021. ZEN:
Efficient Zero-Knowledge Proofs for Neural Networks. Technical Report 2021/87.
Cryptology ePrint Archive.

[40] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. 2019. PLONK: Per-

mutations over Lagrange-bases for Oecumenical Noninteractive arguments of

Knowledge. IACR Cryptol. ePrint Arch. 2019 (2019), 953.
[41] David Galindo, Sandra Guasch, and Jordi Puiggali. 2015. 2015 Neuchâtel’s Cast-

as-Intended Verification Mechanism. In VoteID 2015, Proceedings. 3–18.
[42] Gesellschaft für Informatik (GI). 2019. GI Wahlen. https://gi.de/wahlen.

[43] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. 2016. ZKBoo: Faster

Zero-Knowledge for Boolean Circuits. In 25th USENIX Security Symposium, 2016.
USENIX Association, 1069–1083.

[44] Government of India. 2020. Constitution of India. https://www.india.gov.in/my-

government/constitution-india.

[45] Jens Groth. 2016. On the Size of Pairing-Based Non-interactive Arguments. In

EUROCRYPT 2016, Proceedings, Part II (LNCS, Vol. 9666). Springer, 305–326.
[46] Thomas Haines, Sarah Jamie Lewis, Olivier Pereira, and Vanessa Teague. 2020.

How Not to Prove Your Election Outcome. In 2020 IEEE SP 2020. IEEE, 644–660.
[47] Thomas Haines and Johannes Müller. 2020. SoK: Techniques for Verifiable Mix

Nets. In IEEE 33rd Computer Security Foundations Symposium, CSF, 2020. IEEE
Computer Society.

[48] Thomas Haines, Dirk Pattinson, and Mukesh Tiwari. 2019. Verifiable Homo-

morphic Tallying for the Schulze Vote Counting Scheme. In Verified Software.
Theories, Tools, and Experiments - 11th International Conference, VSTTE 2019, New
York City, NY, USA, July 13-14, 2019, Revised Selected Papers (Lecture Notes in
Computer Science, Vol. 12031). Springer, 36–53.

[49] James Heather. 2007. Implementing STV securely in Prêt à Voter. In IEEE CSF
2007. 157–169.

[50] Fabian Hertel, Nicolas Huber, Jonas Kittelberger, Ralf Küsters, Julian Liedtke, and

Daniel Rausch. 2021. Extending the Tally-Hiding Ordinos System: Implementations
for Borda, Hare-Niemeyer, Condorcet, and Instant-Runoff Voting. Technical Report
2021/1420. Cryptology ePrint Archive.

[51] Alejandro Hevia and Marcos A. Kiwi. 2002. Electronic Jury Voting Protocols. In

LATIN 2002, Proceedings. 415–429.
[52] Lucca Hirschi, Lara Schmid, and David A. Basin. 2020. Fixing the Achilles Heel

of E-Voting: The Bulletin Board. IACR Cryptol. ePrint Arch. 2020 (2020), 109.
[53] Nicolas Huber, Ralf Küsters, Toomas Krips, Julian Liedtke, Johannes Müller,

Daniel Rausch, Pascal Reisert, and Andreas Vogt. 2022. Implementation of Kryvos.

https://github.com/JulianLiedtke/kryvos.

[54] Nicolas Huber, Ralf Küsters, Toomas Krips, Julian Liedtke, Johannes Müller,

Daniel Rausch, Pascal Reisert, and Andreas Vogt. 2022. Kryvos: Publicly Tally-

Hiding Verifiable E-Voting. Cryptology ePrint Archive 2022/1132 (2022).

1456

https://www.acm.org/binaries/content/assets/acmelections/acminternetvoting-1.pdf
https://www.acm.org/binaries/content/assets/acmelections/acminternetvoting-1.pdf
https://www.crossref.org/board-and-governance/elections/
https://www.crossref.org/board-and-governance/elections/
https://www.debian.org/vote/
https://www.debian.org/vote/
 https://www.dfg.de/download/pdf/dfg_im_profil/gremien/fachkollegien/fk-wahl2019/ fkwahl_2019_wahlergebnis_endgueltig_200218.pdf
 https://www.dfg.de/download/pdf/dfg_im_profil/gremien/fachkollegien/fk-wahl2019/ fkwahl_2019_wahlergebnis_endgueltig_200218.pdf
https://eurovision.tv/about/how-it-works
https://gi.de/wahlen
https://www.india.gov.in/my-government/constitution-india
https://www.india.gov.in/my-government/constitution-india
https://github.com/JulianLiedtke/kryvos

Kryvos: Publicly Tally-Hiding Verifiable E-Voting CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

[55] Wojciech Jamroga, Peter B. Rønne, Peter Y. A. Ryan, and Philip B. Stark. 2019.

Risk-Limiting Tallies. In E-Vote-ID 2019, Proceedings (LNCS, Vol. 11759). Springer,
183–199.

[56] A. Juels, D. Catalano, and M. Jakobsson. 2005. Coercion-Resistant Electronic

Elections. In Proceedings of Workshop on Privacy in the Eletronic Society (WPES
2005). ACM Press, 61–70.

[57] Sanket Kanjalkar, Ye Zhang, Shreyas Gandlur, and Andrew Miller. 2021. Publicly

Auditable MPC-as-a-Service with succinct verification and universal setup. In

IEEE European Symposium on Security and Privacy Workshops, EuroS&P 2021,
Vienna, Austria, September 6-10, 2021. IEEE, 386–411.

[58] Aggelos Kiayias, Annabell Kuldmaa, Helger Lipmaa, Janno Siim, and Thomas

Zacharias. 2018. On the Security Properties of e-Voting Bulletin Boards. In SCN
2018, Proceedings. 505–523.

[59] Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. 2015. DEMOS-2:

Scalable E2E Verifiable Elections without Random Oracles. In CCS 2015. 352–363.
[60] Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. 2015. End-to-End

Verifiable Elections in the Standard Model. In EUROCRYPT 2015. 468–498.
[61] Ahmed Kosba, Zhichao Zhao, AndrewMiller, Yi Qian, Hubert Chan, Charalampos

Papamanthou, Rafael Pass, Elaine Shi, et al. 2015. C∅C∅: A Framework for

Building Composable Zero-Knowledge Proofs. Cryptology ePrint Archive (2015).
[62] Ralf Küsters, Julian Liedtke, Johannes Müller, Daniel Rausch, and Andreas Vogt.

2020. Ordinos: A Verifiable Tally-Hiding Remote E-Voting System. In IEEE
EuroS&P 2020.

[63] R. Küsters, J. Müller, E. Scapin, and T. Truderung. 2016. sElect: A Lightweight

Verifiable Remote Voting System. In CSF 2016. 341–354.
[64] R. Küsters and T. Truderung. 2016. Security Analysis of Re-Encryption RPC Mix

Nets. In IEEE EuroS&P 2016. IEEE Computer Society, 227–242.

[65] R. Küsters, T. Truderung, and A. Vogt. 2010. Accountability: Definition and

Relationship to Verifiability. In ACM CCS 2010. 526–535.
[66] R. Küsters, T. Truderung, and A. Vogt. 2011. Verifiability, Privacy, and Coercion-

Resistance: New Insights from a Case Study. In IEEE S&P 2011. 538–553.
[67] R. Küsters, T. Truderung, and A. Vogt. 2012. Clash Attacks on the Verifiability of

E-Voting Systems. In IEEE S&P 2012. 395–409.
[68] R. Küsters, T. Truderung, and A. Vogt. 2014. Formal Analysis of Chaumian Mix

Nets with Randomized Partial Checking. In S&P 2014. 343–358.
[69] Jiwon Lee, Jaekyoung Choi, Jihye Kim, and Hyunok Oh. 2019. SAVER: Snark-

friendly, Additively-homomorphic, and Verifiable Encryption and decryption

with Rerandomization. IACR Cryptol. ePrint Arch. 2019 (2019), 1270.
[70] Maine State Legislature. 2020. Ranked Choice Voting in Maine. http://legislature.

maine.gov/lawlibrary/ranked-choice-voting-in-maine/9509.

[71] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. 2019. Sonic:

Zero-Knowledge SNARKs from Linear-Size Universal and Updatable Structured

Reference Strings. In Proceedings of the 2019 ACM CCS. 2111–2128.

[72] DavidMesten, JohannesMüller, and Pascal Reisert. 2022. To appear. How Efficient

are Replay Attacks against Vote Privacy? A Formal Quantitative Analysis. In

IEEE 35rd Computer Security Foundations Symposium, CSF, 2022.
[73] NSW Government. 2020. Constitution Act No 32. https://legislation.nsw.gov.au/

~/view/act/1902/32.

[74] Katsuyuki Okeya and Kouichi Sakurai. 2001. Efficient Elliptic Curve Cryptosys-

tems from a Scalar Multiplication Algorithm with Recovery of the y-Coordinate

on a Montgomery-Form Elliptic Curve. In Cryptographic Hardware and Embedded
Systems - CHES 2001, Third International Workshop, Paris, France, May 14-16, 2001,
Proceedings (Lecture Notes in Computer Science, Vol. 2162). Springer, 126–141.

[75] Alex Ozdemir and Dan Boneh. 2021. Experimenting with Collaborative zk-

SNARKs: Zero-Knowledge Proofs for Distributed Secrets. IACR Cryptol. ePrint
Arch. (2021), 1530.

[76] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. 2013. Pinocchio:

Nearly Practical Verifiable Computation. In 2013 IEEE Symposium on Security
and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013. IEEE Computer Society,

238–252.

[77] Torben P. Pedersen. 1991. Non-Interactive and Information-Theoretic Secure Ver-

ifiable Secret Sharing. In Proceedings of the 11th Annual International Cryptology
Conference (CRYPTO 1991) (Lecture Notes in Computer Science, Vol. 576). Springer,
129–140.

[78] Personal communication (email) with Philip Wright, Technical Director of CES.

2020.

[79] Kim Ramchen, Chris Culnane, Olivier Pereira, and Vanessa Teague. 2019. Uni-

versally Verifiable MPC and IRV Ballot Counting. In Financial Cryptography
and Data Security - FC 2019, Revised Selected Papers (LNCS, Vol. 11598). Springer,
301–319.

[80] Republic of Nauru. 2016. Electoral Act No. 15. http://ronlaw.gov.nr/nauru_lpms/

files/acts/d83250a1ebdc56c1701fa7aa245af5b1.pdf.

[81] scipr-lab. 2017. libsnark. https://github.com/scipr-lab/libsnark.

[82] Society for Industrial and Applied Mathematics (SIAM). 2019. SIAM Announces

New 2020 Leadership. https://sinews.siam.org/Details-Page/siam-announces-

new-2020-leadership-1.

[83] D. Springall, T. Finkenauer, Z. Durumeric, J. Kitcat, H. Hursti, M. MacAlpine, and

J. A. Halderman. 2014. Security Analysis of the Estonian Internet Voting System.

In Proceedings of the 2014 ACM CCS. 703–715.
[84] Alan Szepieniec and Bart Preneel. 2015. New Techniques for Electronic Voting.

USENIX Journal of Election Technology and Systems (JETS) 3, 2 (2015), 46 – 69.

[85] The National Archives. 2011. Greater London Authority Act 1999. https://www.

legislation.gov.uk/ukpga/1999/29/contents.

[86] Roland Wen and Richard Buckland. 2009. Minimum Disclosure Counting for the

Alternative Vote. In VoteID 2009. Proceedings (LNCS, Vol. 5767). Springer, 122–140.
[87] S. Wolchok, E. Wustrow, J. A. Halderman, H. K. Prasad, A. Kankipati, S. K.

Sakhamuri, V. Yagati, and R. Gonggrijp. 2010. Security Analysis of India’s elec-

tronic Voting Machines. In Proceedings of the 17th ACM CCS. 1–14.

1457

http://legislature.maine.gov/lawlibrary/ranked-choice-voting-in-maine/9509
http://legislature.maine.gov/lawlibrary/ranked-choice-voting-in-maine/9509
https://legislation.nsw.gov.au/~/view/act/1902/32
https://legislation.nsw.gov.au/~/view/act/1902/32
http://ronlaw.gov.nr/nauru_lpms/files/acts/d83250a1ebdc56c1701fa7aa245af5b1.pdf
http://ronlaw.gov.nr/nauru_lpms/files/acts/d83250a1ebdc56c1701fa7aa245af5b1.pdf
https://github.com/scipr-lab/libsnark
https://sinews.siam.org/Details-Page/siam-announces-new-2020-leadership-1
https://sinews.siam.org/Details-Page/siam-announces-new-2020-leadership-1
https://www.legislation.gov.uk/ukpga/1999/29/contents
https://www.legislation.gov.uk/ukpga/1999/29/contents

	Abstract
	1 Introduction
	2 Design Rationale
	2.1 General Purpose Proof Systems
	2.2 Public Tally-Hiding for Systems With Homomorphic Encryption
	2.3 Efficiently Proving Knowledge of the Tally

	3 The Kryvos System
	3.1 System description
	3.2 Discussion

	4 Implementation of Kryvos and Evaluation
	4.1 The Optimal Slot Size
	4.2 Implementation and Evaluation of Kryvos for various voting methods/result functions
	4.3 Instantiation of Instant-Runoff Voting

	5 Security
	5.1 Computational Model of Kryvos
	5.2 Verifiability
	5.3 Privacy

	6 Related Work
	7 Conclusion
	References

