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FAPI 2.0 is a suite of Web protocols developed by the OpenID Foundation’s FAPI Working Group (FAPI WG)

for third-party data sharing and digital identity in high-risk environments. Even though the specifications are

not completely finished, several important entities have started to adopt the FAPI 2.0 protocols, including

Norway’s national HelseID, Australia’s Consumer Data Standards, as well as private companies like Authlete

and Australia-based connectID; the predecessor FAPI 1.0 is in widespread use with millions of users.

The FAPI WG asked us to accompany the standardization of the FAPI 2.0 protocols with a formal security

analysis to proactively identify vulnerabilities before widespread deployment and to provide formal security

guarantees for the standards. In this paper, we report on our analysis and findings.

Our analysis is based on a detailed model of the Web infrastructure, the so-called Web Infrastructure Model

(WIM), which we extend to be able to carry out our analysis of the FAPI 2.0 protocols including important

extensions like FAPI-CIBA. Based on the (extended) WIM and formalizations of the security goals and attacker

model laid out in the FAPI 2.0 specifications, we provide a formal model of the protocols and carry out a

formal security analysis, revealing several attacks. We have worked with the FAPI WG to fix the protocols,

resulting in several amendments to the specifications. With these changes in place, we have adjusted our

protocol model and formally proved that the security properties hold true under the strong attacker model

defined by the FAPI WG.

CCS Concepts: • Security and privacy → Logic and verification; Web protocol security; Security
protocols; • Networks→ Network protocol design; • Information systems→ Browsers.

1 INTRODUCTION
Web-based authentication and authorization are ubiquitous. Many websites and applications can be

used by logging in with a so-called Identity Provider, for instance, “Login with Google” or “Login

with Facebook”, generally dubbed “social login”, or more generally, Single Sign-On (SSO). There are
typically three parties involved for SSO: (i) the user/the user’s browser, (ii) the identity provider (IdP),
also called authorization server (AS), and (iii) the relying party (RP), also called client. For example, a

user may log in at TripAdvisor (RP/client) with its account at Facebook (IdP/AS). In the following,

we will use the terms “authorization server” and “client”, in line with the FAPI 2.0 specifications. It

is also possible to authorize applications, including websites, but also IoT devices, such as routers

and smart TVs, to access resources managed by the AS. In this setting, a fourth party is involved: the

resource server (RS), which stores the actual resources. Such resources include email addresses [41,

73], documents/calendars/pictures/movies stored in the cloud [20, 42], YouTube accounts [43],

or development repositories [41]. For example, a smart TV can be authorized to access a user’s

YouTube account. A widely used protocol family for these authorization and authentication use

cases are the OAuth 2.0 and OpenID Connect protocols [101, 102].

While plain OAuth 2.0 and OpenID Connect are suitable for typical low-risk use cases like social

login, many use cases have emerged in high-risk settings for both authorization and authentication

scenarios: Third-party services can be authorized to, for example, access bank transaction histories
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formonitoring and feedback [9, 15], trigger financial transactions [4, 76], access cars [95] andmedical

records [17, 93], or perform health-related actions like managing electronic prescriptions [21]. In

such high-risk use cases, attacks that enable malicious actors to access resources or impersonate

end-users not only have more severe consequences than in classical low-risk settings, but such use

cases also require more robust protocols and overall stronger security guarantees. For example,

when using SSO to manage access to health records, it is important to not only recognize the same

user again at a later point, which is typical for social network SSO, but to provide the user’s full

legal identity. Likewise, protocols for high-risk use cases should be robust, i.e., provide security even

if some messages or relevant values leak to an attacker, e.g., through leaked server log files [77].

To provide security in such high-risk settings, the OpenID Foundation developed FAPI 1.0, which

is based on OAuth 2.0 and OpenID Connect, but uses many additional mechanisms to increase

their security, for instance, to guarantee authorization and authentication even if the attacker can

misconfigure certain endpoints or certain TLS-protected messages leak to the attacker, e.g., via

log files. Since FAPI 1.0 meets many ecosystems’ needs, it is now in widespread use, e.g., as part

of the UK’s Open Banking standards [76] and in the Australian Government’s Consumer Data
Standards [13] which govern customer interaction with banks, energy, and telecommunications

companies, with more industry sectors to follow. Other examples for the use of FAPI 1.0 include

Brazil’s Open Finance and Open Insurance programs [4, 74] as well as companies like Verimi [99]

where participating banks act as trusted authorization servers that can be used by sites and apps to

log in users, identify natural persons, sign legally binding contracts, and interact with authorities,

e.g., to register cars. FAPI 1.0 is also employed by the US-based Financial Data Exchange FDX with

more than 42 million users [40] and New Zealand’s core payment clearing house payments.nz [80].

The high security goals the FAPI 1.0 standard aims to achieve have been formally analyzed [33],

uncovering several attacks and proposing fixes for those.

Based on the experiences with FAPI 1.0, including interoperability and implementation aspects,

the OpenID Foundation is currently standardizing a successor named FAPI 2.0, which not only

comprises a completely new protocol (see Section 4.4) but also comes with new extension protocols

to accommodate additional use cases.

The FAPI 2.0 Standards. FAPI 2.0 is a framework of specifications, with the core protocol specified

in the FAPI 2.0 Security Profile (FAPI 2.0 SP) [29]. Another important specification for our purposes

in this framework is the FAPI 2.0 Attacker Model (FAPI 2.0 AM) [27], which captures the security

goals that the protocol aims to fulfill, along with assumptions on the attacker capabilities.
1
Overall,

FAPI 2.0 AM assumes a very strong attacker, far exceeding standard attacker models for protocol

analysis (see Section 2.7), owing to the high-risk environments FAPI 2.0 is supposed to be employed

in.

To accommodate even more ecosystems’ needs, the FAPI 2.0 framework contains additional

specifications to extend the core protocol: In some high-stakes environments, operators may want to

or may even be legally obliged to prove that some party has sent a certain message, e.g., a payment

request. For this purpose, the FAPI 2.0 Message Signing (FAPI 2.0 MS) [39] specification draws from

several existing mechanisms to provide non-repudiation properties for most of the FAPI 2.0 SP’s

messages. Furthermore, while the FAPI 2.0 SP protocol requires a user-agent, e.g., a user’s browser, to

initiate an authorization or authentication flow, and to forward messages between the authorization

server and the client, in some scenarios, e.g., for payment authorization at point-of-sale terminals,

there is no such user-agent. To cover these scenarios, the FAPI-CIBA [98] specification defines a

profile of the OpenID Foundation’s Client Initiated Backchannel Authentication (CIBA) [23] protocol.

1
While in the original FAPI 1.0 protocol, “FAPI” stands for “Financial-grade API”, the scope and expected uses of FAPI 2.0

reach far beyond the financial sector, thus, FAPI 2.0 is not an acronym anymore.
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Despite being a very recent standard, FAPI 2.0 is expected to be adopted soon in many important

ecosystems, with several of the aforementioned FAPI 1.0 users already having committed to switch-

ing to FAPI 2.0, for example, the previously mentioned Australian Consumer Data Standards [22].

Given the importance of FAPI 2.0 and its current and future use in high-risk environments,

the FAPI Working Group (FAPI WG), i.e., the body within the OpenID Foundation developing

the FAPI 2.0 standards, has asked us to accompany the standardization process with a formal

analysis, providing feedback early on and throughout the development of FAPI 2.0. We hence first

performed a detailed formal security analysis of the FAPI 2.0 SP with the security goals specified in

the FAPI 2.0 AM, and in a second step, performed a similar analysis of the FAPI 2.0 SP when used

in conjunction with FAPI 2.0 MS, FAPI-CIBA, Dynamic Client Registration (DCR) [85], and Dynamic
Client Management (DCM) [86]. While DCR and DCM are not part of the FAPI 2.0 framework, the

FAPI WG suggested including them, since FAPI 2.0 protocols will often be used with DCR/DCM,

hence justifying a combined analysis. Throughout the rest of the paper, by FAPI 2.0++, we denote
the combination of the FAPI 2.0 protocols with FAPI-CIBA, DCR, and DCM.

The Web Infrastructure Model (WIM). Our analyses are based on the Web Infrastructure Model

(WIM) [35], a symbolic Dolev-Yao-style model [19] of the Web infrastructure. In Dolev-Yao-style

models, messages are formal terms with an algebraic equational theory to capture the meaning of

cryptographic and other operators. For example, the equation

deca (enca (𝑚, pub(𝑘)), 𝑘) =𝑚

captures that if a message 𝑚 encrypted under the public key pub(𝑘) is decrypted under the

corresponding private key 𝑘 , then the resulting message is the message𝑚. Regarding attackers, the

WIM models both, Web attackers, who may control certain Web and DNS servers or browsers, and

network attackers, who control the complete communication network in addition to corrupted

servers and browsers. Both types of attackers can derive new messages from their knowledge, e.g.,

decrypt ciphertexts if they know the key, but they cannot break cryptographic primitives like

encryption and signature schemes.

Besides the basic infrastructure, such as Web and DNS servers, the WIM features a detailed

model of Web browsers. This browser model captures many Web features, such as the handling of

DNS, HTTP, and HTTPS messages, a detailed structure of windows and documents, an abstract

model of JavaScript, Web storage and cookies, Web messaging (postMessage) and asynchronous

HTTP communication (XMLHTTPRequest/AJAX), a rich set of HTTP headers (e.g., (Set-)Cookie,

Location, Origin, Referer, Strict Transport Security, and Authorization), and HTTP redirections as

well as security policies for cross-window navigation and access.

As such, theWIM is the most comprehensive and detailed model of theWeb infrastructure to date

and has been successfully applied to several Web standards, to uncover previously unknown attacks

and to prove security properties [18, 33, 34, 35, 36, 38, 52, 53] (see Section 5 for a discussion of related

work and Section 4.1 for more details on theWIM). Such a detailed model is necessary to: 1) faithfully

model the FAPI 2.0++ protocols since they make use of several Web-specific technologies, and

2) achieve meaningful positive security results, since the details of different Web technologies and

how they interact may lead, and in fact have led, to attacks [34, 36, 44].

The WIM is a pen-and-paper framework, thus, analyses based on the WIM are done manually,

which, on the one hand, has the benefit that analyses are not limited by the capabilities ofmechanized

tools, but on the other hand, makes proofs tedious to verify and, in case of protocol changes, require

manual re-verification. So far, no mechanized analysis framework has such a comprehensive model

of the Web. Mechanizing such a detailed model from scratch or on top of existing tools is a big

challenge by itself and out of the scope of this work.
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In this paper, we use the WIM in its most recent published version [65] and extend it in several

places to accommodate the technologies used by the FAPI 2.0++ protocols (see below).

Formal Analysis of FAPI 2.0++: Attacks, Fixes, and Impact. For the analysis of FAPI 2.0++,
we build a formal model of the FAPI 2.0 SP, FAPI 2.0 MS, FAPI-CIBA, DCR, and DCM, and formalize

the security properties stated in FAPI 2.0 MS as well as the FAPI 2.0 AM and incorporate the

assumptions on the attacker laid out therein.

We have coordinated these steps with the FAPI WG to ensure faithful modeling. In the process of

formally proving the security properties within our FAPI model, we have revealed several attacks

that break the goals of the protocol. We propose fixes and improvements to the specifications,

which the FAPI WG has appreciated and amalgamated into the official specifications, resulting in

substantial changes of the standard.

In line with the changes discussed with the FAPI WG, we adapted our model and security

properties and were then able to prove our properties to hold within the model. Hence, our analysis

reflects the latest official version of the FAPI 2.0++ specifications. While our analysis uncovered

new attacks, we also found known attack patterns that the FAPI WG is familiar with and tried to

avoid. This highlights the importance of a systematic formal analysis, which makes it possible to

detect subtle flaws even in very complex protocols, where it is easy to overlook such flaws.

Our analysis of the FAPI 2.0 SP was first published in an extended abstract [53]. Here, in this

journal version, besides providing more details of the analysis in [53], we greatly extend our

analyses by four more protocols (FAPI 2.0 MS, FAPI-CIBA, DCR, and DCM). Our analysis captures

the fact that all of these protocols, i.e., FAPI 2.0 SP, FAPI 2.0 MS, FAPI-CIBA, DCR, and DCM, can

run in parallel. So, not only is the resulting model considerably larger and the number of security

properties more than doubled but all previously formulated security properties—and hence their

proofs—changed as well due to the parallel composition of all these protocols.

Contributions. In summary, our contributions are as follows:

• We extend the WIM’s browser and communication model with a push-message channel, a

model of HTTP Message Signatures, and several HTTP headers, like DPoP, Content-Digest,

and Signature. All of these extensions are of interest also independently of our work on FAPI

2.0 and can be used in future analyses of other protocols based on the WIM.

• We provide the first formal model of a FAPI 2.0 ecosystem, covering not only the core Security

Profile, but also the FAPI 2.0 MS and FAPI-CIBA specifications, along with a formalization of

the security goals set forth in the FAPI 2.0 AM and FAPI 2.0 MS specifications.

• Furthermore, our model of a FAPI 2.0 ecosystem features Dynamic Client Registration and

the first formal model of Dynamic Client Management, both of which are also used outside

the FAPI 2.0 context, and hence, are of independent interest.

• Our analysis has uncovered several attacks, i.e., violations of the security goals under the

attacker model defined by the FAPI WG.

• We propose fixes and improvements and worked with the FAPI WG to incorporate them,

resulting in significantly modified and improved FAPI 2.0++ specifications.

• We adapted our formal model to reflect the improved specifications and were then able to

prove the formalized security goals.

• We have accompanied the development of the FAPI 2.0++ specifications from an early stage

and were able to support the standardization process with security recommendations before

the widespread deployment of the FAPI 2.0++ protocols in high-risk environments with tens

of millions of users.
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Structure of This Paper. We first give a detailed description of the FAPI 2.0++ protocols, security

goals, and attacker model in Section 2 and then present the attacks that we have discovered in the

process of our formal analysis in Section 3. We describe our formal model, including extensions to

the WIM, and formal security theorem in Section 4. The full formal model and proofs are given in

the appendix. Related work is discussed in Section 5. We conclude in Section 6.

2 PROTOCOLS AND SECURITY GOALS
Here, we describe the protocols and security goals as of the start of our analysis efforts, i.e., as

of June 1st, 2022 for FAPI 2.0 SP and FAPI 2.0 AM, and as of May 4th, 2023 for FAPI 2.0 MS and

FAPI-CIBA. The specifications for DCR and DCM are not part of the FAPI 2.0 framework and have

been finalized prior to our work, we therefore model these final versions. For all specifications,

we discuss changes made since the onset of our work in Section 3. We begin with an overview of

the FAPI 2.0 SP (Section 2.1), introducing the protocol roles and core protocol flow, followed by a

detailed description thereof in Section 2.2. In Section 2.3, we describe the FAPI 2.0 MS extension,

followed by a description of the FAPI-CIBA protocol in Section 2.4, and the DCR and DCM protocols

in Section 2.5, before detailing the security goals and assumptions on the attacker in Sections 2.6

and 2.7, as outlined in the FAPI 2.0 AM and FAPI 2.0 MS specifications.

2.1 Overview of the FAPI 2.0 Security Profile
In a nutshell, FAPI 2.0 SP allows a user (also called resource owner) to grant a client application
access to their data stored at a resource server (RS), by means of an authorization server (AS) which
is responsible for managing access to the user’s data. In addition, the AS may provide the client

with information on the user’s identity at the AS. For example, FAPI 2.0 SP may be used to grant an

account aggregation service (client) access to a user’s account balance at various banks (RSs), with

services of these banks (ASs) managing such access (such services exist today, e.g., [4, 9, 15, 76]).

On a high level, a FAPI 2.0 SP protocol run, also called flow or grant, advances as follows: A
user visits a website or uses an application of the client C which wants to access data of the user

stored at the RS. Since the user’s data at the RS is managed by an AS AS, C contacts AS with some

initial information, e.g., what kind of data the client requests access to. AS replies with an internal

reference to the current flow, which C then forwards to the user’s browser while also instructing

the browser to visit a website of AS to proceed. Once the user, or more precisely, their browser,

visits that AS website, the user is asked to authenticate, e.g., with username and password, and

to authorize the client’s request. If the user consents, AS instructs the user’s browser to return

to the client website or application, passing on a value called the authorization code. Once the
client receives that authorization code, it can contact AS and exchange the authorization code for

so-called tokens. There are two types of tokens in FAPI 2.0: ID Tokens and Access Tokens. An id

token contains information to identify the user, e.g., an email address or username with which

the user is registered at the AS. This id data can be used by the client to authenticate users in the

context of the client application. An access token, on the other hand, can be used by the client

to request users’ resources from an RS, e.g., account balances. Upon receiving such a request, an

RS verifies the access token’s validity. Depending on the access token format, this may include

checking a signature on the access token or using so-called token introspection, which means that

the RS queries the AS for validity information on a given access token.

2.2 The FAPI 2.0 Security Profile in Detail
In the following, we describe a FAPI 2.0 SP protocol flow in detail (see Figure 1). The flow is initiated

by a user visiting the website or using an application of a client C, typically expressing the wish to

authorize the client using a certain AS AS, e.g., by clicking a “Login with AS” button (Step 1 ).
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1 Start flow with AS (out of scope)Start flow with AS (out of scope)
client-init-flow

2 GET /standardized-path (Metadata Request)GET /standardized-path (Metadata Request)
metadata-request

3 AS Metadata Document (Metadata Response)AS Metadata Document (Metadata Response)
metadata-response

issuer: issAS , authz_endpoint: https://as.com/authz,issuer: issAS , authz_endpoint: https://as.com/authz,
token_endpoint: https://as.com/token, ...token_endpoint: https://as.com/token, ...

POST /par (PAR Request)POST /par (PAR Request)
client id cid, redirect uri rediruri,client id cid, redirect uri rediruri,

code challenge cc := ℎ (cv) , scope, ...code challenge cc := ℎ (cv) , scope, ...
+ client authentication (mTLS or pkjwt)+ client authentication (mTLS or pkjwt)

7 requri (PAR Response)requri (PAR Response)
par-response8 Redirect to https://as.com/authz?request_uri=Redirect to https://as.com/authz?request_uri=

requri&client_id=cidrequri&client_id=cid

par-authz-redirect

9 GET https://as.com/authz?request_uri=requri&client_id=cid (Authorization Request)GET https://as.com/authz?request_uri=requri&client_id=cid (Authorization Request)
par-authz-request

10 User authentication and consent (out of scope)User authentication and consent (out of scope)
authz-authn+consent

11 Redirect to rediruri?code=ac&iss=issAS (Authorization Response)Redirect to rediruri?code=ac&iss=issAS (Authorization Response)
authz-response-redirect

12 GET rediruri?code=ac&iss=issASGET rediruri?code=ac&iss=issAS
authz-response

14 POST /token (Token Request)POST /token (Token Request)
token-request

DPoP proof, ac, cid, code verifier cv (cf. Step 5)DPoP proof, ac, cid, code verifier cv (cf. Step 5)
+ client authentication (mTLS or pkjwt)+ client authentication (mTLS or pkjwt)

16 Token ResponseToken Response
token-response

access token at, [id token], ...access token at, [id token], ...

18 GET /protected-resource (Resource Request)GET /protected-resource (Resource Request)
resource-request

DPoP proof (incl. hash of at), atDPoP proof (incl. hash of at), at
[Token Introspection][Token Introspection]
rs-checks-request

20 Resource ResponseResource Response
resource-response

User’s Browser
, , , ...

Client C
FinTech, insurance, ...

AS AS
Bank, government, ...

4 Verify issuerVerify issuerclient-verifies-metadata

5 Generate
nonce cv
Generate
nonce cv

par-request

6
Check client authentication and request
parameters, store request, and generate request
uri requri

Check client authentication and request
parameters, store request, and generate request
uri requri

as-checks-par-request

13 Validate issValidate iss
client-check-authz-response

User’s Browser

, , , ...

15 Check client authentication, ac, cv, and generate token(s)Check client authentication, ac, cv, and generate token(s)
as-check-token-request

RS
Bank, credit scorer, ...

RS
Bank, credit scorer, ...

RS
Bank, credit scorer, ...

17 Optional: Log in user with information from id tokenOptional: Log in user with information from id tokenuse-id-token

19
Verify validity, integrity, expi-
ration and revocation status
of at & DPoP token binding

Verify validity, integrity, expi-
ration and revocation status
of at & DPoP token binding

rs-checks-request

Client C

FinTech, insurance, ...

AS AS

Bank, government, ...

RS

Bank, credit scorer, ...

RS

Bank, credit scorer, ...

RS

Bank, credit scorer, ...

(optional)(optional)

metadata endpointmetadata endpoint

PAR endpointPAR endpoint

authorization endpointauthorization endpoint

redirection endpointredirection endpoint

token endpointtoken endpoint

introspection endpointintrospection endpoint

Fig. 1. FAPI 2.0 Security Profile protocol flow (with DPoP sender constraining)

FAPI 2.0 assumes that the client received the so-called issuer identifier issAS of AS (e.g., via

configuration). That issuer identifier is used in FAPI 2.0 and other protocols to uniquely identify

AS [103] and consists of an HTTPS URL without query or fragment components. However, to

complete a FAPI 2.0 flow, the client needs additional knowledge on AS, e.g., endpoint URLs (which
in general are different to the issuer identifier). If C does not yet know all necessary values (e.g., via

configuration), it can proceed by fetching so-called Authorization Server Metadata [61, 91] from
AS by sending a corresponding request to the URL issAS, with a standardized path appended to it

(Step 2 ). However, this step is optional. Like all other communication in FAPI 2.0++, this exchange

is done via HTTPS, i.e., is protected by TLS. The metadata returned by AS includes URIs of the

relevant endpoints, supported cryptographic algorithms, and similar information, along with the

issuer identifier of AS (Step 3 ). Once the client acquired the metadata response, it verifies that the

issuer value contained in the response equals the value that it used to create the metadata request.

Once the required values are available, C assembles a Pushed Authorization Request (PAR) [71]
and sends it to AS (Step 5 ). This PAR request contains everything needed by AS to provide the user
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with sufficient information in Step 10 such that the user can make an informed decision on whether

to grant C access to their data. This information includes: 1) a client id cid, uniquely identifying C at
AS. 2) A scope value, describing what data C wants to access, e.g., “read transactions”, and whether

C requests an id token to be issued. 3) A redirect uri rediruri, which is used by AS in Step 11 to

redirect the user’s browser back to C. 4) A code challenge, i.e., a hash ℎ(cv) of a client chosen nonce

cv, which is used in Step 14 to verify that the client requesting a token is the same client that

sent the PAR request (even if the PAR request leaks). This mechanism is called Proof Key for Code
Exchange (PKCE) [89]. 5) Client authentication information (see below for a description).

Upon receiving the PAR request, AS verifies the client authentication, the presence of the pa-

rameters explained above, and checks whether the requested scope can be granted to the client

(under the policies of AS). If all these checks pass, AS creates the so-called request uri requri, which
is essentially a nonce (the format of the uri is not specified, however, the value must contain

a non-guessable part). AS then stores the requested scope, cid, cc := ℎ(cv), rediruri, and requri
(Step 6 ); requri will be used as a reference to the PAR data in Step 9 and is therefore sent to C in
the PAR response (Step 7 ). Client C then redirects the user’s browser to AS, adding requri and cid
as request parameters (Step 8 ). Following that redirect, the user’s browser visits AS and in doing so,

forwards requri and cid, hence providing information on the user’s context (i.e., the current flow)

to AS (Step 9 ). The user now authenticates at AS and reviews the access requested by C (Step 10 ),

the exact details of this step are up to the AS and out of scope of FAPI 2.0. If the user consents, AS
generates a random authorization code ac and stores it with the PAR data from Step 5 . AS then

redirects the user’s browser back to the rediruri of C (stored in Step 6 ), and includes ac as well as
an iss value [103] (i.e., the issuer identifier issAS) as parameters (Steps 11 and 12 ).

Once C has received the browser’s (redirected) request, it validates the iss value in that request

by comparing it to the issuer identifier of the AS to which the client sent the PAR request in Step 5 ,

i.e., issAS, to prevent mix-up attacks [34, 70, 75, 103] which exploit the interaction between ASs

and clients via user’s browsers. If the issuer check passes, C sends a token request to AS (Step 14 ).

This token request contains the authorization code ac from Step 12 , client id cid, a code verifier cv,
i.e. the nonce from Step 5 , and client authentication similar to Step 5 . Furthermore, C must also

include information for access token sender constraining, which we describe below.

When AS receives that token request, it verifies the client authentication (explained below),

presence of a sender constraining method, and validity of the authorization code and code verifier

(Step 15 ). The latter is verified by checking whether ℎ(cv) = cc, with cc being the code challenge
stored in Step 6 and cv being the code verifier from the token request. The code ac is then invalidated
and AS generates an access token at (and id token if requested) and sends them back to C in Step 16 .

Given an id token, C may now log in the user with whatever identity the user has at AS, e.g., a
user name (Step 17 ). This allows clients to offer SSO to their users.

Using the access token at, C can request the user’s resources at an RS as follows: in the resource

request (Step 18 ), C must include at as well as corresponding information for access token sender

constraining (see below). The RS then has to verify at’s validity, integrity, expiration, and revocation
status, as well as the sender constraining information (Step 19 ). Except for the sender constraining,

FAPI 2.0 does not specify how RSs should perform those (nonetheless mandatory) checks. Currently,

there are two widely-adopted methods to do so [79]: token introspection [83], and structured access

tokens, which contain the necessary information and are typically signed by the AS [8, 57]. For

token introspection, the RS sends the access token to the introspection endpoint of the AS which

issued the token, to which the AS answers with information on the validity of the token and the

public key to which the access token is bound.
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Client Authentication. FAPI 2.0 mandates ASs to authenticate their clients at the PAR and token

endpoints (Steps 5 and 14 ) using Mutual-TLS (mTLS) or private_key_jwt. In both cases, clients

need to be registered with the AS beforehand. With mTLS [10] authentication, the client presents

a TLS certificate containing the client’s identity, e.g., one of its domains, during TLS connection

establishment. With private_key_jwt [90], the client adds a signed JSON Web Token (JWT) [57,
59, 60] to its messages. This JWT contains, among other things, the client’s id at the AS, the issuer

identifier of the AS, and a fresh nonce, and is signed with a private key of the client.

Access Token Sender Constraining. When issuing an access token (Steps 14 – 16 ), a FAPI 2.0 AS

is required to bind the token to a key of the client who requested it. Likewise, the RS must verify

this binding when it receives a resource request (Step 19 ). This mechanism, called access token
sender constraining, is chosen independently of the client authentication mechanism (see also the

explanation below). FAPI 2.0 defines two methods to establish and verify such a binding: OAuth 2.0
Demonstrating Proof-of-Possession at the Application Layer (DPoP) [32], which is shown in Figure 1,

and mTLS [10]. In both cases, the access token is bound to a client key pair, e.g., by including a

hash of the DPoP public key or mTLS certificate in the token, and the client has to include a proof

of possession of the corresponding private key when using the access token.

With DPoP, the token request (Step 14 ) must include a DPoP proof, consisting of a signed JWT

dpopJWT , containing the URL to which it is sent (without parameters and fragment components),

a nonce chosen by the client, and a public verification key pub(𝑘) (of the client’s choice). dpopJWT
is signed using the corresponding private key 𝑘 . The AS then binds the access token to pub(𝑘).
When requesting resources (Step 18 ), the client has to include another DPoP proof—signed with

𝑘—which must contain a hash of the access token in addition to the aforementioned items.

With mTLS, the AS binds the access token to the public key included in the client’s TLS certificate,

which the client presents during connection establishment in Step 14 . When using the access token

(Step 18 ), the client presents the same certificate during the TLS connection establishment (which

includes a proof of possession of the corresponding private key).

We emphasize again that client authentication and access token sender constraining mechanisms

are chosen independently of each other, and that sender constraining is not meant to identify

the client towards the RS. E.g., a client that uses mTLS to authenticate may use DPoP for sender

constraining, and a client can authenticate with private_key_jwt and at the same time use mTLS

for sender constraining. I.e., there are four possible combinations.

2.3 FAPI 2.0 Message Signing
With FAPI 2.0 SP alone, one cannot expect to achieve accountability properties. However, in the

context of high-stakes applications, parties may be interested in or even legally required to be able

to prove that some other party sent a certain message, e.g., a payment order. To accommodate such

applications, the FAPI 2.0 framework features a standard called FAPI 2.0 MS [39], which aims to add

non-repudiation properties to FAPI 2.0 ecosystems.

Similar to FAPI 2.0 SP, FAPI 2.0 MS combines existing standards and adds some requirements to

enhance security and interoperability. Furthermore, FAPI 2.0 MS is somewhat modular in that a

given deployment does not necessarily have to use all of the below profiles, but can select which

of them to use, depending on the specific deployment’s requirements. All of the profiles have in

common that they add sender signatures to one or more of the messages sent in a flow of FAPI 2.0

SP. The available profiles are:

Signed Authorization Requests For signed authorization requests, the OAuth 2.0 JWT Secured
Authorization Request (JAR) [92] is employed. In the context of FAPI 2.0 SP, the relevant

message to be signed (by the client) is the pushed authorization request (Step 5 in Figure 1).
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1 Start flow with identity id (out of scope)Start flow with identity id (out of scope)
init-flow

2 Get authorization server metadata (optional)Get authorization server metadata (optional)
fetch-as-metadata

5 Convey bindMsg to user (e.g., in display)Convey bindMsg to user (e.g., in display)
send-bm-to-user

6 POST /bca (Authentication Request)POST /bca (Authentication Request)
authentication-request

client id cid, scope,client id cid, scope,
login hint id, bindMsg, (if ping mode) nt,login hint id, bindMsg, (if ping mode) nt,
+ client authentication (mTLS or pkjwt)+ client authentication (mTLS or pkjwt)

8 Authentication Request AcknowledgmentAuthentication Request Acknowledgment
authentication-request-ack

authIdauthId

9 User authenticates, compares bindMsg (from Step 5), and authorizes (details out of scope)User authenticates, compares bindMsg (from Step 5), and authorizes (details out of scope)
start-user-authn

10 POST /ping (Ping Callback)POST /ping (Ping Callback)
ping-client

authId, ntauthId, nt

11 OKOK
ping-ack

12 POST /token (Token Request)POST /token (Token Request)
token-request

DPoP proof, cid, authId,DPoP proof, cid, authId,
+ client authentication (mTLS or pkjwt)+ client authentication (mTLS or pkjwt)

User
incl. authentication device

Client C
incl. consumption device

AS AS
Bank, government, ...

3 If ping mode: Generate client notification token ntIf ping mode: Generate client notification token nt
gen-cnt

4 Generate binding message bindMsgGenerate binding message bindMsg
gen-bm

7 Generate request id authIdGenerate request id authId
gen-authreqid

User

incl. authentication device

Client C

incl. consumption device

AS AS

Bank, government, ...

backchannel authen-backchannel authen-
tication endpointtication endpoint

(only in ping mode)(only in ping mode)

client notification endpointclient notification endpoint

token endpointtoken endpoint

Fig. 2. FAPI-CIBA protocol flow (with DPoP sender constraining) – the remaining steps after the token
request are the same as in Figure 1.

Signed Authorization Responses Signed authorization responses are implemented using the

JWT Secured Authorization Response Mode for OAuth 2.0 (JARM) [68] (applied to Step 11 in

Figure 1).

Signed Introspection Responses To sign the introspection response (Step 19 in Figure 1), the

JWT Response for OAuth Token Introspection [72] specification is applied.

Signed HTTP Messages To sign resource requests and responses (Steps 18 and 20 in Figure 1),

HTTP Message Signatures [3] are used. This profile allows signing both, request and response,
or only one of them.

2.4 FAPI-CIBA
The FAPI-CIBA profile [98] of the CIBA [23] authentication flow covers use cases of FAPI 2.0 in

which the user aims to authorize a consumption device (CD) of a client but uses a different device,
the authentication device, often a smartphone, to authenticate and provide consent, for example

when authorizing a payment at a point-of-sale terminal.

Figure 2 depicts a FAPI-CIBA authentication flow, where we assume that the CD is subsumed by

the client as the communication between the CD and client is not specified by CIBA or FAPI-CIBA

(the CD is “the device that helps the user consume the service” [23], thus, can essentially be seen as

the interface of the client towards the user). The flow is initiated by the user providing an identity

id to the client C (Step 1 ), e.g., by entering their phone number at a point-of-sale terminal. Note

that the authorization server AS used by C in the following is either fixed for a given CD or derived

from id. As in FAPI 2.0 SP, C may now fetch AS metadata (Step 2 ). The next step depends on

the delivery mode chosen by C: in the poll mode, the client polls the AS for the requested tokens,

whereas in the ping mode, the client waits for the AS to notify it before sending a token request. In

the case of the ping mode, C generates a client notification token nt in Step 3 that the AS will use

later when notifying C of completed authorization by the user (see Step 10 ). Next, C generates a
binding message bindMsg (Step 4 ), a short human-readable string used to link the user’s interaction
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with the CD to the user’s interaction with the authentication device. This binding message is then

conveyed to the user (Step 5 ), e.g., by showing it on a display of the CD.

Meanwhile, C sends an authentication request to AS (Step 6 ) with its client id, the requested scope,

and client authentication data as in the PAR request in Section 2.2. In addition to these values, the

authentication request contains 1) the id from Step 1 as a so-called login hint which AS later needs

to determine which user to contact, 2) the binding message bindMsg, and, if the ping mode is used,

3) the client notification token nt. After validation of the authentication request, AS generates a
(random) reference authId (Step 7 ) and includes it in its response to C (Step 8 ). In poll mode, C
now starts to send repeated token requests to AS.
Subsequently, AS contacts the user identified by id, e.g., via a push notification to their phone

(Step 9 ), asking them to not only authenticate to AS with id and authorize C’s request but to also

compare the binding message sent by AS to the one the user received from the CD in Step 5 . As

before, the details of this interaction between user and AS are out of scope.
In ping mode, AS now sends a ping callback to C’s notification endpoint with authId and nt

to inform C about the completed authorization (Step 10 ), which C acknowledges in Step 11 . The

notification endpoint is part of the data a client needs to register with an AS (if that client wants to

use the ping mode).

Finally, C sends a token request with information for access token sender constraining (see

Section 2.2), its client id, the reference authId, and client authentication information to the AS

(Step 12 ). The remaining steps, i.e., token response and retrieving resources, are the same as for

the FAPI 2.0 SP flow described in Section 2.2. In particular, the access token is sender-constrained,

either using DPoP or mTLS.

User Identity Hint. In Step 6 , the client has to include a hint on the user’s identity. CIBA defines

three options for this hint, an authentication request must contain exactly one of them: 1) a login
hint as described above contains a global user identifier, e.g., a user’s email address or phone

number, 2) a login hint token is an application-specific data structure with information to identify

the user, and 3) an id token hint contains a previously issued (possibly expired) id token.

2.5 Dynamic Client Registration and Management
As mentioned before, a FAPI 2.0 client needs to be registered with a FAPI 2.0 AS which includes

registering client keys, e.g., for client authentication and access token sender constraining, a client

id issued by the AS, but also client metadata like the types of access token sender constraining

supported by the client and the client notification endpoint (see Section 2.4). While this registration

can be done out-of-band, e.g., via manual configuration, this is not feasible in many real-world

use cases, such as single-page applications. Hence, the OAuth 2.0 Dynamic Client Registration

Protocol [85] has been developed which allows clients to register themselves with an AS in a

defined way. To further accommodate for changes to the client’s configuration (e.g., key rollover),

the OAuth 2.0 Dynamic Client Registration Management Protocol [86] allows clients to change

their configuration at an AS.

For DCR, the AS offers an additional HTTPS endpoint to which clients send their desired

configuration, to which the AS replies with the values it registered (which may differ from the ones

the client wished to register, e.g., the AS might restrict the possible FAPI-CIBA delivery modes).

The DCR specification also defines two optional security measures: 1) With initial access tokens,
clients wanting to register themselves with an AS must present such an initial access token at the

registration endpoint. How a client obtains such an initial access token is, however, out of scope.

And 2) client assertions are JWTs with claims about a client, signed by a third party which is trusted
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by the AS to have verified these claims before signing the JWT. As mentioned, both mechanisms

are optional, and none of the FAPI 2.0 specifications provide further guidance regarding DCR.

Similar to DCR, DCM is realized by an AS endpoint very similar to the one for DCR. To ensure

clients can only modify their own configuration, this endpoint requires a registration access token,
which is issued to the client upon registration (and may be updated during subsequent interactions

with the dynamic client management endpoint).

2.6 Security Goals
Along with the actual protocol specification, the FAPI WG developed the FAPI 2.0 Attacker

Model [27] which outlines security goals and assumptions on attackers under which these goals

are expected to hold for FAPI 2.0 SP. As before, we describe the state as of June 1st, 2022 here and

discuss changes made since then in Section 3. Furthermore, the FAPI 2.0 MS specification adds

security goals related to non-repudiation which have not changed since the onset of our work.

Since the FAPI-CIBA, DCR, and DCM specifications do not state any explicit security goals, we

consulted with the FAPI WG and agreed to expect the same level of security as for FAPI 2.0 SP,

i.e., the same security goals apply. The formalized security properties and modeling of attacker

assumptions are presented in Section 4.

Authorization. The authorization goal states that no attacker should be able to access resources

belonging to an honest user. In addition, FAPI 2.0 AM states that this goal is “fulfilled if no attacker

can successfully obtain and use an access token” issued for an honest user.

Authentication. The authentication goal is fulfilled when no attacker is able to log in at a client

under the identity of an honest user.

Session Integrity for Authorization. Session integrity goals aim to prevent attackers from trick-

ing users into using attacker’s resources or identities. Hence, the session integrity for authorization

goal ensures users cannot be forced to use resources of the attacker.

Session Integrity for Authentication. Similar to the session integrity for authorization goal, the

session integrity for authentication goal is fulfilled if no attacker can force an honest user to be

logged in under an identity of the attacker.

Non-repudiation Properties. For signed authorization requests, non-repudiation means that if

an honest AS accepts a pushed authorization request it expects to be signed, then that request is

signed. Furthermore, if the signature is valid for a key registered with the AS by an honest client,

then that client cannot deny having signed the request. Note that since we model an ecosystem in

which flows with and without signatures can be used in parallel, the receiver has to decide whether

it expects a given message to be signed. In practice, this decision may for example depend on the

message content or the (claimed) sender.

Non-repudiation for signed authorization responses, signed introspection responses, signed

resource requests, and signed resource responses is defined accordingly.

Note that the distribution of verification keys is out of scope of the FAPI 2.0 specifications, but

ASs will typically learn clients’ verification keys as part of client registration, whereas ASs and RSs

typically make use of the existing TLS PKI by providing a TLS-protected so-called JWKs endpoint
where they publish their verification keys.

2.7 Attacker Model
In the following, we summarize the attacker assumptions laid out in FAPI 2.0 AM. We stress that

these (strong) assumptions are part of and justified by the specification, e.g., to account for leaked

server logs or leaked browser history.
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A1. The attacker controls the network, i.e., can intercept, block, and tamper with all messages

sent over the network. In particular, the attacker can also reroute, reorder, and create (from its

knowledge) new messages. However, the attacker cannot break cryptography unless it learns the

respective keys. From a network point of view, the attacker can pose as any party (and any network

participant) in the protocol. In addition, the attacker can also send links to (honest) users which are

then visited by these users. See [28, Sec. A1, A1a, A2].

A2. The attacker can read authorization requests in plain (Step 9 in Figure 1). See [28, Sec. A3a].

A3. The attacker can read authorization responses in plain (Step 12 ). See [28, Sec. A3b].

A4. The attacker can trick the client into using an attacker-controlled token endpoint URL (other

endpoints, e.g., PAR, are not affected). Hence, the attacker can read token requests (Step 14 ) in plain

and construct arbitrary token responses from its knowledge (Step 16 ). However, this assumption

only applies to clients that do not use the AS metadata mechanism. See [28, Sec. A5].

A5. Resource requests (Step 18 ) leak to the attacker in plain. See [28, Sec. A7].

A6. Resource responses (Step 20 ) leak to the attacker in plain. See [28, Sec. A7].

A7. The attacker can modify resource responses (Step 20 ), i.e., can replace an honest RS’ resource

response with its own message without the client noticing, even though that response is protected

by TLS. Note that this does not give the attacker the ability to replace arbitrary messages in TLS

connections, but is limited to resource responses (see [28, Sec. A8]). The specification mentions a

compromised reverse proxy in front of the RS as a possible reason for this attacker ability.

Note that attacker assumption A1 corresponds to the capabilities of a standard network attacker

(with the additional ability to prompt users to open arbitrary links) and does not imply the other

assumptions, as FAPI 2.0++ requires the use of TLS for all messages. E.g., A2 enables the attacker

to learn the request uri value of an authorization request even if the request is sent between honest

parties (which the attacker cannot learn by A1 due to TLS).

3 ATTACKS
We formally modeled the FAPI 2.0++ specifications mentioned above and then formalized and tried

to prove the security goals laid out therein under the attacker assumptions outlined in FAPI 2.0 AM.

In the course of this analysis, we have uncovered several attacks, i.e., violations of the security goals.

We have discussed these findings with the FAPI WG and worked with them to resolve the issues,

resulting in a number of changes to the specifications which we explain here. The formal model

presented in Section 4, for which we prove security, incorporates these changes. While, to the best

of our knowledge, Attacker Token Injection, the Client Impersonation attacks, and DPoP Proof

Replay are completely new attacks, interestingly, for the other attacks (Browser Swapping, Cuckoo’s

Token, Cross-Device Consent Phishing, Authorization Request Leak), similar attack patterns have

been reported for related protocols [14, 33, 55, 69]. This emphasizes the importance of systematic,

formal analysis, as even seasoned experts overlook known attack patterns for complex protocols.

3.1 Attacker Token Injection
This two-phased attack violates both session integrity goals and requires attacker assumptions

A4 (token endpoint misconfiguration) and A5 (resource requests leak, see Section 2.7). In the first

phase of this attack, the attacker, posing as a user, completes a flow with an honest client Chon and
honest AS AShon. During this flow, the attacker uses A5 to obtain atatt, i.e., an access token bound

to keys of Chon, issued by AShon for resources of the attacker. For the second phase, the attacker uses
A4, such that Chon uses an attacker-controlled token endpoint (instead of AShon’s token endpoint).

Hence, when an honest user 𝑢 starts a flow with Chon and AShon, the attacker receives Chon’s token
request, to which the attacker answers with atatt and an id token constructed by the attacker for an
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1 Leak of client authentication JWTs pkjwti for Chon at AShon (for client id cid′)Leak of client authentication JWTs pkjwti for Chon at AShon (for client id cid′)
pkjwt-leak

2 Start flow with ASattStart flow with ASatt
init-flow

3 POST /parPOST /par
honest-par

cid (client id of Chon at ASatt), redirurihon , code challenge ℎ (cvhon ) , ...cid (client id of Chon at ASatt), redirurihon , code challenge ℎ (cvhon ) , ...
4 POST /parPOST /par
attacker-par

cid′(client id of Chon at AShon),cid′(client id of Chon at AShon),
rediruriatt , ℎ (cvatt ) , ...rediruriatt , ℎ (cvatt ) , ...
+ pkjwt1 from Step 1+ pkjwt1 from Step 1
5 request uri requrirequest uri requri

attacker-par-response

6 requri (as received in Step 5)requri (as received in Step 5)
honest-par-response7 Redirect to https://attacker.com/authz?Redirect to https://attacker.com/authz?

request_uri=requri&client_id=cidrequest_uri=requri&client_id=cid

authz-request-redirect

8 GET /authz?client_id=cid&request_uri=requriGET /authz?client_id=cid&request_uri=requri
authz-request-honest

10 GET /authz?client_id=cid′&request_uri=requriGET /authz?client_id=cid′&request_uri=requri
authz-request-attacker

11 Honest user authenticates & authorizesHonest user authenticates & authorizes
authn+consent

12 Redirect to rediruriatt?code=ac&iss=issattRedirect to rediruriatt?code=ac&iss=issatt
authz-response-redirect

Note: rediruriatt points to ASatt (cf. Step 4)Note: rediruriatt points to ASatt (cf. Step 4)

13 GET /redir?code=ac&iss=issattGET /redir?code=ac&iss=issatt
authz-response

14 POST /tokenPOST /token
token-request

DPoP proof, ac, cid′ , cvattDPoP proof, ac, cid′ , cvatt
+ pkjwt2 from Step 1+ pkjwt2 from Step 1

15 access token at for hon. user’s resourcesaccess token at for hon. user’s resources

Attacker
(ASatt + Client)

Browser of
honest user

Honest Client
Chon

Honest AS
AShon

9
Redirect to AShon
(+ social engineering)
Redirect to AShon
(+ social engineering)

social-engineering
Honest Client

Chon

Browser of

honest user

Attacker

(ASatt + Client)

Honest AS

AShon

Fig. 3. Client impersonation attack

attacker identity. Client Chon then logs 𝑢 in under the attacker’s identity and uses attacker resources

in a session with 𝑢.

At its core, this attack is possible because the attacker can trick an honest client into using an

attacker-controlled token endpoint (due to A4). We describe a fix, our communication with the

FAPI WG, and resulting changes to the specifications at the end of the next subsection.

3.2 Client Impersonation Attacks
This attack violates the authorization goal, requires attacker assumption A4 (token endpoint

manipulation, see Section 2.7), and targets an honest client Chon that uses the private_key_jwt
method (see Section 2.2) to authenticate itself to an honest AS AShon. UsingA4, the attacker modifies

Chon’s configuration such that Chon uses an attacker-controlled token endpoint (instead of AShon’s).
In a nutshell, the attacker first obtains two valid client authentication JWTs pkjwt1 and pkjwt2 for

Chon at AShon. Afterwards, the attacker uses those JWTs to impersonate Chon at AShon and obtains

an access token issued by AShon for resources of an honest user 𝑢, with the token being bound to a

key of the attacker, i.e., the attacker can use this token at an RS to access 𝑢’s resources.

To obtain said JWTs, the attacker starts a flow with Chon, selects AShon, and authenticates at

AShon (with an attacker id). However, once the attacker receives Chon’s token request (due to the

misconfigured token endpoint), no further actions are taken. The token request sent by Chon contains
pkjwt1 to authenticate Chon at AShon, which has now leaked to the attacker and has never been sent

to AShon, i.e., pkjwt1 is still valid. The attacker can repeat this to obtain pkjwt2 .
With such valid client authentication JWTs for Chon at AShon, the attacker can proceed as depicted

in Figure 3: An honest user 𝑢 starts a flow with Chon and expresses its wish to use an AS ASatt,
identified by issuer identifier issatt, which happens to be controlled by the attacker (Step 2 ). Hence,

Chon sends a PAR request to ASatt, containing its client id cid at ASatt, a redirect uri, a code challenge
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ℎ(cvhon) for a code verifier cvhon chosen by Chon, etc. as described in Section 2.2 (Step 3 ). Instead

of replying to this request immediately, the attacker now poses as Chon towards AShon: the attacker
sends its own PAR request to AShon, assembled from an attacker-chosen code challenge ℎ(cvatt),
a redirect uri rediruriatt pointing to a URL of ASatt, the client id cid′ of Chon at AShon, and pkjwt1
(Step 4 ). Upon receiving the attacker’s PAR request, AShon validates the request and replies with

requri (Step 5 ), which the attacker forwards to Chon (now again in the role of ASatt towards Chon) in
Step 6 in response to Chon’s original PAR request from Step 3 .

Client Chon now instructs 𝑢 to visit ASatt for authentication (Step 7 ). However, instead of the

usual login page, ASatt responds with a page luring the user into clicking a link, e.g., by explaining

ASatt is cooperating with AShon (Step 9 ). This link points to AShon’s authorization endpoint and

contains the parameters requri and cid′, i.e., Chon’s client id at AShon. Instead of a link, ASatt could

redirect 𝑢 to AShon directly. Either way, 𝑢 ends up authenticating at AShon and authorizes Chon –
recall that 𝑢 expects to authorize Chon (Step 11 ). AShon then redirects 𝑢 with authorization code ac
to rediruriatt received in Step 4 , i.e., to an attacker-controlled location (Steps 12 and 13 ).

Having received ac, the attacker can now construct a valid token request (using pkjwt2) as shown
in Step 14 , and subsequently receives an access token at for 𝑢’s resources. Note that from AShon’s
point of view, 𝑢 authorized the attacker, posing as Chon towards AShon, to receive at. In addition,

recall that the DPoP key to which AShon binds at is chosen by the sender of the token request

(Step 14 ), i.e., the attacker. Hence, at is bound to a key of the attacker, and can be used at an RS to

access 𝑢’s resources, thus breaking the authorization goal.

We stress that 𝑢 authenticates at an honest, trusted AS and authorizes not only an honest

and trusted client, but also exactly the client 𝑢 expected to authorize. There are some variants

of this attack with slightly different preconditions, but similar outcomes, which we describe in

Appendix A.1. These attacks emerged when we tried to prove that a client authentication JWT for

authentication of an honest client at an honest AS AShon (i.e., the JWT contains the issuer identifier

of AShon) cannot leak to an attacker (Lemma 12).

Fix. Since the possible misconfiguration of an honest client’s token endpoint is the root cause

for both the attacker token injection and the client impersonation attacks and FAPI 2.0 ASs are

already required to serve a metadata document, our proposed fix of mandating clients to request

and use this metadata was adopted by the FAPI WG [30, 48, 50]. Recall A4: such token endpoint

misconfiguration is only considered for clients which do not use the AS metadata mechanism.

3.3 DPoP Proof Replay
With attacker assumption A5 (resource requests leak) from Section 2.7, the attacker can read

resource requests in plain and hence can try to replay them at the RS (cf. Step 18 in Figure 1), thus

violating the authorization goal (see Section 2.7) if the RS accepts the replayed request.

When DPoP sender constraining is used, the attacker can indeed replay the client’s DPoP proof

(using the attacker’s TLS keys for the underlying connection): neither FAPI 2.0++, nor DPoP [32]

itself, nor the specifications on which DPoP is built [56, 57, 90] mandate for DPoP proofs to be

strictly one-time use. Hence, the specifications do not mandate the RS to reject a replayed proof.

Our initial attempts to prove the authorization property (Definition 3) revealed a second variant,

which also violates the authorization goal: withA1 (network attacker), the attacker can additionally

block the honest client’s request, i.e., from the point of view of the RS, the attacker’s resource

request is not even a replay, and hence, replay protection cannot prevent this attack.

Note that neither variant of this attack is possible with mTLS sender constraining since the

attacker cannot even establish an mTLS connection to the RS for the client’s mTLS key (to which

the access token is bound when mTLS sender constraining is used).
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Fix. In our discussions with the FAPI WG, it became clear that the FAPI WG formulated attacker

assumption A5 with leaks of RS server log files in mind. Hence, FAPI 2.0 AM was changed to

clarify that resource requests leak after processing by the RS [26]. However, this only resolves the

problem resulting from the attacker blocking the honest client’s request, but does not prevent the

replay attack. Hence, we proposed to fix this attack by mandating the use of resource server-provided
nonces with strict one-time use enforcement by the RS [32, Sec. 9]. The server-provided nonce

mechanism is an optional part of DPoP in which—in a challenge-response manner—the client first

requests a nonce from the RS which the client then has to include in its DPoP proof. We validated

the effectiveness of this fix in our formal model.

The FAPI WG acknowledged the attack [49], and added a description of the attack, as well as

several options to fix it, to the specification.

3.4 Browser Swapping Attack
In this attack, the attacker violates the authorization and authentication goals by combining attacker

assumptions A1 (network attacker) and A3 (authorization responses leak, see Section 2.7).

On a high level, the attacker poses as a user and starts a flow with an honest client Chon and
honest AS AShon, but tricks an honest user 𝑢 into logging in at AShon and authorizing access for Chon.
After 𝑢 authorized Chon, the attacker continues its session with Chon (as if the attacker authenticated
and authorized at AShon). Hence, the attacker gets logged in at Chon under the identity of 𝑢, and

Chon provides access to 𝑢’s resources to the attacker.

Due to space constraints, we refer to Appendix A.2 for a detailed description.

At the heart of this attack is the lack of a strong connection between the sessions user–client and

user–AS. We discovered it when trying to prove the authorization property (see Definition 3): while

proving that in a flow between an honest client, honest AS, and honest user, the client does not

leak the user’s resources, we have to prove, among others, that the authorization code associated

with the flow cannot be sent to the client’s redirection endpoint by the attacker.

Fix. The FAPI WG acknowledged this attack and after several discussions, there was consensus that

this attack cannot be fixed with currently deployed methods [31, 87]. This decision is documented

and explained along with the attack in the specifications [27, Sec. 6.5.7]. Consistent with this

decision, the FAPI WG also removed attacker assumption A3, i.e., FAPI 2.0 no longer claims to

fulfill its security goals when authorization responses leak.

3.5 Cuckoo’s Token Attack
In this attack, the attacker leverages attacker assumptionA5 (resource requests leak) to violate the

authorization goal (see Section 2.7).

Said attacker assumption allows the attacker to obtain an access token athon from an honest flow,

i.e., athon was issued by an honest AS AShon for an honest client Chon on behalf of an honest user 𝑢

(and thus athon is bound to keys of Chon). By then injecting athon into a flow between the attacker as

user, Chon, and an attacker-controlled AS, the attacker (as user of Chon) gains access to 𝑢’s resources.
Figure 4 shows the attack in detail: the attacker first acquires an access token athon from an

honest flow (Step 1 ). Such a token may, for example, be obtained by the attacker through observing

a resource request (see A5). Due to access token sender constraining, the attacker cannot use

athon directly at an RS (recall: athon is bound to keys of Chon). Instead, the attacker, posing as a user

towards Chon, now starts a flow with Chon, selecting an AS ASatt controlled by the attacker (Step 2 ).

Chon initiates the flow as usual with PAR (Step 3 ), followed by instructing the user, i.e., attacker, to

visit ASatt (Step 4 ). Since ASatt is controlled by the attacker, the authentication and authorization

steps can be skipped and the attacker (posing as a user) immediately “redirects” itself to Chon with
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1 Access token athon leaks from flowAccess token athon leaks from flow
with AShon , Chon , and honest user𝑢 (A5)with AShon , Chon , and honest user𝑢 (A5)

at-leak

2 Start flow with ASatt (out of scope)Start flow with ASatt (out of scope)
client-init-flow

3 AS Metadata (optional) and PAR request/responseAS Metadata (optional) and PAR request/response
metadata-and-par

Chon receives requri in PAR responseChon receives requri in PAR response4 Redirect to ASatt with request_uri=requri&client_id=cidRedirect to ASatt with request_uri=requri&client_id=cid
authz-req-redirect

5 GET <Chon ’s redirect_uri>?code=ac&iss=issattGET <Chon ’s redirect_uri>?code=ac&iss=issatt
authz-response

(skip authentication at ASatt : attacker controls user and ASatt)(skip authentication at ASatt : attacker controls user and ASatt)

7 POST /token with DPoP proof, ac, ... (Token Request)POST /token with DPoP proof, ac, ... (Token Request)
token-request

athon (bound to DPoP key of Chon), ... (Token Response)athon (bound to DPoP key of Chon), ... (Token Response)

Attacker (User) Honest Client Chon Attacker (AS) ASatt

6 Validate iss value (Chon expects issatt : flow is with ASatt)Validate iss value (Chon expects issatt : flow is with ASatt)
client-check-authz-response

Attacker (User) Honest Client Chon Attacker (AS) ASatt

Fig. 4. Cuckoo’s token attack

issuer identifier issatt (which identifies ASatt) and an arbitrary authorization code ac (Step 5 ). Upon

receiving that message, Chon validates the issuer identifier (Step 6 ), which succeeds: Chon is and
wants to be in a flow with ASatt. As usual, Chon now sends a token request to ASatt, which responds

with the previously acquired athon (Step 7 ). Recall that athon was issued for and is bound to keys of
Chon to access resources of 𝑢. Hence, Chon can use athon at an honest RS. But since Chon associates
athon with the session between Chon and the attacker, this gives the attacker access to 𝑢’s resources.

At its core, this attack exploits the lack of binding between access token and AS from the client’s

point of view. Note: the client is mandated to handle the access token as an opaque value, i.e.,

cannot perform any checks on the token.

Fix. We proposed to fix this attack by mandating the client to include an AS issuer identifier in

each resource request (which would be the attacker AS’ identifier in the example above). The RS

can then compare this issuer identifier sent by the client with the actual issuer of the access token

(which, in our example, would be some different, honest AS). Note that in order to verify the token’s

validity, the RS already needs to determine which AS originally issued the token. The FAPI WG

acknowledged the attack [88] and added a description of the attack, as well as our proposed fix, to

the specification [51]. However, the FAPI WG decided that the “preconditions for this attack do

not apply to many ecosystems and require a powerful attacker” [29, Sec. 5.6.5] and hence made

implementation of a fix optional. Note that while this fix seems to be a small change, there is no

standardized way to send the issuer identifier of the AS, as well as no standardized way for the RS

to get a value to compare against [29, Sec. 5.6.5]. Hence, mandating such a change would require

substantial standardization efforts.

3.6 Cross-Device Consent Phishing Attack on FAPI-CIBA
FAPI-CIBA is a cross-device authentication and authorization protocol. A known weakness of such

protocols is the lack of authentication of the CD towards the user, which is exploited by so-called

cross-device consent phishing attacks [14, 55, 62] to violate the authorization and authentication goals.
Specifically, in Step 9 of Figure 2, besides the binding message, the user only has the information

shown by the AS to determine which client they are currently authorizing. With FAPI-CIBA, the

binding message is supposed to mitigate this problem by “enabling the end-user to ensure that the

action taken on the authentication device is related to the request initiated by the consumption

device.” [23, Sec. 7.1]. However, as the attack in Figure 5 shows, this is not the case:

An honest user 𝑢 starts a flow at a malicious CD, using one of 𝑢’s identities id at an honest AS

AShon (Step 1 ). The attacker forwards this to an honest client Chon (Step 2 ), i.e., from the point of

view of Chon, the attacker is a regular user. Consequently, Chon generates a binding message bindMsg
(Step 3 ) and conveys bindMsg to Chon’s user, i.e., the attacker (Step 4 ). While the attacker (in its role
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1 Start with (honest) identity id @ AShonStart with (honest) identity id @ AShon
init

2 Start with identity id @ AShonStart with identity id @ AShon
init-att

4 Convey bindMsgConvey bindMsgsend-bm-to-att
5 Convey bindMsgConvey bindMsgsend-bm-to-user

6 POST /bca (Authentication Request)POST /bca (Authentication Request)
authn-request

login hint id, bindMsg, ...login hint id, bindMsg, ...
+ client authentication (mTLS or pkjwt)+ client authentication (mTLS or pkjwt)

8 Authentication Request AcknowledgmentAuthentication Request Acknowledgment
authn-response

authIdauthId

9 User authentication and consent; user successfully compares bindMsgUser authentication and consent; user successfully compares bindMsguser-authn

10 Token Request and ResponseToken Request and Response
token-request-response

access token at (bound to keys of Chon andaccess token at (bound to keys of Chon and
identity id), id token (for id)identity id), id token (for id)

Honest User
𝑢

Attacker
(Client & User)

Honest Client
Chon

Honest AS
AShon

3 Generate binding message bindMsgGenerate binding message bindMsg
gen-bm

7 Generate request id authIdGenerate request id authId
gen-authreqid

Honest User

𝑢

11
Log in user from Step 2 (i.e., the attacker) with information
from id token (i.e., as the honest user’s identity id)
Log in user from Step 2 (i.e., the attacker) with information
from id token (i.e., as the honest user’s identity id)

use-id-token

Attacker

(Client & User)

Honest Client

Chon

Honest AS

AShon

Fig. 5. Cross-device consent phishing attack on FAPI-CIBA (malicious client variant)

as a CD) conveys bindMsg to the honest user (Step 5 ), Chon sends an authentication request with

login hint id to AShon (Step 6 ), which generates a request id (Step 7 ) and sends it to Chon (Step 8 ).

Next, AShon contacts the user associated with id, i.e., 𝑢, and asks them to authenticate, compare the

binding message bindMsg, and to authorize Chon’s request (Step 9 ). Note that the binding message

presented by AShon in Step 9 indeed matches the one presented by the malicious CD (see Step 5 ).

Furthermore, note that 𝑢 is asked to authorize a request by Chon, whereas 𝑢 started the flow with

and obtained bindMsg from the malicious CD – this is where the lack of authentication of the (in

this case malicious) CD towards the user comes into play: the attacker CD can claim to be Chon
towards 𝑢 and 𝑢 has no way to detect this deception. In practice, this is worsened by the fact that

the client information shown by the AS to the user in Step 9 often only consists of a manufacturer

name and logo.

Following 𝑢’s authorization, Chon obtains access and id tokens linked to id (Step 10 ), and logs its

user, i.e., the attacker, in under identity id (Step 11 ), violating the authentication goal. Similarly,

Chon uses the access token to access resources of 𝑢, which Chon associates with its session with the

attacker, thus violating the authorization goal. We describe another variant of this attack that does

not require the user to initiate a flow with the attacker in Appendix A.3.

Fix. As explained above, this attack relies on the client device not being authenticated towards

the user in such a way that the user can reliably compare the client device he/she is using against

the client they are authorizing. A possible fix is therefore to require the consumption device to

authenticate itself towards the user. However, such (cryptographic) authentication is problematic,

not only due to usability constraints but also due to the limited input/output capabilities of client

devices as such devices are the motivation for the CIBA flow in the first place. We reported our

findings, in particular about the binding message not preventing this attack, to the FAPI WG and

discussed possible mitigations. There now is an ongoing effort by the OAuth Working Group to

give guidance on how to mitigate such attacks [62], e.g., by establishing proximity between the

client device and the user/authentication device using technologies like NFC or Bluetooth Low

Energy. As of this writing, the FAPI WG is working on updating the specifications with our findings

on the binding message and references to [62] for mitigations [97].



18 Pedram Hosseyni, Ralf Küsters, and Tim Würtele

3.7 Authorization Request Leak Attack
A combination of A1 (network attacker) and A2 (authorization request leaks, see Section 2.7)

allows the attacker to violate both session integrity goals: the attacker starts by intercepting (A2)

and blocking (A1) the authorization request (Step 8 in Figure 1) of an otherwise honest flow

between an honest user 𝑢, an honest client Chon, and honest AS AShon. Next, the attacker continues
that flow by visiting AShon’s authorization endpoint with the leaked authorization request, and logs

in using its own (attacker) identity. AShon then answers with an authorization response, containing

an authorization code ac, which AShon associates with the attacker’s identity and the PAR of the

initial, honest flow. From the authorization response, the attacker assembles a link pointing to

Chon’s redirection endpoint with ac and the iss parameter as received from AShon, and sends this

link to 𝑢. Once 𝑢 follows this link, Chon exchanges ac for tokens, logs 𝑢 in under the attacker’s

identity, and accesses resources belonging to the attacker in a session with 𝑢, hence violating both

session integrity goals.

Fix. Upon our notification, the FAPI WG acknowledged the attack [25]. After some discussion,

there was consensus that there is no currently deployed technology that can prevent such attacks.

However, the FAPI WG wanted to keepA2 in their attacker model. Therefore, the FAPI WG decided

to document the attack, as well as (optional) mitigations, which do not prevent, but harden against

the attack in practice, in the specifications [29, Sec. 5.6.6]. For our analysis, we formulated the

session integrity properties such that they only apply to flows in which the authorization request

does not leak (see Appendix E)

3.8 Inconsistencies in Attacker Model
In addition to the attacks described above, we discovered inconsistencies in FAPI 2.0 AM, i.e.,

assumptions on the attacker that immediately violate one or more of the security goals (see

Section 2.7).

A6 Violates Authorization Goal. As resource responses contain users’ resources, this attacker

assumption (leak of resource responses) immediately violates the authorization goal. When we

pointed this out to the FAPI WG, it was decided to drop this attacker assumption [26].

A7 Violates Session Integrity for Authorization Goal. If the attacker can tamper with resource

responses, honest users can be forced to use attacker resources by replacing (honest) resources in

resource responses with attacker resources. This violates the session integrity for authorization goal.

As above, the FAPI WG decided to drop attacker assumptionA7 once we pointed this inconsistency

out [26].

3.9 User Identifier Mix-up in FAPI-CIBA
Another problematic scenario for FAPI-CIBA violates both session integrity goals if the user in its

first message to an honest client device (Step 1 in Figure 2) mistypes their identity, e.g., instead

of alice@as.com, they enter malice@as.com (note that both identities may belong to an honest

AS, and they do not necessarily need to belong to the same AS). The client then sends the usual

authentication request to the AS of the mistyped identity, and that AS contacts the associated user,

i.e., the attacker. If the attacker now authorizes the user’s device, the flow continues as usual, with

the user’s device logging the user in under the attacker’s identity and using attacker resources,

hence violating both session integrity goals.

When discussing this issue with the FAPI WG, it became apparent that FAPI-CIBA is not in-

tended to prevent or mitigate this flow due to its reliance on the user to enter the wrong identity.
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Nonetheless, the security considerations section of the FAPI-CIBA specification provides guidance

on how to get more reliable login hints [98, Sec. 5.2].

4 FORMAL ANALYSIS
In this section, we describe our formal analysis. We start with a primer on the WIM and how we

extend it, followed by an overview of our formal model of FAPI 2.0++, including its limitations.

Subsequently, we discuss the most important differences and technical challenges of our work

compared to prior work on authorization protocols using the WIM, before describing our formal

model of FAPI 2.0++ and the formalized security properties, including our security theorem. We

refer to the appendix for the full formal model and full proofs of all security properties.

4.1 The Web Infrastructure Model
In the following, we give a high-level overview of the WIM closely following the summary in

[34], with the full model given in Appendix G: the WIM is designed independently of a specific

Web application and closely mimics published (de-facto) standards and specifications for the Web,

for example, the HTTP/1.1 and HTML5 standards and associated (proposed) standards. The WIM

defines a general communication model, and, based on it, Web systems consisting of Web browsers,

DNS servers, and Web servers as well as Web and network attackers.

Communication Model. The main entities in the model are (atomic) processes, which are used to

model browsers, servers, and attackers. Each process listens to one or more (IP) addresses. Processes

communicate via events, which consist of a message as well as a receiver and a sender address. In

every step of a run, one event is chosen non-deterministically from a “pool” of waiting events and

is delivered to one of the processes that listens to the event’s receiver address. The process can

then handle the event and output new events, which are added to the pool of events, and so on.

As usual in DY models (see, e.g., [1]), messages are expressed as formal terms over a signature Σ.
The signature contains constants (for (IP) addresses, strings, nonces) as well as sequence, projection,

and function symbols (e.g., for encryption/decryption and signatures). For example, in the Web

model, an HTTP request is represented as a term r containing a nonce, an HTTP method, a domain

name, a path, URI parameters, headers, and a message body. For example, a request for the URI

http://example.com/s?p=1 is represented as

r := ⟨HTTPReq, 𝑛1, GET, example.com, /s, ⟨⟨p, 1⟩⟩, ⟨⟩, ⟨⟩⟩
where the body and the headers are empty. A corresponding HTTPS request for 𝑟 is of the form

enca (⟨𝑟, 𝑘 ′⟩, pub(𝑘example.com)) where 𝑘 ′ is a fresh symmetric key (a nonce) generated by the sender

of the request (typically a browser); the responder is supposed to use this key to encrypt the

response.

The equational theory associated with Σ is defined as usual in DY models. The theory in-

duces a congruence relation ≡ on terms, capturing the meaning of the function symbols in Σ.
For instance, the equation in the equational theory which captures asymmetric decryption is

deca (enca (𝑥, pub(𝑦)), 𝑦) = 𝑥 . With this, we have that, for example,

deca (enca (⟨𝑟, 𝑘 ′⟩, pub(𝑘example.com)), 𝑘example.com) ≡ ⟨𝑟, 𝑘 ′⟩
i.e., these two terms are equivalent w.r.t. the equational theory.

A (DY) process consists of a set of addresses the process listens to, a set of states (terms), an initial

state, and a relation that takes an event and a state as input and (non-deterministically) returns a

new state and a sequence of events. The relation models a computation step of the process. It is

required that the output can be computed (more formally, derived in the usual DY style, e.g., by

application of function symbols and the equational theory) from the input event and the state.

http://example.com/s?p=1
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The so-called attacker process is a DY process which records all messages it receives and outputs

all events it can possibly derive from its recorded messages. Hence, an attacker process carries out

all attacks any DY process could possibly perform. Attackers can corrupt other parties at any time;

corrupted parties behave like the attacker process.

A script models JavaScript running in a browser. Scripts are defined similarly to DY processes.

When triggered by a browser, a script is provided with state information, corresponding to the

(browser) data available to JavaScript in real browsers. The script then outputs a term representing

a new internal state and a command to be interpreted by the browser (see also the description

of browsers below). Similarly to an attacker process, the so-called attacker script may output

everything that is derivable from its input.

A system is a set of processes. A configuration (𝑆, 𝐸, 𝑁 ) of this system consists of the states 𝑆 of

all processes in the system, the pool of waiting events 𝐸, and an infinite sequence of unused nonces

𝑁 . Systems induce runs, i.e., sequences of configurations, where each configuration is obtained

by delivering one of the waiting events of the preceding configuration to a process, which then

performs a computation step. Such a transition is called processing step and denoted by

(𝑆, 𝐸, 𝑁 )
𝑒in→p
−−−−−→
p→𝐸out

(𝑆 ′, 𝐸′, 𝑁 ′).

Here, the process p processes the event 𝑒in and creates the output events 𝐸out which are added to

the pool of waiting events of the next configuration.

A Web system formalizes the Web infrastructure and Web applications. It contains a system

consisting of honest and attacker processes. Honest processes can be Web browsers, Web servers, or

DNS servers. Attackers can be eitherWeb attackers (who can listen to and send messages from their

own addresses only) or network attackers (who may listen to and spoof all addresses and therefore

are the most powerful attackers). A Web system further contains a set of scripts (comprising honest

scripts and the attacker script) and a mapping of these scripts to strings. A Web system also defines

the pool of initial events, which typically only contains so-called trigger events, which trigger

pre-defined actions (see below for an example for pre-defined browser actions).

Web Browsers. An honest browser is thought to be used by one honest user, who is modeled as

part of the browser. User actions, such as following a link, are modeled as non-deterministic actions

of the Web browser. User credentials are stored in the initial state of the browser and are given to

the respective Web pages, i.e., scripts. Besides user credentials, the state of a Web browser contains

(among others) a tree of windows and documents, cookies, and Web storage data (localStorage and

sessionStorage).

Awindow inside a browser contains a set of documents (one being active at any time), modeling the

history of documents presented in this window. Each represents one loaded Web page and contains

(among others) a script and a list of subwindows (modeling iframes). The script, when triggered by

the browser, is provided with all data it has access to, such as a (limited) view on other documents

and windows, certain cookies, and Web storage data. Scripts then output a command and a new

state. This way, scripts can navigate or create windows, send XMLHttpRequests and postMessages,

submit forms, set/change cookies andWeb storage data, and create iframes. Navigation and security

rules ensure that scripts can manipulate only specific aspects of the browser’s state, according to

the Web standards.

A browser will typically send DNS and HTTP(S) requests as well as XMLHttpRequests, and it

processes the responses. Several HTTP(S) headers are modeled, including, for example, cookie,

location, strict transport security (STS), and origin headers. A browser, at any time, can also receive

a trigger message upon which the browser non-deterministically chooses an action, for instance, to

trigger a script in some document.
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GenericHTTPS Server. TheWIM defines a generic HTTPS server model which can be instantiated

by application models. The generic server provides some generic functionality, e.g., a function

for sending HTTPS requests, which internally handles DNS resolution and key management for

symmetric transportation keys. The generic server also provides placeholder functions, e.g., for

processing HTTPS requests and responses, which need to be instantiated by the application model.

4.2 Extensions of the WIM
To model the FAPI 2.0++ protocols, we extend the WIM with models for the very recent HTTP

Message Signatures [3] standard, as well as a channel for push messages to users, like the ones

sent by the AS to the user’s authentication device in FAPI-CIBA (see Section 2.4). While created in

the context of analyzing FAPI 2.0, these extensions are not tailored towards FAPI 2.0 and hence of

independent interest, e.g., for [47, 70, 84]. For example, the extensions for HTTPMessage Signatures

simply follow the respective specifications, including parts not used by our FAPI 2.0++ model, e.g.,

the option to bind a signed response to the corresponding signed request. We briefly sketch how

we model these extensions and refer to the appendix for full details.

HTTP Message Signatures. With HTTP Message Signatures [3], HTTP clients and servers can

sign their HTTP requests and responses, while accounting for common transformations applied

to HTTP messages during transmission, e.g., headers added by proxies. Our model of HTTP

Message Signatures closely follows the specification: We add HTTP headers for the signature input

(specifying signature parameters and which parts of the HTTP message in which order form the

signature base), the signature value, and the Content-Digest header for message digests of the

HTTP message body. The model for these new headers includes their values’ internal structure,

e.g., for specifying signature parameters, and precisely specifies how they are processed by servers

and browsers. We define generic functionality to validate signed HTTP messages which we use in

our server and browser models. Note that while [52] contains a limited model of HTTP Message

Signatures in the WIM, the model there is tailored towards the analyzed GNAP protocol and, more

importantly, models an early draft of the HTTP Message Signatures specification with a known

vulnerability, which has recently been fixed. We model the fixed version, which is currently in the

final editing stages for publication as an internet standard.

Channel for Push Messages to Users. Since the WIM subsumes the user in its browser model,

we extend the WIM’s browser with 1) augmented input event processing to enable receiving

pushed messages and 2) generic functions that can be instantiated by the application model to

process pushed messages appropriately. And 3), we add DNS names and corresponding TLS keys for

browsers. These extensions allow any other process in a Web system to send push messages to any

browser, both encrypted and in plain text. See Algorithms 30, 31, and 32, as well as Definition 80.

HTTP Headers. In addition to the HTTP headers for HTTP Message Signing, we extend the

WIM’s HTTP message model with the headers required for modeling OAuth 2.0 Demonstrating
Proof-of-Possession at the Application Layer (DPoP) [32] (the DPoP header), and JWT Response for
OAuth Token Introspection [72] whereby an RS can request a signed introspection response by

setting the Accept header appropriately.

4.3 Overview of FAPI 2.0++ Model
We build our application-specific model in the (extended) WIM, based on the FAPI 2.0++ specifica-

tions, including specifications referenced there, e.g., [3, 32, 68, 71, 72, 89, 92], totaling over 1,000

pages even when excluding low-level specifications, e.g., on message encoding. For this purpose,

we instantiate the generic HTTPS server model provided by the WIM to create detailed formal
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models for ASs, clients, and RSs, including models of scripts. Furthermore, we instantiate the WIM’s

browser model to process pushed messages and handle the binding message for FAPI-CIBA flows.

In addition to DCR and DCM, our formal model covers all essential mechanisms used by

FAPI 2.0++, e.g., AS Metadata, PAR, PKCE, the mTLS and private_key_jwt client authentica-

tion methods, DPoP and mTLS access token sender constraining, ID tokens, and the signing

mechanisms for FAPI 2.0 MS, i.e., JAR, JARM, the JWT introspection response mode, and HTTP

Message Signatures. Our model also covers both structured and opaque access tokens—which

can be different for each flow (the token type is chosen non-deterministically for each token

request)—as well as token introspection. The final model reflects the FAPI 2.0++ specifications with

all changes/fixes described in Section 3.

Using client authentication and access token sender constraining as examples, we exemplify how

our model closely follows the specifications and show (parts of) some concrete messages within

our model. We then continue with details on how we incorporated the attacker model and fixes

described in Section 3 into our formal model, followed by a discussion of the limitations of our

model. More details specific to the AS, client, RS, and browser models are given in Appendix B and

we provide the full formal models in Appendix C.

Client Authentication.Within the model, the ASs only accept PAR and token requests if they

are client-authenticated, as mandated by the specifications [29, Sec. 5.3.1.2. No. 4 and Sec. 5.3.1.1.

No. 6], and clients always add client authentication when sending such requests [71, Sec. 2], [29,

Sec. 5.3.2.1. No. 2]. For this, our model supports both mTLS and private_key_jwt authentication

[29, Sec. 5.3.1.1. No. 6 and Sec. 5.3.2.1. No. 2]. To illustrate how we model the private_key_jwt
method, we show a client authentication JWT. Let cid be the client identifier of client C at AS AS,
and let issAS be the issuer identifier of AS. Furthermore, let skC be a private signing key of C such
that the corresponding public key pub(skC) is registered with AS for C under cid. With these values,

a client authentication JWT is—closely following the specification [90, Sec. 9]—represented by the

term sig( [iss : cid, sub : cid, aud : issAS], skC), where the iss field denotes the issuer of the JWT,

i.e., C, sub is the subject that is being authenticated, and aud is the audience value (i.e., the AS for

which the JWT was created).

Access Token Sender Constraining. Our AS model returns access tokens that are sender-

constrained by mTLS or DPoP [29, Sec. 5.3.1.1. No. 4, 5], and the client model sends the token

request to the AS and the resource request to the RS with the corresponding proof-of-possession

[29, Sec. 5.3.2.1. No. 1]. As mandated by FAPI 2.0, our RS model requires access tokens to be

sender-constrained using one of these methods [29, Sec. 5.3.3. No. 5]. We illustrate how we model

a DPoP proof in a token request, where a client C adds a DPoP proof to the HTTP headers of its

request [32, Sec. 4.1]: headers[DPoP] := dpopProof , where dpopProof is a signed JWT as defined in

[32, Sec. 4.2] (not to be confused with a client authentication JWT): dpopProof := sig(dpopJwt, skC)
with dpopJwt := [headers : [jwk : pub(skC)], payload : [htm : POST, htu : tokenEndpoint]]. The
jwk value identifies the public key that the receiver can use for verifying the signature,

2
the htm

value is the HTTP method of the request in which the DPoP proof is included, e.g., GET or POST,
and the htu value is the URL of that request (without parameters and fragment).

4.3.1 Optional Fixes. As explained in Section 3, the FAPI WG decided to make some fixes resulting

from our attacks optional. In order to prove FAPI 2.0++ secure, these fixes are required, hence, our

results only apply to implementations with these fixes in place. Here we describe how we deal with

them in the model.

2
Note that the AS/RS checks whether this public key is indeed registered for the client and rejects the request if not, i.e., the

jwk value is only a hint.
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Cuckoo’s Token Attack. As described in Section 3.5, the working group added (optional) counter-

measures for preventing the attack. However, none of these fixes are mandatory, and each of them

might mask other attacks. Thus, we decided to model a minimal fix that specifically targets this

attack: right before sending the resource request to an RS, the client model checks whether the

requested resource is managed by the AS from which it got the access token.

DPoP Proof Replay. To prevent this attack, we modeled replay protection using server-provided

DPoP nonces (see also Section 3.3). We require these nonces to be one-time use only, i.e., the RS

model invalidates them after one use.

Cross-Device Consent Phishing Attack. In Section 3.6, we mention that this attack can only

be fixed if the CD authenticates itself toward the user, and explain why such authentication is

problematic in practice. However, there is an ongoing effort from the OAuth Working Group to

standardize mitigations [62], e.g., by ensuring close proximity between the user’s authentication

device and the CD. Assuming that the user and their authentication device are “close” to at most one

CD at a time, this mitigation basically yields CD authentication. Hence, we assume the mitigations

to be effective and use an authenticated channel for conveying the binding message from the CD

to the user (Step 5 in Figure 2), i.e., the user learns the CD’s identity, which the user can compare

to the identity displayed by the AS during user authentication (Step 9 in Figure 2).

4.3.2 FAPI 2.0 Attacker Model. We initially modeled all attacker assumptions (see Section 2.7), but

as described in Section 3, the FAPI WG decided to remove some of them in response to our analysis.

We describe how we modeled the final assumptions (under which our proofs hold) and refer to

Appendix B.5 for the removed ones:

A1 (network attacker) is part of the WIM, see Section 4.1.

A2 (authorization requests leak) is modeled by leakage at the client: After creating the authorization

request URI (to which the client redirects the browser in Step 8 of Figure 1), the client non-

deterministically decides whether to leak it.
3
In the leak case, it non-deterministically chooses

an IP address and sends a copy of URI to this IP (in plain), which the attacker, being a network

attacker, can read. Thus, the client model leaks the client identifier and the request URI value of the

authorization request.

A5 (resource requests leak) was initially modeled by leaking the resource request at the RS after

receiving the request (and in the case of opaque access tokens, before receiving the introspection

response). As described in Section 3.3, this enables the attacker to replay DPoP proofs. In line with

changes to FAPI 2.0 AM (see Section 3.3), we adapted the model such that the resource request now

leaks after the RS sent the corresponding resource response.

4.3.3 Limitations of Our Model. While our model covers most of the FAPI 2.0++ specifications,

there are a few things which we handle on a very abstract level or do not model at all (besides the

inherent abstractions of the WIM, such as details of TLS).

Error Handling. FAPI 2.0++ and several of the underlying specifications define a set of error

messages, e.g., when client authentication fails. These are not represented in our model: if a process

encounters an error condition, it just aborts the current processing step without output and without

changes to the process state. We note that none of the specifications mandate a certain behavior

upon receiving an error message.

Modeled Grant Types. The OAuth 2.0 framework [46], as well as OpenID Connect [90], define

various grant types, such as the implicit grant, the hybrid grant, and the authorization code grant.

FAPI 2.0 explicitly excludes all of them, except for the client credentials grant and the authorization

3
Recall from Section 3.7 that we show session integrity only for protocol flows in which this request does not leak.



24 Pedram Hosseyni, Ralf Küsters, and Tim Würtele

code grant, where only the latter is required to be supported by FAPI 2.0 ASs and clients. In the client

credentials grant, the client takes the role of the user, hence, removing the additional interaction

between user and client. So, this grant is subsumed by the authorization code grant, which is why

we only model and analyze the latter.

Refresh Tokens. Even though FAPI 2.0 allows for refresh tokens (see [46]) to be used, we do not

model them. Instead, we model regular access (and id) tokens as having an indefinite lifetime, i.e.,

they never expire, which only increases the attack surface.

Native Clientswith LoopbackRedirect. FAPI 2.0 ASsmust reject PAR requests with a redirect uri

using the http scheme, i.e., where the client’s redirection endpoint lacks TLS protection (cf. Step 5

in Figure 1); except if the client is a native client running on the same device as the browser and is

using loopback interface (i.e., device-local) redirection, it may use an http redirect uri (see [16] and

[29, Sec. 5.3.1.2 No. 8]). In our AS model, we do not allow http redirect uris.

4.4 Comparison to WIM Analyses of Related Protocols
We here describe specific differences between our work and previous WIM analyses of FAPI 1.0 [33],

OAuth 2.0 [34], and OpenID Connect [38]. Since FAPI 2.0++ comprises completely redesigned and

new protocols, obviously, previous analyses do not apply to FAPI 2.0++. The differences are also

apparent by the new vulnerabilities and attacks we have found on FAPI 2.0++.

While FAPI 2.0 SP is based on OAuth 2.0 and OpenID Connect, it not only contains many

additional mechanisms, such as PAR, DPoP, mTLS, PKCE, AS Issuer Identification, AS metadata,

HTTP Message Signatures and so on, but also aims to be secure under a much stronger attacker.

Similarly, while FAPI 1.0, the predecessor of FAPI 2.0 SP, has been formally analyzed in [33],

FAPI 2.0 SP is a very different protocol: in comparison to FAPI 1.0, several security mechanisms have

been removed, most notably OAuth Token Binding [58] and JWT Secured Authorization Response
Mode (JARM) [68] (although JARM is used in FAPI 2.0 MS, it is not part of FAPI 2.0 SP). On the

other hand, FAPI 2.0 SP adds new mechanisms, such as DPoP and PAR, which have not undergone

any formal treatment so far. Also, FAPI 2.0 SP mandates client authentication, removes support for

public clients as well as the hybrid flow, and FAPI 2.0 AM introduces a stronger attacker model

compared to FAPI 1.0. Furthermore, FAPI-CIBA and FAPI 2.0 MS serve additional use cases that

were not even considered for FAPI 1.0 (or OAuth 2.0 or OpenID Connect, for that matter).

In the following, we briefly discuss further details and differences.

DCR and DCM.While previous work on OpenID Connect [38] considered DCR in the context

of OpenID Connect, the model in [38] only supports client authentication using client secrets
issued by the AS upon registration, whereas our model (in line with the FAPI 2.0++ specifications)

requires public-private-key client authentication, i.e., clients have to register their public keys. As a

result, client authentication in our model depends on the client’s registration request, whereas in

[38], client authentication only depends on values selected by the AS (client secret and client id).

Furthermore, our model also covers DCM, which was not considered in [38]. Finally, the attacker

model in [38] is a standard DY attacker, i.e., considerably weaker than ours.

Handling of Access Tokens by the RS. Previous work on OAuth 2.0 and OpenID Connect does

not consider the RS at all, and while prior work on FAPI 1.0 does, token introspection is modeled

only on a very abstract level: instead of querying the AS, the RS uses an idealized introspection

oracle. In contrast, our AS and RS models contain a detailed representation of token introspection

as defined in RFC 7662 [83], including authentication of RSs to the ASs during introspection, as

mandated by the specification. Hence, we reason about additional messages as well as their integrity,

authentication, and secrecy. Likewise, prior work does not contain a model of structured access
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tokens and their use. Note that besides the additional options for flows introduced by structured

access tokens, modeling them also requires additional keys to be distributed.

Number of ASs Supported by an RS. As mentioned above, prior work on OAuth 2.0 and OpenID

Connect did not model the RS. In the FAPI 1.0 analysis in [33], the RS supports one fixed AS,

whereas our RS model supports an arbitrary set of ASs, some of which may be corrupted. Hence,

our analysis considers a broader set of cases and potential mix-ups.

DPoP Access Token Sender Constraining. The DPoP [32] mechanism has only recently been

standardized, and hence, has not been part of any formal analysis to the best of our knowledge.

With its additional signatures and subtle details regarding the signed data, in particular, the exact

contents of the htu value (see [32, Sec. 4.2]), DPoP requires careful modeling of the AS, the RS, and

the client. In addition, DPoP requires key material to be distributed between client, AS, and RS (as

well as additions to the token introspection and structured access token models).

PAR. Similar to DPoP above, PAR [71] has only recently been standardized and has thus not

been part of any formal analysis. While PAR does not require additional key material, it adds more

options and messages to the FAPI 2.0 flows, hence necessitating reasoning about them.

JWT Client Authentication. While the public_key_jwt client authentication method has been

standardized as an optional part of OpenID Connect [90], it has not received any formal security

analysis so far, including WIM analyses of OpenID Connect and FAPI 1.0 (FAPI 1.0 is based on

OpenID Connect). Hence, our work is the first to consider this kind of client authentication.

Attacker Model. Compared to prior WIM work on OAuth 2.0, OpenID Connect, and FAPI 1.0, our

analysis considers a significantly stronger attacker model. Where [34] and [38] consider a fairly

standard Dolev-Yao attacker (i.e., similar to A1, see Section 2.7), [33] considers a stronger attacker:

the attacker in [33] is a network attacker similar to our A1, which also may access authorization

requests (cf. A2) and authorization responses (cf. A3) in plain, as well as force honest clients to

use attacker-controlled token endpoints (cf. A4). In addition, the authors of [33] consider access

tokens leaking to the attacker, which is something that is subsumed by our attacker assumptionA5

(resource request leak). However, our attacker model is even stronger in that (1) A5 not only leaks

the access token, but also all other values in the resource request, in particular DPoP proofs, (2)A6

leaks resource responses, and (3) A7 even allows for the attacker to modify resource responses.

To the best of our knowledge, neither (1), nor (2), nor (3) have previously been considered in any

formal analysis of authorization protocols.

Security Properties. While prior works on OAuth 2.0 and OpenID Connect do consider session

integrity properties similar to ours, these are only proven in a setting with Web attackers, i.e.,
the attacker may corrupt any party, but does not control the network and cannot spoof sender

addresses. Similar properties have also been proven for FAPI 1.0 with a network attacker. However,

their proofs rely on the use of OAuth 2.0 Token Binding [58], a mechanism to bind authorization

codes and access tokens to TLS connections, which is quite different from DPoP and mTLS access

token sender constraining. Furthermore, our analysis is the first WIM analysis that formalizes and

proves non-repudiation properties.

4.5 FAPI 2.0 Web System
As outlined in Section 4.1, a Web system formalizes the overall system covered by our analysis. We

call (W , S , script, 𝐸0) a FAPI Web system with network attacker, or short FAPI , if the components of

the Web system are defined as follows: W contains the network attacker process, as well as an

arbitrary, but finite number of browsers, ASs, clients, and RSs; S contains login and index “websites”
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of clients and ASs, with script mapping them to strings. Finally, 𝐸0 contains an infinite number of

trigger events for all process addresses (see Section 4.1).

Note that we prove security properties about all such FAPI Web systems, and hence, systems

with an arbitrary number of browsers, clients, ASs, and RSs, and in which each party can have an

arbitrary number of parallel, interleaving protocol sessions. Also recall from Section 4.1 that the

attacker can corrupt honest parties at any time.

4.6 Formal Security Properties
As described in Section 2.6, the FAPI WG wants the protocols to meet authorization, authentication,

and session integrity goals, with additional non-repudiation properties for FAPI 2.0 MS. In the

following, we describe our formalized authorization, authentication, and one of the non-repudiation

security properties, capturing the corresponding security goals. The remaining properties for

session integrity for authorization and authentication, as well as non-repudiation are presented in

Appendix E. Note that whenever possible we give full formal definitions. However, some definitions

require the full formal model, which we cannot state here in full detail due to space constraints.

For such definitions, we provide simplified and more abstract descriptions (explicitly marked as

such), which, nevertheless, should suffice to understand the rest of the paper. As mentioned, for

full details we refer to the appendix.

4.6.1 Authorization. Recall that informally, authorization means that an attacker should never be

able to access resources of honest users (unless the user authorized such access). We highlight that

this statement covers many different scenarios, for example, that the attacker cannot use leaked

access tokens at the RS and cannot, by some mix-up, force an honest client to use an access token

associated with an honest user in a session with the attacker.

For our authorization property, we need the notion of an access token 𝑡 being bound to a public

key 𝑘 , an authorization server AS, a client id cid, and an identity id:

Definition 1 (Access Token Bound to Key, AS, Client Id, Identity). Let FAPI be a FAPI
Web system with network attacker, 𝑘 ∈ TN a term, AS ∈ AS an AS, cid a client identifier, and id ∈ ID
a user identity.4 We say that a term 𝑡 is an access token bound to 𝑘 , AS, cid, and id in configuration
(𝑆, 𝐸, 𝑁 ) of a run 𝜌 of FAPI , if there is an entry rec ∈⟨⟩ 𝑆 (AS).records (i.e., in the state of AS in
(𝑆, 𝐸, 𝑁 )) such that rec[access_token] ≡ 𝑡 and rec[subject] ≡ id and rec[client_id] ≡ cid and
(rec[cnf] ≡ [jkt : hash(𝑘)]) ∨ (rec[cnf] ≡ [x5t#S256 : hash(𝑘)]).

Informally, this means that 𝑡 is stored in the state of AS, together with the identity id, the client
identifier cid, and the hash of 𝑘 . If the key is stored under the name jkt, then the token is bound

via DPoP, otherwise, it is bound via mTLS.

Furthermore, we need the following definition:

Definition 2 (Client Identifier Issued to Client by AS (simplified)). We say that a client
identifier cid has been issued to C by AS in processing step 𝑃 in a run 𝜌 (of a FAPI Web system FAPI ),
if during 𝑃 , AS responds to a registration request regReq with a registration response containing cid,
and regReq was emitted by C during a processing step 𝑄 prior to 𝑃 in 𝜌 .

We can now define our authorization property:

4ID is a set of terms of the form ⟨name, domain⟩, where name is a string, the user name, and domain is a domain (usually

of an AS). We also define a mapping ownerOfID : ID → B which maps an identity to the browser whose user owns the

identify (users are modeled as part of their browser). Likewise, we define a mapping governor : ID→ AS mapping identities

to “their” AS. See Appendix C.2 and Appendix C.4 for details.
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Definition 3 (Authorization Property (simplified)). We say that a FAPI Web system with
network attacker FAPI is secure w.r.t. authorization iff for all runs 𝜌 = ((𝑆0, 𝐸0, 𝑁 0), . . . , (𝑆𝑛, 𝐸𝑛, 𝑁𝑛))
of FAPI , every RS RS ∈ RS that is honest in 𝑆𝑛 , every identity id for which RS manages resources,5

if 𝑏 = ownerOfID(id) is an honest browser in 𝑆𝑛 , we have that whenever RS provides access to, i.e.,
emits, a resource 𝑟 associated with id that is managed by an honest AS AS, during a processing step 𝑄
(in 𝜌), then all of the following hold true:

(i) RS has received a request for accessing the resource 𝑟 with an access token athon in 𝑄 (if the
token athon is structured and can be verified by the RS immediately) or in a previous processing
step (if the token athon is opaque to the RS and it thus performed token introspection).

(ii) The token athon is bound to some key 𝑘 , AS, a client identifier cid, and the user identity id (see
Definition 1).

(iii) If there is a client C such that cid has been issued to C by AS (see Definition 2) during a processing
step prior to 𝑄 in 𝜌 , and C is honest in 𝑆𝑛 , then the attacker cannot derive the resource 𝑟 .

4.6.2 Authentication. Recall that the authentication goal states that an attacker should not be able

to log in at an honest client under the identity of an honest user. In our model, the client sets

a cookie that we call service session id at the browser after a successful login. The client model

stores the service session id in its state, under the sessions subterm, and associates with it the

identity that is logged in to the session (the identity is taken from an id token). On a high level, our

formalized property states that an attacker should not be able to derive the service session id for a

session at an honest client where an honest identity is logged in, as long as the identity is managed

by an honest AS. We stress that this not only covers that a cookie set at the browser of the honest

user does not leak, but that there is no way in which the attacker can log in at an honest client as

an honest user.

Once again, we first need an additional definition, capturing that a client logged in an identity id
(managed by AS) under a service session id:

Definition 4 (Service Sessions). We say that there is a service session identified by a nonce 𝑛

for a user identity id at a client C in a configuration (𝑆, 𝐸, 𝑁 ) of a run 𝜌 of a FAPI Web system with
network attacker FAPI , iff there exists a session id 𝑥 (an internal reference in the client model to identify
a protocol session, not to be confused with a service session id) and a domain 𝑑AS ∈ dom(governor(id))
(where dom(𝑝) is the set of domains owned by process 𝑝) such that 𝑆 (C).sessions[𝑥] [loggedInAs] ≡
⟨𝑑AS, id⟩ and 𝑆 (C) .sessions[𝑥] [serviceSessionId] ≡ 𝑛.
With this, we can define the authentication property:

Definition 5 (Authentication Property). We say that a FAPIWeb systemwith network attacker
FAPI is secure w.r.t. authentication iff for every run 𝜌 of FAPI , every configuration (𝑆, 𝐸, 𝑁 ) in 𝜌 ,
every C ∈ C that is honest in 𝑆 , every identity id ∈ ID with AS = governor(id) being an honest AS in
𝑆 and with 𝑏 = ownerOfID(id) being an honest browser in 𝑆 , every service session identified by some
nonce 𝑛 for id at C, 𝑛 is not derivable from the attackers knowledge in 𝑆 .

4.6.3 Non-Repudiation for Signed Authorization Requests. Informally, the non-repudiation for

signed authorization requests security goal states that if an honest AS accepts a pushed authorization

request it expects to be signed, then that request is signed, and if the signature is valid for a key

registered with the AS by an honest client, then that client cannot deny having signed the request.

Definition 6 (Non-Repudiation for Signed Authorization Reqests (simplified)). Let
FAPI be a FAPIWeb system with a network attacker. We say that FAPI is secure w.r.t. non-repudiation

5
Each RS RS in our model is responsible for resources of an arbitrary set of identities. Note that we do not make any

assumptions on this set, and in particular, that multiple RSs may hold resources for a given identity.
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for signed authorization requests iff for every run 𝜌 of FAPI , every configuration (𝑆𝑛, 𝐸𝑛, 𝑁𝑛) in 𝜌 ,
every process AS ∈ AS that is honest in 𝑆𝑛 , every request uri requestUri, we have that if

𝑆𝑛 (AS).authorizationRequests[requestUri] [signed_par] ≡ ⊤
(i.e., AS expected a signature on the pushed authorization request that AS refers to by requestUri) then
all of the following hold true:

(I) There exists a processing step 𝑄 prior to (𝑆𝑛, 𝐸𝑛, 𝑁𝑛) in 𝜌 , such that AS accepts a pushed
authorization request signedPAR during𝑄 and issues requestUri to identify that PAR. Technically
speaking, this means that during𝑄 , AS adds requestUri to the authorizationRequests subterm
in its state.

(II) The message signedPAR is of the form sig(par, signKey), i.e., signed with some key signKey.
(III) If there is a (client) process C ∈ C which is honest in 𝑆𝑛 , and a configuration (𝑆𝑖 , 𝐸𝑖 , 𝑁 𝑖 ) in 𝜌

with 𝑆𝑖 (C).asAccounts[selectedAS] [sign_key] ≡ signKey, i.e., C registered signKey with AS,
then there is a processing step 𝑃 in 𝜌 prior to 𝑄 during which C signed par .

4.6.4 Security Theorem. As described in Section 2.6, the protocols aim to fulfill authorization,

authentication, and session integrity properties, along with non-repudiation properties for FAPI 2.0

MS. Thus, our overall security theorem is the conjunction of all these properties:

Theorem 1. Every FAPI Web system with network attacker FAPI fulfills all of the following
properties:
• Authorization (Definition 19),
• Authentication (Definition 21),
• Session integrity for authentication in authorization code flows (Definition 29),
• Session integrity for authentication in CIBA flows (Definition 30),
• Session integrity for authorization in authorization code flows (Definition 31),
• Session integrity for authorization in CIBA flows (Definition 32),
• Non-repudiation for signed authorization requests (Definition 33),
• Non-repudiation for signed authorization responses (Definition 34),
• Non-repudiation for signed introspection responses (Definition 35),
• Non-repudiation for signed resource requests (Definition 36), and
• Non-repudiation for signed resource responses (Definition 37).

We highlight that we prove this theorem for the powerful attacker described in Section 4.3.2

within a faithful formal model that includes the fixes described in Section 3 and Section 4.3.1,

with all analyzed protocols (FAPI 2.0 SP & MS, FAPI-CIBA, DCR, DCM) running in parallel, hence

accounting for all potential interferences. We also emphasize that our analysis takes into account

many Web features that can be the root of attacks: e.g., the browser model allows for the execution

of scripts loaded from different websites/origins at the same time, possibly with malicious scripts.

The model also considers fine-grained behavior of HTTP redirects,
6
several security-critical headers,

as well as subtleties of various cookie attributes, which, for example, could result in vulnerable

session management, and in-browser communication using postMessages, just to name a few of

the Web features considered in our analysis. Thus, our analysis excludes attacks that arise from

features of the Web infrastructure. In addition to stronger results, the features provided by the WIM

make it easy to faithfully model the functional aspects of FAPI 2.0 in detail, since features used in

FAPI 2.0 like HTTP redirects and HTTP headers, e.g., for various types of cookies (used for state

management), and the authorization header are built into the WIM, including how browsers deal

with such features. Also, without modeling such features, even the most basic kinds of common

6
For example, FAPI 2.0 excludes code 307 redirects, as they would cause attacks similar to [34].
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Web attacks, such as CSRF attacks, would go unnoticed if FAPI 2.0 did not properly defend against

them. Our proof of Theorem 1, which, due to space limitations, we give in Appendix F, consists

of more than 40 lemmas with over 50 pages of proofs and of course reasons about the full formal

model that we provide in Appendix C.

4.7 Proofs: Overview of Selected Lemmas
In this section, we give an impression of the proofs by informally discussing important intermediate

statements that we identified and proved. We refer to Appendix F for the full proof.

(1) Private signature keys of clients do not leak. We show that private signature keys used

by a client for the private_key_jwt authentication method and DPoP sender constraining

never leak to the attacker as long as the client is honest.
7
This is easy to show, as initially,

clients store only fresh nonces as private keys when registering at an AS using DCR. The same

is true whenever clients update their configuration at an AS using DCM. Furthermore, except

for sending the corresponding public keys, clients only use the private keys for generating

signatures, from which the private key cannot be extracted. (See Lemma 4 for details.)

(2) mTLS private keys of clients do not leak. In our model, clients use different mTLS keys

for different ASs and can update these keys using DCM. We show that within the model,

the client always chooses fresh nonces as private keys and only uses them for decrypting

messages. The only terms related to these keys that the client sends out are the corresponding

public keys, from which the private key cannot be extracted. (See Lemma 6 for details.)

(3) Registration access tokens do not leak. Recall from Section 2.5 that ASs issue registration

access tokens that clients have to use to modify their configuration via DCM. We prove that

registration access tokens issued by ASs for clients do not leak as long as both parties are

honest: Registration access tokens are fresh nonces chosen by the AS when processing the

registration request. We show that the client sends this token to the same AS for DCM and

that neither party leaks this token during DCR and DCM. (See Lemma 16 for details.)

(4) Client keys stored at ASs do not leak. Statements 1 and 2 state that keys stored at

the client do not leak. Here, this property is stated from the perspective of the AS, i.e., the

corresponding private keys of the mTLS and JWT public keys that an AS stores under a client

identifier cannot be derived by any party other than the client 𝑐 to which the identifier was

initially issued to (Definition 2), as long as the client and AS are honest. The proof relies on

Statements 1 and 2, but also on 3. We show that initially, the AS stores the corresponding

public keys from the DCR request, which was created by 𝑐 as the corresponding client

identifier was issued to 𝑐 in this step. For this case, the property follows (mostly) from

Statements 1 and 2. These public keys stored by the AS can only be changed via DCM. From

Statement 3, it follows that the corresponding registration access token cannot leak, i.e.,

whenever the AS updates the keys, the corresponding DCM request was created by 𝑐 . The

property follows again (mostly) from Statements 1 and 2. (See Lemma 17 for details.)

(5) Client authentication. We show that requests sent to the PAR, token, or backchannel au-

thentication endpoints of an honest AS were indeed created by the client 𝑐 that authenticated

via mTLS or JWS client assertion (more precisely, the client to which the client identifier

in the request was issued as in Definition 2, if this client is honest). For this, we show the

effectiveness of the two client authentication mechanisms required by the specifications

(see Section 2.2), i.e., if the checks done by the AS are successful, the request is successfully

7
Within the model, we assume that clients pre-register their DPoP keys.
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authenticated via mTLS or contains a JWS client assertion that only 𝑐 and the AS can derive.

The proofs of both cases are based on Statement 4. (See Lemma 13 for details.)

(6) Access tokens can only be used by the client to which the token is bound. This is
an important lemma due to the assumption that access tokens can leak to the attacker (see

Section 4.3.2), i.e., without an effective token binding mechanism, the attacker could get

access to the resources of honest users. We show that whenever an honest resource server

rs provides access to a resource of an honest identity id (see Step 20 of Figure 1), and if the

resource is managed by an honest AS AS, then (i) rs previously received a resource request

(see Step 18 of Figure 1) which contains an access token at created by AS bound to some key,

AS, some client identifier cid, and id (Definition 1), and (ii) if 𝑐 is an honest client to which cid
has been issued to, then 𝑐 created the resource request. For the proof, we distinguish whether

the token is structured (the RS can directly respond to the resource request) or opaque (the

RS first needs to perform token introspection at AS, as shown in Figure 1). For structured

access tokens, we show that the token was created by AS if the RS verifies the signature of
the token successfully. The token contains the identity id and information on the key to

which the token is bound (which both follow as AS is honest according to the precondition of

the statement). The token endpoint (at the AS) requires client authentication, and we show

that the AS associates the authenticated client identifier with the token, and if this client

identifier was issued to an honest client, then the corresponding DPoP signing key or mTLS

private key is only known to 𝑐 (recall from Section 2.2 that the token request must contain

proof of possession of a key pair via DPoP or mTLS for token binding). For DPoP sender

constraining, we show that the DPoP proof verified by the RS cannot be known by any party

other than 𝑐 and the RS (recall from Section 4.3.2 that we assume that resource requests,

including DPoP proofs that they contain, leak after the RS sends the resource response; in

combination with resource server-provided nonces, we can rule out replay attacks as we

describe in Section 3.3), and conclude that the resource request was sent by 𝑐 . For this proof,

we use Statement 1 again. For mTLS token binding, we show that there is a private mTLS key

that only 𝑐 knows (by using Statement 4), and show that the proof of possession checks done

by the RS are sufficient to conclude that the resource request was created by 𝑐 . The reasoning

for the case of token introspection (instead of a structured access token) is similar and again

relies essentially on the checks done by the AS at the token endpoint and by the RS when

processing the resource request and introspection response. (See Lemma 18 for details.)

(7) Authorization code secrecy. We show that authorization codes stored at an honest AS for

a flow with an honest client 𝑐 and honest user identity id do not leak to any party other than

AS, the client, and the browser of the user. Note that we show this only for valid authorization

codes (recall from Section 2.2 that the AS invalidates authorization codes received at the

token endpoint). We start by showing that authorization codes are fresh nonces chosen by

the AS after processing the authorization request, more precisely, right before creating the

authorization response (Step 11 of Figure 1). The AS associates this code with id, thus, we
can show that the browser of id sent the login request (Step 10 of Figure 1), and that the

authorization response is sent to this browser. We show that the authorization response

contains a location redirect to a URL of 𝑐 (essentially, because the AS retrieved this URL from

a PAR request that the AS processed previously. Due to client authentication – we again

use Statement 5 – it follows that 𝑐 created the PAR request, and as 𝑐 is honest, this must

be a redirect URL of 𝑐). Then, we show that 𝑐 uses the code contained in the authorization

response only within token requests sent to the same AS that issued the code. The proof also

considers the correctness of the token endpoint by reasoning on the AS metadata retrieved
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by 𝑐 (i.e., the token endpoint that the client stored for the AS is indeed the token endpoint of

the AS). We then conclude the proof by showing that the AS does not store or send out the

code that is part of the token request. (See Lemma 22 for details.)

To give a complete impression of a significant part of the proofs, we now give a brief description

of the authorization proof for the authorization code flow case: On a high-level view, we first

show that if the resource server provides access to some resource of an honest user 𝑢 and if the

resource is managed by an honest authorization server AS, then the access token contained in the

resource request is bound to a key, AS, some client identifier cid, and 𝑢 (see Definition 1), and if

cid has been issued to an honest client 𝑐 , then the RS provides access to the resource only to 𝑐 ,

which follows essentially from Statement 6. However, this is not sufficient as the client gives the

end-user involved in the flow access to the resource. Thus, in a second step, we show that the

authorization response that 𝑐 receives at the redirection URI (see Step 12 of Figure 1) is not sent

by the attacker (the client provides the sender of this message access to the resource). We prove

this by contradiction: Assume that the authorization response is created by the attacker, i.e., the

attacker can derive the authorization code ac contained in the response. The client exchanges ac
for the access token that it uses for the resource request (see Step 14 of Figure 1), and as described

in Section 4.3.1, the client checks whether it receives the access token from the AS that manages

the resource, i.e., AS (which prevents the Cuckoo’s Token Attack, see also Section 3.5). As this is an

honest AS (see the pre-conditions of the property), and as the AS returns an access token, it follows

that ac was created by AS and is associated with 𝑐 an 𝑢. However, this contradicts Statement 7, i.e.,

such an authorization code cannot leak to the attacker.

5 RELATEDWORK
We first discuss related work regarding models of the Web infrastructure and then regarding the

analysis of FAPI 2.0++ and related protocols.

Models of the Web Infrastructure. Given the importance of the Web, there is surprisingly

little work on generic formal models of the Web infrastructure for protocol analysis. Instead,

Web protocols are often analyzed in isolation or with ad-hoc models that only capture parts of

the Web infrastructure [11, 67, 78] – both approaches are prone to missing attacks introduced

by seemingly unrelated Web features as demonstrated, e.g., by the discovery of the 307 Redirect
Attack on OAuth 2.0 by Fett et al. [34] after several formal analyses of OAuth 2.0 had already

been conducted and missed this attack (see below). An early work by Groß et al. [45] focused on

defining a limited browser model based on state machines with pen-and-paper proofs to analyze

authentication protocols. However, their browser model lacks crucial parts like models for cookies

and JavaScript. Later work by Akhawe et al. [2] employs the Alloy model checker and introduces a

machine-checkable, albeit limited, model of the Web infrastructure and shows how it can be used

to find vulnerabilities in a Kerberos-based SSO system. Their model not only lacks many security-

critical Web features but is also limited to a very small number of protocol sessions. Further models

of the Web and its infrastructure, such as those by Pai et al. [78], Kumar [63, 64], or Bansal et al. [5]

have similar drawbacks in that their models are very abstract or completely miss key parts of the

Web infrastructure, as they are limited by the tools upon which they are built. In recent work by

Veronese et al. [100], the authors propose a model of Web browsers based on the Coq proof assistant

and the Z3 theorem prover and apply it to discover attacks on browser security mechanisms. While

capturing the browser in great detail, their model is focused on browser-side security mechanisms

and cannot be used to analyze Web protocols involving other parties like Web servers. Finally, our

work is based on the Web Infrastructure Model proposed by Fett et al. in [35], which as described
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above is a symbolic Dolev-Yao style pen-and-paper model and the most comprehensive and detailed

model of the Web infrastructure to date.

Related Protocols. While there has not been much work on the relatively recent and partly

still under development FAPI 2.0++ standards and specifications so far, standards like OAuth 2.0

and OpenID Connect, on which FAPI is based, have received quite some attention from security

researchers. Besides many studies on implementations and deployments [94, 96, 101, 102], OAuth 2.0

has been formally analyzed: Pai et al. [78] built a limited model of OAuth 2.0, lacking many generic

Web features, for the Alloy finite-state model checker and showed that with their approach, known

weaknesses can be found. Chari et al. [11] analyzed the authorization code flow in the UC model

and found no attacks, but their model omits many Web features. Two more comprehensive formal

analyses have been conducted by Bansal et al. [5, 6], using their WebSpi library and ProVerif,

in which they modeled various settings of OAuth 2.0, e.g., with CSRF vulnerabilities in ASs and

clients. Bansal et al. uncovered several previously unknown attacks on various popular OAuth 2.0

implementations. However, their work’s main focus was on finding attacks, rather than proving

security. The latter was the focus of a formal analysis by Fett et al. [34], in which, despite prior

formal analysis efforts, they discovered several new attacks, and were only able to prove security

after developing fixes for them. As in our work, the analysis by Fett et al. is based on the WIM, i.e.,

includes a comprehensive formal model of the Web infrastructure. Likewise, OpenID Connect has

been analyzed before [66, 75], including an analysis based on the WIM [38].

As described in more detail in Section 4.4 where we also discuss prior work on FAPI 1.0, FAPI 2.0++

comprises completely redesigned as well as new protocols, and hence, previous analyses on related

protocols do not apply. Finally, as already mentioned, FAPI 2.0 and other protocols and specifications

considered here, like DCM and CIBA, have not undergone any formal security analysis so far, let

alone being analyzed in combination.

6 CONCLUSION
Asked by the OpenID Foundation’s FAPI working group, we accompanied the development of

the FAPI 2.0++ specifications with a formal security analysis. This analysis encompassed relevant

associated protocols like DCR and DCM, and included creating formal models and formalizing

security properties closely following the FAPI 2.0++ specifications, including their strong attacker

model. During this formal analysis and besides some enhancements to the WIM that we proposed,

we discovered several attacks that violate the security goals set by the FAPI 2.0++ specifications.

These have been reported to the FAPI WG, who acknowledged our attacks. We then worked with

them to incorporate many of our proposed fixes and improvements into the official specifications.

This finally allowed us to provide formal security proofs of all security properties.

Performing such an analysis in a meaningful model like the WIM ensures that attacks based on

many threats and features of the Web and their complex interactions can be found and ruled out

(see also our discussion at the end of Section 4.6). As mentioned in the introduction, our analysis

is a pen-and-paper analysis, as creating a mechanized model of the Web is a challenge by itself

and left for future work. Hence, our proofs are not mechanized and, given the complexity of the

protocol, are inherently lengthy and tedious to verify. Nevertheless, our formal and systematic

analysis has helped improve the standards and gain more insights and confidence in their security.

We consider mechanized analyses of Web protocols as interesting future work.

Surprisingly, besides new vulnerabilities and attacks, we also uncovered some attacks which

were similar to known attacks on related protocols, and in particular known within the FAPI WG.

These findings further underline the importance of a systematic, formal analysis, as for complex

protocols, like the FAPI 2.0++ protocols, even experts easily overlook (known) attack patterns.



Formal Analysis of the FAPI 2.0 Protocols 33

Overall, our contributions to the standardization process were very welcomed by the FAPI WG

and led to significant improvements of an important family of protocols just in time: FAPI 2.0

protocols are about to be adopted in highly sensitive environments, with millions of users managing

bank account data, financial transactions, eGovernment applications, and even health data.
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A ADDITIONAL ATTACKS AND ATTACK DETAILS
In this appendix, we give additional attacks, as well as additional details on the attacks presented

in Section 3.

A.1 Variants of the Client Impersonation Attack
We discovered and reported two additional variants of this attack: Recall that in the original attack

described above, the user authenticated at an honest, trusted AS and authorized not only an honest

and trusted client but also exactly the client that the user expected to authorize, after starting a

flow with Chon, i.e., an honest client of the user’s choice, for which the attacker needs leaked client

authentication JWTs.

In the first variant and additionally assuming that users do not pay close attention to the client

they are authorizing, the attack becomes much more viable in practice: the attacker can now select

an arbitrary (but honest) client for which it can obtain client authentication JWTs. We note that

the additional assumption about the user’s behavior is not a particularly strong one: even if the

user pays attention, the AS also has to gather and show enough (reliable) information about the

client, which can be quite difficult in practice, especially in dynamic environments, in which the

information an AS has on its clients are provided by the clients themselves, e.g., via DCR (see

Section 2.5).

In yet another variant of the attack, depicted in Figure 6, the attacker once again uses leaked

client authentication JWTs (Step 1 ) to act as Chon towards AShon, but sends a PAR without waiting

for the user to initiate a flow (Step 2 ). As before, the attacker then constructs a link and uses social

engineering to make the user click on that link (Steps 4 and 5 ). The remainder of the attack is the

same as above, resulting in a violation of the authorization goal. We note that this attack variant

assumes that the attacker can convince the user to not only click a link and authenticate at AShon
but also to authorize Chon even though the user did not start a flow at all (however, AShon and Chon
may be entities the user knows and trusts).

1 Leak of client authentication JWTs pkjwti for Chon at AShon (for client id cid of honest client)Leak of client authentication JWTs pkjwti for Chon at AShon (for client id cid of honest client)
pkjwt-leak

2 POST /parPOST /par
par-request

cid, reduri, hash(cv) , ... + pkjwt1 from Step 1cid, reduri, hash(cv) , ... + pkjwt1 from Step 1

3 request uri requrirequest uri requri
par-response

Send link to victim + social engineeringSend link to victim + social engineeringattacker-creates-link

GET /authz?request_uri=GET /authz?request_uri=
requri&client_id=cidrequri&client_id=cid

par-authz-request

6 Honest user authenticates & authorizesHonest user authenticates & authorizes
authn+consent

7 Redirect to reduri?code=code&iss=isshonRedirect to reduri?code=code&iss=isshon
authz-response-redirect

Note: reduri points to attacker (see Step 2)Note: reduri points to attacker (see Step 2)

8 GET /redir?code=code&iss=isshonGET /redir?code=code&iss=isshon
authz-response

9 POST /tokenPOST /token
token-request

DPoP proof (with attacker key), code, cid, cvDPoP proof (with attacker key), code, cid, cv
+ pkjwt2 from Step 1+ pkjwt2 from Step 1

Attacker
(Client)

Browser of
honest user

Honest AS
AShon

4 Create clickable link for
authorization URL
Create clickable link for
authorization URL

attacker-creates-link

5 User clicks on linkUser clicks on link
par-authz-request

Attacker

(Client)

Honest AS

AShon

Browser of

honest user

Fig. 6. Variant of client impersonation attack
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1 Start flow with AShon (out of scope)Start flow with AShon (out of scope)
client-init-flow

2 AS Metadata (optional) & PARAS Metadata (optional) & PAR
metadata-and-par

3 Redirect to https://as.com/authz?request_uri=requri&client_id=cidRedirect to https://as.com/authz?request_uri=requri&client_id=cid
par-authz-redirect

5 Send link to victimSend link to victim
attacker-sends-link

GET /authz?request_uri=requri&client_id=cidGET /authz?request_uri=requri&client_id=cid
par-authz-request

7 Honest user authenticates and authorizesHonest user authenticates and authorizes
authz-authn+consent

8 Redirect𝑢 to Chon with ac (blocked by attacker, cf. A1)Redirect𝑢 to Chon with ac (blocked by attacker, cf. A1)
authz-response

9 Message from Step 8 leaks to attacker (cf. A3) who can continue the flow with ChonMessage from Step 8 leaks to attacker (cf. A3) who can continue the flow with Chon
authz-response-leak

redirect uri, authorization code ac (ac is bound to honest user’s identity at AShon)redirect uri, authorization code ac (ac is bound to honest user’s identity at AShon)

Attacker Browser of
honest user𝑢

Honest Client
Chon

Honest AS
AShon

4 Create clickable link for authorization URLCreate clickable link for authorization URL
attacker-creates-link

6 User clicks on linkUser clicks on link
par-authz-request

Attacker

Browser of

honest user𝑢

Honest Client

Chon

Honest AS

AShon

Fig. 7. Browser swapping attack

A.2 The Browser Swapping Attack in Detail
As described in Section 3.4, this attack violates the authorization and authentication goals by

combining attacker assumptions A1 (network attacker) and A3 (authorization responses leak,

see Section 2.7).

The detailed attack flow is depicted in Figure 7: in Step 1 , the attacker initiates a flow at Chon
with AShon. Then, Chon and AShon exchange the PAR as described in Section 2.2 (Step 2 ). Following

this, Chon instructs its user, i.e., the attacker, to visit the authorization endpoint of AShon with the

request uri requri from Step 2 and Chon’s client id cid. However, instead of following this redirect,

the attacker creates a clickable link, pointing to AShon’s authorization endpoint, with requri and cid
as parameters (Step 4 ). The attacker then sends this link to 𝑢 in Step 5 , e.g., in an email or as part

of an attacker website.

Once 𝑢 follows that link (e.g., by means of social engineering, see A1) in Step 6 , 𝑢 will be asked

to authenticate (if not already logged in at AShon) and to authorize Chon to access 𝑢’s resources

(Step 7 ). We emphasize that, similar to AShon,𝑢 might trust the (honest) client Chon. Once𝑢 consents,

the attacker blocks all further communication for 𝑢 (see A1).

Now recall A3: through a leaking authorization response, the attacker can obtain the autho-

rization code ac (Step 9 ). With ac, the attacker visits Chon’s redirect uri, so Chon can subsequently

exchange ac for an access (and id) token at AShon. From Chon’s point of view, these tokens are

associated with Chon’s session with the attacker. However, due to Step 7 , these tokens are issued

for the (honest user) 𝑢’s resources (and identity).

A.3 Variant of Cross-Device Consent Phishing Attack on FAPI-CIBA
Recall the cross-device consent phishing attack on FAPI-CIBA from Section 3.6 where an attacker

violates the authentication and authorization goals by posing as a client towards an honest user

while simultaneously posing as that user towards an honest client. In the attack described there,

the attacker has to wait for an honest user to initiate a protocol flow with an attacker-controlled

CD.

In a variant of this attack, the attacker does not wait for the honest user to initiate a flow and

instead uses social engineering to convey the binding message and a fabricated explanation for the

honest AS’ request to authorize something, e.g., via an email supposedly sent by AShon saying that

the user’s account is about to be disconnected from Chon if the user does not confirm the connection.
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Note that the user may have indeed connected Chon to their account at AShon before and that the

authorization granted during the attack is indeed for Chon.

B DETAILS ON APPLICATION-SPECIFIC MODEL
In this appendix, we continue the overview of our formal model from Section 4.3 with additional

details and references to the respective specifications, demonstrating how our model closely follows

the specifications.

B.1 Authorization Server Model

Pushed Authorization Request. We model the PAR endpoint as part of the AS (mandated by

FAPI 2.0 [29, Sec. 5.3.1.2. No. 2]). The endpoint model stores all values and returns a (freshly chosen)

request URI value. In particular, as mandated by FAPI 2.0, the model requires a redirect URI and a

PKCE code challenge value in the PAR request [29, Sec. 5.3.1.2. No. 5, 6].

Token Introspection. The introspection endpoint part of the AS model expects an opaque access

token and returns whether the token is active (and thus, if the token was issued by this AS at all),

information on the key to which the token is bound, and a subject identifier, i.e., the identity of the

user whose login at the AS lead to the AS issuing the token. As required in [83, Sec. 2.1], the AS

model requires successful authentication of the RS that sent the request. The exact authentication

mechanism for RSs at ASs is out of scope for FAPI 2.0++. In our model, we use the HTTP Basic

Authentication mechanism suggested by [83].

Login Script. Upon receiving the authorization request for a FAPI 2.0 SP flow, the AS model

responds with a script that models the login page for the user. As a result of executing the script,

the browser sends a POST request to the AS with the login credentials (for the current AS) of a

user that is using the browser.

A similar script is used for FAPI-CIBA flows. We describe this script in Appendix B.4.

Dynamic Client Registration. For DCR, our AS model includes an endpoint that expects client

registration messages. These messages must be HTTPS POST requests [85, Sec. 3], containing

client metadata like the client’s redirect URIs and public keys [85, Sec. 2]. When processing such a

request, the AS selects a fresh client id, registration access token (see Section 2.5 and [86, Sec. 1.2,

1.3(D)]), the supported grant types [85, Sec. 2.1], and other values, registers the client with these

values, and sends a response with these values back to the client [85, Sec. 3.2.1].

Dynamic Client Management. Similar to DCR (see above), DCM defines an additional AS

endpoint [86, Sec. 2] to which clients send requests to change their configuration at an AS. Such

requests must be HTTPS PUT [86, Sec. 2.2] (to change client configuration) or HTTP DELETE [86,

Sec. 2.3] (to unregister a client) requests. Furthermore, these request must include the registration

access token (see Section 2.5 and [86, Sec. 1.2, 1.3(D)]), and, for configuration updates, the new

values [86, Sec. 2.2].

Similar to DCR, the AS processes these requests and either responds with the updated information

in case of an update request [86, Sec. 3] or deactivates the client’s registration [86, Sec. 2.3].

Further Endpoints. The AS model also comprises an endpoint for server metadata that returns

information about the server such as the different endpoint URLs. This endpoint is mandated by

FAPI 2.0 [29, Sec. 5.3.1.1. No. 1]. The authorization endpoint of the AS model requires a request URI

value as mandated in [29, Sec. 5.3.1.2. No. 3]. Furthermore, the model has a JWKS endpoint, where

the server responds with the public signature verification key, which is strongly recommended by

FAPI 2.0 [29, Sec. 5.6.3].
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B.2 Client Model

Configurations.As noted above, the client authenticates either via mTLS or the private_key_jwt
method, and supports sender constraining by either mTLS or DPoP. In the model, the client can

have different combinations of client authentication and sender constraining methods for different

ASs and the configuration for a given AS may change due to DCM.

Starting a FAPI 2.0 SP Flow. For starting a FAPI 2.0 SP flow, the client model provides a script for

browsers which triggers a POST request to the client. In our model, this request must contain the

domain of an AS, modeling a user selecting an AS. When starting a flow for the first time with an AS,

the client fetches the server metadata from the AS (as required by FAPI 2.0 [29, Sec. 5.3.2.1. No. 9]),

and registers itself at that AS through DCR (with fresh keys for signatures, client authentication,

and access token sender constraining).

Starting a FAPI-CIBA Flow. For starting a FAPI-CIBA flow, the client model expects to receive

an HTTPS request with an AS domain and an identity to its /start-ciba endpoint. If the client
did not interact with the selected AS before, it fetches the AS metadata and registers with the

AS through DCR (with fresh keys for signatures, client authentication, and access token sender

constraining).

Dynamic Client Management. Similar to how browsers handle trigger events (see Section 4.1),

the client model non-deterministically performs one of several actions when receiving a trigger

event. One of those actions is CHANGE_CLIENT_CONFIG, in which the client non-deterministically

chooses one of the ASs it is registered with, selects the appropriate registration access token (see

Section 2.5 and [86, Sec. 1.2, 1.3(D)]), non-deterministically decides whether to update or delete

its registration, and sends an appropriate request to the AS. In case of an update request, the

client includes fresh public keys for signatures, client authentication, and access token sender

constraining.

End-User Authentication. For each flow, the client decides non-deterministically whether it

wants to authenticate the user, i.e., request an id token. If that is the case, the client adds the value

openid to the scope value contained in the pushed authorization request (or authentication request

for FAPI-CIBA), hence requesting an id token from the AS. If the client model requests an id token,

and once it receives the token response, it non-deterministically decides whether to log the user in

based on the id token or to redeem the access token. The client logs in the user by creating a fresh

cookie (called service session id in the client model) associated with the subject identifier contained

in the id token.

Further Client Aspects. Furthermore, as FAPI 2.0 SP mandates, the client model always uses

pushed authorization requests and PKCE, and always checks the iss issuer identifier in the redirec-

tion request (at the redirection endpoint) [29, Sec. 5.3.2.2. No. 2, 3, 4].

Another important detail concerns the handling of id tokens: FAPI 2.0 uses OpenID Connect id

tokens, which means that id tokens are signed by their issuer. This of course raises the question

of why the honest client in the attacker token injection attack accepts an attacker-constructed

id token (see Section 3.1). The reason is that OpenID Connect [90, Sec. 3.1.3.7 No. 6] (and thus

FAPI 2.0) allows clients to skip signature verification on id tokens if the token is received directly

from the token endpoint over a TLS-protected connection – these conditions are always fulfilled

with FAPI 2.0. In the attacker token injection attack, the client contacts an attacker-controlled token

endpoint (via a TLS-protected connection) and thus does not verify the id token signature.
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B.3 Resource Server Model

Verification of Access Token. A request for a resource must contain an access token in the

HTTP headers [29, Sec. 5.3.3 No. 1]. The RS model verifies that the token is valid, identifies the

resource owner for whose resources the token was issued, and the key to which the token is bound

as follows. If the token is a structured token, the RS checks the signature of the token using the

public verification key of the AS responsible for the requested resource and retrieves the resource

owner information, as well as the key to which the token is bound from the token. Otherwise,

the RS model sends the token and RS authentication information to the introspection endpoint of

the AS that manages the requested resource. The token introspection response then contains the

necessary information.

Modeling Resources. As the management of resources is not within the scope of the FAPI 2.0++

specifications, we assumed a generic resource management which we describe in the following:

The RS model manages different resources identified by URLs, in particular, by the path part of

URLs. For a given resource, the RS model knows which AS manages the resource. Note that this is

common (and necessary) in real ecosystems, at least when using opaque access tokens: how else

can the RS determine where it has to send the token introspection request. The RS model identifies

the resource owner through the access token (see above). Then, the RS model creates a fresh nonce,

which represents the protected resource of the resource owner. That nonce is then returned the

client.

B.4 Browser Model

Push Message Endpoint. The authentication device in FAPI-CIBA needs to be able to receive

pushed messages from the AS to initiate user authentication and consent (see Step 9 in Figure 2).

Since we model the user as being subsumed by the browser model and the actual authentication

and consent is based on browser-AS interaction, we model the authentication device (and its user)

as a modified WIM browser. Namely, we extend the WIM’s browser model such that it 1) gets

assigned a URL and 2) can process HTTP and HTTPS requests.

Said URL is linked to a user’s identity at an AS and known to that AS (see Definition 14). Push

messages sent by the AS are then modeled as HTTPS requests sent to that URL. Note that such

linking of user identity to a URL and sending push messages to that URL is also how (browser)

notifications work in the real world.

While our extension of the WIM’s browser to receive and process HTTP(S) requests is generic

(see Section 4.2), we of course instantiate it for FAPI-CIBA (see Algorithm 31). Upon receiving

an encrypted push message, our browser model decrypts it, extracts the contained URL, non-

deterministically chooses whether to visit the URL contained in an open or a new browser window,

and finally sends a GET request to that URL. In an honest protocol flow, this URL points to a website

of the AS at which the user then authenticates (similar to a FAPI 2.0 SP flow).

Initiating Flows. Any FAPI 2.0 flow in our model is initiated by a user, i.e., the browser model

subsuming that user, we slightly adapt the WIM’s browser model to accommodate FAPI-CIBA

flows. Specifically, the WIM’s browser model already comes with a non-deterministic choice of

actions upon receiving a trigger event (see Section 4.1). One of these actions is to visit a non-

deterministically chosen URL. This is already sufficient to initiate FAPI 2.0 SP flows, where the

browser initiates a flow by visiting a client website, i.e., sending an HTTPS GET request to path /
at that client (where the user then selects the AS to use).
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However, for FAPI-CIBA, this initial request (modeling the user’s interaction with the CD)

needs to already contain a user identity and an AS. Hence, we extend the aforementioned non-

deterministic action in the browser model with the non-deterministically activated option to initiate

a FAPI-CIBA flow. If that option is active, the browser model non-deterministically selects a domain

(intended to be an AS domain) and one of its identities and includes them in the request sent to a

non-deterministically chosen URL. Note that this initial message does not contain any secrets.

Handling of FAPI-CIBA’s Binding Message. As explained in Section 2.4, the binding message is

a random value chosen by the CD that the CD shows to the user and sends to the AS. Later, when

the user authenticated at the AS and chooses whether to authorize the client’s request, the AS

shows this binding message and the user is supposed to compare it against the value shown by the

CD. As explained above, the user’s initial interaction with the CD is modeled as an HTTPS request

from the browser (subsuming the user) to the CD. In the CD’s response to that request, it includes

that binding message. Hence, we slightly extend the WIM’s browser model to extract the binding

message from such responses and store it, along with the CD’s identity (recall that we model this

channel to be authenticated, see Section 4.3.1).

To then compare the stored binding message to the one shown by the AS, we extend the WIM’s

browser by an additional script action. Script actions model user actions like clicking the “back”

button and JavaScript APIs such as sending a postMessage. Our new script action is called by a

script that the AS returns once the browser visits the AS’ authentication website (see “Initiating

Flows” above). This action takes as input a client identity and a binding message (both provided by

the AS) and checks whether it previously stored such a tuple. If this is the case, the browser sends

the user’s login credentials to the AS. Otherwise, the browser aborts processing the script.

B.5 Attacker Model
In Section 4.3.2, we describe how we model the attacker assumptions that remained in FAPI 2.0 AM.

However, as explained in Section 3, FAPI 2.0 AM originally contained an even stronger attacker

model (see Section 2.7), but some of the attacker assumptions where dropped as a result of our

findings.

Here, we describe how we modeled these ultimately dropped attacker assumptions (see Sec-

tion 4.3.2 for the others):

A3 (authorization responses leak) was initially modeled by leakage of the authorization response

at the AS, which sent the response in plain to a non-deterministically chosen IP address (in addition

to sending the response to the client). As described in Section 3.4, we had to remove this leak

according to the changed attacker model.

A4 (attacker can trick client into using an attacker-controlled token endpoint) was initially modeled

by the client non-deterministically choosing whether to use the correct token endpoint or a non-

deterministically chosen endpoint. After the FAPI WG made it mandatory for clients to use AS

metadata, we removed this attacker capability (see Section 3.2).

A6 and A7. As mentioned in Section 3.8, the FAPI WG dropped these attacker assumptions after

we reported inconsistencies in the attacker model resulting from these assumptions. Thus, they are

not part of our final model anymore.

C FAPI 2.0 MODEL
In this section, we provide the full formal model of the FAPI 2.0 participants. We start with the

definition of keys and secrets, as well as protocol participants and identities within the model,

followed by how we instantiate the WIM’s browser, how we model resources, and details on

how OAuth 2.0 Mutual TLS for Client Authentication and Certificate Bound Access Tokens [10] is
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modeled. We continue with the formal definitions of additional HTTP headers for the WIM and

a helper function for HTTP Message Signing, and conclude the section with our formal models

of the FAPI 2.0 clients (Appendix C.10), the FAPI 2.0 ASs (Appendix C.11), and the FAPI 2.0 RSs

(Appendix C.12).

C.1 Protocol Participants
We define the following sets of atomic Dolev-Yao processes: AS is the set of processes representing

authorization servers. Their relation is described in Appendix C.11. RS is the set of processes

representing resource servers, described in Appendix C.12. C is the set of processes representing

clients, described in Appendix C.10. Finally,B is the set of processes representing browsers, including

their users. They are described in Appendix G.7.

C.2 Identities
Identities consist, similar to email addresses, of a user name and a domain part. For our model, this

is defined as follows:

Definition 7. An identity 𝑖 is a term of the form ⟨name, domain⟩ with name ∈ S and domain ∈
Doms. Let ID be the finite set of identities. We say that an id is governed by the DY process to
which the domain of the id belongs. This is formally captured by the mappings governor : ID→W ,
⟨name, domain⟩ ↦→ dom−1 (domain) and ID𝑦

:= governor−1 (𝑦).

C.3 Keys and Secrets
The set N of nonces is partitioned into disjoint sets, an infinite set 𝑁 , and finite sets 𝐾TLS, 𝐾sign,

Passwords, and RScredentials:

N = 𝑁 ⊎ 𝐾TLS ⊎ 𝐾sign ⊎ Passwords ⊎ RScredentials
These sets are used as follows:

• The set 𝑁 contains the nonces that are available for the DY processes

• The set𝐾TLS contains the keys that will be used for TLS encryption. Let tlskey : Doms→ 𝐾TLS

be an injective mapping that assigns a (different) private key to every domain. For an atomic

DY process 𝑝 we define tlskeys𝑝 = ⟨{⟨𝑑, tlskey(𝑑)⟩ | 𝑑 ∈ dom(𝑝)}⟩ (i.e., a sequence of pairs).
• The set 𝐾sign contains the keys that will be used by ASs for signing id and access tokens, and

by clients and RSs to sign HTTP messages. Let signkey : AS×C× RS→ 𝐾sign be an injective

mapping that assigns a (different) signing key to every AS, client, and RS. Note that clients

also sign other things, e.g., DPoP proofs, but the keys used there are not part of 𝐾sign, but are

taken from 𝑁 (those keys are freshly chosen by a client when it registers with an AS).

• The set Passwords is the set of passwords (secrets) the browsers share with servers. These

are the passwords the users use to log in. Let secretOfID : ID → Passwords be a bijective
mapping that assigns a password to each identity.

• The set RScredentials is a set of secrets shared between authorization and resource servers.

RSs use these to authenticate at ASs’ token introspection endpoints. Let secretOfRS : Doms×
Doms ⇀ RScredentials be a partial mapping, assigning a secret to some of the RS–AS pairs

(with the function arguments in that order).

C.4 Passwords
Definition 8. Let ownerOfSecret : Passwords → B be a mapping that assigns to each pass-

word a browser which owns this password. Similarly, we define ownerOfID : ID → B as 𝑖 ↦→
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ownerOfSecret(secretOfID(𝑖)), which assigns to each identity the browser that owns this identity
(i.e., this identity belongs to the browser).

C.5 Web Browsers
Web browser processes (i.e., processes 𝑏 ∈ B) are modeled as described in Appendix G. Before

defining the initial states of Web browsers, we introduce the following set (for some process 𝑝):

Secrets𝑏,𝑝 =
{
𝑠 | 𝑏 = ownerOfSecret(𝑠) ∧

(
∃𝑖 : 𝑠 = secretOfID(𝑖) ∧ 𝑖 ∈ ID𝑝

)}
Definition 9 (Initial Web Browser State for FAPI). The initial state of a Web browser process

𝑏 ∈ B follows the description in Definition 80, with the following additional constraints:

• 𝑠𝑏
0
.ids ≡ ⟨{𝑖 | 𝑏 = ownerOfID(𝑖)}⟩

• 𝑠𝑏
0
.secrets contains an entry ⟨⟨𝑑, S⟩, ⟨Secrets𝑏,𝑝⟩⟩ for each 𝑝 ∈ AS∪C∪RS and every domain

𝑑 ∈ dom(𝑝) (and nothing else), i.e.,

𝑠𝑏
0
.secrets ≡

〈{
⟨⟨𝑑, S⟩, ⟨Secrets𝑏,𝑝⟩⟩

��� ∃𝑝,𝑑 : 𝑝 ∈ AS ∪ C ∪ RS ∧ 𝑑 ∈ dom(𝑝)}〉
• 𝑠𝑏

0
.keyMapping ≡ ⟨{⟨𝑑, pub(tlskey(𝑑))⟩ | 𝑑 ∈ Doms}⟩

C.6 Resources
We model the management of resources as follows: We assume that each resource is managed by at

most one AS. We also assume that resources are identified by URLs at the RS. Thus, when getting a

request to such a resource URL, the RS has to

(1) identify the AS that is managing the resource, and

(2) identify the identity for which the access token was issued.

If the access token is a structured JWT, the RS retrieves the identity from the subject field.

Otherwise, the identity is retrieved from the introspection response.

For identifying the AS, we first define the URL paths of resources managed by a RS, and then

define a mapping from these paths to AS.

Definition 10. For each rs ∈ RS, let resourceURLPathrs ⊆ S be a finite set of strings. These are
the URL paths identifying the resources managed by the RS.8

Definition 11. For each rs ∈ RS, let supportedAuthorizationServerrs ⊆ AS be a finite set of ASs.
These are the ASs supported by the RS.

Definition 12. For each rs ∈ RS, let authorizationServerOfResourcers : resourceURLPathrs →
supportedAuthorizationServerrs be a mapping that assigns an AS to each resource URL path suffix of
resources managed by the RS.

If the access token is valid and the resource is managed by an AS supported by the RS, the RS

model responds with a fresh nonce that it stores under the identity of the resource owner and the

path under which it returns the resource. By using fresh nonces, the RS does not return a nonce

twice – even for requests for the same path and the same resource owner (identified via token

introspection or the sub claim in the access token). Without this, the authorization property would

need to exclude the case that the resource owner granted some malicious client access to a resource

at some point.

8
A resource is managed by the RS if and only if resourceID ∈ resourceURLPathrs .
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C.7 Modeling mTLS
OAuth 2.0 Mutual TLS for Client Authentication and Certificate Bound Access Tokens (mTLS) [10]

provides a method for both client authentication and token binding. Note that both mechanisms

may be used independently of each other.

OAuth 2.0 Mutual TLS Client Authentication makes use of TLS client authentication9, which the

client can use for client authentication at the pushed authorization request and token endpoints (in

Step 5 and Step 14 of Figure 1). In TLS client authentication, not only the server authenticates to

the client (as is common for TLS), but the client also authenticates to the server. To this end, the

client proves that it knows the private key belonging to a certificate that is either (a) self-signed and

pre-configured at the respective AS or that is (b) issued for the respective client id by a predefined

certificate authority within a public key infrastructure (PKI).

Token binding means binding an access token to a client such that only this client is able to use

the access token at the RS. To achieve this, the AS associates the access token with the certificate

used by the client for the TLS connection to the token endpoint. In the TLS connection to the RS

(in Step 18 of Figure 1), the client then authenticates using the same certificate. The RS accepts the

access token only if the client certificate is the one associated with the access token.
10

The WIM models TLS at a high level of abstraction. An HTTP request is encrypted with the

public key of the recipient and contains a symmetric key, which is used for encrypting the HTTP

response. Furthermore, the model contains no certificates or public key infrastructures but uses a

function that maps domains to their public key.

We model mTLS similarly to [33]. An overview of the mTLS model is shown in Figure 8. The

basic idea is that the server sends a nonce encrypted with the public key of the client. The client

proves possession of the private key by decrypting this message. In Step 1 , the client sends its

client identifier to the AS. The AS then looks up the public key associated with the client identifier,

chooses a nonce, and encrypts it with the public key. As depicted in Step 2 , the server additionally

includes its public key. When the client decrypts the message, it checks if the public key belongs

to the server it wants to send the original message to. This prevents man-in-the-middle attacks,

as only the honest client can decrypt the response and as the public key of the server cannot be

changed by an attacker. In Step 3 , the client sends the original request with the decrypted nonce.

When the server receives this message, it knows that the nonce was decrypted by the honest client

(as only the client knows the corresponding private key) and that the client had chosen to send

the nonce to the server (due to the public key included in the response). Therefore, the server can

conclude that the message was sent by the honest client.

In effect, this resembles the behavior of the TLS handshake, as the verification of the client

certificate in TLS is done by signing all handshake messages [82, Section 7.4.8], which also includes

information about the server certificate, which means that the signature cannot be reused for

another server. Instead of signing a sequence that contains information about the receiver, in our

model, the client checks the sender of the nonce, and only sends the decrypted nonce to the creator

of the nonce. In other words, a nonce decrypted by an honest server that gets decrypted by the

honest client is never sent to the attacker.

As explained above, the client uses the same certificate it used for the token request when sending

the access token to the RS. While the RS has to check the possession of corresponding private

keys, the validity of the certificate was already checked at the AS and can be ignored by the RS.

9
As noted in Section 7.2 of [10], this extension supports all TLS versions with certificate-based client authentication.

10
The RS can read this information either directly from the access token if the access token is a signed document, or uses

token introspection to retrieve the data from the AS.
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Therefore, in our model of FAPI 2.0, the client does not send its client id to the RS, but its public

key, and the RS encrypts the message with this public key.

1 client idclient id
mtls-init-req

2 enca (⟨nonce, kAS ⟩, kclient_id )enca (⟨nonce, kAS ⟩, kclient_id )
mtls-init-resp

3 request, noncerequest, nonce
mtls-second-req

4 responseresponse
mtls-second-resp

Client Authorization Server

Client Authorization Server

Fig. 8. Overview of mTLS model

All messages are sent by the generic HTTPS server model (Appendix G.12), which means that

each request is encrypted asymmetrically, and the responses are encrypted symmetrically with a

key that was included in the request. For completeness, Figure 9 shows the complete messages, i.e.,

with the encryption used for transmitting the messages.

1 enca (⟨client id, 𝑘𝑠 ⟩, 𝑘AS )enca (⟨client id, 𝑘𝑠 ⟩, 𝑘AS )
mtls-init-req

2 encs (enca (⟨nonce, 𝑘AS ⟩, 𝑘client_id ), 𝑘𝑠 )encs (enca (⟨nonce, 𝑘AS ⟩, 𝑘client_id ), 𝑘𝑠 )
mtls-init-resp

3 enca (⟨⟨request, nonce⟩, 𝑘 ′𝑠 ⟩, 𝑘AS )enca (⟨⟨request, nonce⟩, 𝑘 ′𝑠 ⟩, 𝑘AS )
mtls-second-req

4 encs (response, 𝑘 ′𝑠 )encs (response, 𝑘 ′𝑠 )
mtls-second-resp

Client Authorization Server

Client Authorization Server

Fig. 9. Detailed view on mTLS model

C.8 Additional HTTP Headers
In order to model FAPI 2.0, we extend the list of headers of Definition 54 with the following headers:

• For DPoP, we add the header ⟨DPoP, 𝑝⟩ where 𝑝 ∈ TN is (for honest senders) a DPoP proof

(i.e., a signed JWT).

• The Authorization header can also take on values ⟨Bearer, 𝑡⟩ where 𝑡 ∈ TN is usually a

bearer token.

• We add the header ⟨Accept, 𝑠⟩ with 𝑠 ∈ S.
• For HTTP Message Signatures, we add the following headers

– ⟨Signature-Input, inputs⟩ where inputs is a dictionary of elements label : 𝑡 with 𝑡 ∈
TN , label ∈ S. For honest senders, 𝑡 is of the form ⟨𝑠, 𝑝⟩ where 𝑠 is a sequence of pairs,
each containing a HTTP message component identifier and a possibly empty sequence of

parameters; whereas 𝑝 is a dictionary of signature parameters with their values. E.g.,[
label1 :

〈〈
⟨@status, ⟨⟩⟩, ⟨content-digest, ⟨req⟩⟩

〉
, [keyid : some_id]

〉]
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– ⟨Signature, sigs⟩ where sigs is a dictionary of elements label : 𝑡 with 𝑡 ∈ TN , label ∈ S.
For honest senders, 𝑡 is a signature.

– ⟨Content-Digest, digest⟩where digest ∈ TN is – for honest senders – a hash of themessage

body.

C.9 Helper Functions
The following helper function is used by processes when verifying HTTP message signatures.

Algorithm 1 Compare component values for HTTP message signatures.

1: function IS_COMPONENT_EQUAL(𝑚, request, signerSignatureBase, component) → request may be empty (^)
2: let componentName := component .1
3: let componentParam := component .2
4: let knownComponents := {@method,@target-uri,@status, authorization, content-digest, dpop}
5: if componentName ∉ knownComponents then
6: return ⊥
7: let componentValue := ^
8: if componentParam ≡ ⟨⟩ then → Compare against component value from𝑚

9: if componentName ≡ @method then
10: let componentValue :=𝑚.method

11: if componentName ≡ @target-uri then
12: let componentValue := ⟨URL,𝑚.protocol,𝑚.host,𝑚.path,𝑚.parameters,⊥⟩
13: if componentName ≡ @status then
14: let componentValue :=𝑚.status

15: if componentName ≡ authorization then
16: let componentValue :=𝑚.headers[Authorization]
17: if componentName ≡ content-digest then
18: let componentValue :=𝑚.headers[Content-Digest]
19: if componentName ≡ dpop then
20: let componentValue :=𝑚.headers[DPoP]
21: else if componentParam ≡ ⟨req⟩ then → Compare against component value from request

22: if componentName ≡ @method then
23: let componentValue := request .method
24: if componentName ≡ @target-uri then
25: let componentValue := ⟨URL, request .protocol, request .host, request .path, request .parameters,⊥⟩
26: if componentName ≡ content-digest then
27: let componentValue := request .headers[Content-Digest]
28: if componentName ≡ dpop then
29: let componentValue := request .headers[DPoP]
30: else
31: return ⊥ → Unsupported component parameter

32: if componentValue ≡ signerSignatureBase[component ] then
33: return ⊤
34: else
35: return ⊥
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C.10 Clients
A client 𝑐 ∈ C is a Web server modeled as an atomic DY process (𝐼𝑐 , 𝑍𝑐 , 𝑅𝑐 , 𝑠𝑐

0
) with the addresses

𝐼𝑐 := addr(𝑐). Next, we define the set 𝑍𝑐
of states of 𝑐 and the initial state 𝑠𝑐

0
of 𝑐 .

Definition 13. A state 𝑠 ∈ 𝑍𝑐
of a client 𝑐 is a term of the form ⟨DNSaddress, pendingDNS,

pendingRequests, corrupt, keyMapping, tlskeys, sessions, oauthConfigCache, jwksCache, asAccounts,
mtlsCache, pendingCIBARequests, resourceASMapping, dpopNonces, jwk, rsSigKeys⟩ with
DNSaddress ∈ IPs, pendingDNS ∈

[
N × TN

]
, pendingRequests ∈ TN , corrupt ∈ TN ,

keyMapping ∈
[
Doms × TN

]
, tlskeys ∈ [Doms × 𝐾TLS] (all former components as in Definition 83),

sessions ∈
[
N × TN

]
, oauthConfigCache ∈

[
Doms × TN

]
, jwksCache ∈

[
Doms × TN

]
,

asAccounts ∈
[
Doms ×

[
S × TN

] ]
, mtlsCache ∈ TN , pendingCIBARequests ∈ TN ,

resourceASMapping ∈ [Doms × [S × Doms]], dpopNonces ∈
[
Doms × TN

]
, jwk ∈ 𝐾sign, and

rsSigKeys ∈
[
Doms × TN

]
.

An initial state 𝑠𝑐
0
of 𝑐 is a state of 𝑐 with

• 𝑠𝑐
0
.DNSaddress ∈ IPs,

• 𝑠𝑐
0
.pendingDNS ≡ ⟨⟩,

• 𝑠𝑐
0
.pendingRequests ≡ ⟨⟩,

• 𝑠𝑐
0
.corrupt ≡ ⊥,

• 𝑠𝑐
0
.keyMapping being the same as the keymapping for browsers,

• 𝑠𝑐
0
.tlskeys ≡ tlskeys𝑐 (see Appendix C.3),

• 𝑠𝑐
0
.sessions ≡ ⟨⟩,

• 𝑠𝑐
0
.oauthConfigCache ≡ ⟨⟩,

• 𝑠𝑐
0
.jwksCache ≡ ⟨⟩,

• 𝑠𝑐
0
.asAccounts ≡ ⟨⟩,

• 𝑠𝑐
0
.mtlsCache ≡ ⟨⟩,

• 𝑠𝑐
0
.pendingCIBARequests ≡ ⟨⟩ (Upon receiving a CIBA start request, the client responds with

a binding message and by setting a cookie. The client stores the necessary information in this
field and continues the flow upon receiving a trigger message),
• 𝑠𝑐

0
.resourceASMapping[domRS] [resourceID] ∈

dom(authorizationServerOfResourcers (resourceID)), ∀ rs ∈ RS and ∀domRS ∈ dom(rs) and
∀ resourceID ∈ resourceURLPathrs (a domain of the AS managing the resource stored at rs
identified by resourceID),
• 𝑠𝑐

0
.dpopNonces ≡ ⟨⟩,

• 𝑠𝑐
0
.jwk ≡ signkey(𝑐) (used for HTTP message signing, see Appendix C.3), and

• 𝑠𝑐
0
.rsSigKeys ≡ rsk such that rsk[domRS] = pub(signkey(rs)) for all domRS ∈ dom(rs) for

all rs ∈ RS (see [39, Sec. 5.6.2.2]).

We now specify the relation 𝑅𝑐 : This relation is based on the model of generic HTTPS servers

(see Appendix G.12). Hence we only need to specify algorithms that differ from or do not exist in

the generic server model. These algorithms are defined in Algorithms 3–9. Note that in several

places throughout these algorithms, we use placeholders of the form 𝜈𝑥 to generate “fresh” nonces

as described in the communication model (see Definition 39).

The script that is used by the client on its index page is specified in Algorithm 10. This script

uses the GETURL(tree, docnonce) function to to extract the current URL of a document. We define

this function as follows: It searches for the document with the identifier docnonce in the (cleaned)

tree tree of the browser’s windows and documents. It then returns the URL 𝑢 of that document. If

no document with nonce docnonce is found in the tree tree, ^ is returned.
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Algorithm 2 Relation of a Client 𝑅𝑐 – Processing HTTPS Requests

1: function PROCESS_HTTPS_REQUEST(𝑚,𝑘 ,𝑎, 𝑓 , 𝑠′) → Process an incomingHTTPS request.Other message types are handled

in separate functions.𝑚 is the incoming message, 𝑘 is the encryption key for the response, 𝑎 is the receiver, 𝑓 the sender of the message.

𝑠′ is the current state of the atomic DY process 𝑐 .

2: if𝑚.path ≡ / then → Serve index page (start flow).

3: let𝑚′ := encs (⟨HTTPResp,𝑚.nonce, 200, headers, ⟨script_client_index, ⟨⟩⟩⟩, 𝑘 ) → Reply with script_client_index.
4: stop ⟨⟨𝑓 , 𝑎,𝑚′ ⟩⟩, 𝑠′
5: else if𝑚.path ≡ /startLogin ∧𝑚.method ≡ POST then → Start a new FAPI 2.0 flow (see script_client_index)
6: if𝑚.headers[Origin] . ⟨𝑚.host, S⟩ then
7: stop → Check the Origin header for CSRF protection to prevent attacker from starting a flow in the background (as this

would trivially violate the session integrity property).

8: let selectedAS :=𝑚.body
9: let sessionId := 𝜈1 → Session id is a freshly chosen nonce.

10: let 𝑠′ .sessions[sessionId ] := [startRequest : [message : 𝑚, key : 𝑘, receiver : 𝑎, sender : 𝑓 ],
↩→ selected_AS : selectedAS, cibaFlow : ⊥]

11: call PREPARE_AND_SEND_INITIAL_REQUEST(sessionId, 𝑎, 𝑠′ ) → Start authorization flow with the AS (Algorithm 8)

12: else if𝑚.path ≡ /redirect_ep then → User is being redirected after authentication to the AS.

13: let sessionId :=𝑚.headers[Cookie] [ ⟨__Host, sessionId⟩ ]
14: if sessionId ∉ 𝑠′ .sessions then
15: stop
16: let session := 𝑠′ .sessions[sessionId ] → Retrieve session data.

17: let selectedAS := session[selected_AS]
18: if session[requested_signed_authz_response] ≡ ⊤ then
19: if checksig(𝑚.parameters[response], 𝑠′ .jwksCache[selectedAS] ) . ⊤ then
20: stop → Invalid or missing signature on authorization response, see JARM [68, Sec. 2.4]

21: let authzResponse := extractmsg(𝑚.parameters[response] )
22: if authzResponse[aud] . session[client_id] then
23: stop →Wrong/missing audience value, see JARM [68, Sec. 2.4]

24: let𝑚.parameters := authzResponse → Remove signature (so we always store a “plain” message below)

25: else
26: let authzResponse :=𝑚.parameters

27: if code ∉ authzResponse ∨ iss ∉ authzResponse then
28: stop
29: let code := authzResponse[code]
30: let issuer := authzResponse[iss]
31: if issuer . selectedAS then → Check issuer parameter (RFC 9207 [103]).

32: stop
→ Store browser’s request for use in CHECK_ID_TOKEN (Algorithm 7) and PROCESS_HTTPS_RESPONSE (Algorithm 3)

33: let 𝑠′ .sessions[sessionId ] [redirectEpRequest] := [message : 𝑚, key : 𝑘, receiver : 𝑎, sender : 𝑓 ]
34: call SEND_TOKEN_REQUEST(sessionId, code, 𝑎, 𝑠′ ) → Retrieve a token from AS’s token endpoint.

35: else if𝑚.path ≡ /start_ciba then → Start a CIBA flow. We assume that anyone can start the flow at a client by providing

the identity of an end-user (which the client uses as a login_hint)
36: let selectedAS :=𝑚.body[authServ]
37: let identity :=𝑚.body[identity]
38: let sessionId := 𝜈6 → Session id is a freshly chosen nonce.

39: let bindingMessage := 𝜈bindingMsg

40: let 𝑠′ .sessions[sessionId ] := [selected_AS : selectedAS, selected_identity : identity,
↩→ binding_message : bindingMessage, start_polling : ⊥, cibaFlow : ⊤]

→ Store record for continuing the flow later upon receiving a trigger message

41: let 𝑠′ .pendingCIBARequests := 𝑠′ .pendingCIBARequests +⟨⟩ ⟨sessionId, 𝑎⟩
42: let headers := [Set-Cookie : [ ⟨__Host, sessionId⟩ : ⟨sessionId,⊤,⊤,⊤⟩] ]
43: let body := [binding_message : bindingMessage]
44: let𝑚′ := encs (⟨HTTPResp,𝑚.nonce, 200, headers, body⟩, 𝑘 )
45: stop ⟨⟨𝑓 , 𝑎,𝑚′ ⟩⟩, 𝑠′
46: else if𝑚.path ≡ /ciba_notif_ep then → CIBA notification endpoint

47: let receivedNotificationToken :=𝑚.headers[Authorization] .2
48: let receivedAuthReqId :=𝑚.body[auth_req_id]
49: let sessionId such that sessionId ∈ 𝑠′ .sessions

↩→ ∧𝑠′ .sessions[sessionId ] [client_notification_token] ≡ receivedNotificationToken
↩→ ∧𝑠′ .sessions[sessionId ] [client_notification_token] . ⟨⟩
↩→ ∧𝑠′ .sessions[sessionId ] [auth_req_id] ≡ receivedAuthReqId if possible; otherwise stop

50: call SEND_CIBA_TOKEN_REQUEST(sessionId, 𝑎, 𝑠′ ) → Send a token request

→ Algorithm continues on next page.

https://openid.net/specs/oauth-v2-jarm-final.html#section-2.4
https://openid.net/specs/oauth-v2-jarm-final.html#section-2.4
https://datatracker.ietf.org/doc/html/rfc9207
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51: else if𝑚.path ≡ /ciba_get_ssid_or_resource then
→When starting a CIBA flow, the client responds with a Set-Cookie header with a login session id. Once the user login at the

client is finished (i.e., after the client checks the ID token) or once the client gets access to some resource, the initiator can send

a request to this endpoint (with the login session id cookie) and get logged in at the client or get access to resources that an RS

provided to the client.

52: let sessionId :=𝑚.headers[Cookie] [ ⟨__Host, sessionId⟩ ]
53: if sessionId ∉ 𝑠′ .sessions then
54: stop
55: let session := 𝑠′ .sessions[sessionId ] → Retrieve session data.

56: if session[cibaFlow] ≡ ⊥ then
→ This endpoint can only be used for CIBA flows. The authorization code flow model provides this functionality when

receiving the responses by the AS or RS.

57: stop
58: if serviceSessionId ∉ session ∧ resource ∉ session then → User authentication/authorization not finished yet

59: stop
60: let headers := [ ]
61: let body := [ ]
62: if serviceSessionId ∈ session then
63: let serviceSessionId := session[serviceSessionId]
64: let headers[Set-Cookie] := [serviceSessionId : ⟨serviceSessionId,⊤,⊤,⊤⟩]
65: if resource ∈ session then
66: let body := session[resource]
67: let𝑚′ := encs (⟨HTTPResp,𝑚.nonce, 200, headers, body⟩, 𝑘 )
68: stop ⟨⟨𝑓 , 𝑎,𝑚′ ⟩⟩, 𝑠′
69: stop → Unknown endpoint or malformed request.
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Algorithm 3 Relation of a Client 𝑅𝑐 – Processing HTTPS Responses

1: function PROCESS_HTTPS_RESPONSE(𝑚, reference, request, 𝑎, 𝑓 , 𝑠′)
2: if reference[responseTo] ≡ MTLS then → Client received an mTLS nonce (see Appendix C.7)

3: let𝑚dc, 𝑘
′ such that𝑚dc ≡ deca (𝑚.body, 𝑘 ′ ) ∧ selectedAS ∈ 𝑠′ .asAccounts∧𝑠′ .asAccounts[selectedAS] [tls_key] ≡ 𝑘 ′

↩→ if possible; otherwise stop
4: let mtlsNonce, serverPubKey such that𝑚dec ≡ ⟨mtlsNonce, serverPubKey⟩ if possible; otherwise stop
5: if serverPubKey ≡ 𝑠′ .keyMapping[request .host] then → Verify sender of mTLS nonce

6: let clientId := reference[client_id] → Note: If client_id ∉ reference, then reference[client_id] ≡ ⟨⟩
7: let pubKey := reference[pub_key] → See note for client ID above

8: let 𝑠′ .mtlsCache := 𝑠′ .mtlsCache +⟨⟩ ⟨request .host, clientId, pubKey,mtlsNonce⟩
9: stop ⟨⟩, 𝑠′
10: if reference[responseTo] ≡ CLIENT_MANAGEMENT then

→ Process a client information response [85, 86]. According requests are initiated by trigger messages, see Algorithm 9.

11: let selectedAS := reference[selected_AS]
12: let clientId := 𝑠′ .asAccounts[selectedAS] [client_id] → client_id cannot be changed (see Sec. 2.2 of RFC 7592 [86])

13: if𝑚.status ≡ 204 ∧ request .method ≡ DELETE then → Client was deleted at AS (see Sec. 2.3 of RFC 7592 [86])

14: let 𝑠′ .asAccounts := 𝑠′ .asAccounts − selectedAS
15: stop ⟨⟩, 𝑠′
16: if𝑚.body[client_type] ∉ {mTLS_mTLS, pkjwt_mTLS, mTLS_DPoP, pkjwt_DPoP} then
17: stop → Invalid client type

18: let clientType :=𝑚.body[client_type]
19: if𝑚.body[jwks] . reference[request] [jwks] then
20: stop → AS changed client’s jwks value: abort client metadata update

21: let regClientUri :=𝑚.body[reg_client_uri]
22: let regAt :=𝑚.body[reg_at]
23: let 𝑠′ .asAccounts[selectedAS] := [client_id : clientId, client_type : clientType, reg_at : regAt,

↩→ reg_client_uri : regClientUri, sign_key : reference[sigKey],
↩→ tls_key : reference[tlsKey], grant_types : 𝑚.body[grant_types] ]

24: if backchannel_token_delivery_mode ∈ 𝑚.body then
25: let 𝑠′ .asAccounts[selectedAS] [backchannel_token_delivery_mode] :=

↩→ 𝑚.body[backchannel_token_delivery_mode]
26: if𝑚.body[backchannel_token_delivery_mode] ∈ {ping, push} then
27: if backchannel_client_notification_endpoint ∉𝑚.body then
28: stop
29: let clientNotificationEP :=𝑚.body[backchannel_client_notification_endpoint]
30: let 𝑠′ .asAccounts[selectedAS] [backchannel_client_notification_endpoint] := clientNotificationEP
31: stop ⟨⟩, 𝑠′
32: let sessionId := reference[session]
33: let session := 𝑠′ .sessions[sessionId ]
34: let selectedAS := session[selected_AS]

→ Note: PREPARE_AND_SEND_INITIAL_REQUEST issues CONFIG, and REGISTRATION requests as required – once these get

a response, we continue the PAR preparation by calling PREPARE_AND_SEND_INITIAL_REQUEST again.

35: if reference[responseTo] ≡ CONFIG then
36: if𝑚.body[issuer] . selectedAS then → Verify issuer identifier according to Sec. 3.3 of RFC 8414 [61]

37: stop
38: let 𝑠′ .oauthConfigCache[selectedAS] :=𝑚.body
39: call PREPARE_AND_SEND_INITIAL_REQUEST(sessionId, 𝑎, 𝑠′ )
40: else if reference[responseTo] ≡ REGISTRATION then
41: if𝑚.body[client_type] ∉ {mTLS_mTLS, pkjwt_mTLS, mTLS_DPoP, pkjwt_DPoP} then
42: stop → Invalid client type

43: let clientType :=𝑚.body[client_type]
44: let clientId :=𝑚.body[client_id]
45: let regClientUri :=𝑚.body[reg_client_uri] → DCM endpoint of AS Sec. 3 of RFC 7592 [86]

46: let regAt :=𝑚.body[reg_at] → DCM bearer token Sec. 3 of RFC 7592 [86]

47: if𝑚.body[jwks] . reference[request] [jwks] then
48: stop → AS changed client’s jwks value: abort registration

→ Note: The jwks value contains the client’s keys for client authentication as well as token sender constraining. Since the

client might use different keys for different ASs (and change the keys used with a given AS), it needs to keep track of which

keys to use with each AS.

49: let 𝑠′ .asAccounts[selectedAS] := [client_id : clientId, client_type : clientType, reg_at : regAt,
↩→ reg_client_uri : regClientUri, sign_key : reference[sigKey],
↩→ tls_key : reference[tlsKey], grant_types : 𝑚.body[grant_types] ]

→ Algorithm continues on next page.

https://datatracker.ietf.org/doc/html/rfc7592#section-2.2
https://datatracker.ietf.org/doc/html/rfc7592#section-2.3
https://datatracker.ietf.org/doc/html/rfc8414#section-3.3
https://datatracker.ietf.org/doc/html/rfc7592#section-3
https://datatracker.ietf.org/doc/html/rfc7592#section-3
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50: if backchannel_token_delivery_mode ∈ 𝑚.body then
51: let 𝑠′ .asAccounts[selectedAS] [backchannel_token_delivery_mode] :=

↩→ 𝑚.body[backchannel_token_delivery_mode]
52: if𝑚.body[backchannel_token_delivery_mode] ∈ {ping, push} then
53: if backchannel_client_notification_endpoint ∉𝑚.body then
54: stop
55: let clientNotificationEP :=𝑚.body[backchannel_client_notification_endpoint]
56: let 𝑠′ .asAccounts[selectedAS] [backchannel_client_notification_endpoint] := clientNotificationEP
57: call PREPARE_AND_SEND_INITIAL_REQUEST(reference[session], 𝑎, 𝑠′ )
58: else if reference[responseTo] ≡ PAR then
59: if reference[response_mode] ≡ jwt then

→ Client requested a signed authorization response

60: let 𝑠′ .sessions[sessionId ] [requested_signed_authz_response] := ⊤
61: let requestUri :=𝑚.body[request_uri]
62: let 𝑠′ .sessions[sessionId ] [request_uri] := requestUri
63: let clientId := session[client_id]
64: let request := session[startRequest]

→ In the following, we construct the response to the initial request by some browser

65: let authEndpoint := 𝑠′ .oauthConfigCache[selectedAS] [auth_ep]
→ The authorization endpoint URL may include query components, which must be retained while also ensuring that no

parameter appears more than once (Sec. 3.1 of RFC 6749 [46]). However, following Sec. 4 of RFC 9126 [71] and Sec. 5

of RFC 9101 [92] closely could introduce duplicates. We opted to overwrite client_id and request_uri parameters if

present.

66: let authEndpoint .parameters[client_id] := clientId
67: let authEndpoint .parameters[request_uri] := requestUri
68: let headers := [Location : authEndpoint ]
69: let headers[Set-Cookie] := [ ⟨__Host, sessionId⟩ : ⟨sessionId,⊤,⊤,⊤⟩]
70: let response := encs (⟨HTTPResp, request [message] .nonce, 303, headers, ⟨⟩⟩, request [key] )
71: let leakAuthZReq← {⊤,⊥} →We assume that the authorization request, in particular request_uri and client_id, may

leak to the attacker, see [27].

72: if leakAuthZReq ≡ ⊤ then
73: let leak := ⟨LEAK, authEndpoint⟩
74: let leakAddress← IPs
75: stop ⟨⟨request [sender], request [receiver], response⟩, ⟨leakAddress, request [receiver], 𝑙𝑒𝑎𝑘 ⟩⟩, 𝑠′
76: else
77: stop ⟨⟨request [sender], request [receiver], response⟩⟩, 𝑠′
78: else if reference[responseTo] ≡ TOKEN then
79: let useAccessTokenNow := ⊤
80: if session[scope] ≡ openid then → Non-deterministically decide whether to use the AT or check the ID token (if requested)

81: let useAccessTokenNow← {⊤,⊥}
82: if useAccessTokenNow ≡ ⊤ then
83: call USE_ACCESS_TOKEN(reference[session],𝑚.body[access_token], request .host, 𝑎, 𝑠′ )
84: let selectedAsTokenEp := 𝑠′ .oauthConfigCache[selectedAS] [token_ep]
85: if request .host . selectedAsTokenEp.host then
86: stop → Verify sender of HTTPS response is the expected AS (see [90, Sec. 3.1.3.7])

87: call CHECK_ID_TOKEN(reference[session],𝑚.body[id_token], 𝑠′ )
88: else if reference[responseTo] ≡ RESOURCE_USAGE then

→ Construct response to browser’s request to the client’s redirect endpoint (with the retrieved resource as payload)

89: let expectSignedResponse← {⊤,⊥} → Choose whether to expect a signed resource response

90: let 𝑠′ .sessions[sessionId ] [expect_signed_resource_res] := expectSignedResponse
91: if expectSignedResponse ≡ ⊤ then → Check whether client expects a signed response

92: if hash(𝑚.body) .𝑚.headers[Content-Digest] then
93: stop → Content-digest is required by FAPI 2.0 Message Signing [39, Sec. 5.6.2.2]

94: let coveredComponents :=𝑚.headers[Signature-Input] [res]
95: let rsDom := request .host → RS to which the resource request was sent

96: let pubKey := 𝑠′ .rsSigKeys[rsDom]
97: let signerSignatureBase := extractmsg(𝑚.headers[Signature] [res] )
98: if @status ∉ coveredComponents.1 ∨ content-digest ∉ coveredComponents.1 ∨

↩→ coveredComponents.2[tag] . fapi-2-response then
99: stop → See [39, Sec. 5.6.2.2], these components must be present

100: if signerSignatureBase.2[tag] . fapi-2-request ∨ keyid ∉ signerSignatureBase.2 then
101: stop
102: for component ∈ coveredComponents.1 do
103: let isComponentEqual := IS_COMPONENT_EQUAL(𝑚, request, signerSignatureBase, component )
104: if isComponentEqual . ⊤ then
105: stop

→ Algorithm continues on next page.

https://datatracker.ietf.org/doc/html/rfc6749#section-3.1
https://datatracker.ietf.org/doc/html/rfc9126#section-4
https://datatracker.ietf.org/doc/html/rfc9101#section-5
https://datatracker.ietf.org/doc/html/rfc9101#section-5
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→ If we make it here, the response signature base matches the actual response data.

106: if pubKey ≡ ⟨⟩ ∨ checksig(𝑚.headers[Signature] [res], pubKey) . ⊤ then
107: stop → Invalid public key/message or signature does not verify

108: let resource :=𝑚.body[resource]
109: let 𝑠′ .sessions[sessionId ] [resource] := resource → Store received resource

110: let 𝑠′ .sessions[sessionId ] [resourceServer] := request .host → Store the domain of the RS

111: if session[cibaFlow] ≡ ⊥ then → Send the resource as a response to the redirection endpoint request.

112: let request := session[redirectEpRequest] → Data on browser’s request to client’s redirect endpoint

113: let𝑚′ := encs (⟨HTTPResp, request [message] .nonce, 200, ⟨⟩, resource⟩, request [key] )
114: stop ⟨⟨request [sender], request [receiver],𝑚′ ⟩⟩, 𝑠′
115: else →Wait for the browser to send a request with the login session id, see Line 51 of Algorithm 2

116: stop ⟨⟩, 𝑠′
117: else if reference[responseTo] ≡ DPOP_NONCE then
118: let dpopNonce :=𝑚.body[nonce]
119: let rsDomain := request .host
120: let 𝑠′ .dpopNonces[rsDomain] := 𝑠′ .dpopNonces[rsDomain] +⟨⟩ dpopNonce
121: stop ⟨⟩, 𝑠′
122: else if reference[responseTo] ≡ CIBA_AUTH_REQ then
123: let authnReqId :=𝑚.body[auth_req_id]
124: let 𝑠′ .sessions[sessionId ] [auth_req_id] := authnReqId → Store received request identifier

→ If the client has registered the poll delivery mode, it can start polling at the token endpoint

125: if 𝑠′ .asAccounts[selectedAS] [backchannel_token_delivery_mode] ≡ poll then
126: let 𝑠′ .sessions[sessionId ] [start_polling] := ⊤ → Client can start polling

127: stop ⟨⟩, 𝑠′
128: stop
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Algorithm 4 Relation of a Client 𝑅𝑐 – Request to token endpoint.

1: function SEND_TOKEN_REQUEST(sessionId, code, 𝑎, 𝑠′)
2: let session := 𝑠′ .sessions[sessionId ]
3: if code_verifier ∉ session then
4: stop
5: let pkceVerifier := session[code_verifier]
6: let selectedAS := session[selected_AS]
7: let headers := [ ]
8: let body := [grant_type : authorization_code, code : code, redirect_uri : session[redirect_uri] ]
9: let body [code_verifier] := pkceVerifier → add PKCE Code Verifier (RFC 7636 [89], Section 4.5)

10: let clientId := 𝑠′ .asAccounts[selectedAS] [client_id]
11: let clientType := 𝑠′ .asAccounts[selectedAS] [client_type]
12: let clientSignKey := 𝑠′ .asAccounts[selectedAS] [sign_key] → Used in private_key_jwt authentication and DPoP

13: let oauthConfig := 𝑠′ .oauthConfigCache[selectedAS]
14: let tokenEndpoint := oauthConfig[token_ep]

→ Client Authentication:

15: if clientType ∈ {mTLS_mTLS, mTLS_DPoP} then → mTLS client authentication

16: let body [client_id] := clientId → RFC 8705 [10] mandates client_id when using mTLS authentication

17: let mtlsNonce such that ⟨tokenEndpoint .host, clientId, ⟨⟩,mtlsNonce⟩ ∈ 𝑠′ .mtlsCache if possible; otherwise stop
18: let authData := [TLS_AuthN : mtlsNonce]
19: let 𝑠′ .mtlsCache := 𝑠′ .mtlsCache −⟨⟩ ⟨tokenEndpoint .host, clientId, ⟨⟩,mtlsNonce⟩
20: else if clientType ∈ {pkjwt_mTLS, pkjwt_DPoP} then → private_key_jwt client authentication
21: let jwt := [iss : clientId, sub : clientId, aud : selectedAS]
22: let jws := sig(jwt, clientSignKey)
23: let authData := [client_assertion : jws]
24: else
25: stop → Invalid client type

→ Sender Constraining:

26: if clientType ≡ mTLS_mTLS then → mTLS sender constraining (same nonce as for mTLS authN)

27: let mtlsNonce := authData[TLS_AuthN]
28: let body [TLS_binding] := mtlsNonce
29: else if clientType ≡ pkjwt_mTLS then → mTLS sender constraining (fresh mTLS nonce)

30: let mtlsNonce such that ⟨tokenEndpoint .host, clientId, ⟨⟩,mtlsNonce⟩ ∈ 𝑠′ .mtlsCache if possible; otherwise stop
31: let 𝑠′ .mtlsCache := 𝑠′ .mtlsCache −⟨⟩ ⟨tokenEndpoint .host, clientId, ⟨⟩,mtlsNonce⟩
32: let body [TLS_binding] := mtlsNonce
33: else → Sender constraning using DPoP

34: let htu := tokenEndpoint
35: let htu.parameters := ⟨⟩ → [32, Sec. 4.2]: without query

36: let htu.fragment := ⊥ → [32, Sec. 4.2]: without fragment

37: let dpopJwt := [headers : [jwk : pub(clientSignKey) ] ]
38: let dpopJwt [payload] := [htm : POST, htu : htu]
39: let dpopProof := sig(dpopJwt, clientSignKey)
40: let headers[DPoP] := dpopProof → add DPoP header; the dpopJwt can be extracted with the extractmsg( ) function
41: let body := body +⟨⟩ authData
42: let message := ⟨HTTPReq, 𝜈2, POST, tokenEndpoint .host, tokenEndpoint .path, tokenEndpoint .parameters, headers, body⟩
43: call HTTPS_SIMPLE_SEND( [responseTo : TOKEN, session : sessionId ], message, 𝑎, 𝑠′ )

https://datatracker.ietf.org/doc/html/rfc7636
https://datatracker.ietf.org/doc/html/rfc8705


Formal Analysis of the FAPI 2.0 Protocols 55

Algorithm 5 Relation of a Client 𝑅𝑐 – Request to token endpoint for CIBA flows.

1: function SEND_CIBA_TOKEN_REQUEST(sessionId, 𝑎, 𝑠′)
2: let session := 𝑠′ .sessions[sessionId ]
3: let selectedAS := session[selected_AS]
4: let authnReqId := session[auth_req_id]
5: let headers := [ ]
6: let body := [grant_type : urn:openid:params:grant-type:ciba, auth_req_id : authnReqId ]
7: let clientId := 𝑠′ .asAccounts[selectedAS] [client_id]
8: let clientType := 𝑠′ .asAccounts[selectedAS] [client_type]
9: let clientSignKey := 𝑠′ .asAccounts[selectedAS] [sign_key] → Used in private_key_jwt authentication and DPoP

10: let oauthConfig := 𝑠′ .oauthConfigCache[selectedAS]
11: let tokenEndpoint := oauthConfig[token_ep]

→ Client Authentication:

12: if clientType ∈ {mTLS_mTLS, mTLS_DPoP} then → mTLS client authentication

13: let body [client_id] := clientId → RFC 8705 [10] mandates client_id when using mTLS authentication

14: let mtlsNonce such that ⟨tokenEndpoint .host, clientId, ⟨⟩,mtlsNonce⟩ ∈ 𝑠′ .mtlsCache if possible; otherwise stop
15: let authData := [TLS_AuthN : mtlsNonce]
16: let 𝑠′ .mtlsCache := 𝑠′ .mtlsCache −⟨⟩ ⟨tokenEndpoint .host, clientId, ⟨⟩,mtlsNonce⟩
17: else if clientType ∈ {pkjwt_mTLS, pkjwt_DPoP} then → private_key_jwt client authentication
18: let jwt := [iss : clientId, sub : clientId, aud : selectedAS]
19: let jws := sig(jwt, clientSignKey)
20: let authData := [client_assertion : jws]
21: else
22: stop → Invalid client type

→ Sender Constraining:

23: if clientType ≡ mTLS_mTLS then → mTLS sender constraining (same nonce as for mTLS authN)

24: let mtlsNonce := authData[TLS_AuthN]
25: let body [TLS_binding] := mtlsNonce
26: else if clientType ≡ pkjwt_mTLS then → mTLS sender constraining (fresh mTLS nonce)

27: let mtlsNonce such that ⟨tokenEndpoint .host, clientId, ⟨⟩,mtlsNonce⟩ ∈ 𝑠′ .mtlsCache if possible; otherwise stop
28: let 𝑠′ .mtlsCache := 𝑠′ .mtlsCache −⟨⟩ ⟨tokenEndpoint .host, clientId, ⟨⟩,mtlsNonce⟩
29: let body [TLS_binding] := mtlsNonce
30: else → Sender constraning using DPoP

31: let htu := tokenEndpoint
32: let htu.parameters := ⟨⟩ → [32, Sec. 4.2]: without query

33: let htu.fragment := ⊥ → [32, Sec. 4.2]: without fragment

34: let dpopJwt := [headers : [jwk : pub(clientSignKey) ] ]
35: let dpopJwt [payload] := [htm : POST, htu : htu]
36: let dpopProof := sig(dpopJwt, clientSignKey)
37: let headers[DPoP] := dpopProof → add DPoP header; the dpopJwt can be extracted with the extractmsg( ) function
38: let body := body +⟨⟩ authData
39: let message := ⟨HTTPReq, 𝜈2, POST, tokenEndpoint .host, tokenEndpoint .path, tokenEndpoint .parameters, headers, body⟩
40: call HTTPS_SIMPLE_SEND( [responseTo : TOKEN, session : sessionId ], message, 𝑎, 𝑠′ )

https://datatracker.ietf.org/doc/html/rfc8705
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Algorithm 6 Relation of a Client 𝑅𝑐 – Using the access token.

1: function USE_ACCESS_TOKEN(sessionId, token, tokenEPDomain, 𝑎, 𝑠′)
2: let session := 𝑠′ .sessions[sessionId ]
3: let selectedAS := session[selected_AS]
4: let rsDomain← Doms → This domain may or may not belong to a “real” RS. If it belongs to the attacker, this request leaks the

access token (but no mTLS nonce, nor a DPoP proof for an honest server).

→ Note: All paths except the mTLS and DPoP preparation endpoints are resource paths at the RS.

5: let resourceID← S such that resourceID ∉ {/MTLS-prepare, /DPoP-nonce}
6: let url := ⟨URL, S, rsDomain, resourceID, ⟨⟩,⊥⟩
7: if 𝑠′ .resourceASMapping[rsDomain] [resourceID] . tokenEPDomain then
8: stop → The AS from which the client received the AT is not managing the resource

→ The access token is sender-constrained, so the client must add a corresponding key proof.

9: let clientType := 𝑠′ .asAccounts[selectedAS] [client_type]
10: let clientId := 𝑠′ .asAccounts[selectedAS] [client_id]
11: let body := [ ]
12: if clientType ∈ {mTLS_mTLS, pkjwt_mTLS} then → mTLS sender constraining

13: let mtlsNonce such that ⟨rsDomain, ⟨⟩, pubKey,mtlsNonce⟩ ∈ 𝑠′ .mtlsCache if possible; otherwise stop
14: let body [TLS_binding] := mtlsNonce → This nonce is not necessarily associated with the same of the client’s keys as the

access token. In such a case, the RS will reject this request and the client has to

try again.

15: let headers := [Authorization : [Bearer : token] ] → FAPI 2.0 mandates to send access token in header

16: let 𝑠′ .mtlsCache := 𝑠′ .mtlsCache −⟨⟩ ⟨rsDomain, ⟨⟩, pubKey,mtlsNonce⟩
17: else if clientType ∈ {mTLS_DPoP, pkjwt_DPoP} then → DPoP sender constraining

18: let privKey := 𝑠′ .asAccounts[selectedAS] [sign_key] → get private signing key registered with selectedAS
19: let dpopNonce such that dpopNonce ∈ 𝑠′ .dpopNonces[rsDomain] if possible; otherwise stop
20: let 𝑠′ .dpopNonces[rsDomain] := 𝑠′ .dpopNonces[rsDomain] −⟨⟩ dpopNonce
21: let htu := url
22: let htu.parameters := ⟨⟩ → [32, Sec. 4.2]: without query

23: let htu.fragment := ⊥ → [32, Sec. 4.2]: without fragment

24: let dpopJwt := [headers : [jwk : pub(privKey) ] ]
25: let dpopJwt [payload] := [htm : POST, htu : htu, ath : hash(token), nonce : dpopNonce]
26: let dpopProof := sig(dpopJwt, privKey)
27: let headers := [Authorization : [DPoP : token] ] → See [32, Sec. 7.1]

28: let headers[DPoP] := dpopProof → add DPoP header; the dpopJwt can be extracted with the extractmsg( ) function
29: let signRequest← {⊤,⊥} → Choose whether to sent a signed resource request

30: if signRequest ≡ ⊤ then
31: let clientSignKey := 𝑠′ .asAccounts[selectedAS] [sign_key]
32: let headers[Content-Digest] := hash(body) → See [39, Sec. 5.6.1.1 No. 8]

33: let coveredComponents := ⟨⟨⟨@method, ⟨⟩⟩, ⟨@target-uri, ⟨⟩⟩, ⟨authorization, ⟨⟩⟩, ⟨content-digest, ⟨⟩⟩⟩,
↩→ [tag : fapi-2-request, keyid : pub(clientSignKey) ] ⟩ → See [39, Sec. 5.6.1.1]

34: let signatureBase := [ ⟨@method, ⟨⟩⟩ : POST, ⟨@target-uri, ⟨⟩⟩ : url, ⟨authorization, ⟨⟩⟩ : headers[Authorization],
↩→ ⟨content-digest, ⟨⟩⟩ : headers[Content-Digest] ]

35: if DPoP ∈ headers then
36: let coveredComponents.1 := coveredComponents.1 +⟨⟩ ⟨dpop, ⟨⟩⟩ → See [39, Sec. 5.6.1.1 No. 7]

37: let signatureBase[ ⟨dpop, ⟨⟩⟩ ] := headers[DPoP]
38: let signatureBase := signatureBase +⟨⟩ coveredComponents.2 → Signature parameters, cf. [3, Sec. 2.5]

39: let headers[Signature] := [req : sig(signatureBase, clientSignKey) ]
40: let headers[Signature-Input] := [req : coveredComponents]
41: let 𝑠′ .sessions[sessionId ] [signed_resource_req] := signRequest
42: let message := ⟨HTTPReq, 𝜈3, POST, url.domain, url.path, ⟨⟩, headers, body⟩
43: call HTTPS_SIMPLE_SEND( [responseTo : RESOURCE_USAGE, session : sessionId ], message, 𝑎, 𝑠′ )
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Algorithm 7 Relation of a Client 𝑅𝑐 – Check ID Token and log user in at 𝑐 .

1: function CHECK_ID_TOKEN(sessionId, idToken, 𝑠′) → Check ID Token validity and create service session.
2: let session := 𝑠′ .sessions[sessionId ] → Retrieve session data.

3: let selectedAS := session[selected_AS]
4: let oauthConfig := 𝑠′ .oauthConfigCache[selectedAS] → Retrieve configuration for user-selected AS.

5: let clientInfo := 𝑠′ .asAccounts[selectedAS] → Retrieve client info used at that AS.

6: let data := extractmsg(idToken) → Extract contents of signed ID Token.

→ The following ID token checks are mandated by [90, Sec. 3.1.3.7]. Note that OIDC allows clients to skip ID token signature

verification if the ID token is received directly from the AS (which it is here). Hence, we do not check the token’s signature (see

also Line 85 of Algorithm 3).

7: if data[iss] . selectedAS then
8: stop → Check the issuer; note that previous checks ensure oauthConfig[issuer] ≡ selectedAS
9: if data[aud] . clientInfo[client_id] then
10: stop → Check the audience against own client id.

11: if nonce ∈ session ∧ data[nonce] . session[nonce] then
12: stop → If a nonce was used, check its value.

13: let 𝑠′ .sessions[sessionId ] [loggedInAs] := ⟨selectedAS, data[sub] ⟩ → User is now logged in. Store user identity and issuer

of ID token.

14: let 𝑠′ .sessions[sessionId ] [serviceSessionId] := 𝜈4 → Choose a new service session id.

15: if session[cibaFlow] ≡ ⊥ then → Send a response to the request to the redirection endpoint with the service session id.

16: let request := session[redirectEpRequest] → Retrieve stored meta data of the request from the browser to the redir.

endpoint in order to respond to it now. The request’s meta data was stored

in PROCESS_HTTPS_REQUEST (Algorithm 2).

17: let headers[Set-Cookie] := [serviceSessionId : ⟨𝜈4,⊤,⊤,⊤⟩] → Create a cookie containing the service session id,

effectively logging the user identified by data[sub]
in at this client.

18: let𝑚′ := encs (⟨HTTPResp, request [message] .nonce, 200, headers, ok⟩, request [key] )
19: stop ⟨⟨request [sender], request [receiver],𝑚′ ⟩⟩, 𝑠′
20: else →Wait for the browser to send a request with the login session id, see Line 51 of Algorithm 2

21: stop ⟨⟩, 𝑠′



58 Pedram Hosseyni, Ralf Küsters, and Tim Würtele

Algorithm 8 Relation of a Client 𝑅𝑐 – Prepare and send pushed authorization request or CIBA

authentication request.

1: function PREPARE_AND_SEND_INITIAL_REQUEST(sessionId, 𝑎, 𝑠′)
2: let redirectUris := {⟨URL, S, 𝑑, /redirect_ep, ⟨⟩,⊥⟩ | 𝑑 ∈ dom(𝑐 ) } → Set of redirect URIs for all domains of 𝑐 .

3: let redirectUri← redirectUris → Select a (potentially) different redirect URI for each authorization request

4: let session := 𝑠′ .sessions[sessionId ]
5: let selectedAS := session[selected_AS] → AS selected by the user at the beginning of the flow.

→ Check whether the client needs to fetch AS metadata first and do so if required.

6: if selectedAS ∉ 𝑠′ .oauthConfigCache then
7: let path← {/.well_known/openid-configuration, /.well_known/oauth-authorization-server}
8: let message := ⟨HTTPReq, 𝜈5, GET, selectedAS, path, ⟨⟩, ⟨⟩, ⟨⟩⟩
9: call HTTPS_SIMPLE_SEND( [responseTo : CONFIG, session : sessionId ], message, 𝑎, 𝑠′ )
10: let oauthConfig := 𝑠′ .oauthConfigCache[selectedAS]
11: if selectedAS ∉ 𝑠′ .asAccounts then → 𝑐 not yet registered with selectedAS – Dynamic Client Registration (see RFC 7591 [85])

12: let url := oauthConfig[reg_ep]
13: let signingKey := 𝜈cliSignK → Generate signing key (pair) to use with selectedAS
14: let tlsKey := 𝜈cliTlsK → Generate mTLS key (pair) to use with selectedAS (see also Appendix C.7)

15: let jwks := ⟨ [use : sig, val : pub(signingKey) ], [use : TLS, val : pub(tlsKey) ] ⟩
16: let regData := [redirect_uris : ⟨redirectUris⟩, jwks : jwks]
17: let cibaDeliveryMode← {poll, ping, push}
18: let regData[backchannel_token_delivery_mode] := cibaDeliveryMode
19: if cibaDeliveryMode ≡ ping ∨ cibaDeliveryMode ≡ push then
20: let regData[backchannel_client_notification_endpoint]← {⟨URL, S, 𝑑, /ciba_notif_ep, ⟨⟩,⊥⟩ | 𝑑 ∈ dom(𝑐 ) }
21: if cibaDeliveryMode ≡ ping ∨ cibaDeliveryMode ≡ poll then
22: let regData[grant_types] := ⟨authorization_code, urn:openid:params:grant-type:ciba⟩
23: else
24: let regData[grant_types] := ⟨authorization_code⟩
25: let message := ⟨HTTPReq, 𝜈5, POST, url.host, url.path, url.parameters, ⟨⟩, regData⟩
26: call HTTPS_SIMPLE_SEND( [responseTo : REGISTRATION, session : sessionId, sigKey : signingKey, tlsKey : tlsKey ],

↩→ message, 𝑎, 𝑠′ )
→ Construct pushed authorization request or CIBA authentication request

27: if session[cibaFlow] ≡ ⊤ then
28: let requestEndpoint := oauthConfig[backchannel_authentication_endpoint]
29: else
30: let requestEndpoint := oauthConfig[par_ep]
31: let clientId := 𝑠′ .asAccounts[selectedAS] [client_id]
32: let clientType := 𝑠′ .asAccounts[selectedAS] [client_type]
33: let clientSignKey := 𝑠′ .asAccounts[selectedAS] [sign_key]
34: if clientType ∈ {mTLS_mTLS, mTLS_DPoP} then → mTLS client authentication

35: let mtlsNonce such that ⟨requestEndpoint .host, clientId, ⟨⟩,mtlsNonce⟩ ∈ 𝑠′ .mtlsCache if possible; otherwise stop
36: let authData := [TLS_AuthN : mtlsNonce]
37: let 𝑠′ .mtlsCache := 𝑠′ .mtlsCache −⟨⟩ ⟨requestEndpoint .host, clientId, ⟨⟩,mtlsNonce⟩
38: else if clientType ∈ {pkjwt_mTLS, pkjwt_DPoP} then → private_key_jwt client authentication
39: let jwt := [iss : clientId, sub : clientId, aud : selectedAS]
40: let jws := sig(jwt, clientSignKey)
41: let authData := [client_assertion : jws]
42: if session[cibaFlow] ≡ ⊤ then
43: let requestData := [client_id : clientId, scope : openid, login_hint : session[selected_identity],

↩→ binding_message : session[binding_message] ]
44: if cibaDeliveryMode ≡ ping then
45: let requestData[client_notification_token] := 𝜈cibaNotifToken

46: else
47: let pkceVerifier := 𝜈pkce → Fresh random value

48: let pkceChallenge := hash(pkceVerifier )
49: let requestData := [response_type : code, code_challenge_method : S256, client_id : clientId,

↩→ redirect_uri : redirectUri, code_challenge : pkceChallenge]
50: let useOidc← {⊤,⊥} → Use of OIDC is optional

51: if useOidc ≡ ⊤ then
52: let requestData[scope] := openid

53: let 𝑠′ .sessions[sessionId ] [code_verifier] := pkceVerifier → Store PKCE randomness in state

→ Algorithm continues on next page.

https://datatracker.ietf.org/doc/html/rfc7591
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54: let 𝑠′ .sessions[sessionId ] := 𝑠′ .sessions[sessionId ] +⟨⟩ requestData
55: let requestData := requestData +⟨⟩ authData
56: if session[cibaFlow] ≡ ⊥ then
57: let requestSignedResponse← {⊤,⊥} → Choose whether to request a signed authorization response

58: if requestSignedResponse ≡ ⊤ then
59: let requestData[response_mode] := jwt → Request signed authorization response (cf. JARM [68, Sec. 2.3] and [39, Sec.

5.4.2 No. 1])

→ Note: Following the recommendation in [90, Sec. 3.1.2.1], we do not set a response_mode for “regular” requests.

60: let signPAR← {⊤,⊥} → Choose whether to use a signed authorization request

61: if signPAR ≡ ⊤ then
62: let requestData[aud] := selectedAS → See [39, Sec. 5.3.2 No. 2]

63: let body := sig(requestData, clientSignKey) → Sign authorization request (FAPI 2.0 Message Signing)

64: else
65: let body := requestData
66: else
67: let body := requestData
68: let req := ⟨HTTPReq, 𝜈authReqNonce, POST, requestEndpoint .host, requestEndpoint .path, requestEndpoint .parameters, ⟨⟩, body⟩
69: if session[cibaFlow] ≡ ⊤ then
70: call HTTPS_SIMPLE_SEND( [responseTo : CIBA_AUTH_REQ, session : sessionId ], req, 𝑎, 𝑠′ )
71: else
72: call HTTPS_SIMPLE_SEND( [responseTo : PAR, session : sessionId, response_mode : requestData[response_mode] ]

↩→ , req, 𝑎, 𝑠′ )

https://openid.net/specs/oauth-v2-jarm-final.html#section-2.3
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Algorithm 9 Relation of a Client 𝑅𝑐 – Handle trigger events.

1: function PROCESS_TRIGGER(𝑎, 𝑠′)
2: let action← {MTLS_PREPARE_AS, MTLS_PREPARE_RS, MTLS_PREPARE_MISCONFIGURED_TOKEN_EP,

↩→ GET_DPOP_NONCE, CHANGE_CLIENT_CONFIG, CIBA_POLL_TOKEN_EP, CIBA_START_FLOW}
3: switch action do
4: case MTLS_PREPARE_AS
5: let server ← Doms such that server ∈ 𝑠′ .asAccounts if possible; otherwise stop
6: let asAcc := 𝑠′ .asAccounts[server ]
7: let clientId := asAcc[client_id]
8: let body := [client_id : clientId ]
9: let message := ⟨HTTPReq, 𝜈mtls, GET, server, /MTLS-prepare, ⟨⟩, ⟨⟩, body⟩
10: call HTTPS_SIMPLE_SEND( [responseTo : MTLS, client_id : clientId ],message, 𝑎, 𝑠′ )
11: case MTLS_PREPARE_RS

→ Non-deterministically contact some RS to get an mTLS nonce for mTLS access token sender constraining (for an access

token issued by selectedAS, i.e., that token is bound to the mTLS key registered with selectedAS).
12: let resourceServer ← Doms → Note: This may or may not be a “real” RS.

13: let selectedAS← Doms such that selectedAS ∈ 𝑠′ .asAccounts if possible; otherwise stop
14: let mTlsPrivKey := 𝑠′ .asAccounts[selectedAS] [tls_key]
15: let pubKey := pub(mTlsPrivKey)
16: let body := [pub_key : pubKey ]
17: let message := ⟨HTTPReq, 𝜈mtls, GET, resourceServer, /MTLS-prepare, ⟨⟩, ⟨⟩, body⟩
18: call HTTPS_SIMPLE_SEND( [responseTo : MTLS, pub_key : pubKey ],message, 𝑎, 𝑠′ )
19: case MTLS_PREPARE_MISCONFIGURED_TOKEN_EP

→ This case allows the client to retrieve mTLS nonces from attacker-controlled servers and subsequently make requests to

such servers. Without this case, the model would not capture attacks in which the client talks to attacker-controlled

endpoints protected by mTLS.

20: let server ← Doms such that server ∈ 𝑠′ .asAccounts if possible; otherwise stop
21: let asAcc := 𝑠′ .asAccounts[server ]
22: let clientId := asAcc[client_id]
23: let host← Doms → Non-deterministically choose the domain instead of sending to the correct AS

24: let body := [client_id : clientId ]
25: let message := ⟨HTTPReq, 𝜈mtls, GET, host, /MTLS-prepare, ⟨⟩, ⟨⟩, body⟩
26: call HTTPS_SIMPLE_SEND( [responseTo : MTLS, client_id : clientId ],message, 𝑎, 𝑠′ )
27: case GET_DPOP_NONCE

→ Our client uses DPoP server-provided nonces at the RS. The RS model offers a special endpoint to retrieve nonces.

28: let resourceServer ← Doms → Note: This may or may not be a “real” RS.

29: let message := ⟨HTTPReq, 𝜈DPoPreq, GET, resourceServer, /DPoP-nonce, ⟨⟩, ⟨⟩, ⟨⟩⟩
30: call HTTPS_SIMPLE_SEND( [responseTo : DPOP_NONCE],message, 𝑎, 𝑠′ )
31: case CHANGE_CLIENT_CONFIG → Use dynamic client management at AS (see RFC 7592 [86])

→ Randomly select one of the ASs this client is registered with.

32: let selectedAS← Doms such that selectedAS ∈ 𝑠′ .asAccounts if possible; otherwise stop
33: let regClientUri := 𝑠′ .asAccounts[selectedAS] [reg_client_uri] → Client management URI

34: let regAt := 𝑠′ .asAccounts[selectedAS] [reg_at] → Client management access token

35: let authHeader := [Authorization : ⟨Bearer, regAt⟩ ]
36: let DCMaction← {UPDATE, DELETE} → Randomly select a client management action

37: switch DCMaction do
38: case DELETE → Delete client at AS, see Sec. 2.3 of RFC 7592 [86]

39: let message := ⟨HTTPReq, 𝜈DELreq, DELETE, regClientUri.host, regClientUri.path, ⟨⟩, authHeader, ⟨⟩⟩
40: call HTTPS_SIMPLE_SEND( [responseTo : CLIENT_MANAGEMENT],message, 𝑎, 𝑠′ )
41: case UPDATE → Update client configuration at AT, see Sec. 2.2 of RFC 7592 [86]

→ Generate fresh key pairs and update client keys at AS. Note that following our simplified model of mTLS, the

client metadata includes a public key instead of a distinguished name for mTLS (or similar, see Sec. 2.1.2 of

RFC 8705 [10]).

42: let redirectUris := {⟨URL, S, 𝑑, /redirect_ep, ⟨⟩,⊥⟩ | 𝑑 ∈ dom(𝑐 ) } → Set of redirect URIs for all domains of 𝑐

43: let newSigningKey := 𝜈cliSignK
44: let newTLSKey := 𝜈cliTlsK
45: let newJwks := ⟨ [use : sig, val : pub(newSigningKey) ], [use : TLS, val : pub(newTLSKey) ] ⟩
46: let body := [client_id : clientId, jwks : newJwks, redirect_uris : ⟨redirectUris⟩ ]

→ Algorithm continues on next page.

https://datatracker.ietf.org/doc/html/rfc7592
https://datatracker.ietf.org/doc/html/rfc7592#section-2.3
https://datatracker.ietf.org/doc/html/rfc7592#section-2.2
https://datatracker.ietf.org/doc/html/rfc8705#section-2.1.2
https://datatracker.ietf.org/doc/html/rfc8705#section-2.1.2
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→ Continuing the UPDATE case:

47: let cibaDeliveryMode← {poll, ping, push}
48: let body[backchannel_token_delivery_mode] := cibaDeliveryMode
49: if cibaDeliveryMode ≡ ping ∨ cibaDeliveryMode ≡ push then
50: let body[backchannel_client_notification_endpoint]←

↩→ {⟨URL, S, 𝑑, /ciba_notif_ep, ⟨⟩,⊥⟩ | 𝑑 ∈ dom(𝑐 ) }
51: if cibaDeliveryMode ≡ ping ∨ cibaDeliveryMode ≡ poll then
52: let body[grant_types] := ⟨authorization_code, urn:openid:params:grant-type:ciba⟩
53: else
54: let body[grant_types] := ⟨authorization_code⟩
55: let message := ⟨HTTPReq, 𝜈PUTreq, PUT, regClientUri.host, regClientUri.path, ⟨⟩, authHeader, body⟩
56: call HTTPS_SIMPLE_SEND( [responseTo : CLIENT_MANAGEMENT, selected_AS : selectedAS,

↩→ sigKey : newSigningKey, tlsKey : newTLSKey ],message, 𝑎, 𝑠′ )
57: case CIBA_POLL_TOKEN_EP → Poll Token Endpoint

58: let sessionId such that sessionId ∈ 𝑠′ .sessions
↩→ ∧𝑠′ .asAccounts[𝑠′ .sessions[sessionId ] [selected_AS] ] [backchannel_token_delivery_mode] ≡ poll
↩→ ∧𝑠′ .sessions[sessionId ] [start_polling] ≡ ⊤ if possible; otherwise stop

59: call SEND_CIBA_TOKEN_REQUEST(sessionId, 𝑎, 𝑠′ ) → Send a token request

60: case CIBA_START_FLOW → Start the flow by sending the CIBA authentication request

61: let sessionId, 𝑎 such that ⟨sessionId, 𝑎⟩ ∈ ⟨⟩ 𝑠′ .pendingCIBARequests if possible; otherwise stop
62: let 𝑠′ .pendingCIBARequests := 𝑠′ .pendingCIBARequests −⟨⟩ ⟨sessionId, 𝑎⟩
63: call PREPARE_AND_SEND_INITIAL_REQUEST(sessionId, 𝑎, 𝑠′ ) → Start a CIBA flow (see Algorithm 8)

64: stop

Algorithm 10 Relation of script_client_index
Input: ⟨tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secrets⟩ → Script that models the index

page of a client. Users can initiate the login flow or follow arbitrary links. The script receives various information about the current

browser state, filtered according to the access rules (same origin policy and others) in the browser.

1: let switch← {auth, link} → Non-deterministically decide whether to start a login flow or to follow some link.

2: if switch ≡ auth then → Start login flow.
3: let url := GETURL(tree, docnonce) → Retrieve URL of current document.

4: let id← ids → Retrieve one of user’s identities.

5: let as := id .domain → Extract domain of AS from chosen id.
6: let url′ := ⟨URL, S, url.host, /startLogin, ⟨⟩,⊥⟩ → Assemble request URL.

7: let command := ⟨FORM, url′, POST, as,⊥⟩ → Post a form including the selected AS to the client.

8: stop ⟨𝑠, cookies, localStorage, sessionStorage, command⟩ → Finish script’s run and instruct the browser to execute the command

(i.e., to POST the form).

9: else → Follow (random) link to facilitate referrer-based attacks.

10: let protocol← {P, S} → Non-deterministically select protocol (HTTP or HTTPS).

11: let host← Doms → Non-det. select host.

12: let path← S → Non-det. select path.

13: let fragment← S → Non-det. select fragment part.

14: let parameters← [S × S] → Non-det. select parameters.

15: let url := ⟨URL, protocol, host, path, parameters, fragment⟩ → Assemble request URL.

16: let command := ⟨HREF, url,⊥,⊥⟩ → Follow link to the selected URL.

17: stop ⟨𝑠, cookies, localStorage, sessionStorage, command⟩ → Finish script’s run and instruct the browser to execute the command

(follow link).



62 Pedram Hosseyni, Ralf Küsters, and Tim Würtele

C.11 Authorization Servers
An authorization server as ∈ AS is a Web server modeled as an atomic process (𝐼 as, 𝑍 as, 𝑅as, 𝑠as

0
)

with the addresses 𝐼 as := addr(as). Next, we define the set 𝑍 as
of states of as and the initial state

𝑠as
0
of as.

Definition 14. A state 𝑠 ∈ 𝑍 as
of an authorization server as is a term of the form ⟨DNSaddress,

pendingDNS, pendingRequests, corrupt, keyMapping, tlskeys, jwk, pendingClientIds, clients, records,
authorizationRequests, cibaAuthnRequests, mtlsRequests, cibaEndUserEndpoints, rsCredentials⟩
with DNSaddress ∈ IPs, pendingDNS ∈

[
N × TN

]
, pendingRequests ∈ TN , corrupt ∈ TN ,

keyMapping ∈
[
Doms × TN

]
, tlskeys ∈ [Doms × 𝐾TLS] (all former components as in Definition 83),

jwk ∈ 𝐾sign, pendingClientIds ∈ TN , clients ∈
[
TN ×

[
S × TN

] ]
, records ∈ TN ,

authorizationRequests ∈
[
TN × TN

]
, cibaAuthnRequests ∈

[
TN × TN

]
,

mtlsRequests ∈
[
TN × TN

]
, cibaEndUserEndpoints ∈ TN , and rsCredentials ∈ TN .

An initial state 𝑠as
0
of as is a state of as with

• 𝑠as
0
.DNSaddress ∈ IPs,

• 𝑠as
0
.pendingDNS ≡ ⟨⟩,

• 𝑠as
0
.pendingRequests ≡ ⟨⟩,

• 𝑠as
0
.corrupt ≡ ⊥,

• 𝑠as
0
.keyMapping being the same as the keymapping for browsers,

• 𝑠as
0
.tlskeys ≡ tlskeysas (see Appendix C.3),

• 𝑠as
0
.jwk ≡ signkey(𝑎𝑠) (see Appendix C.3),

• 𝑠as
0
.pendingClientIds ≡ ⟨⟩,

• 𝑠as
0
.clients ≡ ⟨⟩,

• 𝑠as
0
.records ≡ ⟨⟩,

• 𝑠as
0
.authorizationRequests ≡ ⟨⟩,

• 𝑠as
0
.cibaAuthnRequests ≡ ⟨⟩,

• 𝑠as
0
.mtlsRequests ≡ ⟨⟩,

• 𝑠as
0
.cibaEndUserEndpoints ≡ userEp where userEp is a dictionary and

⟨identity, ep⟩ ∈⟨⟩ userEp⇔ (identity.domain ∈ dom(as) ∧ dom−1 (ep.host) =
ownerOfID(identity)), i.e., userEp maps identities to a domain of the browser of the identity
(note that the browser model can receive requests as a modeling artefact)., and
• 𝑠as

0
.rsCredentials ≡ rsCreds where rsCreds is a dictionary and

⟨rsDom, 𝑐⟩ ∈⟨⟩ rsCreds⇔ (∃𝑑 ∈ dom(as), rsDom ∈ Doms : 𝑐 ≡ secretOfRS(𝑑, rsDom)), i.e.,
rsCreds maps RS domains to the corresponding RS credentials..

We now specify the relation 𝑅as: This relation is based on the model of generic HTTPS servers

(see Appendix G.12). We specify algorithms that differ from or do not exist in the generic server

model in Algorithms 11 to 12. Algorithm 16 shows the script script_as_form that is used by ASs.
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Algorithm 11 Relation of AS 𝑅as – Processing HTTPS Requests

1: function PROCESS_HTTPS_REQUEST(𝑚, 𝑘 , 𝑎, 𝑓 , 𝑠′)
2: if𝑚.path ≡ /.well-known/openid-configuration ∨

↩→ 𝑚.path ≡ /.well-known/oauth-authorization-server then →We model both OIDD, RFC 8414, and FAPI CIBA.

3: let metaData := [issuer : 𝑚.host]
4: let metaData[auth_ep] := ⟨URL, S,𝑚.host, /auth, ⟨⟩,⊥⟩
5: let metaData[token_ep] := ⟨URL, S,𝑚.host, /token, ⟨⟩,⊥⟩
6: let metaData[par_ep] := ⟨URL, S,𝑚.host, /par, ⟨⟩,⊥⟩
7: let metaData[introspec_ep] := ⟨URL, S,𝑚.host, /introspect, ⟨⟩,⊥⟩
8: let metaData[jwks_uri] := ⟨URL, S,𝑚.host, /jwks, ⟨⟩,⊥⟩
9: let metaData[reg_ep] := ⟨URL, S,𝑚.host, /reg, ⟨⟩,⊥⟩

→ No support for push mode, see Section 5.2.2 of FAPI-CIBA [98]

10: let metaData[backchannel_token_delivery_modes_supported] := ⟨poll, ping⟩
11: let metaData[backchannel_authentication_endpoint] := ⟨URL, S,𝑚.host, /backchannel-authn, ⟨⟩,⊥⟩
12: let metaData[grant_types_supported] := ⟨authorization_code, urn:openid:params:grant-type:ciba⟩
13: let𝑚′ := encs (⟨HTTPResp,𝑚.nonce, 200, ⟨⟩,metaData⟩, 𝑘 )
14: stop ⟨⟨𝑓 , 𝑎,𝑚′ ⟩⟩, 𝑠′
15: else if𝑚.path ≡ /jwks then
16: let𝑚′ := encs (⟨HTTPResp,𝑚.nonce, 200, ⟨⟩, pub(𝑠′ .jwk) ⟩, 𝑘 )
17: stop ⟨⟨𝑓 , 𝑎,𝑚′ ⟩⟩, 𝑠′
18: else if𝑚.path ≡ /reg ∧𝑚.method ≡ POST then
19: call REGISTER_CLIENT(𝑚, 𝑘 , 𝑎, 𝑓 , 𝑠′ ) → See Algorithm 13

20: else if𝑚.path ≡ /manage ∧𝑚.method ≡ PUT then → DCM: update client metadata (see Sec. 2.2 of RFC 7592 [86])

21: let clientId :=𝑚.body[clientId]
22: if clientId ∉ 𝑠′ .clients then
23: stop → Unknown client

24: let clientInfo := 𝑠′ .clients[clientId ]
25: let regAT :=𝑚.headers[Authorization] [Bearer]
26: if regAT . clientInfo[reg_at] then
27: stop →Wrong registration access token

28: let redirectUris :=𝑚.body[redirect_uris]
29: let jwks :=𝑚.body[jwks] → Contains public keys of client

30: let pubSigKey such that [use : sig, val : pubSigKey ] ∈ ⟨⟩ jwks if possible; otherwise stop
31: let mtlsPubKey such that [use : TLS, val : mtlsPubKey ] ∈ ⟨⟩ jwks if possible; otherwise stop
32: let regUri := ⟨URL, S,𝑚.host, /manage, ⟨⟩,⊥⟩
33: let clientType← {mTLS_mTLS, mTLS_DPoP, pkjwt_mTLS, pkjwt_DPoP} → Non-deterministic choice of client type

34: let clientInfo[client_type] := clientType
35: let clientInfo[jwt_key] := pubSigKey
36: let clientInfo[mtls_key] := mtlsPubKey
37: let clientInfo[redirect_uris] := redirectUris
38: let regResponse := [client_id : clientId, jwks : jwks, client_type : clientType, reg_at : regAT , reg_client_uri : regUri]
39: let tokenDeliveryMode← {poll, ping} → Non-deterministic choice of CIBA token delivery mode

40: let grantTypes := ⟨authorization_code, urn:openid:params:grant-type:ciba⟩ → AS registers both types (in our model)

41: let clientInfo[grant_types] := grantTypes
42: let regResponse[grant_types] := grantTypes
43: let clientInfo[backchannel_token_delivery_mode] := tokenDeliveryMode
44: let regResponse[backchannel_token_delivery_mode] := tokenDeliveryMode
45: if tokenDeliveryMode ≡ ping then
46: if backchannel_client_notification_endpoint ∉𝑚.body then
47: stop
48: let clientNotificationEP :=𝑚.body[backchannel_client_notification_endpoint]
49: let regResponse[backchannel_client_notification_endpoint] := clientNotificationEP
50: let clientInfo[backchannel_client_notification_endpoint] := clientNotificationEP
51: let 𝑠′ .clients[clientId ] := clientInfo
52: let𝑚′ := encs (⟨HTTPResp,𝑚.nonce, 200, ⟨⟩, regResponse⟩, 𝑘 )
53: stop ⟨⟨𝑓 , 𝑎,𝑚′ ⟩⟩, 𝑠′
54: else if𝑚.path ≡ /manage ∧𝑚.method ≡ DELETE then → DCM: delete client (see Sec. 2.3 of RFC 7592 [86])

55: let regAT :=𝑚.headers[Authorization] [Bearer]
56: let clientId such that 𝑠′ .clients[clientId ] [reg_at] ≡ regAT if possible; otherwise stop
57: let 𝑠′ .clients[clientId ] [active] := ⊥ → Deactivate client account

58: stop ⟨⟩, 𝑠′
→ Algorithm continues on next page.

https://datatracker.ietf.org/doc/html/rfc7592#section-2.2
https://datatracker.ietf.org/doc/html/rfc7592#section-2.3
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59: else if𝑚.path ≡ /auth then → Authorization endpoint: Reply with login page.

60: if𝑚.method ≡ GET then
61: let data :=𝑚.parameters
62: else if𝑚.method ≡ POST then
63: let data :=𝑚.body

64: let requestUri := data[request_uri]
65: if requestUri ≡ ⟨⟩ then
66: stop → FAPI 2.0 mandates PAR, therefore a request URI is required

67: let authzRecord := 𝑠′ .authorizationRequests[requestUri]
68: let clientId := data[client_id]
69: if authzRecord [client_id] . clientId then → Check binding of request URI to client

70: stop
71: if clientId ∉ 𝑠′ .clients ∨ 𝑠′ .clients[clientId ] [active] . ⊤ then
72: stop → Unknown client

73: let 𝑠′ .authorizationRequests[requestUri] [auth2_reference] := 𝜈5
74: let𝑚′ := encs (⟨HTTPResp,𝑚.nonce, 200, ⟨⟨ReferrerPolicy, origin⟩⟩, ⟨script_as_form, [auth2_reference : 𝜈5 ] ⟩⟩, 𝑘 )
75: stop ⟨⟨𝑓 , 𝑎,𝑚′ ⟩⟩, 𝑠′
76: else if𝑚.path ≡ /auth2 ∧𝑚.method ≡ POST ∧𝑚.headers[Origin] ≡ ⟨𝑚.host, S⟩ then → Second step of authorization

77: let identity :=𝑚.body[identity]
78: let password :=𝑚.body[password]
79: if identity.domain ∉ dom(as) then
80: stop → This AS does not manage identity
81: if password . secretOfID(identity) then
82: stop → Invalid user credentials

83: let auth2Reference :=𝑚.body[auth2_reference]
84: let requestUri such that 𝑠′ .authorizationRequests[requestUri] [auth2_reference] ≡ auth2Reference

↩→ if possible; otherwise stop
85: let authzRecord := 𝑠′ .authorizationRequests[requestUri]
86: let authzRecord [subject] := identity
87: let authzRecord [issuer] :=𝑚.host
88: let authzRecord [code] := 𝜈1 → Generate a fresh, random authorization code

89: let 𝑠′ .records := 𝑠′ .records +⟨⟩ authzRecord
90: let redirectUri := authzRecord [redirect_uri]
91: let responseData := [code : authzRecord [code] ]
92: if authzRecord [state] . ⟨⟩ then
93: let responseData[state] := authzRecord [state]
94: if authzRecord [sign_authz_response] ≡ ⊤ then
95: let responseData[iss] := authzRecord [issuer] → iss claim is part of JWT instead of a parameter, see [39, Sec. 5.4.1]

96: let responseData[aud] := clientId → See JARM [68, Sec. 2.1]

97: let responseData := [response : sig(responseData, 𝑠′ . 𝑗𝑤𝑘 ) ] → Sign authorization response using JARM [68, Sec. 2.3.1]

98: else
99: let redirectUri.parameters[iss] := authzRecord [issuer] → Overwrite iss parameter if present in redirectUri
100: let redirectUri.parameters := redirectUri.parameters ∪ responseData
101: let𝑚′ := encs (⟨HTTPResp,𝑚.nonce, 303, ⟨⟨Location, redirectUri⟩⟩, ⟨⟩⟩, 𝑘 )
102: stop ⟨⟨𝑓 , 𝑎,𝑚′ ⟩⟩, 𝑠′
103: else if𝑚.path ≡ /par ∧𝑚.method ≡ POST then → Pushed Authorization Request

104: let requireSignedPAR← {⊤,⊥} → Choose whether to require a signed PAR

→ Note: If the client signed the PAR, but the AS chooses not to require a signature, client authentication below will fail.

105: if requireSignedPAR ≡ ⊤ then
106: let mBody := extractmsg(𝑚.body) → Note: If𝑚.body ≁ sig(∗, ∗) (ormac(∗, ∗)), then there is no processing step

107: if checksig(𝑚.body, 𝑠′ .clients[mBody [client_id] ] [jwt_key] ) . ⊤ then
108: stop → Invalid signature

109: if mBody [aud] .𝑚.host then
110: stop →Wrong audience value in JWS, see [39, Sec. 5.3.1 No. 2]

111: else
112: let mBody :=𝑚.body

113: let𝑚.body := mBody → In case of a signed PAR: Strip off the signature after verifying it

114: if𝑚.body[response_type] . code ∨𝑚.body[code_challenge_method] . S256 then
115: stop
116: let authnResult := AUTHENTICATE_CLIENT(𝑚,𝑠′ ) → Stops in case of errors/failed authentication

117: let clientId := authnResult .1
118: let s′ := authnResult .2
119: let mtlsInfo := authnResult .3
120: if clientId . mBody [client_id] then
121: stop → Key used in client authentication is not registered for𝑚.body[client_id]

→ Algorithm continues on next page.

https://openid.net/specs/oauth-v2-jarm-final.html#section-2.1
https://openid.net/specs/oauth-v2-jarm-final.html#section-2.3.1
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122: let redirectUri := mBody [redirect_uri] → Clients are required to send redirect_uri with each request

123: if redirectUri ≡ ⟨⟩ then
124: stop
125: if redirectUri.protocol . S then
126: stop
127: let codeChallenge := mBody [code_challenge] → PKCE challenge

128: if codeChallenge ≡ ⟨⟩ then
129: stop →Missing PKCE challenge

130: let requestUri := 𝜈4 → Choose random URI

131: let authzRecord := [client_id : clientId ]
132: let authzRecord [state] := mBody [state]
133: let authzRecord [scope] := mBody [scope]
134: if nonce ∈ mBody then
135: let authzRecord [nonce] := mBody [nonce]
136: let authzRecord [redirect_uri] := redirectUri
137: let authzRecord [code_challenge] := codeChallenge
138: let authzRecord [signed_par] := requireSignedPAR
139: if response_mode ∈ mBody∧mBody [response_mode] ≡ jwt then → Check whether client requested a signed response

140: let authzRecord [sign_authz_response] := ⊤
141: let body := [request_uri : requestUri]
142: let 𝑠′ .authorizationRequests[requestUri] := authzRecord → Store data linked to requestUri
143: let𝑚′ := encs (⟨HTTPResp,𝑚.nonce, 201, ⟨⟩, body⟩, 𝑘 )
144: stop ⟨⟨𝑓 , 𝑎,𝑚′ ⟩⟩, 𝑠′
145: else if𝑚.path ≡ /token ∧𝑚.method ≡ POST then
146: if𝑚.body[grant_type] . authorization_code ∧𝑚.body[grant_type] . urn:openid:params:grant-type:ciba then
147: stop
148: let authnResult := AUTHENTICATE_CLIENT(𝑚,𝑠′ ) → Stops in case of errors/failed authentication

149: let clientId := authnResult .1
150: let s′ := authnResult .2
151: let mtlsInfo := authnResult .3
152: if𝑚.body[grant_type] ≡ authorization_code then
153: let code :=𝑚.body[code]
154: let codeVerifier :=𝑚.body[code_verifier]
155: if code ≡ ⟨⟩ ∨ codeVerifier ≡ ⟨⟩ then
156: stop →Missing code or code_verifier

157: let record, ptr such that record ≡ 𝑠′ .records.ptr ∧ record [code] ≡ code
↩→ ∧code . ⊥ ∧ ptr ∈ N if possible; otherwise stop

158: if record [code_challenge] . hash(codeVerifier ) ∨ record [redirect_uri] .𝑚.body[redirect_uri] then
159: stop → PKCE verification failed or URI mismatch

160: else if𝑚.body[grant_type] ≡ urn:openid:params:grant-type:ciba then
161: let authReqId :=𝑚.body[auth_req_id]
162: if authReqId ≡ ⟨⟩ then
163: stop →Missing auth_req_id

164: let record, ptr such that record ≡ 𝑠′ .records.ptr ∧ record [auth_req_id] ≡ auth_req_id
↩→ ∧auth_req_id . ⊥ ∧ ptr ∈ N if possible; otherwise stop

165: if record [client_id] . clientId then
166: stop
167: let clientType := 𝑠′ .clients[clientId ] [client_type]
168: if clientType ≡ pkjwt_DPoP ∨ clientType ≡ mTLS_DPoP then → DPoP token binding

169: let tokenType := DPoP
170: let dpopProof :=𝑚.headers[DPoP]
171: let dpopJwt := extractmsg(dpopProof )
172: let verificationKey := dpopJwt [headers] [jwk]
173: if checksig(dpopProof , verificationKey) . ⊤ ∨ verificationKey ≡ ⟨⟩ then
174: stop → Invalid DPoP signature (or empty jwk header)

175: let dpopClaims := dpopJwt [payload]
176: let reqUri := ⟨URL, S,𝑚.host,𝑚.path, ⟨⟩,⊥⟩
177: if dpopClaims[htm] .𝑚.method ∨ dpopClaims[htu] . reqUri then
178: stop → DPoP claims do not match corresponding message

179: let cnfContent := [jkt : hash(verificationKey) ]
180: else if clientType ≡ pkjwt_mTLS ∨ clientType ≡ mTLS_mTLS then → mTLS token binding

181: let tokenType := Bearer
182: let mtlsNonce :=𝑚.body[TLS_binding]

→ Algorithm continues on next page.
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183: if clientType ≡ mTLS_mTLS then → Client used mTLS authentication, reuse data from authentication

184: if mtlsNonce . mtlsInfo.1 then
185: stop → Client tried to use different mTLS nonce for authentication and token binding

186: else → Client did not use mTLS authentication

187: letmtlsInfo such thatmtlsInfo ∈ 𝑠′ .mtlsRequests[clientId ] ∧mtlsInfo.1 ≡ mtlsNonce if possible; otherwise stop

188: let 𝑠′ .mtlsRequests[clientId ] := 𝑠′ .mtlsRequests[clientId ] −⟨⟩ mtlsInfo
189: let mTlsKey := mtlsInfo.2 → mTLS public key of client

190: let cnfContent := [x5t#S256 : hash(mTlsKey) ]
191: else
192: stop → Client used neither DPoP nor mTLS

193: if𝑚.body[grant_type] ≡ authorization_code then
194: let 𝑠′ .records.ptr [code] := ⊥ → Invalidate code

195: else
196: let 𝑠′ .records.ptr [auth_req_id] := ⊥ → Invalidate request id

197: let atType← {JWT, opaque} → The AS chooses randomly whether it issues a structured or an opaque access token

198: if atType ≡ JWT then → Structured access token

199: let accessTokenContent := [cnf : cnfContent, sub : record [subject],
↩→ client_sig_key : 𝑠′ .clients[clientId ] [jwt_key] ]

200: let accessToken := sig(accessTokenContent, 𝑠′ .jwk)
201: else → Opaque access token

202: let accessToken := 𝜈2 → Fresh random value

203: let 𝑠′ .records.ptr [access_token] := accessToken → Store for token introspection

204: let 𝑠′ .records.ptr [cnf] := cnfContent → Store for token introspection

205: let body := [access_token : accessToken, token_type : tokenType]
206: if record [scope] ≡ openid then → Client requested ID token

207: let idTokenBody := [iss : record [issuer] ]
208: let idTokenBody [sub] := record [subject]
209: let idTokenBody [aud] := record [client_id]
210: if nonce ∈ record then
211: let idTokenBody [nonce] := record [nonce]
212: let idToken := sig(idTokenBody, 𝑠′ .jwk)
213: let body [id_token] := idToken
214: let𝑚′ := encs (⟨HTTPResp,𝑚.nonce, 200, ⟨⟩, body⟩, 𝑘 )
215: stop ⟨⟨𝑓 , 𝑎,𝑚′ ⟩⟩, 𝑠′
216: else if𝑚.path ≡ /introspect ∧𝑚.method ≡ POST ∧ token ∈ 𝑚.body then
217: let rsSecret such that ⟨Basic, rsSecret⟩ ≡𝑚.headers[Authorization] if possible; otherwise stop
218: let rsDom such that 𝑠′ .rsCredentials[rsDom] ≡ rsSecret if possible; otherwise stop → RS authentication at AS

219: let token :=𝑚.body[token]
220: let record such that record ∈ 𝑠′ .records ∧ record [access_token] ≡ token if possible; otherwise let record := ^
221: if record ≡ ^ ∨ 𝑠′ .clients[record [client_id] ] [active] . ⊤ then → Unknown token or deactivated client

222: let body := [active : ⊥]
223: else → token was issued by this AS & client is active

224: let clientId := record [client_id]
→ cnf claim contains hash of token binding key, the signing key is the key used by the client to sign HTTP messages

225: let body := [active : ⊤, cnf : record [cnf], sub : record [subject], client_sig_key : 𝑠′ .clients[clientId ] [jwt_key] ]

226: if𝑚.headers[Accept] ≡ app/token-introspection+jwt then → Check whether RS requested a signed response

227: let body := sig( [token_introspection : body, iss : 𝑚.host, aud : rsDom], 𝑠′ .jwk)
228: let𝑚′ := encs (⟨HTTPResp,𝑚.nonce, 200, ⟨⟩, body⟩, 𝑘 )
229: stop ⟨⟨𝑓 , 𝑎,𝑚′ ⟩⟩, 𝑠′
230: else if𝑚.path ≡ /MTLS-prepare then → See Appendix C.7

231: let clientId :=𝑚.body[client_id]
232: if 𝑠′ .clients[clientId ] [active] . ⊤ then
233: stop
234: let mtlsNonce := 𝜈3
235: let clientKey := 𝑠′ .clients[clientId ] [mtls_key]
236: if clientKey ≡ ⟨⟩ ∨ clientKey ≡ pub(⋄) then
237: stop → Client has no mTLS key

238: let 𝑠′ .mtlsRequests[clientId ] := 𝑠′ .mtlsRequests[clientId ] +⟨⟩ ⟨mtlsNonce, clientKey⟩
239: let𝑚′ := encs (⟨HTTPResp,𝑚.nonce, 200, ⟨⟩, enca (⟨mtlsNonce, 𝑠′ .keyMapping[𝑚.host] ⟩, clientKey) ⟩, 𝑘 )
240: stop ⟨⟨𝑓 , 𝑎,𝑚′ ⟩⟩, 𝑠′
241: else if𝑚.path ≡ /backchannel-authn ∧𝑚.method ≡ POST then → CIBA Authentication Request

242: let authnResult := AUTHENTICATE_CLIENT(𝑚,𝑠′ ) → Stops in case of errors/failed authentication

243: let clientId := authnResult .1
244: let s′ := authnResult .2
245: let mtlsInfo := authnResult .3

→ Algorithm continues on next page.
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246: if clientId .𝑚.body[client_id] then
247: stop → Key used in client authentication is not registered for𝑚.body[client_id]
248: if openid ̸∈ ⟨⟩ 𝑚.body[scope] then
249: stop
250: if urn:openid:params:grant-type:ciba ̸∈ ⟨⟩ 𝑠′ .clients[clientId ] [grant_types] then
251: stop → Client not registered as a CIBA client

252: let authzRecord := [client_id : clientId ]
253: let authzRecord [scope] :=𝑚.body[scope]
254: let authzRecord [binding_message] :=𝑚.body[binding_message]
255: let authzRecord [selected_identity] :=𝑚.body[login_hint]
256: let deliveryMode := 𝑠′ .clients[clientId ] [backchannel_token_delivery_mode]
257: if deliveryMode ≡ ping then
258: let authzRecord [client_notification_token] :=𝑚.body[client_notification_token]
259: if𝑚.body[selected_identity] .domain ∉ dom(as) then
260: stop → This AS does not manage the requested identity

261: let authzRecord [authenticateUser] := ⊤ → Flag indicating whether the AS needs to obtain end-user con-

sent/authorization

262: let authnReqId := 𝜈authn_req_id
263: let 𝑠′ .cibaAuthnRequests[authnReqId ] := authzRecord → Store data linked to authnReqId
264: let body := [auth_req_id : authnReqId ]
265: let𝑚′ := encs (⟨HTTPResp,𝑚.nonce, 200, ⟨⟩, body⟩, 𝑘 )
266: stop ⟨⟨𝑓 , 𝑎,𝑚′ ⟩⟩, 𝑠′
267: else if𝑚.path ≡ /ciba-auth then → Authorization endpoint for CIBA Flows: Reply with login page, include binding message.

268: if𝑚.method . POST then
269: stop
270: if ciba_user_nonce ∉𝑚.body then
271: stop
272: let cibaUserNonce :=𝑚.body[ciba_user_nonce]
273: let authnReqId such that authnReqId ∈ 𝑠′ .cibaAuthnRequests

↩→ ∧ 𝑠′ .cibaAuthnRequests[authnReqId ] [cibaUserAuthNNonce] ≡ cibaUserNonce if possible; otherwise stop
274: let bindingMessage := 𝑠′ .cibaAuthnRequests[authnReqId ] [binding_message]
275: let clientId := 𝑠′ .cibaAuthnRequests[authnReqId ] [client_id]
276: let clientDom← 𝑠′ .clients[clientId ] [redirect_uris]
277: let 𝑠′ .cibaAuthnRequests[authnReqId ] [ciba_auth2_reference] := 𝜈ciba_auth2_ref
278: let body := ⟨script_as_ciba_form, [ciba_auth2_reference : 𝜈ciba_auth2_ref, binding_message : bindingMessage

↩→ client_domain : clientDom.host] ⟩
279: let𝑚′ := encs (⟨HTTPResp,𝑚.nonce, 200, ⟨⟨ReferrerPolicy, origin⟩⟩, body⟩, 𝑘 )
280: stop ⟨⟨𝑓 , 𝑎,𝑚′ ⟩⟩, 𝑠′
281: else if𝑚.path ≡ /ciba-auth2 ∧𝑚.method ≡ POST ∧𝑚.headers[Origin] ≡ ⟨𝑚.host, S⟩ then → Finish authorization

(CIBA)

282: let identity :=𝑚.body[identity]
283: let password :=𝑚.body[password]
284: if identity.domain ∉ dom(as) then
285: stop → This AS does not manage identity
286: if password . secretOfID(identity) then
287: stop → Invalid user credentials

288: let auth2Reference :=𝑚.body[ciba_auth2_reference]
289: let authnReqId such that 𝑠′ .cibaAuthnRequests[authnReqId ] [ciba_auth2_reference] ≡ auth2Reference

↩→ if possible; otherwise stop
290: if identity . 𝑠′ .cibaAuthnRequests[authnReqId ] [selected_identity] then
291: stop → Identity does not match the identity initially chosen for this flow

292: let 𝑠′ .cibaAuthnRequests[authnReqId ] [authenticateUser] := ⊥ → The user is now authenticated.

293: let authzRecord := 𝑠′ .cibaAuthnRequests[authnReqId ]
294: let authzRecord [subject] := identity
295: let authzRecord [issuer] :=𝑚.host
296: let authzRecord [auth_req_id] := authnReqId
297: let 𝑠′ .records := 𝑠′ .records +⟨⟩ authzRecord → Add the whole record to the records entry (the AS will issue an AT

when receiving a token request with the corresponding auth_req_id
value)

298: let clientId := authzRecord [client_id]
299: if 𝑠′ .clients[clientId ] [backchannel_token_delivery_mode] ≡ ping then
300: let clientURL := 𝑠′ .clients[clientId ] [backchannel_client_notification_endpoint]
301: let body := [auth_req_id : authnReqId ]
302: let headers := [Authorization : ⟨Bearer, authzRecord [client_notification_token] ⟩ ]
303: let message := ⟨HTTPReq, 𝜈ciba_ping, POST, clientURL.host, clientURL.path, ⟨⟩, headers, body⟩
304: call HTTPS_SIMPLE_SEND( [responseTo : CIBAPingCallback],message, 𝑎, 𝑠′ )
305: else
306: stop ⟨⟩, 𝑠′
307: stop → Request was malformed or sent to non-existing endpoint.
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Algorithm 12 Relation of AS 𝑅as – Client Authentication

1: function AUTHENTICATE_CLIENT(𝑚, 𝑠′) → Check client authentication in message𝑚. Stops the current processing step in case

of errors or failed authentication.

2: if client_assertion ∈ 𝑚.body then → private_key_jwt client authentication

3: let jwts :=𝑚.body[client_assertion]
4: let clientId, verificationKey such that verificationKey ≡ 𝑠′ .clients[clientId ] [jwt_key] ∧

↩→ checksig(jwts, verificationKey) ≡ ⊤ if possible; otherwise stop
5: if verificationKey ≡ ⟨⟩ ∨ verificationKey ≡ pub(⋄) then
6: stop → Client has no jwt key

7: let clientInfo := 𝑠′ .clients[clientId ]
8: let clientType := clientInfo[client_type]
9: if clientType . pkjwt_mTLS ∧ clientType . pkjwt_DPoP then
10: stop → Client authentication type mismatch

11: let jwt := extractmsg(jwts)
12: if jwt [iss] . clientId ∨ jwt [sub] . clientId then
13: stop
14: if jwt [aud] . ⟨URL, S,𝑚.host, /token, ⟨⟩,⊥⟩ ∧ jwt [aud] .𝑚.host → issuer in AS metadata is just the host part

↩→ ∧ jwt [aud] . ⟨URL, S,𝑚.host, /par, ⟨⟩,⊥⟩ then
15: stop → aud claim value is neither token, nor PAR endpoint nor AS issuer identifier

16: else if TLS_AuthN ∈ 𝑚.body then → mTLS client authentication

17: let clientId :=𝑚.body[client_id] → RFC 8705 [10] mandates client_id when using mTLS authentication

18: let mtlsNonce :=𝑚.body[TLS_AuthN]
19: let mtlsInfo such that mtlsInfo ∈ 𝑠′ .mtlsRequests[clientId ] ∧mtlsInfo.1 ≡ mtlsNonce if possible; otherwise stop
20: let clientInfo := 𝑠′ .clients[clientId ]
21: let clientType := clientInfo[client_type]
22: if clientType . mTLS_mTLS ∧ clientType . mTLS_DPoP then
23: stop → Client authentication type mismatch

24: let 𝑠′ .mtlsRequests[clientId ] := 𝑠′ .mtlsRequests[clientId ] −⟨⟩ mtlsInfo
25: else
26: stop → Unsupported client (authentication) type

27: if 𝑠′ .clients[clientId ] [active] . ⊤ then
28: stop
29: if clientType ≡ mTLS_mTLS ∨ clientType ≡ mTLS_DPoP then
30: return ⟨clientId, 𝑠′,mtlsInfo⟩
31: else
32: return ⟨clientId, 𝑠′,⊥⟩ → private_key_jwt client authentication, i.e., no mTLS info

https://datatracker.ietf.org/doc/html/rfc8705
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Algorithm 13 Relation of AS 𝑅as – Process a DCR request.

1: function REGISTER_CLIENT(𝑚, 𝑘 , 𝑎, 𝑓 , 𝑠′) →𝑚 is the decrypted HTTP request containing a client registration request

2: let clientId← 𝑠′ .pendingClientIds → Client ids are provided by the attacker (see also Algorithm 14).

3: let 𝑠′ .pendingClientIds := 𝑠′ .pendingClientIds −⟨⟩ clientId
→ Construct client information response (see Sec. 2 of RFC 7592 [86] and Sec. 3.2.1 of RFC 7591 [85])

4: let redirectUris :=𝑚.body[redirect_uris]
5: let jwks :=𝑚.body[jwks] → Contains public keys of client

6: let pubSigKey such that [use : sig, val : pubSigKey ] ∈ ⟨⟩ jwks if possible; otherwise stop
7: let mtlsPubKey such that [use : TLS, val : mtlsPubKey ] ∈ ⟨⟩ jwks if possible; otherwise stop
8: let clientType← {mTLS_mTLS, mTLS_DPoP, pkjwt_mTLS, pkjwt_DPoP} → Non-deterministic choice of client type

9: let regAT := 𝜈regAT → Registration access token (cf. Sec. 3 of RFC 7592 [86])

10: let regUri := ⟨URL, S,𝑚.host, /manage, ⟨⟩,⊥⟩ → Registration client uri (cf. Sec. 3 of RFC 7592 [86])

11: let tokenDeliveryMode← {poll, ping} → Non-deterministic choice of CIBA token delivery mode

12: let grantTypes := ⟨authorization_code, urn:openid:params:grant-type:ciba⟩ → In the model, the AS always registers

both types

13: let regResponse := [client_id : clientId, jwks : jwks, client_type : clientType, reg_at : regAT , reg_client_uri : regUri,
↩→ grant_types : grantTypes]

14: let clientInfo := [client_type : clientType, redirect_uris : redirectUris, jwt_key : pubSigKey,
↩→ mtls_key : mtlsPubKey, reg_at : regAT , grant_types : grantTypes]

15: let clientInfo[active] := ⊤ → This flag indicates whether a client account is active

16: let regResponse[backchannel_token_delivery_mode] := tokenDeliveryMode
17: let clientInfo[backchannel_token_delivery_mode] := tokenDeliveryMode
18: if tokenDeliveryMode ≡ ping then
19: if backchannel_client_notification_endpoint ∉𝑚.body then
20: stop
21: let clientNotificationEP :=𝑚.body[backchannel_client_notification_endpoint]
22: let regResponse[backchannel_client_notification_endpoint] := clientNotificationEP
23: let clientInfo[backchannel_client_notification_endpoint] := clientNotificationEP
24: let 𝑠′ .clients[clientId ] := clientInfo
25: let𝑚′ := encs (⟨HTTPResp,𝑚.nonce, 201, ⟨⟩, regResponse⟩, 𝑘 )
26: stop ⟨⟨𝑓 , 𝑎,𝑚′ ⟩⟩, 𝑠′

Algorithm 14 Relation of AS 𝑅as – Processing other messages.

1: function PROCESS_OTHER(𝑚, 𝑎, 𝑓 , 𝑠′)
2: let clientId :=𝑚 →𝑚 is a client id chosen by and sent by an attacker process (see also Line 2 of Algorithm 13)

3: if clientId ∈ 𝑠′ .clients ∨ clientId ∈ 𝑠′ .pendingClientIds then
4: stop
5: let 𝑠′ .pendingClientIds := 𝑠′ .pendingClientIds +⟨⟩ clientId
6: stop ⟨⟩, 𝑠′

Algorithm 15 Relation of a AS 𝑅𝑎𝑠 – Handle trigger events.

1: function PROCESS_TRIGGER(𝑎, 𝑠′)
2: let action← {CIBA_OBTAIN_CONSENT}
3: switch action do
4: case CIBA_OBTAIN_CONSENT

→ Choose one of the CIBA authentication requests for which the AS did not ask the end-user yet

5: let authnReqId such that authnReqId ∈ 𝑠′ .cibaAuthnRequests
↩→ ∧𝑠′ .cibaAuthnRequests[authnReqId ] [authenticateUser] ≡ ⊤ if possible; otherwise stop

6: let selectedUser := 𝑠′ .cibaAuthnRequests[authnReqId ] [selected_identity]
→ Get the endpoint of the end-user

7: let userEp := 𝑠′ .cibaEndUserEndpoints[selectedUser ]
8: let cibaUserAuthNNonce := 𝜈cibaUserNonce → In the model, we let the AS chose a nonce that it sends to the user’s browser.

The browser sends this nonce to an endpoint of the AS, which the AS uses

to identify the authentication request.

9: let 𝑠′ .cibaAuthnRequests[authnReqId ] [cibaUserAuthNNonce] := cibaUserAuthNNonce
10: let cibaURL := {⟨URL, S, 𝑑, /ciba_auth, ⟨⟩,⊥⟩ | 𝑑 ∈ dom(as) } → A URI of the AS at which the end-user can authen-

ticate for CIBA flows.

11: let body := [ciba_user_nonce : cibaUserAuthNNonce, ciba_url : cibaURL]
12: let message := ⟨HTTPReq, 𝜈ciba, GET, userEp.host, /start-ciba-authentication, ⟨⟩, ⟨⟩, body⟩
13: call HTTPS_SIMPLE_SEND( [responseTo : CIBAUserAuthNReq],message, 𝑎, 𝑠′ )
14: stop

https://datatracker.ietf.org/doc/html/rfc7592#section-2
https://datatracker.ietf.org/doc/html/rfc7591#section-3.2.1
https://datatracker.ietf.org/doc/html/rfc7592#section-3
https://datatracker.ietf.org/doc/html/rfc7592#section-3
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Algorithm 16 Relation of script_as_form: A login page for the user.

Input: ⟨tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secrets⟩
1: let url := GETURL(tree, docnonce)
2: let url′ := ⟨URL, S, url.host, /auth2, ⟨⟩,⊥⟩
3: let formData := scriptstate
4: let identity← ids
5: let secret← secrets
6: let formData[identity] := identity
7: let formData[password] := secret
8: let command := ⟨FORM, url′, POST, formData,⊥⟩
9: stop ⟨𝑠, cookies, localStorage, sessionStorage, command⟩

Algorithm 17 Relation of script_as_ciba_form: A login page for the user for CIBA flows.

Input: ⟨tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secrets⟩
1: let url := GETURL(tree, docnonce)
2: let url′ := ⟨URL, S, url.host, /ciba-auth2, ⟨⟩,⊥⟩
3: let formData := [ciba_auth2_reference : scriptstate[ciba_auth2_reference] ]
4: let bindingMessage := scriptstate[binding_message]
5: let clientDomain := scriptstate[client_domain]
6: let identity← ids
7: let secret← secrets
8: let formData[identity] := identity
9: let formData[password] := secret
10: let command := ⟨CIBAFORM, url′, POST, formData,⊥, clientDomain, bindingMessage⟩
11: stop ⟨𝑠, cookies, localStorage, sessionStorage, command⟩
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C.12 Resource Servers
A resource server rs ∈ RS is a Web server modeled as an atomic process (𝐼 rs, 𝑍 rs, 𝑅rs, 𝑠rs

0
) with

the addresses 𝐼 rs := addr(rs). The set of states 𝑍 rs
and the initial state 𝑠rs

0
of rs are defined in the

following.

Definition 15. A state 𝑠 ∈ 𝑍 rs
of a resource server rs is a term of the form ⟨DNSaddress,

pendingDNS, pendingRequests, corrupt, keyMapping, tlskeys, mtlsRequests, pendingResponses,
resourceNonces, ids, asInfo, resourceASMapping, dpopNonces, jwk⟩ with DNSaddress ∈ IPs,
pendingDNS ∈

[
N × TN

]
, pendingRequests ∈ TN , corrupt ∈ TN , keyMapping ∈

[
Doms × TN

]
,

tlskeys ∈ [Doms × 𝐾TLS] (all former components as in Definition 83), mtlsRequests ∈ TN ,
pendingResponses ∈ TN , resourceNonces ∈

[
ID × TN

]
, ids ⊂⟨⟩ ID, asInfo ∈

[
Doms × TN

]
,

resourceASMapping ∈
[
resourceURLPathrs × TN

]
, dpopNonces ∈ TN , and jwk ∈ 𝐾sign.

An initial state 𝑠rs
0
of rs is a state of rs with

• 𝑠rs
0
.DNSaddress ∈ IPs,

• 𝑠rs
0
.pendingDNS ≡ ⟨⟩,

• 𝑠rs
0
.pendingRequests ≡ ⟨⟩,

• 𝑠rs
0
.corrupt ≡ ⊥,

• 𝑠rs
0
.keyMapping being the same as the keymapping for browsers,

• 𝑠rs
0
.tlskeys ≡ tlskeysrs (see Appendix C.3),

• 𝑠rs
0
.mtlsRequests ≡ ⟨⟩,

• 𝑠rs
0
.pendingResponses ≡ ⟨⟩,

• 𝑠rs
0
.resourceNonces being a dictionary where the RS stores the resource nonces for each

identity and resource id pair, initialized as 𝑠rs
0
.resourceNonces[id] [resourceID] := ⟨⟩,

∀id ∈⟨⟩ 𝑠rs
0
.ids,∀resourceID ∈ S ,

• 𝑠rs
0
.ids ⊂⟨⟩ ID such that ∀id ∈ 𝑠rs

0
.ids : governor(id) ∈ supportedAuthorizationServerrs , i.e.,

the RS manages only resources of identities that are governed by one of the AS supported by the
RS,
• 𝑠rs

0
.asInfo: for each domain of a supported AS domas ∈ supportedAuthorizationSeverDomsrs ,

let 𝑠rs
0
.asInfo contain a dictionary entry with the following values:

– 𝑠rs
0
.asInfo[domas] [as_introspect_ep] ≡ ⟨URL, S, domas, /introspect, ⟨⟩,⊥⟩ (the URL of

the introspection endpoint of the AS)
– 𝑠rs

0
.asInfo[domas] [as_key] ≡ pub(signkey(dom−1 (domas))) being the verification key for

the AS
– 𝑠rs

0
.asInfo[domas] [rs_credentials] being a sequence s.t.
∀𝑐 : 𝑐 ∈⟨⟩ 𝑠rs

0
.asInfo[domas] [rs_credentials] ⇔ (∃rsDom ∈ dom(rs) : 𝑐 ≡

secretOfRS(domas, rsDom)), i.e., the secrets used by the RS for authenticating at the AS
Hence, setting up the ASs supported by this RS,
• 𝑠rs

0
.resourceASMapping ∈ dom(authorizationServerOfResourcers (resourceID))
∀resourceID ∈ resourceURLPathrs (a domain of the AS managing the resource identified by
resourceID),
• 𝑠rs

0
.dpopNonces ≡ ⟨⟩, and

• 𝑠rs
0
.jwk ≡ signkey(𝑟𝑠) (used for HTTP message signing, see Appendix C.3).

The relation 𝑅rs is again based on the generic HTTPS server model (see Appendix G.12), for

which the algorithms used for processing HTTP requests and responses are defined in Algorithm 18

and Algorithm 19.
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Algorithm 18 Relation of RS 𝑅rs – Processing HTTPS Requests

1: function PROCESS_HTTPS_REQUEST(𝑚, 𝑘 , 𝑎, 𝑓 , 𝑠′)
2: if𝑚.path ≡ /MTLS-prepare then
3: let mtlsNonce := 𝜈1
4: let clientKey :=𝑚.body[pub_key] → Certificate is not required to be checked [10, Section 4.2]

5: let 𝑠′ .mtlsRequests := 𝑠′ .mtlsRequests +⟨⟩ ⟨mtlsNonce, clientKey⟩
6: let𝑚′ := encs (⟨HTTPResp,𝑚.nonce, 200, ⟨⟩, enca (⟨mtlsNonce, 𝑠′ .keyMapping[𝑚.host] ⟩, clientKey) ⟩, 𝑘 )
7: stop ⟨⟨𝑓 , 𝑎,𝑚′ ⟩⟩, 𝑠′
8: else if𝑚.path ≡ /DPoP-nonce then
9: let freshDpopNonce := 𝜈dpop

10: let 𝑠′ .dpopNonces := 𝑠′ .dpopNonces +⟨⟩ freshDpopNonce
11: let𝑚′ := encs (⟨HTTPResp,𝑚.nonce, 200, ⟨⟩, [nonce : freshDpopNonce] ⟩, 𝑘 )
12: stop ⟨⟨𝑓 , 𝑎,𝑚′ ⟩⟩, 𝑠′
13: else
14: let expectSignedRequest← {⊤,⊥} → Decide whether to expect a signed resource request.

15: let resourceID :=𝑚.path
16: let responsibleAS := 𝑠′ .resourceASMapping[resourceID]
17: if responsibleAS ≡ ⟨⟩ then
18: stop → Resource is not managed by any of the supported ASs

19: let asInfo := 𝑠′ .asInfo[responsibleAS]
20: if Authorization ∉𝑚.headers then
21: stop → Expected AT in Authorization header as mandated by FAPI 2.0

22: let authnScheme :=𝑚.headers[Authorization] .1
23: let accessToken :=𝑚.headers[Authorization] .2
24: if authnScheme ≡ Bearer then → mTLS sender constraining

25: let mtlsNonce :=𝑚.body[TLS_binding]
26: let mtlsInfo such that mtlsInfo ∈ ⟨⟩ 𝑠′ .mtlsRequests ∧mtlsInfo.1 ≡ mtlsNonce if possible; otherwise stop
27: let 𝑠′ .mtlsRequests := 𝑠′ .mtlsRequests −⟨⟩ mtlsInfo
28: let mtlsKey := mtlsInfo.2
29: let cnfValue := [x5t#S256 : hash(mTlsKey) ]
30: else if authnScheme ≡ DPoP then → DPoP sender constraining

31: let dpopProof :=𝑚.headers[DPoP]
32: let dpopJwt := extractmsg(dpopProof )
33: let verificationKey := dpopJwt [headers] [jwk]
34: if checksig(dpopProof , verificationKey) . ⊤ ∨ verificationKey ≡ ⟨⟩ then
35: stop → Invalid DPoP signature (or empty jwk header)

36: let dpopClaims := dpopJwt [payload]
37: let reqUri := ⟨URL, S,𝑚.host,𝑚.path, ⟨⟩,⊥⟩
38: if dpopClaims[htm] .𝑚.method ∨ dpopClaims[htu] . reqUri then
39: stop → DPoP claims do not match corresponding message

40: if dpopClaims[nonce] ∉ 𝑠′ .dpopNonces then
41: stop → Invalid DPoP nonce

42: if dpopClaims[ath] . hash(accessToken) then
43: stop → Invalid access token hash

44: let 𝑠′ .dpopNonces := 𝑠′ .dpopNonces −⟨⟩ dpopClaims[nonce]
45: let cnfValue := [jkt : hash(verificationKey) ]
46: else
47: stop →Wrong Authorization header value

→ Algorithm continues on next page.
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48: let resource := 𝜈4 → Generate a fresh resource nonce

49: let accessTokenContent such that accessTokenContent ≡ extractmsg(𝑎𝑐𝑐𝑒𝑠𝑠𝑇𝑜𝑘𝑒𝑛)
↩→ if possible; otherwise let accessTokenContent := ⋄

50: if accessTokenContent ≡ ⋄ then → Not a structured AT, do Token Introspection

51: let requestSignedIntrospecResponse← {⊤,⊥} →Whether to request a signed introspection response

→ Store values for the pending request (needed when the RS gets the introspection response)

52: let requestId := 𝜈2
53: let 𝑠′ .pendingResponses[requestId ] := [expectedCNF : cnfValue, requestingClient : f ,

↩→ resourceID : resourceID, originalRequest : m, originalRequestKey : 𝑘, resource : resource,
↩→ requestSignedIntrospecResponse : requestSignedIntrospecResponse]

54: let url := asInfo[as_introspect_ep]
55: let rsCred← asInfo[rs_credentials] → Secret for authenticating at the AS (see also Sec. 2.1 of RFC 7662 [83])

56: let headers := [Authorization : ⟨Basic, rsCred⟩ ]
57: if requestSignedIntrospecResponse ≡ ⊤ then
58: let headers[Accept] := app/token-introspection+jwt → Request signed introspection response [72, Sec. 4]

59: let body := [token : accessToken]
60: let message := ⟨HTTPReq, 𝜈3, POST, url.domain, url.path, url.parameters, headers, body⟩
61: call HTTPS_SIMPLE_SEND( [responseTo : TOKENINTROSPECTION, requestId : requestId,

↩→ expectSignedRequest : expectSignedRequest ], message, 𝑎, 𝑠′ )
→ If we make it here, the access token is a structured token

62: if cnfValue.1 . accessTokenContent [cnf] .1 ∨ cnfValue.2 . accessTokenContent [cnf] .2 then
63: stop → AT is bound to a different key

64: if checksig(accessToken, asInfo[as_key] ) . ⊤ then
65: stop → Verification of AT signature failed

66: if expectSignedRequest ≡ ⊤ then
67: let verificationKey := accessTokenContent [client_sig_key] → AS includes the client’s HTTP Message Signing key

in structured AT.

68: let hasValidSignature := VERIFY_REQUEST_SIGNATURE(𝑚, verificationKey)
69: if hasValidSignature . ⊤ then
70: stop
71: let id := accessTokenContent[sub]
72: if id ̸∈ ⟨⟩ 𝑠′ .ids then
73: stop → RS does not manage resources of this RO

→ Token binding successfully checked, the RS gives access to a resource of the identity

74: let 𝑠′ .resourceNonces[id ] [resourceID] := 𝑠′ .resourceNonces[id ] [resourceID] +⟨⟩ resource
75: let body := [resource : resource] → This will be the resource response message body

76: let signResResponse← {⊤,⊥} →Whether to sign the resource response

77: if signResResponse ≡ ⊤ then
78: let headers := SIGN_RESOURCE_RESPONSE(body, 𝑠′ )
79: else
80: let headers := ⟨⟩
81: let𝑚′ := encs (⟨HTTPResp,𝑚.nonce, 200, headers, body⟩, 𝑘 )

→ Leak resource request. Note that we only leak the application-layer message, and in particular, not the mTLS nonce.

82: let leakingMessage := ⟨HTTPReq, 𝜈RRleak, POST,𝑚.domain,𝑚.path,𝑚.parameters,𝑚.headers, [ ] ⟩
83: let leakAddress← IPs
84: stop ⟨⟨f , a,𝑚′ ⟩, ⟨leakAddress, a, ⟨LEAK, leakingMessage⟩⟩⟩, 𝑠′

https://datatracker.ietf.org/doc/html/rfc7662#section-2.1
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Algorithm 19 Relation of a Resource Server 𝑅𝑟𝑠 – Processing HTTPS Responses

1: function PROCESS_HTTPS_RESPONSE(𝑚, reference, request, key, 𝑎, 𝑓 , 𝑠′)
2: if reference[responseTo] ≡ TOKENINTROSPECTION then
3: let pendingRequestInfo := 𝑠′ .pendingResponses[reference[requestId] ]
4: let 𝑠′ .pendingResponses := 𝑠′ .pendingResponses − reference[requestId]
5: let clientAddress := pendingRequestInfo[requestingClient]
6: let expectedCNF := pendingRequestInfo[expectedCNF]
7: let origReq := pendingRequestInfo[originalRequest]
8: let originalRequestKey := pendingRequestInfo[originalRequestKey]
9: let resourceID := pendingRequestInfo[resourceID]
10: let resource := pendingRequestInfo[resource]
11: let responsibleAS := 𝑠′ .resourceASMapping[resourceID]
12: if responsibleAS ≡ ⟨⟩ then
13: stop → Resource is not managed by any of the supported ASs

14: let asInfo := 𝑠′ .asInfo[responsibleAS]
15: if pendingRequestInfo[requestSignedIntrospecResponse] ≡ ⊤ then
16: if checksig(𝑚.body, asInfo[as_key] ) . ⊤ then
17: stop
18: let response := extractmsg(𝑚.body)
19: if response[iss] . responsibleAS ∨ response[aud] .𝑚.host ∨ token_introspection ∉ response then
20: stop
21: let𝑚.body := response[token_introspection] → Remove signature for uniform handling of𝑚 below

22: if𝑚.body[active] . ⊤ then
23: stop → Access token was invalid

24: let responseCNF :=𝑚.body[cnf]
25: if responseCNF .1 . expectedCNF .1 ∨ responseCNF .2 . expectedCNF .2 then
26: stop → Access token was bound to a different key

27: let id := m.body[sub]
28: if id ̸∈ ⟨⟩ 𝑠′ .ids then
29: stop → RS does not manage resources of this RO

→ Handle signed resource requests (i.e., HTTP Message Signatures)

30: let expectSignedRequest := reference[expectSignedRequest]
31: if expectSignedRequest ≡ ⊤ then
32: let verificationKey :=𝑚.body[client_sig_key] → AS includes the client’s HTTP Message Signing key in introspec-

tion response.

→ Now that rs knows the client’s HTTP Message Signing key, it can verify the signature on the resource request.

33: let hasValidSignature := VERIFY_REQUEST_SIGNATURE(origReq, verificationKey)
34: if hasValidSignature . ⊤ then
35: stop

→ Token binding etc. successfully checked, the RS now gives access to a resource of the identity

36: let 𝑠′ .resourceNonces[id ] [resourceID] := 𝑠′ .resourceNonces[id ] [resourceID] +⟨⟩ resource
37: let body := [resource : resource] → This will be the resource response message body

38: if reference[signResResponse] ≡ ⊤ then
39: let headers := SIGN_RESOURCE_RESPONSE(body, 𝑠′ )
40: else
41: let headers := ⟨⟩
42: let𝑚′ := encs (⟨HTTPResp, origReq.nonce, 200, headers, body⟩, originalRequestKey)

→ Leak resource request. Note that we only leak the application-layer message, and in particular, not the mTLS nonce.

43: let leakingMessage := ⟨HTTPReq, 𝜈RRleak, POST, origReq.domain, origReq.path, origReq.parameters, origReq.headers, [ ] ⟩
44: let leakAddress← IPs
45: stop ⟨⟨f , a,𝑚′ ⟩, ⟨leakAddress, a, ⟨LEAK, leakingMessage⟩⟩⟩, 𝑠′
46: stop → Unknown response type
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Algorithm 20 Relation of a Resource Server 𝑅𝑟𝑠 – Create the headers to sign a resource response

1: function SIGN_RESOURCE_RESPONSE(body, 𝑠′)
2: let headers := [Content-Digest : hash(body) ] → See [39, Sec. 5.6.2.1 No. 6]

→ See [39, Sec. 5.6.2.1]. In our model, the RS never includes the request signature in a response signature (this would only add

components to the signature, hence if anything, making the response “more secure” w.r.t. non-repudiation – however, we are

able to prove non-repudiation even without this).

3: let coveredComponents := ⟨⟨⟨@status, ⟨⟩⟩, ⟨content-digest, ⟨⟩⟩⟩, [tag : fapi-2-response, keyid : pub(𝑠′ . 𝑗𝑤𝑘 ) ] ⟩
4: let signatureBase := [ ⟨@status, ⟨⟩⟩ : 200, ⟨content-digest, ⟨⟩⟩ : headers[Content-Digest] ]
5: let signatureBase := signatureBase +⟨⟩ coveredComponents.2 → Add signature parameters [3, Sec. 2.5]

6: let headers[Signature] := [res : sig(signatureBase, 𝑠′ . 𝑗𝑤𝑘 ) ]
7: let headers[Signature-Input] := [res : coveredComponents]
8: return headers

Algorithm 21 Relation of a Resource Server 𝑅𝑟𝑠 – Verify the signature on a resource request

1: function VERIFY_REQUEST_SIGNATURE(𝑚, verificationKey) →𝑚 is the resource request

2: if Signature ∈ 𝑚.headers then
3: if hash(𝑚.body) .𝑚.headers[Content-Digest] then
4: return ⊥ → Content-digest is required by FAPI 2.0 Message Signing [39, Sec. 5.6.1.2]

5: let coveredComponents :=𝑚.headers[Signature-Input] [req]
6: let signerSignatureBase := extractmsg(𝑚.headers[Signature] [req] )
7: if @method ∉ coveredComponents.1 ∨ content-digest ∉ coveredComponents.1 ∨

↩→ @target-uri ∉ coveredComponents.1 ∨ authorization ∉ coveredComponents.1 ∨
↩→ coveredComponents.2[tag] . fapi-2-request then

8: return ⊥ → See [39, Sec. 5.6.1.2], these components must be present

9: if signerSignatureBase.2[tag] . fapi-2-request ∨ keyid ∉ signerSignatureBase.2 then
10: stop
11: for component ∈ coveredComponents.1 do
12: let isComponentEqual := IS_COMPONENT_EQUAL(𝑚,^, signerSignatureBase, component )
13: if isComponentEqual . ⊤ then
14: return ⊥

→ If we make it here, the request signature base matches the actual request data.

15: if verificationKey ≡ ⟨⟩ ∨ checksig(𝑚.headers[Signature] [req], verificationKey) . ⊤ then
16: return ⊥ → Invalid public key/message or signature does not verify

17: return ⊤ → If we make it here, the request signature is fully verified.

18: else
19: return ⊥ →Missing signature header
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D FAPI 2.0 WEB SYSTEM
A Web system FAPI = (W , S , script, 𝐸0) is called a FAPI Web system with a network attacker. The
components of the Web system are defined in the following.

• W = Hon∪Net consists of a network attacker process (inNet), a finite set B of Web browsers,

a finite set C of Web servers for the clients, a finite set AS of Web servers for the authorization

servers and a finite set RS ofWeb servers for the resource servers, withHon := B∪C∪AS∪RS.
DNS servers are subsumed by the network attacker and are therefore not modeled explicitly.

• S contains the scripts shown in Table 1, with string representations defined by the mapping

script.
• 𝐸0 contains only the trigger events.

𝑠 ∈ S script(𝑠)
𝑅att att_script
script_client_index script_client_index
script_as_form script_as_form
script_as_ciba_form script_as_ciba_form

Table 1. List of scripts in S and their respective string representations.

For representing access to resources within the formal model, we specify an infinite sequence of

nonces 𝑁resource. We call these nonces resource access nonces.

E FORMAL SECURITY PROPERTIES
In this section, we present our formal security properties for FAPI 2.0 ecosystems (within our model,

i.e., FAPI 2.0 Web systems). However, in order to do so, we first need some definitions.

Notion of an AT being bound to key, AS, Client Id, and identity. We recall and explain in

more detail Definition 1, capturing that an access token was issued by an authorization server as,
bound to a key 𝑘 , and a client id clientId, and is associated with an identity id. This definition is

needed in the subsequent definitions.

Definition 16 (Access Token bound to Key, Authorization Server, Client Id, and Iden-

tity). Let𝑘 ∈ TN be a term, as ∈ AS an authorization server, clientId a client identifier, and id ∈ ID an
identity. We say that a term 𝑡 is an access token bound to 𝑘 , as, clientId, and id in state 𝑆 of the config-
uration (𝑆, 𝐸, 𝑁 ) of a run 𝜌 of a FAPI Web system FAPI , if there exists an entry rec ∈⟨⟩ 𝑆 (as).records
such that

rec[access_token] ≡ 𝑡 ∧ (1)

rec[subject] ≡ id ∧ (2)

rec[client_id] ≡ clientId ∧ (3)(
(rec[cnf] ≡ [jkt : hash(𝑘)]) ∨ (4)

(rec[cnf] ≡ [x5t#S256 : hash(𝑘)])
)

(5)

In a bit more detail:

(1) captures that the AS as created the access token.

(2) captures that the access token is associated with identity id (i.e., this identity authenticated

previously at the authorization endpoint of the AS, and when the AT is redeemed at a RS, the RS

will provide access to resources of this identity).
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(3) captures that 𝑡 was created for a client with client identifier clientId at as.
(4) and (5) capture that the access token is bound to a key. If (4) holds, then we say that the access

token is bound via DPoP, otherwise, the token is bound via mTLS.

Notion of a client id being issued to a client by an authorization server. With this definition,

we capture that an authorization server AS issued a client identifier clientId to a client C (as part of

Dynamic Client Registration) in a processing step.

Definition 17 (Client Identifier Issued to Client by AS). We say that a client identifier
clientId has been issued to C by AS in processing step 𝑃 in a run 𝜌 (of a FAPI Web system FAPI ), if
all of the following hold true:

(i) 𝑃 = (𝑆𝑝 , 𝐸𝑝 , 𝑁 𝑝 )
𝑒𝑃in→AS
−−−−−−→
AS→𝐸𝑃

out

(𝑆𝑝+1, 𝐸𝑝+1, 𝑁 𝑝+1)

(ii) 𝑒𝑃in = ⟨𝑥𝑃 , 𝑦𝑃 ,𝑚𝑃 ⟩, with𝑚𝑃 = enca (⟨regReq, 𝑘⟩, pkAS), where regReq matches

⟨HTTPReq, 𝑛, POST, 𝑑AS, ∗, ∗, ∗, regData⟩ (Definition 43).

(iii) There is a processing step 𝑄 = (𝑆𝑞, 𝐸𝑞, 𝑁𝑞)
𝑒
𝑄

in→C
−−−−−→
C→𝐸

𝑄
out

(𝑆𝑞+1, 𝐸𝑞+1, 𝑁𝑞+1) prior to 𝑃 in 𝜌 such that

there is an event ⟨𝑥,𝑦,𝑚𝑃 ⟩ ∈ 𝐸𝑄out, i.e., C emits𝑚𝑃 in 𝑄 (Definition 84).
(iv) 𝐸𝑃out = ⟨⟨𝑦𝑃 , 𝑥𝑃 , resp⟩⟩, with resp = encs (⟨HTTPResp, 𝑛, 201, ⟨⟩, regResp⟩, 𝑘) (i.e., a response to

the request in𝑚𝑃 ), where regResp[client_id] = clientId.

Lemma 1. If a client identifier clientId has been issued to C by an honest AS ∈ AS in processing step
𝑃 = (𝑆, 𝐸, 𝑁 ) −→ (𝑆 ′, 𝐸′, 𝑁 ′) in a run 𝜌 , then all of the following hold true:

(I) Process AS finished 𝑃 by executing Line 26 of Algorithm 13.
(II) We have clientId ∈ 𝑆 ′ (AS).clients.
(III) Condition (ii) in Definition 17 is implied by condition (iv).

Proof. (I). An honest AS only outputs an HTTPS response with code 201 (as it does in 𝑃 by

Definition 17) in two places: In Line 144 of Algorithm 11, the response body is a dictionary with only

one key, namely request_uri, i.e., does not contain a key client_id (see (iv) in Definition 17).

The second place is Line 26 of Algorithm 13, where the response body is a dictionary which indeed

contains a key client_id (Line 13 of Algorithm 13). Hence, we have that AS must have finished 𝑃

by executing Line 26 of Algorithm 13.

(II). To reach Line 26 of Algorithm 13, AS must have executed Line 24 of Algorithm 13, which

immediately gives us (together with Line 26) clientId ∈ 𝑆 ′ (AS).clients.
(III). An honest AS only outputs an event as described in condition (iv) of Definition 17 in Line 26

of Algorithm 13 (cf. (I) above). Hence, AS must have executed Algorithm 13 in 𝑃 . Algorithm 13, in

turn, is only called in Lines 18f. of Algorithm 11, and only if the method field of the first argument to

Algorithm 11 is POST. Furthermore, Algorithm 11 is only ever called in Line 9 of Algorithm 41, where

the input event must match enca (⟨⟨HTTPReq, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩, ∗⟩, ∗) (see Line 8 of Algorithm 41).

Therefore, the format of the input event 𝑒𝑃
in
must be as described in condition (ii).

However, we still have to prove that the nonce 𝑛 from condition (ii) is indeed the same as in

condition (iv), and the same for the addresses 𝑦𝑃 and 𝑥𝑃 .

As for the nonce 𝑛 in condition (iv), it is set by the AS in Line 25 of Algorithm 13 to the nonce

of the input message, which in turn is the first argument to Algorithm 13, which originates from

Lines 18f. of Algorithm 11, i.e., with Line 9 of Algorithm 41, this is the nonce of the input event

(and hence, the same 𝑛 as in condition (ii)).

For 𝑥𝑃 and 𝑦𝑃 , the same argumentation as for 𝑛 applies (except that the values are the third, resp.

fourth argument to Algorithm 13). □
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Notion of an HTTPS response to an HTTPS request. With this definition, we capture that

some process 𝑝 sent an HTTPS request to some process 𝑝′ in processing step 𝑅, and 𝑝′ responds to
this request with an HTTPS response in processing step 𝑄 .

Definition 18 (HTTPS Response toHTTPS Reqest Sent by 𝑝 to 𝑝′). Let 𝑝, 𝑝′ ∈ C∪AS∪B∪RS,
and 𝜌 some run of a FAPI Web system FAPI with network attacker. We say that resp is an HTTPS

response to an HTTPS Request req sent by 𝑝 to 𝑝′, if all of the following are true:
(i) resp ∈ HTTPSResponses, i.e., resp ∼ encs (⟨HTTPResp, 𝑛, ∗, ∗, ∗⟩, 𝑘)
(ii) req ∈ HTTPSRequests, i.e., req ∼ enca (⟨⟨HTTPReq, 𝑛′, ∗, ∗, ∗, ∗, ∗, ∗⟩, 𝑘 ′⟩, pubKey)
(iii) ∃𝑑𝑝′ ∈ dom(𝑝′) such that tlskey(𝑑𝑝′ ) ≡ pubKey
(iv) 𝑘 ≡ 𝑘 ′
(v) 𝑛 ≡ 𝑛′
(vi) There is a processing step 𝑄 = (𝑆𝑞, 𝐸𝑞, 𝑁𝑞) −−−−−−→

𝑝′→𝐸
𝑄
out

(𝑆𝑞′ , 𝐸𝑞′ , 𝑁𝑞′ ) in 𝜌 , such that there is an

event ⟨𝑥,𝑦, resp⟩ ∈ 𝐸𝑄out.
(vii) Prior to𝑄 , there is a processing step 𝑅 = (𝑆𝑟 , 𝐸𝑟 , 𝑁 𝑟 ) −−−−−→

𝑝→𝐸𝑅
out

(𝑆𝑟 ′ , 𝐸𝑟 ′ , 𝑁 𝑟 ′ ) in 𝜌 , such that there

is an event ⟨𝑥 ′, 𝑦′, req⟩ ∈ 𝐸𝑅out.

E.1 Authorization, Authentication and Session Integrity Properties
In the following, we describe and define our formal security properties for authorization, authenti-

cation, and session integrity for both authentication and authorization. We expect these properties

to hold for all possible configurations of a FAPI 2.0 ecosystem, including dynamic client registration,

dynamic client management, the FAPI 2.0 Message Signing profiles in any combination (including

not using FAPI 2.0 Message Signing at all), and parallel FAPI-CIBA flows.

E.1.1 Authorization. Recall that informally, authorization means that an attacker should never

be able to access resources of honest users (unless the user authorized such access). In a bit more

detail, our authorization property captures the following: if an honest RS rs provides access to a

resource 𝑟 of an honest resource owner with user identity id managed by an honest AS AS, then
the following holds true: (i) rs has received a request for accessing the resource 𝑟 with an access

token at in the same (which is possible if the token at is structured and can be verified by the

RS immediately) or in a previous processing step (if the token at is opaque to the RS and it thus

performed token introspection), and rs created the resource when receiving the resource request

(see [54] on how our model manages resources). (ii) The token at is bound to some key 𝑘 , AS, the
user identity id, and some client identifier clientId (see Definition 1. (iii) If 𝑘 is the key of an honest

client, then the attacker cannot derive the resource.

We highlight that this statement covers many different scenarios, for example, that the attacker

cannot use leaked access tokens at the RS and cannot, by some mix-up, force an honest client to

use an access token associated with an honest user in a session with the attacker.

Definition 19 (Authorization Property). We say that a FAPI Web system FAPI is secure

w.r.t. authorization iff for every run 𝜌 = ((𝑆0, 𝐸0, 𝑁 0), . . . , (𝑆𝑛, 𝐸𝑛, 𝑁𝑛)) of FAPI , every RS rs ∈ RS
that is honest in 𝑆𝑛 , every identity id ∈⟨⟩ 𝑠rs

0
.ids with 𝑏 = ownerOfID(id) being an honest browser in

𝑆𝑛 , every processing step 𝑄 = (𝑆𝑄 , 𝐸𝑄 , 𝑁𝑄 )
𝑒
𝑄

in→rs
−−−−−−→
rs→𝐸

𝑄
out

(𝑆𝑄 ′, 𝐸𝑄 ′, 𝑁𝑄 ′) in 𝜌 , every resourceID ∈ S with

as = authorizationServerOfResourcers (resourceID) being honest in 𝑆𝑄 , it holds true that:11
11authorizationServerOfResourcers is a mapping from resource ids to the authorization server that manages the respective

resource, see Definition 12.
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If ∃𝑟, 𝑥,𝑦, 𝑘,𝑚resp.⟨𝑥,𝑦, encs (𝑚resp, 𝑘)⟩ ∈⟨⟩ 𝐸𝑄out such that𝑚resp is an HTTP response,
𝑟 :=𝑚resp.body[resource], and 𝑟 ∈⟨⟩ 𝑆𝑄

′ (rs).resourceNonce[id] [resourceID], then

(i) ∃ a processing step 𝑃 = 𝑠𝑖
𝑒𝑃in→rs
−−−−−−→
rs→𝐸𝑃

out

𝑠𝑖+1 such that

(i.a) either 𝑃 = 𝑄 , or 𝑃 is prior to 𝑄 in 𝜌 , and
(i.b) 𝑒𝑃in is an event ⟨𝑥,𝑦, enca (⟨𝑚req, 𝑘1⟩, 𝑘2)⟩ for some 𝑥 , 𝑦, 𝑘1, and 𝑘2 where𝑚req is an HTTP

request which contains a term (access token) 𝑡 in its Authorization header, i.e.,
𝑡 ≡𝑚req .headers[Authorization] .2, and

(i.c) 𝑟 is a fresh nonce generated in 𝑃 at the resource endpoint of rs in Line 48 of Algorithm 18
(ii) 𝑡 is bound to a key 𝑘 ∈ TN , as, a client identifier clientId, and id in 𝑆𝑄 (see Definition 1).
(iii) If there exists a client 𝑐 ∈ C such that clientId has been issued to 𝑐 by as in a processing step 𝑅

prior to 𝑃 in 𝜌 , and if 𝑐 is honest in 𝑆𝑛 , then 𝑟 is not derivable from the attackers knowledge in
𝑆𝑛 , i.e., 𝑟 ∉ 𝑑∅ (𝑆𝑛 (attacker)).

E.1.2 Authentication. Recall that the authentication goal states that an attacker should not be

able to log in at an honest client under the identity of an honest user. In our model, the client sets

a cookie that we call service session id at the browser after a successful login. The client model

stores the service session id in its sessions state subterm, and associates with it the identity that

is logged in to the session (the identity is taken from an id token). On a high level, our formalized

property states that an attacker should not be able to derive the service session id for a session at an

honest client where an honest identity is logged in, as long as the identity is managed by an honest

AS. We stress that this not only covers that a cookie set at the browser of the honest user does not

leak, but that there is no way in which the attacker can log in at an honest client as an honest user.

We start by recalling the following definition (Definition 4), capturing that the client logged in a

user with a service session id, before presenting the authentication property itself.

Definition 20 (Service Sessions). We say that there is a service session identified by a nonce 𝑛

for a user identity id at some client C in a configuration (𝑆, 𝐸, 𝑁 ) of a run 𝜌 of a FAPI Web system with
network attacker FAPI iff there exists some session id 𝑥 and a domain 𝑑AS ∈ dom(governor(id)) such
that 𝑆 (C).sessions[𝑥] [loggedInAs] ≡ ⟨𝑑AS, id⟩ and 𝑆 (C).sessions[𝑥] [serviceSessionId] ≡ 𝑛.

Definition 21 (Authentication Property). We say that a FAPI 2.0 Web system with network
attacker FAPI is secure w.r.t. authentication iff for every run 𝜌 of FAPI , every configuration (𝑆, 𝐸, 𝑁 )
in 𝜌 , every C ∈ C that is honest in 𝑆 , every identity id ∈ ID with AS = governor(id) being an honest
AS (in 𝑆) and with 𝑏 = ownerOfID(id) being an honest browser in 𝑆 , every service session identified by
some nonce 𝑛 for id at C, 𝑛 is not derivable from the attackers knowledge in 𝑆 (i.e., 𝑛 ∉ 𝑑∅ (𝑆 (attacker))).

E.1.3 Session Integrity. On a high-level view, the two session integrity properties state that (1)

an honest user, after logging in, is indeed logged in under their own account and not under the

account of an attacker, and (2) similarly, that an honest user is accessing their own resources and

not the resources of the attacker.

We first define notations for the processing steps that represent important events during a flow

of a FAPI Web system.

Definition 22 (User is logged in). For a run 𝜌 of a FAPI Web system with a network attacker
FAPI we say that a browser 𝑏 was authenticated to a client 𝑐 using an authorization server as and an
identity id in a login session identified by a nonce lsid in processing step 𝑄 in 𝜌 with

𝑄 = (𝑆, 𝐸, 𝑁 ) −−−−−→
𝑐→𝐸out

(𝑆 ′, 𝐸′, 𝑁 ′)
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and some event ⟨𝑦,𝑦′,𝑚⟩ ∈ 𝐸out such that𝑚 is an HTTPS response to an HTTPS request sent by 𝑏 to 𝑐
and we have that in the headers of𝑚 there is a header of the form
⟨Set-Cookie, [serviceSessionId : ⟨ssid,⊤,⊤,⊤⟩]⟩ for some nonce ssid such that
𝑆 (𝑐).sessions[lsid] [serviceSessionId] ≡ ssid and 𝑆 (𝑐).sessions[lsid] [loggedInAs] ≡ ⟨𝑑, id⟩
with 𝑑 ∈ dom(as). We then write loggedIn𝑄𝜌 (𝑏, 𝑐, id, as, lsid).
Definition 23 (User started authorization code login flow). For a run 𝜌 of a FAPI Web

system with a network attacker FAPI we say that the user of the browser 𝑏 started a login session
identified by a nonce lsid at the client 𝑐 in a processing step 𝑄 in 𝜌 if (1) in that processing step,
the browser 𝑏 was triggered, selected a document loaded from an origin of 𝑐 , executed the script
script_client_index in that document, and in that script, executed Line 8 of Algorithm 10, and (2) 𝑐
sends an HTTPS response corresponding to the HTTPS request sent by 𝑏 in 𝑄 and in that response,
there is a header of the form ⟨Set-Cookie, [⟨__Host, sessionId⟩ : ⟨lsid,⊤,⊤,⊤⟩]⟩. We then write
started𝑄𝜌 (𝑏, 𝑐, lsid).
Definition 24 (User started CIBA login flow). For a run 𝜌 of a FAPI Web system with a

network attacker FAPI we say that the user of the browser 𝑏 started a CIBA login session identified by a
nonce lsid at the client 𝑐 in a processing step𝑄 in 𝜌 if in that processing step, (1) the browser 𝑏 emits an
HTTPS request with a payload matching ⟨HTTPReq, ∗, ∗, clientDom, /start_ciba, ∗, ⟨⟩, body⟩, with
clientDom ∈ dom(c), and (2) 𝑐 (in some later processing step) sends an HTTPS response corre-
sponding to the HTTPS request sent by 𝑏 in 𝑄 and in that response, there is a header of the form
⟨Set-Cookie, [⟨__Host, sessionId⟩ : ⟨lsid,⊤,⊤,⊤⟩]⟩. We then write startedCIBA𝑄

𝜌 (𝑏, 𝑐, lsid).
Definition 25 (User authenticated at an AS for authorization code flow). For a run 𝜌

of a FAPI Web system with a network attacker FAPI we say that the user of the browser 𝑏
authenticated to an authorization server as using an identity id for a login session identified by a
nonce lsid at the client 𝑐 if there is a processing step 𝑄 = (𝑆, 𝐸, 𝑁 ) −→ (𝑆 ′, 𝐸′, 𝑁 ′) in 𝜌 in which the
browser 𝑏 was triggered, selected a document loaded from an origin of as, executed the script
script_as_form in that document, and in that script, (1) in Line 4 of Algorithm 16, selected the identity
id, and (2) we have that
• the scriptstate of that document, when triggered in 𝑄 , contains a nonce auth2Reference such
that scriptstate[auth2_reference] ≡ auth2Reference, and
• there is a nonce requestUri such that
𝑆 (as).authorizationRequests[requestUri] [auth2_reference] ≡ auth2Reference, and
• 𝑆 (𝑐).sessions[lsid] [request_uri] ≡ requestUri.

We then write authenticated𝑄𝜌 (𝑏, 𝑐, id, as, lsid).
Definition 26 (User authenticated at an AS for CIBA flow). For a run 𝜌 of a FAPI Web

system with a network attacker FAPI we say that the user of the browser 𝑏 authenticated to an
authorization server as using an identity id for a login session identified by a nonce lsid at the client 𝑐
if there is a processing step 𝑄 = (𝑆, 𝐸, 𝑁 ) −→ (𝑆 ′, 𝐸′, 𝑁 ′) in 𝜌 in which the browser 𝑏 was triggered,
selected a document loaded from an origin of as, executed the script script_as_ciba_form in that
document, and in that script, (1) in Line 6 of Algorithm 17, selected the identity id, and (2) we have that
• the scriptstate of that document, when triggered in 𝑄 , contains a nonce auth2Reference such
that scriptstate[ciba_auth2_reference] ≡ auth2Reference, and
• there is a nonce authnReqId such that
𝑆 (as).cibaAuthnRequests[authnReqId] [ciba_auth2_reference] ≡ auth2Reference, and
• 𝑆 (𝑐) .sessions[lsid] [auth_req_id] ≡ authnReqId.

We then write authenticatedCIBA𝑄
𝜌 (𝑏, 𝑐, id, as, lsid).
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Definition 27 (Resource Access). For a run 𝜌 of a FAPI Web system with a network attacker
FAPI we say that a browser 𝑏 ∈ B gets access to a resource 𝑟 of identity 𝑢 stored at resource server rs
managed by authorization server as through the session of client 𝑐 identified by the nonce lsid in a
processing step 𝑄 = (𝑆, 𝐸, 𝑁 ) −−−−−→

𝑐→𝐸out
(𝑆 ′, 𝐸′, 𝑁 ′) in 𝜌 if

• 𝑆 (𝑐).sessions[lsid] [cibaFlow] ≡ ⊥ and 𝑐 executes Line 114 of Algorithm 3 in 𝑄 , or
• resource ∈ 𝑆 (𝑐).sessions[lsid] and 𝑐 executes Line 68 of Algorithm 2 in 𝑄 ,

includes the resource 𝑟 in the body of the HTTPS response that is sent out there (i.e.,
∃⟨𝑥 ′, 𝑦′,𝑚⟩ ∈⟨⟩ 𝐸out such that𝑚 ∼ encs (⟨HTTPResp, ∗, ∗, ∗, 𝑟 ⟩, ∗)), and it holds true that

(i) 𝑟 ∈⟨⟩ 𝑆 ′ (rs).resourceNonces[u] [resourceId] and
as = authorizationServerOfResourcers (resourceID) (for some value resourceId ∈ TN ), and

(ii) ⟨⟨__Host, sessionid⟩, ⟨lsid, 𝑦, 𝑧, 𝑧′⟩⟩ ∈⟨⟩ 𝑆 ′ (𝑏).cookies[𝑑] for 𝑑 ∈ dom(𝑐), 𝑦, 𝑧, 𝑧′ ∈ TN ,
and

(iii) 𝑆 ′ (𝑐).sessions[lsid] [resourceServer] ∈ dom(rs), and
(iv) the request to which the client is responding in 𝑄 contains a Cookie header with the cookie
⟨__Host, sessionId⟩ with the value lsid.

We then write accessesResource𝑄𝜌 (𝑏, 𝑟,𝑢, 𝑐, rs, as, lsid).
Definition 28 (Client Leaked Authorization Reqest). Let FAPI be an FAPI Web system

with a network attacker. For a run 𝜌 of FAPI with a processing step 𝑄 , a client 𝑐 ∈ C, a browser 𝑏, an
authorization server as ∈ AS, an identity id, a login session id lsid, and loggedIn𝑄𝜌 (𝑏, 𝑐, id, as, lsid), we
say that 𝑐 leaked the authorization request for lsid, if there is a processing step𝑄 ′ = (𝑆, 𝐸, 𝑁 ) −−−−−→

𝑐→𝐸out

(𝑆 ′, 𝐸′, 𝑁 ′) in 𝜌 prior to 𝑄 such that in 𝑄 ′, 𝑐 executes Line 75 of Algorithm 3 and there is a nonce
requestUri and an event ⟨𝑥,𝑦,𝑚⟩ ∈ 𝐸out with𝑚.1 ≡ LEAK and𝑚.2.parameters[request_uri] ≡
requestUri such that 𝑆 ′ (𝑐).sessions[lsid] [request_uri] ≡ requestUri.

E.1.4 Session Integrity Property for Authentication. This security property captures that (a) a user

should only be logged in when the user actually expressed the wish to start a FAPI flow before, and

(b) if a user expressed the wish to start a FAPI flow using some honest authorization server and a

specific identity, then user is not logged in under a different identity.

Definition 29 (Session Integrity for Authentication for Authorization Code Flows).

Let FAPI be an FAPI Web system with a network attacker. We say that FAPI is secure w.r.t. ses-

sion integrity for authentication for authorization code flows iff for every run 𝜌 of FAPI , ev-
ery processing step 𝑄 = (𝑆, 𝐸, 𝑁 ) −→ (𝑆 ′, 𝐸′, 𝑁 ′) in 𝜌 , every browser 𝑏 that is honest in 𝑆 , ev-
ery as ∈ AS, every identity id, every client 𝑐 ∈ C that is honest in 𝑆 , every nonce lsid with
𝑆 (𝑐).sessions[lsid] [cibaFlow] ≡ ⊥, and loggedIn𝑄𝜌 (𝑏, 𝑐, id, as, lsid) and 𝑐 did not leak the au-
thorization request for lsid (see Definition 28), we have that (1) there exists a processing step 𝑄 ′ in 𝜌
(before 𝑄) such that started𝑄

′
𝜌 (𝑏, 𝑐, lsid), and (2) if as is honest in 𝑆 , then there exists a processing step

𝑄 ′′ in 𝜌 (before 𝑄) such that authenticated𝑄
′′

𝜌 (𝑏, 𝑐, id, as, lsid).
For the session integrity properties of CIBA flows, we need the following assumption on how

browsers (and hence, the users modeled as part of the browsers) select an identity owned by them

(i.e., owned by the browser) when initiating CIBA flows (note that in our model, from the point of

view of a client, a CIBA flow is started by an HTTPS request to the client’s /start-ciba endpoint

with an identity and an AS identifier, i.e., domain – the identity is then used as a login hint to

initiate a CIBA flow at the selected AS).

Note that if the initiating client in a real-world protocol flow with CIBA – for whatever reason –

sends the “wrong” login hint, then the AS will ask the “wrong” user to authenticate and authorize
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the request. While an honest user might decline such a request, an attacker (aiming to break session

integrity) would happily authorize such a request. As the client has no way of knowing who really

authenticated at the AS, it cannot distinguish this case from an honest flow. I.e., the assumption

that the client selects the “correct” login hint is necessary – otherwise, session integrity is easily

broken, and there is no evidence that FAPI-CIBA aims to protect in these cases on a protocol level.

Assumption 1 (Honest Browsers Always Select Owned Identity for CIBA). Let FAPI
be an FAPI Web system with a network attacker. In every run 𝜌 of FAPI , every processing step
𝑄 = (𝑆, 𝐸, 𝑁 ) −−−−−→

𝑏→𝐸out
(𝑆 ′, 𝐸′, 𝑁 ′) in 𝜌 , every browser 𝑏 that is honest in 𝑆 , every event ⟨𝑥,𝑦,𝑚⟩ ∈ 𝐸out,

we have that if𝑚 ∼ enca (⟨⟨HTTPReq, ∗, ∗, ∗, /start-ciba, ∗, ∗, body⟩, ∗⟩, ∗), then body ∈
[
TN × TN

]
,

identity ∈ body, and ownerOfID(body [identity]) ≡ 𝑏.

Definition 30 (Session Integrity for Authentication for FAPI-CIBA). Let FAPI be an
FAPI Web system with a network attacker. We say that FAPI is secure w.r.t. session integrity for

authentication for CIBA flows iff for every run 𝜌 of FAPI , every processing step
𝑄 = (𝑆, 𝐸, 𝑁 ) −→ (𝑆 ′, 𝐸′, 𝑁 ′) in 𝜌 , every browser 𝑏 that is honest in 𝑆 and behaves according to
Assumption 1, every as ∈ AS, every identity id, every client 𝑐 ∈ C that is honest in 𝑆 , every nonce lsid
with 𝑆 (𝑐).sessions[lsid] [cibaFlow] ≡ ⊤, and loggedIn𝑄𝜌 (𝑏, 𝑐, id, as, lsid) we have that (1) there
exists a processing step 𝑄 ′ in 𝜌 (before 𝑄) such that startedCIBA𝑄 ′

𝜌 (𝑏, 𝑐, lsid), and (2) if as is honest
in 𝑆 , then there exists a processing step 𝑄 ′′ in 𝜌 (before 𝑄) such that
authenticatedCIBA𝑄 ′′

𝜌 (𝑏, 𝑐, id, as, lsid).

By session integrity for authentication we denote the conjunction of both session integrity for

authentication for authorization code flows and FAPI-CIBA (Definition 29 and Definition 30).

E.1.5 Session Integrity Property for Authorization. This security property captures that (a) a user

should only access resources when the user actually expressed the wish to start a FAPI flow before,

and (b) if a user expressed the wish to start a FAPI flow using some honest authorization server

and a specific identity, then the user is not using resources of a different identity. We note that for

this, we require that the resource server which the client uses is honest, as otherwise, the attacker

can trivially return any resource.

Definition 31 (Session Integrity for Authorizationfor Authorization Code Flows).

Let FAPI be a FAPI Web system with a network attacker. We say that FAPI is secure w.r.t. session

integrity for authorization for authorization code flows iff for every run 𝜌 of FAPI , every processing
step𝑄 = (𝑆, 𝐸, 𝑁 ) −→ (𝑆 ′, 𝐸′, 𝑁 ′) in 𝜌 , every browser 𝑏 that is honest in 𝑆 , every as ∈ AS, every identity
𝑢, every client 𝑐 ∈ C that is honest in 𝑆 , every rs ∈ RS that is honest in 𝑆 , every nonce 𝑟 , every nonce lsid
with 𝑆 (𝑐).sessions[lsid] [cibaFlow] ≡ ⊥ , we have that if accessesResourceQ𝜌 (b, r, u, c, rs, as, lsid)
and 𝑐 did not leak the authorization request for lsid (see Definition 28), , then (1) there exists a processing
step 𝑄 ′ in 𝜌 (before 𝑄) such that started𝑄

′
𝜌 (𝑏, 𝑐, lsid), and (2) if as is honest in 𝑆 , then there exists a

processing step 𝑄 ′′ in 𝜌 (before 𝑄) such that authenticated𝑄
′′

𝜌 (𝑏, 𝑐,𝑢, as, lsid).

Definition 32 (Session Integrity for Authorization for FAPI-CIBA). Let FAPI be a FAPI
Web system with a network attacker. We say that FAPI is secure w.r.t. session integrity for

FAPI-CIBA iff for every run 𝜌 of FAPI , every processing step 𝑄 = (𝑆, 𝐸, 𝑁 ) −→ (𝑆 ′, 𝐸′, 𝑁 ′) in 𝜌 , every
browser 𝑏 that is honest in 𝑆 and behaves according to Assumption 1, every as ∈ AS, every identity 𝑢,
every client 𝑐 ∈ C that is honest in 𝑆 , every rs ∈ RS that is honest in 𝑆 , every nonce 𝑟 , every nonce lsid
with 𝑆 (𝑐).sessions[lsid] [cibaFlow] ≡ ⊤, we have that if accessesResourceQ𝜌 (b, r, u, c, rs, as, lsid),
, then (1) there exists a processing step 𝑄 ′ in 𝜌 (before 𝑄) such that startedCIBA𝑄 ′

𝜌 (𝑏, 𝑐, lsid), and (2)
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if as is honest in 𝑆 , then there exists a processing step 𝑄 ′′ in 𝜌 (before 𝑄) such that
authenticatedCIBA𝑄 ′′

𝜌 (𝑏, 𝑐,𝑢, as, lsid).

By session integrity for authorization we denote the conjunction of both session integrity for

authorization for authorization code flows and FAPI-CIBA (Definition 31 and Definition 32).

By session integrity we denote the conjunction of both session integrity for authorization and

authentication.

E.2 Non-Repudiation Properties
Our non-repudiation properties capture that if some honest party accepts a message it expected to

be signed, then – if the used signing key belongs to an honest party – that honest party actually

signed the message in question.

E.2.1 Signed Authorization Requests.

Definition 33 (Non-Repudiation for Signed Authorization Reqests). Let FAPI be a FAPI
Web system with a network attacker. We say that FAPI is secure w.r.t. non-repudiation for signed

authorization requests iff for every run 𝜌 of FAPI , every configuration (𝑆𝑛, 𝐸𝑛, 𝑁𝑛) in 𝜌 , every
process as ∈ AS that is honest in 𝑆𝑛 , every request uri requestUri, we have that if
𝑆𝑛 (as).authorizationRequests[requestUri] [signed_par] ≡ ⊤, then all of the following hold true:

(I) There exists a processing step 𝑄 = (𝑆, 𝐸, 𝑁 ) 𝑒in→as−−−−−→ (𝑆 ′, 𝐸′, 𝑁 ′) with (𝑆, 𝐸, 𝑁 ) prior to
(𝑆𝑛, 𝐸𝑛, 𝑁𝑛) in 𝜌 , such that requestUri ∉ 𝑆 (as).authorizationRequests and
requestUri ∈ 𝑆 ′ (as).authorizationRequests.

(II) 𝑒in = ⟨𝑥,𝑦,𝑚⟩ contains a message𝑚 of the form
enca (⟨⟨HTTPReq, ·, POST, selectedAS, /par, ·, ⟨⟩, body⟩, ·⟩, ·), where body is of the form
sig(par, signKey) and selectedAS ∈ dom(as).

(III) If there is a process 𝑐 ∈ C which is honest in 𝑆𝑛 , and a configuration (𝑆𝑖 , 𝐸𝑖 , 𝑁 𝑖 ) in 𝜌 with
𝑆𝑖 (𝑐).asAccounts[selectedAS] [sign_key] ≡ signKey, then there is a processing step
𝑃 = (𝑆 𝑗 , 𝐸 𝑗 , 𝑁 𝑗 ) −−−−−→

𝑐→𝐸out
(𝑆 𝑗+1, 𝐸 𝑗+1, 𝑁 𝑗+1) in 𝜌 prior to 𝑄 during which 𝑐 signed par (as

contained in 𝑒in) in Line 63 of Algorithm 8.

Informally, (I) captures that as accepted a PAR in processing step 𝑄 and issued requestUri to
identify that PAR. With (II), we require such a PAR to have a valid signature for some key signKey
on it. Finally, (III) captures that if the signature is valid for a key which an honest client registered

with as, then it was indeed that exact client which signed the PAR.

E.2.2 Signed Authorization Responses.

Definition 34 (Non-Repudiation for Signed Authorization Responses). Let FAPI be a
FAPI Web system with a network attacker. We say that FAPI is secure w.r.t. non-repudiation for

signed authorization responses iff for every run 𝜌 of FAPI , every configuration (𝑆𝑛, 𝐸𝑛, 𝑁𝑛) in 𝜌 ,
every session id sessionId, every process 𝑐 ∈ C that is honest in 𝑆𝑛 , we have that if

(1) there exists a processing step 𝑄 = (𝑆, 𝐸, 𝑁 ) 𝑒in→𝑐−−−−→ (𝑆 ′, 𝐸′, 𝑁 ′) with (𝑆, 𝐸, 𝑁 ) prior to
(𝑆𝑛, 𝐸𝑛, 𝑁𝑛) in 𝜌 such that redirectEpRequest ∉ 𝑆 (𝑐).sessions[sessionId] and
redirectEpRequest ∈ 𝑆 ′ (𝑐).sessions[sessionId], and

(2) 𝑒in = ⟨𝑥,𝑦,𝑚⟩ contains a message𝑚 of the form
enca (⟨⟨HTTPReq, ·, ·, ·, /redirect_ep, parameters, headers, ·⟩, ·⟩, ·), and

(3) 𝑆𝑛 (𝑐).sessions[sessionId] [requested_signed_authz_response] ≡ ⊤,
then all of the following hold true:
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(I) The term parameters from (2) above is a dictionary with at least a key response with value
sig(authzResponse, signKey), with authzResponse being a dictionary with at least the keys iss
and code.

(II) If there is an as ∈ AS with 𝑆𝑛 (as).jwk ≡ signKey, and as honest in 𝑆𝑛 , then there is a
processing step 𝑃 = (𝑆𝑖 , 𝐸𝑖 , 𝑁 𝑖 ) −→ (𝑆𝑖+1, 𝐸𝑖+1, 𝑁 𝑖+1) prior to 𝑄 in 𝜌 , and as signed
authzResponse (as contained in 𝑒in) during 𝑃 in Line 97 of Algorithm 11.

Informally, (1) captures that 𝑐 accepted an authorization response in some processing step 𝑄 ,

(2) and (3) capture that 𝑐 expected this response to be signed. Given these conditions, (I) captures

that the response was indeed signed, and (II) ensures that if the key used to signed the response

belongs to an honest AS, then this AS indeed signed the authorization response.

E.2.3 Signed Introspection Responses.

Definition 35 (Non-Repudiation for Signed Introspection Responses). Let FAPI be a FAPI
Web system with a network attacker. We say that FAPI is secure w.r.t. non-repudiation for signed

introspection responses iff for every run 𝜌 of FAPI , every configuration (𝑆𝑛, 𝐸𝑛, 𝑁𝑛) in 𝜌 , every
process rs ∈ RS that is honest in 𝑆𝑛 , every request id requestId, we have that if there exists a
processing step 𝑄 = (𝑆, 𝐸, 𝑁 ) 𝑒in→rs−−−−−→ (𝑆 ′, 𝐸′, 𝑁 ′) in 𝜌 such that

𝑆 (rs).pendingResponses[requestId] [requestSignedIntrospecResponse] ≡ ⊤, and
requestId ∉ 𝑆 ′ (rs).pendingResponses, and (𝑆, 𝐸, 𝑁 ) prior to (𝑆𝑛, 𝐸𝑛, 𝑁𝑛) in 𝜌 , then all of the
following hold true:

(I) 𝑒in = ⟨𝑥,𝑦,𝑚⟩ contains a message𝑚 of the form encs (⟨HTTPResp, ·, ·, ·, body⟩, ·), where body is
of the form sig(introspecResponse, signKey).

(II) If there is an as ∈ AS with 𝑆𝑛 (as).jwk ≡ signKey, and as honest in 𝑆𝑛 , then there is a
processing step 𝑃 = (𝑆𝑖 , 𝐸𝑖 , 𝑁 𝑖 ) −−−−−−→

as→𝐸out
(𝑆𝑖+1, 𝐸𝑖+1, 𝑁 𝑖+1) prior to 𝑄 in 𝜌 , and as signed

introspecResponse (as contained in 𝑒in above) during 𝑃 in Line 227 of Algorithm 11.

Informally, the precondition about 𝑄 captures that rs accepted an introspection response during

𝑄 , and expected that response to be signed (which rs would have indicated the corresponding

introspection request by setting the Accept header to an appropriate value). The postconditions

then capture that the introspection response was indeed signed and that – if the used signing key

belongs to an honest AS – that honest AS indeed signed the introspection response.

E.2.4 Signed Resource Requests.

Definition 36 (Non-Repudiation for Signed Resource Reqests). Let FAPI be a FAPI Web
system with a network attacker. We say that FAPI is secure w.r.t. non-repudiation for signed

resource requests iff for every run 𝜌 of FAPI , every configuration (𝑆𝑛, 𝐸𝑛, 𝑁𝑛) in 𝜌 , every process
rs ∈ RS that is honest in 𝑆𝑛 , we have that if

(1) there exists a processing step 𝑄 = (𝑆, 𝐸, 𝑁 ) −−−−−−→
rs→𝐸out

(𝑆 ′, 𝐸′, 𝑁 ′) in 𝜌 such that

𝐸out = ⟨⟨𝑥,𝑦, resRes⟩, leakedRequest⟩, with (𝑆, 𝐸, 𝑁 ) prior to (𝑆𝑛, 𝐸𝑛, 𝑁𝑛), and
(2) during 𝑄 , either Line 69 of Algorithm 18 or Line 33 of Algorithm 19 was executed,

then all of the following hold true:

(I) resRes is of the form encs (⟨HTTPResp, ·, ·, ·, body⟩, ·) with body ≡ [resource : resource].
(II) There exists a processing step 𝑅 = 𝑠𝑟

𝑒in→rs−−−−−→ 𝑠𝑟
′
prior or equal to 𝑄 in 𝜌 such that

𝑒in = ⟨𝑦, 𝑥, resReq⟩, and rs generated resource during 𝑅 in Line 48 of Algorithm 18.
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(III) resReq is of the form enca (⟨⟨HTTPReq, ·,method, host, path, parameters, headers, body⟩, ·⟩, ·)
with Signature ∈ headers, Signature-Input ∈ headers, and headers[Signature] being a
dictionary with at least a key req with value sig(signatureBase, clientSignKey).

(IV) headers[Signature-Input] [req] is a sequence ⟨coveredComponents,metadata⟩ (there may
be additional sequence elements after those two), where metadata is a dictionary with at least a
key tag with value fapi-2-request, and coveredComponents is a sequence with at least the
following elements: ⟨@method, ⟨⟩⟩, ⟨@target-uri, ⟨⟩⟩, ⟨authorization, ⟨⟩⟩, and
⟨content-digest, ⟨⟩⟩.

(V) signatureBase is of the form
[⟨@method, ⟨⟩⟩ : method, ⟨@target-uri, ⟨⟩⟩ : ⟨URL, S, host, path, parameters,⊥⟩,
⟨authorization, ⟨⟩⟩ : headers[Authorization], ⟨content-digest, ⟨⟩⟩ : hash(body)] +⟨⟩
[tag : fapi-2-request, keyid : keyId] for some keyId; however, the dictionaries may contain
additional elements.

(VI) If there is a client 𝑐 ∈ C which is honest in 𝑆𝑛 , a domain selectedAS, and an index 𝑗 ≤ 𝑛 such
that 𝑆 𝑗 (𝑐) .asAccounts[selectedAS] [sign_key] ≡ clientSignKey, then there is a processing
step 𝑃 = (𝑆𝑖 , 𝐸𝑖 , 𝑁 𝑖 ) −−−−−→

𝑐→𝐸′out
(𝑆𝑖+1, 𝐸𝑖+1, 𝑁 𝑖+1) prior to 𝑅 in 𝜌 , and 𝑐 signed signatureBase (as

contained in 𝑒in above) during 𝑃 in Line 39 of Algorithm 6.

This property considers three processing steps. During 𝑃 , the client 𝑐 emits a signed resource

request. During 𝑅, rs receives that signed resource request (and expected a signed resource request),
and generates resource. Then, during 𝑄 (which is equal to 𝑅 for structured ATs), rs sends out the
resource response containing resource.
In a bit more detail, (1) captures that rs outputs two events during 𝑄 , which together with (2)

implies that the first of these events is a resource response. In addition, (2) also captures that

rs expected the resource request which lead to the response sent in 𝑄 to be signed. As for the

postconditions, the first few capture the message structures of resource request and response,

whereas (VI) says that if there is an honest client 𝑐 , and a key clientSignKey such that at some point,

clientSignKey belonged to 𝑐 , then – if the resource request was signed with clientSignKey – 𝑐 must

have signed the resource request.

E.2.5 Signed Resource Responses.

Definition 37 (Non-Repudiation for Signed Resource Responses). Let FAPI be a FAPI Web
system with a network attacker. We say that FAPI is secure w.r.t. non-repudiation for signed

resource responses iff for every run 𝜌 = ((𝑆0, 𝐸0, 𝑁 0), ...) of FAPI , every configuration (𝑆𝑛, 𝐸𝑛, 𝑁𝑛)
in 𝜌 , every client 𝑐 ∈ C which is honest in 𝑆𝑛 , every nonce resource, and every session id
sessionId ∈ 𝑆𝑛 (𝑐).sessions such that

(1) 𝑆𝑛 (𝑐).sessions[sessionId] [expect_signed_resource_res] ≡ ⊤, and
(2) 𝑆𝑛 (𝑐).sessions[sessionId] [resource] ≡ resource,

all of the following hold true:

(I) There exists a processing step 𝑃 = (𝑆, 𝐸, 𝑁 ) 𝑒in→𝑐−−−−→ (𝑆 ′, 𝐸′, 𝑁 ′) in 𝜌 with (𝑆, 𝐸, 𝑁 ) prior to
(𝑆𝑛, 𝐸𝑛, 𝑁𝑛) where 𝑒in = ⟨𝑥,𝑦,𝑚⟩, with𝑚 having the form
encs (⟨HTTPResp, ·, status, headers, body⟩, ·), where body ≡ [resource : resource], and
𝑆 (𝑐) ≠ 𝑆 ′ (𝑐).

(II) headers[Signature-Input] is a dictionary with at least a key res such that
headers[Signature-Input] [res] is a sequence with at least two elements. For those first two
elements, components, and metadata, we have ⟨@status, ⟨⟩⟩,
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⟨content-digest, ⟨⟩⟩ ∈⟨⟩ components, and metadata is a dictionary with at least the key tag
such that metadata[tag] ≡ fapi-2-response.

(III) headers[Signature] is a dictionary with at least a key res such that
headers[Signature] [res] ≡ sig(signatureBase, rsSigKey).
In addition, signatureBase is of the form
[⟨@status, ⟨⟩⟩ : status, ⟨content-digest, ⟨⟩⟩ : hash(body)] +⟨⟩
[tag : fapi-2-response, keyid : keyId′] for some keyId′; however, the dictionaries may
contain additional elements.

(IV) There exists a domain rsDom ∈ 𝑆𝑛 (𝑐).rsSigKeys such that
𝑆𝑛 (𝑐).rsSigKeys[rsDom] ≡ pub(rsSigKey).

(V) If process rs := dom−1 (rsDom) is honest in 𝑆𝑛 , then there is a processing step 𝑄 = 𝑠 −−−−−−→
rs→𝐸out

𝑠′,

and rs signed the resource response contained in𝑚 during 𝑄 in Line 6 of Algorithm 20.

E.3 Security Properties for CIBA
We expect FAPI-CIBA to meet the same security properties as the FAPI 2.0 Security Profile with

authorization code flow (i.e., authorization, authentication, and the two session integrity variants).

F PROOFS
F.1 Helper Lemmas
Lemma 2 (Host of HTTP Reqest). For any run 𝜌 of a FAPI Web system FAPI with a network

attacker, every configuration (𝑆, 𝐸, 𝑁 ) in 𝜌 and every process 𝑝 ∈ C ∪ AS ∪ RS that is honest in 𝑆
it holds true that if the generic HTTPS server calls PROCESS_HTTPS_REQUEST(𝑚𝑑𝑒𝑐 , 𝑘, 𝑎, 𝑓 , 𝑠) in
Algorithm 41, then𝑚𝑑𝑒𝑐 .host ∈ dom(𝑝), for all values of 𝑘 , 𝑎, 𝑓 and 𝑠 .

Proof. PROCESS_HTTPS_REQUEST is called only in Line 9 of Algorithm 41. The input

message𝑚 is an asymetrically encrypted ciphertext. Intuitively, such a message is only decrypted

if the process knows the private TLS key, where the private key used to decrypt is chosen

(non-deterministically) according to the host of the decrypted message.

More formally, when PROCESS_HTTPS_REQUEST is called, the stop in Line 8 is not called.

Therefore, it holds true that

∃ inDomain, 𝑘 ′ : ⟨inDomain, 𝑘 ′⟩ ∈ 𝑆 (𝑝).tlskeys ∧𝑚𝑑𝑒𝑐 .host ≡ inDomain

⇒ ∃ inDomain, 𝑘 ′ : ⟨inDomain, 𝑘 ′⟩ ∈ tlskeys𝑝 ∧𝑚𝑑𝑒𝑐 .host ≡ inDomain
Def. (Appendix C.3)

⇒ ∃ inDomain, 𝑘 ′ : ⟨inDomain, 𝑘 ′⟩ ∈ {⟨𝑑, tlskey(𝑑)⟩|𝑑 ∈ dom(𝑝)}
∧𝑚𝑑𝑒𝑐 .host ≡ inDomain

From this, it follows directly that𝑚𝑑𝑒𝑐 .host ∈ dom(𝑝).
The first implication holds true due to 𝑆 (𝑝).tlskeys ≡ 𝑠𝑝

0
.tlskeys ≡ tlskeys𝑝 , as this sequence

is never changed by any honest process 𝑝 ∈ C ∪ AS ∪ RS and due to the definitions of the initial

states of clients, authorization servers, and resource servers (Definition 13, Definition 14,

Definition 15).

□

Lemma 3 (Generic Server – Correctness of Reference and Reqest). For any run 𝜌 of a
FAPI Web system FAPI with a network attacker, every processing step
𝑃 = (𝑆𝑃 , 𝐸𝑃 , 𝑁 𝑃 ) −→ (𝑆𝑃 ′, 𝐸𝑃 ′, 𝑁 𝑃 ′) in 𝜌 , every 𝑝 ∈ C ∪ AS ∪ RS being honest in 𝑆𝑃 , it holds true that
if 𝑝 calls PROCESS_HTTPS_RESPONSE in 𝑃 with reference being the second and request being the
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third input argument, then there exists a previous processing step in which 𝑝 calls
HTTPS_SIMPLE_SEND with reference being the first and request being the second input argument.

Proof. Let 𝑝 ∈ C∪AS∪RS be honest in 𝑆𝑃 . 𝑝 calls the PROCESS_HTTPS_RESPONSE function

only in the generic HTTPS server algorithm in Line 26 of Algorithm 41. The values reference and
request are taken from 𝑆𝑃 (𝑝).pendingRequests in Line 19 of Algorithm 41. Thus, 𝑝 added these

values to pendingRequests in a previous processing step 𝑂 = (𝑆𝑂 , 𝐸𝑂 , 𝑁𝑂 ) −→ (𝑆𝑂 ′, 𝐸𝑂 ′, 𝑁𝑂 ′) by
executing Line 15 of Algorithm 41, as this is the only location where a client, authorization server,

or resource server adds entries to pendingRequests and as pendingRequests is initially empty

(see Definitions 13, 14, and 15). In 𝑂 , the process 𝑝 takes both values from 𝑆𝑂 (𝑝).pendingDNS in
Line 13 and Line 14 of Algorithm 41. Initially pendingDNS is empty (as 𝑝 is a client, an authorization

server, or a resource server), and 𝑝 adds values to pendingDNS only in Line 2 of Algorithm 36,

where the reference and request values are the input arguments of HTTPS_SIMPLE_SEND. Thus,
in some processing step prior to 𝑂 , 𝑝 called HTTPS_SIMPLE_SEND with reference being the first
and request being the second input argument.

□

Lemma 4 (Client’s Signing Keys Do Not Leak). For any run
𝜌 = ((𝑆0, 𝐸0, 𝑁 0), . . . , (𝑆𝑛, 𝐸𝑛, 𝑁𝑛)) of a FAPI Web system FAPI with a network attacker, every
configuration (𝑆𝑖 , 𝐸𝑖 , 𝑁 𝑖 ) in 𝜌 , every client 𝑐 ∈ C that is honest in 𝑆𝑖 , every issuer identifier issuer ,
and every process 𝑝 ≠ 𝑐 , we have
∀𝑗 ≤ 𝑖 . issuer ∈ 𝑆 𝑗 (𝑐).asAccounts⇒ 𝑆 𝑗 (𝑐).asAccounts[issuer] [sign_key] ∉ 𝑑∅ (𝑆𝑖 (p)).

Proof. We start by proving that an honest client will only store nonces freshly chosen by that

client in asAccounts[issuer] [sign_key], and that whenever a client updates this value, it

completely “forgets” about the “old” value:

There are only two places in which a client stores a value in asAccounts[issuer] [sign_key]
(during some processing step 𝑃 ): In Line 49 of Algorithm 3, when processing a DCR response, and

in Line 23 of Algorithm 3, when processing a DCM response. In both cases, this value is taken from

the reference parameter as given to PROCESS_HTTPS_RESPONSE (Algorithm 3). Hence, by

Lemma 3, there must be a processing step 𝑄 prior to 𝑃 , in which 𝑐 called HTTPS_SIMPLE_SEND
with a corresponding reference value. During 𝑃 , the value of reference[sigKey] is then used to set

asAccounts[issuer] [sign_key]. Hence, we need to track where that value comes from.

In the case of Line 49 of Algorithm 3, the reference value passed to HTTPS_SIMPLE_SEND during

𝑄 must contain a key responseTo with value REGISTRATION (see Line 40 of Algorithm 3). Such a

reference value is only used in a call of HTTPS_SIMPLE_SEND in Line 26 of Algorithm 8. There,

the value of reference[sigKey] is a fresh nonce 𝜈cliSignK (see Line 13 of Algorithm 8), which is not

stored anywhere else and is only sent out as pub(𝜈cliSignK) during 𝑄 . In addition, the reference with
𝜈cliSignK in it is not used anywhere until 𝑃 : A client only accesses its pendingRequests state
subterm in Line 41 of Algorithm 41, and if an entry of pendingRequests is used at all, it is

immediately removed from the pendingRequests subterm (see Line 25 of Algorithm 41), i.e.,

cannot be read or used again in a later processing step.

In a very similar way, in case of Line 23 of Algorithm 3, the reference must contain a key

responseTo with value CLIENT_MANAGEMENT (see Line 40 of Algorithm 3), which can only happen

in Line 56 of Algorithm 9. There, the value for reference[sigKey] is once again a fresh nonce (see

Line 43 of Algorithm 9), which is also only stored in the aforementioned reference and only sent

out after applying pub(·). With the same argumentation as above, we conclude that this nonce is

not used anywhere until 𝑃 .
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In both cases, the client does not store the “old” value of asAccounts[issuer] [sign_key]
anywhere before setting/overwriting it (in processing step 𝑃 ).

As we will now show, a client only ever sends out the current value of

asAccounts[issuer] [sign_key] in one of two ways: 1) wrapped in a pub(·), i.e., as a public key,
from which the original value cannot be recovered (see the equational theory in Figure 10), or 2) as

a signing key in a signature, where once again, the equational theory does not allow an extraction

of the original value.

Specifically, a client 𝑐 only uses the (current) value of asAccounts[issuer] [sign_key] in the

following places:

Line 12 of Algorithm 4 The value clientSignKey is only used in Lines 22 and 39 of Algorithm 4

to create a term sig(·, clientSignKey), and in Line 37 of Algorithm 4 to create a term

pub(clientSignKey).
Line 9 of Algorithm 5 The value clientSignKey is only used in Lines 19 and 36 of Algorithm 5 as

a signing key, and in Line 34 of Algorithm 5 to create a public key.

Line 18 of Algorithm 6 The value privKey is used only in Line 24 of Algorithm 6 to create a

public key, and in Line 26 of Algorithm 6 as a signing key.

Line 33 of Algorithm 8 The value clientSignKey is used only in Lines 40 and 63 of Algorithm 8

as a signing key.

Note that in all of these places, the value of asAccounts[issuer] [sign_key] is only used as

signature key or to create a public key, and both constructors do not allow an extraction of the

contained key (see the equational theory in Figure 10).

Hence, we conclude that since a client only ever sends out the current value of

asAccounts[issuer] [sign_key] in a term from which that value cannot be derived, and since the

values in asAccounts[issuer] [sign_key] are nonces chosen by the client and not used for

anything but creating signatures and public keys, i.e., these nonces are not stored or sent out in

any other way, no other process can derive a value stored in asAccounts[issuer] [sign_key]
currently (i.e., in (𝑆𝑖 , 𝐸𝑖 , 𝑁 𝑖 )), or in the past. □

Lemma 5 (Client’s TLS Key Does Not Leak). For any run 𝜌 = ((𝑆0, 𝐸0, 𝑁 0), . . . , (𝑆𝑛, 𝐸𝑛, 𝑁𝑛)) of
a FAPI Web system FAPI with a network attacker, every configuration (𝑆, 𝐸, 𝑁 ) in 𝜌 , every client 𝑐 ∈ C
that is honest in 𝑆 , every domain 𝑑𝑐 ∈ dom(𝑐), and every process 𝑝 with 𝑝 ≠ 𝑐 , all of the following
hold true:

1) tlskey(𝑑𝑐 ) ∉ 𝑑∅ (𝑆 (p))
2) ⟨𝑑𝑐 , tlskey(𝑑𝑐 )⟩ ∈⟨⟩ 𝑆0 (𝑐).tlskeys
3) ⟨𝑑𝑐 , tlskey(𝑑𝑐 )⟩ ∈⟨⟩ 𝑆 (𝑐).tlskeys

Proof. With Definition 13, ⟨𝑑𝑐 , tlskey(𝑐)⟩ ∈⟨⟩ 𝑆0 (𝑐).tlskeys is equivalent to ⟨𝑑𝑐 , tlskey(𝑑𝑐 )⟩ ∈⟨⟩
tlskeys𝑐 . This, in turn, follows immediately from the definition of tlskeys𝑐 in Appendix C.3. Building

on this, it is easy to check that the client never changes the contents of its tlskeys state subterm,

i.e., we have ⟨𝑑𝑐 , tlskey(𝑑𝑐 )⟩ ∈⟨⟩ 𝑆 (𝑐).tlskeys.
The only place in which an honest client accesses any value in its tlskeys state subterm is Line 7

of Algorithm 41, where the value is only used to decrypt a message. Hence, the value read from the

tlskeys state subterm cannot leak.

By definition of tlskey, tlskeys𝑝 in Appendix C.3 and the initial states of authorization servers

(Definition 14), clients (Definition 13), browsers (Definition 9), and resource servers (Definition 15),

we have that no other process initially knows tlskey(𝑑𝑐 ).
We conclude that tlskey(𝑑𝑐 ) ∉ 𝑑∅ (𝑆 (p)). □
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Lemma 6 (Client’s mTLS Keys Do Not Leak). For any run 𝜌 = ((𝑆0, 𝐸0, 𝑁 0), . . . , (𝑆𝑛, 𝐸𝑛, 𝑁𝑛))
of a FAPI Web system FAPI with a network attacker, every configuration (𝑆𝑖 , 𝐸𝑖 , 𝑁 𝑖 ) in 𝜌 , every client
𝑐 ∈ C that is honest in 𝑆 , every issuer identifier issuer , and every process 𝑝 with 𝑝 ≠ 𝑐 , we have
∀𝑗 ≤ 𝑖 . issuer ∈ 𝑆 𝑗 (𝑐).asAccounts⇒ 𝑆 𝑗 (𝑐).asAccounts[issuer] [tls_key] ∉ 𝑑∅ (𝑆𝑖 (𝑝))

Proof. The only places in which an honest client accesses values stored in its state under

asAccounts[issuer] [tls_key] are:
Line 3 of Algorithm 3 Here, the value is only used to decrypt a message (i.e., cannot leak).

Line 14 of Algorithm 9 Here, the client only uses the value to create a public key. As the

equational theory does not allow extraction of private keys from public keys, it does not

matter where that public key is stored or sent to.

Hence, an honest client does not leak any value stored in its state under

asAccounts[issuer] [tls_key]. Note that the above also implies that values, once they are stored

under asAccounts[issuer] [tls_key], are never “copied” to anywhere else in an honest client’s

state.

The only places in which an honest client stores any value in its state under

asAccounts[issuer] [tls_key] during some processing step 𝑃 are Line 49 of Algorithm 3 and

Line 23 of Algorithm 3. In both cases, the value is taken from the reference parameter as given to

PROCESS_HTTPS_RESPONSE (Algorithm 3). Hence, by Lemma 3, there must be a processing

step 𝑄 prior to 𝑃 , in which the client called HTTPS_SIMPLE_SEND with a corresponding

reference. We will now show that in both cases, 1) the value is a nonce freshly generated in 𝑄 , and

2) not stored anywhere in the client’s state except in the pendingRequests state subterm between

𝑄 and 𝑃 , and asAccounts[issuer] [tls_key] after 𝑃 . In addition, we will show that the value is not

sent out in a derivable way during, and between 𝑄 and 𝑃 .

Line 49 of Algorithm 3 Here, the value of reference[responseTo] must be REGISTRATION (see

Line 40 of Algorithm 3). Hence, such a reference must have been used in a call to

HTTPS_SIMPLE_SEND during 𝑄 (see again Lemma 3). The only place in which such a

reference is used, is Line 26 of Algorithm 8. There, the value of reference[tlsKey], which is

stored to asAccounts[issuer] [tls_key] during 𝑃 , is a fresh nonce 𝜈cliTlsK (see Line 14 of

Algorithm 8). I.e., 𝜈cliTlsK is not derivable by any process prior to 𝑄 . Furthermore, 𝜈cliTlsK is

only used in two places (during processing step 𝑄):

Line 15 of Algorithm 8 Here, 𝜈cliTlsK is only used to create a public key, from which the

original value cannot be derived (see above).

Line 26 of Algorithm 8 Here, 𝜈cliTlsK is passed to HTTPS_SIMPLE_SEND as part of the

first argument, i.e., the aforementioned reference (see Algorithm 36). This reference is
stored in the client’s pendingDNS state subterm (Line 2 of Algorithm 36) and not used

anywhere else. Values stored in the client’s pendingDNS state subterm are only accessed in

Lines 10ff. of Algorithm 41, where they are removed from pendingDNS and stored in

another state subterm pendingRequests. This subterm, in turn, is only accessed in

Lines 19ff. of Algorithm 41, where the value is removed from pendingRequests and
passed to PROCESS_HTTPS_RESPONSE. I.e., any value passed to

HTTPS_SIMPLE_SEND as part of the first argument, reference, including 𝜈cliTlsK, is no
longer in the client’s state once reference is passed to PROCESS_HTTPS_RESPONSE.
Hence, we established that the use of 𝜈cliTlsK in Line 26 of Algorithm 8 (during 𝑄) did not

lead to this value being sent out until 𝑃 , and it is also not being stored in the client’s state

outside of asAccounts[issuer] [tls_key] after 𝑃 . Note that the values we tracked through

the client’s state are also not used in any message sent by the client between 𝑄 and up to

and including 𝑃 .
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Line 23 of Algorithm 3 This case is very similar to the previous one, except that the value of

reference[responseTo] must be CLIENT_MANAGEMENT (see Line 10 of Algorithm 3), and the

relevant nonce is generated in Line 44 of Algorithm 9 (instead of Line 14 of Algorithm 8).

So we conclude that

∀𝑗 ≤ 𝑖 . issuer ∈ 𝑆 𝑗 (𝑐).asAccounts⇒ 𝑆 𝑗 (𝑐).asAccounts[issuer] [tls_key] ∉ 𝑑∅ (𝑆𝑖 (𝑝)). □

Lemma 7 (Code used in Token Reqest was received at Redirection Endpoint). For any
run 𝜌 of a FAPI Web system FAPI with a network attacker, every processing step

𝑃 = (𝑆, 𝐸, 𝑁 )
𝑒𝑃in→c
−−−−−→
c→𝐸𝑃

out

(𝑆 ′, 𝐸′, 𝑁 ′)

in 𝜌 with 𝑐 ∈ C being honest in 𝑆 , it holds true that if Algorithm 3 (PROCESS_HTTPS_RESPONSE)
is called in 𝑃 with reference being the second and request being the third input argument, and if
reference[responseTo] ≡ TOKEN and code ∈⟨⟩ request .body, then there is a previous configuration
(𝑆𝐿 ′, 𝐸𝐿 ′, 𝑁 𝐿 ′) such that request .body[code] ≡
𝑆𝐿
′ (𝑐).sessions[reference[session]] [redirectEpRequest] [message] .parameters[code].

Proof. As shown in Lemma 3, there exists a processing step 𝐿 = (𝑆𝐿, 𝐸𝐿, 𝑁 𝐿) −→ (𝑆𝐿 ′, 𝐸𝐿 ′, 𝑁 𝐿 ′)
prior to 𝑃 in which 𝑐 called HTTPS_SIMPLE_SEND with the same reference and request values.

The only lines in which a client calls HTTPS_SIMPLE_SEND with

reference[responseTo] ≡ TOKEN are Line 43 of Algorithm 4 (SEND_TOKEN_REQUEST) and
Line 40 of Algorithm 5 (SEND_CIBA_TOKEN_REQUEST).
The requests send in Line 40 of Algorithm 5 do not contain a code value in their body, see

Lines 6, 13, 25, 29, 15, 20 and Line 38 of Algorithm 5, i.e., request was sent in Line 43 of Algorithm 4.

The code included in the request is the input parameter of SEND_TOKEN_REQUEST (see Lines 8,

41, and 42 of Algorithm 4). SEND_TOKEN_REQUEST is called only in Line 34 of Algorithm 2, i.e.,

at the redirection endpoint (/redirect_ep) of the client, and the code is contained in the

parameters of the redirection request that the client stores into

𝑆𝐿
′ (𝑐) .sessions[sessionId] [redirectionEpRequest] [message] in Line 33 of Algorithm 2, with

sessionId ≡ reference[session] (see also Lines 24, 26, and Line 29 of Algorithm 2).

□

Lemma 8 (Authorization Server’s Signing Key Does Not Leak). For any run
𝜌 = ((𝑆0, 𝐸0, 𝑁 0), . . . , (𝑆𝑛, 𝐸𝑛, 𝑁𝑛)) of a FAPI Web system FAPI with a network attacker, every
configuration 𝑄 = (𝑆, 𝐸, 𝑁 ) in 𝜌 , every authorization server as ∈ AS that is honest in 𝑆 , every term 𝑡

with checksig(𝑡, pub(signkey(as))) ≡ ⊤, and every process 𝑝 with 𝑝 ≠ as, all of the following hold
true:
• signkey(as) ∉ 𝑑∅ (𝑆 (p))
• signkey(as) ≡ 𝑠as

0
.jwk

• signkey(as) ≡ 𝑆 (as).jwk
• if 𝑡 is known (Definition 89) to 𝑝 in 𝑄 , then 𝑡 was created (Definition 87) by as in a processing
step 𝑠𝑒 prior to 𝑄 in 𝜌

Proof. signkey(as) ≡ 𝑠as
0
.jwk immediately follows from Definition 14. signkey(as) ≡ 𝑆 (as).jwk

follows from Definition 14 and by induction over the processing steps: state subterm jwk of an

honest authorization server is never changed.

By Definitions 13, 14, 15, 72, and Appendix C.3, we have that no process (except as) initially
knows signkey(as), i.e., signkey(as) ∉ 𝑑∅ (𝑆0 (p)).
The only places in which an honest authorization server accesses the jwk state subterm are:
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Lines 15f. of Algorithm 11 Here, the value of the jwk state subterm is only used in a pub(·) term
constructor as private key from which a public key is derived, i.e., cannot be extracted from

the resulting public key (see Figure 10). Thus, it does not matter where that term are stored

or sent to.

Lines 97, 200, 212, and 227 of Algorithm 11 Here, the value of the jwk state subterm is only

used in a sig(·, ·) term constructor as signature key, i.e., cannot be extracted from the resulting

term (see Figure 10). Thus, it does not matter where that term are stored or sent to.

We conclude that these usages of the jwk state subterm do not leak signkey(as) to any other process,
in particular 𝑝 , and hence, signkey(as) ∉ 𝑑∅ (𝑆 (p)).

To complete the proof, we have to show that any term 𝑡 with checksig(𝑡, pub(signkey(as))) ≡ ⊤
known to 𝑝 in 𝑄 was created by as in a processing step 𝑠𝑒 prior to 𝑄 in 𝜌 :

By Definitions 13, 14, 15, 9, and Appendix C.3, we have that no process (including as) initially
knows such a term 𝑡 , i.e., 𝑡 ∉ 𝑑∅ (𝑆0 (p)). Together with Definition 63 and Definition 87, this implies

that 𝑡 can only be known to 𝑝 in some configuration𝑄 ′ if 𝑡 was contained in some event 𝑒 “received”

by 𝑝 at an earlier point in 𝜌 (i.e., 𝑒 was the input event in a processing step in 𝜌 with 𝑝). Since such

an 𝑒 is not part of 𝐸0 (Definition 82), 𝑒 must have been emitted by some process in a processing

step 𝑠𝑒 prior to 𝑄
′
in 𝜌 . Definition 63 and Definition 84 imply that 𝑝 (or any other process ≠ as)

cannot have emitted 𝑒 in 𝑠𝑒 (i.e., cannot have created 𝑡 in 𝑠𝑒 ).
Therefore, as must have emitted 𝑒 and hence created 𝑡 in 𝑠𝑒 , i.e., prior to 𝑄 in 𝜌 . □

Lemma 9 (mTLS Nonce Created by AS does not Leak). For every run 𝜌 = ((𝑆0, 𝐸0, 𝑁 0), . . . ,
(𝑆𝑛, 𝐸𝑛, 𝑁𝑛)) of a FAPI Web system FAPI with a network attacker, every configuration 𝑠 = (𝑆, 𝐸, 𝑁 )
in 𝜌 , every authorization server as ∈ AS that is honest in 𝑆𝑛 , every client 𝑐 ∈ C that is honest in
𝑆𝑛 and has been issued client id clientId by as in some processing step 𝑅 = 𝑠𝑟 −→ 𝑠𝑟+1 with 𝑠𝑟 prior

to 𝑠 in 𝜌 , every 𝑖 ∈ N with 0 < 𝑖 ≤ |𝑆 (as).mtlsRequests[clientId] |, and every process 𝑝 with
as ≠ 𝑝 ≠ 𝑐 it holds true that mtlsNonce := 𝑆 (as).mtlsRequests[clientId] .𝑖 .1 is not derivable by 𝑝 ,
i.e., mtlsNonce ∉ 𝑑∅ (𝑆𝑛 (p)).

Proof.

(A) Initial state. Initially, the mtlsRequests subterm of the authorization server’s state is empty:

𝑆0 (as).mtlsRequests ≡ ⟨⟩ (Definition 14).

(B) 𝑐’s mTLS key at as is a public key & only 𝑐 knows the private key. An authorization

server only adds values to the mtlsRequests subterm in Line 238 of Algorithm 11, where

the mTLS nonce is chosen as a fresh nonce (Line 234 of Algorithm 11). Let 𝑃 = (𝑆 𝑗 , 𝐸 𝑗 , 𝑁 𝑗 ) −→
(𝑆 𝑗+1, 𝐸 𝑗+1, 𝑁 𝑗+1) be the processing step in which the nonce is chosen (note that (𝑆 𝑗 , 𝐸 𝑗 , 𝑁 𝑗 ) is
prior to (𝑆, 𝐸, 𝑁 ) in 𝜌). Note that for an AS to even reach Line 234 of Algorithm 11 during 𝑃 , we

need clientId ∈ 𝑆 𝑗 (as).clients (otherwise, the check in Line 232 of Algorithm 11 would fail).

Since an honest authorization server never removes entries from its clients state subterm,

clientId ∈ 𝑆 𝑗 (as).clients implies clientId ∈ 𝑆𝑙 (as).clients for all 𝑗 ≤ 𝑙 ≤ 𝑛. Hence, we can
apply Lemma 17, i.e., we have ∃𝑘mtls ∈ N such that 𝑆𝑙 (as).clients[clientId] [mtls_key] ≡
pub(𝑘mtls), and for all processes 𝑝 ≠ 𝑐 , we have 𝑘mtls ∉ 𝑑∅ (𝑆𝑛 (𝑝)).

(C) Only 𝑐 can decrypt mTLS nonce. During 𝑃 , the authorization server sends out the fresh

mTLS nonce in Line 240 of Algorithm 11, asymmetrically encrypted with the public key

clientKey ≡ 𝑆 𝑗 (as).clients[clientId] [mtls_key] (Line 235 of Algorithm 11). We will refer

to this ciphertext enca (⟨mtlsNonce, 𝑥⟩, clientKey) as mtlsResp.
From (B), we have ∃𝑘mtls ∈ N . clientKey ≡ pub(𝑘mtls), and for all processes 𝑝 ≠ 𝑐 , we have

𝑘mtls ∉ 𝑑∅ (𝑆𝑛 (𝑝)).
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Therefore, only 𝑐 can decrypt mtlsResp, or, put more formally, only 𝑐 can derive mtlsNonce
from mtlsResp (see Figure 10).

(D) as does not leak mTLS nonce stored in its state. An authorization server only accesses

any values stored in its mtlsRequests state subterm in the following places. For each of

them, we will prove that no contents of mtlsRequests are included in an output event, or

stored elsewhere in the authorization server’s state. Hence, the authorization server does not

leak mtlsNonce from its state (an authorization server might also receive mtlsNonce as part
of an input event – this case is covered later).

Line 187 of Algorithm 11 The value taken from the mtlsRequests state subterm is only

used once: in the subsequent line to remove a record from the authorization server’s

mtlsRequests state subterm.

Line 19 of Algorithm 12 Here, a single record mtlsInfo is taken from the mtlsRequests
state subterm, which is used in Line 24 of Algorithm 12 to delete a record from the

mtlsRequests state subterm, and (possibly) returned as the third element of the return

value of Algorithm 12 in Line 30 of Algorithm 12.

Hence, we now have to look at the places where Algorithm 12 is called, and how the third

element of its return value is used (which is always stored in a variable mtlsInfo right after
Algorithm 12 returns):

Line 116 of Algorithm 11 Here, mtlsInfo is not used at all.

Line 148 of Algorithm 11 Here, mtlsInfo is used only in Line 184 of Algorithm 11, to com-

pare against another value, i.e., mtlsInfo (nor its contents) are not included in any event or

stored in the authorization server’s state.

Line 242 of Algorithm 11 Here, mtlsInfo is not used at all.

(E) 𝑐 does not leak mtlsNonce upon receiving it. Recall (C): The encrypted nonce sent out

during 𝑃 can only be decrypted by 𝑐 . Furthermore, 𝑐 decrypts such messages only in Line 3

of Algorithm 3 – the only other place where a message is decrypted asymmetrically by 𝑐 is

in the generic HTTPS server (Line 7 of Algorithm 41), where the process would stop due to

the requirement that the decrypted message must begin with HTTPReq.
We also note that the ciphertext mtlsResp created by the authorization server containing the

nonce also contains a public TLS key of as (Lemma 2 and Line 239 of Algorithm 11).

After decrypting the mTLS nonce and public TLS key of as in Line 3 of Algorithm 3, the client

stores the sequence ⟨request .host, clientId, pubKey,mtlsNonce⟩ into the mtlsCache subterm

of its state in Line 8 of Algorithm 3, where clientId, pubKey ∈ TN and, in particular,

• request .host is a domain of as (see Line 5 of Algorithm 3).

• mtlsNonce is the mTLS nonce chosen by as.
Thus, the nonce is stored at the client together with a domain of the authorization server.

After storing the values, the client stops in Line 9 of Algorithm 3 without creating an event

and without storing mtlsNonce in any other place.

(F) 𝑐 sends mTLS nonces only to domains of as. The client accesses values stored in the

mtlsCache subterm of its state only in the following places:

Case 1: Algorithm 4 In this algorithm, the client accesses the mtlsCache subterm only in

Line 17 and Line 30.

In both cases, the sequence containing the nonce is removed from the mtlsCache subterm

(Lines 19 and 31), and the mTLS nonce is sent by calling the HTTPS_SIMPLE_SEND
function. The HTTP request that is passed to HTTPS_SIMPLE_SEND in Line 43 contains

the retrieved mTLS nonces only in the body, under the dictionary key TLS_AuthN (Line 18,

Line 41) or TLS_binding (Line 28, Line 32, Line 41).
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In all cases, the domain stored in the sequence that is retrieved from the mtlsCache subterm
of the client state (i.e., the first entry of the sequence) is the host of the HTTPS request

that the client constructs (see Lines 17, 30).

Case 2: Algorithm 6 Here, the client accesses the mtlsCache state subterm only in Line 13.

As in the first case, the sequence from which the mTLS nonce is chosen is removed

from the mtlsCache subterm (Line 16 of Algorithm 6). The nonce is sent in the body

of an HTTP request, using the dictionary key TLS_binding (see Line 14) by calling

HTTPS_SIMPLE_SEND in Line 43. The request is sent to the same domain that is stored

in the sequence containing the mTLS nonce.

Case 3: Algorithm 8 Here, Line 35 is the last line in which the client accesses the mtlsCache
state subterm. As in the previous cases, the client removes the corresponding sequence from

the mtlsCache subterm (Line 37). The client creates an HTTPS request which contains

the mTLS nonce in the body under the key TLS_AuthN (Lines 36, 55, and 68). Again, the

request is sent to the same domain that is stored in the sequence containing the mTLS

nonce (see Line 68).

In all cases, the HTTPS request is sent to the domain stored in the first entry of the sequence

containing the mTLS nonce (stored in the mtlsCache subterm). Let req𝑐→𝑎𝑠 be the HTTP

request that the client sends by calling HTTPS_SIMPLE_SEND.
HTTPS_SIMPLE_SEND stores the request req𝑐→𝑎𝑠 (which contains the mTLS nonce) in the

pendingDNS state subterm of 𝑐 , see Line 2 of Algorithm 36 and then stops with the DNS

request (which does not contain the nonce) in Line 3 of Algorithm 36. Thus, after finishing

this processing step, the client stores the mTLS nonce only in its pendingDNS state subterm.

The client accesses the pendingDNS state subterm only within the else case in Line 10

of Algorithm 41, i.e., when it receives the DNS response. There, it either stops without a

new event and without changing its state in Line 12 of Algorithm 41, or creates a new

pendingRequests entry containing the request req𝑐→𝑎𝑠 (and thus, also the mTLS nonce) in

Line 15 of Algorithm 41. In this case, the client removes the request from the pendingDNS
state subterm in Line 17 of Algorithm 41, i.e., regarding the client state, the mTLS nonce is

now only contained in the newly created pendingRequests entry. The client finishes the

processing step by encrypting req𝑐→𝑎𝑠 with the key of the domain that was stored along with

the mTLS nonce, i.e., a key of as, see Lines 16 and 18 of Algorithm 41, and (E).

(G) as does not leak mTLS nonce contained in request.
As the client encrypts req𝑐→𝑎𝑠 asymetrically with a key of as, it follows that only as can
decrypt the HTTPS request (Lemma 46).

The authorization server only decrypts terms in the generic HTTPS server algorithms. More

specifically, this request is decrypted (only) in Line 7 of Algorithm 41, as this is the only place

where an authorization server decrypts a message asymetrically, and then used as a function

argument for PROCESS_HTTPS_REQUEST which is modeled in Algorithm 11.

In Algorithm 11, none of the endpoints except for the PAR (Line 103) and token endpoints

(Line 145) reads, stores, or sends out a value stored in the body of the request under the

TLS_AuthN or TLS_binding key.

The PAR and token endpoints pass the HTTP request to theAUTHENTICATE_CLIENT helper
function (Algorithm 12), which removes an entry from the mtlsRequests state subterm and

returns this entry; the /par endpoint code does not use this value. The token endpoint uses

this value for token binding (Lines 180–190), but the nonce is not added to any state subterm

and not sent out in a network message. Thus, the endpoints of the authorization server do

not store the mTLS nonces contained in requests in any state subterm and do not send them

out in any network message.
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(H) 𝑐 does not leak mTLS nonce in request after getting the response. When the client

receives the HTTPS response to req𝑐→𝑎𝑠 , the generic HTTPS server removes the message

from the pendingRequests state subterm and calls PROCESS_HTTPS_RESPONSE with the

request as the third function argument (see Lines 19ff. of Algorithm 41). Algorithm 3

(PROCESS_HTTPS_RESPONSE) does not store a nonce contained in the body of the re-

quest, i.e., the third argument, and does not create new network messages containing such a

nonce.

Summing up, the client sends the mTLS nonce created by the authorization server only back to that

same authorization server (i.e., only that authorization server can decrypt the client’s message). As

an honest authorization server never sends out such a nonce received in a request, and neither

the client or authorization server leak the mTLS nonce as stored in their states in between, we

conclude that the nonce never leaks to any other process, in particular not to 𝑝 . □

Lemma 10 (Resource Server’s Signing Key Does Not Leak). For any run
𝜌 = ((𝑆0, 𝐸0, 𝑁 0), . . . , (𝑆𝑛, 𝐸𝑛, 𝑁𝑛)) of a FAPI Web system FAPI with a network attacker, every
configuration 𝑄 = (𝑆, 𝐸, 𝑁 ) in 𝜌 , every resource server rs ∈ RS that is honest in 𝑆 , every term 𝑡 with
checksig(𝑡, pub(signkey(rs))) ≡ ⊤, and every process 𝑝 with 𝑝 ≠ rs, all of the following hold true:
• signkey(rs) ∉ 𝑑∅ (𝑆 (p))
• signkey(rs) ≡ 𝑠rs

0
.jwk

• signkey(rs) ≡ 𝑆 (rs).jwk
• if 𝑡 is known (Definition 89) to 𝑝 in 𝑄 , then 𝑡 was created (Definition 87) by rs in a processing
step 𝑠𝑒 prior to 𝑄 in 𝜌

Proof. signkey(rs) ≡ 𝑠rs
0
.jwk immediately follows from Definition 15. signkey(rs) ≡ 𝑆 (rs).jwk

follows from Definition 15 and by induction over the processing steps: state subterm jwk of an

honest resource server is never changed.

By Definitions 13, 14, 15, 72, and Appendix C.3, we have that no process (except rs) initially
knows signkey(rs), i.e., signkey(rs) ∉ 𝑑∅ (𝑆0 (p)).
The only place in which an honest resource server accesses the jwk state subterm is Line 6 of

Algorithm 20. There, the value of the jwk state subterm is only used in a sig(·, ·) term constructor

as signature key, i.e., cannot be extracted from the resulting term (see Figure 10). Thus, it does not

matter where that term are stored or sent to. We conclude that this usage of the jwk state subterm

does not leak signkey(rs) to any other process, in particular 𝑝 , and hence, signkey(rs) ∉ 𝑑∅ (𝑆 (p)).
To complete the proof, we nowhave to show that any term 𝑡 with checksig(𝑡, pub(signkey(rs))) ≡
⊤ known to 𝑝 in 𝑄 was created by rs in a processing step 𝑠𝑒 prior to 𝑄 in 𝜌 :

By Definitions 13, 14, 15, 9, and Appendix C.3, we have that no process (including rs) initially
knows such a term 𝑡 , i.e., 𝑡 ∉ 𝑑∅ (𝑆0 (p)). Together with Definition 63 and Definition 87, this implies

that 𝑡 can only be known to 𝑝 in some configuration𝑄 ′ if 𝑡 was contained in some event 𝑒 “received”

by 𝑝 at an earlier point in 𝜌 (i.e., 𝑒 was the input event in a processing step in 𝜌 with 𝑝). Since such

an 𝑒 is not part of 𝐸0 (Definition 82), 𝑒 must have been emitted by some process in a processing

step 𝑠𝑒 prior to 𝑄
′
in 𝜌 . Definition 63 and Definition 84 imply that 𝑝 (or any other process ≠ rs)

cannot have emitted 𝑒 in 𝑠𝑒 (i.e., cannot have created 𝑡 in 𝑠𝑒 ).
Therefore, rs must have emitted 𝑒 and hence created 𝑡 in 𝑠𝑒 , i.e., prior to 𝑄 in 𝜌 . □

Lemma 11 (mTLS Nonce created by RS does not Leak). For every run 𝜌 = ((𝑆0, 𝐸0, 𝑁 0), . . . ,
(𝑆𝑛, 𝐸𝑛, 𝑁𝑛)) of a FAPI Web system FAPI with a network attacker, every configuration (𝑆, 𝐸, 𝑁 ) in 𝜌 ,
every resource server rs ∈ RS that is honest in 𝑆𝑛 , every client 𝑐 ∈ C that is honest in 𝑆𝑛 , every nonce
kmtls ∈ N , every 𝑖 ∈ N with 0 ≤ 𝑖 ≤ |𝑆 (rs).mtlsRequests| and with 𝑆 (rs).mtlsRequests.𝑖 .2 ≡
pub(kmtls), every process 𝑝1 with 𝑝1 ≠ 𝑐 , and every process 𝑝2 with rs ≠ 𝑝2 ≠ 𝑐 it holds true that if
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kmtls ∉ 𝑑∅ (𝑆𝑛 (p1)), then mtlsNonce := 𝑆 (rs).mtlsRequests.𝑖 .1 does not leak to 𝑝2, i.e., mtlsNonce ∉
𝑑∅ (𝑆𝑛 (p2)).

Proof. This proof is similar to the proof of Lemma 9: Initially, the mtlsRequests subterm of

the resource server’s state is empty, i.e., 𝑆0 (rs) .mtlsRequests ≡ ⟨⟩ (Definition 15). A resource

server only adds values to the mtlsRequests subterm in Line 5 of Algorithm 18, where the mTLS

nonce (the first value of the sequence that is added to mtlsRequests) is a fresh nonce (Line 3 of

Algorithm 18).

Let (𝑆𝑖 , 𝐸𝑖 , 𝑁 𝑖 ) → (𝑆𝑖 ′, 𝐸𝑖 ′, 𝑁 𝑖 ′) be the processing step in which the nonce is chosen (note that

(𝑆𝑖 , 𝐸𝑖 , 𝑁 𝑖 ) is prior to (𝑆, 𝐸, 𝑁 ) in 𝜌). In the same processing step, the resource server sends out

the nonce in Line 7 of Algorithm 18, asymmetrically encrypted with the public key pub(kmtls)
(precondition of the lemma, see also Line 5 and Line 6 of Algorithm 18; note that the RS never

modifies the values stored in mtlsRequests, it only deletes entries in Line 27 of Algorithm 18).

The mtlsNonce saved in mtlsRequests is not sent in any other place.

The encrypted nonce can only be decrypted by 𝑐 , as only 𝑐 can derive the private key kmtls

(precondition of the lemma). 𝑐 decrypts messages only in Line 3 of Algorithm 3. (The only other

place where a message is decrypted asymmetrically by 𝑐 is in the generic HTTPS server (Line 7 of

Algorithm 41), where the process would stop due to the requirement that the decrypted message

must begin with HTTPReq).
We also note that the encrypted message created by the resource server containing the nonce

also contains a public TLS key of rs. (This holds true due to Lemma 2).

After decrypting the mTLS nonce and public TLS key of rs in Line 3 of Algorithm 3, the client

stores the sequence ⟨request .host, clientId, pubKey,mtlsNonce⟩ into the mtlsCache subterm of its

state (Line 8 of Algorithm 3), where clientId, pubKey ∈ TN and, in particular,

• request .host is a domain of rs (see Line 5, Algorithm 3)

• mtlsNonce is the mTLS nonce chosen by rs.

Thus, the nonce is stored at the client together with a domain of the resource server. After storing

the values, the client stops in Line 9 of Algorithm 3 without creating an event and without storing

the nonce in any other place.

𝑐 sends mTLS nonces only to domains of rs. The client accesses values stored in the mtlsCache
subterm of its state only in the following places:

Case 1: Algorithm 4
In this algorithm, the client accesses the mtlsCache subterm only in Line 17 and Line 30.

In both cases, the sequence containing the nonce is removed from the mtlsCache subterm
(Lines 19 and 31), and the mTLS nonce is sent by calling theHTTPS_SIMPLE_SEND function.

The HTTP request that is passed to HTTPS_SIMPLE_SEND in Line 43 contains the retrieved

mTLS nonces only in the body, under the dictionary key TLS_AuthN (Line 18, Line 41) or

TLS_binding (Line 28, Line 32, Line 41).

In all cases, the domain stored in the sequence that is retrieved from the mtlsCache subterm

of the client state (i.e., the first entry of the sequence) is the host of the HTTPS request that

the client constructs (see Lines 17, 30).

Note that messages created by Algorithm 4 do not contain an Authorization header.

Case 2: Algorithm 5 This case is similar to the previous case.

The client accesses the mtlsCache subterm only in Line 14 and Line 27. In both cases, the

sequence containing the nonce is removed from the mtlsCache subterm (Lines 16 and 28), and

the mTLS nonce is sent by calling the HTTPS_SIMPLE_SEND function. The HTTP request

that is passed to HTTPS_SIMPLE_SEND in Line 40 contains the retrieved mTLS nonces only
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in the body, under the dictionary key TLS_AuthN (Line 15, Line 38) or TLS_binding (Line 25,

Line 29, Line 38).

The domain stored in the sequence that is retrieved from the mtlsCache subterm of the client

state (i.e., the first entry of the sequence) is the host of the HTTPS request that the client

constructs (see Lines 14, 27).

Note that messages created by Algorithm 5 do not contain an Authorization header.

Case 3: Algorithm 6
Here, the client accesses the mtlsCache state subterm only in Line 13, and removes the

sequence with the mTLS nonce from the mtlsCache subterm (Line 16 of Algorithm 6). The

nonce is sent in the body of an HTTP request, using the dictionary key TLS_binding (see
Line 14) by callingHTTPS_SIMPLE_SEND in Line 43. The request is sent to the same domain

that is stored in the sequence containing the mTLS nonce.

The client might sign this request (Lines 30-40 of Algorithm 6). Regarding the mTLS nonce, the

client stores the hash of the body in the Content-Digest header (Line 32 of Algorithm 6). The

signature stored in the Signature header covers the Content-Digest header, see Lines 32, 34,
and 39 of Algorithm 6.

Case 4: Algorithm 8
Here, Line 35 is the last line in which the client accesses the mtlsCache state subterm. As

in the previous cases, the client removes the corresponding sequence from the mtlsCache
subterm (Line 37).

The client creates the term requestData, which contains the mTLS nonce in the body under

the key TLS_AuthN (Lines 36, 55), and creates an HTTP request in Line 68 of Algorithm 8,

with the body set to requestData (Line 65 and Line 67 of Algorithm 8), or set to the signed

requestData value (the client might add more values to requestData in Line 59 and Line 62 of

Algorithm 8).

Again, the request is sent to the same domain that is stored in the sequence containing the

mTLS nonce (see Line 68).

Note that messages created by Algorithm 8 do not contain an Authorization header.

In all cases, the HTTP request is sent to the domain stored in the first entry of the sequence

containing the mTLS nonce (stored in the mtlsCache subterm). Let req𝑐→𝑟𝑠 be the request that the

client sends by calling HTTPS_SIMPLE_SEND.
HTTPS_SIMPLE_SEND stores the request req𝑐→𝑟𝑠 (which contains the mTLS nonce) in the

pendingDNS state subterm of 𝑐 , see Line 2 of Algorithm 36, and then stops with the DNS request

(which does not contain the nonce) in Line 3 of Algorithm 36. Thus, after finishing this processing

step, the client stores the mTLS nonce only in its pendingDNS state subterm.

The client accesses the pendingDNS state subterm only within the else case in Line 10 of Algo-

rithm 41, i.e., when it receives the DNS response. There, it either stops without a new event and

without changing its state in Line 12 of Algorithm 41, or creates a new pendingRequests entry
containing the request req𝑐→𝑟𝑠 (and thus, also the mTLS nonce) in Line 15 of Algorithm 41. In

this case, the client removes the request from the pendingDNS state subterm in Line 17 of Algo-

rithm 41, i.e., regarding the client state, the mTLS nonce is only contained in the newly created

pendingRequests entry. The client finishes the processing step by encrypting req𝑐→𝑟𝑠 with the key

of the domain that was stored along with the mTLS nonce, i.e., a key of rs, see Lines 16 and 18 of

Algorithm 41.

rs does not leakmTLS nonce contained in request. As the HTTP request req𝑐→𝑟𝑠 is is encrypted

asymetrically with a key of rs, it follows that only the resource server can decrypt the request. The

resource server only decrypts terms in the generic HTTPS server algorithms. More specifically,
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this request is decrypted (only) in Line 7 of Algorithm 41, as this is the only place where an

resource server decrypts a message asymetrically, and then used as a function argument for

PROCESS_HTTPS_REQUEST which is modeled in Algorithm 18.

In Algorithm 18, the /MTLS-prepare and /DPoP-nonce endpoints (Line 2 and Line 8 of Algo-

rithm 18) do not read, store, or send out a value stored in the body of the request under the

TLS_AuthN or TLS_binding key or within a signature (these endpoints do not call the extractmsg()
function).

For the last endpoint starting at Line 13 of Algorithm 18, we now consider all possible mTLS

nonces in req𝑐→𝑟𝑠 :

• req𝑐→𝑟𝑠 .body[TLS_AuthN] (created in Algorithm 4, 5, or 8): Requests created by these algo-

rithms do not contain an Authorization header (see above), thus, the RS would stop in

Line 20 of Algorithm 18 without changing its state and without emitting messages.

• req𝑐→𝑟𝑠 .body[TLS_binding] (created in Algorithm 4, 5, or 6): The RS accesses values stored

in the body of the request under the TLS_binding key only in Line 25 of Algorithm 18. We

distinguish the following cases:

– Opaque access token: If Line 50 of Algorithm 18 is true, then the whole request (including

the TLS_binding value in the request body) is stored in the pendingResponses subterm of

the resource server’s state. However, the resource server never stores the body of requests

stored in pendingResponses into any other subterm of its state and does not send out any

value contained in the body.

– Structured access token: If Lines 62ff. of Algorithm 18 are executed, then the RS responds

in the same processing step. The RS does not use the TLS_binding value, and uses the

request req𝑐→𝑟𝑠 (containing the nonce) only in Line 68 of Algorithm 18, where it calls the

VERIFY_REQUEST_SIGNATURE function (Algorithm 21), which returns a boolean value

(without modifying the state of the RS or emitting messages).

• req𝑐→𝑟𝑠 .headers (created in Algorithm 6): The Content-Digest and Signature headers

might contain the mTLS nonce. However, the Content-Digest header contains only the

hashed request body, and the signature in the Signature headers covers the Content-Digest
header. The RS leaks the headers (Line 82 of Algorithm 18 and Line 43 of Algorithm 19), but

the original mTLS nonce value cannot be derived from the hash values.

• req𝑐→𝑟𝑠 .body (if the body is the signature created in Algorithm 8): As in the first case, the

request does not contain an Authorization header, thus, the RS would stop in Line 20 of

Algorithm 18 without changing its state and without emitting messages.

𝑐 does not leakmTLS nonce in request after getting the response. When receiving the HTTPS

response to req𝑐→𝑟𝑠 , the generic HTTPS server removes the message from the pendingRequests state
subterm and calls PROCESS_HTTPS_RESPONSE with the request as the third function argument.

Algorithm 3 does not store a nonce contained in the body of the request and does not create new

network messages containing such a nonce.

Summing up, the client sends the mTLS nonce created by the resource server only back to that

resource server. As an honest resource server never sends out such a nonce received in a request,

we conclude that the nonce never leaks to any other process, in particular not to 𝑝 .

□

Lemma 12 (JWS client assertion created by client does not leak). For any run
𝜌 = ((𝑆0, 𝐸0, 𝑁 0), . . . , (𝑆𝑛, 𝐸𝑛, 𝑁𝑛)) of a FAPI Web system FAPI with a network attacker, every
configuration (𝑆𝑖 , 𝐸𝑖 , 𝑁 𝑖 ) in 𝜌 , every authorization server as ∈ AS that is honest in 𝑆𝑖 , every client
𝑐 ∈ C that is honest in 𝑆𝑖 and has been issued client identifier clientId by as (in some processing step
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𝑠 −→ 𝑠′ with 𝑠 prior to (𝑆𝑖 , 𝐸𝑖 , 𝑁 𝑖 ) in 𝜌), every domain issuer ∈ dom(as), every index 𝑗 ≤ 𝑖 , every term
clientSignKey := 𝑆 𝑗 (𝑐).asAccounts[issuer] [sign_key], every term 𝑡 with

• checksig(𝑡, pub(clientSignKey)) ≡ ⊤,
• extractmsg(𝑡) [iss] ≡ clientId,
• extractmsg(𝑡) [sub] ≡ clientId, and
• extractmsg(𝑡) [aud] .host ∈ dom(as) or extractmsg(𝑡) [aud] ∈ dom(as)

and every process 𝑝 with as ≠ 𝑝 ≠ 𝑐 , it holds true that 𝑡 ∉ 𝑑∅ (𝑆𝑖 (p)).

Proof. We can immediately apply Lemma 4, which gives us clientSignKey ∉ 𝑑∅ (𝑆𝑖 (𝑝)) for all
processes 𝑝 ≠ 𝑐 .

Thus, only 𝑐 can derive a term 𝑡 such that checksig(𝑡, pub(clientSignKey)) ≡ ⊤ (see Figure 10). In

other words, for 𝑡 to be known to any process (including 𝑐 and as), 𝑐 must have signed a dictionary

with the corresponding iss, sub, and aud values.
An honest client signs dictionaries with both an aud, and an iss dictionary key only in the

following locations:

Line 22 of Algorithm 4 The signature created in Line 22 of Algorithm 4 is added to the body

of an HTTP request (Lines 23, 41, and 42 of Algorithm 4). The client sends that HTTP

request (the token request) to the token endpoint it has cached for the AS identified by the

issuer identifier in extractmsg(𝑡) [aud] (i.e., selectedAS in the context of Algorithm 4). From

Lemma 21, we know that this token endpoint is a URL of the selected AS, i.e., the token

request is sent to and encrypted for the party to which the domain selectedAS belongs (see
the call of HTTPS_SIMPLE_SEND in Line 43, using responseTo : TOKEN in the first function

argument). This party is as by the preconditions of this lemma, i.e., only as can decrypt the

corresponding ciphertext and extract 𝑡 .

Line 19 of Algorithm 5 This case is very similar to the first one, except for differing line numbers;

the signature is added to an HTTP request (Lines 20, 38, and 39 of Algorithm 5), which is

then passed to HTTPS_SIMPLE_SEND, and hence encrypted for as.
Line 40 of Algorithm 8 As in the first case, the signature created in Line 40 of Algorithm 8 is

added to the body of an HTTP request (Lines 41, 55, and 68 of Algorithm 8). Similar to the

first case, this request (the PAR request) is encrypted for and sent to the PAR endpoint 𝑐 has

cached for the party to which extractmsg(𝑡) [aud] belongs. Analogous to the first case, we

can apply Lemma 21 to conclude that this party must be an honest AS (and the request is

stored by 𝑐 with responseTo : PAR by HTTPS_SIMPLE_SEND).

On the client side, this leaves 𝑡 being stored in the pendingRequests state subterm, which is only

accessed when processing HTTPS responses. When the client receives such an HTTPS response, the

generic HTTPS server decrypts the message and calls PROCESS_HTTPS_RESPONSE (Lines 19ff.

of Algorithm 41). The original request (containing 𝑡 ) is used as the third function argument in that

call. However, the instantiation of PROCESS_HTTPS_RESPONSE for clients (Algorithm 3) does

not access the body of the original request when processing TOKEN or PAR responses and hence

cannot leak 𝑡 in any way.

This leaves us with as, which can decrypt the aforementioned requests containing 𝑡 : when

processing an HTTPS request in Algorithm 11, the authorization server does not store the client

assertion and does not create a network message containing the client assertion: the signatures

created in Line 22 of Algorithm 4, Line 19 of Algorithm 5, and Line 40 of Algorithm 8 are contained

in the request under a key client_assertion, which an AS only accesses in Line 3 of Algorithm 12,

where the value is only used to verify the signature (Line 4 of Algorithm 12), and to extract the

signed term (Line 11 of Algorithm 12). Note that in all three cases from above, the path element of
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the generated HTTP request is either /par or /token and during processing of requests to those

endpoints, an AS also does not store the whole request or request body (see Algorithm 11). In other

words, when as processes a request containing 𝑡 , it does neither leak 𝑡 , nor does it store 𝑡 in its

state (and hence, also cannot leak 𝑡 at a later time).

Overall, we conclude that no other process can derive a client assertion 𝑡 created by an honest

client 𝑐 for an honest authorization server as. □

Lemma 13 (Client Authentication). For any run 𝜌 = ((𝑆0, 𝐸0, 𝑁 0), . . . , (𝑆𝑛, 𝐸𝑛, 𝑁𝑛)) of a FAPI
Web system FAPI with a network attacker, every authorization server as ∈ AS, every client c ∈ C,
every processing step 𝑄 in 𝜌

𝑄 = (𝑆, 𝐸, 𝑁 ) 𝑒in→as−−−−−−→
as→𝐸out

(𝑆 ′, 𝐸′, 𝑁 ′)

with 𝑐 and as being honest in 𝑆 ′ and every client identifier clientId issued to 𝑐 by as (during some
processing step 𝑠cid −→ 𝑠cid

′
), if 𝑒in ≡ ⟨𝑥,𝑦, enca (⟨𝑚,𝑘⟩, 𝑘 ′)⟩ (for some 𝑥 , 𝑦, 𝑘 , 𝑘 ′) such that

• 𝑚 ∈ HTTPRequests and
• client_id ∈𝑚.body⇒𝑚.body[client_id] ≡ clientId and
• client_id ∈ extractmsg(𝑚.body) ⇒ extractmsg(𝑚.body) [client_id] ≡ clientId and
• client_assertion ∈𝑚.body⇒ extractmsg(𝑚.body[client_assertion]) [iss] ≡
clientId and
• client_assertion ∈ extractmsg(𝑚.body) ⇒
extractmsg(extractmsg(𝑚.body) [client_assertion]) [iss] ≡ clientId and
• 𝑚.path ≡ /par ∨𝑚.path ≡ /token ∨𝑚.path ≡ /backchannel-authn and
• 𝐸out is not empty,

then 𝑐 created𝑚 (Definition 87).

Proof. Since𝑚 may nor may not contain a signed body, and we sometimes need to refer to the

body without a possible signature, we define

𝑚′ :=


⟨HTTPReq,𝑚.nonce,𝑚.method,𝑚.host,𝑚.path,𝑚.parameters,𝑚.headers, extractmsg(𝑚.body) ⟩ if𝑚.body ∼

sig(∗, ∗)
𝑚 otherwise

(A) as does not create𝑚. An authorization server only emits HTTP(S) requests in two places:

Line 304 of Algorithm 11 The request body in this case is a dictionary with only one key,

auth_req_id; i.e., it contains neither a key TLS_AuthN, nor a key client_assertion. We

will come back to this later.

Line 13 of Algorithm 15 In this case, the path component of the emitted request is

/start-ciba-authentication, i.e., neither /par, nor /token, nor /backchannel-authn.
(B) as executes PROCESS_HTTPS_REQUEST during 𝑄 . Processing of 𝑒in during 𝑄 begins

with Algorithm 41. Since we have 𝐸out not empty, 𝑄 cannot finish at one of the

parameterless stops in Algorithm 41. We also have𝑚 . CORRUPT and as is honest, i.e.,
𝑆 (as).corrupt ≡ ⊥, and therefore, 𝑄 does not stop in Line 6 of Algorithm 41.

The stop in Line 18 of Algorithm 41 cannot be reached, since𝑚 ∉ DNSResponses (see
Appendix G.2.5).

All other stops within Algorithm 41 are parameterless, hence, execution during 𝑄 must

reach one of the function calls in Algorithm 41:

Line 9 of Algorithm 41 (PROCESS_HTTPS_REQUEST) As the third element within 𝑒in
has the correct structure, this function call can be reached.
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Line 24 of Algorithm 41 (PROCESS_OTHER) The instantiation of PROCESS_OTHER for

authorization servers (Algorithm 14) does not output any events, which contradicts

precondition 𝐸out not empty.

Line 26 of Algorithm 41 (PROCESS_HTTPS_RESPONSE) Since𝑚 ∉ HTTPResponses
(Definition 54), this function call cannot be reached (due to the check in Line 23 of

Algorithm 41).

Line 28 of Algorithm 41 (PROCESS_TRIGGER) Since𝑚 . TRIGGER, this function call

cannot be reached.

Line 30 of Algorithm 41 (PROCESS_OTHER) The instantiation of PROCESS_OTHER for

authorization servers (Algorithm 14) does not output any events, which contradicts

precondition 𝐸out not empty.

We conclude that as must execute PROCESS_HTTPS_REQUEST during 𝑄 .

(C) as executes Line 144 or Line 215 or Line 266 of Algorithm 11 during 𝑄 . When

processing 𝑒in during 𝑄 , the generic HTTPS server calls PROCESS_HTTPS_REQUEST, i.e.,
Algorithm 11, in Line 9 of Algorithm 41 (see (B)).

If𝑚.path ≡ /par (with𝑚 from this lemma’s preconditions), then the PAR endpoint starting

in Line 103 of Algorithm 11 is executed. No stop within that endpoint except for the last

(unconditional) stop in Line 144 of Algorithm 11 emits an event.

Analogously, if𝑚.path ≡ /token, then the token endpoint starting in Line 145 of

Algorithm 11 is executed and the (unconditional) stop in Line 215 of Algorithm 11 was

reached, as no other stop within the token endpoint emits events.

If𝑚.path ≡ /backchannel-authn, then the backchannel authentication endpoint starting in

Line 241 of Algorithm 11 is executed and the (unconditional) stop in Line 266 of

Algorithm 11 was reached, as no other stop within this endpoint emits events.

(D) HTTP request contains values that only 𝑐 and as know. The precondition 𝐸out not
empty implies that the checks done in the AUTHENTICATE_CLIENT function

(Algorithm 12), called in Line 116 of Algorithm 11 (PAR endpoint), or Line 148 of

Algorithm 11 (token endpoint), or Line 242 of Algorithm 11 (backchannel authentication

endpoint) did not lead to a stop.
In the case of the PAR endpoint, if as expects a signed PAR (Line 105 of Algorithm 11), the

PAR signature is removed from𝑚.body (Line 106 of Algorithm 11), resulting in𝑚′. Note that
if Algorithm 12 is called with a signed PAR where the signature has not been removed, that

algorithm stops without emitting any events in Line 26 of Algorithm 12 – hence, this cannot

be the case in 𝑄 .

So in all three endpoints, Algorithm 12 is called with the HTTP request𝑚′ and 𝑆 (as) as
input arguments. As Line 26 of Algorithm 12 is not executed (because 𝐸out is not empty), it

follows that client_assertion ∈𝑚′ .body or TLS_AuthN ∈𝑚′ .body.
Case 1: client_assertion ∈𝑚′ .body. As
extractmsg(𝑚′ .body[client_assertion]) [iss] ≡ clientId (lemma precondition), and the

check in Line 12 of Algorithm 12 succeeds (otherwise, 𝐸out would be empty), the

verification key used in Line 4 of Algorithm 12 during 𝑄 must have been

𝑆 (as).clients[clientId] [jwt_key].
By applying Lemma 17, we get ∃𝑘jwt ∈ N such that

𝑆 (as).clients[clientId] [jwt_key] ≡ pub(𝑘jwt), and 𝑘jwt ∉ 𝑑∅ (𝑆𝑛 (𝑝)) for any process

𝑝 ≠ 𝑐 . Hence, we have𝑚.body[client_assertion] ∼ sig(∗, pub(𝑘jwt)).
A term 𝑡 ∼ sig(∗, pub(𝑘jwt)) is not part of any processes’ initial state (Definition 14,

Definition 13, Definition 9, Definition 15). This, together with Figure 10, gives us that if

any process can derive 𝑡 in 𝑆 – which is true for as – then 𝑡 must originate from 𝑐 (see also
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proof of Lemma 12). As shown in the proof of Lemma 12, a client only creates signed

terms with aud and iss keys in the signed value in a few locations; and in each of those,

the key used to sign such a term is taken from the client’s asAccounts state subterm,

under some issuer, under key sign_key.
Now, let cli_assertion := extractmsg(𝑚′ .body[client_assertion]). Since the check in

Line 12 of Algorithm 12 did not result in a parameterless stop, we have
cli_assertion[iss] ≡ clientId, and cli_assertion[sub] ≡ clientId. Furthermore,

cli_assertion[aud] .host ∈ dom(as) or cli_assertion[aud] ∈ dom(as) (Line 14 of
Algorithm 12 and the host of the request is a domain of the authorization server as shown

in Lemma 2).

With this, we can apply Lemma 12.

Thus, for all processes 𝑝 such that as ≠ 𝑝 ≠ 𝑐 , it holds true that

𝑚′ .body[client_assertion] ∉ 𝑑∅ (𝑆 ′ (p)), i.e., only 𝑐 and as can derive

𝑚′ .body[client_assertion]. As authorization servers do not create HTTP(S) requests

with a key client_assertion (see (A)), it follows that𝑚′ – and hence𝑚 – was created by

𝑐 .

Case 2: TLS_AuthN ∈𝑚.body. From Lines 17–19 of Algorithm 12 it follows that

∃𝑖 ∈ N. 𝑆 (as).mtlsRequests[𝑚.body[client_id]] .𝑖 .1 ≡𝑚.body[TLS_AuthN]
Note that client_id ∈𝑚.body as otherwise, the stop in Line 23 of Algorithm 12 will be

executed.

Now, we can apply Lemma 9 with 𝜌 ′ (𝜌 ′ being the trace prefix of 𝜌 up to and including

(𝑆 ′, 𝐸′, 𝑁 ′)).
Thus, for all processes 𝑝 such that as ≠ 𝑝 ≠ 𝑐 , it holds true that

𝑚′ .body[TLS_AuthN] ∉ 𝑑∅ (𝑆 ′ (p)), i.e., only 𝑐 and as can derive𝑚′ .body[TLS_AuthN]. As
authorization servers do not create HTTP(S) requests with a key TLS_AuthN in the request

body (see (A)), we conclude that𝑚′ – and thus𝑚 – was created by 𝑐 .

□

Lemma 14 (DPoP proof secrecy (RS)). For any run 𝜌 = ((𝑆0, 𝐸0, 𝑁 0), . . . , (𝑆𝑛, 𝐸𝑛, 𝑁𝑛)) of a FAPI
Web system FAPI with a network attacker, every configuration (𝑆, 𝐸, 𝑁 ) in 𝜌 , every resource server
rs ∈ RS that is honest in 𝑆 , every client 𝑐 ∈ C that is honest in 𝑆 , every nonce signKey ∈ N , every
process 𝑝1 ≠ 𝑐 , every process 𝑝2 with rs ≠ 𝑝2 ≠ 𝑐 , and every term 𝑡 with
• checksig(𝑡, pub(signKey)) ≡ ⊤
• extractmsg(𝑡) [payload] [htu] .host ∈ dom(rs),
• ath ∈⟨⟩ extractmsg(𝑡) [payload],
• extractmsg(𝑡) [payload] [nonce] ∈ 𝑆 (rs).dpopNonces

it holds true that if signKey ∉ 𝑑∅ (𝑆𝑛 (p1)), then 𝑡 ∉ 𝑑∅ (𝑆 (p2)).

Proof. As only 𝑐 can derive the key signKey, it follows that only 𝑐 can create such a term 𝑡 , i.e.,

the attacker cannot create 𝑡 itself by signing a dictionary with the corresponding payload value.
In the following, we show that such a term created by 𝑐 does not leak to the attacker.

The client signs dictionaries with a payload dictionary key only in three locations:

• In Line 39 of Algorithm 4, where the payload dictionary does not contain an ath value (see

Line 38 of Algorithm 4)

• In Line 36 of Algorithm 5, where the payload dictionary does not contain an ath value (see

Line 35 of Algorithm 5)
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• In Line 26 of Algorithm 6.

The client sends the term 𝑡 created in Line 26 of Algorithm 6 to extractmsg(𝑡) [payload] [htu] .host
via HTTPS_SIMPLE_SEND (using responseTo : RESOURCE_USAGE in the first function argument),

see Lines 21, 25, 42, and 43 of Algorithm 6. The client does not store 𝑡 in any other subterm except

for those needed by HTTPS_SIMPLE_SEND. The term 𝑡 is added (only) to the headers of the HTTP

request using the DPoP dictionary key, see Line 28 of Algorithm 6, and potentially as part of the

Signature header, see Line 37 and Line 39 of Algorithm 6. The client also adds an Authorization
header containing a dictionary with a DPoP dictionary key, see Lines 27 and 42 of Algorithm 6.

We note that the generic part of the client model (which takes care of DNS resolution and

sending the actual HTTPS request after the HTTPS_SIMPLE_SEND call) does not send out or use

𝑡 in any way – except for the sending of the actual request, which is encrypted for the domain

extractmsg(𝑡) [payload] [htu] .host, i.e., for rs, which can only be decrypted by rs (Lemma 46).

When the client receives the HTTPS response to this request, the generic HTTPS server decrypts

the message and calls PROCESS_HTTPS_RESPONSE. The original request (containing the signed

term) is used as the third function argument. The instantiation of PROCESS_HTTPS_RESPONSE
(Algorithm 3) does not access the headers of the request when processing RESOURCE_USAGE re-

sponses.

When processing the HTTPS request created by the client in Algorithm 18, the resource server

does not access the request headers (in particular, it does not add the term to its state and does not

create a network message containing the value) in the /MTLS-prepare and /DPoP-nonce endpoints

(Lines 2 and 8 of Algorithm 18). For all other path values (Line 13 of Algorithm 18), the resource server

first checks whether the resource identified by the path is managed by a supported authorization

server. If this is not the case, then the resource server stops without changing the state and without

emitting events (Line 18 of Algorithm 18). Otherwise, the resource server will eventually invalidate

the nonce value stored in the DPoP proof in Line 44 of Algorithm 18 (by removing it from the

dpopNonces subterm of the resource server’s state), as the request contains an Authorization
header containing a dictionary with the DPoP keyword (see Lines 20 and 30 of Algorithm 18). The

stops before the removal of the nonce from the state of the resource server do not modify the state

of the resource server and do not lead to new events.

We note that the dpopNonces state subterm of the resource server does not contain any value

twice, as the resource server only adds fresh nonces to the state subterm, see the endpoint in Line 8

of Algorithm 18. Thus, the nonce is not contained in dpopNonces after Line 44 of Algorithm 18

is executed, and the resource server it does not add it back to the dpopNonces state subterm

afterwards.

Thus, if the resource server does not finish with a stop without any arguments, it holds true that

extractmsg(𝑡) [payload] [nonce] is not contained in the dpopNonces subterm of the new resource

server’s state, as it always stops with the updated state. (If it finishes with a stop without any

arguments, then 𝑡 will not leak, as there is no change in any state and no new event).

Overall, we conclude that no other process can derive a signed term 𝑡 (as in the statement of the

lemma) created by an honest client for an honest resource server. □

Lemma 15 (Registration Access Tokens Stored at AS Never Change). For

• every run 𝜌 = ((𝑆0, 𝐸0, 𝑁 0), . . . , (𝑆𝑛, 𝐸𝑛, 𝑁𝑛)) of FAPI with a network attacker,
• every authorization server as ∈ AS that is honest in 𝑆𝑛 ,
• every client c ∈ C that is honest in 𝑆𝑛 ,
• every client identifier clientId ∈ TN that has been issued to 𝑐 by as in some processing step
𝑅 = (𝑆𝑟 , 𝐸𝑟 , 𝑁 𝑟 ) → (𝑆𝑟 ′, 𝐸𝑟 ′, 𝑁 𝑟 ′) in 𝜌 (according to Definition 17),
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it holds true that 𝑆𝑛 (as).clients[clientId] [reg_at] ≡ 𝑆𝑟 ′ (as).clients[clientId] [reg_at].

Proof. An honest AS modifies its clients state subterm only in Line 51 and Line 57 of Al-

gorithm 11 (i.e., the /manage endpoint) and Line 24 of Algorithm 13 (the /reg endpoint). Let

𝑃 = (𝑆, 𝐸, 𝑁 ) → (𝑆, 𝐸′, 𝑁 ′) be a processing step after 𝑅 in which the AS modifies its clients
state subterm. We show that the AS never modifies the reg_at value of the corresponding clientId
dictionary, i.e., 𝑆 (as).clients[clientId] [reg_at] ≡ 𝑆 ′ (as).clients[clientId] [reg_at].
Case 1: Line 51 of Algorithm 11. In this case, the AS stores the value clientInfo, which is equal to

𝑆 (as).clients[clientId] (see Line 24 of Algorithm 11) with some modified values (Lines 34-37,

Line 41, Line 43, and Line 50 of Algorithm 11), however, without changing the reg_at value.

Case 2: Line 57 of Algorithm 11. Here, the AS only modifies the active entry of the dictionary

(Line 57 of Algorithm 11). All other values, in particular, the reg_at value, stay the same.

Case 3: Line 24 of Algorithm 13. In this case, the AS does not change an existing client entry:

Let clientId′ be the key of the entry modified by the AS in Line 24 of Algorithm 13. clientId′

is taken from 𝑆 (as).pendingClientIds in Line 2 of Algorithm 13. However, as clientId ∈⟨⟩
𝑆 (as).clients, it follows that clientId ̸∈⟨⟩ 𝑆 (as).pendingClientIds.

□

Lemma 16 (Secrecy of Registration Access Tokens Stored at AS). For
• every run 𝜌 = ((𝑆0, 𝐸0, 𝑁 0), . . . , (𝑆𝑛, 𝐸𝑛, 𝑁𝑛)) of FAPI with a network attacker,
• every authorization server as ∈ AS that is honest in 𝑆𝑛 ,
• every client c ∈ C that is honest in 𝑆𝑛 ,
• every client identifier clientId ∈ TN that has been issued to 𝑐 by as in some processing step
𝑅 = (𝑆𝑟 , 𝐸𝑟 , 𝑁 𝑟 ) → (𝑆𝑟 ′, 𝐸𝑟 ′, 𝑁 𝑟 ′) in 𝜌 (according to Definition 17),

it holds true that 𝑆𝑟 ′ (as).clients[clientId] [reg_at] ∉ 𝑑∅ (𝑆𝑛 (attacker)).

Proof. Note that an honest AS modifies its clients state subterm only in Line 51 and Line 57

of Algorithm 11 (i.e., the /manage endpoint), and Line 24 of Algorithm 13 (the /reg endpoint).

Creating the Registration Access Token: Initially, the clients state subterm of as is empty

(Definition 14). As the AS issues clientId in 𝑅, it follows that for all configurations (𝑆 ′, 𝐸′, 𝑁 ′)
prior to (𝑆𝑟 ′, 𝐸𝑟 ′, 𝑁 𝑟 ′), clientId ̸∈⟨⟩ 𝑆 ′ (as).clients, as the AS takes clientId from

𝑆𝑟 (as).pendingClientIds (Line 2 of Algorithm 13). Initially, pendingClientIds is empty

(Definition 14), and the AS adds values to this state subterm only in Line 5 of Algorithm 14,

after ensuring that the value that is being stored is not part of the clients and

pendingClientIds state subterms (Line 3 of Algorithm 14).

In 𝑅, the AS executes Line 26 of Algorithm 13 (Lemma 1), thus, it must have executed Line 24

of Algorithm 13 (i.e., the /reg endpoint, as Algorithm 13 is only called in Line 19 of

Algorithm 11).

Let ⟨𝑥,𝑦, enca (⟨regReq, 𝑘⟩, pkAS)⟩ be the input event that as processes in 𝑅. The request
enca (⟨regReq, 𝑘⟩, pkAS) was created by 𝑐 (see Definition 17).

In Line 24 of Algorithm 13, the AS creates the entry for clientId. This dictionary entry

contains the key reg_at (see Line 14 of Algorithm 13) with the value being a fresh nonce

(see Line 9 of Algorithm 13). In addition to storing the registration access token into its state,

the AS includes the value into the response (see Line 13 and Line 25 of Algorithm 13). Note

that this response also contains a URL reg_client_uri with the domain being the host of

the registration request and the path /manage (Lines 10 and 13 of Algorithm 13).

Thus, in the configuration (𝑆𝑟 ′, 𝐸𝑟 ′, 𝑁 𝑟 ′), the registration access token is only stored in

𝑆𝑟 ′ (as).clients[clientId] and only contained in the response to 𝑐 .
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Processing the Registration Response: The registration response is an HTTPS response

encrypted with 𝑘 , and only 𝑐 can decrypt it. The client created the registration request in

Line 26 of Algorithm 8, as this is the only place where a client creates POST requests

containing jwks in the body. Let 𝑇 = (𝑆𝑡 , 𝐸𝑡 , 𝑁 𝑡 ) → (𝑆𝑡 ′, 𝐸𝑡 ′, 𝑁 𝑡 ′) be the processing step in

which the client processes the response. When calling the HTTPS_SIMPLE_SEND function, the

client uses a reference value reference with reference[responseTo ≡ REGISTRATION], i.e.,
the client will process the registration response in Line 40 of Algorithm 3. Let

selectedAS ≡ 𝑆𝑡 .sessions[reference[session]] [selected_AS]. This is the same value as

the client selects in Line 5 of Algorithm 8 when sending the registration request (Lemma 20).

The client sends the registration request to the domain

𝑠 .oauthConfigCache[selectedAS] [reg_ep] .host, with 𝑠 being the state of the

corresponding configuration (see Lines 4, 5, 10, 12, and Line 25 of Algorithm 8). As shown in

Lemma 21, this is equal to selectedAS. As the AS processes this request, it follows that
selectedAS ∈ dom(as) (Lemma 2). The client stores the registration access token in

𝑆𝑡
′
.asAccounts[selectedAS] [reg_at] (see Line 46 and Line 49 of Algorithm 3), and then

continues with PREPARE_AND_SEND_INITIAL_REQUEST (Algorithm 8, called in Line 57

of Algorithm 3). There, the client does not access this registration access token, i.e., in 𝑇 , the

client just stores the registration access token in 𝑆𝑡
′
.asAccounts[selectedAS] [reg_at]

without emitting an event containing it.

In addition to storing the registration access token, the client stores the reg_client_uri
value contained in the response, i.e.,

𝑆𝑡
′
.asAccounts[selectedAS] [reg_client_uri] .host ≡ selectedAS and

𝑆𝑡
′
.asAccounts[selectedAS] [reg_client_uri] .path ≡ /manage (see Lines 45 and 49 of

Algorithm 3).

Registration Access Token Stored at AS: The AS accesses the reg_at entry of a client

dictionary only in three locations:

• At the /manage endpoint in Line 20 of Algorithm 11, where the AS expects an HTTP

request containing the registration access token in its Authorization header. However,
up to (𝑆𝑡 ′, 𝐸𝑡 ′, 𝑁 𝑡 ′), the client did not send a request containing this value, and the

authorization server does not send PUT requests.

• At the /manage endpoint in Line 54 of Algorithm 11, where the AS expects an HTTP

request containing the registration access token in its Authorization header. As in the

previous case, such a request cannot exist up to (𝑆𝑡 ′, 𝐸𝑡 ′, 𝑁 𝑡 ′).
• In REGISTER_CLIENT (Algorithm 13), where the client sets this value to a fresh nonce

(see Line 9, Line 14 and Line 24 of Algorithm 13). However, this cannot be for the same

client identifier clientId that has been issued previously, as otherwise, the registration

access token would change, contradicting Lemma 15.

Thus, the AS will not access the registration access token unless it receives a request

containing this token.

Registration Access Token Stored at Client: Let𝑈 = (𝑆𝑢, 𝐸𝑢, 𝑁𝑢) → (𝑆𝑢 ′, 𝐸𝑢 ′, 𝑁𝑢 ′) be the
processing step in which the client accesses the token stored in

asAccounts[selectedAS] [reg_at] (with selectedAS ∈ dom(as), as shown before). The client

accesses the token only in Line 34 of Algorithm 9, where it prepares sending a client

management request. For this, it first creates the Authorization header of the request
containing the registration access token (Line 35). The client sends either a DELETE request
(Line 40 of Algorithm 9) or a PUT request (Line 56 of Algorithm 9) to the domain

𝑆𝑢 (as).asAccounts[selectedAS] [reg_client_uri] ≡ selectedAS (see Line 33 of
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Algorithm 9). Note that when sending the management request, the client calls the

HTTPS_SIMPLE_SEND function with the CLIENT_MANAGEMENT reference.

In𝑈 , the client does not store the registration access token into a different location of its

state and does not send any other requests.

Processing the Management Request: Let 𝑃 = (𝑆𝑝 , 𝐸𝑝 , 𝑁 𝑝 ) → (𝑆𝑝 ′, 𝐸𝑝 ′, 𝑁 𝑝 ′) be the
processing step in which the AS processes the request at the /management path, i.e., in one

of the following two places:

• Line 20 of Algorithm 11 (if the request is a PUT request): Only the client 𝑐 can be the

creator of the request, as up to this processing step, only 𝑐 and as can derive the token and

as as does not send PUT requests. The AS retrieves the registration access token in Line 25

of Algorithm 11, compares it to access token that it stores for the client identifier in the

request in Line 26 of Algorithm 11, but does not change the registration access token

stored for this client identifier. The AS responds with an HTTPS response containing the

same reg_at and reg_uri values (see Line 38 of Algorithm 11).

• Line 54 of Algorithm 11 (if the request is a DELETE request): In this case, the AS compares

the registration access token from the request to the token stored in its state; the AS only

modifies 𝑆𝑝 (as).clients[clientId′] [active], for some clientId′, and does not send any

messages.

Processing the Management Response: Let 𝑄 = (𝑆𝑞, 𝐸𝑞, 𝑁𝑞) → (𝑆𝑞 ′, 𝐸𝑞 ′, 𝑁𝑞 ′) be the
processing step in which the client processes the response. The client processes responses

with the CLIENT_MANAGEMENT reference value only in Line 10 of Algorithm 3. It retrieves the

access token in Line 22 of Algorithm 3 and stores this value into

𝑆𝑞 ′ .asAccounts[selectedAS] [reg_at] (Line 23 of Algorithm 3). This is the same value as

stored previously, as the AS does not change the token. Note that the client does not store

the token in any other place and does not emit a message containing the token.

At this point, the client could repeat sending management requests. The AS would response

as before and would respond with the same token. Overall, we conclude that the registration

access token is a fresh nonce chosen by as and sent to 𝑐 when registering the client, and then

sent only to the AS, which will respond with the same value.

□

Lemma 17 (Secrecy of Client Keys Registered at AS). For

• every run 𝜌 = ((𝑆0, 𝐸0, 𝑁 0), . . . , (𝑆𝑛, 𝐸𝑛, 𝑁𝑛)) of FAPI with a network attacker,
• every authorization server as ∈ AS that is honest in 𝑆𝑛 ,
• every client c ∈ C that is honest in 𝑆𝑛 ,
• every client identifier clientId ∈ TN that has been issued to 𝑐 by as in some processing step
𝑅 = (𝑆𝑟 , 𝐸𝑟 , 𝑁 𝑟 ) → (𝑆𝑟 ′, 𝐸𝑟 ′, 𝑁 𝑟 ′) in 𝜌 (according to Definition 17),
• every configuration (𝑆𝑖 , 𝐸𝑖 , 𝑁 𝑖 ) (at position 𝑖 in 𝜌),

it holds true that if clientId ∈⟨⟩ 𝑆𝑖 (as).clients, then:
∃kmtls, kjwt ∈ N such that

(1) 𝑆𝑖 (as).clients[clientId] [mtls_key] ≡ pub(kmtls), and
(2) 𝑆𝑖 (as).clients[clientId] [jwt_key] ≡ pub(kjwt), and
(3) every process 𝑝 ≠ 𝑐 , we have kmtls, kjwt ∉ 𝑑∅ (𝑆𝑛 (p)).

Proof. Note that an honest AS modifies its clients state subterm only in Line 51 and Line 57

of Algorithm 11 (i.e., the /manage endpoint) and Line 24 of Algorithm 13 (the /reg endpoint).
We do a proof by induction over 𝑖 .
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Base Case: 𝑖 ≤ 𝑟 ′: Initially, the clients state subterm of as is empty (Definition 14). As the AS

issues clientId in 𝑅, it follows that for all configurations (𝑆 ′, 𝐸′, 𝑁 ′) prior to (𝑆𝑟 ′, 𝐸𝑟 ′, 𝑁 𝑟 ′),
clientId ̸∈⟨⟩ 𝑆 ′ (as).clients, as the AS takes clientId from 𝑆𝑟 (as).pendingClientIds
(Line 2 of Algorithm 13). Initially, pendingClientIds is empty (Definition 14), and the AS

adds values to this state subterm only in Line 5 of Algorithm 14, after ensuring that the value

that is being stored is not part of the clients and pendingClientIds state subterms

(Line 3 of Algorithm 14).

In 𝑅, the AS executes Line 24 of Algorithm 13, as both Line 51 and Line 57 of Algorithm 11

would require that clientId ∈⟨⟩ 𝑆𝑟 (as).clients (see Line 22 and Line 56 of Algorithm 11).

Let ⟨𝑥,𝑦, enca (⟨regReq, 𝑘⟩, pkAS)⟩ be the input event that as processes in 𝑅. The request
enca (⟨regReq, 𝑘⟩, pkAS) was created by 𝑐 (see Definition 17). The AS takes the key values

from regReq, i.e., ∃𝑖, 𝑗 ∈ N s.t.

• 𝑆𝑟 ′ (as).clients[clientId] [mtls_key] ≡ regReq.body[jwks] .𝑖 .[val], and
• 𝑆𝑟 ′ (as).clients[clientId] [jwt_key] ≡ regReq.body[jwks] . 𝑗 .[val], and
• regReq.body[jwks] .𝑖 .[use] ≡ TLS, and
• regReq.body[jwks] . 𝑗 .[use] ≡ sig
(see Lines 5-7, Line 14, and Line 24 of Algorithm 13).

A client creates POST requests containing jwks in the body only in Line 26 of Algorithm 8.

The client chooses the values regReq.body[jwks] .𝑖 .[val] ≡ pub(t1), and
regReq.body[jwks] . 𝑗 .[val] ≡ pub(t2), with 𝑡1 and 𝑡2 being fresh nonces (Lines 13-15 of

Algorithm 8). The client calls the HTTPS_SIMPLE_SEND function with 𝑡1 and 𝑡2 in the first

function argument reference, which stores the values (only) in the pendingDNS state subterm

of the client (Line 2 of Algorithm 36). As the client sent the request to the AS, we conclude

that the client processed the corresponding DNS response and stores reference into
pendingRequests in Line 15 of Algorithm 41 (and removes the value from pendingDNS in

Line 17 of Algorithm 41).

Thus, the values 𝑡1 and 𝑡2 are stored only at the client, and only in the pendingRequests
state subterm in a reference value with reference[responseTo ≡ REGISTRATION].
If the client never processes the registration response, then it will not retrieve this

pendingRequests entry, and as the client is honest in 𝑆𝑛 , we conclude that the attacker

cannot derive 𝑡1 and 𝑡2.

If the client receives the response, it will process it in Line 40 of Algorithm 3 (as this is the

only place where a client processes a response with

reference[responseTo] ≡ REGISTRATION). The client retrieves both values from reference
and stores them in its asAccounts state subterm in Line 49 of Algorithm 3. Now, we can

apply Lemma 4 and Lemma 6 and conclude that 𝑡1 and 𝑡2 will never leak, and in particular,

will not be derivable by the attacker in 𝑆𝑛 .

Induction Step: We assume that the statement is true for position 𝑖 and will prove it for 𝑖′ := 𝑖 + 1.
For this, we consider the processing step 𝐼 = (𝑆𝑖 , 𝐸𝑖 , 𝑁 𝑖 ) → (𝑆𝑖′ , 𝐸𝑖′ , 𝑁 𝑖′ ).
If the AS does not change 𝑆𝑖 (as).clients[clientId], then
𝑆𝑖
′ (as).clients[clientId] [mtls_key] ≡ 𝑆𝑖 (as).clients[clientId] [mtls_key] and

𝑆𝑖
′ (as).clients[clientId] [jwt_key] ≡ 𝑆𝑖 (as).clients[clientId] [jwt_key], and and the

property still holds true. Thus, we consider all cases in which the AS changes

𝑆𝑖 (as).clients[clientId]. An honest AS modifies its clients state subterm only in Line 51

of Algorithm 11 and Line 57 of Algorithm 11 (i.e., the /manage endpoint) and in Line 24 of

Algorithm 13 (the /reg endpoint).
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Case 1: Line 51 of Algorithm 11 Here, the AS is processing a DCM update request. Let

⟨𝑥,𝑦, enca (⟨updateReq, 𝑘⟩, pkAS)⟩ be the input event of the processing step (the message

has this structure as the AS is executing the PROCESS_HTTPS_REQUEST function

(Algorithm 11), which is only called by the generic HTTPS server in Line 9 of

Algorithm 41, i.e., the message is an encrypted HTTP request, see Line 8 of Algorithm 41).

The AS updates 𝑆𝑖 (as).clients[clientId] with clientId ≡ updateReq.body[clientId]
(Line 21 of Algorithm 11). The AS also checks that

updateReq.headers[Authorization] [Bearer] ≡ 𝑆𝑖 (as).clients[clientId] [reg_at]
(Line 25 and Line 26 of Algorithm 11).

As shown in Lemma 15, the registration access token never changes, i.e.,

𝑆𝑖 (as).clients[clientId] [reg_at] ≡ 𝑆𝑟 ′ (as).clients[clientId] [reg_at]. As shown in

Lemma 16, only 𝑐 and as can derive this access token. As an honest AS never sends

HTTPS requests with an Authorization header and clientId in the request body (the

only request that an AS sends with an Authorization header is in Line 304 of

Algorithm 11), it follows that 𝑐 created the request.

The remaining proof is similar to the previous case (DCR): The AS takes the key values

from the request, i.e., ∃𝑖, 𝑗 ∈ N s.t.

• 𝑆𝑖′ (as).clients[clientId] [mtls_key] ≡ updateReq.body[jwks] .𝑖 .[val], and
• 𝑆𝑖′ (as).clients[clientId] [jwt_key] ≡ updateReq.body[jwks] . 𝑗 .[val], and
• updateReq.body[jwks] .𝑖 .[use] ≡ TLS, and
• updateReq.body[jwks] . 𝑗 .[use] ≡ sig
(see Lines 29-31, Lines 35-36, and Line 51 of Algorithm 11).

An honest client creates PUT requests only in Line 56 of Algorithm 9 (i.e., when sending a

DCM update request), and sets updateReq.body[jwks] .𝑖 .[val] := pub(𝑡3) and
updateReq.body[jwks] . 𝑗 .[val] := pub(𝑡4), with 𝑡3, 𝑡4 being fresh nonces (see Lines 43-46

and Line 55 of Algorithm 9).

In Line 56 of Algorithm 9, the client calls the HTTPS_SIMPLE_SEND function with 𝑡3 and 𝑡4
in the first function argument reference′, which stores the values (only) in the pendingDNS
state subterm of the client (Line 2 of Algorithm 36). When processing the corresponding

DNS response, the client stores reference′ into pendingRequests in Line 15 of

Algorithm 41 (and removes the value from pendingDNS in Line 17 of Algorithm 41).

Thus, the values 𝑡3 and 𝑡4 are stored only at the client, and only in the pendingRequests
state subterm in a reference value with reference′ [responseTo ≡ CLIENT_MANAGEMENT].
Once the client receives the response, it will process it in Line 10 of Algorithm 3 (as this is

the only place where a client processes a response with the CLIENT_MANAGEMENT reference

value). There, the client retrieves both values from reference′ and stores them in its

asAccounts state subterm in Line 23. Now, we can again apply Lemma 4 and Lemma 6

and conclude that 𝑡3 and 𝑡4 will never leak, and in particular, will not be derivable by the

attacker in 𝑆𝑛 .

Case 2: Line 57 of Algorithm 11 In this case, the AS changes only

𝑆𝑖 (as).clients[clientId] [active], i.e., the keys are the same as in 𝑆𝑖 and the property still

holds true.

Case 3: Line 24 of Algorithm 13 In this case, the AS does not change

𝑆𝑖 (as).clients[clientId]: The AS chooses a client identifier clientId′ from
𝑆𝑖 (as).pendingClientIds (Line 2 of Algorithm 13) and stores 𝑆𝑖 (as).clients[clientId′].
However, clientId ≠ clientId′, as pendingClientIds cannot contain a term used as a key

for the clients state subterm.
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□

Lemma 18 (Access Token can only be used by Honest Client). For
• every run 𝜌 = ((𝑆0, 𝐸0, 𝑁 0), . . . , (𝑆𝑛, 𝐸𝑛, 𝑁𝑛)) of FAPI with a network attacker,
• every resource server rs ∈ RS that is honest in 𝑆𝑛 ,
• every identity id ∈⟨⟩ 𝑠rs

0
.ids,

• every processing step in 𝜌

𝑄 = (𝑆𝑄 , 𝐸𝑄 , 𝑁𝑄 )
𝑒
𝑄

in→rs
−−−−−−→
rs→𝐸

𝑄
out

(𝑆𝑄 ′, 𝐸𝑄 ′, 𝑁𝑄 ′)

• every resourceID ∈ S with as = authorizationServerOfResourcers (resourceID) being honest in
𝑆𝑄 ,

it holds true that:
If ∃𝑟, 𝑥,𝑦, 𝑘,𝑚resp. ⟨𝑥,𝑦, encs (𝑚resp, 𝑘)⟩ ∈⟨⟩ 𝐸𝑄out such that𝑚resp is an HTTP response,
𝑟 :=𝑚resp.body[resource], and 𝑟 ∈⟨⟩ 𝑆𝑄

′ (rs).resourceNonce[id] [resourceID], then
(I) There exists a processing step

𝑃 = (𝑆𝑃 , 𝐸𝑃 , 𝑁 𝑃 )
𝑒𝑃in→rs
−−−−−−→
rs→𝐸𝑃

out

(𝑆𝑃 ′, 𝐸𝑃 ′, 𝑁 𝑃 ′)

such that
(1) either 𝑃 = 𝑄 or 𝑃 prior to 𝑄 in 𝜌 , and
(2) 𝑒𝑃in is an event ⟨𝑥,𝑦, enca (⟨𝑚req, 𝑘1⟩, 𝑘2)⟩ for some 𝑥 , 𝑦, 𝑘1, and 𝑘2 where𝑚req ∈ TN is an

HTTP request which contains a term (access token) 𝑡 in its Authorization header, i.e.,
𝑡 ≡𝑚req .headers[Authorization] .2, and

(3) 𝑟 is a fresh nonce generated in 𝑃 at the resource endpoint of rs in Line 48 of Algorithm 18.
(II) 𝑡 is bound to a key 𝑘 ∈ TN , as, a client identifier clientId ∈ TN and id in 𝑆𝑄 (see Definition 1 ).
(III) If there exists a client 𝑐 ∈ C such that clientId has been issued to 𝑐 by as in a previous processing

step (see Definition 17), and if 𝑐 is honest in 𝑆𝑛 , then the message in 𝑒𝑃in was created by 𝑐 .

Proof. An honest resource server sends HTTPS responses with a resource dictionary key

only in Line 84 of Algorithm 18 and Line 45 of Algorithm 19.

Case 1: Line 84 of Algorithm 18
First Postcondition In the same processing step, i.e., 𝑃 = 𝑄 , the resource server received

an HTTPS request with an access token and generated the resource:

𝑒
𝑄

in
is an event containing an HTTPS request, as Algorithm 18 is only called by the generic

HTTPS server in Line 9 of Algorithm 41. As the check done in Line 7 of Algorithm 41 was

true and the stop in Line 8 was not executed, it follows that the input event of

Algorithm 41 was an event containing an HTTPS request𝑚req (as in the first statement of

the post-condition of the lemma).

𝑚req contains an Authorization header (Line 20 of Algorithm 18).

The resource that is sent out in Line 84 of Algorithm 18 is a freshly chosen nonce

generated in the same processing step in Line 48 of Algorithm 18 (see also Line 75 and

Line 81 of Algorithm 18). This concludes the proof of the first post-condition.

Second Postcondition As Line 84 of Algorithm 18 is executed, it follows that the condition

in Line 50 of Algorithm 18 is false, i.e., extractmsg(𝑚req .headers[Authorization] .2) is a
structured access token (see Lines 23 and 49).

The access token is signed by authorizationServerOfResourcers (resourceID): The value of
responsibleAS (in Line 16) is equal to
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𝑆𝑄 (rs).resourceASMapping[resourceID] (Line 16 of Algorithm 18)

≡ 𝑠rs
0
.resourceASMapping[resourceID] (value is never changed)

∈ dom(authorizationServerOfResourcers (resourceID)) (Definition 15)

As required by the precondition of the lemma,

as = authorizationServerOfResourcers (resourceID) is honest in 𝑆𝑄 .
The signature of the access token is checked in Line 64 of Algorithm 18 using the

verification key

asInfo[as_key]
≡ 𝑆𝑄 (rs).asInfo[responsibleAS] [as_key] (responsibleAS ∈ dom(as), Line 19)
≡ 𝑠rs

0
.asInfo[responsibleAS] [as_key] (value is never changed)

≡ signkey(dom−1 (responsibleAS)) (Definition 15)

≡ signkey(as)

The authorization server as only uses this key in the following locations:

• Line 17 of Algorithm 11: Endpoint returning public key

• Line 97 of Algorithm 11: Signing authorization response

• Line 200 of Algorithm 11: Signing access token

• Line 212 of Algorithm 11: Signing ID token

• Line 227 of Algorithm 11: Signing introspection response

Authorization responses, ID tokens, and introspection responses signed by an

authorization server do not contain a cnf claim (see Lines 91-97 of Algorithm 11 for

authorization responses, Lines 207-212 of Algorithm 11 for ID tokens, and Line 227 of

Algorithm 11 for introspection responses). Thus, it follows that

extractmsg(𝑚req .headers[Authorization] .2) is an access token created by as in
Line 200 of Algorithm 11 (note that the access token checked by the RS contains a

non-empty cnf value, see Line 29, Line 45, and Line 62 of Algorithm 18).

Let 𝑂 = (𝑆𝑂 , 𝐸𝑂 , 𝑁𝑂 )
𝑒𝑂
in
→as

−−−−−−→
as→𝐸𝑂

out

(𝑆𝑂 ′, 𝐸𝑂 ′, 𝑁𝑂 ′) be the processing step in which the

authorization server created and signed the access token. After finishing the processing

step, as stores the access token in 𝑆𝑂
′ (as).records.𝑖 [access_token], for some natural

number 𝑖 (as Line 203 of Algorithm 11 was executed by the authorization server). Note: we

know that 𝑖 is a natural number and not a “longer” pointer due to the last condition in

Line 157 and Line 164 of Algorithm 11.

The structured access token contains a value

extractmsg(𝑚req .headers[Authorization] .2) [sub] ∈⟨⟩ 𝑆𝑄 (rs).ids (Line 49, 71, and 72

of Algorithm 18). This identity is used as a dictionary key for storing the resource (see

Line 74 of Algorithm 18). The ids stored at the resource server are never changed, i.e.,

𝑆𝑄 (rs).ids ≡ 𝑠rs
0
.ids. When creating the access token, the authorization server takes this

value from 𝑆𝑂 (as).records.𝑖 [sub] with the same 𝑖 as above (Line 157 or Line 164 of

Algorithm 11, see also 199 of Algorithm 11). As the remaining lines of the token endpoint

do not change this value, it follows that

𝑆𝑂 (as).records.𝑖 [sub] ≡ 𝑆𝑂 ′ (as).records.𝑖 [sub].
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From the successful check of Line 62 of Algorithm 18 (as we assume that the resource

server returns a resource in Line 84), it follows that either

• accessTokenContent [cnf] .1 ≡ x5t#S256 or

• accessTokenContent [cnf] .1 ≡ jkt,
as cnfValue is set in Line 29 or Line 45 of Algorithm 18.

The authorization server sets the cnf value of access tokens only in Line 199 of

Algorithm 11. The value is determined either in Line 179 or Line 190 of Algorithm 11, and

the authorization server stores the cnf value into the same record as the access_token
and sub values, see Line 204 of Algorithm 11, i.e., 𝑆𝑂

′ (as).records.𝑖 [cnf] is either
[jkt : hash(𝑘)] or [x5t#S256 : hash(𝑘)], for some value 𝑘 .

The record entry also contains the client id value clientId that was authenticated at the

endpoint, see Line 148 and Line 165 of Algorithm 11. The AS does not change this value at

the token endpoint, i.e., 𝑆𝑂
′ (as).records.𝑖 [client_id] contains this client id.

As authorization servers do not remove sequences from their records state subterm, it

follows that the access token is bound do some term 𝑘 ∈ TN , the authorization server as, a
clientId, and id in 𝑆𝑄 , by which we conclude the proof of the second postcondition for this

case.

Third Postcondition
Let 𝑐 ∈ C be honest in 𝑆𝑛 .

Case 1.3.1: AS created the cnf value in Line 179 of Algorithm 11:
Client authenticated at AS. Let req

token
be the token request that the AS processes in

𝑂 , i.e., 𝑒𝑂
in
= ⟨𝑥 ′, 𝑦′, req

token
⟩, for some values 𝑥 ′,𝑦′. In Line 179 of Algorithm 11, the AS

sets the cnf value to hash(extractmsg(req
token

.headers[DPoP]) [headers] [jwk]) (see
Lines 170, 171, 172, and Line 179 of Algorithm 11).

As the identifier clientId was authenticated at the token endpoint, and as this identifier

has been issued to 𝑐 , it follows that 𝑐 created the request req
token

in a previous

processing step 𝐿 = (𝑆𝑙 , 𝐸𝑙 , 𝑁 𝑙 ) → (𝑆𝑙 ′, 𝐸𝑙 ′, 𝑁 𝑙 ′).
Key to which AT is bound to is only known to client. The token request contains

either an authorization code or an authentication request identifier, i.e.,

code ∈ req
token

.body or auth_req_id ∈ req
token

.body (see Line 156 and Line 163 of

Algorithm 11). An honest client creates requests containing an authorization code or

an authorization request identifier only in Line 43 of Algorithm 4 and Line 40 of

Algorithm 5. In both cases, it holds true that

extractmsg(req
token

.headers[DPoP]) [headers] [jwk] ≡ pub(clientSignKey), with
clientSignKey ≡ 𝑆𝑙 (𝑐).asAccounts[selectedAS] [sign_key] and some value selectedAS
(see Lines 12, 37-40 of Algorithm 4 and Lines 9, 34-37 of Algorithm 5). As shown in

Lemma 4, only 𝑐 can derive clientSignKey, i.e., clientSignKey ∉ 𝑑∅ (𝑆𝑛 (p))for all
processes 𝑝 ≠ 𝑐 .

Request was created by client. As the structured access token contains the value

accessTokenContent [cnf] .1 ≡ jkt, and accessTokenContent [cnf] .2 is set to
hash(pub(clientSignKey)), and as the RS checks these values against the resource

request𝑚req (Line 62 of Algorithm 18), it follows that the RS executed Line 45 of

Algorithm 18 (as this is the only place where the RS creates a value cnfValue with
cnfValue.1 ≡ jkt). The corresponding key is taken from the resource request, i.e., the

key is extractmsg(𝑚req .headers[DPoP]) [headers] [jwk] (see Lines 31-33 of
Algorithm 18)

All preconditions of Lemma 14 are true, with dpopProof ≡𝑚req .headers[DPoP]:
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• checksig(dpopProof , pub(clientSignKey)) ≡ ⊤ (see Line 34 of Algorithm 18)

• extractmsg(dpopProof ) [payload] [htu] .host ∈ dom(rs) (see Line 38 of
Algorithm 18 and Lemma 2)

• ath ∈⟨⟩ extractmsg(dpopProof ) [payload], (see Line 42 of Algorithm 18)

• extractmsg(dpopProof ) [payload] [nonce] ∈ 𝑆𝑄 (rs).dpopNonces (see Line 40 of
Algorithm 18)

As clientSignKey ∉ 𝑑∅ (𝑆𝑛 (p))for all processes 𝑝 ≠ 𝑐 (see above), we can apply

Lemma 14 and conclude that in 𝑆𝑄 , dpopProof can only be known by 𝑐 and rs. The
only places where a resource server sends a request are Lines 60 and 82 of

Algorithm 18. In the first case, the request in question is a token introspection request

whose Authorization header uses the Basic scheme. Processing of such a request by

the resource server would lead to an empty 𝐸
𝑄

out
in Line 47 of Algorithm 18. In the

latter case, the resource server leaks the resource request – but only after invalidating

the mTLS nonce (Lines 26f. of Algorithm 18) or DPoP nonce (Line 44 of Algorithm 18),

i.e., processing this request again would lead to an empty 𝐸
𝑄

out
in Line 26 of

Algorithm 18, or Line 40 of Algorithm 18. Hence, resource servers do not send

requests with valid DPoP or mTLS nonces to themselves and it follows that only 𝑐

could have created the request 𝑒𝑃
in
.

Case 1.3.2: AS created the cnf value in Line 190 of Algorithm 11:
Note that in this case, 𝑆𝑂 (as).clients[clientId] [client_type] is equal to pkjwt_mTLS
or mTLS_mTLS (see Line 167 and Line 180 of Algorithm 11). The structured access token

contains the value accessTokenContent [cnf] .1 ≡ x5t#S256, and
accessTokenContent [cnf] .2 is set to hash(mTlsKey). The value mTlsKey is set to

mtlsInfo.2 in Line 189 of Algorithm 11. The sequence mtlsInfo is chosen in Line 148 or

Line 187 of Algorithm 11. In both cases, mTlsKey is set to

𝑆𝑚 .(as).clients[clientId] [mtls_key], with (𝑆𝑚, 𝐸𝑚, 𝑁𝑚) being some configuration

prior to (𝑆𝑂 , 𝐸𝑂 , 𝑁𝑂 ):
• Line 148 of Algorithm 11: mtlsInfo is the third entry of the return value of

AUTHENTICATE_CLIENT (Algorithm 12). AUTHENTICATE_CLIENT determines the

client identifier clientId from the HTTP request and also determines the type of the

client (see Lines 7, 8, 20, 21). As the type of the client is either pkjwt_mTLS or

mTLS_mTLS, the body of the request does not contain a value client_assertion, as
otherwise, the stop in Line 10 of Algorithm 12 would have prevented the

authorization server to issue the access token. In particular, the return in Line 30 was

executed and the third return value was taken from 𝑆𝑂 (as).mtlsRequests[clientId]
(Line 19 of Algorithm 12; Note that this is the same client identifier to which the token

is bound). Initially, the mtlsRequests subterm of the authorization server’s state is

empty (see Definition 14), i.e., the AS added mtlsInfo in some processing step

𝑀 = (𝑆𝑚, 𝐸𝑚, 𝑁𝑚) → (𝑆𝑚 ′, 𝐸𝑚 ′, 𝑁𝑚 ′).
The authorization server adds values to mtlsRequests only in Line 238 of

Algorithm 11. The second sequence entry is 𝑆𝑚 (as).clients[clientId] [mtls_key]
(see Line 235 of Algorithm 11).

• Line 187 of Algorithm 11: mtlsInfo is taken from 𝑆𝑂 (as).mtlsRequests[clientId]. As
shown in the previous case, the second sequence entry of mtlsInfo is equal to
𝑆𝑚 (as).clients[clientId] [mtls_key], for some configuration previous (𝑆𝑚, 𝐸𝑚, 𝑁𝑚).

When adding values to mtlsRequests in Line 238 of Algorithm 11, the authorization

server ensures that the value of the key is not ⟨⟩ (Line 236 of Algorithm 11), i.e.,
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clientId ∈⟨⟩ 𝑆𝑚 (as).clients. Thus, we can apply Lemma 17 an conclude that there

exists a nonce kmtls such that 𝑆𝑚 (as).clients[clientId] [mtls_key] ≡ pub(kmtls) and
for every process 𝑝 ≠ 𝑐 it holds true that kmtls ∉ 𝑑∅ (𝑆𝑛 (p)).
The structured access token contains the values accessTokenContent [cnf] .1 ≡ x5t#S256
and accessTokenContent [cnf] .2 ≡ hash(pub(kmtls)). Thus, the resource server executes
Line 29 of Algorithm 18 (in the processing step 𝑃 ). This means that 𝑒𝑃

in
contains a value

mtlsNonce in the body of the request such that

⟨mtlsNonce, pub(kmtls)⟩ ∈⟨⟩ 𝑆𝑃 (𝑟𝑠).mtlsRequests (see Lines 25, 26, 62).

If the client 𝑐 is honest in 𝑆𝑛 , then it is also honest in 𝑆𝑃 , and we can apply Lemma 11

and conclude that only 𝑐 and rs can derive𝑚req .body[TLS_binding]. As resource
servers do not send requests containing TLS_binding in the request body, it follows

that the HTTP request𝑚req was created by 𝑐 .

Case 2: Line 45 of Algorithm 19
First Postcondition In Line 45 of Algorithm 19, the resource server is processing an

HTTP response resp
introsp

(with the reference TOKENINTROSPECTION, see Line 2 of
Algorithm 19). An honest resource server sends HTTP requests with this reference value

only by calling HTTPS_SIMPLE_SEND in Line 61 of Algorithm 18. Let req
introsp

be the

corresponding request to resp
introsp

. The processing step in which the resource server

emitted req
introsp

is 𝑃 (as in the postcondition of the lemma): The input event of 𝑃

contains an HTTP request𝑚req (again as in the first postcondition) with an access token

𝑡 ≡𝑚req .headers[Authorization] .2 (Line 20 of Algorithm 18). The resource 𝑟 that the

resource server sends out in Line 45 of Algorithm 19 (in the processing step 𝑄) was

stored by the resource server in 𝑆𝑃
′
pendingResponses in Line 53 of Algorithm 18, and

the resource was generated in Line 48 of Algorithm 18 (in the processing step 𝑃 ).

Second Postcondition The request req
introsp

was sent by rs to a domain of as:
responsibleAS in Line 16 of Algorithm 18 is a domain of as, as shown in the proof of the

first case. Thus, it follows that 𝑆𝑃 (rs).asInfo[responsibleAS] [as_introspect_ep] is
⟨URL, S, domas, /introspect, ⟨⟩,⊥⟩, with domas ∈ dom(as) (see Definition 15).

Furthermore, req
introsp

contains the value𝑚req .headers[Authorization] .2, see Line 23
and Line 59 of Algorithm 18.

The authorization server as processes this request in the introspection endpoint in

Line 216 of Algorithm 11. As the resource server did not stop in Line 23 of Algorithm 19,

we conclude that the access token sent by the resource server in 𝑃 is active, i.e., the

authorization server executed Line 225 of Algorithm 11. Thus, there is a value record in

the records state subterm of the authorization server’s state with the access token

(Line 220 of Algorithm 11), and in this record, there is a cnf and a subject entry

(Line 225 of Algorithm 11) The cnf and subject values are added to the body of the

introspection response, and the resource server checks that the subject value is

contained in the list of ids that the resource server stores in 𝑆𝑄 (rs).𝑖𝑑𝑠 (Line 28 of
Algorithm 19).

An honest authorization server adds cnf values to an entry of its records state entry

only in the token endpoint in Line 204 of Algorithm 11. Thus, this value is either

[jkt : hash(k)] (see Line 179 of Algorithm 11), or [x5t#S256 : hash(k)] (see Line 190 of
Algorithm 11), for some value 𝑘 .

In addition, the record entry also contains the client id value clientId that was

authenticated at the endpoint, see Line 148 and Line 165 of Algorithm 11.
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Third Postcondition The resource server checks in Line 25 of Algorithm 19 that the cnf
value that the authorization server put into the response resp

introsp
is equal to the

cnfValue that the resource server stored in Line 53 of Algorithm 18 in the processing

step 𝑃 . The resource server does the same checks in 𝑃 as in the first case (i.e., when

sending out the response in Line 84 of Algorithm 18). Thus, it holds true that the request

processed in 𝑃 either contains a DPoP proof that only 𝑐 and rs can derive, or an mTLS

nonce that only 𝑐 and rs can derive. The proof is analogous to the proof of the first case,

i.e., only 𝑐 could have created the request 𝑒𝑃
in
.

□

Lemma 19 (Redirect URI Properties). For any run 𝜌 = ((𝑆0, 𝐸0, 𝑁 0), . . . , (𝑆𝑛, 𝐸𝑛, 𝑁𝑛)) of a FAPI
Web system FAPI with a network attacker, every configuration (𝑆, 𝐸, 𝑁 ) in 𝜌 , every authorization
server as ∈ AS that is honest in 𝑆 , every client 𝑐 ∈ C that is honest in 𝑆 , every client identifier
clientId that has been issued to 𝑐 by as in a previous processing step (see Definition 17), and every
requestUri, all redirect URIs for 𝑐 stored at as are HTTPS URIs and belong to 𝑐 . Or, more formally: Let
rec = 𝑆 (as).authorizationRequests[requestUri], then rec[client_id] ≡ cliendId implies both
rec[redirect_uri] .protocol ≡ S, and rec[redirect_uri] .host ∈ dom(𝑐)

Proof. Initially, the authorizationRequests state subterm of as is empty (see Definition 14).

The only places in which an honest authorization server writes to its authorizationRequests
state subterm are:

• Line 73 of Algorithm 11: Here, the authorization server does not change or create values

under the client_id or redirect_uri keys.

• Line 142 of Algorithm 11: See below.

In the latter case, the authorization server is processing a pushed authorization request, i.e., an

HTTPS request req to the /par endpoint. Let reqBody := req.body if the request is not signed, and

otherwise, let reqBody := extractmsg(req.body). In order to get to Line 142 of Algorithm 11, reqmust

contain valid client authentication data (see Lines 116 and 120), in particular, reqBody must contain

a client id (under key client_id) and either a value under key TLS_AuthN or client_assertion.
In the latter case, Line 4 of Algorithm 12 together with Line 12 of Algorithm 12 and Line 120 of Al-

gorithm 11 ensure that extractmsg(reqBody [client_assertion]) [iss] ≡ reqBody [client_id].
We note that reaching Line 142 of Algorithm 11 implies that the current processing step will output

an event (there are no stops between Line 142 and Line 144 of Algorithm 11). Hence, we can apply

Lemma 13.

When reaching Line 142 of Algorithm 11, req also must contain a redirectUri value in
reqBody [redirect_uri] (see also Line 123 of Algorithm 11). Furthermore, this redirectUri must be

an HTTPS URI (Line 125 of Algorithm 11) and this is the value stored in the authorization server’s

authorizationRequests state subterm (in a record under the key redirect_uri), together with
reqBody [client_id] (under key client_id).
Line 114 of Algorithm 11 ensures that reqBody contains a field code_challenge_method with

value S256.
From Lemma 13, we know that 𝑐 must have created req. Since 𝑐 is honest and the only place

in which an honest client produces an HTTPS request with a code_challenge_method with

value S256 is in Line 68 of Algorithm 8 (with the corresponding part of the body containing the

code_challenge_method value being chosen in Line 49 of Algorithm 8), we can conclude that

the value of reqBody [redirect_uri] is the one selected in Lines 2f. of Algorithm 8. This im-

plies req.body[redirect_uri] .host ∈ dom(𝑐) (or extractmsg(req.body) [redirect_uri] .host ∈
dom(𝑐) in the case of a signed request) and hence rec[redirect_uri] .host ∈ dom(𝑐). □
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Lemma 20 (Integrity of Client’s Session Storage). For any run
𝜌 = ((𝑆0, 𝐸0, 𝑁 0), . . . , (𝑆𝑛, 𝐸𝑛, 𝑁𝑛)) of a FAPI Web system FAPI with a network attacker, every
configuration (𝑆, 𝐸, 𝑁 ) in 𝜌 , every client 𝑐 ∈ C that is honest in 𝑆 , and every login session id lsid, we
have that if lsid ∈ 𝑆 (𝑐).sessions, then all of the following hold true:

1) selected_AS ∈ 𝑆 (𝑐).sessions[lsid]
2) cibaFlow ∈ 𝑆 (𝑐).sessions[lsid]
3) for all configurations (𝑆 ′, 𝐸′, 𝑁 ′) after (𝑆, 𝐸, 𝑁 ) in 𝜌 we have
𝑆 ′ (𝑐).sessions[lsid] [selected_AS] ≡ 𝑆 (𝑐).sessions[lsid] [selected_AS]

4) for all configurations (𝑆 ′, 𝐸′, 𝑁 ′) after (𝑆, 𝐸, 𝑁 ) in 𝜌 we have
𝑆 ′ (𝑐).sessions[lsid] [cibaFlow] ≡ 𝑆 (𝑐).sessions[lsid] [cibaFlow]

Proof. Since we have 𝑆0 (𝑐).sessions ≡ ⟨⟩ (Definition 13), we know that if lsid ∈ 𝑆 (𝑐).sessions,
such an entry must have been stored there by 𝑐 . Clients only ever store/add such an entry in Line 10

of Algorithm 2 and Line 40 of Algorithm 2. In both cases, the keys selected_AS and cibaFlow are

part of the stored entry, and the key used to refer to the entry inside sessions is a fresh nonce

(i.e., lsid is a fresh nonce there). Hence, whenever a client first stores an entry in sessions under
key lsid, this entry contains the keys selected_AS and cibaFlow.
It is easy to see that Line 10 and Line 40 of Algorithm 2 are indeed the only places in which a

client stores any value under the selected_AS and cibaFlow keys in the sessions state subterm.

Similarly, it is easy to check that these lines are also the only places in which a client (over)writes

a whole entry in the sessions state subterm. Hence, we can conclude: The selected_AS and

cibaFlow keys are present whenever a client adds an entry to the sessions state subterm and

neither the value stored under these keys, nor the sessions entry itself are overwritten or removed

anywhere, implying 1) and 2). In addition, if the client ever executes Line 10 or Line 40 of Algorithm 2

again, it will never overwrite an existing entry, because it will use a fresh login session id, thus we

have 3) and 4). □

Lemma 21 (Integrity of Client’s oauthConfigCache). For any run 𝜌 = ((𝑆0, 𝐸0, 𝑁 0), . . . ,
(𝑆𝑛, 𝐸𝑛, 𝑁𝑛)) of a FAPI Web system FAPI with a network attacker, every configuration (𝑆, 𝐸, 𝑁 ) in 𝜌 ,
every authorization server as ∈ AS that is honest in 𝑆 , every client 𝑐 ∈ C that is honest in 𝑆 , and every
domain 𝑑 ∈ dom(as), it holds true that if 𝑑 ∈ 𝑆 (𝑐) .oauthConfigCache, we have all of the following:

1) 𝑆 (𝑐).oauthConfigCache[𝑑] [issuer] ≡ 𝑑
2) 𝑆 (𝑐) .oauthConfigCache[𝑑] [auth_ep] ≡ ⟨URL, S, 𝑑, /auth, ⟨⟩,⊥⟩
3) 𝑆 (𝑐).oauthConfigCache[𝑑] [token_ep] ≡ ⟨URL, S, 𝑑, /token, ⟨⟩,⊥⟩
4) 𝑆 (𝑐).oauthConfigCache[𝑑] [par_ep] ≡ ⟨URL, S, 𝑑, /par, ⟨⟩,⊥⟩
5) 𝑆 (𝑐).oauthConfigCache[𝑑] [introspec_ep] ≡ ⟨URL, S, 𝑑, /introspect, ⟨⟩,⊥⟩
6) 𝑆 (𝑐).oauthConfigCache[𝑑] [jwks_uri] ≡ ⟨URL, S, 𝑑, /jwks, ⟨⟩,⊥⟩
7) 𝑆 (𝑐).oauthConfigCache[𝑑] [reg_ep] ≡ ⟨URL, S, 𝑑, /reg, ⟨⟩,⊥⟩
8) 𝑆 (𝑐).oauthConfigCache[𝑑] [backchannel_authentication_endpoint] ≡
⟨URL, S, 𝑑, /backchannel-authn, ⟨⟩,⊥⟩

We note that this implies that all these entries in 𝑆 (𝑐).oauthConfigCache[𝑑] are never changed once
they have been stored and that all entries are created in the same processing step.

Proof. We start by noting that 𝑆0 (𝑐).oauthConfigCache ≡ ⟨⟩ (Definition 13), i.e., the

oauthConfigCache state subterm is initially empty. An honest client only ever writes to its

oauthConfigCache state subterm in Line 38 of Algorithm 3 when processing an HTTPS response.

Hence, 𝑑 ∈ 𝑆 (𝑐).oauthConfigCache implies that there must have been a processing step

𝑄 = (𝑆𝑄 , 𝐸𝑄 , 𝑁𝑄 ) → (𝑆𝑄 ′ , 𝐸𝑄 ′ , 𝑁𝑄 ′ ) in 𝜌 such that 𝑑 ∉ 𝑆𝑄 (𝑐).oauthConfigCache and
𝑑 ∈ 𝑆𝑄 ′ (𝑐).oauthConfigCache. In 𝑄 , PROCESS_HTTPS_RESPONSE must have been called with
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a reference as second argument, such that reference[responseTo] ≡ CONFIG. In addition,

reference[session] must contain a value sessionId such that

𝑆𝑄 (𝑐).sessions[sessionId] [selected_AS] ≡𝑚.body[issuer] (Line 36 of Algorithm 3). From

Line 38 of Algorithm 3, we also know that 𝑆𝑄 (𝑐).sessions[sessionId] [selected_AS] ≡ 𝑑 (cf.

Lemma 20). Hence, we already have that 𝑑 ∈ 𝑆 (𝑐).oauthConfigCache implies 1).

With Lemma 3, we have that there must be a processing step 𝑃 = (𝑆𝑃 , 𝐸𝑃 , 𝑁 𝑃 ) → (𝑆𝑃 ′ , 𝐸𝑃 ′ , 𝑁 𝑃 ′ )
prior to 𝑄 in 𝜌 in which 𝑐 called HTTPS_SIMPLE_SEND with reference as first argument. Such a

reference (one with responseTo set to CONFIG) is only created in Line 9 of Algorithm 8. The

accompanying message’s host value there is 𝑆𝑃 (𝑐).sessions[sessionId] [selected_AS], i.e., by
Lemma 20, 𝑑 . That same message’s path value is either /.well_known/openid-configuration or

/.well_known/oauth-authorization-server. From Lemma 46, Algorithm 36, and Lines 10ff. of

Algorithm 41 (and because as does not leak tlskey(𝑑)), we know that the request given to

HTTPS_SIMPLE_SEND in 𝑃 can only be answered by as (and 𝑐 , but clients do not reply to

requests with the aforementioned path values).

Such a request, i.e., one with the path values mentioned above, is processed by as in Lines 2ff. of

Algorithm 11. From looking at those Lines, it is obvious that the response sent in Line 14 of

Algorithm 11 contains a body with a dictionary fulfilling 2)–8). Using Lemma 46 once more, we

can conclude that 𝑐 processes such a response in 𝑄 and thus we have 2)–8). □

Lemma 22 (Authorization code secrecy). For any run 𝜌 = ((𝑆0, 𝐸0, 𝑁 0), . . . , (𝑆𝑛, 𝐸𝑛, 𝑁𝑛)) of a
FAPI Web system FAPI with a network attacker, every configuration (𝑆, 𝐸, 𝑁 ) in 𝜌 , every authorization
server as ∈ AS that is honest in 𝑆 , every client 𝑐 ∈ C that is honest in 𝑆 , every client identifier
clientId that has been issued to 𝑐 by as in a previous processing step (see Definition 17), every identity
id ∈ IDas with 𝑏 = ownerOfID(id) being an honest browser in 𝑆 , every authorization code code . ⊥
for which there is a record rec ∈⟨⟩ 𝑆 (as).records with rec[code] ≡ code, rec[client_id] ≡ clientId,
and rec[subject] ≡ id and every process 𝑝 ∉ {as, 𝑐, 𝑏}, it holds true that code ∉ 𝑑∅ (𝑆 (𝑝)).

Proof.

(1) For code to end up in

(
𝑆 (as).records.𝑥

)
[code] (with 𝑥 ∈ N), the as has to execute Line 89 of

Algorithm 11, since the only other places where an honest authorization server writes to the

– initially empty, see Definition 14 – records state subterm are:

• Line 194 of Algorithm 11: This line overwrites the stored authorization code with ⊥, i.e.,
codes written by this line are not relevant to this lemma.

• Line 196 of Algorithm 11: This line overwrites a stored authorization request identifier

with ⊥.
• Line 203 of Algorithm 11 and Line 204 of Algorithm 11: In these two places, the authorization

server does not modify the code entry. Note that ptr in these places cannot point “into”

one of the records (see condition in Line 157 of Algorithm 11).

• Line 297 of Algorithm 11: Here, the client adds a new entry to records. The client takes a
value from cibaAuthnRequests in Line 293 of Algorithm 11 and adds subject, issuer,
and auth_req_id values in Lines 294f. of Algorithm 11. cibaAuthnRequests is initially

empty (see Definition 14). The entries that the client adds to cibaAuthnRequests in

Line 263 of Algorithm 11 do not contain a code value (see Lines 252ff. of Algorithm 11).

The client modifies existing cibaAuthnRequests entries in Line 277 of Algorithm 11

(modifying the ciba_auth2_reference value), in Line 292 of Algorithm 11 (modifying

authenticateUser), and in Line 9 of Algorithm 15 (modifying the cibaUserAuthNNonce
value). Thus, we conclude that records in cibaAuthnRequests do not contain a code value,
and therefore, records added in Line 297 of Algorithm 11 do not contain a code value.
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(2) A code stored in Line 89 of Algorithm 11 is a fresh nonce (Line 88 of Algorithm 11). Hence,

a code generated by as in that line in some processing step 𝑠𝑖 → 𝑠𝑖+1 is not known to any

process up to and including 𝑠𝑖 . Let 𝑒in be the event processed by as in 𝑠𝑖 → 𝑠𝑖+1. In order to

reach Line 89 of Algorithm 11, 𝑒in must contain an HTTPS request req to the /auth2 endpoint.
The only place in which an honest as sends out the code value is the HTTPS response to req
– i.e., if the sender of req is honest, this response is only readable by the sender of req.

(3) In addition, req must contain a valid identity–password combination – because as stores code
along with identity and clientId only if password ≡ secretOfID(identity). Since as does not
send requests to itself and secretOfID(identity) is only known to as and ownerOfID(identity),
req must have been created by ownerOfID(identity) if the sender of req is honest. W.l.o.g.,

let identity ≡ id, i.e., req was created by 𝑏.

(4) Since the origin header of req must be a domain of as and req must use the POST method,

we know that req was initiated by a script of as. In particular, req must have been initiated

by script_as_form (as this is the only script ever sent by as that triggers requests to the

/auth2 path; the only other script provided by as is script_as_ciba_form (Algorithm 17),

which triggers messages to the /ciba-auth2 endpoint). This script does not leak code after it
is returned from as, since it uses a form post to transmit the credentials to as, and the window
is subsequently navigated away. Instead, as provides an empty script in its response to req
(Line 102 of Algorithm 11). This response contains a location redirect header. It is now crucial

to check that this redirect does not leak code to any process except for 𝑐 . The value of the

location header is taken from 𝑆 (as).authorizationRequests[requestUri] [redirect_uri]
where 𝑆 (as).authorizationRequests[requestUri] [client_id] ≡ clientId. With Lemma 19,

we have that this URI is an HTTPS URI and belongs to 𝑐 . We therefore know that 𝑏 will

send an HTTPS request containing code to 𝑐 . We now have to check whether 𝑐 or a script

delivered by 𝑐 to 𝑏 will leak code. Algorithm 2 processes all HTTPS requests delivered to 𝑐 . As

as redirected 𝑏 using the 303 status code, the request must be a GET request. Hence, 𝑐 does

not process this request in Lines 5ff. of Algorithm 2. If the request is processed in Lines 2ff.

of Algorithm 2, 𝑐 only responds with a script and does not use code at all. Similarly, if the

request is processed in Lines 35ff. of Algorithm 2, Lines 46ff. of Algorithm 2, or Lines 51ff. of

Algorithm 2, the client would not use the code value (and also not store the complete message

in its state). This leaves us with Lines 12ff. of Algorithm 2; here, the code value is (a) stored
in the sessions state subterm and (b) given the SEND_TOKEN_REQUEST function. The

value from (a) is not accessed anywhere, hence, it cannot leak. As for (b), we have to look

at Algorithm 4. There, the code is included in the body of an HTTPS request under the key

code (Line 8 of Algorithm 4).

(5) The HTTPS request (“token request”) prepared in Lines 8ff. of Algorithm 4 is sent to the token

endpoint of as (which was selected in 𝑏’s initial request and is bound to the authorization

response via the ⟨__Host, sessionId⟩ cookie – see Line 13 of Algorithm 2 and Line 69

of Algorithm 3). Since an honest client does not change the contents of an element of

oauthConfigCache once it is initialized with the selected authorization server’s metadata

(see Line 9 of Algorithm 8, Line 38 of Algorithm 3, and Lemma 21), the token endpoint to

which the code is sent is the one provided by as at its metadata endpoint. As as is honest, the
token endpoint returned by its metadata endpoint uses a domain which belongs to as and
protocol S. With Lemma 46 we can conclude that the token request as such does not leak

code.
(6) As the token request is a HTTPS request sent to a domain of as and as is honest, only as

can decrypt the request and extract code. Requests to the token endpoint are processed in
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Lines 145ff. of Algorithm 11, It is easy to see that the code is not stored or send out there,

hence, it cannot leak.

□

Lemma 23 (Uniqe Code Verifier for Each Login Session ID at Client). For any run
𝜌 = ((𝑆0, 𝐸0, 𝑁 0), . . . , (𝑆𝑛, 𝐸𝑛, 𝑁𝑛)) of a FAPI Web system FAPI with a network attacker, every
configuration (𝑆𝑖 , 𝐸𝑖 , 𝑁 𝑖 ) in 𝜌 , every client 𝑐 ∈ C that is honest in 𝑆𝑖 with client identifier clientId
issued to 𝑐 by as (in some processing step 𝑠cid −→ 𝑠cid

′
), every login session id lsid, and every term

codeVerifier , we have that 𝑆𝑖 (𝑐).sessions[lsid] [code_verifier] ≡ codeVerifier implies:
(I) 𝑆 𝑗 (𝑐).sessions[lsid] [code_verifier] ≡ codeVerifier for all 𝑗 ≥ 𝑖 , and
(II) 𝑆𝑖 (𝑐).sessions[lsid′] [code_verifier] . codeVerifier for all lsid′ . lsid.

Proof. We start by noting that an honest client only ever stores something in an entry in

sessions under key code_verifier in Line 53 of Algorithm 8. The value stored there is always a

fresh nonce (see Line 47 of Algorithm 8). Hence, we can conclude (II).

To get (I), we need to prove that a stored code verifier is never overwritten. For this, we

show that a client executes Line 53 of Algorithm 8 at most once with the same login session

id (i.e., sessionId in the context of said line). For this, we look at the places where Algorithm 8

(PREPARE_AND_SEND_INITIAL_REQUEST) is called. Note that the first argument to Algorithm 8

is the aforementioned sessionId:
Line 11 of Algorithm 2 Here, the first argument is a fresh nonce (see Line 9 of Algorithm 2), i.e.,

this line will never lead to Algorithm 8 being called a second time with a given sessionId.
Line 39 of Algorithm 3 This line is only executed when the client processes an HTTPS response

such that Algorithm 3 (PROCESS_HTTPS_RESPONSE) was called with a reference contain-
ing a key responseTo with value CONFIG. The sessionId value used when calling Algorithm 8

is also taken from the reference (see Line 32 of Algorithm 3). I.e., we have to check where this

reference came from. reference is one of the arguments to PROCESS_HTTPS_RESPONSE,
which is only called in Line 26 of Algorithm 41, where the value for reference is taken

from the client’s pendingRequests state subterm. The pendingRequests state subterm is

initially empty (Definition 13) and the only place where elements are added to this state

subterm is Line 15 of Algorithm 41. There, in turn, the value for reference is taken (un-

changed) from an entry in the pendingDNS state subterm. Once again, this state subterm

is initially empty and there is only one place in which entries are added to it: In Line 2 of

Algorithm 36, i.e., inHTTPS_SIMPLE_SEND, where reference is one of the arguments. Hence,

we have to look at places where HTTPS_SIMPLE_SEND is called with a reference such that

reference[responseTo] ≡ CONFIG.
The only place where such a reference is passed to HTTPS_SIMPLE_SEND is Line 9 of

Algorithm 8. However, this call always ends in a stop and the call happens before the client
executes Line 53 of Algorithm 8 – hence, if an execution of Algorithm 8 leads to execution

of Line 11 of Algorithm 2 and thus a subsequent call of Algorithm 8 (when processing the

response), both calls use the same sessionId, but Line 53 of Algorithm 8 (i.e., storing a code

verifier) is executed at most once.

Line 57 of Algorithm 3 This case is very similar to the previous one, except for the following

changes: The responseTo value in question is REGISTRATION instead of CONFIG, and the

(only) place in which HTTPS_SIMPLE_SEND is called with a suitable reference is Line 26 of
Algorithm 8.

Line 63 of Algorithm 9 Here, the value for the first argument to Algorithm 8 is taken from a

record in the client’s pendingCIBARequests state subterm (Line 61 of Algorithm 9). Since
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that record is immediately removed from said state subterm in Line 62 of Algorithm 9, before

even calling Algorithm 8, this call cannot happen twice for a given record. Hence, we have to

examine where these records come from. Initially, the pendingCIBARequests state subterm

is empty (Definition 13) and the only place where elements are added to this state subterm is

Line 41 of Algorithm 2. There, the value in question is a fresh nonce (Line 38 of Algorithm 2).

Hence, the call to Algorithm 8 in Line 63 of Algorithm 9 always uses a fresh value for the

first argument.

□

Lemma 24 (Reqest URIs do not Leak). For any run 𝜌 = ((𝑆0, 𝐸0, 𝑁 0), . . . , (𝑆𝑛, 𝐸𝑛, 𝑁𝑛)) of
a FAPI Web system FAPI with a network attacker, every configuration (𝑆, 𝐸, 𝑁 ) in 𝜌 , every client
identifier clientId, every authorization server as ∈ AS that is honest in 𝑆 , every client c ∈ C that is
honest in 𝑆 and that has been issued client identifier clientId by as (in some processing step 𝑠cid −→ 𝑠cid

′
),

every browser 𝑏 ∈ B that is honest in 𝑆 , every domain 𝑑𝑐 ∈ dom(𝑐), every login session id lsid, every
nonce codeVerifier with
(1) ⟨⟨__Host, sessionId⟩, ⟨lsid,⊤,⊤,⊤⟩⟩ ∈ 𝑆 (𝑏).cookies[𝑑𝑐 ], and
(2) 𝑆 (𝑐).sessions[lsid] [code_verifier] ≡ codeVerifier , and
(3) 𝑆 (𝑐).sessions[lsid] [selected_AS] ∈ dom(as), and
(4) 𝑐 does not leak the authorization request for lsid (see Definition 28),

then all of the following hold true:
(I) There is exactly one nonce requestUri, such that

𝑆 (as).authorizationRequests[requestUri] [code_challenge] ≡ hash(codeVerifier)
(II) only 𝑏, 𝑐 , and as know requestUri, i.e., for all processes 𝑝 ∉ {𝑏, 𝑐, as}, we have requestUri ∉

𝑑∅ (𝑆 (𝑝)).

Proof.

(A) PAR endpoint uses TLS. All requests (and responses) at an authorization server’s pushed

authorization request (PAR) endpoint must be HTTPS requests (see Lines 2ff. of Algorithm 11),

i.e., as long as the sender of the request and the authorization server in question are honest,

the contents of request and response are not leaked by these messages as such (they may

still leak by other means).

(B) hash(codeVerifier) does not leak. We start off by showing that hash(codeVerifier) does not
leak to any process other than 𝑐 and as. For this, we look at how codeVerifier (from (2)) is gener-

ated and stored by 𝑐 . The only place in which an honest client – such as 𝑐 – stores a value under

key code_verifier in its session storage is in PREPARE_AND_SEND_INITIAL_REQUEST
in Line 53 of Algorithm 8. That value is generated in the same function in Line 47 as a fresh

nonce. Hence, at this point, hash(codeVerifier) is only derivable by 𝑐 .

PREPARE_AND_SEND_INITIAL_REQUEST ends with the client sending a PAR request

which contains hash(codeVerifier) under the key code_challenge. So we have to check

who receives/can decrypt that request. The PAR request is sent to the pushed authoriza-

tion request endpoint of the authorization server stored under key selected_AS under lsid
in the client’s session storage. As an honest client never changes this value once it is set

(Lemma 21), we know from (3) that the PAR request is sent to, i.e., encrypted for, as. An honest
authorization server – such as as – only reads a value stored under the key code_challenge
in an incoming message when processing a request to its /par endpoint (Lines 103ff. of

Algorithm 11). There, the value stored under code_challenge – i.e., hash(codeVerifier) – is

stored in an authorization request record in the authorization server’s authorization requests
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storage (see Lines 127, 137, and 142 of Algorithm 11). Since as is honest, it never sends out
the code_challenge value (neither from the authorization requests storage, nor from the

records storage to which the code_challenge is copied in Line 89 of Algorithm 11). Hence,

the value hash(codeVerifier) sent in the PAR request is not leaked “directly”.

However, this value would be derivable if codeVerifier leaks, i.e., we also have to prove that

codeVerifier does not leak. As noted above, this value is a fresh nonce stored in 𝑐’s session

storage under the key code_verifier. The only place in which a client accesses such a

value is in function SEND_TOKEN_REQUEST, where the value is included in the body of an

HTTPS request under the key code_verifier (Lines 8f. of Algorithm 4) which is sent to the

token endpoint of the authorization server stored under key selected_AS under lsid in the

client’s session storage – i.e., as by (3) and Lemma 21. Hence, this request in itself does not

leak codeVerifier .
The only place in which an honest authorization server reads a value stored under the key

code_verifier from an incoming message is when processing a token request in Line 154 of

Algorithm 11. This value is not stored by the authorization server, neither is it sent anywhere.

Hence, codeVerifier does not leak.
(C) as stores hash(codeVerifier). Because the cookie from (1) includes the __Host prefix and 𝑏

is honest, that cookie must have been set by 𝑐: the cookies state subterm is initially empty

(Definition 80), cookies with the __Host prefix are only added in Line 4 of Algorithm 29,

where the browser ensures the cookie was received via a secure connection (Definition 76).

Note that Line 11 of Algorithm 28 cannot add cookies with httpsOnly set to ⊤ (such as the

one in (1)) to the browser’s state, because they get filtered out (see Definition 75).

Clients only ever set cookies with sessionId in the cookie name in two places: when

processing a request to the /start_ciba endpoint in Lines 35ff. of Algorithm 2 – however,

in that case, the corresponding record 𝑆 (𝑐).sessions[lsid] in the client’s session storage

has the value ⊤ stored under the cibaFlow key. This value never changes (Lemma 20), and

Lemma 26 gives us code_verifier ∉ 𝑆 (𝑐).sessions[lsid], i.e., a contradiction to (2).

Hence, the only place left where a client sets cookie with sessionId in the cookie name is

when processing PAR responses in Lines 58ff. of Algorithm 3. With (2) (note that a client

will never change the value stored under code_verifier, see Lemma 23), this implies that 𝑐

sent a PAR request containing hash(codeVerifier) to as (see (B)) and got a response (because

the reference[responseTo] value to reach Lines 58ff. of Algorithm 3 must be PAR, see also
Lemma 3). Hence, as must have processed that PAR request as described in (B). Part of that

processing is to store the value of code_challenge from the request – i.e., hash(codeVerifier)
here – in the authorization request storage. Thus, we can conclude that there must be some

requestUri′ such that

𝑆 (as).authorizationRequests[requestUri′] [code_challenge] ≡ hash(codeVerifier)

(D) Proof for (I). From (B), we have that only 𝑐 and as know the value hash(codeVerifier) and do
not use it in any request except for a single PAR request from 𝑐 to as. From (C), we have that as
stores hash(codeVerifier) as part of processing that PAR request. As aswill use a fresh nonce as
request URI for every processed PAR request (see Line 130 of Algorithm 11), and never changes

the stored values (except for code), we can conclude that there is exactly one requestUri such
that 𝑆 (as) .authorizationRequests[requestUri] [code_challenge] ≡ hash(codeVerifier).

(E) Proof for (II). As shown above, requestUri is a fresh nonce chosen and stored by as when
processing a PAR request send by 𝑐 . requestUri is not sent out by authorization servers

anywhere, except in the response to the PAR request (under the key request_uri) that lead
to the “creation” of requestUri.
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Since we already established that the receiver of, or more precisely, the only one who can

decrypt, that PAR response is 𝑐 in (A), we now have to check how 𝑐 uses requestUri. 𝑐 only
reads a value stored under the key request_uri from an incoming message when processing

the response to a PAR request in Lines 58ff. of Algorithm 3. While 𝑐 does store that value in

its session storage, it never accesses that stored value. However, after processing the PAR

response, 𝑐 constructs an authorization request containing requestUri as part of the query
parameters (under key request_uri). That authorization request is a redirect which “points”

to the authorization endpoint of the authorization server stored under key selected_AS
under lsid in 𝑐’s session storage (i.e., as by (3)). By (4), we also know that 𝑐 does not execute

Line 75 of Algorithm 3, i.e., does not leak the authorization request for lsid.
Before looking at the receiver of the aforementioned redirect, we note that as only ever reads

the value of a request parameter request_uri in Line 64 of Algorithm 11 – that value is

neither stored, nor sent out by as.
The redirect sent out by 𝑐 when processing the PAR response is an HTTPS response which –

among other things – contains a Set-Cookie header with a cookie of the form

⟨⟨__Host, sessionId⟩, ⟨lsid,⊤,⊤,⊤⟩⟩. Note that this is the only place where 𝑐 sets such a

cookie (see (C) for why this cookie cannot originate from Line 42 of Algorithm 2).

Since we know from (1) that 𝑏 knows such a cookie, and (C) implies that 𝑐 must have set this

cookie, we know that the HTTPS response containing the redirect with requestUri, sent by 𝑐 ,
was processed (and in particular: decrypted) by 𝑏, i.e., was sent to/encrypted for 𝑏.

We now only have to show that 𝑏 does not leak requestUri. The aforementioned redirect

contains a location header (Line 68 of Algorithm 3) and status code 303, hence 𝑏 will enter

the location header handling in Line 11 of Algorithm 29 when processing that redirect (note

that the redirect is sent by 𝑐 with an empty script, i.e., no leakage through a script is possible).

This handling will either end in a stopwithout any changes to 𝑏’s state and no output event –

which means that𝑏 does neither store, nor send out requestUri – or with a call ofHTTP_SEND
in Line 27 of Algorithm 29. WhileHTTP_SEND does store the message to be send (containing

requestUri), that stored value is only ever accessed when processing a DNS response and is

then encrypted and sent out. We already established above that the redirection target is one

of as’s authorization endpoints and that as does not leak any requestUri values received there.
Hence, we have that only 𝑏, 𝑐 , and as know requestUri, i.e., for all processes 𝑝 ∉ {𝑏, 𝑐, as}, we
have requestUri ∉ 𝑑∅ (𝑆 (𝑝)).

□

Lemma 25 (CIBA Login Session IDs do not Leak). For any run
𝜌 = ((𝑆0, 𝐸0, 𝑁 0), . . . , (𝑆𝑛, 𝐸𝑛, 𝑁𝑛)) of a FAPI Web system FAPI with a network attacker, every
configuration (𝑆, 𝐸, 𝑁 ) in 𝜌 , every browser 𝑏 ∈ B that is honest in 𝑆𝑛 , every client c ∈ C that is honest
in 𝑆𝑛 , every domain 𝑑𝑐 ∈ dom(𝑐), every term bindingMsg ∈ TN , every term lsid ∈ TN , with

(a) ⟨𝑑𝑐 , bindingMsg⟩ ∈⟨⟩ 𝑆 (𝑏).cibaBindingMessages, and
(b) 𝑆 (𝑐).sessions[lsid] [binding_message] ≡ bindingMsg

it hold true that only 𝑏 and 𝑐 know lsid, i.e., for all processes 𝑝 ∉ {𝑏, 𝑐}, we have lsid ∉ 𝑑∅ (𝑆𝑛 (𝑝)).

Proof. Let ⟨𝑑𝑐 , bindingMsg⟩ ∈⟨⟩ 𝑆 (𝑏).cibaBindingMessages. Initially, the
cibaBindingMessages state subterm of the browser is empty, i.e., 𝑠𝑏

0
.cibaBindingMessages ≡ ⟨⟩

(Definition 80).
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Thus, there exists a processing step

𝑄 = (𝑆𝑄 , 𝐸𝑄 , 𝑁𝑄 )
𝑒
𝑄

in
→b

−−−−−→
b→𝐸

𝑄

out

(𝑆𝑄 ′, 𝐸𝑄 ′, 𝑁𝑄 ′)

with (𝑆𝑄 ′, 𝐸𝑄 ′, 𝑁𝑄 ′) prior to (𝑆, 𝐸, 𝑁 ) in which the browser adds this pairing to

cibaBindingMessages. An honest browser adds entries to cibaBindingMessages only in Line 66

of Algorithm 30.

Here, the browser is processing an HTTPS response, i.e., there exists a term𝑚 s.t. 𝑒
𝑄

in
= ⟨_, _,𝑚⟩

and there exists a key 𝑘 ∈ TN and a term plaintext ∈ TN such that plaintext ≡ decs (𝑚, key),
𝜋1 (plaintext) ≡ HTTPResp (Line 60 of Algorithm 30) and binding_message ∈⟨⟩ plaintext .body
(Line 65 of Algorithm 30).

The browser stores the values ⟨request .host, plaintext .body[binding_message]⟩ into
𝑆𝑄
′ (𝑏).cibaBindingMessages, where request is a term stored along with the key in

pendingRequests, i.e., ⟨_, request, _, key, _⟩ ∈⟨⟩ 𝑆𝑄 (𝑏).pendingRequests (see Line 60 of
Algorithm 30).

Initially, pendingRequests is empty (Definition 80). An honest browser adds values to

pendingRequests with a key only when sending out HTTPS requests in Line 81 of Algorithm 30

and previously storing the request in pendingRequests (Line 76 of Algorithm 30), i.e., in a

previous processing step, the browser emitted an HTTPS request with request being the HTTP

message. This HTTPS request is encrypted asymetrically with the key 𝑠𝑏
0
.keyMapping[𝑑𝑐 ] (note

that the browser never changes its keyMapping state subterm).

I.e., only 𝑐 can decrypt the message

Thus, the response was created by 𝑐 in a previous processing step

𝑃 = (𝑆𝑃 , 𝐸𝑃 , 𝑁 𝑃 )
𝑒𝑃
in
→c

−−−−−→
c→𝐸𝑃

out

(𝑆𝑃 ′, 𝐸𝑃 ′, 𝑁 𝑃 ′)

with (𝑆𝑃 ′, 𝐸𝑃 ′, 𝑁 𝑃 ′) prior to (𝑆𝑄 ′, 𝐸𝑄 ′, 𝑁𝑄 ′). An honest client creates messages with the key

binding_message used in the body only in Line 43 of Algorithm 2 and Line 43 of Algorithm 8. In

the second case, the client creates an HTTP request (see Line 68 of Algorithm 8), i.e., the client

created the response𝑚 (from 𝑒
𝑄

in
) in Line 43 of Algorithm 2.

Before emitting the response, the client stores the binding message into

𝑆𝑃
′ (𝑐).sessions[lsid] [binding_message] (Line 40 of Algorithm 2). Note that both the binding

message and lsid are chosen as fresh nonces (Line 38 and Line 39 of Algorithm 2).

Besides of using the session id as a dictionary key, the client creates a Set-Cookie header with the

value lsid (Line 42 of Algorithm 2) and adds this header to the response (Line 44 of Algorithm 2).

Only 𝑏 can decrypt the response . When processing the response, the browser adds lsid to its

cookies.

The browser will only send lsid as cookies in requests to 𝑐 , and only when sending HTTPS

requests. When processing requests, the client does not store or send out cookie values received in

requests. Also, the client never sends out a sessions dictionary key (i.e., session ids), and for a

given record, never modifies the session id or binding message (i.e., a session id known by a

different process never replaces lsid).
□

Lemma 26 (Client CIBA Session has no PKCE Verifier). For any run 𝜌 of a FAPI Web sys-
tem FAPI with a network attacker, every configuration (𝑆, 𝐸, 𝑁 ) in 𝜌 , every client c ∈ C that is
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honest in 𝑆 , every term lsid ∈ TN , it holds true that if 𝑆 (𝑐).sessions[lsid] [cibaFlow] = ⊤, then
code_verifier ∉ 𝑆 (𝑐).sessions[lsid].

Proof. By contradiction: assume 𝑆 (𝑐).sessions[lsid] [cibaFlow] = ⊤ and code_verifier ∈
𝑆 (𝑐).sessions[lsid].

Initially, the sessions state subterm of 𝑐 is empty (Definition 13). New sessions are added

to sessions only in Line 10 of Algorithm 2 and Line 40 of Algorithm 2, and do not contain a

code_verifier value. Let 𝑄 = (𝑆𝑄 , 𝐸𝑄 , 𝑁𝑄 ) → (𝑆𝑄 ′, 𝐸𝑄 ′, 𝑁𝑄 ′) be the processing step in which

the client updates the lsid session by adding the code_verifier value. This happens only in

Line 53 of Algorithm 8. From the check done by the client in Line 42 of Algorithm 8, it follows that

𝑆𝑄 (𝑐).sessions[lsid] [cibaFlow] is not ⊤. However, the client never changes the cibaFlow value

of an existing session (Lemma 20), i.e., 𝑆 (𝑐).sessions[lsid] [cibaFlow] is not ⊤, contradicting the

assumption.

□

Lemma 27 (Client Session Containing CIBA Data Implies CIBA Session). For any run 𝜌 of a
FAPI Web system FAPI with a network attacker, every configuration (𝑆, 𝐸, 𝑁 ) in 𝜌 , every client c ∈ C
that is honest in 𝑆 , every term lsid ∈ TN , it holds true that if for any cibaKey ∈ {start_polling,
auth_req_id, client_notification_token, binding_message, selected_identity}, we have
cibaKey ∈ 𝑆 (𝑐).sessions[lsid], then 𝑆 (𝑐).sessions[lsid] [cibaFlow] = ⊤.

Proof. Initially, the sessions state subterm of 𝑐 is empty (Definition 13). New sessions are added

to a client’s sessions state subterm only in Line 10 of Algorithm 2 and Line 40 of Algorithm 2.

In the latter case, we have the value of key cibaFlow being ⊤, which the client never changes

once set (Lemma 20), i.e., nothing further to prove.

In the former case, we have to look at all places where one of the dictionary keys start_polling,
auth_req_id, client_notification_token, binding_message, or selected_identity may be

added to a session record and prove that such a session record must have a key cibaFlow with

value ⊤.
Line 40 of Algorithm 2 Here, key cibaFlow is assigned the value ⊤.
Lines 124 and 126 of Algorithm 3 These lines can only be reached when the client is processing

an HTTPS response as part of Algorithm 3 (Line 122 of Algorithm 3), where the responseTo
key of the reference parameter of Algorithm 3 has the value CIBA_AUTH_REQ. By apply-

ing Lemma 3, we get that the client must have sent a corresponding request by calling

HTTPS_SIMPLE_SEND with a matching reference value. This only happens in Line 70 of

Algorithm 8, where the value of reference[session] is set to a session where key cibaFlow
has been assigned the value ⊤ (see the check in Line 69 of Algorithm 8). Since the same

reference[session] is used when processing the response, i.e., in Lines 124 and 126 of Algo-

rithm 3 (see Lines 32f. of Algorithm 3), and a client never changes this value (Lemma 20), we

conclude that the value of key cibaFlow of the session in Lines 124 and 126 of Algorithm 3

must be ⊤.
Line 43 of Algorithm 8 (stored to a session in Line 54 of Algorithm 8) See Line 42 of Algorithm 8

– this line is only reachable if key cibaFlow has been assigned the value ⊤.
Line 45 of Algorithm 8 (stored to a session in Line 54 of Algorithm 8) See Line 42 of Algorithm 8

– this line is only reachable if key cibaFlow has been assigned the value ⊤.
□

Lemma 28 (AS Record Subject Uniqenuess for Access Token). For any run 𝜌 of a FAPI Web
system FAPI with a network attacker, every configuration (𝑆, 𝐸, 𝑁 ) in 𝜌 , every authorization server
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as ∈ AS that is honest in 𝑆 , every values 𝑖, 𝑗 ∈ N, it holds true that if

𝑆 (as).records.𝑖 .2[access_token] ≡ 𝑆 (as).records. 𝑗 .2[access_token]

then 𝑆 (as).records.𝑖 .2[subject] ≡ 𝑆 (as).records. 𝑗 .2[subject].

Proof. Initially, the records state subterm of as is empty (Definition 14). The AS adds new

records to records only in Line 89 of Algorithm 11 and Line 297 of Algorithm 11, and in both

cases, the entry contains no access_token entry:
Values stored in Line 89 of Algorithm 11 are set to a record from authorizationRequests in

Line 85 of Algorithm 11, and extended by subject, issuer, and code values.

authorizationRequests is initially empty, and new values are only added at the PAR endpoint in

Line 142 of Algorithm 11, where the newly created entry has no access_token value.
Similarly, values stored in Line 297 of Algorithm 11 are set to a record from cibaAuthnRequests
in Line 293 of Algorithm 11, and extended by subject, issuer, and auth_req_id values.
cibaAuthnRequests is initially empty, and new values are only added at the backchannel

authentication endpoint in Line 263 of Algorithm 11, where the newly created entry has no

access_token value.
The AS adds access_token entries to existing records only at the token endpoint in Line 203 of

Algorithm 11. There, the access token is either created as a structured token in Line 200 of

Algorithm 11, or chosen as a fresh nonce in Line 202 of Algorithm 11.

In the case of a structured token (Line 203 of Algorithm 11), if

𝑆 (as).records.𝑖 .2[access_token] ≡ 𝑆 (as).records. 𝑗 .2[access_token] , it follows that both
tokens contain the same sub value (see Line 199 of Algorithm 11), which is taken from the record

entry that will be updated in Line 203 of Algorithm 11.

If the token is a fresh nonce (Line 202 of Algorithm 11), then both records are the same, i.e., 𝑖 = 𝑗 .

Note that after storing the access token, the values of the token and the subject information stored

in the record are not changed by the AS.

□

Lemma 29 (CIBA Authentication Reqest Id Links Binding Message and Login Session Id).

For any run 𝜌 of a FAPI Web system FAPI with a network attacker, every configuration (𝑆, 𝐸, 𝑁 ) in 𝜌 ,
every client c ∈ C that is honest in 𝑆 , every authorization server as ∈ AS that is honest in 𝑆 , every
term authnReqId ∈ TN , every term lsid ∈ TN , and every term bindingMsg ∈ TN , if

(a) 𝑆 (𝑐).sessions[lsid] [selected_AS] ∈ dom(as), and
(b) 𝑆 (𝑐).sessions[lsid] [auth_req_id] ≡ authnReqId, and
(c) 𝑆 (as).records[authnReqId] [binding_message] ≡ bindingMsg

then it holds true that 𝑆 (𝑐).sessions[lsid] [binding_message] ≡ bindingMsg.

Proof. An honest client adds auth_req_id values to its sessions only in Line 124 of Algorithm 3,

i.e., when processing HTTPS responses with the CIBA_AUTH_REQ reference value (Line 122 of

Algorithm 3). In this case, the client is processing CIBA authentication responses. Let 𝑅 be the

processing step in which this happens. The client sent the corresponding authentication request

in Line 70 of Algorithm 8 (as this is the only location where it uses the CIBA_AUTH_REQ reference
value). Let 𝑃 = (𝑆𝑃 , 𝐸𝑃 , 𝑁 𝑃 ) −→ (𝑆𝑃 ′, 𝐸𝑃 ′, 𝑁 𝑃 ′) be the processing step in which the client sends

the authentication request. As the client sends a CIBA authentication request, it follows that lsid
is a session identifier for a CIBA session, i.e., 𝑆𝑃 (𝑐).sessions[lsid] [cibaFlow] ≡ ⊤ (Line 69 of

Algorithm 8).
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Let selectedAS := 𝑆𝑃 (𝑐).sessions[lsid] [selected_AS]. The client sends the authentication

request to 𝑆𝑃 (𝑐) .oauthConfigCache[selectedAS] [backchannel_authentication_endpoint] ≡
⟨URL, S, selectedAS, /backchannel-authn, ⟨⟩,⊥⟩ (see Lines 4, 5, 10, 28 and Line 68 of Algorithm 8

and Lemma 21). As the client never changes the selected_AS entry of its sessions, it follows that

selectedAS ∈ dom(as) (Precondition (a)), i.e., the only as can decrypt the HTTPS request.

Let 𝑄 = (𝑆𝑄 , 𝐸𝑄 , 𝑁𝑄 ) −→ (𝑆𝑄 ′, 𝐸𝑄 ′, 𝑁𝑄 ′) be the processing step in which the AS processes the

request. The AS processes the request at the /backchannel-authn endpoint, i.e., in Line 241 of

Algorithm 11. Here, the AS chooses authnReqId as a fresh nonce (Line 262 of Algorithm 11) and

creates the entry 𝑆𝑄
′ (as).cibaAuthnRequests[authnReqId]. This entry is later moved into the

records state subterm. The binding message is taken from the backchannel authentication request

in Line 254 of Algorithm 11, where it is also added to the newly created authorization record entry.

The HTTPS response created by the AS contains authnReqId (Line 264 of Algorithm 11). The

client processes the response in 𝑅 and stores the request identifier in the session identified by lsid
in Line 124 of Algorithm 3.

□

Lemma 30 (Client Identifier in asAccounts Implies Issuance). For any run 𝜌 of a FAPI Web
system FAPI with a network attacker, every configuration (𝑆, 𝐸, 𝑁 ) in 𝜌 , every client c ∈ C that is
honest in 𝑆 , every AS as ∈ AS that is honest in 𝑆 , every domain 𝑑 ∈ dom(as), if
𝑆 (𝑐).asAccounts[𝑑] [client_id] . ⟨⟩, then there exists a processing step prior to (𝑆, 𝐸, 𝑁 ) in which
𝑆 (𝑐).asAccounts[𝑑] [client_id] has been issued to 𝑐 by as (according to Definition 17).

Proof. Initially, asAccounts is empty (see Definition 13), and the client adds entries to it with a

client_id dictionary key only in Line 23 of Algorithm 3 and Line 49 of Algorithm 3. In the first

case, the client already stores an entry for the AS domain 𝑑 and reuses the same client_id value

(see Line 12 of Algorithm 3). Thus, there exists a processing step 𝑅 = (𝑆𝑟 , 𝐸𝑟 , 𝑁 𝑟 ) −→ (𝑆𝑟 ′, 𝐸𝑟 ′, 𝑁 𝑟 ′)
in which the client executes Line 49 of Algorithm 3 and sets 𝑆𝑟 ′ (𝑐).asAccounts[𝑑] [client_id] to
the value stored in 𝑆 . The client takes this value from the body of an HTTPS response (Line 44 of

Algorithm 3). The client sent the corresponding HTTPS POST request in Line 26 of Algorithm 8 of

a processing step 𝑃 = (𝑆𝑝 , 𝐸𝑝 , 𝑁 𝑝 ) −→ (𝑆𝑝 ′, 𝐸𝑝 ′, 𝑁 𝑝 ′), as this is the only place where the client calls

HTTPS_SIMPLE_SEND with the REGISTRATION reference value (see also Line 40 of Algorithm 3).

The client sent the request to the domain 𝑑 : As the client stores the client identifier into

𝑆𝑟 ′ (𝑐) .asAccounts[𝑑], it follows that 𝑆𝑟 (𝑐).sessions[sessionId] [selected_AS] ≡ 𝑑 , with sessionId
being the session identifier from the reference value retrieved in Line 32 of Algorithm 3 (see also

Lines 33, 34, and 49). The session identifier is the same value that the client used when sending

the request (as it is part of the reference value that is used as an input to the HTTPS_SIMPLE_SEND
function). By applying Lemma 20, it follows that 𝑆𝑝 (𝑐).sessions[sessionId] [selected_AS] ≡ 𝑑
(as the selected_AS value of a session never changes). The client sends the request to

𝑆𝑝 (𝑐).oauthConfigCache[𝑑] [reg_ep] .host (see Lines 4, 5, 10, 12, and 25 of Algorithm 8), which

is equal to 𝑑 (see Lemma 21).

This request is sent to the /reg endpoint (see Lemma 21). Let 𝑄 be the processing step in

which the AS processes this request in Line 18 of Algorithm 11, where it calls Algorithm 13

(REGISTER_CLIENT). There, the AS responds with an HTTPS response with the 201 status code

containing a client_id value (i.e., the client identifier that the client stores in𝑅). Thus, all conditions
of Definition 17 are fulfilled, and in particular, 𝑄 is the processing step in which the AS issued the

client identifier.

□
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F.2 Authorization Property
In this section, we show that the authorization property from Definition 19 holds.

Lemma 31 (Authorization). For

• every run 𝜌 = ((𝑆0, 𝐸0, 𝑁 0), . . . , (𝑆𝑛, 𝐸𝑛, 𝑁𝑛)) of FAPI with a network attacker,
• every resource server rs ∈ RS that is honest in 𝑆𝑛 ,
• every identity id ∈⟨⟩ 𝑠rs

0
.ids with 𝑏 = ownerOfID(id) being an honest browser in 𝑆𝑛 ,

• every processing step in 𝜌

𝑄 = (𝑆𝑄 , 𝐸𝑄 , 𝑁𝑄 )
𝑒
𝑄

in→rs
−−−−−−→
rs→𝐸

𝑄
out

(𝑆𝑄 ′, 𝐸𝑄 ′, 𝑁𝑄 ′)

• every resourceID ∈ S with as = authorizationServerOfResourcers (resourceID) being honest in
𝑆𝑄 ,

it holds true that:
If ∃𝑟, 𝑥,𝑦, 𝑘,𝑚resp .⟨𝑥,𝑦, encs (𝑚resp, 𝑘)⟩ ∈⟨⟩ 𝐸𝑄out such that𝑚resp is an HTTP response,

𝑟 :=𝑚resp.body[resource], and 𝑟 ∈⟨⟩ 𝑆𝑄
′ (rs).resourceNonce[id] [resourceID], then

(I) There exists a processing step

𝑃 = (𝑆𝑃 , 𝐸𝑃 , 𝑁 𝑃 )
𝑒𝑃in→rs
−−−−−−→
rs→𝐸𝑃

out

(𝑆𝑃 ′, 𝐸𝑃 ′, 𝑁 𝑃 ′)

such that
(1) either 𝑃 = 𝑄 or 𝑃 prior to 𝑄 in 𝜌 , and
(2) 𝑒𝑃in is an event ⟨𝑥,𝑦, enca (⟨𝑚req, 𝑘1⟩, 𝑘2)⟩ for some 𝑥 , 𝑦, 𝑘1, and 𝑘2 where 𝑚req ∈ TN is an

HTTP request which contains a term (access token) 𝑡 in its Authorization header, i.e.,
𝑡 ≡𝑚req .headers[Authorization] .2, and

(3) 𝑟 is a fresh nonce generated in 𝑃 at the resource endpoint of rs in Line 48 of Algorithm 18.
(II) 𝑡 is bound to a key 𝑘 ∈ TN , as, a client identifier clientId ∈ TN and id in 𝑆𝑄 (see Definition 1).
(III) If there exists a client 𝑐 ∈ C such that clientId has been issued to 𝑐 by as in a previous processing

step (see Definition 17), and if 𝑐 is honest in 𝑆𝑛 , then 𝑟 is not derivable from the attackers
knowledge in 𝑆𝑛 (i.e., 𝑟 ∉ 𝑑∅ (𝑆𝑛 (attacker))).

Proof. Resource server sends resource to correct client. The first and the second postcon-

dition are shown in Lemma 18, where we also showed that the message contained in the

event 𝑒𝑃
in
was created by 𝑐 (as intuitively, the access token is bound to 𝑐 via mTLS or DPoP,

and no other process can prove possession of the secret key to which the token is bound).

The resource 𝑟 is sent back as a response to 𝑒𝑃
in
: If the resource server sends out the resource

in Line 84 of Algorithm 18, then it encrypts the HTTPS response (symmetrically) with the

key contained in 𝑒𝑃
in
. Otherwise, the resource server sends out the response in Line 45 of

Algorithm 19, encrypted (symmetrically) with the key contained in 𝑒𝑃
in
(the resource server

stored the key in its state).

Thus, the resource server sends out the resource 𝑟 back to 𝑐 , encrypted with a symmetric

key that only 𝑐 and rs can derive. This response can only be decrypted by 𝑐: A resource

server can decrypt symmetrically only in Line 19 of Algorithm 41 (i.e., in the generic server

model), where the decryption key is taken from the pendingRequests state subterm. The

application-layer model of a resource server does not access this state subterm, and the

generic HTTPS server model stores only fresh nonces as keys (see Line 15 of Algorithm 41).
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Client never sends resource 𝑟 to attacker. In the following, we show that 𝑐 does not send the

resource nonce 𝑟 to the attacker by contradiction, i.e., we assume that the client does send 𝑟

to the attacker.

The client processes the response of the resource server (containing the resource 𝑟 ) in Line 88

of Algorithm 3 (as a client sends out requests that have an Authorization header and

a DPoP header or TLS_binding value in the body only by calling HTTPS_SIMPLE_SEND
in Line 43 of Algorithm 6 with the reference RESOURCE_USAGE) in some processing step

𝑅 = (𝑆𝑅, 𝐸𝑅, 𝑁𝑅)
𝑒𝑅
in
→c

−−−−−→
c→𝐸𝑅

out

(𝑆𝑅 ′, 𝐸𝑅 ′, 𝑁𝑅 ′) (𝑅 happens after 𝑄).

Let sessionId be the session identifier for the session at the client, i.e., the value retrieved in

Line 32 of Algorithm 3 when processing the resource response. This is either a session using

the authorization code flow, or the CIBA flow, i.e., 𝑆𝑅 (𝑐).sessions[sessionId] [cibaFlow] is
either ⊤ or ⊥. As shown in Lemma 20, this value is not changed by the client after initially

choosing it.

Case 1: Authorization Code Flow Let 𝑆𝑅 (𝑐).sessions[sessionId] [cibaFlow] ≡ ⊥.
Redirection request was created by attacker. The client stores the resource into its

sessions in Line 109 of Algorithm 3, but never access it again in any other location.

(Note that for CIBA flows, the client would access resources stored into its session in

Lines 51ff. of Algorithm 2, however, as for this session, cibaFlow is ⊥ and as the client

never changes cibaFlow as shown in Lemma 20, it follows that the client would stop in

Line 57 of Algorithm 2.) The client sends the resource as a response to a request req
redir

stored in 𝑆𝑅 .sessions[sessionId] [redirectEpRequest], for some value sessionId (and in

particular, encrypts the response with the key contained in req
redir

), see Line 33, Line 112,

and Line 113 of Algorithm 3.

An honest client sets redirectEpRequest values only in the redirection endpoint in

Line 12 of Algorithm 2, i.e., req
redir

is a request that was previously received by the

client. This request contains a value (an authorization code) in req
redir

.parameters[code]
(or extractmsg(req

redir
.parameters[response]) [code] if the authorization response is

signed), which the client puts into the token request in Algorithm 4..

As we assume that the client sends 𝑟 to the attacker, it follows that req
redir

was created

by the attacker, in particular, the attacker can derive the symmetric key and all other

values in the request.

Access token was sent by correct authorization server. Before sending the resource
request, the client ensures that it sent the token request to the correct authorization

server, i.e., the authorization server managing the resource: The client sends resource

requests only in Algorithm 6. In Line 7 of Algorithm 6, the client checks whether the input

argument tokenEPDomain is a domain of the authorization server managing the resource

that the client wants to request at the resource server. Algorithm 6 is called only in Line 83

of Algorithm 3, and the value tokenEPDomain is the domain of the token request, i.e., the

client received the access token from authorizationServerOfResourcers (resourceID) (see
Definition 13). This authorization server is honest, as required by the precondition of the

lemma.

Attacker can derive authorization code issued for honest client and id. As shown
for the second postcondition, the access token that the client received in the token

response is bound to some key, the authorization server as, the client id clientId, and the

identity id.
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The authorization server created the access token in the token endpoint in Line 145

of Algorithm 11 in some processing step 𝑇 = (𝑆𝑇 , 𝐸𝑇 , 𝑁𝑇 )
𝑒𝑇
in
→as

−−−−−−→
as→𝐸𝑇

out

(𝑆𝑇 ′, 𝐸𝑇 ′, 𝑁𝑇 ′). As

noted above, the token request contains an authorization code, and also the grant type

authorization_code (as the request was sent in Algorithm 4), i.e., the AS executes

Lines 153ff. of Algorithm 11. The token request contains a code code such that there

is a record rec ∈⟨⟩ 𝑆𝑇 (as).records with rec[code] ≡ code and code . ⊥ (Line 157 of

Algorithm 11). Furthermore, the record has the following values:

• rec[clientId] ≡ clientId (as the access token is bound to this client id),

• rec[subject] ≡ id (as the access token is bound to this identity)

As shown in Lemma 7, the code that the client uses is the same code that it received in

the request to the redirection endpoint, i.e., req
redir

.

However, this is a contradiction to Lemma 22, i.e., such an authorization code cannot

leak to the attacker.

Case 2: CIBA Flow Let 𝑆𝑅 (𝑐).sessions[sessionId] [cibaFlow] ≡ ⊤.
Attacker requested resource at client endpoint Contrary to the previous case, the

client model does not send the resource nonce immediately after receiving it. Instead,

it also stores the resource nonce into its state in 𝑆𝑅
′ (𝑐).sessions[sessionId] [resource]

(Line 109 of Algorithm 3), but waits for the browser to send a request to the

/ciba_get_ssid_or_resource endpoint. More precisely, for a session with cibaFlow
being ⊤, the client model sends values stored under the resource key of the session only

in Line 68 of Algorithm 2. Here, the client responds to an HTTPS request which includes

the session id sessionId in the Cookie header of the request (Line 52 of Algorithm 2). As

we assume that 𝑐 sends 𝑟 to the attacker, it follows that this request was created by the

attacker, i.e., the attacker can derive sessionId in 𝑆𝑅
′
.

Resource Request sent for sessionId. For storing the resource nonce, the client re-

trieves the session identifier from a reference dictionary (Line 32 of Algorithm 3), which

is an input argument to the PROCESS_HTTPS_RESPONSE function (Algorithm 3). In

addition, this dictionary contains the value reference[responseTo] ≡ RESOURCE_USAGE
(Line 88 of Algorithm 3). The client sends resource requests only in Algorithm 6 (Line 43

of Algorithm 6 is the only place where the client uses the RESOURCE_USAGE reference

value). The value sessionId stored in reference is an input argument of Algorithm 6, i.e.,

USE_ACCESS_TOKEN was called with sessionId.
Access token was sent by correct authorization server. Before sending the resource

request, the client ensures that it previously sent the token request to the correct au-

thorization server, i.e., the authorization server managing the resource: In Line 7 of

Algorithm 6, the client checks whether the input argument tokenEPDomain is a do-

main of the authorization server managing the resource that the client wants to request

at the resource server. Algorithm 6 is called only in Line 83 of Algorithm 3, and the

value tokenEPDomain is the domain of the token request, i.e., the client received the

access token from authorizationServerOfResourcers (resourceID) (see Definition 13). This

authorization server is honest, as required by the precondition of the lemma.

Processing of Token Response. The client calls USE_ACCESS_TOKEN in Line 83 of

Algorithm 3 when processing the token response. The session identifier (i.e., the input

argument of USE_ACCESS_TOKEN) is taken from another dictionary, which we call

reference′. reference′ is a parameter of Algorithm 3 (PROCESS_HTTPS_RESPONSE).
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As the client calls Line 83 of Algorithm 3, it follows that reference′ [responseTo] ≡ TOKEN
(Line 78 of Algorithm 3), i.e., the client is processing the token response and uses the

same session id when sending the token request.

Token Request. Let 𝑇 = (𝑆𝑇 , 𝐸𝑇 , 𝑁𝑇 )
𝑒𝑇
in
→c

−−−−−→
c→𝐸𝑇

out

(𝑆𝑇 ′, 𝐸𝑇 ′, 𝑁𝑇 ′) be the processing step in

which the client creates and emits the token request. An honest client sends token

requests only in Line 43 of Algorithm 4 and Line 40 of Algorithm 5 (these are the only

places where the client sends requests using the TOKEN reference value). We first show

that the token request was not created in Algorithm 4. The body of token requests

created in Algorithm 4 contains the value grant_type set to authorization_code, and
a code_verifier. As shown in Lemma 26, 𝑆𝑇 (𝑐).sessions[sessionId] [code_verifier]
is empty, as a client never changes the cibaFlow value of a session and we here have

𝑆𝑅 (𝑐).sessions[sessionId] [cibaFlow] ≡ ⊤.
Thus, when processing the request at the token endpoint, the authorization server would

stop at Line 156 of Algorithm 11 and not issue an access token.

Token requests created in Algorithm 5 contain an authentication request identifier

authnReqId value and the grant_type urn:openid:params:grant-type:ciba in the body
of the request (Lines 6 and 39 of Algorithm 5). Note that the client retrieves the request id

from the session identified by sessionId, i.e., 𝑆𝑇 (𝑐).sessions[sessionId] [auth_req_id]
(Line 4 of Algorithm 5).

Let 𝑑𝑡 be the domain to which the token request is sent. As noted above, 𝑑𝑡 is a domain

of of as. It holds true that 𝑑𝑐 ≡ 𝑆𝑇 (𝑐).session[lsid] [selected_AS], and therefore,

𝑆𝑇 (𝑐).session[lsid] [selected_AS] ∈ dom(as) (6)

because the client takes the domain used for the token request from

𝑆𝑇 (𝑐).oauthConfigCache[selectedAS] [token_ep], with
selectedAS ≡ 𝑆𝑇 (𝑐).sessions[lsid] [selected_AS] (see Lines 2, 3, 10, and Line 11 of

Algorithm 5).

Record Entry in AS State. When processing the token request, the AS retrieves a record

entry rec from its records state subterm such that rec[auth_req_id] ≡ authnReqId
(Line 161 and Line 164 of Algorithm 11).

An AS adds entries to its records state subterm only in Line 89 of Algorithm 11 and

Line 297 of Algorithm 11. However, only the record added in Line 297 of Algorithm 11

contains an auth_req_id entry.
The client uses the access token contained in the token response; when processing the

token request, the AS adds the access token that it creates and puts in the token response

to the record entry (Line 203 of Algorithm 11), i.e., to rec. As shown for the second

postcondition, there is a record rec′ ∈⟨⟩ 𝑆𝑄 (as).records such that rec′ [access_token] ≡
𝑡 and rec′ [subject] ≡ id. From Lemma 28, it follows that rec and rec′ have the same

subject entry, i.e., rec[subject] ≡ id.
An honest AS adds subject values to record entries only in Line 89 of Algorithm 11

(which we ruled out above) and Line 297 of Algorithm 11. Thus, it follows that the AS

received an HTTPS request ciba-auth2-req at its /ciba-auth2 endpoint (Line 281 of

Algorithm 11) with ciba-auth2-req.body[identity] ≡ id (see Line 282 and Line 294 of

Algorithm 11).

This request also contains the password of id, i.e., ciba-auth2-req.body[password] ≡
secretOfID(identity) (Line 286 of Algorithm 11). Thus, the request must have been

created by ownerOfID(id) In addition, this request contains a reference auth2Reference
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to the record entry, i.e., auth2Reference ≡ ciba-auth2-req.body[ciba_auth2_reference]
(Line 288 of Algorithm 11) such that rec[ciba_auth2_reference] ≡ auth2Reference
(Line 289 of Algorithm 11; note that this entry is taken from the cibaAuthnRequests
state subterm and added to the records, see Line 297 of Algorithm 11).

The AS model adds ciba_auth2_reference values to cibaAuthnRequests only in

Line 277 of Algorithm 11, where it is chosen as a fresh nonce. In this endpoint, the

AS creates an HTTPS response referencing the script_as_ciba_form script, including

the auth2Reference value Line 278 of Algorithm 11. In addition, it includes a binding

message bindingMsg retrieved from the same cibaAuthnRequests entry (Line 274 of

Algorithm 11), and a domain 𝑑𝑐 of a client. Both the binding message, and the client

id of the client used for determining the domain are taken from the entry stored in

cibaAuthnRequests. The AS adds such entries only at the backchannel-authn end-

point, and the values are taken from the request (Line 254 of Algorithm 11). This endpoint

requires client authentication (Line 242 of Algorithm 11), i.e., the client with the client id

rec[client_id] created the request.

Note that the binding message bindingMsg is stored rec, i.e., in the record entry at

the AS identified by authnReqId. . From Equation 6 and Lemma 20, it follows that

𝑆 (𝑐).sessions[sessionId] [selected_AS] ∈ dom(as). From Lemma 29, it follow that

𝑆 (𝑐).sessions[sessionId] [binding_message] ≡ bindingMsg.
Browser stores client domain and binding message in state The browser accesses

user credentials for a domain of the AS only when processing a script loaded from the AS.

As the response contains the ciba_auth2_reference dictionary string, it follows that

the browser processed the script_as_ciba_form script (Algorithm 17). As the browser

sends the Post request, we conclude that it processes the CIBAFORM command successfully

with the binding message bindingMsg and the client domain 𝑑𝑐 . The browser processes

this command in Line 52 of Algorithm 28 and checks whether the cibaBindingMessages
contains a domain and a binding message. These values are taken from the HTTPS

response that includes the script and was sent by the AS, i.e., the domain is 𝑑𝑐 and the

binding message is bindingMsg.
Thus, we conclude that ⟨𝑑𝑐 , bindingMsg⟩ ∈⟨⟩ 𝑆 (𝑏).cibaBindingMessages. As noted pre-

viously, it holds true that 𝑆 (𝑐).sessions[sessionId] [binding_message] ≡ bindingMsg.
However, this contradicts Lemma 25, i.e., the attacker cannot derive sessionId.

□

F.3 Authentication Property
In this section, we show that the authentication property from Definition 21 holds. This will be

a proof by contradiction, i.e., we assume that there is a FAPI Web system FAPI in which the

authentication property is violated and deduce a contradiction.

Assumption 2. There exists a FAPI Web system with a network attacker FAPI such that there exists
a run 𝜌 of FAPI with a configuration (𝑆, 𝐸, 𝑁 ) in 𝜌 , some 𝑐 ∈ C that is honest in 𝑆 , some identity
id ∈ ID with as = governor(id) being an honest AS and 𝑏 = secretOfID(id) being browser honest in
𝑆 , some service session identified by some nonce 𝑛 for id at 𝑐 , and 𝑛 is derivable from the attacker’s
knowledge in 𝑆 (i.e., 𝑛 ∈ 𝑑∅ (𝑆 (attacker))).

Lemma 32 (Authentication Property Holds). Assumption 2 is a contradiction.

Proof. By Assumption 2, there is a service session identified by 𝑛 for id at 𝑐 , and hence, by

Definition 4, we have that there is a session id 𝑥 and a domain 𝑑 ∈ dom(governor(id)) = dom(as)
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with 𝑆 (𝑐).sessions[𝑥] [loggedInAs] ≡ ⟨𝑑, id⟩ and 𝑆 (𝑐).sessions[𝑥] [serviceSessionId] ≡ 𝑛.
Assumption 2 says that 𝑛 is derivable from the attacker’s knowledge. Since we have

𝑆 (𝑐).sessions[𝑥] [serviceSessionId] ≡ 𝑛, we can check where such an entry in 𝑐’s state can be

created.

The only place in which an honest client stores a service session id is in the function

CHECK_ID_TOKEN, specifically in Line 14 of Algorithm 7. There, the client chooses a fresh nonce

as the value for the service session id, in this case 𝑛. In the line before, it sets the value for

𝑆 (𝑐).sessions[𝑥] [loggedInAs], in this case ⟨𝑑, id⟩ (this is the only place where the client sets the

loggedInAs value).

CHECK_ID_TOKEN, in turn, is only called in a single place: When processing an HTTPS response

to a token request, in Line 87 of Algorithm 3. From the check in Line 85 of Algorithm 3, we know

that this response came from (one of) as’s token endpoints: From Lines 2, 3, and 13 of Algorithm 7,

it follows that 𝑆 (𝑐).sessions[𝑥] [selected_AS] ≡ 𝑑 . In Line 85 of Algorithm 3, the client checks

whether the host of the corresponding token request is equal to

𝑆 (𝑐).oauthConfigCache[selectedAS] [token_ep] .host, with
selectedAS ≡ 𝑆 (𝑐).sessions[𝑥] [selected_AS] (see Lines 32-34 and Line 84 of Algorithm 3). As

shown in Lemma 21, 𝑆 (𝑐).oauthConfigCache[selectedAS] [token_ep] .host ≡ selectedAS, i.e., the
client sent the token request to as. Let req

token
be the token request, and

𝑅 = (𝑆𝑟 , 𝐸𝑟 , 𝑁 𝑟 ) → (𝑆𝑟 ′, 𝐸𝑟 ′, 𝑁 𝑟 ′) the processing step in which the client emits the token request.

In the following, we show that the client identifier in the token request has been issued by as to 𝑐
in a previous processing step (according to Definition 17): The client sends token requests only in

Algorithm 4 and Algorithm 5. In both cases, it sets the client identifier value in the request, i.e.,

req
token

.body[client_id] (if the client uses mTLS client authentication) or

extractmsg(req
token

.body[client_assertion]) [iss] (if the client uses private_key_jw client
authentication) to the value 𝑆𝑟 (𝑐).asAccounts[selectedAS] [client_id] with the same value

selectedAS as before, i.e., the domain of the AS to which the client sends the token request (see

Line 10 of Algorithm 4 and Line 7 of Algorithm 5). Let clientId be this client identifier. From

Lemma 30, it follows that this client identifier value was issued by as to 𝑐 in a previous processing

step (note that clientId . ⟨⟩, as otherwise, the AS would not send a response).

Since as is an honest authorization server, it will only reply to a token request if that request

contains a valid authorization code or a valid authentication request identifier (see the two cases in

Lines 152ff. of Algorithm 11). We distinguish these cases now.

Case 1: Token Request contains Authorization Code: If
req

token
.body[grant_type] ≡ authorization_code, then the token request contains a code

such that there is a record rec ∈⟨⟩ 𝑆 (as).records with rec[code] ≡ code,
rec[client_id] ≡ clientId, and rec[subject] ≡ id.
The client sends token requests with the authorization_code grant type with an

authorization code only in Algorithm 4 (SEND_TOKEN_REQUEST). The corresponding
session at the client contains a value code_verifier (note that the AS checks this value in

Line 156 of Algorithm 11). By applying Lemma 26, we conclude that the session at the client

does not contain a cibaFlow value being ⊤. As shown in Lemma 20, each client session

always contains a cibaFlow value, and this value is never changed by the client. The

cibaFlow value is either ⊤ or ⊥, see Line 10 of Algorithm 2 and Line 40 of Algorithm 2.

Thus, we conclude that for the session for which the client creates req
token

, the value of

cibaFlow is ⊥.
As the cibaFlow value of this session is ⊥, it follows that the client sends the service session
id 𝑛 only in the response in Line 19 of Algorithm 7. (The only other place where the client
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accesses and sends out this value is in Lines 51ff. of Algorithm 2, however, this happens only

if cibaFlow . ⊥, see Line 57 of Algorithm 2).

By tracking backwards from Line 14 of Algorithm 7, it is easy to see that the same party that

finally receives the service session id 𝑛 in an HTTPS response sent in Line 19 of Algorithm 7

must have sent an HTTPS request req to 𝑐 containing the aforementioned code (see also
Lemma 7).

We now have to differentiate between two cases: Either (a) the sender of req is one of 𝑏, 𝑐 , as;
or (b) the sender of req is any other process (except for 𝑏, 𝑐 , and as).
In case (a), we know that the only party sending an HTTPS request with an authorization

code (i.e., with a body dictionary containing a key code) is 𝑏 (the client does not send

messages to itself, and messages with an authorization code sent by the AS are sent as

HTTPS responses). If 𝑏 sent req, 𝑏 receives the service session id 𝑛 in a set-cookie header

with the httpOnly and secure flags set (see Line 17 of Algorithm 7). Hence, 𝑏 will only ever

send 𝑛 to 𝑐 in a cookie header as part of HTTPS requests, which does not leak 𝑛. Neither

does 𝑐 leak received service session id cookie values – in fact, 𝑐 never even accesses a cookie

named serviceSessionId. Furthermore, neither 𝑏, nor 𝑐 leak 𝑛 in any other way (the value

is not even accessed), resulting in a contradiction to Assumption 2.

In case (b), that other process which sent req would need to know code in order to be able to

include it in req. This contradicts Lemma 22.

Case 2: Token Request contains Authentication Request Identifier: In this case,

req
token

.body[grant_type] ≡ urn:openid:params:grant-type:ciba and

auth_req_id ∈ req
token

.body (see Line 160 and Line 163 of Algorithm 11). The client creates

requests with these values in the body only in Line 40 of Algorithm 5

(SEND_CIBA_TOKEN_REQUEST). The client calls this function only in the following

places:

• Line 50 of Algorithm 2: In this case, the corresponding session contains a value

client_notification_token (see Line 49 of Algorithm 2). The client sets this

notification token value only in Line 45 of Algorithm 8, i.e., only if the cibaFlow value of

the corresponding session has the value ⊤ (Line 42 of Algorithm 8).

• Line 59 of Algorithm 9: In this case, the corresponding session has the value

start_polling (Line 58 of Algorithm 9). As shown in Lemma 27, the cibaFlow value of

the session is ⊤.
As shown in Lemma 20, the client never changes the cibaFlow value of a session.

Record Entry in AS State. When processing the token request, the AS retrieves a record

entry rec from its records state subterm such that rec[auth_req_id] ≡ authnReqId
(Line 161 and Line 164 of Algorithm 11).

An AS adds entries to its records state subterm only in Line 89 of Algorithm 11 and

Line 297 of Algorithm 11. However, only the record added in Line 297 of Algorithm 11

contains an auth_req_id entry.
For the login, the client uses the ID token contained in the token response. The AS creates

the ID token in Lines 206ff. of Algorithm 11. It sets the sub value of the ID token to id
(Line 208 of Algorithm 11), i.e., rec[subject] ≡ id (as this identity is logged in at the client

when processing the token response.)

An honest AS adds subject values to record entries only in Line 89 of Algorithm 11 and

Line 297 of Algorithm 11. However, as this particular record contains an auth_req_id
value, it must have been created in Line 297 of Algorithm 11.

Thus, it follows that the AS received an HTTPS request req
ciba-auth2

at its /ciba-auth2
endpoint (Line 281 of Algorithm 11) with req

ciba-auth2
.body[identity] ≡ id (see Line 282



132 Pedram Hosseyni, Ralf Küsters, and Tim Würtele

and Line 294 of Algorithm 11). This request also contains the password of id, i.e.,
req

ciba-auth2
.body[password] ≡ secretOfID(id) (Line 286 of Algorithm 11). Thus, the

request must have been created by ownerOfID(id). In addition, this request contains a

reference auth2Reference to the record entry, i.e.,

auth2Reference ≡ req
ciba-auth2

.body[ciba_auth2_reference] (Line 288 of Algorithm 11)

such that rec[ciba_auth2_reference] ≡ auth2Reference (Line 289 of Algorithm 11; note

that this entry is taken from the cibaAuthnRequests state subterm and added to the

records, see Line 297 of Algorithm 11).

The AS model adds ciba_auth2_reference values to cibaAuthnRequests only in

Line 277 of Algorithm 11, where it is chosen as a fresh nonce. In this endpoint, the AS

creates an HTTPS response referencing the script_as_ciba_form script, including the

auth2Reference value in Line 278 of Algorithm 11. In addition, it includes a binding

message bindingMsg and a domain 𝑑𝑐 of a client. Both the binding message, and the client

id of the client used for determining the domain are taken from the entry stored in

cibaAuthnRequests (see Lines 274f. of Algorithm 11). The AS adds such binding message

and client identifier values to entries of the cibaAuthnRequests state subterm only at the

backchannel-authn endpoint, and the values are taken from the corresponding request

(see Lines 246, 252, and Line 254 of Algorithm 11). This endpoint requires client

authentication (Line 242 of Algorithm 11), i.e., the client with the client id rec[client_id]
created the request, see Lemma 13. (Note that an honest AS never changes the client_id
value of an existing cibaAuthnRequests or records entry).

Note that the binding message bindingMsg is taken from the request to

backchannel-authn and then stored into the cibaAuthnRequests entry (Line 254 of

Algorithm 11). This is the same value stored in rec[binding_message], i.e., the record
entry at the AS identified by authnReqId.

Binding Message Stored at Client As shown previously, it holds true that

𝑆 (𝑐).sessions[𝑥] [selected_AS] ∈ dom(as). It also holds true that

𝑆 (𝑐).sessions[𝑥] [auth_req_id] ≡ authnReqId (as this is the authentication request

identifier that the client used for the token request). Furthermore, when responding to the

request to the /ciba-auth endpoint, the AS includes the binding message stored in the

record identified by authnReqId. For a given record entry, the AS does not change the

binding message value, i.e.,

𝑆 (as).records[authnReqId] [binding_message] ≡ bindingMsg. From Lemma 29, it follow

that 𝑆 (𝑐).sessions[𝑥] [binding_message] ≡ bindingMsg.
Browser stores client domain and binding message in state The browser accesses

user credentials for a domain of the AS only when processing a script loaded from the AS.

As the response contains the ciba_auth2_reference dictionary string, it follows that the

browser processed the script_as_ciba_form script (Algorithm 17). As the browser sends

the POST request, we conclude that it processes the CIBAFORM command successfully with

the binding message bindingMsg and the client domain 𝑑𝑐 . The browser processes this

command in Line 52 of Algorithm 28 and checks whether the cibaBindingMessages
contains a domain and a binding message. These values are taken from the HTTPS

response that includes the script and was sent by the AS, i.e., the domain is 𝑑𝑐 and the

binding message is bindingMsg.
Thus, we conclude that ⟨𝑑𝑐 , bindingMsg⟩ ∈⟨⟩ 𝑆 (𝑏).cibaBindingMessages (note that the
browser does not remove or modify existing cibaBindingMessages values). As noted
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previously, it holds true that 𝑆 (𝑐).sessions[x] [binding_message] ≡ bindingMsg. From
Lemma 25, it follows that the attacker cannot derive the session identifier 𝑥 .

Process Requesting Service Session ID can derive 𝑥 : The client sends the service
session id stored in Line 14 of Algorithm 7 only in Line 68 of Algorithm 2 (the only other

place is Line 19 of Algorithm 7, which we can rule out as the cibaFlow value of the

session is ⊤). For responding in Line 68 of Algorithm 2, the client expects a request

req
get-ssid

with a session id cookie, and responds with the corresponding service session id.

Thus, it follows that req
get-ssid

contains 𝑥 as the session id cookie. As shown for the first

case, the sender of this request cannot be 𝑏, 𝑐 , or as (as neither of those processes would
leak the service session id). Thus, the request must have been created by the attacker.

However, this contradicts the fact that the attacker cannot derive 𝑥 , as shown above.

□

F.4 Session Integrity for Authentication Property
In this section, we show that the session integrity for authentication properties from Definition 29

and Definition 30 hold.

We start by proving that the property for authorization code flows (Definition 29) holds. This

will be a proof by contradiction, hence we begin by assuming the opposite:

Assumption 3. There exists a FAPI Web system with a network attacker FAPI such that there
exists a run 𝜌 of FAPI with a processing step 𝑄 = (𝑆, 𝐸, 𝑁 ) −→ (𝑆 ′, 𝐸′, 𝑁 ′) in 𝜌 , a browser 𝑏 honest
in 𝑆 , an authorization server as ∈ AS, an identity id, a client 𝑐 ∈ C honest in 𝑆 , and a nonce lsid
s.t. 𝑆 (𝑐).sessions[lsid] [cibaFlow] ≡ ⊥, with loggedIn𝑄𝜌 (𝑏, 𝑐, id, as, lsid) and 𝑐 did not leak the
authorization request for lsid, such that

(I) there is no processing step 𝑄 ′ prior to 𝑄 in 𝜌 such that started𝑄
′

𝜌 (𝑏, 𝑐, lsid), or
(II) as is honest in 𝑆 , and there is no processing step 𝑄 ′′ prior to 𝑄 in 𝜌 such that

authenticated𝑄
′′

𝜌 (𝑏, 𝑐, id, as, lsid).

Lemma 33 (Sess. Integ. for Authentication for Authorization Code Flows Prop. Holds).

Assumption 3 is a contradiction.

Proof.

(I) We have that loggedIn𝑄𝜌 (𝑏, 𝑐, id, as, lsid). With Definition 22, we know that 𝑐 sent out a service

session id associated with lsid to 𝑏 (i.e., set a cookie ⟨serviceSessionId, ⟨ssid,⊤,⊤,⊤⟩⟩,
and stored ssid in its sessions storage). For a session with

𝑆 (𝑐) .sessions[lsid] [cibaFlow] ≡ ⊥, such a cookie is only set by a client if its

CHECK_ID_TOKEN function was called with lsid as the first argument – which, in turn,

can only happen in Line 87 of Algorithm 3 when 𝑐 processes a response to a token request.

Such a response is only accepted by 𝑐 if 𝑐 sent a corresponding token request before (i.e.,

with a matching nonce and symmetric key, and with reference[responseTo] ≡ TOKEN).
Clients only send such token requests in Line 43 of Algorithm 4, i.e., after calling

SEND_TOKEN_REQUEST in Line 34 of Algorithm 2, when processing an HTTPS request

req
redir

.

Note: Clients also send token requests in Line 40 of Algorithm 5; however, Algorithm 5 is

only called in Line 50 of Algorithm 2 and Line 59 of Algorithm 9, and in both cases, the

corresponding session in the client’s state must contain CIBA-specific values –

client_notification_token, and start_polling, respectively – and thus, by Lemma 27,

𝑆 (𝑐).sessions[lsid] [cibaFlow] ≡ ⊤, which contradicts this lemma’s preconditions.
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Hence, we look at how a client can reach Line 34 of Algorithm 2. req
redir

must contain a

cookie [⟨__Host, sessionId⟩ : lsid] (Line 13 of Algorithm 2), and lsid is used as session id to

store req
redir

in the client’s session storage in Line 33 of Algorithm 2 under the key

redirectEpRequest (this is also the only place where a client stores something under this

key).

When executing CHECK_ID_TOKEN (during the 𝑄 from Definition 22), the message (HTTP

response) with the aforementioned service session id cookie is sent to and encrypted for the

sender of req
redir

, because 𝑐 looks these values up in the login session record stored in

𝑆 (𝑐).sessions[lsid] under the key redirectEpRequest. Hence, the sender of req
redir

, i.e., 𝑏

by Definition 22, must have included the aforementioned cookie with lsid in its request.

We can now track how that cookie was stored in 𝑏: Since the cookie is stored under a

domain of 𝑐 (otherwise, 𝑏 would not include it in requests to 𝑐) and the cookie is set with the

__Host prefix, the cookie must have been set by 𝑐 (see (C) in the proof of Lemma 24). A

cookie with the properties shown above is only set in Line 69 of Algorithm 3. Similar to the

redirectEpRequest session entry above, 𝑐 sends this cookie as a response to a stored

request, in this case, using the key startRequest to determine receiver and encryption key

(see Line 64 of Algorithm 3). A session entry with key startRequest is only ever created in

Line 10 of Algorithm 2. Hence, for 𝑏 to receive the cookie, there must have been a request

from 𝑏 to 𝑐 to the /startLogin endpoint, using the POST method, and with an origin

header for an origin of 𝑐 (see Line 6 of Algorithm 2).

Due to the origin check and the POST method, this request must have been sent by a script

(POST) under one of 𝑐’s origins (origin check). There is only one script which could

potentially send such a request: script_client_index. Hence, there must be a processing step

𝑄 ′ (prior to 𝑄) in 𝜌 in which 𝑏 executed script_client_index and in that script, executed

Line 8 of Algorithm 10 (because that is the only place in which that script issues a POST

request).

In addition, we already established above that 𝑐 replied to this request (stored under the key

startRequest) with a response containing a header of the form

⟨Set-Cookie, [⟨__Host, sessionId⟩ : ⟨lsid,⊤,⊤,⊤⟩]⟩.
Hence, we have that started𝑄

′
𝜌 (𝑏, 𝑐, lsid).

(II) Again, we have loggedIn𝑄𝜌 (𝑏, 𝑐, id, as, lsid) and we know that 𝑐 sent out a service session id

associated with lsid to 𝑏. This can only happen in the client’s function CHECK_ID_TOKEN,
which only produces an output if 𝑐 received an id token 𝑡 (via a token response). From

𝑆 (𝑐).sessions[lsid] [loggedInAs] ≡ ⟨𝑑, id⟩, we know – since CHECK_ID_TOKEN
produced an output – that for 𝑡𝑐 := extractmsg(𝑡), we have 𝑡𝑐 [iss] ≡ 𝑑 , 𝑡𝑐 [sub] ≡ id, and
𝑡𝑐 [aud] ≡ clientId (for some clientId). Due to the check in Line 85 of Algorithm 3, this id

token must have been sent by as (because 𝑑 ∈ dom(as)). as will only output such a term 𝑡 if

there is a record rec in as’s records state subterm with rec[subject] ≡ id,
rec[client_id] ≡ clientId, and rec[code_challenge] ≡ codeChallenge (for some value of

codeChallenge).
Note that an AS only creates such id tokens in Lines 207ff. of Algorithm 11, and only after

clientId has been issued to 𝑐 by as (Definition 17).

By construction of 𝑐 and tracking of sessions[lsid] in 𝑐’s state, it is easy to see that once 𝑐

reaches CHECK_ID_TOKEN, the session storage 𝑆 (𝑐).sessions[lsid] must contain a key

code_verifier under which a nonce codeVerifier is stored. We note that 𝑆 (𝑏).cookies[𝑑𝑐 ]
must contain a cookie ⟨⟨__Host, sessionId⟩, ⟨lsid,⊤,⊤,⊤⟩⟩ for 𝑑𝑐 ∈ dom(𝑐), because 𝑏
sends a cookie [⟨__Host, sessionId⟩ : lsid] as explained above, 𝑏 is honest (and will thus



Formal Analysis of the FAPI 2.0 Protocols 135

not accept __Host headers for 𝑑𝑐 from parties other than 𝑐), and if 𝑐 sets a cookie

⟨__Host, sessionId⟩, it will do so with the attributes set as shown here.

Hence, we can apply Lemma 24 (note that 𝑆 (𝑐).sessions[lsid] [loggedInAs] ≡ ⟨𝑑, id⟩ with
𝑑 ∈ dom(as) implies 𝑆 (𝑐).sessions[lsid] [selected_AS] ≡ 𝑑 ∈ dom(as)). I.e., we now have

that there is exactly one nonce requestUri such that

𝑆 (as).authorizationRequests[requestUri] [code_challenge] ≡ hash(codeVerifier), and
only 𝑏, 𝑐 , and as know requestUri.
We know from Line 158 of Algorithm 11 that the token request which leads to as issuing 𝑡
must contain a code verifier such that hash(codeVerifier) ≡ rec[code_challenge] (with rec
from above). Since we know that 𝑐 must have sent the token request (otherwise, 𝑐 would not

have received 𝑡 ), we can track where and how 𝑐 creates such a request. This is only the case

in function SEND_TOKEN_REQUEST (see proof for (I)). There, 𝑐 selects the value for the

code verifier based on the session id which 𝑐 received from 𝑏 via the sessionId cookie. At

the same time, 𝑐 includes the code from 𝑏’s request’s parameters (the request of 𝑏 that

triggered the token request).

Going back to as, we can track where a rec as described above can be stored into as’s state:
This is only the case at as’s /auth2 endpoint (Lines 76ff. of Algorithm 11). There, as will
only store a record rec, if there is an authZrec, stored under the key reqUri in the

authorizationRequests state subterm such that there is an auth2Reference with
authZrec[auth2_reference] ≡ auth2Reference and that auth2Reference is contained in the

request to as’s /auth2 endpoint. Such an auth2Reference, in turn, is only created at as’s
/auth endpoint. For a request to this endpoint to lead to storing auth2Reference, the request
must contain reqUri under the key request_uri.
Note that by Lemma 24, we established that there is exactly one requestUri in as’s state such
that 𝑆 (as) .authorizationRequests[requestUri] [code_challenge] ≡ hash(codeVerifier).
Therefore, reqUri ≡ requestUri. In addition, it is easy to see that 𝑐 and as do not send any

requests to as’s /auth endpoint. Hence, 𝑏 must have sent a request with reqUri to /auth.
Since auth2Reference from above is only sent to whoever sent the first request to /auth (and

– if 𝑏 receives it – 𝑏 does not leak that value) we know that 𝑏 must have sent the POST

request to /auth2 as well. As 𝑏 is honest, this can only happen trough a script – together

with the origin header check in Line 76 of Algorithm 11, and script_as_form (Algorithm 16)

being the only script ever sent by as which can send requests to the /auth2 endpoint, we

can conclude that there must have been a processing step𝑄 ′′ prior to 𝑄 ′ in 𝜌 in which 𝑏 was

triggered, selected a document under one of as’s origins with script script_as_form, executed

that script, selected id from its identities (because we know from above that

rec[subject] ≡ id and such a rec is only stored at /auth2 endpoint if the identity in the

request is equivalent to id) and sent a request to as’s /auth2 endpoint containing
auth2Reference – hence, the scriptstate contained a key auth2_reference with value

auth2Reference.
Therefore, we have authenticated𝑄

′′
𝜌 (𝑏, 𝑐, id, as, lsid) which – together with (I) from above –

contradicts Assumption 3, therefore proving the lemma.

□

This leaves us with the property for FAPI-CIBA flows (Definition 30). This will be a proof by

contradiction, hence we begin by assuming the opposite:

Assumption 4. There exists a FAPI Web system with a network attacker FAPI such that there exists
a run 𝜌 of FAPI with a processing step 𝑄 = (𝑆, 𝐸, 𝑁 ) −→ (𝑆 ′, 𝐸′, 𝑁 ′) in 𝜌 , a browser 𝑏 honest in 𝑆 and
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behaves according to Assumption 1, an authorization server as ∈ AS, an identity id, a client 𝑐 ∈ C
honest in 𝑆 , and a nonce lsid s.t. 𝑆 (𝑐).sessions[lsid] [cibaFlow] ≡ ⊤, and loggedIn𝑄𝜌 (𝑏, 𝑐, id, as, lsid)
such that

(I) there is no processing step 𝑄 ′ prior to 𝑄 in 𝜌 such that startedCIBA𝑄 ′
𝜌 (𝑏, 𝑐, lsid), or

(II) as is honest in 𝑆 , and there is no processing step 𝑄 ′′ prior to 𝑄 in 𝜌 such that
authenticatedCIBA𝑄 ′′

𝜌 (𝑏, 𝑐, id, as, lsid).

Lemma 34 (Session Integrity for Authentication for FAPI-CIBA Flows Property Holds).

Assumption 4 is a contradiction.

Proof. We start with some helpful intermediate results:

(A) From loggedIn𝑄𝜌 (𝑏, 𝑐, id, as, lsid), we know that during 𝑄 , 𝑐 emits an event which contains an

HTTPS response with a header ⟨Set-Cookie, [serviceSessionId : ⟨ssid,⊤,⊤,⊤⟩]⟩ (for
some nonce ssid). Such a cookie (with name serviceSessionId) is only included in a

client’s output in Line 17 of Algorithm 7, and in Lines 51ff. of Algorithm 2. In the former

case, this only happens if 𝑆 (𝑐).sessions[lsid] [cibaFlow] ≡ ⊥ (Line 15 of Algorithm 7) –

which contradicts this lemma’s preconditions. I.e., the event emitted by 𝑐 during 𝑄 must
originate from Lines 51ff. of Algorithm 2.
This in turn implies:

(A.i) During 𝑄 , 𝑐 processed an HTTPS request sent by 𝑏 which contained a cookie with name

⟨__Host, sessionId⟩ and value lsid: with a different value, the response which 𝑐 emits

during 𝑄 would not contain 𝑆 (𝑐).sessions[lsid] [serviceSessionId] – note that due to

Line 14 of Algorithm 7 being the only place where 𝑐 writes a serviceSessionId into one

of its sessions, and the value is a fresh nonce, there is no lsid′ ≠ lsid such that

𝑆 (𝑐).sessions[lsid] [serviceSessionId] ≡ 𝑆 (𝑐).sessions[lsid′] [serviceSessionId].
(A.ii) serviceSessionId ∈ 𝑆 (𝑐).sessions[lsid]: otherwise, 𝑐 would not set a

serviceSessionId header.

(B)

(B.i) From (A), we know that 𝑏 must have sent an HTTPS request to 𝑐 with a cookie with name

⟨__Host, sessionId⟩ and value lsid. Since 𝑆0 (𝑏).cookies ≡ ⟨⟩ (Definition 9), that cookie

must have been stored in 𝑏’s state in some processing step. However, since said cookie has

the __Host prefix, it must have been set by 𝑐 (see (C) in the proof of Lemma 24). Hence,

there must have been an HTTPS response sent from 𝑐 to 𝑏 (i.e., encrypted for 𝑏, i.e., with a

key used by 𝑏 in a previous HTTPS request to 𝑐) which contained a corresponding

Set-Cookie header.

(B.ii) Clients only include a Set-Cookie header with a cookie named ⟨__Host, sessionId⟩ in
two places: when handling requests to the /start_ciba endpoint (Lines 35ff. of
Algorithm 2), and when processing a PAR response (Lines 58ff. of Algorithm 3).

With Lemma 3, we know that Lines 58ff. of Algorithm 3 can only be executed if the client

previously called HTTPS_SIMPLE_SEND with a reference value such that

reference[responseTo] ≡ PAR. This, in turn, only happens in Line 72 of Algorithm 8 –

however, due to the check in Line 69 of Algorithm 8, this can only happen if

𝑆 (𝑐).sessions[lsid] [cibaFlow] ≡ ⊥, which contradicts this lemma’s preconditions (note

that the value for cibaFlow never changes, see Lemma 20).

Therefore, the ⟨__Host, sessionId⟩ cookie must originate from the client’s /start_ciba
endpoint in Lines 35ff. of Algorithm 2 (in some processing step 𝑅 prior to 𝑄).
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(C) Since the request to 𝑐’s /start-ciba endpoint (see (B)), in response to which 𝑐 set the

sessionId cookie, was sent by 𝑏 (otherwise, 𝑏 would not have used that cookie in𝑄), we can
use Assumption 1 to conclude 𝑏 = ownerOfID(𝑆 (𝑐).sessions[lsid] [selected_identity])
(see Lines 37 and 40 of Algorithm 2).

(D) Given the above, we can now prove that our assumption is a contradiction, starting with (I):

Recall (B) and the processing step 𝑅, in which 𝑐 emits an HTTPS response to a request from

𝑏, and in that response, sets the sessionId cookie. There, the value for said cookie is a fresh

nonce (Line 38 of Algorithm 2), and in order to even reach that line, 𝑐 must be processing an

HTTPS request for a domain of 𝑐 (Lines 7f. of Algorithm 41, Definition 13, and Appendix C.3:

if the request were not for a domain of 𝑐 , 𝑐 would not be able to decrypt it or would stop in

Line 8 of Algorithm 41). Furthermore, that request must be for path /start_ciba, and since

𝑏 was able to decrypt the response (and thus learn lsid), the request must have been created

by 𝑏 in some processing step 𝑄 ′ prior to 𝑅.
In summary, during 𝑄 ′, browser 𝑏 emits an HTTPS request to a domain of 𝑐 , with path

/start_ciba, and – during some later processing step 𝑅, client 𝑐 processes this request and

emits an event with an HTTPS response to 𝑏’s request with a Set-Cookie header with a

cookie named ⟨__Host, sessionId⟩ with value lsid.
Hence, we conclude startedCIBA𝑄 ′

𝜌 (𝑏, 𝑐, lsid).
(E) We can now focus on (II):

(E.i) From (A.ii) we have serviceSessionId ∈ 𝑆 (𝑐).sessions[lsid]. Values under
serviceSessionId are only added to a session in the client’s state in Line 14 of

Algorithm 7, where a fresh nonce is stored there. Let 𝑃 be the processing step in which

𝑆 (𝑐).sessions[lsid] [serviceSessionId] was set to the value ssid used in 𝑄 (i.e., in

loggedIn, see Definition 22). I.e., 𝑐 must have reached Line 14 of Algorithm 7 during 𝑃 , and

– since we have 𝑆 (𝑐).sessions[lsid] [cibaFlow] ≡ ⊤ and Lemma 20 – 𝑃 must have

reached the stop in Line 21 of Algorithm 7.

(E.ii) Due to Line 13 of Algorithm 7 and loggedIn𝑄𝜌 (𝑏, 𝑐, id, as, lsid) (see Definition 22), the id

token processed during 𝑃 must be a (signed, see Line 6 of Algorithm 7, we’re looking at

the extracted value here) dictionary idToken with idToken[sub] ≡ id.
(E.iii) Line 14 of Algorithm 7 from (E.i) can only be reached if the client calls

CHECK_ID_TOKEN (Algorithm 7) during 𝑃 . Since CHECK_ID_TOKEN is only called in

Line 87 of Algorithm 3, 𝑐 must have processed an HTTPS response to a token request (i.e.,

reference[responseTo] ≡ TOKEN) during 𝑃 . Due to the check in Line 85 of Algorithm 3,

Lemma 21, the origin of selectedAS from the client’s session storage used in Line 13 of

Algorithm 7, and precondition loggedIn𝑄𝜌 (𝑏, 𝑐, id, as, lsid) (see Definition 22), we conclude

that the token request to which 𝑐 processes a response in 𝑃 , was sent to and encrypted for

as. Lemma 46 thus gives us that the token response processed by 𝑐 during 𝑃 must have

been created by as.
(E.iv) With Lemma 3, we know that for 𝑐 to process an HTTPS response with

reference[responseTo] ≡ TOKEN during 𝑃 , there must have been some previous

processing step 𝑃
tokReq

𝑐 = (𝑆 tokReq, 𝐸tokReq, 𝑁 tokReq) −→ (𝑆 tokReq′ , 𝐸tokReq′ , 𝑁 tokReq
′ ) during

which 𝑐 called HTTPS_SIMPLE_SEND with such a reference value. This only happens in

two places: Line 43 of Algorithm 4, and Line 40 of Algorithm 5.

(E.v) 𝑃
tokReq

𝑐 must have ended in Line 40 of Algorithm 5. Proof by contradiction, assume 𝑃
tokReq

𝑐

ended in Line 43 of Algorithm 4: the check in Line 3 of Algorithm 4 must have succeeded,

i.e., code_verifier ∈ 𝑆 tokReq (𝑐) .sessions[lsid]. However, we have
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𝑆 (𝑐).sessions[lsid] [cibaFlow] ≡ ⊤, which together with Lemma 20 gives us

𝑆 tokReq (𝑐).sessions[lsid] [cibaFlow] ≡ ⊤ – which is a contradiction to Lemma 26.

(E.vi) The body of the token request produced by 𝑐 in 𝑃
tokReq

𝑐 contains a key grant_type with

value urn:openid:params:grant-type:ciba, and a key auth_req_id with value

authnReqId := 𝑆 tokReq (𝑐).sessions[lsid] [auth_req_id]. Note: The session id used in

𝑃
tokReq

𝑐 , i.e., lsid, is the same as in loggedIn𝑄𝜌 (𝑏, 𝑐, id, as, lsid): it is passed from 𝑃
tokReq

𝑐 to 𝑃

as part of the reference, see Lemma 3; during 𝑃 , that session id is the key under which the

(fresh) service session id (which is then used in 𝑄) is stored, see (E.i).

(E.vii) From (E.iii), we know that as must have created the HTTPS (token) response processed by

𝑐 in 𝑃 in some prior processing step

𝑃 tokResas = (𝑆 tokRes, 𝐸tokRes, 𝑁 tokRes) −→ (𝑆 tokRes′ , 𝐸tokRes′ , 𝑁 tokRes
′ ). Furthermore, the id token

in that response must contain id, stored under key sub (see (E.ii)). An AS only produces id

tokens (more formally: emits events with an HTTPS response, whose body contains a key

id_token) in Line 215 of Algorithm 11, i.e., the token endpoint. Hence, there must be a

record rec in 𝑆 tokRes (as).records such that rec[subject] ≡ id (see Lines 164 and 208 of

Algorithm 11).

(E.viii) Such records are only added to as’ state in two places: at the /auth2 endpoint in Lines 86

and 89 of Algorithm 11, and at the /ciba-auth2 endpoint in Lines 294 and 297 of

Algorithm 11.

From (E.vi), we know that the token request produced by 𝑐 in 𝑃
tokReq

𝑐 contains a key

grant_type with value urn:openid:params:grant-type:ciba, and an auth_req_id in its

body. Hence, as must have executed Lines 160ff. of Algorithm 11 during 𝑃 tokResas , and the

execution must have reached Line 215 of Algorithm 11 (otherwise, there would be no

token response for 𝑐 to process, which contradicts (E.iii)). This implies that the record rec
contains a key auth_req_id, and rec[auth_req_id] ∉ {⟨⟩,⊥} (Lines 163 and 164 of

Algorithm 11. Furthermore, rec[auth_req_id] must be equivalent to the authnReqId in

the token request from (E.vi).

An AS only adds a value ≠ ⊥ to a record in its records state subterm in Line 297 of

Algorithm 11, i.e., the /ciba-auth2 endpoint. Hence, rec must have been created by as
while processing a request to its /ciba-auth2 endpoint in a processing step

𝑃auth2as = (𝑆auth2, 𝐸auth2, 𝑁 auth2) −→ (𝑆auth2′ , 𝐸auth2′ , 𝑁 auth2
′ ) prior to 𝑃 tokResas .

(E.ix) We now look at 𝑃auth2as in detail:

(E.ix.1) The request processed by as during 𝑃auth2as contains (in its body) the identity id′ (under
key identity) and password password (under key password), such that

password ≡ secretOfID(id′) (Line 286 of Algorithm 11).

(E.ix.2) The identity id′ must be equivalent to the identity stored in as’ CIBA AuthN Requests

storage, i.e., 𝑆auth2 (as).cibaAuthnRequests[authnReqId′] [selected_identity] ≡ id′

(Line 290 of Algorithm 11).

(E.ix.3) The contents of 𝑆auth2 (as).cibaAuthnRequests[authnReqId′], after adding a few

key-value pairs in Lines 294ff. of Algorithm 11, are stored in as’ records state subterm

(Line 297 of Algorithm 11). Said additional key-value pairs are: ⟨subject, id′⟩, and
⟨issuer, 𝑑as⟩ (for a 𝑑as ∈ dom(as)), and ⟨auth_req_id, authnReqId′⟩. Since we are
looking at the record rec from (E.vii) and (E.viii), we must have

authnReqId′ ≡ authnReqId and id ≡ id′.
(E.ix.4) An AS only adds records to its cibaAuthnRequests state subterm when processing an

HTTPS request to its /backchannel-authn endpoint in Line 263 of Algorithm 11. There,
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the key under which a new record is stored (i.e., authnReqId) is a fresh nonce.

Furthermore, the value for the selected_identity key of the record is taken from the

processed request’s body (under key login_hint, see Line 255 of Algorithm 11). Let

𝑃bcAuthNas = (𝑆bcAuthN, 𝐸bcAuthN, 𝑁 bcAuthN) −→ (𝑆bcAuthN′ , 𝐸bcAuthN′ , 𝑁 bcAuthN
′ ) be the

processing step in which as creates the record stored under authnReqId in its

cibaAuthnRequests state subterm.

(E.ix.5) The request to the /backchannel-authn endpoint processed in 𝑃bcAuthNas must have been

created by 𝑐: the token request processed by as in 𝑃 tokResas must contain client

authentication for the same client (Line 165 of Algorithm 11) as the

/backchannel-authn request (rec from above is a copy of the record created in Line 252

of Algorithm 11 and the client_id value is never changed), 𝑐 created the token request

(see (E.iii)), and because 𝑐 and as are honest, we can apply Lemma 30 and Lemma 13 (the

preconditions to the latter lemma follow from the processing of a request to the

/backchannel-authn endpoint).
(E.ix.6) Since 𝑐 used authnReqId in its token request, and by (E.vi), we have

authnReqId = 𝑆 tokReq (𝑐).sessions[lsid] [auth_req_id], the login_hint in 𝑐’s request

to the /backchannel-authn endpoint (which as processes in 𝑃bcAuthNas ) must be from the

same session, i.e., 𝑆 tokReq (𝑐).sessions[lsid] [selected_identity] (note that the client
never overwrites this value after initially setting it).

Overall, this gives us

𝑆 (𝑐).sessions[lsid] [selected_identity] ≡ (E.ix)

𝑆auth2 (as).cibaAuthnRequests[authnReqId] [selected_identity] ≡ Line 290 of Algorithm 11

id′ ≡ (E.ix.3)

rec[subject] ≡ (E.vii)

id

However, from (C), we have that 𝑏 is the owner of identity

𝑆 (𝑐).sessions[lsid] [selected_identity], and hence, 𝑏 is the owner of id.
(E.ix.7) Since 𝑏 is honest and ownerOfID(id) = 𝑏, secretOfID(id) is only known to 𝑏 and as.

Since as does not send HTTPS requests with key identity in the request body to a path

/ciba-auth2, the request processed by as during 𝑃auth2as must have been created by 𝑏

(see also (E.ix.1)).

(E.x) The request to as’ /ciba-auth2 endpoint must be a POST request with the origin header

set to the request’s host value, which must be a domain of as (Line 281 of Algorithm 11). As

𝑏 is honest, it will only set the origin header for a request sent by some script accordingly

if it is triggered, selects a document loaded from an origin of as, and executes said script.

(E.xi) The request body processed by as in 𝑃auth2as must contain a key ciba_auth2_reference
with a value auth2Reference, such that there is a value authnReqId′ with
𝑆auth2 (as).cibaAuthnRequests[authnReqId′] [ciba_auth2_reference] ≡
auth2Reference (Line 289 of Algorithm 11). Such a value is only stored to the AS state at

the /ciba-auth endpoint, where a fresh nonce is generated and stored under key

ciba_auth2_reference (Line 277 of Algorithm 11). This, in turn, only happens when

processing an HTTPS request to the as’ /ciba-auth endpoint; and the sender of said

request receives auth2Reference in the response, together with scriptascibaf orm.

Since the sender of the request processed by as in 𝑃auth2as is 𝑏 (E.ix.7), and 𝑏 is an honest

browser, 𝑏 will only use auth2Reference when executing the script scriptascibaf orm. I.e.,



140 Pedram Hosseyni, Ralf Küsters, and Tim Würtele

there must have been some processing step 𝑄 ′′ prior to 𝑃 tokResas and hence prior to 𝑄 , in

which 𝑏 was triggered, selected a document loaded from an origin of as (E.x), and executed

scriptascibaf orm in that document (this is the only script sent by as which sends requests

to /ciba-auth2). Furthermore, in Line 6 of Algorithm 17, 𝑏 must have selected id.
By inspection of Line 17 of Algorithm 17, it is obvious that the scriptstate in use during𝑄 ′′

must contain a key ciba_auth2_reference; and the value must be auth2Reference with
𝑆auth2 (as).cibaAuthnRequests[authnReqId′] [ciba_auth2_reference] ≡
auth2Reference (see above). Since as never changes that value, and with (E.ix.3) we get

𝑆 (as).cibaAuthnRequests[authnReqId] [ciba_auth2_reference] ≡ auth2Reference.
(E.ix.6) additionally gives us authnReqId = 𝑆 tokReq (𝑐).sessions[lsid] [auth_req_id], and
since 𝑐 never changes this value, we get

authnReqId = 𝑆 (𝑐).sessions[lsid] [auth_req_id].
Overall, this gives us authenticatedCIBA𝑄 ′′

𝜌 (𝑏, 𝑐, id, as, lsid).
(F) Hence, we have loggedIn𝑄𝜌 (𝑏, 𝑐, id, as, lsid) (D) and authenticatedCIBA𝑄 ′′

𝜌 (𝑏, 𝑐, id, as, lsid),
which gives us a contradiction to Assumption 4.

□

F.5 Session Integrity for Authorization Property
In this section, we show that the session integrity properties for authorization from Definition 31

and Definition 32 hold.

We start by proving that the property for authorization code flows (Definition 31) holds.

Lemma 35 (Session Integrity for Authorization Property Holds). For every run 𝜌 of
FAPI , every processing step 𝑄 = (𝑆, 𝐸, 𝑁 ) −→ (𝑆 ′, 𝐸′, 𝑁 ′) in 𝜌 , every browser 𝑏 that is honest in
𝑆 , every as ∈ AS, every identity 𝑢, every client 𝑐 ∈ C that is honest in 𝑆 , every rs ∈ RS that is
honest in 𝑆 , every nonce 𝑟 , every nonce lsid such that 𝑆 (𝑐).sessions[lsid] [cibaFlow] ≡ ⊥, we
have that if accessesResourceQ𝜌 (b, r, u, c, rs, as, lsid) and 𝑐 did not leak the authorization request
for lsid (see Definition 28), then (1) there exists a processing step 𝑄 ′ in 𝜌 (before 𝑄) such that
started𝑄

′
𝜌 (𝑏, 𝑐, lsid), and (2) if as is honest in 𝑆 , then there exists a processing step 𝑄 ′′ in 𝜌 (before 𝑄)

such that authenticated𝑄
′′

𝜌 (𝑏, 𝑐,𝑢, as, lsid).
Proof. (1). Due to accessesResourceQ𝜌 (b, r, u, c, rs, as, lsid) (Definition 27), it holds true that the

browser 𝑏 has a sessionId cookie with the session identifier lsid for the domain of the client

𝑐 . This cookie is set with the __Host prefix, i.e., it follows that the cookie was set by 𝑐 , which

responds with a Set-Cookie header (with a sessionId cookie) only in Line 69 of Algorithm 3

and Line 42 of Algorithm 2 – however, we can immediately exclude the latter due to precondition

𝑆 (𝑐).sessions[lsid] [cibaFlow] ≡ ⊥. Hence, 𝑐 must have set this cookie by executing Line 69 of

Algorithm 3.

The remaining proof is analogous to the proof of the first postcondition of Lemma 33.

(2). accessesResource𝑄𝜌 (b, r, u, c, rs, as, lsid) implies that during𝑄 , 𝑐 executed Line 114 of Algorithm 3

or Line 68 of Algorithm 2. However, we can immediately exclude the latter due to Line 57 of

Algorithm 2 and precondition 𝑆 (𝑐).sessions[lsid] [cibaFlow] ≡ ⊥.
Client received resource from rs. As the client executes Line 114 of Algorithm 3 during 𝑄 , and

as 𝑆 ′ (𝑐).sessions[lsid] [resourceServer] ∈ dom(rs) (see accessesResource) is only set in

Line 110 of Algorithm 3, it follows that 𝑐 received the resource 𝑟 in a response resp
resource

from rs.
I.e., 𝑐 must have sent a corresponding resource request to rs, and the resource response’s

body processed by 𝑐 during 𝑄 contained 𝑟 under key resource.
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Resource request contains access token associated with 𝑢 at as. An honest resource server

sends out an HTTP response resp
resource

with resource ∈ resp
resource

.body either in Line 84

of Algorithm 18 or Line 45 of Algorithm 19. Let 𝑃
resResp

rs = (𝑆resResp, 𝐸resResp, 𝑁 resResp) −→
(𝑆resResp′ , 𝐸resResp′ , 𝑁 resResp

′ ) be the processing step in which rs sends resp
resource

.

As shown in the proof of Lemma 31, for this to happen, the resource server must have received

a resource request req
resource

containing an access token 𝑡 (either in 𝑃
resResp

rs or in another

processing step prior to 𝑃
resResp

rs .

Let 𝑃
resReq

rs = (𝑆resReq, 𝐸resReq, 𝑁 resReq) −→ (𝑆resReq′ , 𝐸resReq′ , 𝑁 resReq
′ ) be the processing step in

which rs receives req
resource

).

Furthermore, as the RS stored the resource in 𝑆 (rs).resourceNonces[u] [resourceId] (see
accessesResource, for some resourceId ∈ TN ), it follows that req

resource
.path ≡ resourceId

(see Line 74 of Algorithm 18 for the structured access token case, and Line 53 of Algorithm 18,

as well as Lines 9 and 36 of Algorithm 19 for the introspection case).

Thus, we have that the value responsibleAS chosen by the RS in Line 16 of Algorithm 18 dur-

ing 𝑃
resReq

rs is a domain of as (the resource server never changes the resourceASMapping
subterm of its state, see also Definition 15, and from accessesResource, we have as =

authorizationServerOfResourcers (resourceID)).
We now look at the two places in which rs could have produced resp

resource
during 𝑃

resResp

rs : If

rs returns the resource 𝑟 in Line 84 of Algorithm 18, then the access token is a structured

JWT signed by as (Line 64 of Algorithm 18) and containing the sub value 𝑢 (Line 71 of

Algorithm 18, and Line 74 of Algorithm 18: 𝑟 was stored under 𝑢, see accessesResource).
Otherwise, if 𝑟 is returned in Line 45 of Algorithm 19, then the resource server received an

introspection response from as containing the sub value 𝑢 and asserting that the access token

contained in req
resource

is valid. In both cases (structured access token or opaque token with

introspection), it follows that the authorization server as has a record rec in the records
subterm of its state with rec[access_token] ≡ 𝑡 and rec[subject] ≡ 𝑢.

Token request was sent to as. An honest client sends resource requests only in Algorithm 6,

which is called only in Line 83 of Algorithm 3, i.e., after receiving the token response. The

check in Line 7 of Algorithm 6 ensures that the token request req
token

was sent to as (as the
client calls Algorithm 6 with the domain of the token request, see Line 83 of Algorithm 3).

From this, it follows that 𝑆 (𝑐).sessions[lsid] [selected_AS] is a domain of as, as the client
sends the token request to this domain, see Lines 6, 13, and 14 of Algorithm 4. Note that

the token request in question must have been sent from Line 43 of Algorithm 4: the only

other place in which 𝑐 sends token requests is Line 40 of Algorithm 5. However, in the latter

case, Line 50 of Algorithm 2 must have been executed, which in turn implies auth_req_id ∈
𝑆 (𝑐).sessions[lsid] – with Lemma 27, this gives us 𝑆 (𝑐).sessions[lsid] [cibaFlow] ≡ ⊤,
which contradicts this lemma’s preconditions.

PAR request was sent to as. The token request req
token

sent from 𝑐 to as contains an authoriza-

tion code code and a PKCE code verifier pkce_cv (see Line 8 of Algorithm 4 and recall that

req
token

must have been sent in Line 43 of Algorithm 4). As the authorization server responds

to that request with an access token 𝑡 , it follows that the checks at the token endpoint in

Line 145 of Algorithm 11 passed successfully. In particular, this implies that the token request

contains the correct PKCE verifier for the code, i.e., the authorization code and the PKCE

challenge corresponding to the PKCE verifier were stored in the same record entry in the

records state subterm (see Lines 154 and 158 of Algorithm 11).
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An AS adds records with a key code to its records state subterm only in Line 89 of Algo-

rithm 11, and the sequence that is added is taken from the authorizationRequests state
subterm, see Line 85 of Algorithm 11. In this processing step, the authorization server also

creates the authorization code (Line 88 of Algorithm 11) and associates the identity with the

code (Line 86 of Algorithm 11).

Thus, as the AS as exchanged the authorization code code at the token endpoint and the

issued access token is associated with the identity 𝑢, it follows that identity 𝑢 logged in

at the /auth2 endpoint of as, and the request to /auth2 contained a value auth2reference
in its body equal to 𝑆 ′′ (as).authorizationRequests[requestUri] [auth2_reference] (with
𝑆 ′′ being the state of a configuration prior to 𝑄 ; see also Line 84 of Algorithm 11). The

authorization server received the requestUri value at the auth endpoint, i.e., each process that

can derive the request URI value, can potentially have sent the /auth request, and received

auth2reference in the response.

As 𝑆 (𝑐).sessions[lsid] [selected_AS] is a domain of as, it follows that the client sent a

pushed authorization request to as in Line 72 of Algorithm 8 in a previous processing step.

In this processing step, the client chose the PKCE verifier pkce_cv in Line 47 of Algorithm 8

and stored this value into the lsid session in Line 53 of Algorithm 8.

Now, we can apply Lemma 24 and conclude that the request URI can only be derived by 𝑏, 𝑐 ,

and as. As as does not send requests to itself and 𝑐 does not send any request to an /auth
endpoint, it follows that the request to the /auth endpoint of as was sent by 𝑏. The remaining

argumentation is the same as for the proof of Lemma 33.

□

This leaves us with the property for FAPI-CIBA flows (Definition 32). This will be a proof by

contradiction, hence we begin by assuming the opposite:

Assumption 5. There exists a FAPI Web system with a network attacker FAPI such that there
exists a run 𝜌 of FAPI with a processing step 𝑄 = (𝑆, 𝐸, 𝑁 ) −→ (𝑆 ′, 𝐸′, 𝑁 ′) in 𝜌 , a browser 𝑏 that is
honest in 𝑆 and behaves according to Assumption 1, an authorization server as ∈ AS, an identity id, a
client 𝑐 ∈ C honest in 𝑆 , a resource server rs ∈ RS that is honest in 𝑆 , a nonce 𝑟 , and a nonce lsid s.t.
𝑆 (𝑐).sessions[lsid] [cibaFlow] ≡ ⊤, and accessesResource𝑄𝜌 (𝑏, 𝑟, id, 𝑐, rs, as, lsid) such that

(I) there is no processing step 𝑄 ′ prior to 𝑄 in 𝜌 such that startedCIBA𝑄 ′
𝜌 (𝑏, 𝑐, lsid), or

(II) as is honest in 𝑆 , and there is no processing step 𝑄 ′′ prior to 𝑄 in 𝜌 such that
authenticatedCIBA𝑄 ′′

𝜌 (𝑏, 𝑐, id, as, lsid).

Lemma 36 (Session Integrity for Authorization for FAPI-CIBA Flows Property Holds).

Assumption 5 is a contradiction.

Proof. We start with some helpful intermediate results:

(A) From accessesResource𝑄𝜌 (𝑏, 𝑟, id, 𝑐, rs, as, lsid), we know that during 𝑄 , 𝑐 emits an event

which contains an HTTPS response whose body is 𝑟 . Furthermore, due to precondition

𝑆 (𝑐).sessions[lsid] [cibaFlow] ≡ ⊤, 𝑐 must have executed Line 68 of Algorithm 2 during𝑄 ,

which implies 𝑆 (𝑐).sessions[lsid] [resource] ≡ 𝑟 (Line 66 of Algorithm 2). I.e., the event
emitted by 𝑐 during 𝑄 must originate from Lines 51ff. of Algorithm 2.

(B) For 𝑐 to emit any event during 𝑄 (recall (A): 𝑐 executes Lines 51ff. of Algorithm 2, i.e., must

have reached Line 68 of Algorithm 2 in 𝑄), the request processed in 𝑄 must have contained

a Cookie header with a cookie named ⟨__Host, sessionid⟩ with value lsid (Line 52 of

Algorithm 2).
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(C) We have that accessesResource𝑄𝜌 (𝑏, 𝑟, id, 𝑐, rs, as, lsid). Therefore, we also have the following:

⟨⟨__Host, sessionId⟩, ⟨lsid, 𝑦, 𝑧, 𝑧′⟩⟩ ∈⟨⟩ 𝑆 ′ (𝑏).cookies[𝑑] for some 𝑑 ∈ dom(𝑐). Since that
cookie has the __Host prefix and is stored under a domain of 𝑐 , it must have been set by 𝑐 (see

(C) in the proof of Lemma 24). Hence, there must have been an HTTPS response resstart-ciba
sent from 𝑐 to 𝑏 (i.e., encrypted for 𝑏, i.e., with a key used by 𝑏 in a previous HTTPS request

to 𝑐) which contained a corresponding Set-Cookie header.
From here, we can apply the exact same argumentation as in (B.ii) in the proof of Lemma 34,

and get: the ⟨__Host, sessionId⟩ cookie must originate from the client’s /start_ciba end-

point in Lines 35ff. of Algorithm 2 (in some processing step 𝑅 prior to 𝑄).

(D) The request to 𝑐’s /start-ciba endpoint (in 𝑅, i.e., to which 𝑐 responded with resstart-ciba)
must have been sent by 𝑏: from (C), we have that in 𝑅, 𝑐 executed Lines 35ff. of Algorithm 2,

i.e., the cookie set by 𝑐 is a fresh nonce (Line 38 of Algorithm 2). If the request came from

some process 𝑝 ≠ 𝑏, then 𝑏 would not have processed the response (due to a missing entry in

𝑏’s pendingRequests state subterm), and therefore 𝑆 ′ (𝑏).cookies[𝑑] would not contain a

sessionId cookie with value lsid.
Let 𝑄 ′ be the processing step in which 𝑏 emits the corresponding HTTPS request.

With the exact same argumentation as in (C) in the proof of Lemma 34, we can now conclude

𝑏 = ownerOfID(𝑆 (𝑐).sessions[lsid] [selected_identity]).
(E) With (C) and (D), we can apply the same argumentation as in (D) in the proof of Lemma 34,

and conclude startedCIBA𝑄 ′
𝜌 (𝑏, 𝑐, lsid).

(F) From (A), we have 𝑆 (𝑐).sessions[lsid] [resource] ≡ 𝑟 . A client only stores something under

key resource in one of its sessions in Line 109 of Algorithm 3 when processing an HTTP (re-

source) response resresource during some processing step 𝑃 storeR𝑐 = (𝑆storeR, 𝐸storeR, 𝑁 storeR) −→
(𝑆storeR′ , 𝐸storeR′ , 𝑁 storeR

′ ), hence resresource.body[resource] ≡ 𝑟 . However, 𝑐 will only pro-

cess such a response if it also sent a corresponding request req
resource

(otherwise, there is no

matching entry in 𝑐’s pendingRequests, see Lines 7ff. of Algorithm 41).

In that same processing step 𝑃 storeR𝑐 , 𝑐 also executes Line 110 of Algorithm 3, i.e., sets a value

for 𝑆 (𝑐).sessions[lsid] [resourceServer]. That value is the host to which 𝑐 sent req
resource

.

Since 𝑐 does not change that value anywhere else, we can use accessesResource to conclude

that the host of req
resource

must be a domain of rs.
Since rs and 𝑐 are honest, we can apply Lemma 46 and get that rs must have created resresource.

(G) From accessesResource𝑄𝜌 (𝑏, 𝑟, id, 𝑐, rs, as, lsid), we have
as = authorizationServerOfResourcers (resourceID) and
𝑟 ∈⟨⟩ 𝑆 ′ (rs).resourceNonces[id] [resourceId] (for some value resourceId ∈ TN ).

(H) For 𝑟 ∈⟨⟩ 𝑆 ′ (rs).resourceNonces[id] [resourceId] from (G), we note that there are only two

places in which an RS stores something in its resourceNonces state subterm: Line 74 of

Algorithm 18 and Line 36 of Algorithm 19 (and that term is initially “empty”, see Definition 15).

Let 𝑃 = (𝑆𝑖𝑝 , 𝐸𝑖𝑝 , 𝑁 𝑖𝑝 ) −→ (𝑆𝑖′𝑝 , 𝐸𝑖′𝑝 , 𝑁 𝑖′𝑝 ) be the processing step during which rs stores 𝑟 in its

resourceNonces state subterm.

(I) 𝑃 from (H) is unique, i.e., there are no values id′, resourceId′ with id . id′ ∨ resourceId .
resourceId′ such that 𝑟 ∈⟨⟩ 𝑆 ′ (rs).resourceNonces[id′] [resourceId′], which we prove by

looking at the two places in which an RS adds anything to the resourceNonces state subterm:

Line 74 of Algorithm 18 The value stored in resourceNonces is a fresh nonce (Line 48 of

Algorithm 18).

Line 36 of Algorithm 19 The value stored in resourceNonces is taken from a record re-

trieved from the pendingResponses state subterm (Lines 3 and 10 of Algorithm 19). Line 3
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of Algorithm 19 is the only place where an RS reads something from its pendingResponses
state subterm, and the record read there is immediately deleted (Line 4 of Algorithm 19).

Hence, a value stored in pendingResponses is used at most once. Furthermore, the only

place where entries are added to this state subterm is Line 53 of Algorithm 18 – where the

value for key resource is a fresh nonce (which is not stored or sent anywhere else).

Hence, the path of req
resource

must have been the resourceId from (G) (obvious for case Line 74

of Algorithm 18, in the case of Line 36 of Algorithm 19, the resource id is taken from the

same record as the resource itself in Line 8 of Algorithm 19).

(J) We can now look at the two cases for 𝑃 from (H) and (I) separately:

(J.i) rs executed Line 74 of Algorithm 18 during 𝑃 .
(J.i.1) The id under which 𝑃 stores 𝑟 during 𝑃 is taken from a term 𝑡 under key sub (Line 71 of

Algorithm 18). That same term 𝑡 must also contain a key cnf (Line 62 of Algorithm 18).

(J.i.2) 𝑡 must have been created by as: the signature verification in Line 64 of Algorithm 18 uses

verification key verifKey := 𝑆𝑖𝑝 (rs) .asInfo[𝑑as] [as_key] (see Line 19 of Algorithm 18),

where 𝑑as = 𝑆
𝑖𝑝 (rs).resourceASMapping[resourceId]. Since resourceASMapping is

never changed, initialized using authorizationServerOfResource (see Definition 15), and

from (G) we have as = authorizationServerOfResourcers (resourceID), this implies 𝑑as ∈
dom(as). Hence, by Definition 15, we have verifKey ≡ pub(signkey(as)).
Therefore, we can apply Lemma 8 for the signed 𝑡 (note that the signed 𝑡 is known to rs
in 𝑃 ) and get that as must have created the signed 𝑡 .

(J.i.3) Authorization servers only create signed dictionaries with keys sub and cnf in Line 200

of Algorithm 11. Recall (J.i.1): the value of the sub key in 𝑡 must be id. Hence, by
Line 199 of Algorithm 11, there must be a record rec in as’ records state subterm with

rec[subject] ≡ id. From there, we can apply the same argumentation as in the proof

of Lemma 34, and hence get that is a processing step 𝑄 ′′ prior to 𝑄 in 𝜌 such that

authenticatedCIBA𝑄 ′′
𝜌 (𝑏, 𝑐, id, as, lsid).

(J.ii) rs executed Line 36 of Algorithm 19 during 𝑃 .
(J.ii.1) Recall (I): There must have been some processing step 𝑃 ′ prior to 𝑃 during which rs

executed Line 53 of Algorithm 18. 𝑃 ′ must have ended in Line 60 of Algorithm 18, i.e., with

rs sending an introspection request. That introspection request is sent to a domain of as
(see above, and recall as = authorizationServerOfResourcers (resourceID)), i.e., encrypted
for as. Since rs and as are honest, we can apply Lemma 46 and get that the HTTP response

resintrospect processed by rs during 𝑃 must have been created by as.
(J.ii.2) The body of resintrospect must be a dictionary such that resintrospect .body[sub] ≡ id (see (I)

and Line 27 of Algorithm 19), and active ∈ resintrospect .body. Such an HTTP response

is only created by an authorization server in Line 225 of Algorithm 11. This, in turn,

requires a record rec in as’ records state subterm with rec[subject] ≡ id (Line 225

of Algorithm 11). Furthermore, we must have access_token ∈ rec. Such records are

only stored by an AS in Line 203 of Algorithm 11, hence allowing us to apply the same

argumentation as above, and hence get that is a processing step 𝑄 ′′ prior to 𝑄 in 𝜌 such

that authenticatedCIBA𝑄 ′′
𝜌 (𝑏, 𝑐, id, as, lsid).

(K) Thus, we have loggedIn𝑄𝜌 (𝑏, 𝑐, id, as, lsid) (see (E)) and authenticatedCIBA𝑄 ′′
𝜌 (𝑏, 𝑐, id, as, lsid),

which gives us a contradiction to Assumption 5.

□

F.6 Non-Repudiation Properties
In this section, we show that the non-repudiation properties hold.
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Lemma 37 (Non-repudiation for Signed Authorization Reqests (Definition 33) Holds).

For every run 𝜌 = ((𝑆0, 𝐸0, 𝑁 0), ...) of FAPI , every configuration (𝑆𝑛, 𝐸𝑛, 𝑁𝑛) in 𝜌 , every process
as ∈ AS that is honest in 𝑆𝑛 , every request uri requestUri, we have that if
𝑆𝑛 (as) .authorizationRequests[requestUri] [signed_par] ≡ ⊤, then all of the following hold true:

(I) There exists a processing step 𝑄 = (𝑆, 𝐸, 𝑁 ) 𝑒in→as−−−−−→ (𝑆 ′, 𝐸′, 𝑁 ′) with (𝑆, 𝐸, 𝑁 ) prior to
(𝑆𝑛, 𝐸𝑛, 𝑁𝑛) in 𝜌 , such that requestUri ∉ 𝑆 (as).authorizationRequests and
requestUri ∈ 𝑆 ′ (as).authorizationRequests.

(II) 𝑒in = ⟨𝑥,𝑦,𝑚⟩ contains a message𝑚 of the form
enca (⟨⟨HTTPReq, ·, POST, selectedAS, /par, ·, ⟨⟩, body⟩, ·⟩, ·), where body is of the form
sig(par, signKey) and selectedAS ∈ dom(as).

(III) If there is a process 𝑐 ∈ C which is honest in 𝑆𝑛 , and a configuration (𝑆𝑖 , 𝐸𝑖 , 𝑁 𝑖 ) in 𝜌 with
𝑆𝑖 (𝑐).asAccounts[selectedAS] [sign_key] ≡ signKey, then there is a processing step
𝑃 = (𝑆 𝑗 , 𝐸 𝑗 , 𝑁 𝑗 ) −→ (𝑆 𝑗+1, 𝐸 𝑗+1, 𝑁 𝑗+1) in 𝜌 prior to 𝑄 during which 𝑐 signs par (as contained in
𝑒in) in Line 63 of Algorithm 8.

Proof. (I) Initially, an authorization server’s authorizationRequests state subterm is

empty (Definition 14). Hence, we have requestUri ∉ 𝑆0 (as).authorizationRequests. By
induction, we get that there must be some processing step 𝑄 in 𝜌 , during which requestUri is
added to the authorizationRequests state subterm.

(II) The only place in which an honest AS adds a new record to its authorizationRequests
state subterm is Line 142 of Algorithm 11.

12
This line is only executed when processing an

HTTPS request, i.e., a message of the form

enca (⟨HTTPReq, ·,method, host, path, ·, ⟨⟩, body⟩, ·) (see Lines 7ff. of Algorithm 41). Due to

Line 103 of Algorithm 11, we know path ≡ /par and method ≡ POST. Furthermore, Lemma 2

gives us host ∈ dom(as). We can also infer that body must have the form sig(par, signKey)
from Lines 106 and 107 of Algorithm 11, since we know that requireSignedPAR ≡ ⊤ from this

lemma’s precondition, together with Lines 138 and 142 of Algorithm 11.

(III) In the following, we assume that there is a process 𝑐 ∈ C, honest in 𝑆𝑛 , and a configuration

(𝑆𝑖 , 𝐸𝑖 , 𝑁 𝑖 ) such that 𝑆𝑖 (𝑐).asAccounts[host] [sign_key] ≡ signKey. Since signKey belongs

to an honest client, Lemma 4 gives us signKey ∉ 𝑑∅ (𝑆𝑛 (𝑝)) for all processes 𝑝 ≠ 𝑐 , i.e., only 𝑐

can derive signKey. Therefore, only 𝑐 can have created a term sig(par, signKey) (see the
equational theory in Figure 10).

From Lines 107 and 109 of Algorithm 11, we know that par must be a dictionary with at least

the keys aud with value host, and client_id with a client id registered with as. An honest

client – like 𝑐 – creates signatures only in a few places:

Line 22 of Algorithm 4 The signed value is a dictionary, but does not contain a key

client_id.
Line 39 of Algorithm 4 The signed value is a dictionary, but does not contain a key

client_id.
Line 19 of Algorithm 5 The signed value is a dictionary, but does not contain a key

client_id.
Line 36 of Algorithm 5 The signed value is a dictionary, but does not contain a key

client_id.
Line 26 of Algorithm 6 The signed value is a dictionary, but does not contain a key

client_id.

12
Note that Line 73 of Algorithm 11 does not add a new record, but extends an existing one, see Line 67 of Algorithm 11.
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Line 39 of Algorithm 6 The signed value is a dictionary, but does not contain a key

client_id.
Line 40 of Algorithm 8 The signed value is a dictionary, but does not contain a key

client_id.
Line 63 of Algorithm 8 The signed value meets the aforementioned conditions.

Note that since only 𝑐 can create such a signature, and par contains a fresh nonce (Line 47 of

Algorithm 8), the term sig(par, signKey) cannot be derivable by any process prior to

𝑃 createPAR.

Hence, we conclude that 𝑐 must have signed par during some processing step 𝑃 createPAR in

Line 63 of Algorithm 8.

□

Lemma 38 (Non-repudiation for Signed Authorization Responses (Definition 34) Holds).

For every run 𝜌 = ((𝑆0, 𝐸0, 𝑁 0), ...) of FAPI , every configuration (𝑆𝑛, 𝐸𝑛, 𝑁𝑛) in 𝜌 , every process
𝑐 ∈ C that is honest in 𝑆𝑛 , every session id sessionId, we have that if

(1) there exists a processing step 𝑄 = (𝑆, 𝐸, 𝑁 ) 𝑒in→𝑐−−−−→ (𝑆 ′, 𝐸′, 𝑁 ′) with (𝑆, 𝐸, 𝑁 ) prior to
(𝑆𝑛, 𝐸𝑛, 𝑁𝑛) in 𝜌 such that redirectEpRequest ∉ 𝑆 (𝑐).sessions[sessionId] and
redirectEpRequest ∈ 𝑆 ′ (𝑐).sessions[sessionId], and

(2) 𝑒in = ⟨𝑥,𝑦,𝑚⟩ contains a message𝑚 of the form
enca (⟨⟨HTTPReq, ·, ·, ·, /redirect_ep, parameters, headers, ·⟩, ·⟩, ·), and

(3) 𝑆𝑛 (𝑐).sessions[sessionId] [requested_signed_authz_response] ≡ ⊤,
then all of the following hold true:

(I) The term parameters from (2) above is a dictionary with at least a key response with value
sig(authzResponse, signKey), with authzResponse being a dictionary with at least the keys iss
and code.

(II) If there is an as ∈ AS with 𝑆𝑛 (as).jwk ≡ signKey, and as honest in 𝑆𝑛 , then there is a
processing step 𝑃 = (𝑆𝑖 , 𝐸𝑖 , 𝑁 𝑖 ) −→ (𝑆𝑖+1, 𝐸𝑖+1, 𝑁 𝑖+1) prior to 𝑄 in 𝜌 , and as signed
authzResponse (as contained in 𝑒in) during 𝑃 in Line 97 of Algorithm 11.

Proof. We start by noting that (2) is actually implied by (1): an honest client – such as 𝑐 – only

adds a value with key redirectEpRequest to a value of its sessions state subterm in Line 33 of

Algorithm 2. This line, in turn, is only executed when processing an HTTPS request, i.e., a message

of the form enca (⟨⟨HTTPReq, ·, ·, ·, path, parameters, headers, ·⟩, ·⟩, ·), see Lines 7ff. of Algorithm 41,

where path ≡ /redirect_ep (see Line 12 of Algorithm 2).

(I) Since (3) implies that during 𝑄 , 𝑐 must execute Lines 18ff. of Algorithm 2, and not stop due

to the checks in Lines 19, 22, and 27 of Algorithm 2, we know:

• response ∈ parameters: otherwise parameters[response] ≡ ⟨⟩ (Definition 47), and by

Figure 10, checksig(⟨⟩, 𝑘) . ⊤ for any 𝑘 , and

• parameters[response] must be of the form sig(authzResponse, signKey) (see equational

theory in Figure 10), and

• Lines 21, 24, and 27 of Algorithm 2 imply that authzResponse must be a dictionary with at

least the keys code and iss.
(II) For the following, we assume that there is an as ∈ AS with 𝑆𝑛 (as).jwk ≡ signKey, and as hon-

est in 𝑆𝑛 . By applying Lemma 8, we get signKey ∉ 𝑑∅ (𝑆𝑛 (𝑝)) for all processes 𝑝 ≠ as, i.e., only
as can derive signKey. Therefore, only as can have created a term sig(authzResponse, signKey)
(see Figure 10). From the same lemma – in conjunction with Figure 10, and the fact that 𝑐
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knows sig(authzResponse, signKey) in 𝑄 – we also get that as must have created that term in

some processing step 𝑃 prior to 𝑄 in 𝜌 .

An honest AS only signs terms in a few places (recall: the signed term authzResponse is a
dictionary with at least the keys iss and code):
Line 200 of Algorithm 11 The signed value is a dictionary, but it does not contain a key

iss, nor a key code.
Line 212 of Algorithm 11 The signed value is a dictionary with a key iss, but it does not
contain a key code.

Line 227 of Algorithm 11 The signed value is a dictionary with a key iss, but it does not
contain a key code.

Line 97 of Algorithm 11 The signed value is a dictionary with keys iss and code.
Since Line 97 of Algorithm 11 is the only place in which an honest AS signs a term meeting

the above conditions, we conclude that as must have signed authzResponse in a processing

step 𝑃 prior to 𝑄 in 𝜌 .

□

Lemma 39 (Non-repudiation for Signed Introspection Responses (Definition 35) Holds).

For every run 𝜌 = ((𝑆0, 𝐸0, 𝑁 0), ...) of FAPI , every configuration (𝑆𝑛, 𝐸𝑛, 𝑁𝑛) in 𝜌 , every process
rs ∈ RS that is honest in 𝑆𝑛 , every request id requestId, we have that if there exists a processing step
𝑄 = (𝑆, 𝐸, 𝑁 ) 𝑒in→rs−−−−−→ (𝑆 ′, 𝐸′, 𝑁 ′) in 𝜌 such that

𝑆 (rs).pendingResponses[requestId] [requestSignedIntrospecResponse] ≡ ⊤, and
requestId ∉ 𝑆 ′ (rs).pendingResponses, and (𝑆, 𝐸, 𝑁 ) prior to (𝑆𝑛, 𝐸𝑛, 𝑁𝑛) in 𝜌 , then all of the
following hold true:

(I) 𝑒in = ⟨𝑥,𝑦,𝑚⟩ contains a message𝑚 of the form encs (⟨HTTPResp, ·, ·, ·, body⟩, ·), where body is
of the form sig(introspecResponse, signKey).

(II) If there is an as ∈ AS with 𝑆𝑛 (as).jwk ≡ signKey, and as honest in 𝑆𝑛 , then there is a
processing step 𝑃 = (𝑆𝑖 , 𝐸𝑖 , 𝑁 𝑖 ) −−−−−−→

as→𝐸out
(𝑆𝑖+1, 𝐸𝑖+1, 𝑁 𝑖+1) prior to 𝑄 in 𝜌 , and as signed

introspecResponse (as contained in 𝑒in above) during 𝑃 in Line 227 of Algorithm 11.

Proof.

(I) The preconditions imply that requestId ∈ 𝑆 (rs).pendingResponses (otherwise,

𝑆 (rs).pendingResponses[requestId] would have the value ⟨⟩ . ⊤). Hence, rs must have

removed the entry with key requestId from its pendingResponses state subterm during 𝑄 .

An honest RS only removes dictionary keys (i.e., entries) from this state subterm in Line 4 of

Algorithm 19. This, in turn, implies that during 𝑄 , rs processes an HTTPS response – that is,

a message of the form encs (resp, ·), where resp ∈ HTTPResponses, and hence resp is of the

form ⟨HTTPResp, ·, ·, ·, body⟩ (see Lines 19ff. of Algorithm 41).

Since 𝑆 (rs).pendingResponses[requestId] [requestSignedIntrospecResponse] ≡ ⊤, we
know that rs executed Lines 16ff. of Algorithm 19 without stopping due to the checks in

Lines 16 and 19 of Algorithm 19. We can therefore conclude that resp.body must be of the

form sig(introspecResponse, signKey) (see Line 16 of Algorithm 19).

Furthermore, in order for 𝑄 to actually finish with a changed state (i.e., to reach Line 45 of

Algorithm 19 and store the changes to pendingResponses), we need extractmsg(resp.body)
to be a dictionary with at least the key token_introspection (otherwise, execution would

stop in Line 23 of Algorithm 19, see also Line 21 of Algorithm 19).

(II) For the following, we assume that there is an as ∈ AS with 𝑆𝑛 (as).jwk ≡ signKey, and as
honest in 𝑆𝑛 . By applying Lemma 8, we get signKey ∉ 𝑑∅ (𝑆𝑛 (𝑝)) for all processes 𝑝 ≠ as, i.e.,
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only as can derive signKey. Therefore, only as can have created a term

sig(introspecResponse, signKey) (see Figure 10). From the same lemma – in conjunction with

Figure 10, and the fact that rs knows sig(introspecResponse, signKey) in 𝑄 – we also get that

as must have created that term in some processing step 𝑃 prior to 𝑄 in 𝜌 .

An honest AS only signs terms in a few places (recall: the signed term introspecResponse is a
dictionary with at least the key token_introspection):
Line 200 of Algorithm 11 The signed value is a dictionary, but it does not contain a key

token_introspection.
Line 212 of Algorithm 11 The signed value is a dictionary, but it does not contain a key

token_introspection.
Line 227 of Algorithm 11 The signed value is a dictionary with a key

token_introspection.
Line 97 of Algorithm 11 The signed value is a dictionary, but it does not contain a key

token_introspection.
Since Line 227 of Algorithm 11 is the only place in which an honest AS signs a term meeting

the above conditions, we conclude that as must have signed introspecResponse in a

processing step 𝑃 prior to 𝑄 in 𝜌 .

□

Lemma 40 (Properties of VERIFY_REQUEST_SIGNATURE (Algorithm 21)). For any function
call VERIFY_REQUEST_SIGNATURE(𝑚, verificationKey) to return ⊤, the arguments must meet all
of the following conditions:

(I) 𝑚.headers must exist, be a dictionary, and Signature ∈𝑚.headers
(II) req ∈𝑚.headers[Signature]
(III) Signature-Input ∈𝑚.headers and req ∈𝑚.headers[Signature-Input]
(IV) 𝑚.headers[Signature] [req] ≡ sig(sigBase, sigKey) for some sigBase, sigKey
(V) 𝑚.headers[Signature-Input] [req] is a sequence ⟨coveredComponents,metadata⟩ (theremay

be additional sequence elements after those two), where metadata is a dictionary with at
least a key tag with value fapi-2-request, and coveredComponents is a sequence with at
least the following elements: ⟨@method, ⟨⟩⟩, ⟨@target-uri, ⟨⟩⟩, ⟨authorization, ⟨⟩⟩, and
⟨content-digest, ⟨⟩⟩.

(VI) The value of sigBase from (IV) is a dictionary with the following properties:
(VI.a) sigBase[⟨@method, ⟨⟩⟩] ≡𝑚.method
(VI.b) sigBase[⟨@target-uri, ⟨⟩⟩] ≡ ⟨URL, S,𝑚.host,𝑚.path,𝑚.parameters,⊥⟩
(VI.c) sigBase[⟨authorization, ⟨⟩⟩] ≡𝑚.headers[Authorization]
(VI.d) sigBase[⟨content-digest, ⟨⟩⟩] ≡ hash(𝑚.body)
(VI.e) sigBase.2[tag] ≡ fapi-2-request and keyid ∈ sigBase.2

Proof. We start by noting that there is only one place in which Algorithm 21 returns ⊤, namely

Line 17 of Algorithm 21. Hence, all execution paths not leading to this line do not return ⊤.
(I) Obvious from Line 2 of Algorithm 21.

(II) Proof by contradiction: if req ∉𝑚.headers[Signature], then
𝑚.headers[Signature] [req] = ⟨⟩ (Definition 47). extractmsg(⟨⟩) in Line 6 of Algorithm 21

is undefined (Figure 10), and therefore VERIFY_REQUEST_SIGNATURE does not return

anything. This is a contradiction to VERIFY_REQUEST_SIGNATURE(𝑚, verificationKey)
returning ⊤.

(III) Proof by contradiction: if req ∉𝑚.headers[Signature-Input] or
Signature-Input ∉𝑚.headers, then𝑚.headers[Signature-Input] [req] = ⟨⟩
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(Definition 47). Hence, coveredComponents = ⟨⟩ in Line 5 of Algorithm 21. Recall

Definition 48 and Figure 10: ⟨⟩.1 := 𝜋1 (⟨⟩) := ^. Therefore the first check in Line 8 of

Algorithm 21 boils down to @method ∉ ^ which is undefined (^ is not a dictionary, see

Definition 47), and consequently, VERIFY_REQUEST_SIGNATURE does not return anything.

This is a contradiction to VERIFY_REQUEST_SIGNATURE(𝑚, verificationKey) returning ⊤.
(IV) The signature verification in Line 15 of Algorithm 21 must return ⊤ for

VERIFY_REQUEST_SIGNATURE to return ⊤, which requires the first argument given to

checksig(·, ·) to match sig(∗, ∗) (see Figure 10).
(V) The value of𝑚.headers[Signature-Input] [req] is stored in a variable coveredComponents

in Line 5 of Algorithm 21, which is used in several checks in Line 8 of Algorithm 21,

verifying the presence of the elements required in (V).

(VI) From (V), we have ⟨@method, ⟨⟩⟩, ⟨@target-uri, ⟨⟩⟩, ⟨authorization, ⟨⟩⟩, and
⟨content-digest, ⟨⟩⟩ ∈⟨⟩ coveredComponents.1 (from Line 5 of Algorithm 21). Hence, these

are covered by the loop in Lines 11ff. of Algorithm 21, and thus passed to

IS_COMPONENT_EQUAL (Algorithm 1) in Line 12 of Algorithm 21 with𝑚 as the first, the

sigBase as the second to last, and the respective component identifier as the last argument.

It is easy to see that the results of IS_COMPONENT_EQUAL are only ⊤ (and hence, the

checks in Algorithm 21 on these results succeed) if conditions (VI.a), (VI.b), and (VI.c) are

fulfilled. Furthermore, this gives us

𝑚.headers[Content-Digest] ≡ sigBase[⟨content-digest, ⟨⟩⟩] – which, together with

Line 3 of Algorithm 21, gives us (VI.d).

This leaves us with (VI.e) to prove, which is ensured by the check in Line 9 of Algorithm 21.

□

Lemma 41 (Non-repudiation for Signed Resource Reqests (Definition 36) Holds). For
every run 𝜌 = ((𝑆0, 𝐸0, 𝑁 0), ...) of FAPI , every configuration (𝑆𝑛, 𝐸𝑛, 𝑁𝑛) in 𝜌 , every process rs ∈ RS
that is honest in 𝑆𝑛 , we have that if

(1) there exists a processing step 𝑄 = (𝑆, 𝐸, 𝑁 ) −−−−−−→
rs→𝐸out

(𝑆 ′, 𝐸′, 𝑁 ′) in 𝜌 such that

𝐸out = ⟨⟨𝑥,𝑦, resRes⟩, leakedRequest⟩, with (𝑆, 𝐸, 𝑁 ) prior to (𝑆𝑛, 𝐸𝑛, 𝑁𝑛), and
(2) during 𝑄 , either Line 69 of Algorithm 18 or Line 33 of Algorithm 19 was executed,

then all of the following hold true:

(I) resRes is of the form encs (⟨HTTPResp, ·, ·, ·, body⟩, ·) with body ≡ [resource : resource].
(II) There exists a processing step 𝑅 = 𝑠𝑟

𝑒in→rs−−−−−→ 𝑠𝑟
′
prior or equal to 𝑄 in 𝜌 such that

𝑒in = ⟨𝑦, 𝑥, resReq⟩, and rs generated resource during 𝑅 in Line 48 of Algorithm 18.
(III) resReq is of the form enca (⟨⟨HTTPReq, ·,method, host, path, parameters, headers, body⟩, ·⟩, ·)

with Signature ∈ headers, Signature-Input ∈ headers, and headers[Signature] being a
dictionary with at least a key req with value sig(signatureBase, clientSignKey).

(IV) headers[Signature-Input] [req] is a sequence ⟨coveredComponents,metadata⟩ (there may
be additional sequence elements after those two), where metadata is a dictionary with at least a
key tag with value fapi-2-request, and coveredComponents is a sequence with at least the
following elements: ⟨@method, ⟨⟩⟩, ⟨@target-uri, ⟨⟩⟩, ⟨authorization, ⟨⟩⟩, and
⟨content-digest, ⟨⟩⟩.

(V) signatureBase is of the form
[⟨@method, ⟨⟩⟩ : method, ⟨@target-uri, ⟨⟩⟩ : ⟨URL, S, host, path, parameters,⊥⟩,
⟨authorization, ⟨⟩⟩ : headers[Authorization], ⟨content-digest, ⟨⟩⟩ : hash(body)] +⟨⟩
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[tag : fapi-2-request, keyid : keyId] for some keyId; however, the dictionaries may contain
additional elements.

(VI) If there is a client 𝑐 ∈ C which is honest in 𝑆𝑛 , a domain selectedAS, and an index 𝑗 ≤ 𝑛 such
that 𝑆 𝑗 (𝑐) .asAccounts[selectedAS] [sign_key] ≡ clientSignKey, then there is a processing
step 𝑃 = (𝑆𝑖 , 𝐸𝑖 , 𝑁 𝑖 ) −−−−−→

𝑐→𝐸′out
(𝑆𝑖+1, 𝐸𝑖+1, 𝑁 𝑖+1) prior to 𝑅 in 𝜌 , and 𝑐 signed signatureBase (as

contained in 𝑒in above) during 𝑃 in Line 39 of Algorithm 6.

Proof.

(I) From (1), we have that during 𝑄 , rs outputs two events. With that in mind, we look at the two

cases of (2):

Line 69 of Algorithm 18 After making it to this line, the only possibility to output two

events is the stop in Line 84 of Algorithm 18. There, the first event contains a message𝑚′,
created in Line 81 of Algorithm 18 as a message of the form

encs (⟨HTTPResp, ·, 200, ·, body⟩, ·). The value for body is created in Line 75 of Algorithm 18

as [resource : resource].
Line 33 of Algorithm 19 After making it to this line, the only possibility to output two

events is the stop in Line 45 of Algorithm 19. There, the first event contains a message𝑚′,
created in Line 42 of Algorithm 19 as a message of the form

encs (⟨HTTPResp, ·, 200, ·, body⟩, ·). The value for body is created in Line 37 of Algorithm 19

as [resource : resource].
(II) From (I), we know that rs created a resource response body in one of the following places

during 𝑄 , for which we will determine where the resource value originates from:

Line 75 of Algorithm 18 The value for resource was generated in Line 48 of Algorithm 18

of the same processing step, i.e., 𝑅 = 𝑄 . We note that some input event is always required

for a processing step (see Definition 60), hence concluding this sub-proof.

Line 37 of Algorithm 19 In this case, the value for resource is taken from rs’
pendingResponses state subterm (Lines 3 and 10 of Algorithm 19). Corresponding entries

in rs’ pendingResponses state subterm are only created in Line 53 of Algorithm 18, where

the value for the dictionary key resource is a fresh nonce generated in Line 48 of

Algorithm 18. I.e., there must have been some processing step 𝑅 during which rs generated
a value in Line 48 of Algorithm 18, and stored that value into its state in Line 53 of

Algorithm 18. After storing that value to its state, rs calls HTTPS_SIMPLE_SEND in

Line 61 of Algorithm 18, which ends the processing step (in particular, without executing

Algorithm 19), therefore 𝑅 ≠ 𝑄 , and 𝑅 prior to 𝑄 . We again note that some input event is

always required for a processing step (see Definition 60), hence concluding this sub-proof.

(III) From (II), we know that during 𝑅, rs processed an input event ⟨𝑦, 𝑥, resReq⟩, and executed

Line 48 of Algorithm 18. Hence, rs must have executed Algorithm 18, which is only called in

Line 9 of Algorithm 41. This in turn only happens if the input message, i.e., resReq, is of the
form enca (⟨⟨HTTPReq, ·,method, host, path, parameters, headers, body⟩, ·⟩, ·) (see Lines 7ff. of
Algorithm 41).

For the remaining conditions, we distinguish between the two possible cases 𝑅 = 𝑄 and

𝑅 ≠ 𝑄 established in the proof of (II) above.

Case 𝑅 = 𝑄 . In the proofs of (I) and (II), we established that execution during 𝑅 must reach

the stop in Line 84 of Algorithm 18. Therefore, the check in Line 50 of Algorithm 18 must

have come up negative, i.e., execution continued in Line 62 of Algorithm 18 (otherwise, 𝑅

would have stopped inside HTTPS_SIMPLE_SEND). Furthermore, (2) gives us that Line 69

of Algorithm 18 was executed during 𝑅, i.e., expectSignedRequest had value ⊤ in Line 66 of

Algorithm 18. Hence, none of the checks in Lines 62, 64, and 69 of Algorithm 18 failed (i.e.,
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lead to a parameterless stop). For the check in Line 69 of Algorithm 18 to succeed, the call

to VERIFY_REQUEST_SIGNATURE (Algorithm 21) in Line 68 of Algorithm 18 must

return ⊤. This allows us to apply Lemma 40, concluding this sub-proof.

Case 𝑅 ≠ 𝑄 .
Storing resReq during 𝑅. In the proofs of (I) and (II), we established that execution

during 𝑅 must reach the call to HTTPS_SIMPLE_SEND in Line 61 of Algorithm 18, and

hence, the stop in Line 3 of Algorithm 36 – in other words, all changes to rs’ state made

in Algorithm 18 are indeed stored (i.e., execution did not finish at a parameterless stop).

This includes the record stored to the pendingResponses state subterm in Line 53 of

Algorithm 18. Note that the key requestId under which the whole record gets stored is a

fresh nonce (i.e., there are no key “collisions”, since Line 53 of Algorithm 18 is the only

place in which an honest RS adds elements to its pendingResponses state subterm).

Said record includes, among other dictionary elements, a key originalRequest with

value𝑚, where𝑚 is the first argument given to Algorithm 18 – which is only called in

Line 9 of Algorithm 41 with the decrypted first sequence element of the input event as

the first element, i.e.,𝑚 ≡ deca (resReq, 𝑘).1 with the “correct” 𝑘 , and hence

𝑚 ≡ ⟨HTTPReq, ·,method, host, path, parameters, headers, body⟩. In addition to𝑚, the

record also includes a key resource with value resource, i.e., the value created in

Line 48 of Algorithm 18 (see (I) and (II)). So, at the end of processing step 𝑅,𝑚 is stored

under key originalRequest, together with resource under key resource, as part of a
record stored under some (unique) requestId in the pendingResponses state subterm.

Linking 𝑅 and 𝑄 , Accessing resReq During 𝑄 . Records stored in the

pendingResponses state subterm are only accessed in Line 3 of Algorithm 19, and

deleted from the state immediately after accessing them. Hence, each of those records –

which each contain a fresh resource, see proof of (II) – is accessed at most once,

including the one accessed during 𝑄 , i.e., 𝑅 and 𝑄 can be uniquely “linked” via the

resource stored during 𝑅 and output during 𝑄 . Hence, the record 𝑟 in

pendingResponses “used” during 𝑄 , and in particular𝑚 and resource within 𝑟 , are
indeed the values stored during 𝑅.

Signature Check During 𝑄 . From (2) (and 𝑅 ≠ 𝑄), we know that during𝑄 , rs must have

executed Line 33 of Algorithm 19 and (see proof for (I)) 𝑄 finished at the stop in Line 45

of Algorithm 19. This implies that – among others – the check in Line 34 of

Algorithm 19 succeeded, i.e., did not lead to a parameterless stop. I.e., the call to

VERIFY_REQUEST_SIGNATURE in Line 33 of Algorithm 19 must have returned ⊤. The
first argument in that call is origReq, which is taken from the aforementioned record 𝑟 in

Line 7 of Algorithm 19, i.e., origReq ≡ 𝑟 [originalRequest], which is the value stored

as𝑚 during 𝑅 (note: in the context of 𝑄 ,𝑚 refers to the introspection response, and no

longer to the resource request, hence the new variable name origReq).
Since origReq ≡ deca (resReq, 𝑘).1 (see above), we can apply Lemma 40 to conclude this

sub-proof.

(IV) With the same argumentation as in the proof of (III), we can apply Lemma 40 and

immediately get (IV).

(V) With the same argumentation as in the proof of (III), we can apply Lemma 40 and immediately

get (V).

(VI) For the following, we assume that there is a client 𝑐 ∈ C, honest in 𝑆𝑛 , an issuer identifier

selectedAS, and an index 𝑗 ≤ 𝑛 such that

𝑆 𝑗 (𝑐).asAccounts[selectedAS] [sign_key] ≡ clientSignKey (i.e., the key used for the

signature from (III)).
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Since 𝑐 is honest, and we have selectedAS ∈ 𝑆 𝑗 (𝑐).asAccounts, Lemma 4 gives us

clientSignKey ∉ 𝑑∅ (𝑆𝑛 (𝑝)) for all 𝑝 ≠ 𝑐 , i.e., only 𝑐 can derive clientSignKey. Therefore, only
𝑐 can have created a term sig(signatureBase, clientSignKey) (see Figure 10).
From (V), we have some conditions on the structure of signatureBase. With those in mind,

we can look at all places in which an honest client creates signatures:

Line 22 of Algorithm 4 The signed value does not meet the conditions from (V).

Line 39 of Algorithm 4 The signed value does not meet the conditions from (V).

Line 19 of Algorithm 5 The signed value does not meet the conditions from (V).

Line 36 of Algorithm 5 The signed value does not meet the conditions from (V).

Line 26 of Algorithm 6 The signed value does not meet the conditions from (V).

Line 39 of Algorithm 6 The signed value meets the conditions from (V).

Line 40 of Algorithm 8 The signed value does not meet the conditions from (V).

Line 63 of Algorithm 8 The signed value does not meet the conditions from (V).

Since only 𝑐 can have created a term sig(signatureBase, clientSignKey), honest clients only
create such a term in Line 39 of Algorithm 6, and this term is part of the input event in

processing step 𝑅, we conclude that there must be a processing step 𝑃 prior to 𝑅 in 𝜌 during

which 𝑐 signed signatureBase in Line 39 of Algorithm 6.

□

Lemma 42 (Non-repudiation for Signed Resource Responses (Definition 37) Holds). For
every run 𝜌 = ((𝑆0, 𝐸0, 𝑁 0), ...) of FAPI , every configuration (𝑆𝑛, 𝐸𝑛, 𝑁𝑛) in 𝜌 , every client 𝑐 ∈ C
which is honest in 𝑆𝑛 , every session id sessionId ∈ 𝑆𝑛 (𝑐).sessions such that

(1) 𝑆𝑛 (𝑐).sessions[sessionId] [expect_signed_resource_res] ≡ ⊤, and
(2) 𝑆𝑛 (𝑐).sessions[sessionId] [resource] ≡ resource,

then all of the following hold true:

(I) There exists a processing step 𝑃 = (𝑆, 𝐸, 𝑁 ) 𝑒in→𝑐−−−−→ (𝑆 ′, 𝐸′, 𝑁 ′) in 𝜌 with (𝑆, 𝐸, 𝑁 ) prior to
(𝑆𝑛, 𝐸𝑛, 𝑁𝑛) where 𝑒in = ⟨𝑥,𝑦,𝑚⟩, with𝑚 having the form
encs (⟨HTTPResp, ·, status, headers, body⟩, ·), where body ≡ [resource : resource], and
𝑆 (𝑐) ≠ 𝑆 ′ (𝑐).

(II) headers[Signature-Input] is a dictionary with at least a key res such that
headers[Signature-Input] [res] is a sequence with at least two elements. For those first two
elements, components, and metadata, we have ⟨@status, ⟨⟩⟩,
⟨content-digest, ⟨⟩⟩ ∈⟨⟩ components, and metadata is a dictionary with at least the key tag
such that metadata[tag] ≡ fapi-2-response.

(III) headers[Signature] is a dictionary with at least a key res such that
headers[Signature] [res] ≡ sig(signatureBase, rsSigKey).
In addition, signatureBase is of the form
[⟨@status, ⟨⟩⟩ : status, ⟨content-digest, ⟨⟩⟩ : hash(body)] +⟨⟩
[tag : fapi-2-response, keyid : keyId′] for some keyId′; however, the dictionaries may
contain additional elements.

(IV) There exists a domain rsDom ∈ 𝑆𝑛 (𝑐).rsSigKeys such that
𝑆𝑛 (𝑐).rsSigKeys[rsDom] ≡ pub(rsSigKey).

(V) If process rs := dom−1 (rsDom) is honest in 𝑆𝑛 , then there is a processing step 𝑄 = 𝑠 −−−−−−→
rs→𝐸out

𝑠′,

and rs signed the resource response contained in𝑚 during 𝑄 in Line 6 of Algorithm 20.

Proof.
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(I) Precondition (2) implies that 𝑐 must have stored some value under key resource in a record

within its sessions state subterm prior to (𝑆𝑛, 𝐸𝑛, 𝑁𝑛) (and the sessions state subterm is

initially empty, see Definition 13). An honest client only stores values under that key in

Line 109 of Algorithm 3. Algorithm 3 is only called in Line 26 of Algorithm 41, which only

happens if the input event to the current processing step is an encrypted HTTP response

(see Lines 19ff. of Algorithm 41), i.e., matches ⟨∗, ∗, encs (⟨HTTPResp, ∗, ∗, ∗, ∗⟩, ∗)⟩.
Furthermore, execution during such a processing step must of course reach Line 109 of

Algorithm 3 (and end in a stop with a state parameter, otherwise, nothing gets stored under

key resource, contradicting (2)). The value stored to 𝑐’s sessions state subterm in that line

is taken from the decrypted (Line 20 of Algorithm 41) input message’s body component

under the key resource (Line 108 of Algorithm 3). Hence, decs (𝑚,𝑘).body[resource] (for
the “correct” 𝑘) is equivalent to resource as stored in the sessions state subterm.

Signature Check During 𝑃 . From (1) we have

𝑆𝑛 (𝑐).sessions[sessionId] [expect_signed_resource_res] ≡ ⊤.
Since execution during 𝑃 must reach Line 109 of Algorithm 3 (otherwise 𝑆 (𝑐) = 𝑆 ′ (𝑐)), we
know that Line 89 of Algorithm 3 must have been executed as well. Because resource can
only be stored in Line 109 of Algorithm 3 after expect_signed_resource_res was stored
in Line 90 of Algorithm 3, 𝑆𝑛 (𝑐).sessions[sessionId] [expect_signed_resource_res] ≡ ⊤
implies that expectSignedResponse is chosen as ⊤ in Line 89 of Algorithm 3 during 𝑃 . Hence,

during 𝑃 , Lines 91ff. of Algorithm 3 are executed.

(II) As shown in “Signature Check During 𝑃” above, Lines 91ff. of Algorithm 3 are executed during

𝑃 . headers[Signature-Input] [res] must be a sequence with at least two elements, as

otherwise, accessing the sequence elements in Line 98 of Algorithm 3 would be undefined,

and hence, 𝑃 would not exist in 𝜌 .

Furthermore, the same check ensures ⟨@status, ⟨⟩⟩,
⟨content-digest, ⟨⟩⟩ ∈⟨⟩ headers[Signature-Input] [res] .1, and
headers[Signature-Input] [res] .2[tag] ≡ fapi-2-response – if this check fails, 𝑃 stops

without parameters in Line 99 of Algorithm 3, which is a contradiction to (I).

(III) As shown in “Signature Check During 𝑃” above, Lines 91ff. of Algorithm 3 are executed

during 𝑃 , and from (I), we have that 𝑃 does not end in a parameterless stop. This implies that

the checks in Lines 100, 104, and 106 of Algorithm 3 succeed (i.e., the if-conditions are false).

res ∈ headers[Signature] Proof by contradiction: if res ∉ headers[Signature], then
headers[Signature] [res] ≡ ⟨⟩ (Definition 47). extractmsg(⟨⟩) in Line 97 of Algorithm 3

is undefined (Figure 10), and therefore 𝑃 is not in 𝜌 . This is a contradiction to (I).

headers[Signature] [res] ∼ sig(∗, ∗) Proof by contradiction: assume

headers[Signature] [res] ≁ sig(∗, ∗). Therefore
∀𝑘. checksig(headers[Signature] [res], 𝑘) . ⊤ in Line 106 of Algorithm 3, hence 𝑃 stops

without parameters, which is a contradiction to (I).

signatureBase[⟨@status, ⟨⟩⟩] ≡ status We have

⟨@status, ⟨⟩⟩ ∈⟨⟩ headers[Signature-Input] [res] .1 from (II). Therefore,

IS_COMPONENT_EQUAL (Algorithm 1) in Line 103 of Algorithm 3 gets called with

⟨@status, ⟨⟩⟩ as last argument, signatureBase as second-to-last argument, and the

decrypted𝑚 as first argument. It is easy to see that Algorithm 1 only returns ⊤ (which is

needed, as otherwise 𝑃 would stop without parameters due to Line 104 of Algorithm 3), if

signatureBase[⟨@status, ⟨⟩⟩] ≡ status.
signatureBase[⟨content-digest, ⟨⟩⟩] ≡ hash(body) From Line 92 of Algorithm 3 and (I) (𝑃

does not stop without parameters), we get headers[Content-Digest] ≡ hash(body). With
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the same argumentation as above for @status, we get
signatureBase[⟨content-digest, ⟨⟩⟩] ≡ headers[Content-Digest]. Combining these, we

get signatureBase[⟨content-digest, ⟨⟩⟩] ≡ hash(body).
Value of tag and existence of keyid in signatureBase Obvious from Line 100 of

Algorithm 3 and (I).

(IV) From (I), we know that the signature check in Line 106 of Algorithm 3 must succeed. Hence,

the value for pubKey used there must be pub(rsSigKey) (see Figure 10). Furthermore, this

value is taken from 𝑐’s rsSigKeys state subterm in Line 96 of Algorithm 3 with a key rsDom.

Note: if rsDom ∉ 𝑆 (𝑐).rsSigKeys, the value of pubKey would be ⟨⟩ ≁ pub(∗).
(V) From Definition 13, we have dom−1 (rsDom) ∈ RS for all rsDom ∈ 𝑆0 (𝑐).rsSigKeys. However,

since an honest client never changes the contents of its rsSigKeys state subterm, we also

get dom−1 (rsDom) ∈ RS for all rsDom ∈ 𝑆 (𝑐).rsSigKeys, and hence, we can assume that

rs := dom−1 (rsDom) ∈ RS is an honest resource server (in 𝑆𝑛).

Furthermore, Definition 13 gives us 𝑆 (𝑐).rsSigKeys[rsDom] ≡ pub(signkey(rs)). This
allows us to apply Lemma 10: only rs can derive rsSigKey, and hence, only rs can have

created a term sig(signatureBase, rsSigKey) (see Figure 10). An honest resource server only

creates signatures in Line 6 of Algorithm 20, and since 𝑐 processes

sig(signatureBase, rsSigKey), i.e., a signature created by rs, in 𝑃 , there must have been a

processing step 𝑄 during which rs created sig(signatureBase, rsSigKey), i.e., signed
signatureBase.

□

F.7 Proof of Theorem
Theorem 1 follows from Lemmas 31-39, Lemma 41, and Lemma 42.
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deca (enca (𝑥, pub(𝑦)), 𝑦) = 𝑥 (7)

decs (encs (𝑥,𝑦), 𝑦) = 𝑥 (8)

checksig(sig(𝑥,𝑦), pub(𝑦)) = ⊤ (9)

extractmsg(sig(𝑥,𝑦)) = 𝑥 (10)

checkmac(mac(𝑥,𝑦), 𝑦) = ⊤ (11)

extractmsg(mac(𝑥,𝑦)) = 𝑥 (12)

𝜋𝑖 (⟨𝑥1, . . . , 𝑥𝑛⟩) = 𝑥𝑖 if 1 ≤ 𝑖 ≤ 𝑛 (13)

𝜋 𝑗 (⟨𝑥1, . . . , 𝑥𝑛⟩) = ^ if 𝑗 ∉ {1, . . . , 𝑛} (14)

𝜋 𝑗 (𝑡) = ^ if 𝑡 is not a sequence (15)

Fig. 10. Equational theory for Σ.

G TECHNICAL DEFINITIONS
Here, we provide technical definitions of the WIM. These follow the descriptions in [24, 33, 34, 35,

36, 37, 38].

G.1 Terms and Notations
Definition 38 (Signature Σ). We define the signature Σ, over which we will define formal terms,

as the union of the following pairwise disjoint sets:
Constants C = S ∪ IPs ∪ {⊥,⊤,^} with the three sets pairwise disjoint. S is the set of all (ASCII)

strings, including the empty string 𝜀. IPs is the set of IP addresses.
Function Symbols to represent public keys, asymmetric encryption and decryption, symmetric

encryption and decryption, signatures, signature verification, MACs, MAC verification, message
extraction from signatures and MACs, and hashing, respectively: pub(·), enca (·, ·), deca (·, ·),
encs (·, ·), decs (·, ·), sig(·, ·), checksig(·, ·), mac(·, ·), checkmac(·, ·), extractmsg(·), hash(·).

Sequences of any length ⟨⟩, ⟨·⟩, ⟨·, ·⟩, ⟨·, ·, ·⟩, etc. Note that formally, these sequence “constructors” are
also function symbols.

Projection Symbols to access sequence elements: 𝜋𝑖 (·) for all 𝑖 ∈ N∅ . Note that formally, projection
symbols are also function symbols.

Definition 39 (Nonces and Terms). By 𝑋 = {𝑥0, 𝑥1, . . . } we denote a set of variables and by
N we denote an infinite set of constants (nonces) such that Σ, 𝑋 , and N are pairwise disjoint. For
𝑁 ⊆ N , we define the set T𝑁 (𝑋 ) of terms over Σ ∪ 𝑁 ∪𝑋 inductively as usual: (1) If 𝑡 ∈ 𝑁 ∪𝑋 ∪ C,
then 𝑡 is a term. (2) If 𝑓 ∈ Σ is an 𝑛-ary function symbol for some 𝑛 ≥ 0 and 𝑡1, . . . , 𝑡𝑛 are terms, then
𝑓 (𝑡1, . . . , 𝑡𝑛) is a term.

By ≡ we denote the congruence relation on TN (𝑋 ) induced by the theory associated with Σ (see

Figure 10). For example, we have that 𝜋1 (deca (enca (⟨a, b⟩, pub(𝑘)), 𝑘)) ≡ a.

Definition 40 (Ground Terms, Messages, Placeholders, Protomessages). By T𝑁 = T𝑁 (∅),
we denote the set of all terms over Σ∪𝑁 without variables, called ground terms. The set M of messages
(over N ) is defined to be the set of ground terms TN .

We define the set𝑉process = {𝜈1, 𝜈2, . . . } of variables (called placeholders). The set M 𝜈
:= TN (𝑉process)

is called the set of protomessages, i.e., messages that can contain placeholders.

Example 1. For example, 𝑘 ∈ N and pub(𝑘) are messages, where 𝑘 typically models a private key
and pub(𝑘) the corresponding public key. For constants 𝑎, 𝑏, 𝑐 and the nonce 𝑘 ∈ N , the message
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enca (⟨𝑎, 𝑏, 𝑐⟩, pub(𝑘)) is interpreted to be the message ⟨𝑎, 𝑏, 𝑐⟩ (the sequence of constants 𝑎, 𝑏, 𝑐)
encrypted by the public key pub(𝑘).

Definition 41 (Events and Protoevents). An event (over IPs and M ) is a term of the form
⟨𝑎, 𝑓 ,𝑚⟩, for 𝑎, 𝑓 ∈ IPs and𝑚 ∈ M , where 𝑎 is interpreted to be the receiver address and 𝑓 is the
sender address. We denote by E the set of all events. Events over IPs and M 𝜈 are called protoevents

and are denoted E 𝜈 . By 2
E ⟨⟩ (or 2E𝜈 ⟨⟩ , respectively) we denote the set of all sequences of (proto)events,

including the empty sequence (e.g., ⟨⟩, ⟨⟨𝑎, 𝑓 ,𝑚⟩, ⟨𝑎′, 𝑓 ′,𝑚′⟩, . . . ⟩, etc.).

Definition 42 (Normal Form). Let 𝑡 be a term. The normal form of 𝑡 is acquired by reducing the
function symbols from left to right as far as possible using the equational theory shown in Figure 10.
For a term 𝑡 , we denote its normal form as 𝑡 ↓.

Definition 43 (Pattern Matching). Let pattern ∈ TN ({∗}) be a term containing the wildcard
(variable ∗). We say that a term 𝑡 matches pattern iff 𝑡 can be acquired from pattern by replacing each
occurrence of the wildcard with an arbitrary term (which may be different for each instance of the
wildcard). We write 𝑡 ∼ pattern. For a sequence of patterns patterns we write 𝑡 ¤∼ patterns to denote
that 𝑡 matches at least one pattern in patterns.
For a term 𝑡 ′ we write 𝑡 ′ | pattern to denote the term that is acquired from 𝑡 ′ by removing all

immediate subterms of 𝑡 ′ that do not match pattern.

Example 2. For example, for a pattern 𝑝 = ⟨⊤, ∗⟩ we have that ⟨⊤, 42⟩ ∼ 𝑝 , ⟨⊥, 42⟩ ≁ 𝑝 , and
⟨⟨⊥,⊤⟩, ⟨⊤, 23⟩, ⟨a, b⟩, ⟨⊤,⊥⟩⟩| 𝑝 = ⟨⟨⊤, 23⟩, ⟨⊤,⊥⟩⟩ .

Definition 44 (Variable Replacement). Let 𝑁 ⊆ N , 𝜏 ∈ T𝑁 ({𝑥1, . . . , 𝑥𝑛}), and 𝑡1, . . . , 𝑡𝑛 ∈ T𝑁 .
By 𝜏 [𝑡1/𝑥1, . . . , 𝑡𝑛/𝑥𝑛] we denote the (ground) term obtained from 𝜏 by replacing all occurrences of 𝑥𝑖

in 𝜏 by 𝑡𝑖 , for all 𝑖 ∈ {1, . . . , 𝑛}.

Definition 45 (Seqence Notations). Let 𝑡 = ⟨𝑡1, . . . , 𝑡𝑛⟩ and 𝑟 = ⟨𝑟1, . . . , 𝑟𝑚⟩ be sequences, 𝑠 a
set, and 𝑥,𝑦 terms. We define the following operations:
• 𝑡 ⊂⟨⟩ 𝑠 ⇐⇒ 𝑡1, . . . , 𝑡𝑛 ∈ 𝑠
• 𝑥 ∈⟨⟩ 𝑡 ⇐⇒ ∃𝑖 : 𝑡𝑖 = 𝑥
• 𝑡 +⟨⟩ 𝑦 := ⟨𝑡1, . . . , 𝑡𝑛, 𝑦⟩
• 𝑡 ∪ 𝑟 := ⟨𝑡1, . . . , 𝑡𝑛, 𝑟1, . . . , 𝑟𝑚⟩

• 𝑡 −⟨⟩ 𝑦 :=

{
⟨𝑡1, . . . , 𝑡𝑖−1, 𝑡𝑖+1, . . . , 𝑡𝑛⟩ if ∃𝑖 : 𝑡𝑖 = 𝑥 (i.e., 𝑦 ∈⟨⟩ 𝑡 )
𝑡 otherwise (i.e., 𝑦 ̸∈⟨⟩ 𝑡 )

If 𝑦 occurs more than once in 𝑡 , 𝑡 −⟨⟩ 𝑦 non-deterministically removes one of the occurrences.
• 𝑡 −⟨⟩∗ 𝑦 is 𝑡 with all occurrences of 𝑦 removed.
• |𝑡 | := 𝑛. If 𝑡 ′ is not a sequence, we set |𝑡 ′ | := ^.
• For a finite set𝑀 with𝑀 = {𝑚1, . . . ,𝑚𝑛} we use ⟨𝑀⟩ to denote the term of the form ⟨𝑚1, . . . ,𝑚𝑛⟩.
The order of the elements does not matter; one is chosen arbitrarily.

Definition 46 (Dictionaries). A dictionary over 𝑋 and 𝑌 is a term of the form

⟨⟨𝑘1, 𝑣1⟩, . . . , ⟨𝑘𝑛, 𝑣𝑛⟩⟩
where 𝑘1, . . . , 𝑘𝑛 ∈ 𝑋 , 𝑣1, . . . , 𝑣𝑛 ∈ 𝑌 . We call every term ⟨𝑘𝑖 , 𝑣𝑖⟩, 𝑖 ∈ {1, . . . , 𝑛}, an element of the dic-
tionary with key 𝑘𝑖 and value 𝑣𝑖 . We often write [𝑘1 : 𝑣1, . . . , 𝑘𝑛 : 𝑣𝑛] instead of ⟨⟨𝑘1, 𝑣1⟩, . . . , ⟨𝑘𝑛, 𝑣𝑛⟩⟩.
We denote the set of all dictionaries over 𝑋 and 𝑌 by [𝑋 × 𝑌 ]. Note that the empty dictionary is
equivalent to the empty sequence, i.e., [] = ⟨⟩; and dictionaries as such may contain duplicate keys
(however, all dictionary operations are only defined on dictionaries with unique keys).
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Definition 47 (Operations on Dictionaries). Let 𝑧 = [𝑘1 : 𝑣1, 𝑘2 : 𝑣2, . . . , 𝑘𝑛 : 𝑣𝑛] be a dictio-
nary with unique keys, i.e., ∀𝑖, 𝑗 : 𝑘𝑖 ≠ 𝑘 𝑗 . In addition, let 𝑡 and 𝑣 be terms. We define the following
operations:
• 𝑡 ∈ 𝑧 ⇐⇒ ∃𝑖 ∈ {1, . . . , 𝑛} : 𝑘𝑖 = 𝑡

• 𝑧 [𝑡] :=
{
𝑣𝑖 if ∃𝑘𝑖 ∈ 𝑧 : 𝑡 = 𝑘𝑖
⟨⟩ otherwise (i.e., if 𝑡 ∉ 𝑧)

• 𝑧 − 𝑡 :=
{
[𝑘1 : 𝑣1, . . . , 𝑘𝑖−1 : 𝑣𝑖−1, 𝑘𝑖+1 : 𝑣𝑖+1, . . . , 𝑘𝑛 : 𝑣𝑛] if ∃𝑘𝑖 ∈ 𝑧 : 𝑡 = 𝑘𝑖
𝑧 otherwise (i.e., if 𝑡 ∉ 𝑧)

• In our algorithm descriptions, we often write let 𝑧 [𝑡] := 𝑣 . If 𝑡 ∉ 𝑧 prior to this operation, an
element ⟨𝑡, 𝑣⟩ is appended to 𝑧. Otherwise, i.e., if there already is an element ⟨𝑡, 𝑥⟩ ∈⟨⟩ 𝑧, this
element is updated to ⟨𝑡, 𝑣⟩.

We emphasize that these operations are only defined on dictionaries with unique keys.

Given a term 𝑡 = ⟨𝑡1, . . . , 𝑡𝑛⟩, we can refer to any subterm using a sequence of integers. The

subterm is determined by repeated application of the projection 𝜋𝑖 for the integers 𝑖 in the sequence.

We call such a sequence a pointer :

Definition 48 (Pointers). A pointer is a sequence of non-negative integers. We write 𝜏 .p for
the application of the pointer p to the term 𝜏 . This operator is applied from left to right. For pointers
consisting of a single integer, we may omit the sequence braces for brevity.

Example 3. For the term 𝜏 = ⟨𝑎, 𝑏, ⟨𝑐, 𝑑, ⟨𝑒, 𝑓 ⟩⟩⟩ and the pointer p = ⟨3, 1⟩, the subterm of 𝜏 at the
position p is 𝑐 = 𝜋1 (𝜋3 (𝜏)). Also, 𝜏 .3.⟨3, 1⟩ = 𝜏 .3.p = 𝜏 .3.3.1 = 𝑒 .

To improve readability, we try to avoid writing, e.g., 𝑜.2 or 𝜋2 (𝑜) in this document. Instead, we

will use the names of the components of a sequence that is of a defined form as pointers that point

to the corresponding subterms. E.g., if an Origin term is defined as ⟨host, protocol⟩ and 𝑜 is an Origin

term, then we can write 𝑜.protocol instead of 𝜋2 (𝑜) or 𝑜.2. See also Example 4.

Definition 49 (Concatenation of Seqences). For a sequence 𝑎 = ⟨𝑎1, . . . , 𝑎𝑖⟩ and a sequence
𝑏 = ⟨𝑏1, 𝑏2, . . . ⟩, we define the concatenation as 𝑎 · 𝑏 := ⟨𝑎1, . . . , 𝑎𝑖 , 𝑏1, 𝑏2, . . . ⟩.

Definition 50 (Subtracting from Seqences). For a sequence 𝑋 and a set or sequence 𝑌 we
define𝑋 \𝑌 to be the sequence𝑋 where for each element in𝑌 , a non-deterministically chosen occurence
of that element in 𝑋 is removed.

G.2 Message and Data Formats
We now provide some more details about data and message formats that are needed for the formal

treatment of the Web model presented in the following.

G.2.1 URLs.

Definition 51. A URL is a term of the form

⟨URL, protocol, host, path, parameters, fragment⟩
with protocol ∈ {P, S} (for plain (HTTP) and secure (HTTPS)), a domain host ∈ Doms, path ∈ S,
parameters ∈

[
S × TN

]
, and fragment ∈ TN . The set of all valid URLs is URLs.

The fragment part of a URL can be omitted when writing the URL. Its value is then defined to be

⊥. We sometimes also write URLhostpath to denote the URL ⟨URL, S, host, path, ⟨⟩,⊥⟩.
As mentioned above, for specific terms, such as URLs, we typically use the names of its compo-

nents as pointers (see Definition 48):
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Example 4. For the URL 𝑢 = ⟨URL, 𝑎, 𝑏, 𝑐, 𝑑⟩, 𝑢.protocol = 𝑎. If, in the algorithms described later,
we say 𝑢.path := 𝑒 then 𝑢 = ⟨URL, 𝑎, 𝑏, 𝑐, 𝑒⟩ afterwards.

G.2.2 Origins.

Definition 52. An origin is a term of the form ⟨host, protocol⟩ with host ∈ Doms and protocol ∈
{P, S}. We write Origins for the set of all origins.

Example 5. For example, ⟨FOO, S⟩ is the HTTPS origin for the domain FOO, while ⟨BAR, P⟩ is the
HTTP origin for the domain BAR.

G.2.3 Cookies.

Definition 53. A cookie is a term of the form ⟨name, content⟩ where name ∈ TN , and content
is a term of the form ⟨value, secure, session, httpOnly⟩ where value ∈ TN , secure, session, httpOnly ∈
{⊤,⊥}. As name is a term, it may also be a sequence consisting of two parts. If the name consists of
two parts, we call the first part of the sequence (i.e., name.1) the prefix of the name. We write Cookies
for the set of all cookies and Cookies𝜈 for the set of all cookies where names and values are defined
over TN (𝑉 ).

If the secure attribute of a cookie is set, the browser will not transfer this cookie over unencrypted
HTTP connections.

13
If the session flag is set, this cookie will be deleted as soon as the browser is

closed. The httpOnly attribute controls whether scripts have access to this cookie.

When the __Host prefix (see [12]) of a cookie is set (i.e., name consists of two parts and name.1 ≡
__Host), the browser accepts the cookie only if the secure attribute is set. As such cookies are only

transferred over secure channels (i.e., with TLS), the cookie cannot be set by a network attacker.

Note that the WIM does not model the domain attribute of the Set-Cookie header, so cookies in

the WIM are always sent to the originating domain and not some subdomain. Therefore, the WIM

models only the __Host prefix, but not the __Secure prefix.

Also note that cookies of the form described here are only contained in HTTP(S) responses. In

HTTP(S) requests, only the components name and value are transferred as a pairing of the form

⟨name, value⟩.

G.2.4 HTTP Messages.

Definition 54. An HTTP request is a term of the form shown in (16). An HTTP response is a
term of the form shown in (17).

⟨HTTPReq, nonce,method, host, path, parameters, headers, body⟩ (16)

⟨HTTPResp, nonce, status, headers, body⟩ (17)

The components are defined as follows:
• nonce ∈ N serves to map each response to the corresponding request.
• method ∈ Methods is one of the HTTP methods.
• host ∈ Doms is the host name in the HOST header of HTTP/1.1.
• path ∈ S indicates the resource path at the server side.
• status ∈ S is the HTTP status code (i.e., a number between 100 and 505, as defined by the HTTP
standard).
• parameters ∈

[
S × TN

]
contains URL parameters.

• headers ∈
[
S × TN

]
contains request/response headers. The dictionary elements are terms of

one of the following forms:
13
Note that secure cookies can be set over unencrypted connections (c.f. RFC 6265).
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– ⟨Origin, 𝑜⟩ where 𝑜 is an origin,
– ⟨Set-Cookie, 𝑐⟩ where 𝑐 is a sequence of cookies,
– ⟨Cookie, 𝑐⟩ where 𝑐 ∈

[
S × TN

]
(note that in this header, only names and values of cookies

are transferred),
– ⟨Location, 𝑙⟩ where 𝑙 ∈ URLs,
– ⟨Referer, 𝑟 ⟩ where 𝑟 ∈ URLs,
– ⟨Strict-Transport-Security,⊤⟩,
– ⟨Authorization, ⟨username, password⟩⟩ where username, password ∈ S (this header models
the ‘Basic’ HTTP Authentication Scheme, see [81]),

– ⟨ReferrerPolicy, 𝑝⟩ where 𝑝 ∈ {noreferrer, origin}.
• body ∈ TN in requests and responses.

We write HTTPRequests/HTTPResponses for the set of all HTTP requests or responses, respectively.

Example 6 (HTTP Reqest and Response).

r :=⟨HTTPReq, 𝑛1, POST, example.com, /show, ⟨⟨index, 1⟩⟩,
[Origin : ⟨example.com, S⟩], ⟨foo, bar⟩⟩ (18)

s :=⟨HTTPResp, 𝑛1, 200, ⟨⟨Set-Cookie, ⟨⟨SID, ⟨𝑛2,⊥,⊥,⊤⟩⟩⟩⟩⟩, ⟨somescript, 𝑥⟩⟩ (19)

An HTTP POST request for the URL http:// example.com/ show?index=1 is shown in (18), with an
Origin header and a body that contains ⟨foo, bar⟩. A possible response is shown in (19), which contains
an httpOnly cookie with name SID and value 𝑛2 as well as a string somescript representing a script
that can later be executed in the browser (see Section G.11) and the scripts initial state 𝑥 .

Encrypted HTTP Messages. For HTTPS, requests are encrypted using the public key of the server.

Such a request contains an (ephemeral) symmetric key chosen by the client that issued the request.

The server is supposed to encrypt the response using the symmetric key.

Definition 55. An encrypted HTTP request is of the form enca (⟨𝑚,𝑘 ′⟩, 𝑘), where 𝑘 ∈ 𝑡𝑒𝑟𝑚𝑠 ,
𝑘 ′ ∈ N , and𝑚 ∈ HTTPRequests. The corresponding encrypted HTTP response would be of the
form encs (𝑚′, 𝑘 ′), where𝑚′ ∈ HTTPResponses. We call the sets of all encrypted HTTP requests and
responses HTTPSRequests or HTTPSResponses, respectively.

We say that an HTTP(S) response matches or corresponds to an HTTP(S) request if both terms

contain the same nonce.

Example 7.

enca (⟨𝑟, 𝑘 ′⟩, pub(𝑘example.com)) (20)

encs (𝑠, 𝑘 ′) (21)

The term (20) shows an encrypted request (with 𝑟 as in (18)). It is encrypted using the public key
pub(𝑘example.com). The term (21) is a response (with 𝑠 as in (19)). It is encrypted symmetrically using
the (symmetric) key 𝑘 ′ that was sent in the request (20).

G.2.5 DNS Messages.

Definition 56. A DNS request is a term of the form ⟨DNSResolve, domain, nonce⟩ where domain
∈ Doms, nonce ∈ N . We call the set of all DNS requests DNSRequests.

Definition 57. A DNS response is a term of the form ⟨DNSResolved, domain, result, nonce⟩ with
domain ∈ Doms, result ∈ IPs, nonce ∈ N . We call the set of all DNS responses DNSResponses.

http://example.com/show?index=1
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DNS servers are supposed to include the nonce they received in a DNS request in the DNS

response that they send back so that the party which issued the request can match it with the

request.

G.3 Atomic Processes, Systems and Runs
Entities that take part in a network are modeled as atomic processes. An atomic process takes a

term that describes its current state and an event as input, and then (non-deterministically) outputs

a new state and a sequence of events.

Definition 58 (Generic Atomic Processes and Systems). A (generic) atomic process is a tuple

𝑝 = (𝐼𝑝 , 𝑍𝑝 , 𝑅𝑝 , 𝑠
𝑝

0
)

where 𝐼𝑝 ⊆ IPs, 𝑍𝑝 ⊆ TN is a set of states, 𝑅𝑝 ⊆ (E × 𝑍𝑝 ) × (2E𝜈 ⟨⟩ × TN (𝑉process)) (input event and
old state map to sequence of output events and new state), and 𝑠𝑝

0
∈ 𝑍𝑝 is the initial state of 𝑝 . For

any new state 𝑠 and any sequence of nonces (𝜂1, 𝜂2, . . . ) we demand that 𝑠 [𝜂1/𝜈1, 𝜂2/𝜈2, . . . ] ∈ 𝑍𝑝 . A
system P is a (possibly infinite) set of atomic processes.

Definition 59 (Configurations). A configuration of a system P is a tuple (𝑆, 𝐸, 𝑁 ) where the
state of the system 𝑆 maps every atomic process 𝑝 ∈ P to its current state 𝑆 (𝑝) ∈ 𝑍𝑝 , the sequence of
waiting events 𝐸 is an infinite sequence14 (𝑒1, 𝑒2, . . . ) of events waiting to be delivered, and 𝑁 is an
infinite sequence of nonces (𝑛1, 𝑛2, . . . ).

Definition 60 (Processing Steps). A processing step of the system P is of the form

(𝑆, 𝐸, 𝑁 )
𝑒in→𝑝
−−−−−→
𝑝→𝐸out

(𝑆 ′, 𝐸′, 𝑁 ′)

where
(1) (𝑆, 𝐸, 𝑁 ) and (𝑆 ′, 𝐸′, 𝑁 ′) are configurations of P ,
(2) 𝑒in = ⟨𝑎, 𝑓 ,𝑚⟩ ∈ 𝐸 is an event,
(3) 𝑝 ∈ P is a process,
(4) 𝐸out is a sequence (term) of events

such that there exists
(1) a sequence (term) 𝐸𝜈out ⊆ 2

E𝜈 ⟨⟩ of protoevents,
(2) a term 𝑠𝜈 ∈ TN (𝑉process),
(3) a sequence (𝑣1, 𝑣2, . . . , 𝑣𝑖 ) of all placeholders appearing in 𝐸𝜈out (ordered lexicographically),
(4) a sequence 𝑁 𝜈 = (𝜂1, 𝜂2, . . . , 𝜂𝑖 ) of the first 𝑖 elements in 𝑁

with
(1) ((𝑒in, 𝑆 (𝑝)), (𝐸𝜈out, 𝑠𝜈 )) ∈ 𝑅𝑝 and 𝑎 ∈ 𝐼𝑝 ,
(2) 𝐸out = 𝐸𝜈out [𝜂1/𝑣1, . . . , 𝜂𝑖/𝑣𝑖 ],
(3) 𝑆 ′ (𝑝) = 𝑠𝜈 [𝜂1/𝑣1, . . . , 𝜂𝑖/𝑣𝑖 ] and 𝑆 ′ (𝑝′) = 𝑆 (𝑝′) for all 𝑝′ ≠ 𝑝 ,
(4) 𝐸′ = 𝐸out · (𝐸 \ {𝑒in}),
(5) 𝑁 ′ = 𝑁 \ 𝑁 𝜈 .

We may omit the superscript and/or subscript of the arrow.

Intuitively, for a processing step, we select one of the processes in P , and call it with one of

the events in the list of waiting events 𝐸. In its output (new state and output events), we replace

any occurences of placeholders 𝜈𝑥 by “fresh” nonces from 𝑁 (which we then remove from 𝑁 ).

14
Here: Not in the sense of terms as defined earlier.
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The output events are then prepended to the list of waiting events, and the state of the process is

reflected in the new configuration.

Definition 61 (Runs). Let P be a system, 𝐸0 be sequence of events, and 𝑁 0 be a sequence of
nonces. A run 𝜌 of a system P initiated by 𝐸0 with nonces 𝑁 0 is a finite sequence of configurations
((𝑆0, 𝐸0, 𝑁 0), . . . , (𝑆𝑛, 𝐸𝑛, 𝑁𝑛)) or an infinite sequence of configurations ((𝑆0, 𝐸0, 𝑁 0), . . . ) such that
𝑆0 (𝑝) = 𝑠𝑝

0
for all 𝑝 ∈ P and (𝑆𝑖 , 𝐸𝑖 , 𝑁 𝑖 ) −→ (𝑆𝑖+1, 𝐸𝑖+1, 𝑁 𝑖+1) for all 0 ≤ 𝑖 < 𝑛 (finite run) or for all

𝑖 ≥ 0 (infinite run).
We denote the state 𝑆𝑛 (𝑝) of a process 𝑝 at the end of a finite run 𝜌 by 𝜌 (𝑝).

Usually, we will initiate runs with a set 𝐸0 containing infinite trigger events of the form

⟨𝑎, 𝑎, TRIGGER⟩ for each 𝑎 ∈ IPs, interleaved by address.

G.4 Atomic Dolev-Yao Processes
We next define atomic Dolev-Yao processes, for which we require that the messages and states that

they output can be computed (more formally, derived) from the current input event and state. For

this purpose, we first define what it means to derive a message from given messages.

Definition 62 (Deriving Terms). Let𝑀 be a set of ground terms. We say that a term𝑚 can be

derived from𝑀 with placeholders𝑉 if there exist 𝑛 ≥ 0,𝑚1, . . . ,𝑚𝑛 ∈ 𝑀 , and 𝜏 ∈ T∅ ({𝑥1, . . . , 𝑥𝑛} ∪
𝑉 ) such that 𝑚 ≡ 𝜏 [𝑚1/𝑥1, . . . ,𝑚𝑛/𝑥𝑛]. We denote by 𝑑𝑉 (𝑀) the set of all messages that can be
derived from𝑀 with variables 𝑉 .

For example, the term 𝑎 can be derived from the set of terms {enca (⟨𝑎, 𝑏, 𝑐⟩, pub(𝑘)), 𝑘}, i.e.,
𝑎 ∈ 𝑑∅ ({enca (⟨𝑎, 𝑏, 𝑐⟩, pub(𝑘)), 𝑘}).

A (Dolev-Yao) process consists of a set of addresses the process listens to, a set of states (terms),

an initial state, and a relation that takes an event and a state as input and (non-deterministically)

returns a new state and a sequence of events. The relation models a computation step of the process.

It is required that the output can be derived from the input event and the state.

Definition 63 (Atomic Dolev-Yao Process). An atomic Dolev-Yao process (or simply, a DY

process) is a tuple 𝑝 = (𝐼𝑝 , 𝑍𝑝 , 𝑅𝑝 , 𝑠
𝑝

0
) such that 𝑝 is an atomic process and for all events 𝑒 ∈ E ,

sequences of protoevents 𝐸, 𝑠 ∈ TN , 𝑠′ ∈ TN (𝑉process), with ((𝑒, 𝑠), (𝐸, 𝑠′)) ∈ 𝑅𝑝 it holds true that 𝐸,
𝑠′ ∈ 𝑑𝑉process ({𝑒, 𝑠}).

G.5 Attackers
The so-called attacker process is a Dolev-Yao process which records all messages it receives and

outputs any finite sequence of events it can possibly derive from its recorded messages. Hence, an

attacker process carries out all attacks any Dolev-Yao process could possibly perform. Attackers

can corrupt other parties (using corrupt messages).

Definition 64 (Atomic Attacker Process). An (atomic) attacker process for a set of sender

addresses 𝐴 ⊆ IPs is an atomic DY process 𝑝 = (𝐼 , 𝑍, 𝑅, 𝑠0) such that for all events 𝑒 , and 𝑠 ∈ TN
we have that ((𝑒, 𝑠), (𝐸, 𝑠′)) ∈ 𝑅 iff 𝑠′ = ⟨𝑒, 𝐸, 𝑠⟩ and 𝐸 = ⟨⟨𝑎1, 𝑓1,𝑚1⟩, . . . , ⟨𝑎𝑛, 𝑓𝑛,𝑚𝑛⟩⟩ with 𝑛 ∈ N,
𝑎1, . . . , 𝑎𝑛 ∈ IPs, 𝑓1, . . . , 𝑓𝑛 ∈ 𝐴,𝑚1, . . . ,𝑚𝑛 ∈ 𝑑𝑉process ({𝑒, 𝑠}).

Note that in aWeb system, we distinguish between two kinds of attacker processes: Web attackers

and network attackers. Both kinds match the definition above, but differ in the set of assigned

addresses in the context of a Web system. While for Web attackers, the set of addresses 𝐼𝑝 is disjoint

from other Web attackers and honest processes, i.e., Web attackers participate in the network as any

other party, the set of addresses 𝐼𝑝 of a network attacker is not restricted. Hence, a network attacker
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can intercept events addressed to any party as well as spoof all addresses. Note that one network

attacker subsumes any number of Web attackers as well as any number of network attackers.

G.6 Notations for Functions and Algorithms
When describing algorithms, we use the following notations:

G.6.1 Non-deterministic choosing and iteration. The notation let 𝑛 ← 𝑁 is used to describe that 𝑛

is chosen non-deterministically from the set 𝑁 . If N is empty, the corresponding processing step in

which this selection happens does not finish. We write for 𝑠 ∈ 𝑀 do to denote that the following

commands are repeated for every element in𝑀 , where the variable 𝑠 is the current element. The

order in which the elements are processed is chosen non-deterministically. We write, for example,

let 𝑥,𝑦 such that ⟨Constant, 𝑥,𝑦⟩ ≡ 𝑡 if possible; otherwise doSomethingElse

for some variables 𝑥,𝑦, a string Constant, and some term 𝑡 to express that 𝑥 := 𝜋2 (𝑡), and𝑦 := 𝜋3 (𝑡)
if Constant ≡ 𝜋1 (𝑡) and if |⟨Constant, 𝑥,𝑦⟩| = |𝑡 |, and that otherwise 𝑥 and 𝑦 are not set and

doSomethingElse is executed.

G.6.2 Function calls. When calling functions that do not return anything, we write

call FUNCTION_NAME(𝑥,𝑦)
to describe that a function FUNCTION_NAME is called with two variables 𝑥 and 𝑦 as parameters.

If that function executes the command stop 𝐸, 𝑠′, the processing step terminates, where 𝐸 is the

sequence of events output by the associated process and 𝑠′ is its new state. If that function does not

terminate with a stop, the control flow returns to the calling function at the next line after the call.

When calling a function that has a return value, we omit the call and directly write

let 𝑧 := FUNCTION_NAME(𝑥,𝑦)
to assign the return value to a variable 𝑧 after the function returns. Note that the semantics for

execution of stop within such functions is the same as for functions without a return value.

G.6.3 Stop without output. We write stop (without further parameters) to denote that there is no

output and no change in the state.

G.6.4 Placeholders. In several places throughout the algorithms we use placeholders to generate

“fresh” nonces as described in our communication model (see Definition 39). Table 2 shows a list

of some of the placeholders, generally denoted by 𝜈 with some subscript to distinguish between

multiple fresh values.

G.6.5 Abbreviations for URLs and Origins. We sometimes use an abbreviation for URLs. We write

URL𝑑path to describe the following URL term: ⟨URL, S, 𝑑, path, ⟨⟩⟩. If the domain 𝑑 belongs to some

distinguished process P and it is the only domain associated to this process, we may also write

URLPpath. For a (secure) origin ⟨𝑑, S⟩ of some domain 𝑑 , we also write origin𝑑 . Again, if the domain

𝑑 belongs to some distinguished process P and 𝑑 is the only domain associated to this process, we

may write originP.

G.7 Browsers
Here, we present the formal model of browsers.

G.7.1 Scripts. Recall that a script models JavaScript running in a browser. Scripts are defined

similarly to Dolev-Yao processes. When triggered by a browser, a script is provided with state

information. The script then outputs a term representing a new internal state and a command to be

interpreted by the browser (see also the specification of browsers below).
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Placeholder Usage

𝜈1 Algorithm 30, new window nonces

𝜈2 Algorithm 30, new HTTP request nonce

𝜈3 Algorithm 30, lookup key for pending HTTP requests entry

𝜈4 Algorithm 28, new HTTP request nonce (multiple lines)

𝜈5 Algorithm 28, new subwindow nonce

𝜈6 Algorithm 29, new HTTP request nonce

𝜈7 Algorithm 29, new document nonce

𝜈8 Algorithm 25, lookup key for pending DNS entry

𝜈9 Algorithm 22, new window nonce

𝜈10, . . . Algorithm 28, replacement for placeholders in script output

Table 2. List of placeholders used in browser algorithms.

Definition 65 (Placeholders for Scripts). By 𝑉script = {𝜆1, . . . } we denote an infinite set of
variables used in scripts.

Definition 66 (Scripts). A script is a relation 𝑅 ⊆ TN × TN (𝑉script) such that for all 𝑠 ∈ TN ,
𝑠′ ∈ TN (𝑉script) with (𝑠, 𝑠′) ∈ 𝑅 it follows that 𝑠′ ∈ 𝑑𝑉script (𝑠).

A script is called by the browser which provides it with state information (such as the script’s

last scriptstate and limited information about the browser’s state) 𝑠 . The script then outputs a

term 𝑠′, which represents the new scriptstate and some command which is interpreted by the

browser. The term 𝑠′ may contain variables 𝜆1, . . . which the browser will replace by (otherwise

unused) placeholders 𝜈1, . . . which will be replaced by nonces once the browser DY process finishes

(effectively providing the script with a way to get “fresh” nonces).

Similarly to an attacker process, the so-called attacker script outputs everything that is derivable

from the input.

Definition 67 (Attacker Script). The attacker script 𝑅att outputs everything that is derivable
from the input, i.e., 𝑅att = {(𝑠, 𝑠′) | 𝑠 ∈ TN , 𝑠

′ ∈ 𝑑𝑉script (𝑠)}.
G.7.2 Web Browser State. Before we can define the state of a Web browser, we first have to define

windows and documents.

Definition 68. A window is a term of the form𝑤 = ⟨nonce, documents, opener⟩ with nonce ∈ N ,
documents ⊂⟨⟩ Documents (defined below), opener ∈ N ∪ {⊥} where 𝑑.active = ⊤ for exactly
one 𝑑 ∈⟨⟩ documents if documents is not empty (we then call 𝑑 the active document of𝑤 ). We write
Windows for the set of all windows. We write𝑤.activedocument to denote the active document inside
window𝑤 if it exists and ⟨⟩ else.
We will refer to the window nonce as (window) reference.

The documents contained in a window term to the left of the active document are the previously

viewed documents (available to the user via the “back” button) and the documents in the window

term to the right of the currently active document are documents available via the “forward” button.

A window 𝑎 may have opened a top-level window 𝑏 (i.e., a window term which is not a subterm

of a document term). In this case, the opener part of the term 𝑏 is the nonce of 𝑎, i.e., 𝑏.opener =

𝑎.nonce.

Definition 69. A document 𝑑 is a term of the form

⟨nonce, location, headers, referrer, script, scriptstate, scriptinputs, subwindows, active⟩
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where nonce ∈ N , location ∈ URLs, headers ∈
[
S × TN

]
, referrer ∈ URLs ∪ {⊥}, script ∈ TN ,

scriptstate ∈ TN , scriptinputs ∈ TN , subwindows ⊂⟨⟩ Windows, active ∈ {⊤,⊥}. A limited doc-

ument is a term of the form ⟨nonce, subwindows⟩ with nonce, subwindows as above. A window
𝑤 ∈⟨⟩ subwindows is called a subwindow (of 𝑑). We write Documents for the set of all docu-
ments. For a document term 𝑑 we write 𝑑.origin to denote the origin of the document, i.e., the
term ⟨𝑑.location.host, 𝑑 .location.protocol⟩ ∈ Origins.

We will refer to the document nonce as (document) reference.

Definition 70. For two window terms𝑤 and𝑤 ′ we write

𝑤
childof
−−−−−→ 𝑤 ′

if𝑤 ∈⟨⟩ 𝑤 ′ .activedocument.subwindows. We write
childof+
−−−−−→ for the transitive closure and we write

childof∗
−−−−−→ for the reflexive transitive closure.

In the Web browser state, HTTP(S) messages are tracked using references, where we distinguish
between references for XMLHttpRequests and references for normal HTTP(S) requests.

Definition 71. A reference for a normal HTTP(S) request is a sequence of the form ⟨REQ, nonce⟩,
where nonce is a window reference. A reference for a XMLHttpRequest is a sequence of the form
⟨XHR, nonce, xhrreference⟩, where nonce is a document reference and xhrreference is some nonce that
was chosen by the script that initiated the request.

We can now define the set of states of Web browsers. Note that we use the dictionary notation

that we introduced in Definition 46.

Definition 72. The set of states 𝑍webbrowser of a Web browser atomic Dolev-Yao process consists
of the terms of the form

⟨windows, ids, secrets, cookies, localStorage, sessionStorage, keyMapping,

sts,DNSaddress, pendingDNS, pendingRequests, isCorrupted, cibaBindingMessages, tlskeys⟩

with the subterms as follows:
• windows ⊂⟨⟩ Windows contains a list of window terms (modeling top-level windows, or browser
tabs) which contain documents, which in turn can contain further window terms (iframes).
• ids ⊂⟨⟩ TN is a list of identities that are owned by this browser (i.e., belong to the user of the
browser).
• secrets ∈

[
Origins × TN

]
contains a list of secrets that are associated with certain origins (i.e.,

passwords of the user of the browser at certain websites). Note that this structure allows to have
a single secret under an origin or a list of secrets under an origin.
• cookies is a dictionary over Doms and sequences of Cookies modeling cookies that are stored
for specific domains.
• localStorage ∈

[
Origins × TN

]
stores the data saved by scripts using the localStorage API

(separated by origins).
• sessionStorage ∈

[
OR × TN

]
for OR :=

{
⟨𝑜, 𝑟 ⟩

��𝑜 ∈ Origins, 𝑟 ∈ N
}
similar to localStorage,

but the data in sessionStorage is additionally separated by top-level windows.
• keyMapping ∈

[
Doms × TN

]
maps domains to TLS encryption keys.

• sts ⊂⟨⟩ Doms stores the list of domains that the browser only accesses via TLS (strict transport
security).
• DNSaddress ∈ IPs defines the IP address of the DNS server.
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• pendingDNS ∈
[
N × TN

]
contains one pairing per unanswered DNS query of the form

⟨reference, request, url⟩. In these pairings, reference is an HTTP(S) request reference (as above),
request contains the HTTP(S) message that awaits DNS resolution, and url contains the URL of
said HTTP request. The pairings in pendingDNS are indexed by the DNS request/response nonce.
• pendingRequests ∈ TN contains pairings of the form ⟨reference, request, url, key, 𝑓 ⟩ with
reference, request, and url as in pendingDNS, key is the symmetric encryption key if HTTPS is
used or ⊥ otherwise, and 𝑓 is the IP address of the server to which the request was sent.
• isCorrupted ∈ {⊥, FULLCORRUPT, CLOSECORRUPT} specifies the corruption level of the browser.
• cibaBindingMessages ∈ TN contains pairings of the form ⟨dom, bindingMsg⟩, where bindingMsg
is a CIBA binding message received from the (client) domain dom. The browser compares this
binding message to the value received from an AS.
• tlskeys ∈

[
Doms ×N

]
is a mapping from domains to private keys.

In corrupted browsers, certain subterms are used in different ways (e.g., pendingRequests is used to
store all observed messages).

G.7.3 Web Browser Relation. We will now define the relation 𝑅webbrowser of a standard HTTP

browser. We first introduce some notations and then describe the functions that are used for

defining the browser main algorithm. We then define the browser relation.

Helper Functions. In the following description of the Web browser relation 𝑅webbrowser we use the

helper functions Subwindows, Docs, Clean, CookieMerge, AddCookie, and NavigableWindows.

Subwindows andDocs. Given a browser state 𝑠 , Subwindows(𝑠) denotes the set of all pointers15 to
windows in the window list 𝑠 .windows and (recursively) the subwindows of their active documents.

We exclude subwindows of inactive documents and their subwindows. With Docs(𝑠) we denote
the set of pointers to all active documents in the set of windows referenced by Subwindows(𝑠).

Definition 73. For a browser state 𝑠 we denote by Subwindows(𝑠) the minimal set of pointers that
satisfies the following conditions: (1) For all windows𝑤 ∈⟨⟩ 𝑠 .windows there is a p ∈ Subwindows(𝑠)
such that 𝑠 .p = 𝑤 . (2) For all p ∈ Subwindows(𝑠), the active document 𝑑 of the window 𝑠 .p and every
subwindow𝑤 of 𝑑 there is a pointer p′ ∈ Subwindows(𝑠) such that 𝑠 .p′ = 𝑤 .

Given a browser state 𝑠 , the set Docs(𝑠) of pointers to active documents is the minimal set such that
for every p ∈ Subwindows(𝑠) with 𝑠 .p.activedocument . ⟨⟩, there exists a pointer p′ ∈ Docs(𝑠)
with 𝑠 .p′ = 𝑠 .p.activedocument.

By Subwindows+ (𝑠) and Docs+ (𝑠) we denote the respective sets that also include the inactive

documents and their subwindows.

Clean. The function Clean will be used to determine which information about windows and

documents the script running in the document 𝑑 has access to.

Definition 74. Let 𝑠 be a browser state and 𝑑 a document. By Clean(𝑠, 𝑑) we denote the term
that equals 𝑠 .windows but with (1) all inactive documents removed (including their subwindows etc.),
(2) all subterms that represent non-same-origin documents w.r.t. 𝑑 replaced by a limited document
𝑑 ′ with the same nonce and the same subwindow list, and (3) the values of the subterms headers
for all documents set to ⟨⟩. (Note that non-same-origin documents on all levels are replaced by their
corresponding limited document.)

CookieMerge. The function CookieMerge merges two sequences of cookies together: When

used in the browser, oldcookies is the sequence of existing cookies for some origin, newcookies is a
15
Recall the definition of a pointer in Definition 48.
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sequence of new cookies that was output by some script. The sequences are merged into a set of

cookies using an algorithm that is based on the Storage Mechanism algorithm described in RFC6265.

Definition 75. For a sequence of cookies (with pairwise different names) oldcookies, a sequence
of cookies newcookies, and a string 𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙 ∈ {P, S}, the set CookieMerge(oldcookies, newcookies,
protocol) is defined by the following algorithm: From newcookies remove all cookies 𝑐 that have
𝑐.content.httpOnly ≡ ⊤ or where (𝑐.name.1 ≡ __Host) ∧ ((protocol ≡ P) ∨ (𝑐.secure ≡ ⊥)). For
any 𝑐 , 𝑐′ ∈⟨⟩ newcookies, 𝑐.name ≡ 𝑐′ .name, remove the cookie that appears left of the other in
newcookies. Let 𝑚 be the set of cookies that have a name that either appears in oldcookies or in
newcookies, but not in both. For all pairs of cookies (𝑐old, 𝑐new) with 𝑐old ∈⟨⟩ oldcookies, 𝑐new ∈⟨⟩
newcookies, 𝑐old.name ≡ 𝑐new .name, add 𝑐new to𝑚 if 𝑐old.content.httpOnly ≡ ⊥ and add 𝑐old to𝑚
otherwise. The result of CookieMerge(oldcookies, newcookies, protocol) is𝑚.

AddCookie. The function AddCookie adds a cookie 𝑐 received in an HTTP response to the

sequence of cookies contained in the sequence oldcookies. It is again based on the algorithm

described in RFC6265 but simplified for the use in the browser model.

Definition 76. For a sequence of cookies (with pairwise different names) oldcookies, a cookie 𝑐 , and
a string 𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙 ∈ {P, S} (denoting whether the HTTP response was received from an insecure or a
secure origin), the sequence AddCookie(oldcookies, 𝑐, protocol) is defined by the following algorithm:
Let𝑚 := oldcookies. If (𝑐.name.1 ≡ __Host) ∧ ¬((protocol ≡ S) ∧ (𝑐.secure ≡ ⊤)), then return𝑚,
else: Remove any 𝑐′ from𝑚 that has 𝑐.name ≡ 𝑐′ .name. Append 𝑐 to𝑚 and return𝑚.

NavigableWindows. The function NavigableWindows returns a set of windows that a document

is allowed to navigate. We closely follow [7], Section 5.1.4 for this definition.

Definition 77. The set NavigableWindows(w, 𝑠′) is the set W ⊆ Subwindows(𝑠′) of pointers to
windows that the active document in w is allowed to navigate. The set W is defined to be the minimal
set such that for every w′ ∈ Subwindows(𝑠′) the following is true:
• If 𝑠′ .w′ .activedocument.origin ≡ 𝑠′ .w.activedocument.origin (i.e., the active documents
in w and w′ are same-origin), then w′ ∈ W , and

• If 𝑠′ .w
childof∗
−−−−−→ 𝑠′ .w′ ∧ �w′′ ∈ Subwindows(𝑠′) with 𝑠′ .w′

childof∗
−−−−−→ 𝑠′ .w′′ (w′ is a top-level

window and w is an ancestor window of w′), then w′ ∈ W , and

• If ∃ p ∈ Subwindows(𝑠′) such that 𝑠′ .w′
childof+
−−−−−→ 𝑠′ .p

∧ 𝑠′ .p.activedocument.origin = 𝑠′ .w.activedocument.origin (w′ is not a top-level win-
dow but there is an ancestor window p of w′ with an active document that has the same origin
as the active document in w), then w′ ∈ W , and
• If ∃ p ∈ Subwindows(𝑠′) such that 𝑠′ .w′ .opener = 𝑠′ .p.nonce ∧ p ∈ W (w′ is a top-level
window—it has an opener—and w is allowed to navigate the opener window of w′, p), then
w′ ∈ W .

Functions.
• The functionGETNAVIGABLEWINDOW (Algorithm 22) is called by the browser to determine

the window that is actually navigated when a script in the window 𝑠′ .w provides a window

reference for navigation (e.g., for opening a link). When it is given a window reference (nonce)

window, this function returns a pointer to a selected window term in 𝑠′:
– If window is the string _BLANK, a new window is created and a pointer to that window is

returned.



Formal Analysis of the FAPI 2.0 Protocols 167

Algorithm 22 Web Browser Model: Determine window for navigation.

1: function GETNAVIGABLEWINDOW(w, window, noreferrer , 𝑠′)
2: if window ≡ _BLANK then → Open a new window when _BLANK is used

3: if noreferrer ≡ ⊤ then
4: let𝑤 ′ := ⟨𝜈9, ⟨⟩,⊥⟩
5: else
6: let𝑤 ′ := ⟨𝜈9, ⟨⟩, 𝑠′ .w.nonce⟩
7: let 𝑠′ .windows := 𝑠′ .windows +⟨⟩ 𝑤 ′

↩→ and let w′ be a pointer to this new element in 𝑠′

8: return w′

9: let w′ ← NavigableWindows(w, 𝑠′) such that 𝑠′ .w′ .nonce ≡ window
↩→ if possible; otherwise return w

10: return w′

Algorithm 23 Web Browser Model: Determine same-origin window.

1: function GETWINDOW(w, window, 𝑠′)
2: let w′ ← Subwindows(𝑠′) such that 𝑠′ .w′ .nonce ≡ window

↩→ if possible; otherwise return w
3: if 𝑠′ .w′ .activedocument.origin ≡ 𝑠′ .w.activedocument.origin then
4: return w′

5: return w

Algorithm 24 Web Browser Model: Cancel pending requests for given window.

1: function CANCELNAV(reference, 𝑠′)
2: remove all ⟨reference, req, url, key, f ⟩ from 𝑠′ .pendingRequests for any req, url, key, f
3: remove all ⟨𝑥, ⟨reference,message, url⟩⟩ from 𝑠′ .pendingDNS

↩→ for any x, message, url
4: return 𝑠′

– If window is a nonce (reference) and there is a window term with a reference of that value

in the windows in 𝑠′, a pointer w′ to that window term is returned, as long as the window

is navigable by the current window’s document (as defined by NavigableWindows above).
In all other cases, w is returned instead (the script navigates its own window).

• The function GETWINDOW (Algorithm 23) takes a window reference as input and returns a

pointer to a window as above, but it checks only that the active documents in both windows

are same-origin. It creates no new windows.

• The function CANCELNAV (Algorithm 24) is used to stop any pending requests for a specific

window. From the pending requests and pending DNS requests it removes any requests with

the given window reference.

• The function HTTP_SEND (Algorithm 25) takes an HTTP request message as input, adds
cookie and origin headers to the message, creates a DNS request for the hostname given

in the request and stores the request in 𝑠′ .pendingDNS until the DNS resolution finishes.

reference is a reference as defined in Definition 71. url contains the full URL of the request

(this is mainly used to retrieve the protocol that should be used for this message, and to store

the fragment identifier for use after the document was loaded). origin is the origin header

value that is to be added to the HTTP request.
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Algorithm 25 Web Browser Model: Prepare headers, do DNS resolution, save message.

1: function HTTP_SEND(reference, message, url, origin, referrer , referrerPolicy, 𝑎, 𝑠′)
2: if message.host ∈⟨⟩ 𝑠′ .sts then
3: let url.protocol := S

4: let cookies := ⟨{⟨𝑐.name, 𝑐 .content.value⟩ | 𝑐 ∈⟨⟩ 𝑠′ .cookies [message.host]
↩→ ∧ (𝑐.content.secure ≡ ⊤ =⇒ (url.protocol ≡ S))}⟩

5: let message.headers[Cookie] := cookies
6: if origin . ⊥ then
7: let message.headers[Origin] := origin
8: if referrerPolicy ≡ no-referrer then
9: let referrer := ⊥
10: if referrer . ⊥ then
11: if referrerPolicy ≡ origin then
12: let referrer := ⟨URL, referrer .protocol, referrer .host, /, ⟨⟩,⊥⟩

→ Referrer stripped down to origin.

13: let referrer .fragment := ⊥
→ Browsers do not send fragment identifiers in the Referer header.

14: let message.headers[Referer] := referrer
15: let 𝑠′ .pendingDNS[𝜈8] := ⟨reference,message, url⟩
16: stop ⟨⟨𝑠′ .DNSaddress, 𝑎, ⟨DNSResolve,message.host, 𝜈8⟩⟩⟩, 𝑠′

Algorithm 26 Web Browser Model: Navigate a window backward.

1: function NAVBACK(w′, 𝑠′)
2: if ∃ j ∈ N, j > 1 such that 𝑠′ .w′ .documents.j.active ≡ ⊤ then
3: let 𝑠′ .w′ .documents.j.active := ⊥
4: let 𝑠′ .w′ .documents.(j − 1) .active := ⊤
5: let 𝑠′ := CANCELNAV(𝑠′ .w′ .nonce, 𝑠′)
6: stop ⟨⟩, 𝑠′

Algorithm 27 Web Browser Model: Navigate a window forward.

1: function NAVFORWARD(w′, 𝑠′)
2: if ∃ j ∈ N such that 𝑠′ .w′ .documents.j.active ≡ ⊤

↩→ ∧ 𝑠′ .w′ .documents.(j + 1) ∈ Documents then
3: let 𝑠′ .w′ .documents.j.active := ⊥
4: let 𝑠′ .w′ .documents.(j + 1).active := ⊤
5: let 𝑠′ := CANCELNAV(𝑠′ .w′ .nonce, 𝑠′)
6: stop ⟨⟩, 𝑠′

• The functions NAVBACK (Algorithm 26) and NAVFORWARD (Algorithm 27), navigate a

window backward or forward. More precisely, they deactivate one document and activate

that document’s preceding document or succeeding document, respectively. If no such

predecessor/successor exists, the functions do not change the state.

• The function RUNSCRIPT (Algorithm 28) performs a script execution step of the script in

the document 𝑠′ .d (which is part of the window 𝑠′ .w). A new script and document state is

chosen according to the relation defined by the script and the new script and document state

is saved. Afterwards, the command that the script issued is interpreted.
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Algorithm 28 Web Browser Model: Execute a script.

1: function RUNSCRIPT(w, d, 𝑎, 𝑠′)
2: let tree := Clean(𝑠′, 𝑠′ .d)
3: let cookies := ⟨{⟨𝑐.name, 𝑐 .content.value⟩|𝑐 ∈⟨⟩ 𝑠′ .cookies

[
𝑠′ .d .origin.host

]
↩→ ∧ 𝑐.content.httpOnly ≡ ⊥
↩→ ∧

(
𝑐.content.secure ≡ ⊤ =⇒

(
𝑠′ .d .origin.protocol ≡ S

))
}⟩

4: let tlw← 𝑠′ .windows such that tlw is the top-level window containing d

5: let sessionStorage := 𝑠′ .sessionStorage
[
⟨𝑠′ .d .origin, tlw.nonce⟩

]
6: let localStorage := 𝑠′ .localStorage

[
𝑠′ .d .origin

]
7: let secrets := 𝑠′ .secrets

[
𝑠′ .d .origin

]
8: let 𝑅 := script−1 (𝑠′ .d .script) if possible; otherwise stop
9: let in := ⟨tree, 𝑠′ .d .nonce, 𝑠′ .d .scriptstate, 𝑠′ .d .scriptinputs, cookies,

↩→ localStorage, sessionStorage, 𝑠′ .ids, secrets⟩
10: let state′ ← TN (𝑉process), cookies′ ← Cookies𝜈 , localStorage′ ← TN (𝑉process),

↩→ sessionStorage′ ← TN (𝑉process), command ← TN (𝑉process),
↩→ out := ⟨state′, cookies′, localStorage′, sessionStorage′, command⟩
↩→ such that out := out𝜆 [𝜈10/𝜆1, 𝜈11/𝜆2, . . . ] with (in, out𝜆) ∈ 𝑅

11: let 𝑠′ .cookies
[
𝑠′ .d .origin.host

]
:=

↩→ ⟨CookieMerge(𝑠′ .cookies
[
𝑠′ .d .origin.host

]
, cookies′, 𝑠′ .d .origin.protocol)⟩

12: let 𝑠′ .localStorage
[
𝑠′ .d .origin

]
:= localStorage′

13: let 𝑠′ .sessionStorage
[
⟨𝑠′ .d .origin, tlw.nonce⟩

]
:= sessionStorage′

14: let 𝑠′ .d .scriptstate := 𝑠𝑡𝑎𝑡𝑒′

15: let referrer := 𝑠′ .d .location
16: let referrerPolicy := 𝑠′ .d .headers[ReferrerPolicy]
17: let docorigin := 𝑠′ .d .origin
18: switch command do
19: case ⟨HREF, url, hrefwindow, noreferrer⟩
20: let w′ := GETNAVIGABLEWINDOW(w, hrefwindow, noreferrer , 𝑠′)
21: let reference := ⟨REQ, 𝑠′ .w′ .nonce⟩
22: let req := ⟨HTTPReq, 𝜈4, GET, url.host, url.path, url.parameters, ⟨⟩, ⟨⟩⟩
23: if noreferrer ≡ ⊤ then
24: let referrerPolicy := noreferrer

25: let 𝑠′ := CANCELNAV(reference, 𝑠′)
26: call HTTP_SEND(reference, req, url, ⊥, referrer , referrerPolicy, 𝑎, 𝑠′)
27: case ⟨IFRAME, url,window⟩
28: if window ≡ _SELF then
29: let w′ := w
30: else
31: let w′ := GETWINDOW(w,window, 𝑠′)
32: let req := ⟨HTTPReq, 𝜈4, GET, url.host, url.path, url.parameters, ⟨⟩, ⟨⟩⟩
33: let𝑤 ′ := ⟨𝜈5, ⟨⟩,⊥⟩
34: let 𝑠′ .w′ .activedocument.subwindows := 𝑠′ .w′ .activedocument.subwindows +⟨⟩ 𝑤 ′
35: call HTTP_SEND(⟨REQ, 𝜈5⟩, req, url, ⊥, referrer , referrerPolicy, 𝑎, 𝑠′)
→Algorithm continues on next page.
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36: case ⟨FORM, url,method, data, hrefwindow⟩
37: if method ∉ {GET, POST} then
38: stop
39: let w′ := GETNAVIGABLEWINDOW(w, hrefwindow, ⊥, 𝑠′)
40: let reference := ⟨REQ, 𝑠′ .w′ .nonce⟩
41: if method = GET then
42: let body := ⟨⟩
43: let parameters := data
44: let origin := ⊥
45: else
46: let body := data
47: let parameters := url.parameters
48: let origin := docorigin
49: let req := ⟨HTTPReq, 𝜈4,method, url.host, url.path, parameters, ⟨⟩, body⟩
50: let 𝑠′ := CANCELNAV(reference, 𝑠′)
51: call HTTP_SEND(reference, req, url, origin, referrer , referrerPolicy, 𝑎, 𝑠′)
52: case ⟨CIBAFORM, url,method, data, hrefwindow, clientDomain, cibaBindingMessage⟩

→Custom CIBA FORM command: When starting a CIBA flow, the client returns a bind-

ing message. When authenticating at the AS, the end-user has to make sure that they

receive the same value. For modeling this behavior, we extend the browser state by

the cibaBindingMessages subterm and define this command which first checks if the

cibaBindingMessage is stored by the browser and then continues as the FORM command.

Note that this command is a modeling artifact.

53: if ⟨clientDomain, cibaBindingMessage⟩ ̸∈⟨⟩ 𝑠′ .cibaBindingMessages then
54: stop
55: if method ∉ {GET, POST} then
56: stop
57: let w′ := GETNAVIGABLEWINDOW(w, hrefwindow, ⊥, 𝑠′)
58: let reference := ⟨REQ, 𝑠′ .w′ .nonce⟩
59: if method = GET then
60: let body := ⟨⟩
61: let parameters := data
62: let origin := ⊥
63: else
64: let body := data
65: let parameters := url.parameters
66: let origin := docorigin
67: let req := ⟨HTTPReq, 𝜈4,method, url.host, url.path, parameters, ⟨⟩, body⟩
68: let 𝑠′ := CANCELNAV(reference, 𝑠′)
69: call HTTP_SEND(reference, req, url, origin, referrer , referrerPolicy, 𝑎, 𝑠′)
70: case ⟨SETSCRIPT,window, script⟩
71: let w′ := GETWINDOW(w,window, 𝑠′)
72: let 𝑠′ .w′ .activedocument.script := script
73: stop ⟨⟩, 𝑠′

74: case ⟨SETSCRIPTSTATE,window, scriptstate⟩
75: let w′ := GETWINDOW(w,window, 𝑠′)
76: let 𝑠′ .w′ .activedocument.scriptstate := scriptstate
77: stop ⟨⟩, 𝑠′

→Algorithm continues on next page.
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78: case ⟨XMLHTTPREQUEST, url,method, data, xhrreference⟩
79: if method ∈ {CONNECT, TRACE, TRACK} ∨ xhrreference ∉ 𝑉process ∪ {⊥} then
80: stop
81: if url.host . docorigin.host ∨ url.protocol . docorigin.protocol then
82: stop
83: if method ∈ {GET, HEAD} then
84: let data := ⟨⟩
85: let origin := ⊥
86: else
87: let origin := docorigin
88: let req := ⟨HTTPReq, 𝜈4,method, url.host, url.path, url.parameters, ⟨⟩, data⟩
89: let reference := ⟨XHR, 𝑠′ .d .nonce, xhrreference⟩
90: call HTTP_SEND(reference, req, url, origin, referrer , referrerPolicy, 𝑎, 𝑠′)
91: case ⟨BACK,window⟩
92: let w′ := GETNAVIGABLEWINDOW(w, window, ⊥, 𝑠′)
93: call NAVBACK(w′, 𝑠′)
94: case ⟨FORWARD,window⟩
95: let w′ := GETNAVIGABLEWINDOW(w, window, ⊥, 𝑠′)
96: call NAVFORWARD(w′, 𝑠′)
97: case ⟨CLOSE,window⟩
98: let w′ := GETNAVIGABLEWINDOW(w, window, ⊥, 𝑠′)
99: remove 𝑠′ .w′ from the sequence containing it

100: stop ⟨⟩, 𝑠′

101: case ⟨POSTMESSAGE,window,message, origin⟩
102: let w′ ← Subwindows(𝑠′) such that 𝑠′ .w′ .nonce ≡ window
103: if ∃j ∈ N such that 𝑠′ .w′ .documents.j.active ≡ ⊤

↩→ ∧ (origin . ⊥ =⇒ 𝑠′ .w′ .documents.j.origin ≡ origin) then
104: let 𝑠′ .w′ .documents.j.scriptinputs := 𝑠′ .w′ .documents.j.scriptinputs

↩→ +⟨⟩ ⟨POSTMESSAGE, 𝑠′ .w.nonce, docorigin,message⟩
105: stop ⟨⟩, 𝑠′

106: case else
107: stop

• The function PROCESSRESPONSE (Algorithm 29) is responsible for processing an HTTP

response (response) that was received as the response to a request (request) that was sent
earlier. reference is a reference as defined in Definition 71. requestUrl contains the URL used

when retrieving the document.

The function first saves any cookies that were contained in the response to the browser

state, then checks whether a redirection is requested (Location header). If that is not the case,

the function creates a new document (for normal requests) or delivers the contents of the

response to the respective receiver (for XHR responses).

Browser Relation. We can now define the relation 𝑅webbrowser of a Web browser atomic process as
follows:

Definition 78. The pair ((⟨𝑎, 𝑓 ,𝑚⟩, 𝑠) , (𝑀, 𝑠′)) belongs to 𝑅webbrowser if f the non-deterministic
Algorithm 30 (or any of the functions called therein), when given (⟨𝑎, 𝑓 ,𝑚⟩, 𝑠) as input, terminates
with stop𝑀 , 𝑠′, i.e., with output𝑀 and 𝑠′.
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Algorithm 29 Web Browser Model: Process an HTTP response.

1: function PROCESSRESPONSE(response, reference, request, requestUrl, 𝑎, 𝑓 , 𝑠′)
2: if Set-Cookie ∈ response.headers then
3: for each 𝑐 ∈⟨⟩ response.headers [Set-Cookie], 𝑐 ∈ Cookies do
4: let 𝑠′ .cookies [request .host]

↩→ := AddCookie(𝑠′ .cookies [request .host] , 𝑐, requestUrl.protocol)
5: if Strict-Transport-Security ∈ response.headers ∧ requestUrl.protocol ≡ S then
6: let 𝑠′ .sts := 𝑠′ .sts +⟨⟩ request .host
7: if Referer ∈ request .headers then
8: let referrer := request .headers[Referer]
9: else
10: let referrer := ⊥
11: if Location ∈ response.headers ∧ response.status ∈ {303, 307} then
12: let url := response.headers [Location]
13: if url.fragment ≡ ⊥ then
14: let url.fragment := requestUrl.fragment
15: let method′ := request .method
16: let body′ := request .body
17: if Origin ∈ request .headers

↩→ ∧ request .headers[Origin] ≠ ^
↩→ ∧ (⟨url.host, url.protocol⟩ ≡ ⟨request .host, requestUrl.protocol⟩

↩→ ∨ ⟨request .host, requestUrl.protocol⟩ ≡ request .headers[Origin]) then
18: let origin := request .headers[Origin]
19: else
20: let origin := ^

21: if response.status ≡ 303 ∧ request .method ∉ {GET, HEAD} then
22: let method′ := GET
23: let body′ := ⟨⟩
24: if ∃w ∈ Subwindows(𝑠′) such that 𝑠′ .w.nonce ≡ 𝜋2 (reference) then → Do not redirect XHRs.

25: let req := ⟨HTTPReq, 𝜈6,method′, url.host, url.path, url.parameters, ⟨⟩, body′⟩
26: let referrerPolicy := response.headers[ReferrerPolicy]
27: call HTTP_SEND(reference, req, url, origin, referrer , referrerPolicy, 𝑎, 𝑠′)
28: else
29: stop ⟨⟩, 𝑠′

→This algorithm is continued on the next page.

Recall that ⟨𝑎, 𝑓 ,𝑚⟩ is an (input) event and 𝑠 is a (browser) state, 𝑀 is a sequence of (output)

protoevents, and 𝑠′ is a new (browser) state (potentially with placeholders for nonces).

G.8 Definition of Web Browsers
Finally, we define Web browser atomic Dolev-Yao processes as follows:

Definition 79 (Web Browser atomic Dolev-Yao Process). A Web browser atomic Dolev-Yao
process is an atomic Dolev-Yao process of the form 𝑝 = (𝐼𝑝 , 𝑍webbrowser, 𝑅webbrowser, 𝑠

𝑝

0
) for a set 𝐼𝑝 of

addresses, 𝑍webbrowser and 𝑅webbrowser as defined above, and an initial state 𝑠𝑝
0
∈ 𝑍webbrowser.

Definition 80 (Web Browser Initial State). An initial state 𝑠𝑝
0
∈ 𝑍webbrowser for a browser

process 𝑝 is a Web browser state (Definition 72) with the following properties:
• 𝑠𝑝

0
.windows ≡ ⟨⟩
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30: switch 𝜋1 (reference) do
31: case REQ
32: let w← Subwindows(𝑠′) such that 𝑠′ .w.nonce ≡ 𝜋2 (reference) if possible;

↩→ otherwise stop → normal response

33: if response.body ≁ ⟨∗, ∗⟩ then
34: stop ⟨⟩, 𝑠′

35: let script := 𝜋1 (response.body)
36: let scriptstate := 𝜋2 (response.body)
37: let 𝑑 := ⟨𝜈7, requestUrl, response.headers, referrer, script, scriptstate, ⟨⟩, ⟨⟩,⊤⟩
38: if 𝑠′ .w.documents ≡ ⟨⟩ then
39: let 𝑠′ .w.documents := ⟨𝑑⟩
40: else
41: let i← N such that 𝑠′ .w.documents.i.active ≡ ⊤
42: let 𝑠′ .w.documents.i.active := ⊥
43: remove 𝑠′ .w.documents.(i + 1) and all following documents

↩→ from 𝑠′ .w.documents
44: let 𝑠′ .w.documents := 𝑠′ .w.documents +⟨⟩ 𝑑
45: stop ⟨⟩, 𝑠′

46: case XHR
47: let w ← Subwindows(𝑠′), d such that 𝑠′ .d .nonce ≡ 𝜋2 (reference)

↩→ ∧ 𝑠′ .d = 𝑠′ .w.activedocument if possible; otherwise stop
→ process XHR response

48: let headers := response.headers − Set-Cookie
49: let 𝑠′ .d .scriptinputs := 𝑠′ .d .scriptinputs +⟨⟩

⟨XMLHTTPREQUEST, headers, response.body, 𝜋3 (reference)⟩
50: stop ⟨⟩, 𝑠′

• 𝑠𝑝
0
.ids ⊂⟨⟩ TN (intended to be constrained by instantiations of the Web Infrastructure Model)

• 𝑠𝑝
0
.secrets ∈

[
Origins × TN

]
(intended to be constrained by instantiations of the Web Infras-

tructure Model)
• 𝑠𝑝

0
.cookies ≡ ⟨⟩

• 𝑠𝑝
0
.localStorage ≡ ⟨⟩

• 𝑠𝑝
0
.sessionStorage ≡ ⟨⟩

• 𝑠𝑝
0
.keyMapping ∈

[
Doms × TN

]
(intended to be constrained by instantiations of the Web

Infrastructure Model)
• 𝑠𝑝

0
.sts ≡ ⟨⟩

• 𝑠𝑝
0
.DNSaddress ∈ IPs (note that this includes the possibility of using an attacker-controlled

address)
• 𝑠𝑝

0
.pendingDNS ≡ ⟨⟩

• 𝑠𝑝
0
.pendingRequests ≡ ⟨⟩

• 𝑠𝑝
0
.isCorrupted ≡ ⊥

• 𝑠𝑝
0
.cibaBindingMessages ≡ ⟨⟩

• 𝑠𝑝
0
.tlskeys ≡ tlskeys𝑝 (see Appendix C.3)

Note that instantiations of the Web Infrastructure Model may define different conditions for a Web
browser’s initial state.
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Algorithm 30 Web Browser Model: Main Algorithm.

Input: ⟨𝑎, 𝑓 ,𝑚⟩, 𝑠
1: let 𝑠′ := 𝑠
2: if 𝑠 .isCorrupted . ⊥ then
3: let 𝑠′ .pendingRequests := ⟨𝑚, 𝑠.pendingRequests⟩ → Collect incoming messages

4: let𝑚′ ← 𝑑𝑉 (𝑠′)
5: let 𝑎′ ← IPs
6: stop ⟨⟨𝑎′, 𝑎,𝑚′⟩⟩, 𝑠′

7: if 𝑚 ≡ TRIGGER then → A special trigger message.

8: let switch← {script, urlbar, reload, forward, back}
9: if switch ≡ script then → Run some script.

10: let w← Subwindows(𝑠′) such that 𝑠′ .w.documents ≠ ⟨⟩
↩→ if possible; otherwise stop → Pointer to some window.

11: let d := w +⟨⟩ activedocument
12: call RUNSCRIPT(w, d, 𝑎, 𝑠′)
13: else if switch ≡ urlbar then → Create some new request.

14: let newwindow← {⊤,⊥}
15: if newwindow ≡ ⊤ then → Create a new window.

16: let windownonce := 𝜈1
17: let𝑤 ′ := ⟨windownonce, ⟨⟩,⊥⟩
18: let 𝑠′ .windows := 𝑠′ .windows +⟨⟩ 𝑤 ′
19: else → Use existing top-level window.

20: let tlw← N such that 𝑠′ .tlw.documents ≠ ⟨⟩
↩→ if possible; otherwise stop → Pointer to some top-level window.

21: let windownonce := 𝑠′ .tlw.𝑛𝑜𝑛𝑐𝑒
22: let protocol← {P, S}
23: let host ← Doms
24: let path← S
25: let fragment ← S
26: let parameters← [S × S]
27: let body := ⟨⟩
28: let startciba← {⊤,⊥}
29: if startciba ≡ ⊤ then
30: let body [authServ] ← Doms
31: let body [identity] ← 𝑠′ .ids

32: let url := ⟨URL, protocol, host, path, parameters, fragment⟩
33: let req := ⟨HTTPReq, 𝜈2, GET, host, path, parameters, ⟨⟩, body⟩
34: call HTTP_SEND(⟨REQ,windownonce⟩, req, url, ⊥, ⊥, ⊥, 𝑎, 𝑠′)
35: else if switch ≡ reload then → Reload some document.

36: let w← Subwindows(𝑠′) such that 𝑠′ .w.documents ≠ ⟨⟩
↩→ if possible; otherwise stop → Pointer to some window.

37: let url := 𝑠′ .w.activedocument.location
38: let req := ⟨HTTPReq, 𝜈2, GET, url.host, url.path, url.parameters, ⟨⟩, ⟨⟩⟩
39: let referrer := 𝑠′ .w.activedocument.referrer
40: let 𝑠′ := CANCELNAV(𝑠′ .w.nonce, 𝑠′)
41: call HTTP_SEND(⟨REQ, 𝑠′ .w.nonce⟩, req, url, ⊥, referrer , ⊥, 𝑎, 𝑠′)
42: else if switch ≡ forward then
43: let w← Subwindows(𝑠′) such that 𝑠′ .w.documents ≠ ⟨⟩

↩→ if possible; otherwise stop → Pointer to some window.

44: call NAVFORWARD(w, 𝑠′)
→Algorithm continues on next page.
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45: else if switch ≡ back then
46: let w← Subwindows(𝑠′) such that 𝑠′ .w.documents ≠ ⟨⟩

↩→ if possible; otherwise stop → Pointer to some window.

47: call NAVBACK(w, 𝑠′)
48: else if 𝑚 ≡ FULLCORRUPT then → Request to corrupt browser

49: let 𝑠′ .isCorrupted := FULLCORRUPT
50: stop ⟨⟩, 𝑠′
51: else if 𝑚 ≡ CLOSECORRUPT then → Close the browser

52: let 𝑠′ .secrets := ⟨⟩
53: let 𝑠′ .windows := ⟨⟩
54: let 𝑠′ .pendingDNS := ⟨⟩
55: let 𝑠′ .pendingRequests := ⟨⟩
56: let 𝑠′ .sessionStorage := ⟨⟩
57: let 𝑠′ .cookies ⊂⟨⟩ Cookies such that

↩→ (𝑐 ∈⟨⟩ 𝑠′ .cookies) ⇐⇒ (𝑐 ∈⟨⟩ 𝑠 .cookies ∧ 𝑐.content.session ≡ ⊥)
58: let 𝑠′ .isCorrupted := CLOSECORRUPT
59: stop ⟨⟩, 𝑠′
60: else if ∃ ⟨reference, request, url, key, 𝑓 ⟩ ∈⟨⟩ 𝑠′ .pendingRequests such that

↩→ 𝜋1 (decs (𝑚, key)) ≡ HTTPResp then → Encrypted HTTP response

61: let𝑚′ := decs (𝑚, key)
62: if 𝑚′ .nonce . request .nonce then
63: stop
64: remove ⟨reference, request, url, key, 𝑓 ⟩ from 𝑠′ .pendingRequests
65: if binding_message ∈⟨⟩ 𝑚′ .body then
66: let 𝑠′ .cibaBindingMessages := 𝑠′ .cibaBindingMessages +⟨⟩

↩→ ⟨request .host,𝑚′ .body[binding_message]⟩
67: call PROCESSRESPONSE(𝑚′, reference, request, url, 𝑎, 𝑓 , 𝑠′)
68: else if 𝜋1 (𝑚) ≡ HTTPResp ∧ ∃ ⟨reference, request, url,⊥, 𝑓 ⟩ ∈⟨⟩ 𝑠′ .pendingRequests such that

↩→ 𝑚.nonce ≡ request .nonce then → Plain HTTP Response

69: remove ⟨reference, request, url,⊥, 𝑓 ⟩ from 𝑠′ .pendingRequests
70: call PROCESSRESPONSE(𝑚, reference, request, url, 𝑎, 𝑓 , 𝑠′)
71: else if 𝑚 ∈ DNSResponses then → Successful DNS response

72: if 𝑚.nonce ∉ 𝑠 .pendingDNS ∨𝑚.result ∉ IPs
↩→ ∨𝑚.domain . 𝑠 .pendingDNS[𝑚.nonce] .request.host then

73: stop
74: let ⟨reference,message, url⟩ := 𝑠 .pendingDNS[𝑚.nonce]
75: if url.protocol ≡ S then
76: let 𝑠′ .pendingRequests := 𝑠′ .pendingRequests

↩→ +⟨⟩ ⟨reference, message, url, 𝜈3,𝑚.result⟩
77: let message := enca (⟨message, 𝜈3⟩, 𝑠′ .keyMapping [message.host])
78: else
79: let 𝑠′ .pendingRequests := 𝑠′ .pendingRequests

↩→ +⟨⟩ ⟨reference, message, url, ⊥,𝑚.result⟩
80: let 𝑠′ .pendingDNS := 𝑠′ .pendingDNS −𝑚.nonce
81: stop ⟨⟨𝑚.result, 𝑎,message⟩⟩, 𝑠′
→Algorithm continues on next page.
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82: else if ∃𝑚
dec

, 𝑘 , 𝑘′, inDomain such that ⟨𝑚
dec
, 𝑘⟩ ≡ deca (𝑚,𝑘′) ∧ ⟨𝑖𝑛𝐷𝑜𝑚𝑎𝑖𝑛, 𝑘′⟩ ∈ 𝑠 .tlskeys then

→ For modelling CIBA, we allow the browser to receive requests. By this, the AS can contact its users

and ask to give their consent for a given CIBA flow

83: let 𝑛, method, path, parameters, headers, body such that
↩→ ⟨HTTPReq, 𝑛,method, inDomain, path, parameters, headers, body⟩ ≡𝑚

dec

↩→ if possible; otherwise stop
84: call PROCESS_ENCRYPTED_PUSH_MSG(𝑚

dec
, 𝑘, 𝑎, 𝑓 , 𝑠′)

85: else if 𝑚 ∈ HTTPRequests then
86: call PROCESS_PLAIN_PUSH_MSG(𝑚,𝑎, 𝑓 , 𝑠′)
87: stop

Algorithm 31 Web Browser Model: Processing Encrypted Push Messages

1: function PROCESS_ENCRYPTED_PUSH_MSG(𝑚, 𝑘 , 𝑎, 𝑓 , 𝑠′) →𝑚 is the decrypted message, 𝑘 is the

encryption key for the response, 𝑎 is the receiver, 𝑓 the sender of the message. 𝑠′ is the current state of
the browser atomic DY process.

2: if 𝑚.path . /start-ciba-authentication then stop
3: let newwindow← {⊤,⊥} → Choose whether to visit AS in new or existing browser window

4: if newwindow ≡ ⊤ then → Create a new window.

5: let windownonce := 𝜈1
6: let𝑤 ′ := ⟨windownonce, ⟨⟩,⊥⟩
7: let 𝑠′ .windows := 𝑠′ .windows +⟨⟩ 𝑤 ′
8: else → Use existing top-level window.

9: let tlw← N such that 𝑠′ .tlw.documents ≠ ⟨⟩
↩→ if possible; otherwise stop → Pointer to some top-level window.

10: let windownonce := 𝑠′ .tlw.𝑛𝑜𝑛𝑐𝑒
11: let url :=𝑚.body[ciba_url]
12: let req := ⟨HTTPReq, 𝜈

ciba_req
, POST, url.host, 𝜀, ⟨⟩, ⟨⟩,𝑚.body⟩

13: call HTTP_SEND(⟨REQ,windownonce⟩, req, url, ⊥, ⊥, ⊥, 𝑎, 𝑠′)

Algorithm 32 Web Browser Model: Processing Plaintext Push Messages

1: function PROCESS_PLAIN_PUSH_MSG(𝑚, 𝑎, 𝑓 , 𝑠′) →𝑚 is the message, 𝑎 is the receiver, 𝑓 the sender

of the message. 𝑠′ is the current state of the browser atomic DY process.

2: stop ⟨⟩, 𝑠′ → Default implementation as no-op.

G.9 Helper Functions
In order to simplify the description of scripts, we use several helper functions.

CHOOSEINPUT (Algorithm 33). The state of a document contains a term, say scriptinputs, which
records the input this document has obtained so far (via XHRs and postMessages). If the script of the

document is activated, it will typically need to pick one input message from scriptinputs and record
which input it has already processed. For this purpose, the functionCHOOSEINPUT(𝑠′, scriptinputs)
is used, where 𝑠′ denotes the scripts current state. It saves the indexes of already handled messages

in the scriptstate 𝑠′ and chooses a yet unhandled input message from scriptinputs. The index of this
message is then saved in the scriptstate (which is returned to the script).

CHOOSEFIRSTINPUTPAT (Algorithm 34). Similar to the function CHOOSEINPUT above, we

define the function CHOOSEFIRSTINPUTPAT. This function takes the term scriptinputs, which as
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Algorithm 33 Function to retrieve an unhandled input message for a script.

1: function CHOOSEINPUT(𝑠′, scriptinputs)
2: let iid such that iid ∈ {1, · · · , |scriptinputs |} ∧ iid ̸∈⟨⟩ 𝑠′ .handledInputs if possible;

↩→ otherwise return (⊥, 𝑠′)
3: let input := 𝜋iid (scriptinputs)
4: let 𝑠′ .handledInputs := 𝑠′ .handledInputs +⟨⟩ iid
5: return (input, 𝑠′)

Algorithm 34 Function to extract the first script input message matching a specific pattern.

1: function CHOOSEFIRSTINPUTPAT(scriptinputs, pattern)
2: let 𝑖 such that 𝑖 = min{ 𝑗 : 𝜋 𝑗 (scriptinputs) ∼ pattern} if possible; otherwise return ⊥
3: return 𝜋𝑖 (scriptinputs)

above records the input this document has obtained so far (via XHRs and postMessages, append-

only), and a pattern. If called, this function chooses the first message in scriptinputs that matches

pattern and returns it. This function is typically used in places, where a script only processes the

first message that matches the pattern. Hence, we omit recording the usage of an input.

PARENTWINDOW. To determine the nonce referencing the parent window in the browser, the

function PARENTWINDOW(tree, docnonce) is used. It takes the term tree, which is the (partly

cleaned) tree of browser windows the script is able to see and the document nonce docnonce,
which is the nonce referencing the current document the script is running in, as input. It outputs

the nonce referencing the window which directly contains in its subwindows the window of the

document referenced by docnonce. If there is no such window (which is the case if the script runs

in a document of a top-level window), PARENTWINDOW returns ⊥.

PARENTDOCNONCE. The function PARENTDOCNONCE(tree, docnonce) determines (similar

to PARENTWINDOW above) the nonce referencing the active document in the parent window

in the browser . It takes the term tree, which is the (partly cleaned) tree of browser windows the

script is able to see and the document nonce docnonce, which is the nonce referencing the current

document the script is running in, as input. It outputs the nonce referencing the active document

in the window which directly contains in its subwindows the window of the document referenced

by docnonce. If there is no such window (which is the case if the script runs in a document of a

top-level window) or no active document, PARENTDOCNONCE returns docnonce.

SUBWINDOWS. This function takes a term tree and a document nonce docnonce as input

just as the function above. If docnonce is not a reference to a document contained in tree, then
SUBWINDOWS(tree, docnonce) returns ⟨⟩. Otherwise, let ⟨docnonce, location, ⟨⟩, referrer , script,
scriptstate, scriptinputs, subwindows, active⟩ denote the subterm of tree corresponding to the docu-

ment referred to by docnonce. Then, SUBWINDOWS(tree, docnonce) returns subwindows.

AUXWINDOW. This function takes a term tree and a document nonce docnonce as input as
above. From all window terms in tree that have the window containing the document identified by

docnonce as their opener, it selects one non-deterministically and returns its nonce. If there is no

such window, it returns the nonce of the window containing docnonce.

AUXDOCNONCE. Similar to AUXWINDOW above, the function AUXDOCNONCE takes a term

tree and a document nonce docnonce as input. From all window terms in tree that have the window
containing the document identified by docnonce as their opener, it selects one non-deterministically
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Algorithm 35 Relation of a DNS server 𝑅𝑑 .

Input: ⟨𝑎, 𝑓 ,𝑚⟩, 𝑠
1: let domain, 𝑛 such that ⟨DNSResolve, domain, 𝑛⟩ ≡𝑚 if possible; otherwise stop ⟨⟩, 𝑠
2: if domain ∈ 𝑠 then
3: let addr := 𝑠 [domain]
4: let𝑚′ := ⟨DNSResolved, domain, addr, 𝑛⟩
5: stop ⟨⟨𝑓 , 𝑎,𝑚′⟩⟩, 𝑠
6: stop ⟨⟩, 𝑠

and returns its active document’s nonce. If there is no such window or no active document, it

returns docnonce.

OPENERWINDOW. This function takes a term tree and a document nonce docnonce as input
as above. It returns the window nonce of the opener window of the window that contains the

document identified by docnonce. Recall that the nonce identifying the opener of each window is

stored inside the window term. If no document with nonce docnonce is found in the tree tree or the
document with nonce docnonce is not directly contained in a top-level window, ^ is returned.

GETWINDOW. This function takes a term tree and a document nonce docnonce as input as above.
It returns the nonce of the window containing docnonce.

GETORIGIN. To extract the origin of a document, the function GETORIGIN(tree, docnonce) is
used. This function searches for the document with the identifier docnonce in the (cleaned) tree tree
of the browser’s windows and documents. It returns the origin 𝑜 of the document. If no document

with nonce docnonce is found in the tree tree, ^ is returned.

GETPARAMETERS. Works exactly as GETORIGIN, but returns the document’s parameters instead.

G.10 DNS Servers
Definition 81. A DNS server 𝑑 (in a flat DNS model) is modeled in a straightforward way as an

atomic DY process (𝐼𝑑 , {𝑠𝑑
0
}, 𝑅𝑑 , 𝑠𝑑

0
). It has a finite set of addresses 𝐼𝑑 and its initial (and only) state 𝑠𝑑

0

encodes a mapping from domain names to addresses of the form

𝑠𝑑
0
= ⟨⟨domain1, 𝑎1⟩, ⟨domain2, 𝑎2⟩, . . .⟩ .

DNS queries are answered according to this table (if the requested DNS name cannot be found in the
table, the request is ignored).

The relation 𝑅𝑑 ⊆ (E × {𝑠𝑑
0
}) × (2E × {𝑠𝑑

0
}) of 𝑑 above is defined by Algorithm 35.

G.11 Web Systems
The Web infrastructure and Web applications are formalized by what is called a Web system. AWeb

system contains, among others, a (possibly infinite) set of DY processes, modeling Web browsers,

Web servers, DNS servers, and attackers (which may corrupt other entities, such as browsers).

Definition 82. A Web system WS = (W , S , script, 𝐸0) is a tuple with its components defined as
follows:
The first component, W , denotes a system (a set of DY processes) and is partitioned into the sets

Hon, Web, and Net of honest, Web attacker, and network attacker processes, respectively.
Every 𝑝 ∈ Web ∪ Net is an attacker process for some set of sender addresses 𝐴 ⊆ IPs. For a Web

attacker 𝑝 ∈ Web, we require its set of addresses 𝐼𝑝 to be disjoint from the set of addresses of all
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other Web attackers and honest processes, i.e., 𝐼𝑝 ∩ 𝐼𝑝′ = ∅ for all 𝑝′ ≠ 𝑝 , 𝑝′ ∈ Hon ∪Web. Hence, a
Web attacker cannot listen to traffic intended for other processes. Also, we require that 𝐴 = 𝐼𝑝 , i.e., a
Web attacker can only use sender addresses it owns. Conversely, a network attacker may listen to all
addresses (i.e., no restrictions on 𝐼𝑝 ) and may spoof all addresses (i.e., the set 𝐴 may be IPs).

Every 𝑝 ∈ Hon is a DY process which models either a Web server, a Web browser, or a DNS server.
Just as for Web attackers, we require that 𝑝 does not spoof sender addresses and that its set of addresses
𝐼𝑝 is disjoint from those of other honest processes and the Web attackers.
The second component, S , is a finite set of scripts such that 𝑅att ∈ S . The third component, script,

is an injective mapping from S to S, i.e., by script every 𝑠 ∈ S is assigned its string representation
script(𝑠).
Finally, 𝐸0 is an (infinite) sequence of events, containing an infinite number of events of the form
⟨𝑎, 𝑎, TRIGGER⟩ for every 𝑎 ∈ ⋃𝑝∈W 𝐼𝑝 .
A run of WS is a run of W initiated by 𝐸0.

G.12 Generic HTTPS Server Model
This base model can be used to ease modeling of HTTPS server atomic processes. It defines

placeholder algorithms that can be superseded by more detailed algorithms to describe a concrete

relation for an HTTPS server.

Definition 83 (Base state for an HTTPS server). The state of each HTTPS server that is an
instantiation of this relation must contain at least the following subterms: pendingDNS ∈

[
N × TN

]
,

pendingRequests ∈ TN (both containing arbitrary terms),DNSaddress ∈ IPs (containing the IP address
of a DNS server), keyMapping ∈

[
Doms × TN

]
(containing a mapping from domains to public keys),

tlskeys ∈
[
Doms ×N

]
(containing a mapping from domains to private keys), and corrupt ∈ TN

(either ⊥ if the server is not corrupted, or an arbitrary term otherwise).

We note that in concrete instantiations of the generic HTTPS server model, there is no need to

extract information from these subterms or alter these subterms.

Let 𝜈𝑛0 and 𝜈𝑛1 denote placeholders for nonces that are not used in the concrete instantiation of

the server. We now define the default functions of the generic Web server in Algorithms 36–40,

and the main relation in Algorithm 41.

Algorithm 36 Generic HTTPS Server Model: Sending a DNS message (in preparation for sending

an HTTPS message).

1: function HTTPS_SIMPLE_SEND(reference, message, 𝑎, 𝑠′)
2: let 𝑠′ .pendingDNS[𝜈𝑛0] := ⟨reference,message⟩
3: stop ⟨⟨𝑠′ .DNSaddress, 𝑎, ⟨DNSResolve,message.host, 𝜈𝑛0⟩⟩⟩, 𝑠′

Algorithm 37 Generic HTTPS Server Model: Default HTTPS response handler.

1: function PROCESS_HTTPS_RESPONSE(𝑚, reference, request, 𝑎, 𝑓 , 𝑠′)
2: stop

Algorithm 38 Generic HTTPS Server Model: Default trigger event handler.

1: function PROCESS_TRIGGER(𝑎, 𝑠′)
2: stop
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Algorithm 39 Generic HTTPS Server Model: Default HTTPS request handler.

1: function PROCESS_HTTPS_REQUEST(𝑚, 𝑘 , 𝑎, 𝑓 , 𝑠′)
2: stop

Algorithm 40 Generic HTTPS Server Model: Default handler for other messages.

1: function PROCESS_OTHER(𝑚, 𝑎, 𝑓 , 𝑠′)
2: stop

Algorithm 41 Generic HTTPS Server Model: Main relation of a generic HTTPS server

Input: ⟨𝑎, 𝑓 ,𝑚⟩, 𝑠
1: let 𝑠′ := 𝑠
2: if 𝑠′ .corrupt . ⊥ ∨𝑚 ≡ CORRUPT then
3: let 𝑠′ .corrupt := ⟨⟨𝑎, 𝑓 ,𝑚⟩, 𝑠′ .corrupt⟩
4: let𝑚′ ← 𝑑𝑉 (𝑠′)
5: let 𝑎′ ← IPs
6: stop ⟨⟨𝑎′, 𝑎,𝑚′⟩⟩, 𝑠′

7: if ∃𝑚
dec

, 𝑘 , 𝑘′, inDomain such that ⟨𝑚
dec
, 𝑘⟩ ≡ deca (𝑚,𝑘′) ∧ ⟨𝑖𝑛𝐷𝑜𝑚𝑎𝑖𝑛, 𝑘′⟩ ∈ 𝑠 .tlskeys then

8: let 𝑛, method, path, parameters, headers, body such that
↩→ ⟨HTTPReq, 𝑛,method, inDomain, path, parameters, headers, body⟩ ≡𝑚

dec

↩→ if possible; otherwise stop
9: call PROCESS_HTTPS_REQUEST(𝑚

dec
, 𝑘 , 𝑎, 𝑓 , 𝑠′)

10: else if 𝑚 ∈ DNSResponses then → Successful DNS response

11: if 𝑚.nonce ∉ 𝑠 .pendingDNS ∨𝑚.result ∉ IPs
↩→ ∨𝑚.domain . 𝑠 .pendingDNS[𝑚.nonce] .2.host then

12: stop
13: let reference := 𝑠 .pendingDNS[𝑚.nonce] .1
14: let request := 𝑠 .pendingDNS[𝑚.nonce] .2
15: let 𝑠′ .pendingRequests := 𝑠′ .pendingRequests +⟨⟩ ⟨reference, request, 𝜈𝑛1,𝑚.result⟩
16: let message := enca (⟨request, 𝜈𝑛1⟩, 𝑠′ .keyMapping [request .host])
17: let 𝑠′ .pendingDNS := 𝑠′ .pendingDNS −𝑚.nonce
18: stop ⟨⟨𝑚.result, 𝑎,message⟩⟩, 𝑠′
19: else if ∃ ⟨reference, request, key, 𝑓 ⟩ ∈⟨⟩ 𝑠′ .pendingRequests

↩→ such that 𝜋1 (decs (𝑚, key)) ≡ HTTPResp then → Encrypted HTTP response

20: let𝑚′ := decs (𝑚, key)
21: if 𝑚′ .nonce . request .nonce then
22: stop
23: if 𝑚′ ∉ HTTPResponses then
24: call PROCESS_OTHER(𝑚, 𝑎, 𝑓 , 𝑠′)
25: remove ⟨reference, request, key, 𝑓 ⟩ from 𝑠′ .pendingRequests
26: call PROCESS_HTTPS_RESPONSE(𝑚′, reference, request, 𝑎, 𝑓 , 𝑠′)
27: else if 𝑚 ≡ TRIGGER then → Process was triggered

28: call PROCESS_TRIGGER(𝑎, 𝑠′)
29: else
30: call PROCESS_OTHER(𝑚, 𝑎, 𝑓 , 𝑠′)
31: stop
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G.13 General Security Properties of the WIM
We now repeat general application independent security properties of the WIM [36].

Let WS = (W , S , script, 𝐸0) be a Web system. In the following, we write 𝑠𝑥 = (𝑆𝑥 , 𝐸𝑥 ) for the
states of a Web system.

Definition 84 (Emitting Events). Given an atomic process 𝑝 , an event 𝑒 , and a finite run
𝜌 = ((𝑆0, 𝐸0, 𝑁 0), . . . , (𝑆𝑛, 𝐸𝑛, 𝑁𝑛)) or an infinite run 𝜌 = ((𝑆0, 𝐸0, 𝑁 0), . . . ) we say that 𝑝 emits 𝑒 iff
there is a processing step in 𝜌 of the form

(𝑆𝑖 , 𝐸𝑖 , 𝑁 𝑖 ) −−−−→
𝑝→𝐸

(𝑆𝑖+1, 𝐸𝑖+1, 𝑁 𝑖+1)

for some 𝑖 ≥ 0 and a sequence of events 𝐸 with 𝑒 ∈⟨⟩ 𝐸. We also say that 𝑝 emits𝑚 iff 𝑒 = ⟨𝑥,𝑦,𝑚⟩
for some addresses 𝑥 , 𝑦.

Definition 85. We say that a term 𝑡 is derivably contained in (a term) 𝑡 ′ for (a set of DY processes)

𝑃 (in a processing step 𝑠𝑖 → 𝑠𝑖+1 of a run 𝜌 = (𝑠0, 𝑠1, . . .)) if 𝑡 is derivable from 𝑡 ′ with the knowledge
available to 𝑃 , i.e.,

𝑡 ∈ 𝑑∅ ({𝑡 ′} ∪
⋃
𝑝∈𝑃

𝑆𝑖+1 (𝑝))

Definition 86. We say that a set of processes 𝑃 leaks a term 𝑡 (in a processing step 𝑠𝑖 → 𝑠𝑖+1) to
a set of processes 𝑃 ′ if there exists a message𝑚 that is emitted (in 𝑠𝑖 → 𝑠𝑖+1) by some 𝑝 ∈ 𝑃 and 𝑡 is
derivably contained in𝑚 for 𝑃 ′ in the processing step 𝑠𝑖 → 𝑠𝑖+1. If we omit 𝑃 ′, we define 𝑃 ′ := W \ 𝑃 .
If 𝑃 is a set with a single element, we omit the set notation.

Definition 87. We say that a DY process 𝑝 created a message𝑚 in a processing step

(𝑆𝑖 , 𝐸𝑖 , 𝑁 𝑖 )
𝑒in→𝑝
−−−−−→
𝑝→𝐸out

(𝑆𝑖+1, 𝐸𝑖+1, 𝑁 𝑖+1)

of a run 𝜌 = ((𝑆0, 𝐸0, 𝑁 0), . . . , (𝑆𝑛, 𝐸𝑛, 𝑁𝑛)) if all of the following hold true
• 𝑚 is a subterm of one of the events in 𝐸out
• 𝑚 is and was not derivable by any other set of processes

𝑚 ∉ 𝑑∅
( ⋃
𝑝′∈W \{𝑝 }
0≤ 𝑗≤𝑖+1

𝑆 𝑗 (𝑝′)
)

We note a process 𝑝 creating a message does not imply that 𝑝 can derive that message.

Definition 88. We say that a browser 𝑏 accepted a message (as a response to some request) if the
browser decrypted the message (if it was an HTTPSmessage) and called function PROCESSRESPONSE,
passing the message and the request (see Algorithm 29).

Definition 89. We say that an atomic DY process 𝑝 knows a term 𝑡 in some state 𝑠 = (𝑆, 𝐸, 𝑁 ) of
a run if it can derive the term from its knowledge, i.e., 𝑡 ∈ 𝑑∅ (𝑆 (𝑝)).

Definition 90. Let 𝑁 ⊆ N , 𝑡 ∈ T𝑁 (𝑋 ), and 𝑘 ∈ T𝑁 (𝑋 ). We say that 𝑘 appears only as a public

key in 𝑡 , if

(1) If 𝑡 ∈ 𝑁 ∪ 𝑋 , then 𝑡 ≠ 𝑘
(2) If 𝑡 = 𝑓 (𝑡1, . . . , 𝑡𝑛), for 𝑓 ∈ Σ and 𝑡𝑖 ∈ TN (𝑋 ) (𝑖 ∈ {1, . . . , 𝑛}), then 𝑓 = pub or for all 𝑡𝑖 , k

appears only as a public key in 𝑡𝑖 .
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Definition 91. We say that a script initiated a request 𝑟 if a browser triggered the script (in
Line 10 of Algorithm 28) and the first component of the command output of the script relation is either
HREF, IFRAME, FORM, or XMLHTTPREQUEST such that the browser issues the request 𝑟 in the same step
as a result.

Definition 92. We say that an instance of the generic HTTPS server 𝑠 accepted a message (as a
response to some request) if the server decrypted the message (if it was an HTTPS message) and called
the function PROCESS_HTTPS_RESPONSE, passing the message and the request (see Algorithm 41).

For a run 𝜌 = 𝑠0, 𝑠1, . . . of any WS , we state the following lemmas:

Lemma 43. If in the processing step 𝑠𝑖 → 𝑠𝑖+1 of a run 𝜌 of WS an honest browser 𝑏

(I) emits an HTTPS request of the form

𝑚 = enca (⟨req, 𝑘⟩, pub(𝑘 ′))
(where req is an HTTP request, 𝑘 is a nonce (symmetric key), and 𝑘 ′ is the private key of some
other DY process 𝑢), and

(II) in the initial state 𝑠0, for all processes 𝑝 ∈ W \ {𝑢}, the private key 𝑘 ′ appears only as a public
key in 𝑆0 (𝑝), and

(III) 𝑢 never leaks 𝑘 ′,

then all of the following statements are true:

(1) There is no state of WS where any party except for 𝑢 knows 𝑘 ′, thus no one except for 𝑢 can
decrypt𝑚 to obtain req.

(2) If there is a processing step 𝑠 𝑗 → 𝑠 𝑗+1 where the browser 𝑏 leaks 𝑘 to W \ {𝑢,𝑏} there is a
processing step 𝑠ℎ → 𝑠ℎ+1 with ℎ < 𝑗 where 𝑢 leaks the symmetric key 𝑘 to W \ {𝑢,𝑏} or the
browser is fully corrupted in 𝑠 𝑗 .

(3) The value of the host header in req is the domain that is assigned the public key pub(𝑘 ′) in the
browsers’ keymapping 𝑠0.keyMapping (in its initial state).

(4) If 𝑏 accepts a response (say,𝑚′) to𝑚 in a processing step 𝑠 𝑗 → 𝑠 𝑗+1 and 𝑏 is honest in 𝑠 𝑗 and 𝑢
did not leak the symmetric key 𝑘 to W \ {𝑢,𝑏} prior to 𝑠 𝑗 , then 𝑢 created the HTTPS response
𝑚′ to the HTTPS request𝑚, i.e., the nonce of the HTTP request req is not known to any atomic
process 𝑝 , except for the atomic processes 𝑏 and 𝑢.

Proof. (1) follows immediately from the preconditions.

The process 𝑢 never leaks 𝑘 ′, and initially, the private key 𝑘 ′ appears only as a public key in all

other process states. As the equational theory does not allow the extraction of a private key 𝑥 from

a public key pub(𝑥), the other processes can never derive 𝑘 ′.
Thus, even with the knowledge of all nonces (except for those of 𝑢), 𝑘 ′ can never be derived from

any network output of 𝑢, and 𝑘 ′ cannot be known to any other party. Thus, nobody except for 𝑢

can derive req from𝑚.

(2) We assume that 𝑏 leaks 𝑘 to W \ {𝑢,𝑏} in the processing step 𝑠 𝑗 → 𝑠 𝑗+1 without 𝑢 prior

leaking the key 𝑘 to anyone except for 𝑢 and 𝑏 and that the browser is not fully corrupted in 𝑠 𝑗 ,

and lead this to a contradiction.

The browser is honest in 𝑠𝑖 . From the definition of the browser 𝑏, we see that the key 𝑘 is always

chosen as a fresh nonce (placeholder 𝜈3 in Lines 71ff. of Algorithm 30) that is not used anywhere

else. Further, the key is stored in the browser’s state in pendingRequests. The information from

pendingRequests is not extracted or used anywhere else (in particular it is not accessible by scripts).

If the browser becomes closecorrupted prior to 𝑠 𝑗 (and after 𝑠𝑖 ), the key cannot be used anymore
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(compare Lines 51ff. of Algorithm 30). Hence, 𝑏 does not leak 𝑘 to any other party in 𝑠 𝑗 (except for

𝑢 and 𝑏). This proves (2).

(3) Per the definition of browsers (Algorithm 30), a host header is always contained in HTTP

requests by browsers. From Line 77 of Algorithm 30 we can see that the encryption key for the

request req was chosen using the host header of the message. It is chosen from the keyMapping in

the browser’s state, which is never changed during 𝜌 . This proves (3).

(4) An HTTPS response𝑚′ that is accepted by 𝑏 as a response to𝑚 has to be encrypted with 𝑘 .

The nonce 𝑘 is stored by the browser in the pendingRequests state information. The browser only

stores freshly chosen nonces there (i.e., the nonces are not used twice, or for other purposes than

sending one specific request). The information cannot be altered afterwards (only deleted) and

cannot be read except when the browser checks incoming messages. The nonce 𝑘 is only known to

𝑢 (which did not leak it to any other party prior to 𝑠 𝑗 ) and 𝑏 (which did not leak it either, as 𝑢 did

not leak it and 𝑏 is honest, see (2)). The browser 𝑏 cannot send responses. This proves (4).

□

Corollary 1. In the situation of Lemma 43, as long as 𝑢 does not leak the symmetric key 𝑘 to
W \{𝑢,𝑏} and the browser does not become fully corrupted, 𝑘 is not known to any DY process 𝑝 ∉ {𝑢,𝑏}
(i.e., � 𝑠′ = (𝑆 ′, 𝐸′) ∈ 𝜌 : 𝑘 ∈ 𝑑𝑁 𝑝 (𝑆 ′ (𝑝))).

Lemma 44. If for some 𝑠𝑖 ∈ 𝜌 an honest browser 𝑏 has a document 𝑑 in its state 𝑆𝑖 (𝑏).windows with
the origin ⟨dom, S⟩ where dom ∈ Domain, and 𝑆𝑖 (𝑏).keyMapping[dom] ≡ pub(𝑘) with 𝑘 ∈ N being
a private key, and there is only one DY process 𝑝 that knows the private key 𝑘 in all 𝑠 𝑗 , 𝑗 ≤ 𝑖 , then 𝑏
extracted (in Line 37 in Algorithm 29) the script in that document from an HTTPS response that was
created by 𝑝 .

Proof. The origin of the document 𝑑 is set only once: In Line 37 of Algorithm 29. The values

(domain and protocol) used there stem from the information about the request (say, req) that led
to the loading of 𝑑 . These values have been stored in pendingRequests between the request and

the response actions. The contents of pendingRequests are indexed by freshly chosen nonces and

can never be altered or overwritten (only deleted when the response to a request arrives). The

information about the request req was added to pendingRequests in Line 76 (or Line 79 which we

can exclude as we will see later) of Algorithm 30. In particular, the request was an HTTPS request iff

a (symmetric) key was added to the information in pendingRequests. When receiving the response

to req, it is checked against that information and accepted only if it is encrypted with the proper

key and contains the same nonce as the request (say, 𝑛). Only then the protocol part of the origin

of the newly created document becomes S. The domain part of the origin (in our case dom) is taken

directly from the pendingRequests and is thus guaranteed to be unaltered.

From Line 77 of Algorithm 30 we can see that the encryption key for the request req was

actually chosen using the host header of the message which will finally be the value of the

origin of the document 𝑑 . Since 𝑏 therefore selects the public key 𝑆𝑖 (𝑏).keyMapping[dom] =

𝑆0 (𝑏).keyMapping[dom] ≡ pub(𝑘) for 𝑝 (the key mapping cannot be altered during a run), we can

see that req was encrypted using a public key that matches a private key which is only (if at all)

known to 𝑝 . With Lemma 43 we see that the symmetric encryption key for the response, 𝑘 , is only

known to 𝑏 and the respective Web server. The same holds for the nonce 𝑛 that was chosen by the

browser and included in the request. Thus, no other party than 𝑝 can encrypt a response that is

accepted by the browser 𝑏 and which finally defines the script of the newly created document.

□

Lemma 45. If in a processing step 𝑠𝑖 → 𝑠𝑖+1 of a run 𝜌 of WS an honest browser 𝑏 issues an HTTP(S)
request with the Origin header value ⟨dom, S⟩ where 𝑆𝑖 (𝑏).keyMapping[dom] ≡ pub(𝑘) with 𝑘 ∈ N
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being a private key, and there is only one DY process 𝑝 that knows the private key 𝑘 in all 𝑠 𝑗 , 𝑗 ≤ 𝑖 ,
then
• that request was initiated by a script that 𝑏 extracted (in Line 37 in Algorithm 29) from an
HTTPS response that was created by 𝑝 , or
• that request is a redirect to a response of a request that was initiated by such a script.

Proof. The browser algorithms create HTTP requests with an origin header by calling the

HTTP_SEND function (Algorithm 25), with the origin being the fourth input parameter. This

function adds the origin header only if this input parameter is not ⊥.
The browser calls the HTTP_SEND function with an origin that is not ⊥ only in the following

places:

• Line 51 of Algorithm 28

• Line 90 of Algorithm 28

• Line 27 of Algorithm 29

In the first two cases, the request was initiated by a script. The Origin header of the request

is defined by the origin of the script’s document. With Lemma 44 we see that the content of the

document, in particular the script, was indeed provided by 𝑝 .

In the last case (Location header redirect), as the origin is not ^ , the condition of Line 17 of

Algorithm 29 must have been true and the origin value is set to the value of the origin header of the

request. In particular, this implies that an origin header does not change during redirects (unless set

to ^; in this case, the value stays the same in the subsequent redirects). Thus, the original request

must have been created by the first two cases shown above.

□

The following lemma is similar to Lemma 43, but is applied to the generic HTTPS server (instead

of the Web browser).

Lemma 46. If in the processing step 𝑠𝑖 → 𝑠𝑖+1 of a run 𝜌 of WS an honest instance 𝑠 of the generic
HTTPS server model

(I) emits an HTTPS request of the form

𝑚 = enca (⟨req, 𝑘⟩, pub(𝑘 ′))
(where req is an HTTP request, 𝑘 is a nonce (symmetric key), and 𝑘 ′ is the private key of some
other DY process 𝑢), and

(II) in the initial state 𝑠0, for all processes 𝑝 ∈ W \ {𝑢}, the private key 𝑘 ′ appears only as a public
key in 𝑆0 (𝑝),

(III) 𝑢 never leaks 𝑘 ′,
(IV) the instance model defined on top of the HTTPS server does not read or write the pendingRequests

subterm of its state,
(V) the instance model defined on top of the HTTPS server does not emit messages inHTTPSRequests,

(VI) the instance model defined on top of the HTTPS server does not change the values of the
keyMapping subterm of its state, and

(VII) when receiving HTTPS requests of the form enca (⟨req′, 𝑘2⟩, pub(𝑘 ′)), 𝑢 uses the nonce of the
HTTP request req′ only as nonce values of HTTPS responses encrypted with the symmetric key
𝑘2,

(VIII) when receiving HTTPS requests of the form enca (⟨req′, 𝑘2⟩, pub(𝑘 ′)), 𝑢 uses the symmetric key
𝑘2 only for symmetrically encrypting HTTP responses (and in particular, 𝑘2 is not part of a
payload of any messages sent out by 𝑢),
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then all of the following statements are true:

(1) There is no state of WS where any party except for 𝑢 knows 𝑘 ′, thus no one except for 𝑢 can
decrypt𝑚 to obtain req.

(2) If there is a processing step 𝑠 𝑗 → 𝑠 𝑗+1 where some process leaks 𝑘 to W \ {𝑢, 𝑠}, there is a
processing step 𝑠ℎ → 𝑠ℎ+1 with ℎ < 𝑗 where 𝑢 leaks the symmetric key 𝑘 to W \ {𝑢, 𝑠} or the
process 𝑠 is corrupted in 𝑠 𝑗 .

(3) The value of the host header in req is the domain that is assigned the public key pub(𝑘 ′) in
𝑆0 (𝑠).keyMapping (i.e., in the initial state of 𝑠).

(4) If 𝑠 accepts a response (say,𝑚′) to𝑚 in a processing step 𝑠 𝑗 → 𝑠 𝑗+1 and 𝑠 is honest in 𝑠 𝑗 and 𝑢
did not leak the symmetric key 𝑘 to W \ {𝑢, 𝑠} prior to 𝑠 𝑗 , then 𝑢 created the HTTPS response
𝑚′ to the HTTPS request𝑚, i.e., the nonce of the HTTP request req is not known to any atomic
process 𝑝 , except for the atomic processes 𝑠 and 𝑢.

Proof. (1) follows immediately from the preconditions. The proof is the same as for Lemma 43:

The process 𝑢 never leaks 𝑘 ′, and initially, the private key 𝑘 ′ appears only as a public key in all

other process states. As the equational theory does not allow the extraction of a private key 𝑥 from

a public key pub(𝑥), the other processes can never derive 𝑘 ′.
Thus, even with the knowledge of all nonces (except for those of 𝑢), 𝑘 ′ can never be derived from

any network output of 𝑢, and 𝑘 ′ cannot be known to any other party. Thus, nobody except for 𝑢

can derive req from𝑚.

(2) We assume that some process leaks 𝑘 to W \ {𝑢, 𝑠} in the processing step 𝑠 𝑗 → 𝑠 𝑗+1 without
𝑢 prior leaking the key 𝑘 to anyone except for 𝑢 and 𝑠 and that the process 𝑠 is not corrupted in 𝑠 𝑗 ,

and lead this to a contradiction.

The process 𝑠 is honest in 𝑠𝑖 . 𝑠 emits HTTPS requests like𝑚 only in Line 18 of Algorithm 41:

• The message emitted in Line 3 of Algorithm 36 has a different message structure

• As 𝑠 is honest, it does not send the message of Line 6 of Algorithm 41

• There is no other place in the generic HTTPS server model where messages are emitted and

due to precondition (V), the application-specific model does not emit HTTPS requests.

The value 𝑘 , which is the placeholder 𝜈𝑛1 in Algorithm 41, is only stored in the pendingRequests
subterm of the state of 𝑠 , i.e., in 𝑆𝑖+1 (𝑠).pendingRequests. Other than that, 𝑠 only accesses this

value in Line 19 of Algorithm 41, where it is only used to decrypt the response in Line 20 (in

particular, the key is not propagated to the application-specific model, and the key cannot be

contained within the payload of an response due to (VIII)). We note that there is no other line in

the model of the generic HTTPS server where this subterm is accessed and the application-specific

model does not access this subterm due to precondition (IV). Hence, 𝑠 does not leak 𝑘 to any other

party in 𝑠 𝑗 (except for 𝑢 and 𝑠). This proves (2).

(3) From Line 16 of Algorithm 41 we can see that the encryption key for the message m was

chosen using the host header of the request. It is chosen from the keyMapping subterm of the

state of 𝑠 , which is never changed during 𝜌 by the HTTPS server and never changed by the

application-specific model due to precondition (VI). This proves (3).

(4)

Response was encrypted with 𝑘 . An HTTPS response𝑚′ that is accepted by 𝑠 as a response to

𝑚 has to be encrypted with 𝑘 :

The decryption key is taken from the pendingRequests subterm of its state in Line 19 of Algo-

rithm 41, where 𝑠 only stores fresh nonces as keys that are added to requests as symmetric keys

(see also Lines 15 and 16). The nonces (symmetric keys) are not used twice, or for other purposes

than sending one specific request.
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Only 𝑠 and 𝑢 can create the response. As shown previously, only 𝑠 and 𝑢 can derive the

symmetric key (as 𝑠 is honest in 𝑠 𝑗 ). Thus,𝑚
′
must have been created by either 𝑠 or 𝑢.

𝑠 cannot have created the response. We assume that 𝑠 emitted the message𝑚′ and lead this to

a contradiction.

The generic server algorithms of 𝑠 (when being honest) emit messages only in two places: In

Line 3 of Algorithm 36, where a DNS request is sent, and in Line 18 of Algorithm 41, where a

message with a different structure than𝑚′ is created (as𝑚′ is accepted by the server,𝑚′ must be a

symmetrically encrypted ciphertext).

Thus, the instance model of 𝑠 must have created the response𝑚′.
Due to Precondition (IV), the instance model of 𝑠 cannot read the pendingRequests subterm of

its state. The symmetric key is generated freshly by the generic server algorithm in Lines 15 and 16

of Algorithm 41 and stored only in pendingRequests.
As the generic algorithms do not call any of the handlers with a symmetric key stored in

pendingRequests., it follows that the instance model derived the key from a message payload in

the instantiation of one of the handlers. Let �̃� denote this message payload.

As the server instance model cannot derive the symmetric key without processing a message

from which it can derive the symmetric key, and as the server algorithm only create the original

request𝑚 as the only message with the symmetric key as a payload, it follows that 𝑢 must have

created �̃�, as no other process can derive the symmetric key from𝑚.

However, when receiving𝑚, 𝑢 will use the symmetric key only as an encryption key, and in

particular, will not create a message where the symmetric key is a payload (Precondition (VIII)).

Thus, the symmetric key cannot be derived by the instance of the server model, which is a

contradiction to the statement that the instance model of 𝑠 must have created the response𝑚′.
□
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