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Abstract

In recent years, the number of third-party services that can access highly-sensitive data has increased steadily, e.g., in the financial
sector, in eGovernment applications, or in high-assurance identity services. Protocols that enable this access must provide strong
security guarantees.

A prominent and widely employed protocol for this purpose is the OpenID Foundation’s FAPI protocol. The FAPI protocol is
already in widespread use, e.g., as part of the UK’s Open Banking standards and Brazil’s Open Banking Initiative as well as outside
of the financial sector, for instance, as part of the Australian government’s Consumer Data Rights standards.

Based on lessons learned from FAPI 1.0, the OpenID Foundation has developed a completely new protocol, called FAPI 2.0. The
specifications of FAPI 2.0 include a concrete set of security goals and attacker models under which the protocol aims to be secure.

Following an invitation from the OpenID Foundation’s FAPI Working Group (FAPI WG), we have accompanied the
standardization process of the FAPI 2.0 protocol by an in-depth formal security analysis. In this paper, we report on our analysis and
findings.

Our analysis incorporates the first formal model of the FAPI 2.0 protocol and is based on a detailed model of the web infrastructure,
the Web Infrastructure Model, originally proposed by Fett, Küsters, and Schmitz. Our analysis has uncovered several types of attacks
on the protocol, violating the aforementioned security goals set by the FAPI WG. We subsequently have worked with the FAPI WG
to fix the protocol, resulting in several changes to the specifications. After adapting our model to the changed specifications, we have
proved the security properties to hold under the strong attacker model defined by the FAPI WG.

This technical report embodies the full version of our CSF 2024 paper with the same title.

I. INTRODUCTION

Web-based authentication and authorization is ubiquitous. Many websites and applications can be used by logging in with a
so-called Identity Provider, for instance, “Login with Google” or “Login with Facebook”, generally dubbed “social login”, or
more generally, Single Sign-On (SSO). It is also possible to authorize applications, including websites, but also IoT devices, such
as routers and smart TVs, to access resources managed by the Identity Provider. Such resources include email addresses [24,
74], documents/calendars/pictures/movies stored in the cloud [59, 61], YouTube accounts [81], or development repositories [74].
A widely used protocol family for these authorization and authentication use cases are the OAuth 2.0 and OpenID Connect
protocols [79, 82].

While plain OAuth 2.0 and OpenID Connect are suitable for typical low-risk use cases (e.g., social login), many use cases have
emerged in high-risk settings for both authorization and authentication scenarios: Third party services can be authorized to, e.g.,
get access to bank transaction histories for monitoring and feedback [4, 10], trigger financial transactions [62, 63, 80], access
cars [12], perform health-related actions like managing electronic prescriptions [23], or access medical records [19, 76]. In such
high-risk use cases, attacks that enable malicious actors to access resources or impersonate end-users not only have more severe
consequences than in classical low-risk settings, but such use cases also require more robust protocols and overall stronger security
guarantees. For example, when using SSO to manage access to health records, it is important to not only recognize the same user
again at a later point, which is typical for social network SSO, but to provide the full legal identity of the user. Likewise, protocols
for high-risk use cases should be robust, i.e., provide security even if some messages or relevant values leak to an attacker, e.g.,
through leaked server log files [1].

To provide a higher level of security for such use cases, the OpenID Foundation developed FAPI 1.0, which is based on
OAuth 2.0 and OpenID Connect, but uses many additional mechanisms to increase their security, e.g., to guarantee authorization
and authentication even if the attacker can misconfigure certain endpoints or certain TLS-protected messages leak to the attacker,
e.g., via log files. Meeting many ecosystems’ needs, FAPI 1.0 is now in widespread use, e.g., as part of the UK’s Open Banking
standards [62], in the Australian Government’s (mandatory to support) Consumer Data Standards [16] which govern customer
interaction with banks, energy, and telecommunications companies, with more industry sectors to follow. Further FAPI 1.0 uses
include Brazil’s Open Finance and Open Insurance programs [63, 64], companies like yes.com [80] with an ecosystem of more
than 1,000 actively participating banks, acting as trusted identity providers that can be used by sites and apps to login users, identify
natural persons, obtain account information, and initiate payments, as well as US-based Financial Data Exchange FDX with more
than 42 million users [27], and New Zealand’s core payment clearing house payments.nz [40].



The high security goals FAPI 1.0 aims to achieve have been formally analyzed before [38], uncovering several attacks and
proposing fixes for those. Based on the experiences with FAPI 1.0, including interoperability and implementation aspects, the
OpenID Foundation is currently standardizing a successor named FAPI 2.0, which comprises a completely new protocol (see also
Section IV-C).

FAPI 2.0 is a framework of specifications, with the core protocol specified in the FAPI 2.0 Security Profile [32]. Another
important specification for our purposes in this framework is the FAPI 2.0 Attacker Model [29], which captures the security goals
that the protocol aims to fulfill, along with assumptions on the attacker capabilities, resulting in a strong attacker, far exceeding
standard attacker models for protocol analysis (see Section II-C). In the following, we will often refer to the FAPI 2.0 Security
Profile and FAPI 2.0 Attacker Model as just FAPI 2.0.1

Despite being a very recent standard, FAPI 2.0 is expected to be adopted soon in many important ecosystems, with several of
the aforementioned FAPI 1.0 users already having committed to switch to FAPI 2.0.

Given the importance of FAPI 2.0 and its current and future use in high-risk environments, the FAPI WG has asked us to
accompany the standardization process with a formal analysis, providing feedback early on and throughout the development of
FAPI 2.0. We hence have performed a detailed formal security analysis of the FAPI 2.0 Security Profile with the security goals
specified in the FAPI 2.0 Attacker Model. Our analysis is based on the Web Infrastructure Model (WIM) [33], a symbolic Dolev-
Yao style model of the Web infrastructure. The WIM is the most comprehensive and detailed model of the Web infrastructure
to date. Other models of the Web and its infrastructure, such as those by Pai et al. [65], Kumar [49, 50], or Bansal et al. [6] are
significantly more abstract and limited by the tools upon which they are based.

For our work, we used the WIM as-is in its most recent published version [51], except for an additional HTTP header for DPoP
proofs (see below for DPoP and Appendix D-I).

For the analysis of FAPI 2.0, we have created a formal model of the FAPI 2.0 Security Profile and formalized the security
properties stated in the FAPI 2.0 Attacker Model and incorporated the assumptions on the attacker laid out therein (based on the
state of the specifications at that time). We coordinated these steps with the FAPI WG to ensure a faithful modeling. The process
of proving the properties within the model has revealed several attacks that break the goals of the protocol. We have proposed
fixes and improvements to the specifications, which the FAPI WG appreciated and amalgamated into the official specifications,
resulting in substantial changes thereof.

We adapted our formal model and formal security properties according to the changes discussed with the FAPI WG and were
finally able to prove that the desired properties hold true within the model. Hence, our analysis reflects the latest official version of
the FAPI 2.0 specifications [29, 32]. We note that while our analysis uncovered new attacks, we also found known attack patterns
which the FAPI WG is familiar with and tried to avoid. This highlights the importance of a systematic formal analysis, which
makes it possible to detect subtle flaws even in very complex protocols, where it is easy to overlook such flaws.

Contributions. In summary, our contributions are:

• We provide the first formal model of FAPI 2.0, along with a formalization of the security goals set forth in the FAPI 2.0
Attacker Model.

• Our analysis has uncovered several attacks, i.e., violations of the security goals under the attacker model defined by the FAPI
WG.

• We propose fixes and improvements and worked with the FAPI WG to incorporate them, resulting in significantly modified
and improved FAPI 2.0 specifications.

• We adapted our formal model to reflect the improved specifications and were then able to prove the formalized security goals.
• We have accompanied the development of the specifications from an early stage on and were able to support the standardization

process with security recommendations before widespread deployment of the protocol.

Structure of This Paper. We first give a detailed description of the FAPI 2.0 protocol in Section II and then present the attacks
that we have discovered in the process of our formal analysis in Section III. We describe our formal model and formal security
theorem along with a proof sketch in Section IV. The full formal model and proofs are given in the appendix. Related work is
discussed in Section V. We conclude in Section VI.

II. FAPI 2.0 PROTOCOL AND SECURITY GOALS

In the following, we describe the FAPI 2.0 protocol and the accompanying FAPI 2.0 Attacker Model as of the beginning of our
work. Recall that the FAPI 2.0 Attacker Model is part of the FAPI 2.0 specification framework. After consultation with the FAPI
WG, we used FAPI 2.0 specifications as of June 1st, 2022 as a basis for our analysis ([30, 31], the FAPI 2.0 Security Profile used
to be called Baseline Profile). We discuss changes to the specifications made due to our findings since then in Section III.

1While in the original FAPI 1.0 protocol, “FAPI” stands for “Financial-grade API”, the scope and expected uses of FAPI 2.0 reach far beyond the financial sector,
thus, FAPI 2.0 is not an acronym anymore.



A. Overview of FAPI 2.0

In a nutshell, FAPI 2.0 allows a user (also called resource owner) to grant a client application access to their data stored at
a resource server (RS), by means of an authorization server (AS) which is responsible to manage access to the user’s data. In
addition, the AS may provide the client with information on the user’s identity at the AS. For example, FAPI 2.0 may be used to
grant an account aggregation service (client) read access to a user’s account balance at various banks (RSs), with services of these
banks (ASs) managing such access (such services are in use today, e.g., [4, 10, 62, 63]).

On a high level, a FAPI 2.0 protocol run, also called flow or grant, advances as follows: A user visits a website or uses an
application of the client c, which wants to access data of the user stored at the RS. Since the user’s data at the RS is managed by an
AS AS, c contacts AS with some initial information, e.g., what kind of data c want to access. AS replies with an internal reference to
the current flow, which c then forwards to the user’s browser while also instructing the browser to visit a website of AS to proceed.
Once the user, or more precisely, their browser, visits that AS website, the user is asked to authenticate, e.g., with username and
password, and to authorize the client’s request. If the user consents, AS instructs the user’s browser to return to the client website
or application, passing on a value called the authorization code. Once the client receives that authorization code, it can contact
AS and exchange the authorization code for so-called tokens. There are two types of tokens in FAPI 2.0: ID Tokens and Access
Tokens. An id token contains information to identify the user, e.g., an email address or username with which the user is registered
at the AS. This id data can be used by the client to authenticate users in the context of the client application. An access token, on
the other hand, can be used by the client to request users’ resources from an RS, e.g., account balances. Upon receiving such a
request, an RS verifies the access token’s validity. Depending on the access token format, this may include checking a signature
on the access token or using so-called token introspection, which means that the RS queries the AS for validity information on a
given access token.

B. The FAPI 2.0 Protocol in Detail

In the following, we describe a FAPI 2.0 protocol flow in detail (depicted in Figure 1). The flow is initiated by a user visiting the
website or using an application of a client c, typically expressing the wish to authorize c using a certain AS AS, e.g., by clicking a
“Login with AS” button (Step 1 ).

FAPI 2.0 assumes that c received the so-called issuer identifier issAS of AS (e.g., via configuration). That issuer identifier is used
in FAPI 2.0 and other protocols to uniquely identify AS [75]. However, to complete a FAPI 2.0 flow, c needs additional knowledge
on AS, e.g., endpoint URLs. If c does not yet know all necessary values (e.g., via configuration), it can proceed by fetching
so-called Authorization Server Metadata [48, 71] from AS (Step 2 ). However, this step is optional. Like all other communication
in FAPI 2.0, this exchange is done via HTTPS, i.e., is protected by TLS. The metadata returned by AS includes URIs of the relevant
endpoints, supported cryptographic algorithms, and similar information, along with the issuer identifier of AS (Step 3 ). Once the
client acquired the metadata, it verifies the aforementioned issuer identifier to prevent mix-ups, e.g., due to injection attacks.

Once the required values are available, c assembles a Pushed Authorization Request (PAR) [57] and sends it to AS (Step 5 ).
This PAR request contains everything needed by AS to provide the user with sufficient information in Step 10 such that the user
can make an informed decision on whether to grant c access to their data. This information includes: 1) a client id cid , uniquely
identifying c at AS. 2) A scope value, describing what data c wants to access, e.g., “read transactions”, and whether c requests an
id token to be issued. 3) A redirect uri rediruri , which is used by AS in Step 11 to redirect the user’s browser back to c. 4) A code
challenge, i.e., a hash h(cv) of a client chosen nonce cv , which is used in Step 14 to verify that the client requesting a token is
the same client that sent the PAR request (even if the PAR request leaks). This mechanism is called Proof Key for Code Exchange
(PKCE) [72]. 5) Client authentication information (see below for a description).

Upon receiving the PAR request, AS verifies the client authentication, the presence of the parameters explained above, and
checks whether the requested scope can be granted to the client (under the policies of AS). If all these checks pass, AS creates a
random request uri requri and stores the requested scope, cid , cc := h(cv), rediruri , and requri (Step 6 ); requri will be used as
a reference to the PAR data in Step 9 and is therefore sent to c in the PAR response (Step 7 ). Client c then redirects the user’s
browser to AS, adding requri and cid as request parameters (Step 8 ). Following that redirect, the user’s browser visits AS and
in doing so, forwards requri and cid , hence providing information on the user’s context (i.e., the current flow) to AS (Step 9 ).
The user now authenticates at AS and reviews the access requested by c (Step 10 ), the exact details of this step are up to the AS
and out of scope of FAPI 2.0. If the user consents, AS generates a random authorization code ac and stores it with the PAR data
from Step 5 . AS then redirects the user’s browser back to the rediruri of c (stored in Step 6 ), and includes ac as well as an iss
value [75] (i.e., the issuer identifier issAS) as parameters (Steps 11 and 12 ).

Once c has received the browser’s (redirected) request, it validates the iss value by comparing it to the issuer identifier of the
AS to which c sent the PAR request in Step 5 to prevent mix-up attacks [36, 55, 58, 75]. If this check passes, c sends a token
request to AS (Step 14 ). This token request contains the authorization code ac from Step 12 , client id cid , a code verifier cv , i.e.,
the nonce from Step 5 , and client authentication similar to Step 5 . Furthermore, c must include information for access token
sender constraining, which we describe below.
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Figure 1. FAPI 2.0 Security Profile protocol flow (with DPoP sender constraining)

When AS receives that token request, it verifies the client authentication, presence of a sender constraining method, and validity
of the authorization code and code verifier (Step 15 ). The latter is verified by checking whether h(cv) = cc, with cc being the
code challenge stored in Step 6 and cv being the code verifier from the token request. The code ac is then invalidated and AS

generates an access token at (and id token if requested) and sends them back to c in Step 16 .
Given an id token, c may now log in the user with whatever identity the user has at AS, e.g., a user name (Step 17 ). This allows

clients to offer SSO to their users.
Using the access token at , c can request user’s resources at an RS as follows: in the resource request (Step 18 ), c must

include at as well as corresponding information for access token sender constraining (see below). The RS then has to verify
at’s validity, integrity, expiration, and revocation status, as well as the sender constraining information (Step 19 ). Except for the
sender constraining, FAPI 2.0 does not specify how RSs should perform those (nonetheless mandatory) checks. Currently, there
are two widely-adopted methods to do so [60]: token introspection [69], and structured access tokens, which contain the necessary
information and are typically signed by the AS [8, 46]. With token introspection, the RS sends the access token to the introspection
endpoint of the AS which issued the token, to which the AS answers with information on the validity of the token and on the public
key to which the access token is bound.

Client Authentication. FAPI 2.0 requires ASs to authenticate clients at the PAR and token endpoints (Steps 5 and 14 ) using
Mutual-TLS (mTLS) or private_key_jwt. In both cases, clients need to be registered with the AS beforehand. With mTLS [11],
the client presents a TLS certificate containing the client’s identity, e.g., its client id, during TLS connection establishment. With
private_key_jwt [70], the client adds a signed JSON Web Token (JWT) [44, 46, 47] to its messages. This JWT contains the
client’s id at the AS, the issuer identifier of the AS, and a nonce, and is signed with a private key of the client.

Access Token Sender Constraining. When issuing an access token (Steps 14 – 16 ), a FAPI 2.0 AS is required to bind the



token to a key of the client who requested it. Likewise, the RS must verify this binding when it receives a resource request
(Step 19 ). FAPI 2.0 defines two methods to establish and verify such a binding: OAuth 2.0 Demonstrating Proof-of-Possession
at the Application Layer (DPoP) [39], which is shown in Figure 1, and mTLS [11]. In both cases, the access token is bound to a
client key pair, e.g., by including a hash of the public key in the token, and the client has to include a proof of possession of the
private key when using the access token.

With DPoP, the token request (Step 14 ) must include a DPoP proof : a signed JWT dpopJWT , containing the URL to which it
is sent, a nonce, and a public verification key pub(k) (of the client’s choice). dpopJWT is signed using the corresponding private
key k. The AS then binds the access token to pub(k). When requesting resources (Step 18 ), the client has to include another DPoP
proof—signed with k—which must contain a hash of the access token in addition to the aforementioned items.

With mTLS, the AS binds the access token to the public key included in the client’s TLS certificate, which the client presents
during connection establishment in Step 14 . When using the access token (Step 18 ), the client presents the same certificate during
the TLS connection establishment (which includes a proof of possession of the corresponding private key).

We emphasize that client authentication and access token sender constraining are independent of each other, including the key
material. E.g., a client which uses mTLS to authenticate may use DPoP for sender constraining, and a client can authenticate with
private_key_jwt and at the same time use mTLS for sender constraining. I.e., there are four possible combinations.

C. Security Goals and Attacker Model

Along with the actual protocol specification, the FAPI WG developed the FAPI 2.0 Attacker Model [30] which outlines security
goals and assumptions on attackers under which these goals are expected to hold. As before, we describe the state as of June
1st, 2022 here and discuss changes made since then in Section III. The formalized security properties and modeling of attacker
assumptions are presented in Section IV.

Authorization Goal. The authorization goal states that no attacker should be able to access resources belonging to an honest
user. In addition, the FAPI 2.0 Attacker Model states that this goal is “fulfilled if no attacker can successfully obtain and use an
access token” issued for an honest user.

Authentication Goal. The authentication goal is fulfilled when no attacker is able to log in at a client under the identity of an
honest user.

Session Integrity for Authorization Goal. Session integrity goals aim to prevent attackers from tricking users into using
attacker’s resources or identities. Hence, the session integrity for authorization goal ensures users cannot be forced to use resources
of the attacker.

Session Integrity for Authentication Goal. Similar to the session integrity for authorization goal, the session integrity for
authentication goal is fulfilled if no attacker can force an honest user to be logged in under an identity of the attacker.

Attacker Assumptions. In the following, we summarize the aforementioned attacker assumptions laid out in the FAPI 2.0
Attacker Model. We stress that these (strong) assumptions are part of and justified by the specification.
A1. The attacker controls the network, i.e., can intercept, block, and tamper with all messages sent over the network. In particular,
the attacker can also reroute, reorder, and create (from its knowledge) new messages. However, the attacker cannot break
cryptography unless it learned the respective keys. Nevertheless, the attacker can pose as any party (and any network participant)
in the protocol. In addition, the attacker can also send links to (honest) users which are then visited by these users. See [30, Sec.
A1, A1a, A2].
A2. The attacker can read authorization requests in plain (cf. Step 9 in Figure 1). See [30, Sec. A3a].
A3. The attacker can read authorization responses in plain (Step 12 ). See [30, Sec. A3b].
A4. The attacker can trick the client into using an attacker-controlled token endpoint URL, i.e., one for which the attacker can
obtain a valid TLS certificate (other endpoints, e.g., PAR, are not affected). Hence, the attacker can read token requests (Step 14 )
in plain and construct arbitrary token responses from its knowledge (Step 16 ). However, this assumption only applies to clients
which do not use the AS metadata mechanism. See [30, Sec. A5].
A5. Resource requests (Step 18 ) leak to the attacker in plain. See [30, Sec. A7].
A6. Resource responses (Step 20 ) leak to the attacker in plain. See [30, Sec. A7].
A7. The attacker can modify resource responses (Step 20 ). I.e., the attacker can replace an honest RS’ resource response with its
own message without the client noticing, even though that response is protected by TLS. Note that this does not give the attacker
the ability to replace arbitrary messages in TLS connections, but is limited to resource responses. See [30, Sec. A8].

III. ATTACKS

We formally modeled the FAPI 2.0 specifications (as of June 1st, 2022) and then formalized and tried to prove the security goals
according to the FAPI 2.0 Attacker Model [30] under the attacker assumptions outlined in the same document. In the course of
this analysis, we have uncovered a number of attacks, i.e., violations of the security goals laid out in the FAPI 2.0 Attacker Model.
We have discussed these findings with the FAPI WG and worked with them to resolve the issues, resulting in a number of changes
to the specifications which we explain here. The formal model presented in Section IV, for which we prove security, incorporates



these changes. While, to the best of our knowledge, Attacker Token Injection, the Client Impersonation attacks, and DPoP Proof
Replay are completely new attacks, interestingly, for the other attacks (Browser Swapping, Cuckoo’s Token, Authorization Request
Leak), similar attack patterns have been reported for related protocols [38, 54]. This emphasizes the importance of systematic,
formal analysis, as even seasoned experts overlook known attack patterns for complex protocols.

Due to space constraints, we present additional attacks and their fixes as well as inconsistencies in the specifications discovered
during our analysis in Appendix B.

A. Attacker Token Injection

This two-phased attack violates both session integrity goals and requires attacker assumptions A4 (token endpoint misconfigu-
ration) and A5 (resource requests leak, see Section II-C). In the first phase, the attacker, posing as a user, completes a flow with
an honest client chon and honest AS AShon. During this flow, the attacker uses A5 to obtain atatt, i.e., an access token bound
to keys of chon, issued by AShon for resources of the attacker. For the second phase, the attacker uses A4, such that chon uses
an attacker-controlled token endpoint (instead of AShon’s token endpoint). Hence, when an honest user u starts a flow with chon
and AShon, the attacker receives chon’s token request, to which the attacker answers with atatt and an id token constructed by the
attacker for an attacker identity. Client chon then logs u in under the attacker’s identity and uses attacker resources in a session
with u.

At its core, this attack is possible because the attacker can trick an honest client into using an attacker-controlled token endpoint
(due to A4). We describe a fix, our communication with the FAPI WG, and resulting changes to the specifications at the end of the
next subsection.

B. Client Impersonation Attacks

This attack violates the authorization goal and requires attacker assumption A4 (token endpoint misconfiguration, see
Section II-C). The attack targets an honest client chon, which authenticates itself to an honest AS AShon with the private_key_jwt
method (see Section II-B). Using A4, the attacker modifies chon’s configuration such that chon uses an attacker-controlled token
endpoint (instead of AShon’s token endpoint).

In a nutshell, the attacker first obtains two valid client authentication JWTs pkjwt1 and pkjwt2 for chon at AShon. Afterwards,
the attacker uses those JWTs to impersonate chon at AShon and obtains an access token issued by AShon for resources of an honest
user u, with the token being bound to a key of the attacker, i.e., the attacker can use this token at an RS to access u’s resources.

To obtain said JWTs, the attacker starts a flow with chon, selects AShon, and authenticates at AShon (with an attacker id). However,
once the attacker receives chon’s token request (due to the misconfigured token endpoint), no further actions are taken. The token
request sent by chon contains pkjwt1 to authenticate chon at AShon, which has now leaked to the attacker and has never been sent
to AShon, i.e., pkjwt1 is still valid. The attacker can repeat this to obtain pkjwt2 .

With such valid client authentication JWTs for chon at AShon, the attacker can proceed as depicted in Figure 2: An honest user
u starts a flow with chon and expresses their wish to use an AS ASatt, identified by issuer identifier issatt, which happens to be
controlled by the attacker (Step 2 ). Hence, chon sends a PAR request to ASatt, containing its client id cid at ASatt, a redirect uri, a
code challenge h(cvhon) for a code verifier cvhon chosen by chon, etc. as described in Section II-B (Step 3 ). Instead of replying to
this request immediately, the attacker now poses as chon towards AShon: the attacker sends its own PAR request to AShon, assembled
from an attacker-chosen code challenge h(cvatt), a redirect uri rediruriatt pointing to a URL of ASatt, the client id cid ′ of chon
at AShon, and pkjwt1 (Step 4 ). Upon receiving the attacker’s PAR request, AShon validates the request and replies with requri
(Step 5 ), which the attacker forwards to chon (now again in the role of ASatt towards chon) in Step 6 in response to chon’s original
PAR request from Step 3 .

Client chon now instructs u to visit ASatt for authentication (Step 7 ). However, instead of the usual login page, ASatt responds
with a page luring the user into clicking a link, e.g., by explaining that it is now cooperating with AShon (Step 9 ). This link points
to AShon’s authorization endpoint and contains the parameters requri and cid ′, i.e., the client id of chon at AShon; instead of a link,
ASatt could also just redirect u to AShon directly. Hence, u ends up authenticating at AShon and authorizes chon – recall that u expects
to authorize chon here (Step 11 ). Following u’s consent, AShon redirects u with authorization code ac to rediruriatt received in
Step 4 , i.e., to an attacker-controlled location (Step 12 ), which u follows (Step 13 ).

Having received ac, the attacker can now construct a valid token request (using pkjwt2 ) as shown in Step 14 , and subsequently
receives an access token at for u’s resources. Note that from AShon’s point of view, u authorized the attacker, posing as chon
towards AShon, to receive at . In addition, recall that the DPoP key to which AShon binds at is chosen by the sender of the token
request (Step 14 ), i.e., the attacker. Hence, at is bound to a key of the attacker, and can be used at an RS to access u’s resources,
thus breaking the authorization goal.

We stress that u authenticates at an honest, trusted AS and authorizes not only an honest and trusted client, but also exactly the
client u expected to authorize. There are some variants of this attack with slightly different preconditions, but similar outcome,
which we describe in Appendix B-B.
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These attacks emerged when we tried to prove that a client authentication JWT for authentication of an honest client at an honest
AS AShon (i.e., the JWT contains the issuer identifier of AShon) cannot leak to an attacker (Lemma 9).

Fix. Since the possible misconfiguration of an honest client’s token endpoint is the root cause for both the attacker token injection
and the client impersonation attacks and FAPI 2.0 ASs are already required to serve a metadata document, our proposed fix of
mandating clients to request and use this metadata was adopted by the FAPI WG [20, 25, 42]. Recall A4: such token endpoint
misconfiguration is only considered for clients which do not use the AS metadata mechanism.

C. DPoP Proof Replay

With attacker assumption A5 (resource requests leak) from Section II-C, the attacker can read resource requests in plain and
hence can try to replay them at the RS (cf. Step 18 in Figure 1), thus violating the authorization goal (see Section II-C) if the RS
accepts the replayed request.

When DPoP sender constraining is used, the attacker can indeed replay the client’s DPoP proof (using the attacker’s TLS keys
for the underlying connection): neither FAPI 2.0, nor DPoP [39] itself, nor the specifications on which DPoP is built [45, 46, 70]
mandate for DPoP proofs to be strictly one-time use, hence, the RS does not reject the replayed proof.

Our initial attempts to prove the authorization property (see Definition 2) revealed a second variant, which also violates the
authorization goal: with A1 (network attacker), the attacker can additionally block the honest client’s request, i.e., from the point
of view of the RS, the attacker’s resource request is not even a replay, and hence, replay protection does not completely prevent
this attack.

Note that either variant of this attack is not possible with mTLS sender constraining since the attacker cannot even establish an
mTLS connection with the client’s public mTLS key (to which the access token is bound when mTLS sender constraining is used).

Fix. In our discussions with the FAPI WG, it became clear that the FAPI WG formulated attacker assumption A5 with leaks of
RS server log files in mind. Hence, the FAPI 2.0 Attacker Model was changed to clarify that resource requests leak after processing
by the RS [13]. However, this only resolves the problem resulting from the attacker blocking the honest client’s request, but does
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not prevent the replay attack. Hence, we proposed to fix this attack by mandating the use of resource server-provided nonces with
strict one-time use enforcement by the RS [39, Sec. 9]. The server-provided nonce mechanism is an optional part of DPoP in
which—in a challenge-response manner—the client first requests a nonce from the RS which the client then has to include in its
DPoP proof. We validated effectiveness of this fix in our formal model.

The FAPI WG acknowledged the attack [22], and added a description of the attack, as well as several options to fix it, to the
specification.

D. Browser Swapping Attack

In this attack, the attacker violates the authorization and authentication goals by combining attacker assumptions A1 (network
attacker) and A3 (authorization responses leak, see Section II-C).

On a high level, the attacker poses as a user and starts a flow with an honest client chon and honest AS AShon, but tricks an honest
user u into logging in at AShon and to authorize access for chon. After u authorized chon, the attacker continues its session with
chon (as if the attacker authenticated and authorized at AShon). Hence, the attacker gets logged in at chon under the identity of u,
and chon provides access to u’s resources to the attacker.

The detailed attack flow is depicted in Figure 3: in Step 1 , the attacker initiates a flow at chon with AShon. Then, chon and
AShon exchange the PAR as described in Section II-B (Step 2 ). Following this, chon instructs its user, i.e., the attacker, to visit the
authorization endpoint of AShon with the request uri requri from Step 2 and chon’s client id cid . However, instead of following
this redirect, the attacker creates a clickable link, pointing to AShon’s authorization endpoint, with requri and cid as parameters
(Step 4 ). The attacker then sends this link to u in Step 5 , e.g., in an email or as part of an attacker website.

Once u follows that link (e.g., by means of social engineering, see A1) in Step 6 , u will be asked to authenticate (if not already
logged in at AShon) and to authorize chon to access u’s resources (Step 7 ). We emphasize that, similar to AShon, u might trust the
(honest) client chon. Once u consents, the attacker blocks all further communication for u (see A1).

Now recall A3: through a leaking authorization response, the attacker can obtain the authorization code ac (Step 8 ). With ac,
the attacker visits chon’s redirect uri, so chon can subsequently exchange ac for an access (and id) token at AShon. From chon’s
point of view, these tokens are associated with chon’s session with the attacker. However, due to Step 7 , these tokens are issued for
the (honest user) u’s resources (and identity).

At the heart of this attack is the lack of a strong connection between the sessions user–client and user–AS. We discovered it
when trying to prove the authorization property (see Definition 2): while proving that in a flow between an honest client, honest
AS, and honest user, the client does not leak the user’s resources, we have to prove, among others, that the authorization code
associated with the flow cannot be sent to the client’s redirection endpoint by the attacker.

Fix. The FAPI WG acknowledged this attack and after several discussions, there was consensus that this attack cannot be fixed
with currently deployed methods [9, 66]. This decision is documented and explained along with the attack in the specifications [29,
Sec. 6.5.7]. Consistent with this decision, the FAPI WG also removed attacker assumption A3, i.e., FAPI 2.0 no longer claims to
fulfill its security goals when authorization responses leak.

E. Cuckoo’s Token Attack

In this attack, the attacker leverages attacker assumption A5 (resource requests leak) to violate the authorization goal
(see Section II-C).

Said attacker assumption allows the attacker to obtain an access token athon from an honest flow, i.e., athon was issued by an
honest AS AShon for an honest client chon on behalf of an honest user u (and thus athon is bound to keys of chon). By then injecting
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athon into a flow between the attacker as user, chon, and an attacker-controlled AS, the attacker (as user of chon) gains access to u’s
resources.

Figure 4 shows the attack in detail: the attacker first acquires an access token athon from an honest flow (Step 1 ). Such a
token may, for example, be obtained by the attacker through observing a resource request (see A5). Due to access token sender
constraining, the attacker cannot use athon directly at an RS (recall: athon is bound to keys of chon). Instead, the attacker, posing
as a user towards chon, now starts a flow with chon, selecting an AS ASatt controlled by the attacker (Step 2 ). chon initiates the
flow as usual with PAR (Step 3 ), followed by instructing the user, i.e., attacker, to visit ASatt (Step 4 ). Since ASatt is controlled by
the attacker, the authentication and authorization steps can be skipped and the attacker (posing as a user) immediately “redirects”
itself to chon with issuer identifier issatt (which identifies ASatt) and an arbitrary authorization code ac (Step 4 ). Upon receiving
that message, chon validates the issuer identifier, which succeeds: chon is and wants to be in a flow with ASatt. As usual, chon now
sends a token request to ASatt, which responds with the previously acquired athon (Step 6 ). Recall that athon was issued for and is
bound to keys of chon to access resources of u. Hence, chon can use athon at an honest RS. But since chon associates athon with
the session between chon and the attacker posing as a user, this gives the attacker access to u’s resources through chon.

At its core, this attack exploits the lack of binding between access token and AS from the client’s point of view. Note: the client
is mandated to handle the access token as an opaque value, i.e., cannot perform any checks on the token.

Fix. We proposed to fix this attack by mandating the client to include an AS issuer identifier in each resource request (which
would be the attacker AS’ identifier in the example above). The RS can then compare this issuer identifier sent by the client with
the actual issuer of the access token (which, in our example, would be some different, honest AS). Note that in order to verify
the token’s validity, the RS already needs a way to know which AS originally issued the token. The FAPI WG acknowledged the
attack [17] and added a description of the attack, as well as our proposed fix, to the specification [26]. However, the FAPI WG
decided that the “preconditions for this attack do not apply to many ecosystems and require a powerful attacker” [32, Sec. 5.6.5]
and hence made implementation of a fix optional. Note that while this fix seems to be a small change, there is no standardized way
to send the issuer identifier of the AS, as well as no standardized way for the RS to get a value to compare against [32, Sec. 5.6.5].
Hence, mandating such a change would require substantial standardization efforts.

IV. FORMAL ANALYSIS

In this section, we describe our formal analysis. We start with a primer on the WIM, continue with a description of our formal
model of FAPI 2.0, including its limitations, and our formalization of a FAPI 2.0 Web System. We then discuss the most important
differences and technical challenges of our work compared to prior work on authorization protocols using the WIM. This is
followed by a description of the formalized security properties and a proof sketch for the authorization property; see the appendix
for the full formal model and full proofs of all security properties.

A. The Web Infrastructure Model

FAPI 2.0 is a Web-based protocol, and the interaction between browsers and Web servers introduces potential attack surfaces,
e.g., by cross-site requests, in-browser communication, malicious scripts, insecure headers, or redirections. To account for attacks
originating from the browser and complex interactions inside browsers, as well as between parties, we analyze FAPI 2.0 based on
the Web Infrastructure Model (WIM) [33], which is the most detailed formal model of the Web infrastructure to date. The WIM
is a Dolev-Yao (DY) style pen-and-paper web model and requires manual analysis. It has successfully been applied to several
web standards, to uncover previously unknown attacks and to prove security properties [21, 33, 34, 36–38] (see Section V). So far



no mechanized analysis framework has such a comprehensive model of the Web. Mechanizing such a very detailed model, from
scratch or on top of existing tools, is a big challenge by itself and out of the scope of this work.

In the following, we give a high-level overview of the WIM closely following the summary in [36], with the full model given in
Appendix G: the WIM is designed independently of a specific Web application and closely mimics published (de-facto) standards
and specifications for the Web, for example, the HTTP/1.1 and HTML5 standards and associated (proposed) standards. The WIM
defines a general communication model, and, based on it, Web systems consisting of Web browsers, DNS servers, and Web servers
as well as Web and network attackers.

Communication Model. The main entities in the model are (atomic) processes, which are used to model browsers, servers, and
attackers. Each process listens to one or more (IP) addresses. Processes communicate via events, which consist of a message as
well as a receiver and a sender address. In every step of a run, one event is chosen non-deterministically from a “pool” of waiting
events and is delivered to one of the processes that listens to the event’s receiver address. The process can then handle the event
and output new events, which are added to the pool of events, and so on.

As usual in DY models (see, e.g., [2]), messages are expressed as formal terms over a signature Σ. The signature contains
constants (for (IP) addresses, strings, nonces) as well as sequence, projection, and function symbols (e.g., for encryption/decryption
and signatures). For example, in the Web model, an HTTP request is represented as a term r containing a nonce, an HTTP method, a
domain name, a path, URI parameters, headers, and a message body. For example, a request for the URI http://example.com/s?p=1
is represented as

r :=⟨HTTPReq, n1, GET, example.com, /s, ⟨⟨p, 1⟩⟩, ⟨⟩, ⟨⟩⟩

where the body and the headers are empty. An HTTPS request for r is of the form enca(⟨r, k′⟩, pub(kexample.com)) where k′ is a
fresh symmetric key (a nonce) generated by the sender of the request (typically a browser); the responder is supposed to use this
key to encrypt the response.

The equational theory associated with Σ is defined as usual in DY models. The theory induces a congruence relation≡ on terms,
capturing the meaning of the function symbols in Σ. For instance, the equation in the equational theory which captures asymmetric
decryption is deca(enca(x, pub(y)), y) = x. With this, we have that, for example,

deca(enca(⟨r, k′⟩, pub(kexample.com)), kexample.com) ≡ ⟨r, k′⟩

i.e., these two terms are equivalent w.r.t. the equational theory.
A (DY) process consists of a set of addresses the process listens to, a set of states (terms), an initial state, and a relation that

takes an event and a state as input and (non-deterministically) returns a new state and a sequence of events. The relation models a
computation step of the process. It is required that the output can be computed (more formally, derived in the usual DY style) from
the input event and the state.

The so-called attacker process is a DY process which records all messages it receives and outputs all events it can possibly derive
from its recorded messages. Hence, an attacker process carries out all attacks any DY process could possibly perform. Attackers
can corrupt other parties at any time; corrupted parties behave like the attacker process.

A script models JavaScript running in a browser. Scripts are defined similarly to DY processes. When triggered by a browser, a
script is provided with state information, corresponding to the (browser) data available to JavaScript in real browsers. The script
then outputs a term representing a new internal state and a command to be interpreted by the browser (see also the specification
of browsers below). Similarly to an attacker process, the so-called attacker script may output everything that is derivable from its
input.

A system is a set of processes. A configuration (S,E,N) of this system consists of the states S of all processes in the system,
the pool of waiting events E, and an infinite sequence of unused nonces N . Systems induce runs, i.e., sequences of configurations,
where each configuration is obtained by delivering one of the waiting events of the preceding configuration to a process, which
then performs a computation step. Such a transition is called processing step and denoted by

(S,E,N)
ein→p−−−−→
p→Eout

(S′, E′, N ′).

Here, the process p processes the event ein and creates the output events Eout which are added to the pool of waiting events of the
next configuration.

A Web system formalizes the Web infrastructure and Web applications. It contains a system consisting of honest and attacker
processes. Honest processes can be Web browsers, Web servers, or DNS servers. Attackers can be either Web attackers (who
can listen to and send messages from their own addresses only) or network attackers (who may listen to and spoof all addresses
and therefore are the most powerful attackers). A Web system further contains a set of scripts (comprising honest scripts and the
attacker script) and a mapping of these scripts to strings. A Web system also defines the pool of initial events, which typically only
contains so-called trigger events, which trigger pre-defined actions (see below for an example for pre-defined browsers actions).

Web Browsers. An honest browser is thought to be used by one honest user, who is modeled as part of the browser. User actions,
such as following a link, are modeled as non-deterministic actions of the Web browser. User credentials are stored in the initial

http://example.com/s?p=1


state of the browser and are given to the respective Web pages, i.e., scripts. Besides user credentials, the state of a Web browser
contains (among others) a tree of windows and documents, cookies, and Web storage data (localStorage and sessionStorage).

A window inside a browser contains a set of documents (one being active at any time), modeling the history of documents
presented in this window. Each represents one loaded Web page and contains (among others) a script and a list of subwindows
(modeling iframes). The script, when triggered by the browser, is provided with all data it has access to, such as a (limited) view
on other documents and windows, certain cookies, and Web storage data. Scripts then output a command and a new state. This
way, scripts can navigate or create windows, send XHRs and postMessages, submit forms, set/change cookies and Web storage
data, and create iframes. Navigation and security rules ensure that scripts can manipulate only specific aspects of the browser’s
state, according to the Web standards.

A browser will typically send DNS and HTTP(S) requests as well as XHRs, and it processes the responses. Several HTTP(S)
headers are modeled, including, for example, cookie, location, strict transport security (STS), and origin headers. A browser, at any
time, can also receive a trigger message upon which the browser non-deterministically chooses an action, for instance, to trigger a
script in some document.

Generic HTTPS Server. The WIM defines a generic HTTPS server model which can be instantiated by application models.
The generic server provides some generic functionality, e.g., a function for sending HTTPS requests, which internally handles
DNS resolution and key management for symmetric transportation keys. The generic server also provides placeholder functions,
e.g., for processing HTTPS requests and responses, which need to be instantiated by the application model.

B. Overview of FAPI 2.0 Model

We created the application-specific model in the WIM based on the FAPI 2.0 specifications. For this, we instantiated the generic
HTTPS server model provided by the WIM to create detailed formal models for ASs, clients, and RSs, including models of
scripts. Our formal model covers all essential mechanisms used by FAPI 2.0, e.g., AS Metadata, PAR, PKCE, the mTLS and
private_key_jwt client authentication methods, DPoP and mTLS token sender constraining, and ID tokens. Our model
also covers both structured and opaque access tokens—which can be different for each flow (the token type is chosen non-
deterministically for each token request)—and token introspection.

Using client authentication and token sender constraining as examples, we exemplify how our model closely follows the
specifications and show (parts of) some concrete messages within our model. We then continue with details on how we incorporated
the attacker model and fixes described in Section III into our formal model, followed by a discussion of the limitations of our
model. More details specific to the AS, client, and RS models are given in Appendix A and we provide the full formal models in
Appendix D.

Client Authentication. Within the model, the ASs only accept PAR and token requests if they are client-authenticated, as
mandated by the specifications [32, Sec. 5.3.1.2. No. 4], and clients always add client authentication when sending such requests [57,
Sec. 2], [32, Sec. 5.3.2.1. No. 2]. Our model supports both mTLS and private_key_jwt authentication [32, Sec. 5.3.1.1. No. 6,
Sec. 5.3.2.1. No. 2]. To illustrate how we model the private_key_jwt method, we show a client authentication JWT. Let cid
be the client identifier of the client c at the AS AS, and let issAS be the issuer identifier of AS. Within the model, signkey(c)
denotes a private signing key of c. With these values, a client authentication JWT is—closely following the specification [70,
Sec. 9]—represented by the term sig([iss : cid , sub : cid , aud : issAS], signkey(c)), where iss is the issuer of the JWT, sub is the
subject that is being authenticated, and aud is the audience value (i.e., the AS for which the JWT is being created).

Access Token Sender Constraining. Our AS model returns access tokens that are sender constrained by mTLS or DPoP
[32, Sec. 5.3.1.1. No. 4, 5], and the client model sends the token request to the AS and the resource request to the RS with the
corresponding proof-of-possession [32, Sec. 5.3.2.1. No. 1]. As mandated by FAPI 2.0, our model of RSs requires access tokens
to be sender constrained using one of these methods [32, Sec. 5.3.3. No. 5]. We illustrate how we model a DPoP proof in a token
request, where, according to the DPoP specification [39, Sec. 4.1], a client c adds a DPoP proof to the HTTP headers of its request:
headers[DPoP] := dpopProof , where dpopProof is a signed JWT as defined in [39, Sec. 4.2] (not to be confused with a client
authentication JWT): dpopProof := sig(dpopJwt , signkey(c)) with dpopJwt := [headers : [jwk : pub(signkey(c))], payload :
[htm : POST, htu : tokenEndpoint ]]. The jwk value is the public key that the receiver can use for verifying the signature, the htm
value is the HTTP method of the request in which the DPoP proof is included, e.g., GET or POST, and the htu value is the URL of
that request (but with empty parameters and fragment).

1) Optional Fixes: As explained in Section III, the FAPI WG decided to make some fixes resulting from our attacks optional.
In order to prove FAPI 2.0 secure, these fixes are required, hence our results only apply to implementations also employing these
fixes. Here we describe how we deal with these fixes in the model.

Cuckoo’s Token Attack. As described in Section III-E, the working group added (optional) countermeasures for preventing
the attack. However, none of these fixes are mandatory, and each of them might mask other attacks. Thus, we decided to model a
minimal fix that specifically targets this attack: right before sending the resource request to an RS, the client model checks whether
the requested resource is managed by the AS from which it got the access token.



DPoP Proof Replay. For preventing this attack, we modeled replay protection using server-provided DPoP nonces (see also
Section III-C). We require these nonces to be one-time use only, i.e., the RS model invalidates them after one use.

2) FAPI 2.0 Attacker Model: We initially modeled all attacker assumptions (see Section II-C), but as described in Section III,
the FAPI WG decided to remove some of them in response to our analysis. We describe how we modeled the final assumptions
(under which our proofs hold) and refer to Appendix C for the removed ones:
A1 is part of the WIM, see Section IV-A.
A2 (authorization requests leak) is modeled by leakage at the client: After creating the authorization request URI, the client can
non-deterministically decide whether to leak it. In the leak case, it non-deterministically chooses an IP address and sends out the
request to this IP (in plain). Thus, the client model leaks the client identifier and the request URI value of the authorization request.
A5 (resource requests leak) was initially modeled by leaking the resource request at the RS after receiving the request (and in
the case of opaque tokens, before receiving the introspection response). As described in Section III-C, this enables the attacker to
replay DPoP proofs. In addition to using server-provided DPoP nonces, we adapted the model (in line with changes to the FAPI 2.0
Attacker Model, see Section III-C) such that the resource request leaks after the RS responds with the resource response (i.e., after
invalidating the DPoP nonce).

3) Limitations of Our Model: While our model covers most of the FAPI 2.0 specifications, there are a few things which we
handle on a very abstract level or do not model at all (besides the inherent abstractions of the WIM, such as details of TLS).

Error Handling. FAPI 2.0 and several of the underlying specifications define a set of error messages, e.g., when client
authentication fails. These are not represented in our model: if a process encounters an error condition, it just aborts the current
processing step without output and without changes to the process state. We note that none of the specifications mandate a certain
behavior upon receiving an error message.

Rich Authorization Requests. Rich Authorization Requests (RAR) [56] is a mechanism which allows clients to be more precise
about what kind of access they request. However, FAPI 2.0 does not mandate the use of RAR, and RAR semantics are subject to
individual AS policies. Hence, RAR does not allow for a general treatment, and hence, is not covered by our model.

Modeled Grant Types. The OAuth 2.0 framework [41], as well as OpenID Connect [70], define various grant types, such as
the implicit grant, the hybrid grant, and the authorization code grant. FAPI 2.0 explicitly excludes all of them, except for the client
credentials grant and the authorization code grant, where only the latter is required to be supported by FAPI 2.0 ASs and clients. In
the client credentials grant, the client takes the role of the user, hence, removing the additional interaction between user and client.
So, this grant is subsumed by the authorization code grant, which is why we only model and analyze the latter.

Refresh Tokens. Even though FAPI 2.0 allows for refresh tokens (see [41]) to be used, we do not model them. Instead, we
model regular access (and id) tokens as having an indefinite lifetime, i.e., they never expire.

Native Clients with Loopback Redirect. FAPI 2.0 ASs must reject PAR requests with a redirect uri using the http scheme, i.e.,
where the client’s redirection endpoint is not protected by TLS (cf. Step 5 in Figure 1). There is, however, one exception to this
rule: if the client is a native client running on the same device as the browser and is using loopback interface (i.e., device-local)
redirection, it may use an http redirect uri (see [18] and [31, Sec. 4.3.1.2 No. 8]). In our AS model, we do not allow http redirect
uris.

C. Comparison to WIM Analyses of Related Protocols

We here describe specific differences between our work and previous WIM analyses of FAPI 1.0 [38], OAuth 2.0 [36], and
OpenID Connect [37].

Since FAPI 2.0 is a completely redesigned protocol, obviously, previous analyses do not apply to FAPI 2.0. The differences are
also apparent by the new vulnerabilities and attacks we have found on FAPI 2.0.

While FAPI 2.0 is based on OAuth 2.0 and OpenID Connect, it not only contains many additional mechanisms, such as PAR,
DPoP, mTLS, PKCE, Authorization Server Issuer Identification, AS metadata and so on, but also aims to be secure under a much
stronger attacker, see also below.

Similarly, while FAPI 1.0, the predecessor of FAPI 2.0, was formally analyzed [38], FAPI 2.0 is a very different protocol:
in comparison to FAPI 1.0, several security mechanisms have been removed, most notably OAuth Token Binding [43] and JWT
Secured Authorization Response Mode (JARM) [53]. On the other hand, FAPI 2.0 adds new mechanisms, such as DPoP and PAR,
which have not undergone any formal treatment so far. Also, FAPI 2.0 mandates client authentication, removes support for public
clients as well as the hybrid flow, and introduces a stronger attacker model.

In the following, we briefly discuss further details and differences.
Token Introspection. Previous work on OAuth 2.0 and OpenID Connect does not consider the resource server, and while prior

work on FAPI 1.0 does, token introspection is modeled only on a very abstract level: instead of querying the AS, the RS uses
an idealized introspection oracle. In contrast, our AS and RS models contain a detailed representation of token introspection as
defined in RFC 7662 [69]. Hence, we have to reason about additional messages, their contents, as well as integrity, authentication,
and secrecy thereof.



Structured Access Tokens. Prior work on OAuth 2.0, OpenID Connect, and FAPI 1.0 does not contain a model of structured
access tokens and their use, in particular at the RS. Note that besides the additional options for flows introduced by structured
access tokens, modeling them also requires additional keys to be distributed.

Number of ASs Supported by an RS. As mentioned above, prior work on OAuth 2.0 and OpenID Connect did not model the
RS. In the FAPI 1.0 analysis in [38], the RS supports one fixed AS, whereas our RS model supports an arbitrary set of ASs, some
of which may be corrupted. Hence, our analysis considers a broader set of cases and possible mix-ups.

RS Authentication. RFC 7662 [69] mandates for RSs to authenticate to the AS during token introspection. Since previous
work on OAuth 2.0, OpenID Connect, and FAPI 1.0 did not model token introspection, our model is the first (not just among WIM
analyses) incorporating RS authentication. Similar to structured access tokens above, this requires distribution of, and reasoning
about, additional secrets.

DPoP Access Token Sender Constraining. The DPoP [39] mechanism has only recently been standardized and hence, has not
been part of any formal analysis to the best of our knowledge. With its additional signatures and subtle details regarding the signed
data, in particular, the exact contents of the htu value (see [39, Sec. 4.2]), DPoP requires careful modeling of the AS, the RS, and
the client. In addition, DPoP requires key material to be distributed between client, AS, and RS (as well as additions to the token
introspection and structured access token models).

PAR. Similar to DPoP above, PAR [57] has only recently been standardized and has thus not been part of any formal analysis.
While PAR does not require additional key material, it adds more options and messages to the FAPI 2.0 flows, hence necessitating
reasoning about them.

JWT Client Authentication. While the public_key_jwt client authentication method has been standardized as part of
OpenID Connect [70], it has not received any formal security analysis so far, including WIM analyses of OpenID Connect and
FAPI 1.0 (FAPI 1.0 is based on OpenID Connect and explicitly allows for public_key_jwt client authentication). Hence, our
work is the first to consider this kind of client authentication.

Attacker Model. Compared to prior WIM work on OAuth 2.0, OpenID Connect, and FAPI 1.0, our analysis considers a
significantly stronger attacker model. Where [36] and [37] consider a fairly standard Dolev-Yao attacker (i.e., similar to A1,
see Section II-C), [38] considers a stronger attacker: the attacker in [38] is a network attacker similar to our A1, which also
may access authorization requests (cf. A2) and authorization responses (cf. A3) in plain, as well as force honest clients to use
attacker-controlled token endpoints (cf. A4). In addition, the authors of [38] consider access tokens leaking to the attacker, which
is something that is subsumed by our attacker assumptionA5 (resource request leak). However, our attacker model is even stronger
in that (1) A5 not only leaks the access token, but also all other values in the resource request, in particular DPoP proofs, (2) A6
leaks resource responses, and (3) A7 even allows for the attacker to modify resource responses. To the best of our knowledge,
neither (1), nor (2), nor (3) have previously been considered in any formal analysis of authorization protocols.

Session Integrity Properties. While prior works on OAuth 2.0 and OpenID Connect do consider session integrity properties
similar to ours, these are only proven in a setting with web attackers, i.e., the attacker may corrupt any party, but does not control
the network and cannot spoof sender addresses. Similar properties have also been proven for FAPI 1.0 with a network attacker,
however, their property requires the use of OAuth 2.0 Token Binding [43], a mechanism to bind authorization codes and access
tokens to TLS connections, which is quite different from DPoP and mTLS access token sender constraining.

D. FAPI 2.0 Web System

As outlined in Section IV-A, a web system formalizes the overall system covered by our analysis. We call (W , S , script, E0) a
FAPI 2.0 web system with network attacker, or short FAPI , if the components of the web system are defined as follows:

W = Hon ∪ Net consists of a network attacker process (in Net), a finite set B of web browsers, a finite set C of web servers for
the clients, a finite set AS of web servers for the authorization servers, and a finite set RS of web servers for the resource servers,
with Hon := B ∪ C ∪ AS ∪ RS. The honest processes behave as outlined in Section IV-A and Section IV-B (formally specified in
Appendix D). DNS servers are subsumed by the network attacker and are therefore not modeled explicitly.
S contains the attacker script Ratt outlined in Section IV-A (formally specified in Definition 55), the script script_as_form for

logging in the resource owner at the AS, and the script script_client_index for selecting an AS and initiating a flow at the client
as outlined in Appendix A (both scripts are formally specified in Appendix D). The mapping script maps these scripts to strings:
script_client_index 7→ script_client_index, script_as_form 7→ script_as_form, Ratt 7→ att_script.
E0 is the initial set of events and contains only trigger events (see Section IV-A).

Note that we prove security properties about all such FAPI 2.0 web systems with network attacker, and hence, systems with an
arbitrary number of browsers, clients, ASs, and RSs, and in which each party can have an arbitrary number of parallel, interleaving
protocol sessions. Also recall from Section IV-A that the attacker can corrupt honest parties at any time.



E. Formal Security Properties

As described in Section II-C, the FAPI WG wants the protocol to meet authorization, authentication, and session integrity goals.
In the following, we present our formalized authorization and authentication properties, capturing the corresponding security goals.
We present the formalized session integrity properties in Appendix E. We conclude this section with our main security theorem.

1) Authorization: Recall that informally, authorization means that an attacker should never be able to access resources of honest
users (unless the user authorized such access). We highlight that this statement covers many different scenarios, for example, that
the attacker cannot use leaked access tokens at the RS and cannot, by some mix-up, force an honest client to use an access token
associated with an honest user in a session with the attacker.

We first formalize that an access token was issued by AS AS, is bound to a public key k, and is associated with a user identity
id , and give our authorization property afterwards.

Definition 1 (Access Token bound to Key, AS and ID). Let FAPI be a FAPI 2.0 web system with network attacker, k ∈ TN be a
term, AS ∈ AS an AS, and id ∈ ID a user identity.2 We say that a term t is an access token bound to k, AS, and id in configuration
(S,E,N) of a run of FAPI , if there is an entry rec ∈⟨⟩ S(AS).records (i.e., in the state of AS) such that rec[access_token] ≡ t
and rec[subject] ≡ id and (rec[cnf] ≡ [jkt : hash(k)]) ∨ (rec[cnf] ≡ [x5t#S256 : hash(k)]).
Informally, this means that t is stored in the state of AS, together with the identity id and the hash of k. If the key is stored under
the name jkt, then the token is bound via DPoP, otherwise, it is bound via mTLS.

The following authorization property captures the following: if an honest RS rs provides access to a resource r of an honest
resource owner with user identity id managed by an honest AS AS, then the following holds true: (I) rs has received a request for
accessing the resource r with an access token at in the same (which is possible if the token at is structured and can be verified by
the RS immediately) or in a previous processing step (if the token at is opaque to the RS and it thus performed token introspection),
and rs created the resource when receiving the resource request (see Appendix A-C on how our model manages resources). (II) The
token at is bound to some key k, AS, and the user identity id (see Definition 1). (III) If k is the key of an honest client, then the
attacker cannot derive the resource.

Definition 2 (Authorization Property). We say that a FAPI 2.0 web system with network attacker FAPI is secure w.r.t. authorization
iff for every run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of FAPI , every RS rs ∈ RS that is honest in Sn, every identity

id ∈⟨⟩ srs0 .ids with b = ownerOfID(id) being an honest browser in Sn, every processing step Q = (SQ, EQ, NQ)
eQin →rs
−−−−−→
rs→EQ

out

(SQ′
, EQ′

, NQ′
) in ρ, every resourceID ∈ S with AS = authorizationServerOfResourcers(resourceID) being honest in SQ, it

holds true that:3

If ∃r, x, y, k,mresp.⟨x, y, encs(mresp, k)⟩ ∈⟨⟩ EQ
out such that mresp is an HTTP response, r := mresp.body[resource], and

r ∈⟨⟩ SQ′
(rs).resourceNonce[id ][resourceID ], then

(I) ∃ a processing step P = si
ePin →rs−−−−−→
rs→EP

out

si+1 such that

a) either P = Q, or P is prior to Q in ρ, and
b) ePin is an event ⟨x, y, enca(⟨mreq, k1⟩, k2)⟩ for some x, y, k1, and k2 where mreq is an HTTP request which contains a term

(access token) t in its Authorization header, i.e., t ≡ mreq.headers[Authorization].2, and
c) r is a fresh nonce generated in P at the resource endpoint of rs in Line 46 of Algorithm 12.

(II) t is bound to a key k ∈ TN , AS, and id in SQ (see Definition 1).
(III) If there exists a client c ∈ C such that k ≡ pub(signkey(c)) or k ≡ pub(tlskey(dc)) and dc ∈ dom(c), and if c is honest in

Sn, then r is not derivable from the attackers knowledge in Sn, i.e., r ̸∈ d∅(S
n(attacker)).

2) Authentication: Recall that the authentication goal states that an attacker should not be able to log in at an honest client
under the identity of an honest user. In our model, the client sets a cookie that we call service session id at the browser after a
successful login. The client model stores the service session id in its sessions state subterm, and associates with it the identity
that is logged in to the session (the identity is taken from an ID token, see Appendix A-B for more details on the login of a user at
a client). On a high level, our formalized property states that an attacker should not be able to derive the service session id for a
session at an honest client where an honest identity is logged in, as long as the identity is managed by an honest AS. We stress that
this not only covers that a cookie set at the browser of the honest user does not leak, but that there is no way in which the attacker
can log in at an honest client as an honest user.

2ID is a set of terms of the form ⟨name, domain⟩, where name is a string, the user name, and domain is a domain (usually of an AS). We also define a
mapping ownerOfID : ID → B which maps an identity to the browser whose user owns the identify (users are modeled as part of their browser). Likewise, we
define a mapping governor : ID → AS mapping identities to “their” AS. See Appendix D-B and Appendix D-D for details.

3authorizationServerOfResourcers is a mapping from resource ids to the authorization server that manages the respective resource, see Definition 10.



We start with an auxiliary definition, capturing that the client logged in a user with a service session id, before presenting the
authentication property itself.

Definition 3 (Service Sessions). We say that there is a service session identified by a nonce n for a user identity id at some client
c in a configuration (S,E,N) of a run ρ of a FAPI 2.0 web system with network attacker FAPI iff there exists some session id x
and a domain d ∈ dom(governor(id)) such that

S(c).sessions[x][loggedInAs] ≡ ⟨d, id⟩

and
S(c).sessions[x][serviceSessionId] ≡ n.

Definition 4 (Authentication Property). We say that a FAPI 2.0 web system with network attacker FAPI is secure w.r.t. authenti-
cation iff for every run ρ of FAPI , every configuration (S,E,N) in ρ, every c ∈ C that is honest in S, every identity id ∈ ID with
AS = governor(id) being an honest AS (in S) and with b = ownerOfID(id) being an honest browser in S, every service session
identified by some nonce n for id at c, n is not derivable from the attackers knowledge in S (i.e., n ̸∈ d∅(S(attacker))).

3) Security Theorem: As described in Section II-C, the protocol aims to fulfill authorization, authentication, and session integrity
properties. Thus, our overall security theorem is the conjunction of all four properties, where as mentioned session integrity for
authorization and authentication is defined in Appendix E.

Theorem 1. Every FAPI 2.0 web system with network attacker FAPI fulfills authorization, authentication, session integrity for
authentication, and session integrity for authorization.

We highlight that we prove this theorem for the powerful attacker described in Section IV-B2 within a faithful formal model that
includes the fixes described in Section III. We also emphasize that our analysis takes into account many Web features that can be
the root of attacks: e.g., the browser model allows for the execution of scripts loaded from different websites/origins at the same
time, possibly with malicious scripts. The model also considers fine-grained behavior of HTTP redirects,4 several security-critical
headers, as well as subtleties of various cookie attributes, which, for example, could result in vulnerable session management,
and in-browser communication using postMessages, just to name a few of the Web features considered in our analysis. Thus,
our analysis excludes attacks that arise from features of the Web infrastructure. Our proof of Theorem 1, which, due to space
limitations, we give in Appendix F, consists of more than 20 lemmas and of course reasons about the full formal model that we
provide in Appendix D.

F. Proof Sketch for Authorization

In this section, we summarize our proof of the authorization property. We refer to Appendix F for the full proof of this as well
as the authentication and session integrity properties.

Recall that on a high level, the authorization property requires that the attacker cannot access resources of an honest identity id
stored at an honest RS.

For the first postcondition, see Definition 2 (I), we show that whenever the RS gives access to a resource of an identity (the
resource owner), it does so in response to a request that contains an access token. We show this for both types of access tokens,
i.e., for structured tokens signed by the AS managing the resource, as well as opaque tokens that the RS has to verify with the AS
via token introspection. Unlike the other two, this postcondition is quite easy to show.

For the second postcondition, see Definition 2 (II), we show that the access token was issued by the AS managing the resource
and is bound to some key k and the identity id of the resource owner (see Definition 1). Keep in mind that Definition 1 refers to
the state of AS. For structured access tokens, we show this by reasoning on the validity of the token: The RS checks that the token
has a valid signature by the AS managing the resource, i.e., the token was indeed created by that AS (we give more details in the
full proof, e.g., proving that the signing key of AS is secret). We show that the AS, when creating the token, stores the token in its
state, together with id and k that it also puts into the structured token (i.e., binds the token to k and id ). For opaque tokens, the
introspection endpoint of AS returns the identity id and the key k (the RS only provides access in case of a successful introspection
response). The AS only sends such a response if it previously bound the token to k and id .

The third postcondition, see Definition 2 (III), states that if the key k is the private (TLS or DPoP) key of an honest client c,
then the attacker does not get access to the resource. Showing this property is more involved than the previous ones.

We first show that the resource request was indeed sent by c: If the RS received a DPoP proof (for the key that the token is bound
to), then we can apply Lemma 12 which gives us that the DPoP proof can only be derived by c (and rs , which just received it).
Note that this only holds true with the fix that we propose in Section III-C (i.e., effective replay protection) and with the updated
A5 attacker assumption (see Section IV-B2). Similarly, we show the effectiveness of mTLS token binding, i.e., that access tokens
bound to a TLS key of an honest client can only be used by that client. Overall, we show for both structured and opaque access

4For example, FAPI 2.0 excludes code 307 redirects, as they would cause attacks similar to [36]



tokens that the resource request must have been sent by c. Thus, the RS provides c access to the resource of id (recall that all
communication between parties happens via secure channels).

We then prove that c does not provide the attacker access to the resource, i.e., the attacker cannot use c (e.g., as a user) to access
resources of id . We show this by contradiction, i.e., we assume that c provides the attacker access, and lead this to a contradiction.
In the full proof, we show that this can only happen if the redirection request (Step 12 in Figure 1) was sent by the attacker (recall
that c expects a request to its redirection endpoint with an authorization code code that c then uses at the token endpoint of the
AS). We then show that c sends the token request to the correct AS, i.e., to the one that is managing the resource. This is true
thanks to the fix for preventing the Cuckoo’s Token attack (see Section IV-B1). As the access token that c receives from the token
endpoint provides access to resources of id , it follows that code is also associated with id (i.e., the AS stored in its state that code
was issued when id logged in at its authorization endpoint). Lemma 5 now gives us that c received this exact code at its redirection
endpoint. As the request to the redirection endpoint is assumed to originate from the attacker, we have that the attacker can derive
code. However, this is a contradiction to Lemma 17, which states that the authorization code of a flow between an honest AS and
honest client is not derivable by any other process, including the attacker. This concludes the proof.

V. RELATED WORK

While there has not been much work on the relatively recent and partly still under development FAPI standards and specifications
so far, standards like OAuth 2.0 and OpenID Connect, on which FAPI is based, have received quite some attention by security
researchers. Besides many studies on implementations and deployments [77–79, 82], OAuth 2.0 has been formally analyzed: Pai
et al. [65] built a limited model of OAuth 2.0, lacking many generic web features, for the Alloy finite-state model checker and
showed that with their approach, known weaknesses can be found. Chari et al. [14] analyzed the authorization code flow in the
UC model and found no attacks, but their model omits many web features. Two more comprehensive formal analyses have been
conducted by Bansal et al. [5, 6], using their WebSpi library and ProVerif, in which they modeled various settings of OAuth 2.0,
e.g., with CSRF vulnerabilities in ASs and clients. Bansal et al. uncovered several previously unknown attacks on various popular
OAuth 2.0 implementations. However, their works main focus was on finding attacks, rather than proving security. The latter was
the focus of a formal analysis by Fett et al. [36], in which, despite prior formal analysis efforts, they discovered several new attacks,
and were only able to prove security after developing fixes for them. As in our work, the analysis by Fett et al. is based on the WIM,
i.e., includes a comprehensive formal model of the web infrastructure. Likewise, OpenID Connect has been analyzed before [37,
52, 58].

However, as described in more detail in Section IV-C, FAPI 2.0 is a completely redesigned protocol, and hence, previous
analyses on related protocols do not apply. Finally, as already mentioned, FAPI 2.0 itself has not undergone any formal security
analysis so far.

VI. CONCLUSION

Asked by the OpenID Foundation’s FAPI working group, we accompanied the development of the FAPI 2.0 specifications
with a formal security analysis, by creating formal models and formalizing security properties closely following the FAPI 2.0
specifications, including their strong attacker model. During this formal analysis, we discovered several attacks that violate the
security goals set by the FAPI 2.0 specifications. These have been reported to the FAPI WG, who acknowledged our attacks. We
then worked with them to incorporate many of our proposed fixes and improvements into the official specifications. This finally
allowed us to provide formal security proofs of all security properties.

Performing such an analysis in a meaningful model like the WIM ensures that attacks based on many threats and features of
the web and their complex interactions can be found and ruled out. We note that our analysis is a pen-and-paper analysis, as
current tools do not directly support models that are as detailed as the WIM. Hence, our proofs are not mechanized and, given the
complexity of the protocol, are inherently lengthy, hence, tedious to verify. Nevertheless, our formal and systematic analysis has
helped improve the standard and gain more insights and confidence in its security. Conversely, we consider mechanized analyses
of web protocols as interesting future work.

Surprisingly, besides new vulnerabilities and attacks, we also uncovered some attacks which were similar to known attacks on
related protocols, and in particular known within the FAPI WG. These findings further underline the importance of a systematic,
formal analysis, as for complex protocols, like FAPI 2.0, also experts easily overlook even known attack patterns.

Overall, our contributions to the standardization process were very welcomed by the FAPI WG and led to significant
improvements of an important protocol just in time: FAPI 2.0 is about to be adopted in highly sensitive environments, with
millions of users managing bank account data, financial transactions, eGovernment applications, and even health data.
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APPENDIX A
DETAILS ON APPLICATION-SPECIFIC MODEL

In this appendix, we continue the overview of our formal model from Section IV-B with additional details and references to the
respective specifications, demonstrating how our model closely follows the specifications.

A. Authorization Server Model

Pushed Authorization Request. We model the PAR endpoint as part of the AS (mandated by FAPI 2.0 [32, Section 5.3.1.2.
No. 2]). The endpoint model stores all values and returns a (freshly chosen) request URI value. In particular, as mandated by
FAPI 2.0, the model requires a redirect URI and a PKCE code challenge value in the PAR request [32, Section 5.3.1.2. No. 5, 6].

Token Introspection. The introspection endpoint part of the AS model expects an opaque access token and returns whether
the token is active (and thus, if the token was issued by this AS at all), information on the key to which the token is bound, and a
subject identifier, i.e., the identity of the user whose login at the AS lead to the AS issuing the token. As required in [69, Section
2.1], the AS model requires successful authentication of the RS that sent the request. The exact authentication mechanism for RSs
at ASs is out of scope for FAPI 2.0. In our model, we use the HTTP Basic Authentication mechanism suggested by [69].

Login Script. Upon receiving the authorization request, the AS model responds with a script that models the login page for the
user. As a result of executing the script, the browser sends a POST request to the AS with the login credentials (for the current AS)
of a user that is using the browser.

Further Endpoints. The AS model also comprises an endpoint for server metadata that returns information about the server
such as the different endpoint URLs. This endpoint is mandated by FAPI 2.0 [32, Section 5.3.1.1. No. 1]. The authorization
endpoint of the AS model requires a request URI value as mandated in [32, Section 5.3.1.2. No. 3]. Furthermore, the model has a
JWKS endpoint, where the server responds with the public signature verification key, which is strongly recommended by FAPI 2.0
[32, Section 5.6.3].

B. Client Model

Configurations. As noted above, the client authenticates either via mTLS or the private_key_jwt method, and supports
sender constraining by either mTLS or DPoP. In the model, the client can have different combinations of client authentication and
sender constraining methods for different ASs. However, for a given pair of client and AS, this configuration does not change,
reflecting that clients must register with ASs before starting a flow and select a configuration as part of that registration. We note
that this registration is out of scope for FAPI 2.0 and we model it as part of the initial states of clients and ASs.

Starting a Flow. For starting a flow, the client model provides a script for browsers which triggers a POST request to the client.
In our model, this request must contain the domain of an AS, modeling a user selecting an AS. When starting a flow for the first
time with an AS, the client fetches the server metadata from the AS (as required by FAPI 2.0 [32, Section 5.3.2.1. No. 9]).

End-User Authentication. For each flow, the client decides non-deterministically whether it wants to authenticate the user. If
that is the case, the client adds the value openid to the scope value contained in the pushed authorization request, hence requesting
an id token from the AS. If the client model requests an id token, and once it receives the token response, it non-deterministically
decides whether to log the user in based on the id token or to redeem the access token. The client logs in the user by creating a
fresh cookie (called service session id in the client model) associated with the subject identifier contained in the id token.

Further Client Aspects. Furthermore, as FAPI 2.0 mandates, the client model always uses pushed authorization requests and
PKCE, and always checks the iss issuer identifier in the redirection request (at the redirection endpoint) [32, Section 5.3.2.2. No.
2, 3, 4].

Another important detail concerns the handling of id tokens: FAPI 2.0 uses OpenID Connect id tokens, which means that id
tokens are signed by their issuer. This of course raises the question of why the honest client in the attacker token injection attack
accepts an attacker-constructed id token (see Section III-A). The reason is that OpenID Connect [70, Sec. 3.1.3.7 No. 6] (and thus
FAPI 2.0) allows clients to skip signature verification on id tokens if the token is received directly from the token endpoint over a
TLS-protected connection – these conditions are always fulfilled with FAPI 2.0. In the attacker token injection attack, the client
contacts an attacker-controlled token endpoint (via a TLS-protected connection) and thus does not verify the id token signature.

C. Resource Server Model

Verification of Access Token. A request for a resource must contain an access token in the HTTP headers [32, Section 5.3.3
No. 1]. The RS model verifies that the token is valid, identifies the resource owner for whose resources the token was issued, and
the key to which the token is bound as follows. If the token is a structured token, the RS checks the signature of the token using the
public verification key of the AS responsible for the requested resource and retrieves the resource owner information, as well as
the key to which the token is bound from the token. Otherwise, the RS model sends the token and RS authentication information
to the introspection endpoint of the AS that manages the requested resource. The token introspection response then contains the
necessary information.



Modeling Resources. As the management of resources is not within the scope of the FAPI 2.0 specifications, we assumed a
generic resource management which we describe in the following: The RS model manages different resources identified by URLs,
in particular, by the path part of URLs. For a given resource, the RS model knows which AS manages the resource. Note that this is
common (and necessary) in real ecosystems, at least when using opaque access tokens: how else can the RS determine where it has
to send the token introspection request. The RS model identifies the resource owner through the access token (see above). Then,
the RS model creates a fresh nonce, which represents the protected resource of the resource owner. That nonce is then returned the
client.

APPENDIX B
ADDITIONAL ATTACKS AND INCONSISTENCIES IN THE FAPI 2.0 ATTACKER MODEL

A. Authorization Request Leak Attack

In this attack, the authorization request (Step 8 in Figure 1) of an otherwise honest flow between an honest user u, an honest
client chon, and honest AS AShon is blocked by (A1), but leaks to the attacker (A2). The attacker now visits AShon’s authorization
endpoint, posing as u with the leaked authorization request, and logs in using its own (attacker) identity. AShon then answers with
an authorization response, containing an authorization code code , which AShon associates with the attacker identity and the PAR of
the initial, honest flow. From the authorization response, the attacker assembles a link pointing to chon’s redirection endpoint with
code and the iss parameter as received from AShon, and sends this link to u. Once u follows this link, chon exchanges the code for
tokens, logs u in under the attacker’s identity and accesses resources belonging to the attacker in a session with u, hence violating
both session integrity goals.

Fix. Upon our notification, the FAPI WG acknowledged the attack [3]. After some discussion, there was consensus that there
is no currently deployed technology which can prevent such attacks. However, the FAPI WG wanted to keep A2 in their attacker
model. Therefore, the FAPI WG decided to document the attack, as well as (optional) mitigations, which do not prevent, but
harden against the attack in practice, in the specifications [32, Section 5.6.6]. For our analysis, we formulated the session integrity
properties such that they only apply to flows in which the authorization request does not leak.

B. Variants of Client Impersonation Attack

The attack described in Section III-B has two additional variants which we describe here.
Recall that in the attack variant described in Section III-B, the user authenticated at an honest, trusted AS and authorized not

only an honest and trusted client, but also exactly the client which the user expected to authorize. However, if one assumes that
the user does not thoroughly check which client they authorize, this attack even works if they initially contact a different client. In
the first variant, we assumed that the user starts a flow with chon, i.e., an honest client of the user’s choice, for which the attacker
needs leaked client authentication JWTs (we describe how the attacker can obtain such JWTs in Section III-B). This variant, at
the cost of the additional assumption that the user does not pay close attention to the client they are authorizing, makes the attack
much more viable in practice: the attack can now select an arbitrary (but honest) client for which it can obtain client authentication
JWTs. We note that this additional assumption about the user’s behaviour is not a particularly strong one: even if the user pays
attention, the AS also has to gather and show enough (reliable) information about the client, which can be quite difficult in practice,
especially in dynamic environments, in which information AS has on clients are provided by the clients themselves in some
automatic registration process.

In yet another variant of the attack, the attacker once again acts as chon towards AShon, but sends a PAR without waiting for the
user to initiate a flow. The attacker then constructs a link similar to Step 9 and uses social engineering to make the user click on
that link. The remainder of the attack is the same. We note that this attack variant assumes that the attacker can convince the user
to not only click a link and authenticate at AShon, but also to authorize chon even though the user did not start a flow at all (however,
AShon and chon may be entities the user knows and trusts).

C. Inconsistencies in Attacker Model

In addition to the attacks described above, we discovered inconsistencies in the FAPI 2.0 Attacker Model, i.e., assumptions on
the attacker which immediately violate one or more of the security goals.
A6 Violates Authorization Goal. As resource responses contain users’ resources, this attacker assumption immediately violates

the authorization security goal. When we pointed this out to the FAPI WG, it was decided to drop this attacker assumption [13].
A7 Violates Session Integrity for Authorization Goal. If the attacker can tamper with resource responses, the attacker can

force users to use attacker resources by replacing (honest) resources in resource responses with attacker resources. This obviously
violates the session integrity for authorization goal. As above, the FAPI WG decided to drop the attacker assumption once we
pointed out this inconsistency [13].
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Figure 5. Variant of client impersonation attack

APPENDIX C
MODELING OF REMAINING ATTACKER ASSUMPTIONS

In Section IV-B2, we describe how we model the final assumptions on the attacker (i.e., as of the latest FAPI 2.0 Attacker
Model). As mentioned there, our initial model contained all attacker assumptions as of July 1st (listed in Section II-C). We now
detail how we incorporated the remaining assumptions (i.e., those which have been removed since July 1st) into our initial model
and describe why we removed them from the final model.
A3 (authorization responses leak) was initially modeled by leakage of the authorization response at the AS, which sent the
response in plain to a non-deterministically chosen IP address (in addition to sending the response to the client). As described in
Section III-D, we had to remove this leak according to the changed attacker model.
A4 (attacker can trick client into using an attacker-controlled token endpoint) was initially modeled by the client non-
deterministically choosing whether to use the correct token endpoint or a non-deterministically chosen endpoint. After the FAPI
WG made it mandatory for clients to use server metadata, we removed this attacker capability (see Section III-B).
A6 and A7. As mentioned in Appendix B-C, the FAPI WG dropped these attacker assumptions after we reported inconsistencies
in the attacker model resulting from these assumptions. Thus, we did not model these two assumptions.

APPENDIX D
FAPI 2.0 MODEL

In this section, we provide the full formal model of the FAPI 2.0 participants. We start with the definition of keys and secrets, as
well as protocol participants and identities within the model, followed by how we initialize AS-client relationships and details on
how OAuth 2.0 Mutual TLS for Client Authentication and Certificate Bound Access Tokens [11] is modeled. We continue with the
formal models of the FAPI 2.0 clients (Appendix D-J), the FAPI 2.0 ASs (Appendix D-K), and the FAPI 2.0 RSs (Appendix D-L).

A. Protocol Participants

We define the following sets of atomic Dolev-Yao processes: AS is the set of processes representing authorization servers. Their
relation is described in Appendix D-K. RS is the set of processes representing resource servers, described in Appendix D-L. C
is the set of processes representing clients, described in Appendix D-J. Finally, B is the set of processes representing browsers,
including their users. They are described in Appendix G-G.

B. Identities

Identities consist, similar to email addresses, of a user name and a domain part. For our model, this is defined as follows:



Definition 5. An identity i is a term of the form ⟨name, domain⟩ with name ∈ S and domain ∈ Doms. Let ID be the finite set
of identities. We say that an id is governed by the DY process to which the domain of the id belongs. This is formally captured by
the mappings governor : ID→W , ⟨name, domain⟩ 7→ dom−1(domain) and IDy := governor−1(y).

C. Keys and Secrets

The set N of nonces is partitioned into disjoint sets, an infinite set N , and finite sets KTLS, Ksign, Passwords, and RScredentials:

N = N ⊎KTLS ⊎Ksign ⊎ Passwords ⊎ RScredentials

These sets are used as follows:
• The set N contains the nonces that are available for the DY processes
• The set KTLS contains the keys that will be used for TLS encryption. Let tlskey : Doms → KTLS be an injective

mapping that assigns a (different) private key to every domain. For an atomic DY process p we define tlskeysp =
⟨{⟨d, tlskey(d)⟩ | d ∈ dom(p)}⟩ (i.e., a sequence of pairs).

• The set Ksign contains the keys that will be used by ASs for signing id and access tokens and by clients to sign JWTs as well
as DPoP proofs. Let signkey : AS ∪ C→ Ksign be an injective mapping that assigns a (different) signing key to every AS and
client.

• The set Passwords is the set of passwords (secrets) the browsers share with servers. These are the passwords the users use to
log in. Let secretOfID : ID→ Passwords be a bijective mapping that assigns a password to each identity.

• The set RScredentials is a set of secrets shared between authorization and resource servers. RSs use these to authenticate
at ASs’ token introspection endpoints. Let secretOfRS : Doms× Doms ⇀ RScredentials be a partial mapping, assigning a
secret to some of the RS–AS pairs (with the function arguments in that order).

D. Passwords

Definition 6. Let ownerOfSecret : Passwords → B be a mapping that assigns to each password a browser which owns this
password. Similarly, we define ownerOfID : ID → B as i 7→ ownerOfSecret(secretOfID(i)), which assigns to each identity the
browser that owns this identity (i.e., this identity belongs to the browser).

E. Web Browsers

Web browser processes (i.e., processes b ∈ B) are modeled as described in Appendix G. Before defining the initial states of Web
browsers, we introduce the following set (for some process p):

Secretsb,p = {s | b = ownerOfSecret(s) ∧ (∃i : s = secretOfID(i) ∧ i ∈ IDp)}

Definition 7 (Initial Web Browser State for FAPI). The initial state of a Web browser process b ∈ B follows the description in
Definition 68, with the following additional constraints:

• sb0.ids ≡ ⟨{i | b = ownerOfID(i)}⟩
• sb0.secrets contains an entry ⟨⟨d, S⟩, ⟨Secretsb,p⟩⟩ for each p ∈ AS ∪ C ∪ RS and every domain d ∈ dom(p) (and nothing

else), i.e.,
sb0.secrets ≡

〈{
⟨⟨d, S⟩, ⟨Secretsb,p⟩⟩

∣∣ ∃p, d : p ∈ AS ∪ C ∪ RS ∧ d ∈ dom(p)
}〉

• sb0.keyMapping ≡ ⟨{⟨d, pub(tlskey(d))⟩ | d ∈ Doms}⟩

F. Resources

We model the management of resources as follows: We assume that each resource is managed by at most one AS. We also
assume that resources are identified by URLs at the RS. Thus, when getting a request to such a resource URL, the RS has to

1) identify the AS that is managing the resource, and
2) identify the identity for which the access token was issued.
If the access token is a structured JWT, the RS retrieves the identity from the subject field. Otherwise, the identity is retrieved

from the introspection response.
For identifying the AS, we first define the URL paths of resources managed by a RS, and then define a mapping from these

paths to AS.

Definition 8. For each rs ∈ RS, let resourceURLPathrs ⊆ S be a finite set of strings. These are the URL paths identifying the
resources managed by the RS.5

5A resource is managed by the RS if and only if resourceID ∈ resourceURLPathrs .



Definition 9. For each rs ∈ RS, let supportedAuthorizationServerrs ⊆ AS be a finite set of ASs. These are the ASs supported by
the RS.

Definition 10. For each rs ∈ RS, let authorizationServerOfResourcers : resourceURLPathrs → supportedAuthorizationServerrs

be a mapping that assigns an AS to each resource URL path suffix of resources managed by the RS.

If the access token is valid and the resource is managed by an AS supported by the RS, the RS model responds with a fresh
nonce that it stores under the identity of the resource owner and the path under which it returns the resource. By using fresh nonces,
the RS does not return a nonce twice – even for requests for the same path and the same resource owner (identified via token
introspection or the sub claim in the access token). Without this, the authorization property would need to exclude the case that
the resource owner granted some malicious client access to a resource at some point.

G. Client Registration

ASs and clients have to establish some relationship with each other before starting a FAPI 2.0 flow. Such a relationship can be
established out of band, e.g., via manual configuration. While FAPI 2.0 also supports the use of dynamic client registration, our
model assumes an out of band registration, captured by the following definitions.

Definition 11. A client information dictionary is a dictionary of the form [client_id : clientId , client_type : clientType,
mtls_skey : mtlsSkey , jwt_skey : jwtSkey ] where clientId ∈ TN , clientType ∈ {mTLS_mTLS, mTLS_DPoP, pkjwt_mTLS,
pkjwt_DPoP}, mtlsSkey ∈ Ktls ∪{3}, and jwtSkey ∈ Ksign ∪{3}. We further require jwtSkey ̸≡ 3 if and only if clientType ∈
{pkjwt_mTLS, pkjwt_DPoP, mTLS_DPoP}, as well as tlsSkey ̸≡ 3 if and only if clientType ∈ {mTLS_mTLS, pkjwt_mTLS,
mTLS_DPoP}. Let ClientInfos be the set of all client information dictionaries.

Definition 12. Let clientInfo : Doms × Doms ⇀ ClientInfos be a (partial) mapping from AS and client domains to client
information dictionaries, assigning a client information dictionary to some of the possible AS–client pairs with the following
restrictions: 1) There are no two clients with the same clientId at the same AS, formalized as ∀ as ∈ AS, das ∈
dom(as), dclient , d

′
client ∈ Doms : clientInfo(das , dclient).client_id ≡ clientInfo(das , d

′
client).client_id⇒ dclient ≡ d′client ,

2) TLS keys are assigned according to tlskey, formalized as clientInfo(das , dclient).tlsSkey ∈ {3, tlskey(dclient)}, and 3) signing
keys are assigned according to signkey, formally expressed as clientInfo(das , dclient).jwtSkey ∈ {3, signkey(dom−1(dclient))}.
Note that while this definition requires the client to use the same key to sign JWTs and DPoP proofs for all ASs, it allows the client
to use a different client type for each AS. mTLS keys are different for each of the client’s domains.

Definition 13. A client c ∈ C has the client identifier clientId at an authorization server as ∈ AS if ∃ dclient ∈ dom(c), das ∈
dom(as) such that clientInfo(das , dclient).client_id ≡ clientId .

Definition 14. Let clientInfoAS : AS ⇀ TN be a (partial) mapping from an AS to a dictionary. The keys of this dictionary are
client IDs and the values AS client information dictionaries. We define clientInfoAS by as 7→ ⟨{⟨cli .client_id, as_cli(cli)⟩ |
∃ dclient ∈ Doms, das ∈ dom(as) : clientInfo(das , dclient) ≡ cli}⟩ where as_cli(cli) := [client_type : cli .client_type] +⟨⟩

[mtls_key : pub(cli .mtlsSkey)] if cli .client_type ≡ mTLS_mTLS
[mtls_key : pub(cli .mtlsSkey), jwt_key : pub(cli .jwtSkey)] if cli .client_type ∈ {pkjwt_mTLS, mTLS_DPoP}
[jwt_key : pub(cli .jwtSkey)] if cli .client_type ≡ pkjwt_DPoP

Note: In ∃ dclient ∈ Doms, das ∈ dom(as) : clientInfo(das , dclient) ≡ cli , we refer to values dclient and das for which
clientInfo(das , dclient) is defined.

Definition 15. Let clientInfoClient : C ⇀
[
Doms× TN

]
be a (partial) mapping from a client to a dictionary. The keys of

this dictionary are AS domains and the values simple dictionaries, containing client type and client ID. clientInfoClient
is defined as c 7→ ⟨{[das : [client_id : cli .client_id, client_type : cli .client_type]] | ∃ dclient ∈ dom(c), das ∈
Doms : clientInfo(das , dclient) ≡ cli}⟩. Note: In ∃ dclient ∈ dom(c), das ∈ Doms : clientInfo(das , dclient) ≡ cli , we refer
to values dclient and das for which clientInfo(das , dclient) is defined.

H. Modeling mTLS

OAuth 2.0 Mutual TLS for Client Authentication and Certificate Bound Access Tokens (mTLS) [11] provides a method for both
client authentication and token binding. Note that both mechanisms may be used independently of each other.

OAuth 2.0 Mutual TLS Client Authentication makes use of TLS client authentication6, which the client can use for client
authentication at the pushed authorization request and token endpoints (in Step 5 and Step 14 of Figure 1). In TLS client
authentication, not only the server authenticates to the client (as is common for TLS), but the client also authenticates to the server.

6As noted in Section 7.2 of [11], this extension supports all TLS versions with certificate-based client authentication.



To this end, the client proves that it knows the private key belonging to a certificate that is either (a) self-signed and pre-configured
at the respective AS or that is (b) issued for the respective client id by a predefined certificate authority within a public key
infrastructure (PKI).

Token binding means binding an access token to a client such that only this client is able to use the access token at the RS. To
achieve this, the AS associates the access token with the certificate used by the client for the TLS connection to the token endpoint.
In the TLS connection to the RS (in Step 18 of Figure 1), the client then authenticates using the same certificate. The RS accepts
the access token only if the client certificate is the one associated with the access token.7

The WIM models TLS at a high level of abstraction. An HTTP request is encrypted with the public key of the recipient and
contains a symmetric key, which is used for encrypting the HTTP response. Furthermore, the model contains no certificates or
public key infrastructures but uses a function that maps domains to their public key.

We model mTLS similarly to [38]. An overview of the mTLS model is shown in Figure 6. The basic idea is that the server sends
a nonce encrypted with the public key of the client. The client proves possession of the private key by decrypting this message. In
Step 1 , the client sends its client identifier to the AS. The AS then looks up the public key associated with the client identifier,
chooses a nonce, and encrypts it with the public key. As depicted in Step 2 , the server additionally includes its public key. When
the client decrypts the message, it checks if the public key belongs to the server it wants to send the original message to. This
prevents man-in-the-middle attacks, as only the honest client can decrypt the response and as the public key of the server cannot
be changed by an attacker. In Step 3 , the client sends the original request with the decrypted nonce. When the server receives this
message, it knows that the nonce was decrypted by the honest client (as only the client knows the corresponding private key) and
that the client had chosen to send the nonce to the server (due to the public key included in the response). Therefore, the server can
conclude that the message was sent by the honest client.

In effect, this resembles the behavior of the TLS handshake, as the verification of the client certificate in TLS is done by signing
all handshake messages [68, Section 7.4.8], which also includes information about the server certificate, which means that the
signature cannot be reused for another server. Instead of signing a sequence that contains information about the receiver, in our
model, the client checks the sender of the nonce, and only sends the decrypted nonce to the creator of the nonce. In other words, a
nonce decrypted by an honest server that gets decrypted by the honest client is never sent to the attacker.

As explained above, the client uses the same certificate it used for the token request when sending the access token to the RS.
While the RS has to check the possession of corresponding private keys, the validity of the certificate was already checked at the
AS and can be ignored by the RS. Therefore, in our model of FAPI 2.0, the client does not send its client id to the RS, but its public
key, and the RS encrypts the message with this public key.

1 client idclient id
mtls-init-req

2 enca(⟨nonce, kAS ⟩, kclient_id )enca(⟨nonce, kAS ⟩, kclient_id )
mtls-init-resp

3 request, noncerequest, nonce
mtls-second-req

4 responseresponse
mtls-second-resp

Client Authorization Server

Client Authorization Server

Figure 6. Overview of mTLS model

All messages are sent by the generic HTTPS server model (Appendix G-L), which means that each request is encrypted
asymmetrically, and the responses are encrypted symmetrically with a key that was included in the request. For completeness,
Figure 7 shows the complete messages, i.e., with the encryption used for transmitting the messages.

I. Additional HTTP Headers

In order to model DPoP, we extend the list of headers of Definition 42 with the following header:
⟨DPoP, p⟩ where p ∈ TN is (for honest senders) a DPoP proof (i.e., a signed JWT).

7The RS can read this information either directly from the access token if the access token is a signed document, or uses token introspection to retrieve the data
from the AS.



1 enca(⟨client id, ks⟩, kAS )enca(⟨client id, ks⟩, kAS )
mtls-init-req

2 encs(enca(⟨nonce, kAS ⟩, kclient_id ), ks)encs(enca(⟨nonce, kAS ⟩, kclient_id ), ks)
mtls-init-resp

3 enca(⟨⟨request,nonce⟩, k′
s⟩, kAS )enca(⟨⟨request,nonce⟩, k′
s⟩, kAS )

mtls-second-req

4 encs(response, k′
s)encs(response, k′
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mtls-second-resp

Client Authorization Server

Client Authorization Server

Figure 7. Detailed view on mTLS model



J. Clients

A client c ∈ C is a Web server modeled as an atomic DY process (Ic, Zc, Rc, sc0) with the addresses Ic := addr(c). Next, we
define the set Zc of states of c and the initial state sc0 of c.

Definition 16. A state s ∈ Zc of a client c is a term of the form ⟨DNSAddress , pendingDNS ,
pendingRequests , corrupt , keyMapping , tlskeys , sessions , oauthConfigCache, jwksCache, asAccounts , mtlsCache,
jwk , resourceASMapping , dpopNonces⟩ with DNSaddress ∈ IPs, pendingDNS ∈

[
N × TN

]
, pendingRequests ∈

[
N × TN

]
,

corrupt ∈ TN , keyMapping ∈
[
Doms× TN

]
, tlskeys ∈ [Doms×KTLS] (all former components as in Definition 71),

sessions ∈
[
N × TN

]
, oauthConfigCache ∈

[
TN × TN

]
, jwksCache ∈

[
TN × TN

]
, asAccounts ∈

[
TN × TN

]
,

mtlsCache ∈ TN , jwk ∈ Ksign, resourceASMapping ∈ [Doms× [S× Doms]], and dpopNonces ∈
[
Doms× TN

]
.

An initial state sc0 of c is a state of c with
• sc0.DNSAddress ∈ IPs,
• sc0.pendingDNS ≡ ⟨⟩,
• sc0.pendingRequests ≡ ⟨⟩,
• sc0.corrupt ≡ ⊥,
• sc0.keyMapping being the same as the keymapping for browsers,
• sc0.tlskeys ≡ tlskeysc (see Appendix D-C),
• sc0.sessions ≡ ⟨⟩,
• sc0.oauthConfigCache ≡ ⟨⟩,
• sc0.jwksCache ≡ ⟨⟩,
• sc0.asAccounts ≡ clientInfoClient(c) (see Definition 15),
• sc0.mtlsCache ≡ ⟨⟩,
• sc0.jwk ≡ signkey(c) (see Appendix D-C),
• sc0.resourceASMapping[domRS ][resourceID ] ∈ dom(authorizationServerOfResourcers(resourceID)), ∀ rs ∈ RS and
∀ domRS ∈ dom(rs) and ∀ resourceID ∈ resourceURLPathrs (a domain of the AS managing the resource stored at rs
identified by resourceID), and

• sc0.dpopNonces ≡ ⟨⟩.

We now specify the relation Rc: This relation is based on the model of generic HTTPS servers (see Appendix G-L). Hence
we only need to specify algorithms that differ from or do not exist in the generic server model. These algorithms are defined in
Algorithms 2–7. Note that in several places throughout these algorithms, we use placeholders of the form νx to generate “fresh”
nonces as described in the communication model (see Definition 27).

The script that is used by the client on its index page is specified in Algorithm 8. This script uses the GETURL(tree, docnonce)
function to to extract the current URL of a document. We define this function as follows: It searches for the document with the
identifier docnonce in the (cleaned) tree tree of the browser’s windows and documents. It then returns the URL u of that document.
If no document with nonce docnonce is found in the tree tree, 3 is returned.



Algorithm 1 Relation of a Client Rc – Processing HTTPS Requests
1: function PROCESS_HTTPS_REQUEST(m, k, a, f , s′) → Process an incoming HTTPS request. Other message types are handled

in separate functions. m is the incoming message, k is the encryption key for the response, a is the receiver, f the sender of the message. s′

is the current state of the atomic DY process c.
2: if m.path ≡ / then → Serve index page (start flow).
3: let m′ := encs(⟨HTTPResp,m.nonce, 200, headers, ⟨script_client_index, ⟨⟩⟩⟩, k) → Reply with script_client_index .
4: stop ⟨⟨f, a,m′⟩⟩, s′
5: else if m.path ≡ /startLogin∧m.method ≡ POST then → Start a new FAPI 2.0 flow (probably from script_client_index)
6: if m.headers[Origin] ̸≡ ⟨m.host, S⟩ then
7: stop →Check the Origin header for CSRF protection to prevent attacker from starting a flow in the background (as this would

trivially violate the session integrity property).
8: let selectedAS :=m.body
9: let sessionId := ν1 → Session id is a freshly chosen nonce.

10: let s′.sessions[sessionId ] := [startRequest : [message : m, key : k, receiver : a, sender : f ], selected_AS : selectedAS ]
11: call PREPARE_AND_SEND_PAR(sessionId , a, s′) → Start an authorization flow with the AS (see Algorithm 6)
12: else if m.path ≡ /redirect_ep then →User is being redirected after authentication to the AS.
13: let sessionId :=m.headers[Cookie][⟨__Host, sessionId⟩]
14: if sessionId ̸∈ s′.sessions then
15: stop
16: let session := s′.sessions[sessionId ] →Retrieve session data.
17: let selectedAS := session[selected_AS]
18: if m.parameters[iss] ̸≡ selectedAS then → Check issuer parameter ([75]).
19: stop

→ Store browser’s request for use in CHECK_ID_TOKEN (Algorithm 5) and PROCESS_HTTPS_RESPONSE (Algorithm 2)
20: let s′.sessions[sessionId ][redirectEpRequest] := [message : m, key : k, receiver : a, sender : f ]
21: call SEND_TOKEN_REQUEST(sessionId , m.parameters[code], a, s′) → Retrieve a token from AS’s token endpoint.
22: stop → Unknown endpoint or malformed request.



Algorithm 2 Relation of a Client Rc – Processing HTTPS Responses
1: function PROCESS_HTTPS_RESPONSE(m, reference , request , a, f , s′)
2: if reference[responseTo] ≡ MTLS then → Client received an mTLS nonce (see Appendix D-H)
3: let mdec, k

′ such that mdec ≡ deca(m.body, k′) ∧ ⟨dom, k′⟩ ∈ s′.tlskeys if possible; otherwise stop
4: let mtlsNonce, serverPubKey such that mdec ≡ ⟨mtlsNonce, serverPubKey⟩ if possible; otherwise stop
5: if serverPubKey ≡ s′.keyMapping[request .host] then → Verify sender of mTLS nonce
6: let clientId := reference[client_id] → Note: If client_id ̸∈ reference , then reference[client_id] ≡ ⟨⟩
7: let pubKey := reference[pub_key] → See note for client ID above
8: let s′.mtlsCache := s′.mtlsCache +⟨⟩ ⟨request .host, clientId , pubKey ,mtlsNonce⟩
9: stop ⟨⟩, s′

10: let sessionId := reference[session]
11: let session := s′.sessions[sessionId ]
12: let selectedAS := session[selected_AS]

→Note: PREPARE_AND_SEND_PAR issues CONFIG and JWKS requests as required – once these get a response, we continue the
PAR preparation by calling PREPARE_AND_SEND_PAR again.

13: if reference[responseTo] ≡ CONFIG then
14: if m.body[issuer] ̸≡ selectedAS then → Verify issuer identifier according to [48, Sec. 3.3]
15: stop
16: let s′.oauthConfigCache[selectedAS ] := m.body
17: call PREPARE_AND_SEND_PAR(sessionId , a, s′)
18: else if reference[responseTo] ≡ JWKS then
19: let s′.jwksCache[selectedAS ] := m.body
20: call PREPARE_AND_SEND_PAR(sessionId , a, s′)
21: else if reference[responseTo] ≡ PAR then
22: let requestUri :=m.body[request_uri]
23: let s′.sessions[sessionId ][request_uri] := requestUri
24: let clientId := session[client_id]
25: let request := session[startRequest]

→ In the following, we construct the response to the initial request by some browser
26: let authEndpoint := s′.oauthConfigCache[selectedAS ][auth_ep]

→The authorization endpoint URL may include query components, which must be retained while also ensuring that no parameter
appears more than once ([41, Sec. 3.1]). However, following [57, Sec. 4] and [73, Sec. 5] closely could introduce duplicates. We
opted to overwrite client_id and request_uri parameters if present.

27: let authEndpoint .parameters[client_id] := clientId
28: let authEndpoint .parameters[request_uri] := requestUri
29: let headers := [Location : authEndpoint ]
30: let headers[Set-Cookie] := [⟨__Host, sessionId⟩ : ⟨sessionId ,⊤,⊤,⊤⟩]
31: let response := encs(⟨HTTPResp, request [message].nonce, 303, headers, ⟨⟩⟩, request [key])
32: let leakAuthZReq←{⊤,⊥} →We assume that the authorization request, in particular request_uri and client_id, may leak

to the attacker, see [30] and Section IV-B2.
33: if leakAuthZReq ≡ ⊤ then
34: let leak := ⟨LEAK, authEndpoint⟩
35: let leakAddress ← IPs
36: stop ⟨⟨request [sender], request [receiver], response⟩, ⟨leakAddress, request [receiver], leak⟩⟩, s′
37: else
38: stop ⟨⟨request [sender], request [receiver], response⟩⟩, s′

39: else if reference[responseTo] ≡ TOKEN then
40: let useAccessTokenNow := ⊤
41: if session[scope] ≡ openid then → Non-deterministically decide whether to use the AT or check the ID token (if requested)
42: let useAccessTokenNow ← {⊤,⊥}
43: if useAccessTokenNow ≡ ⊤ then
44: call USE_ACCESS_TOKEN(reference[session], m.body[access_token], request .host, a, s′)
45: let selectedAsTokenEp := s′.oauthConfigCache[selectedAS ][token_ep]
46: if request .host ̸≡ selectedAsTokenEp.host then
47: stop → Verify sender of HTTPS response is the expected AS (see [70, Sec. 3.1.3.7])
48: call CHECK_ID_TOKEN(reference[session], m.body[id_token], s′)
49: else if reference[responseTo] ≡ RESOURCE_USAGE then

→Reply to browser’s request to the client’s redirect endpoint (with the retrieved resource as payload)
50: let resource :=m.body[resource]
51: let s′.sessions[sessionId ][resource] := resource → Store received resource
52: let s′.sessions[sessionId ][resourceServer] := request .host → Store the domain of the RS
53: let request := session[redirectEpRequest] → Data on browser’s request to client’s redirect endpoint
54: let m′ := encs(⟨HTTPResp, request [message].nonce, 200, ⟨⟩, resource⟩, request [key])
55: stop ⟨⟨request [sender], request [receiver],m′⟩⟩, s′
→Algorithm continues on next page.



56: else if reference[responseTo] ≡ DPOP_NONCE then
57: let dpopNonce :=m.body[nonce]
58: let rsDomain := request .host
59: let s′.dpopNonces[rsDomain] := s′.dpopNonces[rsDomain] +⟨⟩ dpopNonce
60: stop ⟨⟩, s′

61: stop

Algorithm 3 Relation of a Client Rc – Request to token endpoint.
1: function SEND_TOKEN_REQUEST(sessionId , code , a, s′)
2: let session := s′.sessions[sessionId ]
3: let pkceVerifier := session[code_verifier]
4: let selectedAS := session[selected_AS]
5: let headers := []
6: let body := [grant_type : authorization_code, code : code, redirect_uri : session[redirect_uri]]
7: let body [code_verifier] := pkceVerifier → add PKCE Code Verifier ([72], Section 4.5)
8: let clientId := s′.asAccounts[selectedAS ][client_id]
9: let clientType := s′.asAccounts[selectedAS ][client_type]

10: let oauthConfig := s′.oauthConfigCache[selectedAS ]
11: let tokenEndpoint := oauthConfig [token_ep]

→Client Authentication:
12: if clientType ∈ {mTLS_mTLS, mTLS_DPoP} then → mTLS client authentication
13: let body [client_id] := clientId → [11] mandates client_id when using mTLS authentication
14: let mtlsNonce such that ⟨tokenEndpoint .host, clientId , ⟨⟩,mtlsNonce⟩ ∈ s′.mtlsCache if possible; otherwise stop
15: let authData := [TLS_AuthN : mtlsNonce]
16: let s′.mtlsCache := s′.mtlsCache −⟨⟩ ⟨tokenEndpoint .host, clientId , ⟨⟩,mtlsNonce⟩
17: else if clientType ∈ {pkjwt_mTLS, pkjwt_DPoP} then → private_key_jwt client authentication
18: let jwt := [iss : clientId , sub : clientId , aud : selectedAS ]
19: let jws := sig(jwt , s′.jwk)
20: let authData := [client_assertion : jws]
21: else
22: stop → Invalid client type

→ Sender Constraining:
23: if clientType ≡ mTLS_mTLS then → mTLS sender constraining (same nonce as for mTLS authN)
24: let mtlsNonce := authData[TLS_AuthN]
25: let body [TLS_binding] :=mtlsNonce
26: else if clientType ≡ pkjwt_mTLS then → mTLS sender constraining (fresh mTLS nonce)
27: let mtlsNonce such that ⟨tokenEndpoint .host, clientId , ⟨⟩,mtlsNonce⟩ ∈ s′.mtlsCache if possible; otherwise stop
28: let s′.mtlsCache := s′.mtlsCache −⟨⟩ ⟨tokenEndpoint .host, clientId , ⟨⟩,mtlsNonce⟩
29: let body [TLS_binding] :=mtlsNonce
30: else → Sender constraning using DPoP
31: let privKey := s′.jwk → get private key
32: let htu := tokenEndpoint
33: let htu[parameters] := ⟨⟩ → [39, Sec. 4.2]: without query
34: let htu[fragment] := ⊥ → [39, Sec. 4.2]: without fragment
35: let dpopJwt := [headers : [jwk : pub(privKey)]]
36: let dpopJwt [payload] := [htm : POST, htu : htu]
37: let dpopProof := sig(dpopJwt , privKey)
38: let headers[DPoP] := dpopProof → add DPoP header; the dpopJwt can be extracted with the extractmsg() function
39: let body := body +⟨⟩ authData
40: let message := ⟨HTTPReq, ν2, POST, tokenEndpoint .host, tokenEndpoint .path, tokenEndpoint .parameters, headers, body⟩
41: call HTTPS_SIMPLE_SEND([responseTo : TOKEN, session : sessionId ], message , a, s′)



Algorithm 4 Relation of a Client Rc – Using the access token.
1: function USE_ACCESS_TOKEN(sessionId , token , tokenEPDomain , a, s′)
2: let session := s′.sessions[sessionId ]
3: let selectedAS := session[selected_AS]
4: let rsDomain←Doms →This domain may or may not belong to a “real” RS. If it belongs to the attacker, this request leaks the

access token (but no mTLS nonce, nor a DPoP proof for an honest server).
→Note: All paths except the mTLS and DPoP preparation endpoints are resource paths at the RS.

5: let resourceID ← S such that resourceID ̸∈ {/MTLS-prepare, /DPoP-nonce}
6: let url := ⟨URL, S, rsDomain, resourceID , ⟨⟩,⊥⟩
7: if s′.resourceASMapping[rsDomain][resourceID ] ̸≡ tokenEPDomain then
8: stop → The AS from which the client received the AT is not managing the resource

→The access token is sender-constrained, so the client must add a corresponding key proof.
9: let clientType := s′.asAccounts[selectedAS ][client_type]

10: let clientId := s′.asAccounts[selectedAS ][client_id]
11: let body := []
12: if clientType ∈ {mTLS_mTLS, pkjwt_mTLS} then → mTLS sender constraining
13: let mtlsNonce such that ⟨rsDomain, ⟨⟩, pubKey ,mtlsNonce⟩ ∈ s′.mtlsCache if possible; otherwise stop
14: let body [TLS_binding] :=mtlsNonce →This nonce is not necessarily associated with the same of the client’s keys as the access

token. In such a case, the RS will reject this request and the client has to try again.
15: let headers := [Authorization : [Bearer : token]] → FAPI 2.0 mandates to send access token in header
16: let s′.mtlsCache := s′.mtlsCache −⟨⟩ ⟨rsDomain, ⟨⟩, pubKey ,mtlsNonce⟩
17: else if clientType ∈ {mTLS_DPoP, pkjwt_DPoP} then → DPoP sender constraining
18: let privKey := s′.jwk → get private key
19: let dpopNonce such that dpopNonce ∈ s′.dpopNonces[rsDomain] if possible; otherwise stop
20: let s′.dpopNonces[rsDomain] := s′.dpopNonces[rsDomain] −⟨⟩ dpopNonce
21: let htu := url
22: let htu[parameters] := ⟨⟩ → [39, Sec. 4.2]: without query
23: let htu[fragment] := ⊥ → [39, Sec. 4.2]: without fragment
24: let dpopJwt := [headers : [jwk : pub(privKey)]]
25: let dpopJwt [payload] := [htm : POST, htu : htu, ath : hash(token), nonce : dpopNonce]
26: let dpopProof := sig(dpopJwt , privKey)
27: let headers := [Authorization : [DPoP : token]] → See [39, Sec. 7.1]
28: let headers[DPoP] := dpopProof → add DPoP header; the dpopJwt can be extracted with the extractmsg() function
29: let message := ⟨HTTPReq, ν3, POST, url .domain, url .path, ⟨⟩, headers, body⟩
30: call HTTPS_SIMPLE_SEND([responseTo : RESOURCE_USAGE, session : sessionId ], message , a, s′)

Algorithm 5 Relation of a Client Rc – Check ID Token and log user in at c.
1: function CHECK_ID_TOKEN(sessionId , idToken , s′) → Check ID Token validity and create service session.
2: let session := s′.sessions[sessionId ] → Retrieve session data.
3: let selectedAS := session[selected_AS]
4: let oauthConfig := s′.oauthConfigCache[selectedAS ] → Retrieve configuration for user-selected AS.
5: let clientInfo := s′.asAccounts[selectedAS ] → Retrieve client info used at that AS.
6: let jwks := s′.jwksCache[selectedAS ] → Retrieve signature verification key for AS.
7: let data := extractmsg(idToken) → Extract contents of signed ID Token.

→The following ID token checks are mandated by [70, Sec. 3.1.3.7]. Note that OIDC allows clients to skip ID token signature verification
if the ID token is received directly from the AS (which it is here). Hence, we do not check the token’s signature (see also Line 47 of
Algorithm 2).

8: if data[iss] ̸≡ selectedAS then
9: stop → Check the issuer; note that previous checks ensure oauthConfig [issuer] ≡ selectedAS

10: if data[aud] ̸≡ clientInfo[client_id] then
11: stop → Check the audience against own client id.
12: if nonce ∈ session ∧ data[nonce] ̸≡ session[nonce] then
13: stop → If a nonce was used, check its value.
14: let s′.sessions[sessionId ][loggedInAs] := ⟨selectedAS , data[sub]⟩ →User is now logged in. Store user identity and issuer of ID

token.
15: let s′.sessions[sessionId ][serviceSessionId] := ν4 → Choose a new service session id.
16: let request := session[redirectEpRequest] →Retrieve stored meta data of the request from the browser to the redir. end-

point in order to respond to it now. The request’s meta data was stored in
PROCESS_HTTPS_REQUEST (Algorithm 1).

17: let headers[Set-Cookie] := [serviceSessionId : ⟨ν4,⊤,⊤,⊤⟩] →Create a cookie containing the service session id, effectively
logging the user identified by data[sub] in at this client.

18: let m′ := encs(⟨HTTPResp, request [message].nonce, 200, headers, ok⟩, request [key])
19: stop ⟨⟨request [sender], request [receiver],m′⟩⟩, s′



Algorithm 6 Relation of a Client Rc – Prepare and send pushed authorization request.
1: function PREPARE_AND_SEND_PAR(sessionId , a, s′)
2: let redirectUris := {⟨URL, S, d, /redirect_ep, ⟨⟩,⊥⟩| d ∈ dom(c)} → Set of redirect URIs for all domains of c.
3: let redirectUri ← redirectUris → Select a (potentially) different redirect URI for each authorization request
4: let session := s′.sessions[sessionId ]
5: let selectedAS := session[selected_AS] → AS selected by the user at the beginning of the flow.

→Check whether the client needs to fetch AS metadata first and do so if required.
6: if selectedAS ̸∈ s′.oauthConfigCache then
7: let path ← {/.well_known/openid-configuration, /.well_known/oauth-authorization-server}
8: let message := ⟨HTTPReq, ν5, GET, selectedAS , path, ⟨⟩, ⟨⟩, ⟨⟩⟩
9: call HTTPS_SIMPLE_SEND([responseTo : CONFIG, session : sessionId ], message , a, s′)

10: let oauthConfig := s′.oauthConfigCache[selectedAS ]
→Check whether the client needs to fetch the AS’s signature verification key first and do so if required.

11: if selectedAS ̸∈ s′.jwksCache then
12: let url := oauthConfig [jwks_uri]
13: let message := ⟨HTTPReq, ν5, GET, url .host, url .path, url .parameters, ⟨⟩, ⟨⟩⟩
14: call HTTPS_SIMPLE_SEND([responseTo : JWKS, session : sessionId ], message , a, s′)

→Construct pushed authorization request
15: let parEndpoint := oauthConfig [par_ep]
16: let clientId := s′.asAccounts[selectedAS ][client_id]
17: let clientType := s′.asAccounts[selectedAS ][client_type]
18: if clientType ∈ {mTLS_mTLS, mTLS_DPoP} then → mTLS client authentication
19: let mtlsNonce such that ⟨parEndpoint .host, clientId , ⟨⟩,mtlsNonce⟩ ∈ s′.mtlsCache if possible; otherwise stop
20: let authData := [TLS_AuthN : mtlsNonce]
21: let s′.mtlsCache := s′.mtlsCache −⟨⟩ ⟨parEndpoint .host, clientId , ⟨⟩,mtlsNonce⟩
22: else if clientType ∈ {pkjwt_mTLS, pkjwt_DPoP} then → private_key_jwt client authentication
23: let jwt := [iss : clientId , sub : clientId , aud : selectedAS ]
24: let jws := sig(jwt , s′.jwk)
25: let authData := [client_assertion : jws]
26: let pkceVerifier := νpkce → Fresh random value
27: let pkceChallenge := hash(pkceVerifier)
28: let parData := [response_type : code, code_challenge_method : S256, client_id : clientId ,

↪→ redirect_uri : redirectUri , code_challenge : pkceChallenge]
29: let useOidc← {⊤,⊥} → Use of OIDC is optional
30: if useOidc ≡ ⊤ then
31: let parData[scope] := openid

32: let s′.sessions[sessionId ] := s′.sessions[sessionId ] +⟨⟩ parData
33: let parData := parData +⟨⟩ authData
34: let s′.sessions[sessionId ][code_verifier] := pkceVerifier → Store PKCE randomness in state
35: let authzReq := ⟨HTTPReq, νparNonce, POST, parEndpoint .host, parEndpoint .path, parEndpoint .parameters, ⟨⟩, parData⟩
36: call HTTPS_SIMPLE_SEND([responseTo : PAR, session : sessionId ], authzReq , a, s′)



Algorithm 7 Relation of a Client Rc – Handle trigger events.
1: function PROCESS_TRIGGER(a, s′)
2: let action ← {MTLS_PREPARE_AS, MTLS_PREPARE_RS, MTLS_PREPARE_MISCONFIGURED_TOKEN_EP,

↪→ GET_DPOP_NONCE}
3: switch action do
4: case MTLS_PREPARE_AS
5: let server ← Doms such that server ∈ s′.asAccounts if possible; otherwise stop
6: let asAcc := s′.asAccounts[server ]
7: let clientId := asAcc[client_id]
8: let body := [client_id : clientId ]
9: let message := ⟨HTTPReq, νmtls, GET, server , /MTLS-prepare, ⟨⟩, ⟨⟩, body⟩

10: call HTTPS_SIMPLE_SEND([responseTo : MTLS, client_id : clientId ],message, a, s′)

11: case MTLS_PREPARE_RS
12: let resourceServer ← Doms → Note: This may or may not be a “real” RS.
13: let domainAndKey ← s′.tlskeys
14: let pubKey := pub(domainAndKey .2)
15: let body := [pub_key : pubKey ]
16: let message := ⟨HTTPReq, νmtls, GET, resourceServer , /MTLS-prepare, ⟨⟩, ⟨⟩, body⟩
17: call HTTPS_SIMPLE_SEND([responseTo : MTLS, pub_key : pubKey ],message, a, s′)

18: case MTLS_PREPARE_MISCONFIGURED_TOKEN_EP
→This case allows the client to retrieve mTLS nonces from attacker-controlled servers and subsequently make requests to such

servers. Without this case, the model would not capture attacks in which the client talks to attacker-controlled endpoints
protected by mTLS.

19: let server ← Doms such that server ∈ s′.asAccounts if possible; otherwise stop
20: let asAcc := s′.asAccounts[server ]
21: let clientId := asAcc[client_id]
22: let host ← Doms → Non-deterministically choose the domain instead of sending to the correct AS
23: let body := [client_id : clientId ]
24: let message := ⟨HTTPReq, νmtls, GET, host , /MTLS-prepare, ⟨⟩, ⟨⟩, body⟩
25: call HTTPS_SIMPLE_SEND([responseTo : MTLS, client_id : clientId ],message, a, s′)

26: case GET_DPOP_NONCE
→Our client uses DPoP server-provided nonces at the RS. The RS model offers a special endpoint to retrieve nonces.

27: let resourceServer ← Doms → Note: This may or may not be a “real” RS.
28: let message := ⟨HTTPReq, νDPoPreq, GET, resourceServer , /DPoP-nonce, ⟨⟩, ⟨⟩, ⟨⟩⟩
29: call HTTPS_SIMPLE_SEND([responseTo : DPOP_NONCE],message, a, s′)

30: stop

Algorithm 8 Relation of script_client_index
Input: ⟨tree , docnonce , scriptstate , scriptinputs , cookies , localStorage , sessionStorage , ids , secrets⟩ → Script that models the index

page of a client. Users can initiate the login flow or follow arbitrary links. The script receives various information about the current browser
state, filtered according to the access rules (same origin policy and others) in the browser.

1: let switch ← {auth, link} → Non-deterministically decide whether to start a login flow or to follow some link.
2: if switch ≡ auth then → Start login flow.
3: let url := GETURL(tree, docnonce) → Retrieve URL of current document.
4: let id ← ids → Retrieve one of user’s identities.
5: let as := id .domain → Extract domain of AS from chosen id .
6: let url ′ := ⟨URL, S, url .host, /startLogin, ⟨⟩,⊥⟩ → Assemble request URL.
7: let command := ⟨FORM, url ′, POST, as,⊥⟩ → Post a form including the selected AS to the client.
8: stop ⟨s, cookies, localStorage, sessionStorage, command⟩ → Finish script’s run and instruct the browser to execute the command

(i.e., to POST the form).
9: else → Follow (random) link to facilitate referrer-based attacks.

10: let protocol ← {P, S} → Non-deterministically select protocol (HTTP or HTTPS).
11: let host ← Doms → Non-det. select host.
12: let path ← S → Non-det. select path.
13: let fragment ← S → Non-det. select fragment part.
14: let parameters ← [S× S] → Non-det. select parameters.
15: let url := ⟨URL, protocol , host , path, parameters, fragment⟩ → Assemble request URL.
16: let command := ⟨HREF, url ,⊥,⊥⟩ → Follow link to the selected URL.
17: stop ⟨s, cookies, localStorage, sessionStorage, command⟩ → Finish script’s run and instruct the browser to execute the command

(follow link).



K. Authorization Servers

An authorization server as ∈ AS is a Web server modeled as an atomic process (Ias, Zas, Ras, sas0 ) with the addresses Ias :=
addr(as). Next, we define the set Zas of states of as and the initial state sas0 of as.

Definition 17. A state s ∈ Zas of an AS as is a term of the form ⟨DNSAddress , pendingDNS , pendingRequests , corrupt ,
keyMapping , tlskeys , jwk , registrationRequests , clients , records , authorizationRequests , mtlsRequests , rsCredentials⟩ with:
DNSaddress ∈ IPs, pendingDNS ∈

[
N × TN

]
, pendingRequests ∈ TN , corrupt ∈ TN , keyMapping ∈

[
Doms× TN

]
(as

in Definition 71), tlskeys ∈ [Doms×KTLS], jwk ∈ Ksign, registrationRequests ∈ TN , clients ∈
[
TN × TN

]
, records ∈ TN ,

authorizationRequests ∈
[
TN × TN

]
, mtlsRequests ∈

[
TN × TN

]
, and rsCredentials ∈ TN .

An initial state sas0 of as is a state of as with
• sas0 .DNSaddress ∈ IPs,
• sas0 .pendingDNS ≡ ⟨⟩,
• sas0 .pendingRequests ≡ ⟨⟩,
• sas0 .corrupt ≡ ⊥,
• sas0 .keyMapping being the same as the keymapping for browsers,
• sas0 .tlskeys ≡ tlskeysas,
• sas0 .jwk ≡ signkey(as) (see Appendix D-C),
• sas0 .registrationRequests ≡ ⟨⟩,
• sas0 .clients ≡ clientInfoAS(as) (see Definition 14),
• sas0 .records ≡ ⟨⟩,
• sas0 .authorizationRequests ≡ ⟨⟩,
• sas0 .mtlsRequests ≡ ⟨⟩, and
• sas0 .rsCredentials ≡ rsCreds where rsCreds is a sequence and
∀c : c ∈ rsCreds ⇔ (∃d ∈ dom(as), rs ∈ Doms : c ≡ secretOfRS(d, rs)).

We now specify the relation Ras: This relation is based on the model of generic HTTPS servers (see Appendix G-L). We specify
algorithms that differ from or do not exist in the generic server model in Algorithms 9 to 10. Algorithm 11 shows the script
script_as_form that is used by ASs.



Algorithm 9 Relation of AS Ras – Processing HTTPS Requests
1: function PROCESS_HTTPS_REQUEST(m, k, a, f , s′)
2: if m.path ≡ /.well-known/openid-configuration ∨

↪→ m.path ≡ /.well-known/oauth-authorization-server then →We model both OIDD and RFC 8414.
3: let metaData := [issuer : m.host]
4: let metaData[auth_ep] := ⟨URL, S,m.host, /auth, ⟨⟩,⊥⟩
5: let metaData[token_ep] := ⟨URL, S,m.host, /token, ⟨⟩,⊥⟩
6: let metaData[par_ep] := ⟨URL, S,m.host, /par, ⟨⟩,⊥⟩
7: let metaData[introspec_ep] := ⟨URL, S,m.host, /introspect, ⟨⟩,⊥⟩
8: let metaData[jwks_uri] := ⟨URL, S,m.host, /jwks, ⟨⟩,⊥⟩
9: let m′ := encs(⟨HTTPResp,m.nonce, 200, ⟨⟩,metaData⟩, k)

10: stop ⟨⟨f, a,m′⟩⟩, s′
11: else if m.path ≡ /jwks then
12: let m′ := encs(⟨HTTPResp,m.nonce, 200, ⟨⟩, pub(s′.jwk)⟩, k)
13: stop ⟨⟨f, a,m′⟩⟩, s′
14: else if m.path ≡ /auth then → Authorization endpoint: Reply with login page.
15: if m.method ≡ GET then
16: let data :=m.parameters
17: else if m.method ≡ POST then
18: let data :=m.body

19: let requestUri := data[request_uri]
20: if requestUri ≡ ⟨⟩ then
21: stop → FAPI 2.0 mandates PAR, therefore a request URI is required
22: let authzRecord := s′.authorizationRequests[requestUri ]
23: let clientId := data[client_id]
24: if authzRecord [client_id] ̸≡ clientId then → Check binding of request URI to client
25: stop
26: if clientId ̸∈ s′.clients then
27: stop → Unknown client
28: let s′.authorizationRequests[requestUri ][auth2_reference] := ν5
29: let m′ := encs(⟨HTTPResp,m.nonce, 200, ⟨⟨ReferrerPolicy, origin⟩⟩, ⟨script_as_form, [auth2_reference : ν5]⟩⟩, k)
30: stop ⟨⟨f, a,m′⟩⟩, s′
31: else if m.path ≡ /auth2 ∧m.method ≡ POST ∧m.headers[Origin] ≡ ⟨m.host, S⟩ then → Second step of authorization
32: let identity :=m.body[identity]
33: let password :=m.body[password]
34: if identity .domain ̸∈ dom(as) then
35: stop → This AS does not manage identity

36: if password ̸≡ secretOfID(identity) then
37: stop → Invalid user credentials
38: let auth2Reference :=m.body[auth2_reference]
39: let requestUri such that s′.authorizationRequests[requestUri ][auth2_reference] ≡ auth2Reference

↪→ if possible; otherwise stop
40: let authzRecord := s′.authorizationRequests[requestUri ]
41: let authzRecord [subject] := identity
42: let authzRecord [issuer] := m.host
43: let authzRecord [code] := ν1 → Generate a fresh, random authorization code
44: let s′.records := s′.records +⟨⟩ authzRecord
45: let responseData := [code : authzRecord [code]]
46: if authzRecord [state] ̸≡ ⟨⟩ then
47: let responseData[state] := authzRecord [state]

48: let redirectUri := authzRecord [redirect_uri]
49: let redirectUri .parameters := redirectUri .parameters ∪ responseData
50: let redirectUri .parameters[iss] := authzRecord [issuer]
51: let m′ := encs(⟨HTTPResp,m.nonce, 303, ⟨⟨Location, redirectUri⟩⟩, ⟨⟩⟩, k)
52: stop ⟨⟨f, a,m′⟩⟩, s′
53: else if m.path ≡ /par ∧m.method ≡ POST then → Pushed Authorization Request
54: if m.body[response_type] ̸≡ code ∨m.body[code_challenge_method] ̸≡ S256 then
55: stop
56: let authnResult := AUTHENTICATE_CLIENT(m, s′) → Stops in case of errors/failed authentication
57: let clientId := authnResult .1
58: let s ′ := authnResult .2
59: let mtlsInfo := authnResult .3
60: if clientId ̸≡ m.body[client_id] then
61: stop → Key used in client authentication is not registered for m.body[client_id]
62: let redirectUri :=m.body[redirect_uri] → Clients are required to send redirect_uri with each request
→Algorithm continues on next page.



63: if redirectUri ≡ ⟨⟩ then
64: stop
65: if redirectUri .protocol ̸≡ S then
66: stop
67: let codeChallenge :=m.body[code_challenge] → PKCE challenge
68: if codeChallenge ≡ ⟨⟩ then
69: stop →Missing PKCE challenge
70: let requestUri := ν4 → Choose random URI
71: let authzRecord := [client_id : clientId ]
72: let authzRecord [state] :=m.body[state]
73: let authzRecord [scope] :=m.body[scope]
74: if nonce ∈ m.body then
75: let authzRecord [nonce] :=m.body[nonce]

76: let authzRecord [redirect_uri] := redirectUri
77: let authzRecord [code_challenge] := codeChallenge
78: let s′.authorizationRequests[requestUri ] := authzRecord → Store data linked to requestUri
79: let m′ := encs(⟨HTTPResp,m.nonce, 201, ⟨⟩, [request_uri : requestUri ]⟩, k)
80: stop ⟨⟨f, a,m′⟩⟩, s′
81: else if m.path ≡ /token ∧m.method ≡ POST then
82: if m.body[grant_type] ̸≡ authorization_code then
83: stop
84: let authnResult := AUTHENTICATE_CLIENT(m, s′) → Stops in case of errors/failed authentication
85: let clientId := authnResult .1
86: let s ′ := authnResult .2
87: let mtlsInfo := authnResult .3
88: let code :=m.body[code]
89: let codeVerifier :=m.body[code_verifier]
90: if code ≡ ⟨⟩ ∨ codeVerifier ≡ ⟨⟩ then
91: stop →Missing code or code_verifier
92: let record , ptr such that record ≡ s′.records.ptr ∧ record [code] ≡ code ∧ code ̸≡ ⊥ ∧ ptr ∈ N if possible; otherwise stop
93: if record [client_id] ̸≡ clientId then
94: stop
95: if record [code_challenge] ̸≡ hash(codeVerifier) ∨ record [redirect_uri] ̸≡ m.body[redirect_uri] then
96: stop → PKCE verification failed or URI mismatch
97: let clientType := s′.clients[clientId ][client_type]
98: if clientType ≡ pkjwt_DPoP ∨ clientType ≡ mTLS_DPoP then → DPoP token binding
99: let tokenType := DPoP
100: let dpopProof :=m.headers[DPoP]
101: let dpopJwt := extractmsg(dpopProof )
102: let verificationKey := dpopJwt [headers][jwk]
103: if checksig(dpopProof , verificationKey) ̸≡ ⊤ ∨ verificationKey ≡ ⟨⟩ then
104: stop → Invalid DPoP signature (or empty jwk header)
105: let dpopClaims := dpopJwt [payload]
106: let reqUri := ⟨URL, S,m.host,m.path, ⟨⟩,⊥⟩
107: if dpopClaims[htm] ̸≡ m.method ∨ dpopClaims[htu] ̸≡ reqUri then
108: stop → DPoP claims do not match corresponding message
109: let cnfContent := [jkt : hash(verificationKey)]
110: else if clientType ≡ pkjwt_mTLS ∨ clientType ≡ mTLS_mTLS then → mTLS token binding
111: let tokenType := Bearer
112: let mtlsNonce :=m.body[TLS_binding]
113: if clientType ≡ mTLS_mTLS then → Client used mTLS authentication, reuse data from authentication
114: if mtlsNonce ̸≡ mtlsInfo.1 then
115: stop → Client tried to use different mTLS key for authentication and token binding
116: else → Client did not use mTLS authentication
117: let mtlsInfo such that mtlsInfo ∈ s′.mtlsRequests[clientId ] ∧mtlsInfo.1 ≡ mtlsNonce if possible; otherwise stop
118: let s′.mtlsRequests[clientId ] := s′.mtlsRequests[clientId ] −⟨⟩ mtlsInfo

119: let mTlsKey :=mtlsInfo.2 → mTLS public key of client
120: let cnfContent := [x5t#S256 : hash(mTlsKey)]
121: else
122: stop → Client used neither DPoP nor mTLS
123: let s′.records.ptr [code] := ⊥ → Invalidate code
124: let atType ← {JWT, opaque} → The AS chooses randomly whether it issues a structured or an opaque access token
→Algorithm continues on next page.



125: if atType ≡ JWT then → Structured access token
126: let accessTokenContent := [cnf : cnfContent , sub : record [subject]]
127: let accessToken := sig(accessTokenContent , s′.jwk)
128: else → Opaque access token
129: let accessToken := ν2 → Fresh random value
130: let s′.records.ptr [access_token] := accessToken → Store for token introspection
131: let s′.records.ptr [cnf] := cnfContent → Store for token introspection
132: let body := [access_token : accessToken, token_type : tokenType]
133: if record [scope] ≡ openid then → Client requested ID token
134: let idTokenBody := [iss : record [issuer]]
135: let idTokenBody [sub] := record [subject]
136: let idTokenBody [aud] := record [client_id]
137: if nonce ∈ record then
138: let idTokenBody [nonce] := record [nonce]

139: let idToken := sig(idTokenBody , s′.jwk)
140: let body [id_token] := idToken

141: let m′ := encs(⟨HTTPResp,m.nonce, 200, ⟨⟩, body⟩, k)
142: stop ⟨⟨f, a,m′⟩⟩, s′
143: else if m.path ≡ /introspect ∧m.method ≡ POST ∧ token ∈ m.body then
144: let rsCredentials such that ⟨Basic, rsCredentials⟩ ≡ m.headers[Authorization] if possible; otherwise stop
145: if rsCredentials ̸∈ s′.rsCredentials then
146: stop → RS authentication failed
147: let token :=m.body[token]
148: let record such that record ∈ s′.records ∧ record [access_token] ≡ token if possible; otherwise let record := 3

149: if record ≡ 3 then → Unknown token
150: let m′ := encs(⟨HTTPResp,m.nonce, 200, ⟨⟩, [active : ⊥]⟩, k)
151: else → token was issued by this AS
152: let body := [active : ⊤, cnf : record [cnf], sub : record [subject]] → cnf claim contains hash of token binding key
153: let m′ := encs(⟨HTTPResp,m.nonce, 200, ⟨⟩, body⟩, k)
154: stop ⟨⟨f, a,m′⟩⟩, s′
155: else if m.path ≡ /MTLS-prepare then → See Appendix D-H
156: let clientId :=m.body[client_id]
157: let mtlsNonce := ν3
158: let clientKey := s′.clients[clientId ][mtls_key]
159: if clientKey ≡ ⟨⟩ ∨ clientKey ≡ pub(⋄) then
160: stop → Client has no mTLS key
161: let s′.mtlsRequests[clientId ] := s′.mtlsRequests[clientId ] +⟨⟩ ⟨mtlsNonce, clientKey⟩
162: let m′ := encs(⟨HTTPResp,m.nonce, 200, ⟨⟩, enca(⟨mtlsNonce, s′.keyMapping[m.host]⟩, clientKey)⟩, k)
163: stop ⟨⟨f, a,m′⟩⟩, s′

164: stop → Request was malformed or sent to non-existing endpoint.



Algorithm 10 Relation of AS Ras – Client Authentication
1: function AUTHENTICATE_CLIENT(m, s′) → Check client authentication in message m. Stops the current processing step in case of

errors or failed authentication.
2: if client_assertion ∈ m.body then → private_key_jwt client authentication
3: let jwts :=m.body[client_assertion]
4: let clientId , verificationKey such that verificationKey ≡ s′.clients[clientId ][jwt_key] ∧

↪→ checksig(jwts, verificationKey) ≡ ⊤ if possible; otherwise stop
5: if verificationKey ≡ ⟨⟩ ∨ verificationKey ≡ pub(⋄) then
6: stop → Client has no jwt key
7: let clientInfo := s′.clients[clientId ]
8: let clientType := clientInfo[client_type]
9: if clientType ̸≡ pkjwt_mTLS ∧ clientType ̸≡ pkjwt_DPoP then

10: stop → Client authentication type mismatch
11: let jwt := extractmsg(jwts)
12: if jwt [iss] ̸≡ clientId ∨ jwt [sub] ̸≡ clientId then
13: stop
14: if jwt [aud] ̸≡ ⟨URL, S,m.host, /token, ⟨⟩,⊥⟩ ∧ jwt [aud] ̸≡ m.host → issuer in AS metadata is just the host part

↪→ ∧ jwt [aud] ̸≡ ⟨URL, S,m.host, /par, ⟨⟩,⊥⟩ then
15: stop → aud claim value is neither token, nor PAR endpoint nor AS issuer identifier
16: else if TLS_AuthN ∈ m.body then → mTLS client authentication
17: let clientId :=m.body[client_id] → [11] mandates client_id when using mTLS authentication
18: let mtlsNonce :=m.body[TLS_AuthN]
19: let mtlsInfo such that mtlsInfo ∈ s′.mtlsRequests[clientId ] ∧mtlsInfo.1 ≡ mtlsNonce if possible; otherwise stop
20: let clientInfo := s′.clients[clientId ]
21: let clientType := clientInfo[client_type]
22: if clientType ̸≡ mTLS_mTLS ∧ clientType ̸≡ mTLS_DPoP then
23: stop → Client authentication type mismatch
24: let s′.mtlsRequests[clientId ] := s′.mtlsRequests[clientId ] −⟨⟩ mtlsInfo
25: else
26: stop → Unsupported client (authentication) type
27: if clientType ≡ mTLS_mTLS ∨ clientType ≡ mTLS_DPoP then
28: return ⟨clientId , s′,mtlsInfo⟩
29: else
30: return ⟨clientId , s′,⊥⟩ → private_key_jwt client authentication, i.e., no mTLS info

Algorithm 11 Relation of script_as_form: A login page for the user.
Input: ⟨tree , docnonce , scriptstate , scriptinputs , cookies , localStorage , sessionStorage , ids , secrets⟩
1: let url := GETURL(tree, docnonce)
2: let url ′ := ⟨URL, S, url .host, /auth2, ⟨⟩,⊥⟩
3: let formData := scriptstate
4: let identity ← ids
5: let secret ← secrets
6: let formData[identity] := identity
7: let formData[password] := secret
8: let command := ⟨FORM, url ′, POST, formData,⊥⟩
9: stop ⟨s, cookies, localStorage, sessionStorage, command⟩



L. Resource Servers

A resource server rs ∈ RS is a Web server modeled as an atomic process (Irs , Zrs , Rrs , srs0 ) with the addresses Irs := addr(rs).
The set of states Zrs and the initial state srs0 of rs are defined in the following.

Definition 18. A state s ∈ Zrs of a resource server rs is a term of the form ⟨DNSaddress , pendingDNS , pendingRequests ,
corrupt , keyMapping , tlskeys , mtlsRequests , pendingResponses , resourceNonces , ids , asInfo, resourceASMapping ,
dpopNonces⟩ with DNSaddress ∈ IPs, pendingDNS ∈

[
N × TN

]
, pendingRequests ∈

[
N × TN

]
, corrupt ∈ TN ,

keyMapping ∈
[
Doms× TN

]
, tlskeys ∈ [Doms×KTLS] (all former components as in Definition 71), mtlsRequests ∈ TN ,

pendingResponses ∈ TN , resourceNonces ∈
[
ID× TN

]
, ids ⊂ ID, asInfo ∈

[
Doms× TN

]
, resourceASMapping ∈[

resourceURLPathrs × TN
]
, and dpopNonces ∈ TN .

An initial state srs0 of rs is a state of rs with
• srs0 .DNSaddress ∈ IPs,
• srs0 .pendingDNS ≡ ⟨⟩,
• srs0 .pendingRequests ≡ ⟨⟩,
• srs0 .corrupt ≡ ⊥,
• srs0 .keyMapping being the same as the keymapping for browsers,
• srs0 .tlskeys ≡ tlskeysrs ,
• srs0 .mtlsRequests ≡ ⟨⟩,
• srs0 .pendingResponses ≡ ⟨⟩,
• srs0 .resourceNonces being a dictionary where the RS stores the resource nonces for each identity and resource id pair,

initialized as srs0 .resourceNonces[id ][resourceID ] := ⟨⟩, ∀id ∈⟨⟩ srs0 .ids,∀resourceID ∈ S
• srs0 .ids ⊂⟨⟩ ⟨ID⟩ such that ∀id ∈ srs0 .ids : governor(id) ∈ supportedAuthorizationServerrs , i.e., the RS manages only

resources of identities that are governed by one of the AS supported by the RS,
• and for each domain of a supported AS domas ∈ supportedAuthorizationSeverDomsrs , let srs0 .asInfo contain a dictionary

entry with the following values:
– srs0 .asInfo[domas ][as_introspect_ep] ≡ ⟨URL, S, domas , /introspect, ⟨⟩,⊥⟩ (the URL of the introspection end-

point of the AS)
– srs0 .asInfo[domas ][as_key] ≡ signkey(dom−1(domas)) being the verification key for the AS
– srs0 .asInfo[domas ][rs_credentials] being a sequence s.t. ∀c : c ∈⟨⟩ srs0 .asInfo[domas ][rs_credentials] ⇔
(∃rsDom ∈ dom(rs) : c ≡ secretOfRS(domas , rsDom)), i.e., the secrets used by the RS for authenticating at the AS.

• srs0 .resourceASMapping[resourceID ] ∈ dom(authorizationServerOfResourcers(resourceID)),
∀resourceID ∈ resourceURLPathrs (a domain of the AS managing the resource identified by resourceID),

• srs0 .dpopNonces ≡ ⟨⟩

The relation Rrs is again based on the generic HTTPS server model (see Appendix G-L), for which the algorithms used for
processing HTTP requests and responses are defined in Algorithm 12 and Algorithm 13.



Algorithm 12 Relation of RS Rrs – Processing HTTPS Requests
1: function PROCESS_HTTPS_REQUEST(m, k, a, f , s′)
2: if m.path ≡ /MTLS-prepare then
3: let mtlsNonce := ν1
4: let clientKey :=m.body[pub_key] →Certificate is not required to be checked [11, Section 4.2]
5: let s′.mtlsRequests := s′.mtlsRequests +⟨⟩ ⟨mtlsNonce, clientKey⟩
6: let m′ := encs(⟨HTTPResp,m.nonce, 200, ⟨⟩, enca(⟨mtlsNonce, s′.keyMapping[m.host]⟩, clientKey)⟩, k)
7: stop ⟨⟨f, a,m′⟩⟩, s′
8: else if m.path ≡ /DPoP-nonce then
9: let freshDpopNonce := νdpop

10: let s′.dpopNonces := s′.dpopNonces +⟨⟩ freshDpopNonce
11: let m′ := encs(⟨HTTPResp,m.nonce, 200, ⟨⟩, [nonce : freshDpopNonce]⟩, k)
12: stop ⟨⟨f, a,m′⟩⟩, s′
13: else
14: let resourceID :=m.path
15: let responsibleAS := s′.resourceASMapping[resourceID ]
16: if responsibleAS ≡ ⟨⟩ then
17: stop → Resource is not managed by any of the supported ASs
18: let asInfo := s′.asInfo[responsibleAS ]
19: if Authorization ∈ m.headers then
20: let authnScheme :=m.headers[Authorization].1
21: let accessToken :=m.headers[Authorization].2
22: if authnScheme ≡ Bearer then → mTLS sender constraining
23: let mtlsNonce :=m.body[TLS_binding]
24: let mtlsInfo such that mtlsInfo ∈⟨⟩ s′.mtlsRequests ∧mtlsInfo.1 ≡ mtlsNonce if possible; otherwise stop
25: let s′.mtlsRequests := s′.mtlsRequests −⟨⟩ mtlsInfo
26: let mtlsKey :=mtlsInfo.2
27: let cnfValue := [x5t#S256 : hash(mTlsKey)]
28: else if authnScheme ≡ DPoP then → DPoP sender constraining
29: let dpopProof :=m.headers[DPoP]
30: let dpopJwt := extractmsg(dpopProof )
31: let verificationKey := dpopJwt [headers][jwk]
32: if checksig(dpopProof , verificationKey) ̸≡ ⊤ ∨ verificationKey ≡ ⟨⟩ then
33: stop → Invalid DPoP signature (or empty jwk header)
34: let dpopClaims := dpopJwt [payload]
35: let reqUri := ⟨URL, S,m.host,m.path, ⟨⟩,⊥⟩
36: if dpopClaims[htm] ̸≡ m.method ∨ dpopClaims[htu] ̸≡ reqUri then
37: stop → DPoP claims do not match corresponding message
38: if dpopClaims[nonce] ̸∈ s′.dpopNonces then
39: stop → Invalid DPoP nonce
40: if dpopClaims[ath] ̸≡ hash(accessToken) then
41: stop → Invalid access token hash
42: let s′.dpopNonces := s′.dpopNonces −⟨⟩ dpopClaims[nonce]
43: let cnfValue := [jkt : hash(verificationKey)]
44: else
45: stop →Wrong Authorization header value
46: let resource := ν4 → Generate a fresh resource nonce
47: let accessTokenContent such that accessTokenContent ≡ extractmsg(accessToken)

↪→ if possible; otherwise let accessTokenContent := ⋄
48: if accessTokenContent ≡ ⋄ then → Not a structured AT, do Token Introspection

→ Store values for the pending request (needed when the RS gets the introspection response)
49: let requestId := ν2
50: let s′.pendingResponses[requestId ] := [expectedCNF : cnfValue, requestingClient : f ,

↪→ resourceID : resourceID , originalRequest : m, originalRequestKey : k, resource : resource]
51: let url := asInfo[as_introspect_ep]
52: let rsCred ← asInfo[rs_credentials] → Secret for authenticating at the AS (see also [69, Sec. 2.1])
53: let headers := [Authorization : ⟨Basic, rsCred⟩]
54: let body := [token : accessToken]
55: let message := ⟨HTTPReq, ν3, POST, url .domain, url .path, url .parameters, headers, body⟩
56: call HTTPS_SIMPLE_SEND([responseTo : TOKENINTROSPECTION, requestId : requestId ], message , a, s′)
57: else → Check structured AT
58: if cnfValue.1 ̸≡ accessTokenContent [cnf].1 ∨ cnfValue.2 ̸≡ accessTokenContent [cnf].2 then
59: stop → AT is bound to a different key
60: if checksig(accessToken, asInfo[as_key]) ̸≡ ⊤ then
61: stop → Verification of AT signature failed
→Algorithm continues on next page.



62: let id := accessTokenContent[sub]
63: if id ̸∈⟨⟩ s′.ids then
64: stop → RS does not manage resources of this RO

→Token binding successfully checked, the RS gives access to a resource of the identity
65: let s′.resourceNonces[id ][resourceID ] := s′.resourceNonces[id ][resourceID ] +⟨⟩ resource
66: let m′ := encs(⟨HTTPResp,m.nonce, 200, ⟨⟩, [resource:resource]⟩, k)

→ Leak resource request. Note that we only leak the application-layer message, and in particular, not the mTLS nonce.
67: let leakingMessage := ⟨HTTPReq, νRRleak, POST,m.domain,m.path,m.parameters,m.headers, []⟩
68: let leakAddress ← IPs
69: stop ⟨⟨f , a,m′⟩, ⟨leakAddress, a, ⟨LEAK, leakingMessage⟩⟩⟩, s′
70: else
71: stop → Expected AT in Authorization header as mandated by FAPI 2.0

Algorithm 13 Relation of a Resource Server Rrs – Processing HTTPS Responses
1: function PROCESS_HTTPS_RESPONSE(m, reference , request , key , a, f , s′)
2: if reference[responseTo] ≡ TOKENINTROSPECTION then
3: let pendingRequestInfo := s′.pendingResponses[reference[requestId]]
4: let clientAddress := pendingRequestInfo[requestingClient]
5: let expectedCNF := pendingRequestInfo[expectedCNF]
6: let origReq := pendingRequestInfo[originalRequest]
7: let originalRequestKey := pendingRequestInfo[originalRequestKey]
8: let resourceID := pendingRequestInfo[resourceID]
9: let resource := pendingRequestInfo[resource]

10: if m.body[active] ̸≡ ⊤ then
11: stop → Access token was invalid
12: let responseCNF :=m.body[cnf]
13: if responseCNF .1 ̸≡ expectedCNF .1 ∨ responseCNF .2 ̸≡ expectedCNF .2 then
14: stop → Access token was bound to a different key
15: let id := m.body[sub]
16: if id ̸∈⟨⟩ s′.ids then
17: stop → RS does not manage resources of this RO

→Token binding successfully checked, the RS gives access to a resource of the identity
18: let s′.resourceNonces[id ][resourceID ] := s′.resourceNonces[id ][resourceID ] +⟨⟩ resource
19: let m′ := encs(⟨HTTPResp, origReq .nonce, 200, ⟨⟩, [resource:resource]⟩, originalRequestKey)

→ Leak resource request. Note that we only leak the application-layer message, and in particular, not the mTLS nonce.
20: let leakingMessage := ⟨HTTPReq, νRRleak, POST, origReq .domain, origReq .path, origReq .parameters, origReq .headers, []⟩
21: let leakAddress ← IPs
22: stop ⟨⟨f , a,m′⟩, ⟨leakAddress, a, ⟨LEAK, leakingMessage⟩⟩⟩, s′



APPENDIX E
FORMAL SESSION INTEGRITY PROPERTIES

In Section IV-E, we present our authorization and authentication properties. Here, we give the formal definition of the session
integrity properties.

A. Session Integrity

On a high-level view, the two session integrity properties state that (1) an honest user, after logging in, is indeed logged in under
their own account and not under the account of an attacker, and (2) similarly, that an honest user is accessing their own resources
and not the resources of the attacker.

In addition to the authorization and authentication properties, it is important that the integrity of user sessions is not compromised.
This is captured by two different session integrity properties.

More precisely, the first one, session integrity for authorization, ensures that an honest user should never use resources of the
attacker. The second property, session integrity for authentication, captures that an honest user should never be logged in under the
identity of the attacker.

We first define notations for the processing steps that represent important events during a run of a FAPI 2.0 web system.

Definition 19 (User is logged in). For a run ρ of a FAPI 2.0 web system with network attacker FAPI we say that a browser b was
authenticated to a client c using an authorization server as and an identity id in a login session identified by a nonce lsid in
processing step Q in ρ with

Q = (S,E,N) −−−−→
c→Eout

(S′, E′, N ′)

and some event ⟨y, y′,m⟩ ∈ Eout such that m is an HTTPS response to an HTTPS request sent by b to c and we have that in the
headers of m there is a header of the form ⟨Set-Cookie, [serviceSessionId : ⟨ssid ,⊤,⊤,⊤⟩]⟩ for some nonce ssid such that
S(c).sessions[lsid ][serviceSessionId] ≡ ssid and S(c).sessions[lsid ][loggedInAs] ≡ ⟨d, id⟩ with d ∈ dom(as). We
then write loggedInQρ (b, c, id , as, lsid).

Definition 20 (User started a login flow). For a run ρ of a FAPI 2.0 web system with network attacker FAPI we say that the user
of the browser b started a login session identified by a nonce lsid at the client c in a processing step Q in ρ if (1) in that processing
step, the browser b was triggered, selected a document loaded from an origin of c, executed the script script_client_index in that
document, and in that script, executed the Line 8 of Algorithm 8, and (2) c sends an HTTPS response corresponding to the HTTPS
request sent by b in Q and in that response, there is a header of the form ⟨Set-Cookie, [⟨__Host, sessionId⟩ : ⟨lsid ,⊤,⊤,⊤⟩]⟩.
We then write startedQρ (b, c, lsid).

Definition 21 (User authenticated at an AS). For a run ρ of a FAPI 2.0 web system with network attacker FAPI we say that the
user of the browser b authenticated to an authorization server as using an identity id for a login session identified by a nonce lsid
at the client c if there is a processing step Q = (S,E,N) −→ (S′, E′, N ′) in ρ in which the browser b was triggered, selected a
document loaded from an origin of as , executed the script script_as_form in that document, and in that script, (1) in Line 4 of
Algorithm 11, selected the identity id , and (2) we have that

• the scriptstate of that document, when triggered in Q, contains a nonce auth2Reference such that
scriptstate[auth2_reference] ≡ auth2Reference, and

• there is a nonce requestUri such that S(as).authorizationRequests[requestUri ][auth2_reference] ≡
auth2Reference, and

• S(c).sessions[lsid ][request_uri] ≡ requestUri .
We then write authenticatedQρ (b, c, id , as, lsid).

Definition 22 (Resource Access). For a run ρ of a FAPI 2.0 web system with network attacker FAPI we say that a browser b ∈ B
gets access to a resource of identity u stored at resource server rs managed by authorization server as through the session of client
c identified by the nonce lsid in a processing step Q = (S,E,N) −→ (S′, E′, N ′) in ρ if c executes Line 55 of Algorithm 2 in Q,
includes the resource r in the body of the HTTPS response that is sent out there, and it holds true that

1) r ∈⟨⟩ S′(rs).resourceNonces[u][resourceId ] and as = authorizationServerOfResourcers(resourceID) (for some value
resourceId ∈ TN ),

2) ⟨⟨__Host, sessionid⟩, ⟨lsid , y, z, z′⟩⟩ ∈⟨⟩ S′(b).cookies[d] for d ∈ dom(c), y, z, z′ ∈ TN ,
3) S′(c).sessions[lsid ][resourceServer] ∈ dom(rs).
4) the request to which the client is responding contains a Cookie header with the cookie ⟨__Host, sessionId⟩ with the value

lsid

We then write accessesResourceQρ (b, r, u, c, rs, as, lsid).



Definition 23 (Client Leaked Authorization Request). Let FAPI be a FAPI 2.0 web system with network attacker. For a run ρ of
FAPI with a processing step Q, a client c ∈ C, a browser b, an authorization server as ∈ AS, an identity id , a login session
id lsid , and loggedInQρ (b, c, id , as, lsid), we say that c leaked the authorization request for lsid , if there is a processing step
Q′ = (S,E,N) −−−−→

c→Eout
(S′, E′, N ′) in ρ prior to Q such that in Q′, c executes Line 36 of Algorithm 2 and there is a nonce

requestUri and an event ⟨x, y,m⟩ ∈ Eout with m.1 ≡ LEAK and m.2.parameters[request_uri] ≡ requestUri such that
S′(c).sessions[lsid ][request_uri] ≡ requestUri .

Session Integrity Property for Authentication

This security property captures that (a) a user should only be logged in when the user actually expressed the wish to start a FAPI
flow before, and (b) if a user expressed the wish to start a FAPI flow using some honest authorization server and a specific identity,
then user is not logged in under a different identity.

Definition 24 (Session Integrity for Authentication). Let FAPI be a FAPI 2.0 web system with network attacker. We say that FAPI
is secure w.r.t. session integrity for authentication iff for every run ρ of FAPI , every processing step Q = (S,E,N) −→ (S′, E′, N ′)
in ρ, every browser b that is honest in S, every as ∈ AS, every identity id , every client c ∈ C that is honest in S, every nonce lsid ,
and loggedInQρ (b, c, id , as, lsid) and c did not leak the authorization request for lsid (see Definition 23), we have that (1) there
exists a processing step Q′ in ρ (before Q) such that startedQ

′

ρ (b, c, lsid), and (2) if as is honest in S, then there exists a processing
step Q′′ in ρ (before Q) such that authenticatedQ

′′

ρ (b, c, id , as, lsid).

Session Integrity Property for Authorization

This security property captures that (a) a user should only access resources when the user actually expressed the wish to start a
FAPI flow before, and (b) if a user expressed the wish to start a FAPI flow using some honest authorization server and a specific
identity, then the user is not using resources of a different identity. We note that for this, we require that the resource server which
the client uses is honest, as otherwise, the attacker can trivially return any resource.

Definition 25 (Session Integrity for Authorization). Let FAPI be a FAPI 2.0 web system with network attacker. We say that FAPI
is secure w.r.t. session integrity for authorization iff for every run ρ of FAPI , every processing step Q = (S,E,N) −→ (S′, E′, N ′)
in ρ, every browser b that is honest in S, every as ∈ AS, every identity u, every client c ∈ C that is honest in S, every
rs ∈ RS that is honest in S, every nonce r, every nonce lsid , we have that if accessesResourceQρ (b, r , u, c, rs, as, lsid) and c
did not leak the authorization request for lsid (see Definition 23), , then (1) there exists a processing step Q′ in ρ (before Q)
such that startedQ

′

ρ (b, c, lsid), and (2) if as is honest in S, then there exists a processing step Q′′ in ρ (before Q) such that
authenticatedQ

′′

ρ (b, c, u, as, lsid).

By session integrity we denote the conjunction of both properties.

APPENDIX F
PROOFS

A. Helper Lemmas

Lemma 1 (Host of HTTP Request). For any run ρ of a FAPI web system FAPI with a network attacker, every configuration
(S,E,N) in ρ and every process p ∈ C ∪ AS ∪ RS that is honest in S it holds true that if the generic HTTPS server calls
PROCESS_HTTPS_REQUEST(mdec, k, a, f, s) in Algorithm 31, then mdec.host ∈ dom(p), for all values of k, a, f and s.

PROOF. PROCESS_HTTPS_REQUEST is called only in Line 9 of Algorithm 31. The input message m is an asymetrically
encrypted ciphertext. Intuitively, such a message is only decrypted if the process knows the private TLS key, where the private key
used to decrypt is chosen (non-deterministically) according to the host of the decrypted message.

More formally, when PROCESS_HTTPS_REQUEST is called, the stop in Line 8 is not called. Therefore, it holds true that

∃ inDomain, k′ : ⟨inDomain, k′⟩ ∈ S(p).tlskeys ∧mdec.host ≡ inDomain

⇒ ∃ inDomain, k′ : ⟨inDomain, k′⟩ ∈ tlskeysp ∧mdec.host ≡ inDomain
Def. (Appendix D-C)⇒ ∃ inDomain, k′ : ⟨inDomain, k′⟩ ∈ {⟨d, tlskey(d)⟩|d ∈ dom(p)} ∧mdec.host ≡ inDomain

From this, it follows directly that mdec.host ∈ dom(p).
The first implication holds true due to S(p).tlskeys ≡ sp0.tlskeys ≡ tlskeysp, as this sequence is never changed by any

honest process p ∈ C∪AS∪RS and due to the definitions of the initial states of clients, authorization servers, and resource servers
(Definition 16, Definition 17, Definition 18). ■



Lemma 2 (Client’s Signing Key Does Not Leak). For any run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of a FAPI web system FAPI
with a network attacker, every configuration (S,E,N) in ρ, every client c ∈ C that is honest in S, and every process p with p ̸= c,
all of the following hold true:

• signkey(c) ̸∈ d∅(S(p))
• signkey(c) ≡ sc0.jwk
• signkey(c) ≡ S(c).jwk

PROOF. signkey(c) ≡ sc0.jwk immediately follows from Definition 16. signkey(c) ≡ S(c).jwk follows from Definition 16 and by
induction over the processing steps: state subterm jwk of a client is never changed.

The only places in which an honest client accesses the jwk state subterm are: Line 19 of Algorithm 3, Line 31 of Algorithm 3,
Line 18 of Algorithm 4, and Line 24 of Algorithm 6.

In Line 19 of Algorithm 3 and Line 24 of Algorithm 6, the jwk state subterm is only used in a sig(·, ·) term constructor as
signature key, i.e., cannot be extracted from the respective terms. Thus, it does not matter where these terms are stored or sent to.
We conclude that these two usages of the jwk state subterm do not leak signkey(c) to any other process, in particular p.

In Line 31 of Algorithm 3 and Line 18 of Algorithm 4, the value of the jwk state subterm is stored in a variable privKey , which
is then used in two places each:

1) In a pub(·) term constructor (Line 35 of Algorithm 3 and Line 24 of Algorithm 4). The privKey value cannot be extracted
from these terms. Thus, it does not matter where these terms are stored or sent to.

2) In a sig(·, ·) term constructor as signature key (Line 37 of Algorithm 3 and Line 26 of Algorithm 4), i.e., cannot be extracted
from the respective terms. Thus, it does not matter where these terms are stored or sent to.

By definition of signkey in Appendix D-C and the initial states of authorization servers (Definition 17), clients (Definition 16),
browsers (Definition 7), and resource servers (Definition 18), we have that no other process initially knows signkey(c).

We conclude that signkey(c) ̸∈ d∅(S(p)). ■

Lemma 3 (Client’s TLS Keys Does Not Leak). For any run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of a FAPI web system FAPI
with a network attacker, every configuration (S,E,N) in ρ, every client c ∈ C that is honest in S, every domain dc ∈ dom(c), and
every process p with p ̸= c, all of the following hold true:

1) tlskey(dc) ̸∈ d∅(S(p))
2) ⟨dc, tlskey(dc)⟩ ∈⟨⟩ S0(c).tlskeys
3) ⟨dc, tlskey(dc)⟩ ∈⟨⟩ S(c).tlskeys

PROOF. With Definition 16, ⟨dc, tlskey(c)⟩ ∈⟨⟩ S0(c).tlskeys is equivalent to ⟨dc, tlskey(dc)⟩ ∈⟨⟩ tlskeysc. This, in turn follows
immediately from the definition of tlskeysc in Appendix D-C. Building on this, it is easy to check that the client never changes the
contents of its tlskeys state subterm, i.e., we have ⟨dc, tlskey(dc)⟩ ∈⟨⟩ S(c).tlskeys.

The only places in which an honest client accesses any value in its tlskeys state subterm are:
Line 3 of Algorithm 2 Here, the value is only used to decrypt a message (i.e., cannot leak).
Line 13 of Algorithm 7 Here, the client only uses the value to create a public key. As the equational theory does not allow

extraction of private keys from public keys, it does not matter where that public key is stored or sent to.
Line 7 of Algorithm 31 Here, the value is once again only used to decrypt a message.
By definition of tlskey, tlskeysp in Appendix D-C and the initial states of authorization servers (Definition 17), clients
(Definition 16), browsers (Definition 7), and resource servers (Definition 18), we have that no other process initially knows
tlskey(dc).

We conclude that tlskey(dc) ̸∈ d∅(S(p)). ■

Lemma 4 (Generic Server - Correctness of Reference and Request). For any run ρ of a FAPI web system FAPI with a network
attacker, every processing step P = (SP , EP , NP ) −→ (SP ′

, EP ′
, NP ′

) in ρ, every p ∈ C ∪ AS ∪ RS being honest in S, it
holds true that if p calls PROCESS_HTTPS_RESPONSE in P with reference being the second and request being the third input
argument, then there exists a previous processing step in which p calls HTTPS_SIMPLE_SEND with reference being the first
and request being the second input argument.

PROOF. Let p ∈ C ∪ AS ∪ RS be honest in SP . p calls the PROCESS_HTTPS_RESPONSE function only in the generic HTTPS
server algorithm in Line 26 of Algorithm 31. The values reference and request are taken from SP (p).pendingRequests in
Line 19 of Algorithm 31. Thus, p added these values to pendingRequests in a previous processing step O = (SO, EO, NO) −→
(SO ′

, EO ′
, NO ′

) by executing Line 15 of Algorithm 31, as this is the only location where a client, authorization server, or resource
server adds entries to pendingRequests and as pendingRequests is initially empty (see Definitions 16, 17, and 18). In O, the
process p takes both values from SO(p).pendingDNS in Line 13 and Line 14 of Algorithm 31. Initially pendingDNS is empty
(as p is a client, an authorization server, or a resource server), and p adds values to pendingDNS only in Line 2 of Algorithm 26,



where the reference and request values are the input arguments of HTTPS_SIMPLE_SEND. Thus, in some processing step prior
to O, p called HTTPS_SIMPLE_SEND with reference being the first and request being the second input argument.

■

Lemma 5 (Code used in Token Request was received at Redirection Endpoint). For any run ρ of a FAPI web system FAPI with a
network attacker, every processing step

P = (S,E,N)
ePin →c−−−−→
c→EP

out

(S′, E′, N ′)

in ρ with c ∈ C being honest in S, it holds true that if Algorithm 2 (PROCESS_HTTPS_RESPONSE)
is called in P with reference being the second and request being the third input argument, and if
reference[responseTo] ≡ TOKEN, then there is a previous configuration (SL′

, EL′
, NL′

) such that request .body[code] ≡
SL′

(c).sessions[reference[session]][redirectEpRequest][message].parameters[code].

PROOF. As shown in Lemma 4, there exists a processing step L = (SL, EL, NL) −→ (SL′
, EL′

, NL′
) prior to P in

which c called HTTPS_SIMPLE_SEND with the same reference and request values. The only line in which a client calls
HTTPS_SIMPLE_SEND with reference[responseTo] ≡ TOKEN is Line 41 of Algorithm 3 (SEND_TOKEN_REQUEST). The
code included in the request is the input parameter of SEND_TOKEN_REQUEST (see Lines 6, 39, and 40 of Algorithm 3).
SEND_TOKEN_REQUEST is called only in Line 21 of Algorithm 1, i.e., at the redirection endpoint (/redirect_ep)

of the client, and the code is taken from the parameters of the redirection request. The redirection request is stored
into SL′

(c).sessions[sessionId ][redirectionEpRequest][message] in Line 20 of Algorithm 1, with sessionId ≡
reference[session].

■

Lemma 6 (Authorization Server’s Signing Key Does Not Leak). For any run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of a FAPI
web system FAPI with a network attacker, every configuration Q = (S,E,N) in ρ, every authorization server as ∈ AS that is
honest in S, every term t with checksig(t, pub(signkey(as))) ≡ ⊤, and every process p with p ̸= as , all of the following hold true:

• signkey(as) ̸∈ d∅(S(p))
• signkey(as) ≡ sas0 .jwk
• signkey(as) ≡ S(as).jwk
• if t is known (Definition 77) to p in Q, then t was created (Definition 75) by as in a processing step se prior to Q in ρ

PROOF. signkey(as) ≡ sas0 .jwk immediately follows from Definition 17. signkey(as) ≡ S(as).jwk follows from Definition 17
and by induction over the processing steps: state subterm jwk of a client is never changed.

By Definitions 16, 17, 18, 60, and Appendix D-C, we have that no process (except as) initially knows signkey(as), i.e.,
signkey(as) ̸∈ d∅(S

0(p)).
The only places in which an honest authorization server accesses the jwk state subterm are: Line 11 of Algorithm 9, Line 127

of Algorithm 9, and Line 139 of Algorithm 9.
In Line 127 of Algorithm 9 and Line 139 of Algorithm 9, the jwk state subterm is only used in a sig(·, ·) term constructor as

signature key, i.e., cannot be extracted from the respective terms. Thus, it does not matter where these terms are stored or sent to.
We conclude that these two usages of the jwk state subterm do not leak signkey(as) to any other process, in particular p.

In Line 11 of Algorithm 9, the jwk state subterm is only used in a pub(·) term constructor, i.e., cannot be extracted from the
constructed term. Thus, it does not matter where such a term is stored or sent to.

We conclude that signkey(as) ̸∈ d∅(S(p)).
To complete the proof, we now have to show that any term t with checksig(t, pub(signkey(as))) ≡ ⊤ known to p in Q was

created by as in a processing step se prior to Q in ρ:
By Definitions 16, 17, 18, 7, and Appendix D-C, we have that no process (except as) initially knows such a term t, i.e.,

t ̸∈ d∅(S
0(p)). Together with Definition 51 and Definition 75, this implies that t can only be known to p in some configuration

Q′ if t was contained in some event e “received” by p at an earlier point in ρ (i.e., e was the input event in a processing step in ρ
with p). Since such an e is not part of E0 (Definition 70), e must have been emitted by some process in a processing step se prior
to Q′ in ρ. Definition 51 and Definition 72 imply that p (or any other process ̸= as) cannot have emitted e in se (i.e., cannot have
created t in se).

Therefore, as must have emitted e and hence created t in se, i.e., prior to Q in ρ. ■

Lemma 7 (mTLS Nonce created by AS does not Leak). For every run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of a FAPI web
system FAPI with a network attacker, every configuration (S,E,N) in ρ, every authorization server as ∈ AS that is honest in Sn,
every client c ∈ C that is honest in Sn with client id clientId at as , every i ∈ N with 0 ≤ i ≤ |S(as).mtlsRequests[clientId ]|,
and every process p with as ̸= p ̸= c it holds true that mtlsNonce := S(as).mtlsRequests[clientId ].i.1 does not leak to p, i.e.,
mtlsNonce ̸∈ d∅(S

n(p)).



PROOF. Initially, the mtlsRequests subterm of the authorization server’s state is empty, i.e., S0(as).mtlsRequests ≡ ⟨⟩
(Definition 17). An authorization server only adds values to the mtlsRequests subterm in Line 161 of Algorithm 9, where the
mTLS nonce is chosen as a fresh nonce (Line 157 of Algorithm 9).

Let (Si, Ei, N i) → (Si′, Ei′, N i′) be the processing step in which the nonce is chosen (note that (Si, Ei, N i) is prior to
(S,E,N) in ρ). In the same processing step, the authorization server sends out the nonce in Line 163 of Algorithm 9, asymmetrically
encrypted with the public key

clientKey

≡ Si(as).clients[clientId ][mtls_key] (Line 158, Algorithm 9)
≡ sas0 .clients[clientId ][mtls_key] (value is never changed)
≡ clientInfoAS(as)[clientId ][mtls_key] (Definition 17)
≡ ⟨{⟨cli .client_id, as_cli(cli)⟩ | dc ∈ Doms, das ∈ dom(as)}⟩[clientId ][mtls_key] (Definition 14)

with cli = clientInfo(das , dc) and as_cli as in Definition 14. As clientId is the identifier of c at as and as no two clients have the
same identifier at an authorization server (see Definition 12), it follows that dc ∈ dom(c).

As there is a dictionary entry in Si(as).clients[clientId ] with the key mtls_key (Line 159, Algorithm 9), it follows that

clientKey

≡ pub(clientInfo(das , dc).tlsSKey) (das ∈ dom(as), dc ∈ dom(c); see also Definition 17)
≡ pub(tlskey(dc)) (dc ∈ dom(c))

The corresponding private key is tlskey(dc) ∈ tlskeysc, which is only known to c (Lemma 3). (The mtlsNonce saved in
mtlsRequests is not sent in any other place).

This implies that the encrypted nonce can only be decrypted by c. c decrypts messages only in Line 3 of Algorithm 2. (The only
other place where a message is decrypted asymmetrically by c is in the generic HTTPS server (Line 7 of Algorithm 31), where the
process would stop due to the requirement that the decrypted message must begin with HTTPReq).

We also note that the encrypted message created by the authorization server containing the nonce also contains a public TLS
key of as . (This holds true due to Lemma 1).

After decrypting the mTLS nonce and public TLS key of as in Line 3 of Algorithm 2, the client stores the sequence
⟨request .host, clientId , pubKey ,mtlsNonce⟩ into the mtlsCache subterm of its state in Line 8 of Algorithm 2, where
clientId , pubKey ∈ TN and, in particular,

• request .host is a domain of as (see Line 5, Algorithm 2)
• mtlsNonce is the mTLS nonce chosen by as .
Thus, the nonce is stored at the client together with a domain of the authorization server. After storing the values, the client stops

in Line 9 of Algorithm 2 without creating an event and without storing the nonce in any other place.
c sends mTLS nonces only to domains of as . The client accesses values stored in the mtlsCache subterm of its state only in

the following places:
Case 1: Algorithm 3

In this algorithm, the client accesses the mtlsCache subterm only in Line 14 and Line 27.
In both cases, the sequence containing the nonce is removed from the mtlsCache subterm (Lines 16 and 28), and the mTLS
nonce is sent by calling the HTTPS_SIMPLE_SEND function. The HTTP request that is passed to HTTPS_SIMPLE_SEND
in Line 41 contains the retrieved mTLS nonces only in the body, under the dictionary key TLS_AuthN (Line 15, Line 39) or
TLS_binding (Line 25, Line 29, Line 39).
In all cases, the domain stored in the sequence that is retrieved from the mtlsCache subterm of the client state (i.e., the first
entry of the sequence) is the host of the HTTPS request that the client constructs (see Lines 14, 27).

Case 2: Algorithm 4
Here, the client accesses the mtlsCache state subterm only in Line 13. As in the first case, the sequence from which the
mTLS nonce is chosen is removed from the mtlsCache subterm (Line 16 of Algorithm 4). The nonce is sent in the body of
an HTTP request, using the dictionary key TLS_binding (see Line 14) by calling HTTPS_SIMPLE_SEND in Line 30. The
request is sent to the same domain that is stored in the sequence containing the mTLS nonce.

Case 3: Algorithm 6
Here, Line 19 is the last line in which the client accesses the mtlsCache state subterm. As in the previous cases, the client
removes the corresponding sequence from the mtlsCache subterm (Line 21). The client creates an HTTPS request which
contains the mTLS nonce in the body under the key TLS_AuthN (Lines 20, 33, and 35). Again, the request is sent to the same
domain that is stored in the sequence containing the mTLS nonce (see Line 35).



In all cases, the HTTP request is sent to the domain stored in the first entry of the sequence containing the mTLS nonce (stored
in the mtlsCache subterm). Let reqc→as be the HTTP request that the client sends by calling HTTPS_SIMPLE_SEND.
HTTPS_SIMPLE_SEND stores the request reqc→as (which contains the mTLS nonce) in the pendingDNS state subterm of c,

see Line 2 of Algorithm 26 and then stops with the DNS request (which does not contain the nonce) in Line 3 of Algorithm 26.
Thus, after finishing this processing step, the client stores the mTLS nonce only in its pendingDNS state subterm.

The client acceses the pendingDNS state subterm only within the else case in Line 10 of Algorithm 31, i.e., when it receives
the DNS response. There, it either stops without a new event and without changing its state in Line 12 of Algorithm 31, or creates
a new pendingRequests entry containing the request reqc→as (and thus, also the mTLS nonce) in Line 15 of Algorithm 31. In
this case, the client removes the request from the pendingDNS state subterm in Line 17 of Algorithm 31, i.e., regarding the client
state, the mTLS nonce is only contained in the newly created pendingRequests entry. The client finishes the processing step
by encrypting reqc→as with the key of the domain that was stored along with the mTLS nonce, i.e., a key of as , see Lines 16
and 18 of Algorithm 31.

as does not leak mTLS nonce contained in request.
As the client encrypts reqc→as asymetrically with a key of as , it follows that only as can decrypt the HTTPS request (Lemma 27).
The authorization server only decrypts terms in the generic HTTPS server algorithms. More specifically, this request is decrypted

(only) in Line 7 of Algorithm 31, as this is the only place where an authorization server decrypts a message asymetrically, and then
used as a function argument for PROCESS_HTTPS_REQUEST which is modeled in Algorithm 9.

In Algorithm 9, none of the endpoints except for the PAR (Line 53) and token endpoint (Line 81) reads, stores, or sends out a
value stored in the body of the request under the TLS_AuthN or TLS_binding key.

The PAR and token endpoints pass the HTTP request to the AUTHENTICATE_CLIENT helper function (Algorithm 10), which
removes an entry from the mtlsRequests state subterm and returns this entry; the /par endpoint code does not use this value.
The token endpoint uses this value for token binding (Lines 110–120), but the nonce is not added to any state subterm and not sent
out in a network message. Thus, the endpoints of the authorization server do not store the mTLS nonces contained in requests in
any state subterm and do not send them out in any network message.

c does not leak mTLS nonce in request after getting the response. When the client receives the HTTPS re-
sponse to reqc→as, the generic HTTPS server removes the message from the pendingRequests state subterm and calls
PROCESS_HTTPS_RESPONSE with the request as the third function argument. Algorithm 2 does not store a nonce contained
in the body of the request and does not create new network messages containing such a nonce.

Summing up, the client sends the mTLS nonce created by the authorization server only back to that authorization server. As an
honest authorization server never sends out such a nonce received in a request, we conclude that the nonce never leaks to any other
process, in particular not to p. ■

Lemma 8 (mTLS Nonce created by RS does not Leak). For every run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of a FAPI web
system FAPI with a network attacker, every configuration (S,E,N) in ρ, every resource server rs ∈ RS that is honest in Sn,
every client c ∈ C that is honest in Sn, every domain dc ∈ dom(c), every i ∈ N with 0 ≤ i ≤ |S(rs).mtlsRequests| and
with S(rs).mtlsRequests.i.2 ≡ pub(tlskey(dc)), and every process p with rs ̸= p ̸= c it holds true that mtlsNonce :=
S(rs).mtlsRequests.i.1 does not leak to p, i.e., mtlsNonce ̸∈ d∅(S

n(p)).

PROOF. This proof is similar to the proof of Lemma 7:
Initially, the mtlsRequests subterm of the resource server’s state is empty, i.e., S0(rs).mtlsRequests ≡ ⟨⟩ (Definition 18).

A resource server only adds values to the mtlsRequests subterm in Line 5 of Algorithm 12, where the mTLS nonce (the first
value of the sequence that is added to mtlsRequests) is a fresh nonce (Line 3 of Algorithm 12).

Let (Si, Ei, N i) → (Si′, Ei′, N i′) be the processing step in which the nonce is chosen (note that (Si, Ei, N i) is prior to
(S,E,N) in ρ). In the same processing step, the resource server sends out the nonce in Line 7 of Algorithm 12, asymmetrically
encrypted with the public key pub(tlskey(dc)) (precondition of the lemma, see also Line 5 and Line 6 of Algorithm 12).

The corresponding private key is tlskey(dc) ∈ tlskeysc, which is only known to c (Lemma 3). (The mtlsNonce saved in
mtlsRequests is not sent in any other place).

This implies that the encrypted nonce can only be decrypted by c. c decrypts messages only in Line 3 of Algorithm 2. (The only
other place where a message is decrypted asymmetrically by c is in the generic HTTPS server (Line 7 of Algorithm 31), where the
process would stop due to the requirement that the decrypted message must begin with HTTPReq).

We also note that the encrypted message created by the resource server containing the nonce also contains a public TLS key of
rs . (This holds true due to Lemma 1).

After decrypting the mTLS nonce and public TLS key of rs in Line 3 of Algorithm 2, the client stores the sequence
⟨request .host, clientId , pubKey ,mtlsNonce⟩ into the mtlsCache subterm of its state, where clientId , pubKey ∈ TN and,
in particular,

• request .host is a domain of rs (see Line 5, Algorithm 2)
• mtlsNonce is the mTLS nonce chosen by rs .



Thus, the nonce is stored at the client together with a domain of the resource server. After storing the values, the client stops in
Line 9 of Algorithm 2 without creating an event and without storing the nonce in any other place.

c sends mTLS nonces only to domains of rs . The client accesses values stored in the mtlsCache subterm of its state only in
the following places:

Case 1: Algorithm 3
In this algorithm, the client accesses the mtlsCache subterm only in Line 14 and Line 27.
In both cases, the sequence containing the nonce is removed from the mtlsCache subterm (Lines 16 and 28), and the mTLS
nonce is sent by calling the HTTPS_SIMPLE_SEND function. The HTTP request that is passed to HTTPS_SIMPLE_SEND
in Line 41 contains the retrieved mTLS nonces only in the body, under the dictionary key TLS_AuthN (Line 15, Line 39) or
TLS_binding (Line 25, Line 29, Line 39).
In all cases, the domain stored in the sequence that is retrieved from the mtlsCache subterm of the client state (i.e., the first
entry of the sequence) is the host of the HTTPS request that the client constructs (see Lines 14, 27).

Case 2: Algorithm 4
Here, the client accesses the mtlsCache state subterm only in Line 13. As in the first case, the sequence from which the
mTLS nonce is chosen is removed from the mtlsCache subterm (Line 16 of Algorithm 4). The nonce is sent in the body of
an HTTP request, using the dictionary key TLS_binding (see Line 14) by calling HTTPS_SIMPLE_SEND in Line 30. The
request is sent to the same domain that is stored in the sequence containing the mTLS nonce.

Case 3: Algorithm 6
Here, Line 19 is the last line in which the client accesses the mtlsCache state subterm. As in the previous cases, the client
removes the corresponding sequence from the mtlsCache subterm (Line 21). The client creates an HTTPS request which
contains the mTLS nonce in the body under the key TLS_AuthN (Lines 20, 33, and 35). Again, the request is sent to the same
domain that is stored in the sequence containing the mTLS nonce (see Line 35).

In all cases, the HTTP request is sent to the domain stored in the first entry of the sequence containing the mTLS nonce (stored
in the mtlsCache subterm). Let reqc→rs be the request that the client sends by calling HTTPS_SIMPLE_SEND.
HTTPS_SIMPLE_SEND stores the request reqc→rs (which contains the mTLS nonce) in the pendingDNS state subterm of c,

see Line 2 of Algorithm 26, and then stops with the DNS request (which does not contain the nonce) in Line 3 of Algorithm 26.
Thus, after finishing this processing step, the client stores the mTLS nonce only in its pendingDNS state subterm.

The client acceses the pendingDNS state subterm only within the else case in Line 10 of Algorithm 31, i.e., when it receives
the DNS response. There, it either stops without a new event and without changing its state in Line 12 of Algorithm 31, or creates
a new pendingRequests entry containing the request reqc→rs (and thus, also the mTLS nonce) in Line 15 of Algorithm 31. In
this case, the client removes the request from the pendingDNS state subterm in Line 17 of Algorithm 31, i.e., regarding the client
state, the mTLS nonce is only contained in the newly created pendingRequests entry. The client finishes the processing step
by encrypting reqc→rs with the key of the domain that was stored along with the mTLS nonce, i.e., a key of rs , see Lines 16
and 18 of Algorithm 31.

rs does not leak mTLS nonce contained in request. As the HTTP request reqc→rs is is encrypted asymetrically with a key of
rs , it follows that only the resource server can decrypt the request. The resource server only decrypts terms in the generic HTTPS
server algorithms. More specifically, this request is decrypted (only) in Line 7 of Algorithm 31, as this is the only place where
an resource server decrypts a message asymetrically, and then used as a function argument for PROCESS_HTTPS_REQUEST
which is modeled in Algorithm 12.

In Algorithm 12, the /MTLS-prepare and /DPoP-nonce endpoints (Line 2 and Line 8 of Algorithm 12) do not read, store, or
send out a value stored in the body of the request under the TLS_AuthN or TLS_binding key.

The last endpoint starting at Line 13 of Algorithm 12 accesses values stored in the body of the request under the TLS_binding
key in Line 23. This value is not added to any state subterm and not sent out in a network message if Line 57 of Algorithm 12
is executed. If Line 48 of Algorithm 12 is true, then the whole request (including the TLS_binding value in the request body) is
stored in the pendingResponses subterm of the resource server’s state. However, the resource server never stores the body of
requests stored in pendingResponses into any other subterm of its state and does not send out any value contained in the body.

c does not leak mTLS nonce in request after getting the response. When receiving the HTTPS response to reqc→rs, the
generic HTTPS server removes the message from the pendingRequests state subterm and calls PROCESS_HTTPS_RESPONSE
with the request as the third function argument. Algorithm 2 does not store a nonce contained in the body of the request and does
not create new network messages containing such a nonce.

Summing up, the client sends the mTLS nonce created by the resource server only back to that resource server. As an honest
resource server never sends out such a nonce received in a request, we conclude that the nonce never leaks to any other process, in
particular not to p. ■



Lemma 9 (JWS client assertion created by client does not leak). For any run ρ of a FAPI web system FAPI with a network attacker,
every configuration (S,E,N) in ρ, every authorization server as ∈ AS that is honest in S, every client c ∈ C that is honest in S
with client identifier clientId at as , every term t with

• checksig(t, pub(signkey(c))) ≡ ⊤
• extractmsg(t)[iss] ≡ clientId
• extractmsg(t)[sub] ≡ clientId
• extractmsg(t)[aud].host ∈ dom(as) or extractmsg(t)[aud] ∈ dom(as)

and every process p with as ̸= p ̸= c it holds true that t ̸∈ d∅(S(p)).

PROOF. The private signing key signkey(c) is part of the clients initial state (sc0.jwk, see Definition 16). Initially, no other process
and no waiting event contains the key except as a public key pub(signkey(c)), which cannot be used to retrieve the private key.

The client c never leaks the private key: The client uses the private key only for creating signatures or creating public keys (from
which the private key cannot be extracted) see Algorithm 3 (Lines 19, 35, and 37), Algorithm 4 (Lines 24 and 26), and Algorithm 6
(Line 24).

Thus, only c can create a term t, i.e., the attacker cannot create t itself by signing a dictionary with the corresponding iss, sub,
and aud values. In the following, we show that such a term created by c does not leak to the attacker.

The client signs dictionaries with aud dictionary key only in two locations:
Case 1: Line 19 of Algorithm 3 The signature created in Line 19 of Algorithm 3 is added to the body of an HTTP request

(Lines 20, 39, and 40). The client sends that HTTP request (the token request) to the token endpoint it has cached for the AS
identified by the issuer identifier in extractmsg(t)[aud] (i.e., selectedAS in the context of Algorithm 3). From Lemma 16,
we know that this token endpoint is a URL of the selected AS, i.e., the token request is sent to and encrypted for the party to
which the domain selectedAS belongs (see the call of HTTPS_SIMPLE_SEND in Line 41 (using responseTo : TOKEN in
the first function argument). This party is an honest AS by the preconditions of this lemma.

Case 2: Line 24 of Algorithm 6 As in the previous case, the signature created in Line 24 of Algorithm 6 is added to the body of
an HTTP request (Lines 25, 33, and 35). Similar to the first case, this request (the PAR request) is encrypted for and sent to
the PAR endpoint c has cached for the party to which extractmsg(t)[aud] belongs. Analogous to the first case, we can apply
Lemma 16 to conclude that this party must be an honest AS (and the request is stored by c with responseTo : PAR).

When the client receives a corresponding HTTPS response, the generic HTTPS server decrypts the message and calls
PROCESS_HTTPS_RESPONSE. The original request (containing the client assertion) is used as the third function argument.
The instantiation of PROCESS_HTTPS_RESPONSE (Algorithm 2) does not access the body of the request when processing
TOKEN or PAR responses and hence cannot leak it in any way.

When processing the HTTPS request in Algorithm 9, the authorization server does not store the client assertion and does not
create a network message containing the client assertion.

Overall, we conclude that no other process can derive a client assertion created by an honest client for an honest authorization
server. ■

Lemma 10 (Client Authentication). For any run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of a FAPI web system FAPI with a
network attacker, every authorization server as ∈ AS, every client c ∈ C, every processing step Q in ρ

(S,E,N)
ein→as−−−−−→
as→Eout

(S′, E′, N ′)

with c and as being honest in S′ and every client identifier clientId of c at as it holds true that:
If ein ≡ ⟨x, y, enca(⟨m, k⟩, k′)⟩ (for some x, y, k, k′) with m being an HTTP request such that all of the following hold true,

then c created m (Definition 75):
• client_id ∈ m.body⇒ m.body[client_id] ≡ clientId and
• client_assertion ∈ m.body⇒ extractmsg(m.body[client_assertion])[iss] ≡ clientId and
• m.path ≡ /par ∨m.path ≡ /token and
• Eout is not empty.

PROOF. We first note that authorization servers do not emit any HTTP(S) requests.
as executes either Line 80 or Line 142 of Algorithm 9. We first show that in processing step Q, as executes either Line 80

or Line 142 of Algorithm 9: When processing ein, the generic HTTPS server calls PROCESS_HTTPS_REQUEST in Line 9 of
Algorithm 31, as the checks done in Line 2, 10, 19 and 27 complete successfully and the authorization server’s instantiation of
PROCESS_OTHER (Algorithm 30) does not create an output event, i.e., if as ended up in Algorithm 30, Eout would be empty.
Furthermore, the stop in Line 8 of Algorithm 31 is not executed as this stop does not emit an output event.

Thus, Algorithm 31 calls PROCESS_HTTPS_REQUEST in processing step Q. The authorization server’s instantiation of
PROCESS_HTTPS_REQUEST is defined in Algorithm 9.



If m.path ≡ /par (with m as in the statement of the lemma), then the PAR endpoint starting in Line 53 of Algorithm 9 is
executed. No stop except for the last (unconditional) stop in Line 80 emits an event.

Analogously, if m.path ≡ /token (with m as in the statement of the lemma), then the (unconditional) stop in Line 142 was
executed in the processing step, as no other stop emits events.

HTTP request contains values that only c and as know. Non-empty Eout implies that the checks done in the
AUTHENTICATE_CLIENT helper function (Algorithm 10, called in Line 56 or 84 of Algorithm 9) did not lead to a stop.

In both cases, Algorithm 10 is called with the HTTP request m and S(as) as input arguments. As Line 26 of Algorithm 10 is
not executed (because Eout is not empty), it follows that client_assertion ∈ m.body or TLS_AuthN ∈ m.body.
Case 1: client_assertion ∈ m.body: As extractmsg(m.body[client_assertion])[iss] ≡ clientId (lemma precondition),

it holds true that the verification key used for verifying the signature in Line 4 of Algorithm 10 is

S(as).clients[clientId ][jwk_key] (Line 4 and 12, Algorithm 10)
≡ sas0 .clients[clientId ][jwk_key] (value is never changed)
≡ clientInfoAS(as)[clientId ][jwk_key] (Definition 17)
≡ ⟨{⟨cli .client_id, as_cli(cli)⟩ | dc ∈ Doms, das ∈ dom(as)}⟩[clientId ][jwk_key] (Definition 14)

with cli = clientInfo(das , dc) and as_cli as in Definition 14. As clientId is the identifier of c at as and as no two clients have
the same identifier at an authorization server (see Definition 12), it follows that dc ∈ dom(c).
As there is a dictionary entry in S(as).clients[clientId ] with the key jwk_key (otherwise, as would stop with empty Eout
in Line 5 of Algorithm 10), it follows that the verification key is

pub(clientInfo(das , dc).jwtSkey) (das ∈ dom(as), dc ∈ dom(c); see also Definition 14)
≡ pub(signkey(c)) (Definition 12)

The corresponding private key signkey(c) is only known to c (Lemma 2).
In the following, let cli_assertion = extractmsg(m.body[client_assertion]). As cli_assertion[iss] ≡ clientId (pre-
condition of the lemma), cli_assertion[sub] ≡ clientId (Line 12 of Algorithm 10), and cli_assertion[aud].host ∈ dom(as)
or cli_assertion[aud] ∈ dom(as) (Line 14 of Algorithm 10 and as the host of the request is a domain of the authorization
server as shown in Lemma 1), we can apply Lemma 9.
Thus, for all processes p, it holds true that m.body[client_assertion] ̸∈ d∅(S

′(p)) if as ̸= p ̸= c, i.e., only c and as can
derive m.body[client_assertion]. As authorization servers do not create HTTP requests, it follows that m was created
by c.

Case 2: TLS_AuthN ∈ m.body: From Lines 17–19 of Algorithm 10 it follows that

∃i ∈ N. S(as).mtlsRequests[m.body[client_id]].i.1 ≡ m.body[TLS_AuthN]

Note that client_id ∈ m.body as otherwise, the stop in Line 23 of Algorithm 10 will be executed.
Now, we can apply Lemma 7 with ρ′ (ρ′ being the trace prefix of ρ up to and including (S′, E′, N ′)).
Thus, for all processes p, it holds true that m.body[TLS_AuthN] ̸∈ d∅(S

′(p)) if as ̸= p ̸= c, i.e., only c and as can derive
m.body[TLS_AuthN]. As authorization servers do not create HTTP requests, we conclude that m was created by c.

■

Lemma 11 (mTLS Keys of Clients stored at Authorization Servers). For every authorization server as ∈ AS and every term
clientId ∈ TN it holds true that if sas0 .clients[clientId ][mtls_key] is not pub(⋄) and not ⟨⟩, then ∃c ∈ C, d ∈ dom(c)
such that sas0 .clients[clientId ][mtls_key] ≡ pub(tlskey(d)).

PROOF.

sas0 .clients[clientId ][mtls_key] (1)
≡ clientInfoAS(as)[clientId ][mtls_key] (2)
≡⟨{⟨cli .client_id, as_cli(cli)⟩ | ∃ dc ∈ Doms, das ∈ dom(as) : clientInfo(das , dc) ≡ cli}⟩[clientId ][mtls_key] (3)
≡ as_cli(clientInfo(das , dc))[mtls_key] (with dc ∈ Doms, das ∈ dom(as), clientInfo(das , dc)[client_id] ≡ clientId ) (4)
≡ pub(clientInfo(das , dc).mtlsSKey) (5)

Notes on the above equivalences:
(2) As per Definition 17.
(3) See Definition 14.



(5) The value is not ⟨⟩ (precondition); with dc ∈ Doms, das ∈ dom(as), clientInfo(das , dc)[client_id] ≡ clientId ; see
Definition 14 for the definition of as_cli.

As this value is not pub(⋄) (precondition of the lemma), it follows from Definition 12 that the value is equal to pub(tlskey(dc))
and dc is a domain of a client c ∈ C (as clientInfos is defined for domains of clients, see Definition 12).

Lemma 12 (DPoP proof secrecy (RS)). For any run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of a FAPI web system FAPI with a
network attacker, every configuration (S,E,N) in ρ, every resource server rs ∈ RS that is honest in S, every client c ∈ C that is
honest in S, every term t with

• checksig(t, pub(signkey(c))) ≡ ⊤
• extractmsg(t)[payload][htu].host ∈ dom(rs),
• ath ∈⟨⟩ extractmsg(t)[payload],
• extractmsg(t)[payload][nonce] ∈ S(rs).dpopNonces

and every process p with rs ̸= p ̸= c it holds true that t ̸∈ d∅(S(p)).

PROOF. From Lemma 2, we have that only c can create a term t, i.e., the attacker cannot create t itself by signing a dictionary
with the corresponding payload value. In the following, we show that such a term created by c does not leak to the attacker.

The client signs dictionaries with a payload dictionary key only in two locations: In Line 37 of Algorithm 3, where the payload
dictionary does not contain an ath value (see Line 36 of Algorithm 3), and in Line 26 of Algorithm 4.

In Line 26 of Algorithm 4, the client sends the term t to extractmsg(t)[payload][htu].host via HTTPS_SIMPLE_SEND
(using responseTo : RESOURCE_USAGE in the first function argument), see Lines 21, 25, 29, and 30 of Algorithm 4. The client
does not store t in any other subterm except for those needed by HTTPS_SIMPLE_SEND. The term t is added (only) to the
headers of the HTTP request using the DPoP dictionary key, see Line 28 of Algorithm 4. The client also adds an Authorization

header containing a dictionary with a DPoP dictionary key, and in particular, no other value, see Lines 27 and 29 of Algorithm 4.
We note that the generic part of the client model (which takes care of DNS resolution and sending the actual HTTPS request

after the HTTPS_SIMPLE_SEND call) does not send out or use t in any way – except for the sending of the actual request, which
is encrypted for the domain extractmsg(t)[payload][htu].host, i.e., for rs , which can only be decrypted by rs (Lemma 27).

When the client receives the HTTPS response to this request, the generic HTTPS server decrypts the message and calls
PROCESS_HTTPS_RESPONSE. The original request (containing the signed term) is used as the third function argument. The
instantiation of PROCESS_HTTPS_RESPONSE (Algorithm 2) does not access the headers of the request when processing
RESOURCE_USAGE responses.

When processing the HTTPS request created by the client in Algorithm 12, the resource server does not access the DPoP header
(in particular, it does not add the term to its state and does not create a network message containing the value) in the /MTLS-prepare
and /DPoP-nonce endpoints ( Lines 2 and 8 of Algorithm 12). For all other path values (Line 13 of Algorithm 12), the resource
server first checks whether the resource identified by the path is managed by a supported authorization server. If this is not the
case, then the resource server stops without changing the state and without emitting events (Line 17 of Algorithm 12). Otherwise,
the resource server will eventually invalidate the nonce value stored in the DPoP proof in Line 42 of Algorithm 12 (by removing
it from the dpopNonces subterm of the resource server’s state), as the request contains an Authorization header containing a
dictionary with the DPoP keyword (see Lines 19 and 28 of Algorithm 12). The stops before the removal of the nonce from the
state of the resource server do not modify the state of the resource server and do not lead to new events.

We note that the dpopNonces state subterm of the resource server does not contain any value twice, as the resource server
only adds fresh nonces to the state subterm, see the endpoint in Line 8 of Algorithm 12. Thus, the nonce is not contained in
dpopNonces after Line 42 of Algorithm 12 is executed, and the resource server it does not add it back to the dpopNonces state
subterm afterwards.

Thus, if the resource server does not finish with a stop without any arguments, it holds true that extractmsg(t)[payload][nonce]
is not contained in the dpopNonces subterm of the new resource server’s state, as it always stops with the updated state. (If it
finishes with a stop without any arguments, then t will not leak, as there is no change in any state and no new event).

Overall, we conclude that no other process can derive a signed term t (as in the statement of the lemma) created by an honest
client for an honest resource server. ■

Lemma 13 (Access Token can only be used by Honest Client). For

• every run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of FAPI with a network attacker,
• every resource server rs ∈ RS that is honest in Sn,
• every identity id ∈⟨⟩ srs0 .ids,
• every processing step in ρ

Q = (SQ, EQ, NQ)
eQin →rs
−−−−−→
rs→EQ

out

(SQ′
, EQ′

, NQ′
)



• every resourceID ∈ S with as = authorizationServerOfResourcers(resourceID) being honest in SQ,
it holds true that:

If ∃r, x, y, k,mresp. ⟨x, y, encs(mresp, k)⟩ ∈⟨⟩ EQ
out such that mresp is an HTTP response, r := mresp.body[resource], and

r ∈⟨⟩ SQ′
(rs).resourceNonce[id ][resourceID ], then

1) There exists a processing step

P = (SP , EP , NP )
ePin →rs−−−−−→
rs→EP

out

(SP ′
, EP ′

, NP ′
)

such that
a) either P = Q or P prior to Q in ρ, and
b) ePin is an event ⟨x, y, enca(⟨mreq, k1⟩, k2)⟩ for some x, y, k1, and k2 where mreq ∈ TN is an HTTP request which contains

a term (access token) t in its Authorization header, i.e., t ≡ mreq.headers[Authorization].2, and
c) r is a fresh nonce generated in P at the resource endpoint of rs in Line 46 of Algorithm 12.

2) t is bound to a key k ∈ TN , as , and id in SQ (see Definition 1).
3) If there exists a client c ∈ C such that k ≡ pub(signkey(c)) or k ≡ pub(tlskey(dc)) and dc ∈ dom(c), and if c is honest in

Sn, then ePin was created by c.

PROOF. An honest resource server sends HTTPS responses with a resource dictionary key only in Line 69 of Algorithm 12 and
Line 22 of Algorithm 13.
Case 1: Line 69 of Algorithm 12

First Postcondition In the same processing step, i.e., P = Q, the resource server received an HTTPS request with an access
token and generated the resource:
eQin is an event containing an HTTPS request, as Algorithm 12 is only called by the generic HTTPS server in Line 9 of
Algorithm 31. As the check done in Line 7 of Algorithm 31 was true and the stop in Line 8 was not executed, it follows
that the input event of Algorithm 31 was an event containing an HTTPS request mreq (as in the first statement of the
post-condition of the lemma).
mreq contains an Authorization header (Line 19 of Algorithm 12).
The resource that is sent out in Line 69 of Algorithm 12 is a freshly chosen nonce generated in the same processing step in
Line 46 of Algorithm 12 (see also Line 66 of Algorithm 12). This concludes the proof of the first post-condition.

Second Postcondition As Line 69 of Algorithm 12 is in the second case of Line 48 of Algorithm 12, it follows that
extractmsg(m.headers[Authorization].2) is a structured access token (see Lines 21 and 47).
The access token is signed by authorizationServerOfResourcers(resourceID): The value of responsibleAS (in Line 15)
is equal to

SQ(rs).resourceASMapping[resourceID ] (Line 15 of Algorithm 12)
≡ srs0 .resourceASMapping[resourceID ] (value is never changed)
∈ dom(authorizationServerOfResourcers(resourceID)) (Definition 18)

As required by the precondition of the lemma, as = authorizationServerOfResourcers(resourceID) is honest in SQ.
The signature of the access token is checked in Line 60 of Algorithm 12 using the verification key

asInfo[as_key]

≡SQ(rs).asInfo[responsibleAS ][as_key] (responsibleAS ∈ dom(as), Line 18)
≡ srs0 .asInfo[responsibleAS ][as_key] (value is never changed)

≡ signkey(dom−1(responsibleAS )) (Definition 18)
≡ signkey(as)

The authorization server as only uses this key in the following locations:
• Line 13 of Algorithm 9: Endpoint returning public key
• Line 127 of Algorithm 9: Signing access token
• Line 139 of Algorithm 9: Signing ID token

As ID tokens created by an authorization server do not contain a cnf claim (see Lines 134-139 of Algorithm 9), it follows
that extractmsg(m.headers[Authorization].2) is an access token created by as in Line 127 of Algorithm 9.



Let O = (SO, EO, NO)
eOin →as−−−−−→
as→EO

out

(SO ′
, EO ′

, NO ′
) be the processing step in which the authorization

server created and signed the access token. After finishing the processing step, as stores the access token in
SO ′

(as).records.i[access_token], for some natural number i (as Line 130 of Algorithm 9 was executed by the
authorization server). Note: we know that i is a natural number and not a “longer” pointer due to the last condition
in Line 92 of Algorithm 9.
The structured access token contains a value extractmsg(m.headers[Authorization].2)[sub] ∈⟨⟩ SQ(rs).ids (Line 47,
62, and 63 of Algorithm 12). This identity is used as a dictionary key for storing the resource (see Line 65 of
Algorithm 12). The ids stored at the resource server are never changed, i.e., SQ(rs).ids ≡ srs0 .ids. When creating
the access token, the authorization server takes this value from SO(as).records.i[sub] with the same i as above
(Line 92 and 126 of Algorithm 9). As the remaining lines of the token endpoint do not change this value, it follows
that SO(as).records.i[sub] ≡ SO ′

(as).records.i[sub].
From the successful check of Line 58 of Algorithm 12 (as we assume that the resource server returns a resource in Line 69),
it follows that either
• accessTokenContent [cnf].1 ≡ x5t#S256 or
• accessTokenContent [cnf].1 ≡ jkt,

as cnfValue is set in Line 27 or Line 43 of Algorithm 12.
The authorization server sets the cnf value of access tokens only in Line 126 of Algorithm 9. The value is determined
either in Line 109 or Line 120 of Algorithm 9, and the authorization server stores the cnf value into the same record as
the access_token and sub values, see Line 131 of Algorithm 9, i.e., SO ′

(as).records.i[cnf] is either [jkt : hash(k)]
or [x5t#S256 : hash(k)], for some value k.
As authorization servers do not remove sequences from their records state subterm, it follows that the access token is
bound do some term k ∈ TN , the authorization server as , and id in SQ, by which we conclude the proof of the second
postcondition for this case.

Third Postcondition
Let c ∈ C be honest in Sn.
Case 1.3.1: k ≡ pub(signkey(c)) As already shown, the authorization server determines the cnf value either in Line 109

or Line 120 of Algorithm 9.
• Line 109 of Algorithm 9: The structured access token contains the value accessTokenContent [cnf].1 ≡ jkt. Thus,

the resource server executed Line 43 of Algorithm 12 (in the processing step P ), i.e., the request ePin contains a
DPoP proof dpopProof (in the header of the request, see Line 29 of Algorithm 12). All preconditions of Lemma 12
are true:
– checksig(dpopProof , pub(signkey(c))) ≡ ⊤ (see Line 32 of Algorithm 12)
– extractmsg(dpopProof )[payload][htu].host ∈ dom(rs) (see Line 36 of Algorithm 12 and Lemma 1)
– ath ∈⟨⟩ extractmsg(dpopProof )[payload], (see Line 40 of Algorithm 12)
– extractmsg(dpopProof )[payload][nonce] ∈ S(rs).dpopNonces (see Line 38 of Algorithm 12)
Thus, we can apply Lemma 12 and conclude that dpopProof can only be known by c and rs . The only places where
a resource server sends a request are Lines 55 and 67 of Algorithm 12. In the first case, the request in question is a
token introspection request whose Authorization header uses the Basic scheme. Processing of such a request by
the resource server would lead to an empty EQ

out in Line 45 of Algorithm 12. In the latter case, the resource server
leaks the resource request – but only after invalidating the mTLS nonce (Lines 24f. of Algorithm 12) or DPoP
nonce (Line 42 of Algorithm 12), i.e., processing this request again would lead to an empty EQ

out in Line 24 of
Algorithm 12, or Line 38 of Algorithm 12. Hence, resource servers do not send requests with valid DPoP or mTLS
nonces to themselves and it follows that only c could have created the request ePin .

• Line 120 of Algorithm 9: The structured access token contains the value accessTokenContent [cnf].1 ≡
x5t#S256.
The value accessTokenContent [cnf].2 was chosen by the authorization server in Line 120 of Algorithm 9 (as
this is the only location where the authorization server sets the cnf value with the x5t#S256 dictionary key),
where it was set to hash(mTlsKey). The value mTlsKey is set to mtlsInfo.2 in Line 119 of Algorithm 9.
The sequence mtlsInfo is chosen in Line 84 or Line 117 of Algorithm 9. In both cases, mTlsKey is set to
sas0 .clients[clientId ][mtls_key]:
– Line 84 of Algorithm 9: mtlsInfo is the third entry of the return value of AUTHENTICATE_CLIENT. As

shown above, AUTHENTICATE_CLIENT (Algorithm 10) determines the client identifier clientId from the
HTTP request and also determines the type of the client (see Lines 7, 8, 20, 21). As shown previously, the
type of the client is either pkjwt_mTLS or mTLS_mTLS. Thus, the body of the request does not contain a



value client_assertion, as otherwise, the stop in Line 10 of Algorithm 10 would have prevented the
authorization server to issue the access token. In particular, the return in Line 28 was executed and the
third return value was taken from SO(as).mtlsRequests[clientId ] (Line 19 of Algorithm 10). Initially, the
mtlsRequests subterm of the authorization server’s state is empty (see Definition 17). The authorization
server adds values to mtlsRequests only in Line 161 of Algorithm 9. The second sequence entry is
sas0 .clients[clientId ][mtls_key] (due to Line 158 of Algorithm 9 and because the clients subterm of the
authorization server’s state is never modified).

– Line 117 of Algorithm 9: mtlsInfo is taken from SO(as).mtlsRequests[clientId ]. As shown in the previous
case, the second sequence entry of mtlsInfo is equal to sas0 .clients[clientId ][mtls_key].

When adding values to mtlsRequests in Line 161 of Algorithm 9, the authorization server ensures that the value
of sas0 .clients[clientId ][mtls_key] is not ⟨⟩ and not pub(⋄) (Line 159 of Algorithm 9). Thus, we can apply
Lemma 11 and conclude that there exists a client c ∈ C and sas0 .clients[clientId ][mtls_key] ≡ pub(tlskey(dc))
with dc ∈ dom(c).
Thus, it is not possible that this value is a public signature verification key.

Case 1.3.2: k ≡ pub(tlskey(dc)) and dc ∈ dom(c) As in the previous case, the authorization server determined the cnf
value either in Line 109 or Line 120 of Algorithm 9.
• Line 109 of Algorithm 9: As only c knows the private key tlskey(dc) (Lemma 3), it follows that c created a term
dpopProof such that checksig(dpopProof , pub(tlskey(dc))) ≡ ⊤ (Line 103 of Algorithm 9). However, as c is an
honest client, it never creates such a term, as all signatures are created using signkey(c) (see Line 19 of Algorithm 3,
Line 37 of Algorithm 3, Line 26 of Algorithm 4, Line 37 of Algorithm 3, Line 26 of Algorithm 4, Line 24 of
Algorithm 6, and Definition 16).

• Line 120 of Algorithm 9: The structured access token contains the value accessTokenContent [cnf].1 ≡
x5t#S256. Thus, the resource server executed Line 27 of Algorithm 12 (in the processing step P ). This means
that ePin contains a value mtlsNonce in the body of the request such that ⟨mtlsNonce, pub(tlskey(dc))⟩ ∈⟨⟩
SP (rs).mtlsRequests.
If the client c is honest in Sn, then it is also honest in SP , and we can apply Lemma 8 and conclude that only c
and rs can derive mreq.body[TLS_binding]. As resource servers do not send requests containing TLS_binding in
the request body, it follows that the HTTP request mreq was created by c.

Case 2: Line 22 of Algorithm 13
First Postcondition In Line 22 of Algorithm 13, the resource server is processing an HTTP response resp introsp (with the

reference TOKENINTROSPECTION, see Line 2 of Algorithm 13). An honest resource server sends HTTP requests only
by calling HTTPS_SIMPLE_SEND in Line 56 of Algorithm 12 (again with the reference TOKENINTROSPECTION). Let
req introsp be the corresponding request to resp introsp. The processing step in which the resource server emitted req introsp
is P (as in the postcondition of the lemma): The input event of P contains an HTTP request mreq (again as in the first
postcondition) with an access token t ≡ mreq.headers[Authorization].2 (Line 19 of Algorithm 12). The resource r that
the resource server sends out in Line 22 of Algorithm 13 (in the processing step Q) was stored by the resource server in
SP ′

pendingResponses in Line 50 of Algorithm 12, and the resource was generated in Line 46 of Algorithm 12 (in the
processing step P ).

Second Postcondition The request req introsp was sent by rs to a domain of as: responsibleAS in Line 15
of Algorithm 12 is a domain of as , as shown in the proof of the first case. Thus, it follows that
SP (rs).asInfo[responsibleAS ][as_introspect_ep] is ⟨URL, S, domas , /introspect, ⟨⟩,⊥⟩, with domas ∈ dom(as)
(see Definition 18).
Furthermore, req introsp contains the value mreq.headers[Authorization].2, see Line 21 and Line 54 of Algorithm 12.
The authorization server as processes this request in the introspection endpoint in Line 143 of Algorithm 9. As the resource
server did not stop in Line 11 of Algorithm 13, we conclude that the access token sent by the resource server in P is
active, i.e., the authorization server executed Line 152 of Algorithm 9. Thus, there is a value record in the records state
subterm of the authorization server’s state with the access token (Line 148 of Algorithm 9), and in this record, there is a cnf
and a subject entry (Line 152 of Algorithm 9) The cnf and subject values are added to the body of the introspection
response, and the resource server checks that the subject value is contained in the list of ids that the resource server stores
in SQ(rs).ids (Line 16 of Algorithm 13).
An honest authorization server adds cnf values to an entry of its records state entry only in the token endpoint in Line 131
of Algorithm 9. Thus, this value is either [jkt : hash(k)] (see Line 109 of Algorithm 9), or [x5t#S256 : hash(k)] (see
Line 120 of Algorithm 9), for some value k.

Third Postcondition The resource server checks in Line 13 of Algorithm 13 that the cnf value that the authorization server
put into the response resp introsp is equal to the cnfValue that the resource server stored in Line 50 of Algorithm 12 in the



processing step P . The resource server does the same checks in P as in the first case (i.e., when sending out the response
in Line 69 of Algorithm 12). Thus, it holds true that the request processed in P either contains a DPoP proof that only c
and rs can derive, or an mTLS nonce that only c and rs can derive. The proof is analogous to the proof of the first case,
i.e., only c could have created the request ePin .

■

Lemma 14 (Redirect URI Properties). For any run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of a FAPI web system FAPI with a
network attacker, every configuration (S,E,N) in ρ, every authorization server as ∈ AS that is honest in S, every client c ∈ C that
is honest in S with client identifier clientId ̸≡ ⟨⟩ at as , and every requestUri , all redirect URIs for c stored at as are HTTPS URIs
and belong to c. Or, more formally: Let rec = S(as).authorizationRequests[requestUri ], then rec[client_id] ≡ cliendId
implies both rec[redirect_uri].protocol ≡ S, and rec[redirect_uri].host ∈ dom(c)

PROOF. The only places in which an honest authorization server writes to its authorizationRequests state subterm are:
• Line 28 of Algorithm 9: Here, the authorization server does not change or create values under the client_id or
redirect_uri keys.

• Line 78 of Algorithm 9: See below.
In the latter case, the authorization server is processing a pushed authorization request, i.e., an HTTPS request req to the /par
endpoint.

In order to get to Line 78 of Algorithm 9, req must contain valid client authentication data (see Lines 56 and 60), in particular,
req .body must contain a client id (under key client_id) and either a value under key TLS_AuthN or client_assertion.
In the latter case, Line 4 of Algorithm 10 together with Line 12 of Algorithm 10 and Line 60 of Algorithm 9 ensure that
extractmsg(req .body[client_assertion])[iss] ≡ req .body[client_id]. We note that reaching Line 78 of Algorithm 9
implies that the current processing step will output an event (there are no stops between Line 78 and Line 80 of Algorithm 9).
Hence, we can apply Lemma 10.

When reaching Line 78 of Algorithm 9, req also must contain a redirectUri value in req .body[redirect_uri] (Line 63 of
Algorithm 9). Furthermore, this redirectUri must be an HTTPS URI (Line 65 of Algorithm 9) and this is the value stored in
the authorization server’s authorizationRequests state subterm (in a record under the key redirect_uri), together with
req .body[client_id] (under key client_id).

Line 54 of Algorithm 9 ensures that req .body contains a field code_challenge_method with value S256.
From Lemma 10, we know that c must have created req . Since c is honest and the only place in which an honest client produces an

HTTPS request with a code_challenge_method with value S256 is in Line 35 of Algorithm 6, we can conclude that the value of
req .body[redirect_uri] is the one selected in Lines 2f. of Algorithm 6. This implies req .body[redirect_uri].host ∈ dom(c)
and hence rec[redirect_uri].host ∈ dom(c). ■

Lemma 15 (Integrity of Client’s Session Storage). For any run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of a FAPI web system
FAPI with a network attacker, every configuration (S,E,N) in ρ, every client c ∈ C that is honest in S, and every login session id
lsid , we have that if lsid ∈ S(c).sessions, then all of the following hold true:

1) selected_AS ∈ S(c).sessions[lsid ]
2) for all configurations (S′, E′, N ′) after (S,E,N) in ρ we have S′(c).sessions[lsid ][selected_AS] ≡

S(c).sessions[lsid ][selected_AS]

PROOF. Since we have S0(c).sessions (Definition 16), we know that if lsid ∈ S(c).sessions, such an entry must have been
stored there by c. Clients only ever store/add such an entry in Line 10 of Algorithm 1, where a key selected_AS is part of the
stored entry. The key used to refer to the entry inside sessions is a fresh nonce (i.e., lsid is a fresh nonce there). Hence, whenever
a client first stores an entry in sessions under key lsid , this entry contains a key selected_AS.

It is easy to see that Line 10 of Algorithm 1 is indeed the only place in which a client stores any value under key selected_AS
in the sessions state subterm. Similarly, it is easy to check that this line is also the only place in which a client (over)writes a
whole entry in the sessions state subterm. Hence, we can conclude: A key selected_AS is present whenever a client adds an
entry to the sessions state subterm and neither the value stored under that key, nor the sessions entry itself are overwritten or
removed anywhere, implying 1). In addition, if the client ever executes Line 10 of Algorithm 1 again, it will never overwrite an
existing entry, because it will use a fresh login session id, thus we have 2). ■

Lemma 16 (Integrity of Client’s oauthConfigCache). For any run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of a FAPI web
system FAPI with a network attacker, every configuration (S,E,N) in ρ, every authorization server as ∈ AS that is honest
in S, every client c ∈ C that is honest in S, and every domain d ∈ dom(as), it holds true that if d ∈ S(c).oauthConfigCache,
we have all of the following:

1) S(c).oauthConfigCache[d][issuer] ≡ d
2) S(c).oauthConfigCache[d][auth_ep] ≡ ⟨URL, S, d, /auth, ⟨⟩,⊥⟩



3) S(c).oauthConfigCache[d][token_ep] ≡ ⟨URL, S, d, /token, ⟨⟩,⊥⟩
4) S(c).oauthConfigCache[d][par_ep] ≡ ⟨URL, S, d, /par, ⟨⟩,⊥⟩
5) S(c).oauthConfigCache[d][introspec_ep] ≡ ⟨URL, S, d, /introspection, ⟨⟩,⊥⟩
6) S(c).oauthConfigCache[d][jwks_uri] ≡ ⟨URL, S, d, /jwks, ⟨⟩,⊥⟩

We note that this implies that all these entries in S(c).oauthConfigCache[d] are never changed once they have been stored and
that all entries are created in the same processing step.

PROOF. We start by noting that S0(c).oauthConfigCache ≡ ⟨⟩ (Definition 16), i.e., the oauthConfigCache state
subterm is initially empty. An honest client only ever writes to its oauthConfigCache state subterm in Line 16 of
Algorithm 2 when processing an HTTPS response. Hence, d ∈ S(c).oauthConfigCache implies that there must have
been a processing step Q = (SQ, EQ, NQ) → (SQ′

, EQ′
, NQ′

) in ρ such that d ̸∈ SQ(c).oauthConfigCache and
d ∈ SQ′

(c).oauthConfigCache. In Q, PROCESS_HTTPS_RESPONSE must have been called with a reference as second
argument, such that reference[responseTo] ≡ CONFIG. In addition, reference[session] must contain a value sessionId
such that SQ(c).sessions[sessionId ][selected_AS] ≡ m.body[issuer] (Line 14 of Algorithm 2). From Line 16 of
Algorithm 2, we also know that SQ(c).sessions[sessionId ][selected_AS] ≡ d (cf. Lemma 15). Hence, we already have
that d ∈ S(c).oauthConfigCache implies 1).

With Lemma 4, we have that there must be a processing step P = (SP , EP , NP ) → (SP ′
, EP ′

, NP ′
) prior

to Q in ρ in which c called HTTPS_SIMPLE_SEND with reference as first argument. Such a reference (one
with responseTo set to CONFIG) is only created in Line 9 of Algorithm 6. The accompanying message’s host value
there is SP (c).sessions[sessionId ][selected_AS], i.e., by Lemma 15, d. That same message’s path value is either
/.well_known/openid-configuration or /.well_known/oauth-authorization-server. From Lemma 27, Algorithm 26,
and Lines 10ff. of Algorithm 31 (and because as does not leak tlskey(d)), we know that the request given to
HTTPS_SIMPLE_SEND in P can only be answered by as (and c, but clients do not reply to requests with the aforementioned
path values).

Such a request, i.e., one with the path values mentioned above, is processed by as in Lines 2ff. of Algorithm 9. From looking at
those Lines, it is obvious that the response sent in Line 10 of Algorithm 9 contains a body with a dictionary fulfilling 2)–6). Using
Lemma 27 once more, we can conclude that c processes such a response in Q and thus we have 2)–6). ■

Lemma 17 (Authorization code secrecy). For any run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of a FAPI web system FAPI with
a network attacker, every configuration (S,E,N) in ρ, every authorization server as ∈ AS that is honest in S, every client
c ∈ C that is honest in S with client identifier clientId at as , every identity id ∈ IDas with b = ownerOfID(id) being an honest
browser in S, every authorization code code ̸≡ ⊥ for which there is a record rec ∈⟨⟩ S(as).records with rec[code] ≡ code,
rec[client_id] ≡ clientId , and rec[subject] ≡ id and every process p ̸∈ {as, c, b}, it holds true that code ̸∈ d∅(S(p)).

PROOF.
1) For code to end up in

(
S(as).records.x

)
[code] (with x ∈ N), the as has to execute Line 44 of Algorithm 9, since the only

other places where an honest authorization server writes to the – initially empty, see Definition 17 – records state subterm
are:
• Line 123 of Algorithm 9: This line overwrites the stored authorization code with ⊥, i.e., codes written by this line are not

relevant to this lemma.
• Line 130 of Algorithm 9 and Line 131 of Algorithm 9: In these two places, the authorization server does not modify the
code entry. Note that ptr in these places cannot point “into” one of the records (see condition in Line 92 of Algorithm 9).

2) A code stored in Line 44 of Algorithm 9 is a fresh nonce (Line 43 of Algorithm 9). Hence, a code generated by as in that line
in some processing step si → si+1 is not known to any process up to and including si. Let ein be the event processed by as
in si → si+1. In order to reach Line 44 of Algorithm 9, ein must contain an HTTPS request req to the /auth2 endpoint. The
only place in which an honest as sends out the code value is the HTTPS response to req – i.e., if the sender of req is honest,
this response is only readable by the sender of req .

3) In addition, req must contain a valid identity–password combination – because as stores code along with identity and
clientId only if password ≡ secretOfID(identity). Since as does not send requests to itself and secretOfID(identity) is
only known to as and ownerOfID(identity), req must have been created by ownerOfID(identity) if the sender of req is
honest. W.l.o.g., let identity ≡ id , i.e., req was created by b.

4) Since the origin header of req must be a domain of as and req must use the POST method, we know that req was initiated
by a script of as . In particular, req must have been initiated by script_as_form (as this is the only script ever sent by as).
This script does not leak code after it is returned from as , since it uses a form post to transmit the credentials to as , and the
window is subsequently navigated away. Instead, as provides an empty script in its response to req (Line 52 of Algorithm 9).
This response contains a location redirect header. It is now crucial to check that this redirect does not leak code to any process
except for c. The value of the location header is taken from S(as).authorizationRequests[requestUri ][redirect_uri]



where S(as).authorizationRequests[requestUri ][client_id] ≡ clientId . With Lemma 14, we have that this URI is an
HTTPS URI and belongs to c. We therefore know that b will send an HTTPS request containing code to c. We now have to
check whether c or a script delivered by c to b will leak code . Algorithm 1 processes all HTTPS requests delivered to c. As as
redirected b using the 303 status code, the request must be a GET request. Hence, c does not process this request in Lines 5ff.
of Algorithm 1. If the request is processed in Lines 2ff. of Algorithm 1, c only responds with a script and does not use code at
all. This leaves us with Lines 12ff. of Algorithm 1; here, the code value is (a) stored in the sessions state subterm and (b)
given the SEND_TOKEN_REQUEST function. The value from (a) is not accessed anywhere, hence, it cannot leak. As for
(b), we have to look at Algorithm 3. There, the code is included in the body of an HTTPS request under the key code (Line 6
of Algorithm 3).

5) The HTTPS request (“token request”) prepared in Lines 6ff. of Algorithm 3 is sent to the token endpoint of as (which
was selected in b’s initial request and is bound to the authorization response via the ⟨__Host, sessionId⟩ cookie – see
Line 13 of Algorithm 1 and Line 30 of Algorithm 2). Since an honest client does not change the contents of an element
of oauthConfigCache once it is initialized with the selected authorization server’s metadata (see Line 9 of Algorithm 6,
Line 16 of Algorithm 2, and Lemma 16), the token endpoint to which the code is sent is the one provided by as at its metadata
endpoint. As as is honest, the token endpoint returned by its metadata endpoint uses a domain which belongs to as and
protocol S. With Lemma 27 we can conclude that the token request as such does not leak code.

6) As the token request is a HTTPS request sent to a domain of as and as is honest, only as can decrypt the request and extract
code. Requests to the token endpoint are processed in Lines 81ff. of Algorithm 9, It is easy to see that the code is not stored
or send out there, hence, it cannot leak. ■

Lemma 18 (Unique Code Verifier for Each Login Session ID at Client). For any run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn))
of a FAPI web system FAPI with a network attacker, every configuration (Si, Ei, N i) in ρ, every client c ∈ C that is
honest in S with client identifier clientId at as , every login session id lsid , and every term codeVerifier , we have that
Si(c).sessions[lsid ][code_verifier] ≡ codeVerifier implies:

1) Sj(c).sessions[lsid ][code_verifier] ≡ codeVerifier for all j ≥ i, and
2) Si(c).sessions[lsid ′][code_verifier] ̸≡ codeVerifier for all lsid ′ ̸≡ lsid .

PROOF. We start by noting that an honest client only ever stores something in an entry in sessions under key code_verifier
in Line 34 of Algorithm 6. The value stored there is always a fresh nonce (see Line 26 of Algorithm 6). Hence, we can conclude 2).

To get 1), we need to prove that a stored code verifier is never overwritten. For this, we show that a client executes Line 34 of
Algorithm 6 at most once with the same login session id (i.e., sessionId in the context of said line). For this, we look at the places
where Algorithm 6 ( PREPARE_AND_SEND_PAR) is called. Note that the first argument to PREPARE_AND_SEND_PAR is
the aforementioned sessionId :
Line 11 of Algorithm 1 Here, the first argument is a fresh nonce (see Line 9 of Algorithm 1), i.e., this line will never lead to

PREPARE_AND_SEND_PAR being called a second time with a given sessionId .
Line 17 of Algorithm 2 This line is only executed when the client processes an HTTPS response such that Algorithm 2 (

PROCESS_HTTPS_RESPONSE) was called with a reference containing a key responseTo with value CONFIG. The
sessionId value used when calling PREPARE_AND_SEND_PAR is also taken from the reference (see Line 10 of
Algorithm 2). I.e., we have to check where this reference came from.
reference is one of the arguments to PROCESS_HTTPS_RESPONSE which is only called in Line 26 of Algorithm 31,
where the value for reference is taken from the client’s pendingRequests state subterm. The pendingRequests state
subterm is initially empty (Definition 16) and the only place where elements are added to this state subterm is Line 15 of
Algorithm 31. There, in turn, the value for reference is taken (unchanged) from an entry in the pendingDNS state subterm.
Once again, this state subterm is initially empty and there is only one place in which entries are added to it: In Line 2 of
Algorithm 26, i.e., in HTTPS_SIMPLE_SEND, where reference is one of the arguments. Hence, we have to look at places
where HTTPS_SIMPLE_SEND is called with a reference where reference[responseTo] ≡ CONFIG.
The only place where such a reference is passed to HTTPS_SIMPLE_SEND is Line 9 of Algorithm 6. However,
this call always ends in a stop and the call happens before the client executes Line 34 of Algorithm 6 – hence, if an
execution of PREPARE_AND_SEND_PAR leads to execution of Line 11 of Algorithm 1 and thus a subsequent call of
PREPARE_AND_SEND_PAR, both calls use the same sessionId , but Line 34 of Algorithm 6 (i.e., storing a code verifier) is
executed at most once.

Line 20 of Algorithm 2 This case is very similar to the previous one, except for the following changes: The responseTo value
in question is JWKS instead of CONFIG, and the place in which HTTPS_SIMPLE_SEND is called with a suitable reference
is Line 14 of Algorithm 6. ■

Lemma 19 (Request URIs do not Leak). For any run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of a FAPI web system FAPI with a
network attacker, every processing step Q = (S,E,N) −→ (S′, E′, N ′) in ρ, every client identifier clientId , every authorization



server as ∈ AS that is honest in S, every client c ∈ C with client identifier clientId at as that is honest in S, every browser b ∈ B
that is honest in S, every domain dc ∈ dom(c), every login session id lsid , every nonce codeVerifier with
(a) ⟨⟨__Host, sessionId⟩, ⟨lsid ,⊤,⊤,⊤⟩⟩ ∈ S(b).cookies[dc], and
(b) S(c).sessions[lsid ][code_verifier] ≡ codeVerifier , and
(c) S(c).sessions[lsid ][selected_AS] ∈ dom(as), and
(d) c does not leak the authorization request for lsid (see Definition 23),

then all of the following hold true
1) there is exactly one nonce requestUri , such that S(as).authorizationRequests[requestUri ][code_challenge] ≡

hash(codeVerifier), and
2) only b, c, and as know requestUri , i.e., for all processes p /∈ {b, c, as}, we have requestUri /∈ d∅(S(p)).

PROOF. We start by noting that all requests and responses at an authorization server’s pushed authorization request (PAR) endpoint
must be HTTPS requests, i.e., as long as the sender of the request and the authorization server in question are honest, the contents
of request and response are not leaked by these messages as such (they may still leak by other means).

(I) hash(codeVerifier) does not leak. We start off by showing that hash(codeVerifier) does not leak to any process other than
c and as . For this, we look at how codeVerifier (from (b)) is generated and stored by c. The only place in which an honest
client – such as c – stores a value under key code_verifier in its session storage is in PREPARE_AND_SEND_PAR
in Line 34 of Algorithm 6. That value is generated in the same function in Line 26 by using a fresh nonce. Hence, at this
point, hash(codeVerifier) is only derivable by c. PREPARE_AND_SEND_PAR ends with the client sending a PAR request
which contains hash(codeVerifier) under the key code_challenge. So we have to check who receives that request. The
PAR request is sent to the pushed authorization request endpoint of the authorization server stored under key selected_AS
under lsid in the client’s session storage. As an honest client never changes this value once it is set (Lemma 16), we know
from (c) that the PAR request is sent to as . An honest authorization server – such as as – only reads a value stored under the
key code_challenge in an incoming message when processing a request to its /par endpoint (Lines 53ff. of Algorithm 9).
There, the value stored under code_challenge – i.e., hash(codeVerifier) – is stored in an authorization request record
in the authorization server’s authorization requests storage (see Lines 67, 77, and 78). Since as is honest, it never sends
out the code_challenge value (neither from the authorization requests storage, nor from the records storage to which the
code_challenge is copied in Line 44 of Algorithm 9). Hence, the value hash(codeVerifier) sent in the PAR request is not
leaked “directly”.
However, this value would be derivable if codeVerifier leaks, i.e., we also have to prove that codeVerifier does not leak. As
noted above, this value is a fresh nonce stored in c’s session storage under the key code_verifier. The only place in which a
client accesses such a value is in function SEND_TOKEN_REQUEST, where the value is included in the body of an HTTPS
request under the key code_verifier (Lines 6f. of Algorithm 3) which is sent to the token endpoint of the authorization
server stored under key selected_AS under lsid in the client’s session storage – i.e., as by (c) and Lemma 16. Hence, this
request in itself does not leak codeVerifier .
The only place in which an honest authorization server reads a value stored under the key code_verifier from an incoming
message is when processing a token request in Line 89 of Algorithm 9. This value is not stored by the authorization server,
neither is it sent anywhere. Hence, codeVerifier does not leak.

(II) as stores hash(codeVerifier). Because the cookie from (a) includes the __Host prefix and b is honest, that cookie must
have been set by c. Clients only ever set such cookies when processing PAR responses in Lines 21ff. of Algorithm 2.
With (b) (note that a client will never change the value stored under code_verifier, see Lemma 18), this implies that c
sent a PAR request containing hash(codeVerifier) to as (see (I)) and got a response. Hence, as must have processed that
PAR request as described above. Part of that processing is to store the value of code_challenge from the request – i.e.,
hash(codeVerifier) here – in the authorization request storage. Thus, we can conclude that there must be some requestUri ′

such that S(as).authorizationRequests[requestUri ′][code_challenge] ≡ hash(codeVerifier).
(III) Proof for 1). From (I), we have that only c and as know the value hash(codeVerifier) and do not use it in any request

except for a single PAR request from c to as . From (II), we have that as stores hash(codeVerifier) as part of processing that
PAR request. As as will use a fresh nonce as request URI for every processed PAR request (see Line 70 of Algorithm 9),
and never changes the stored values (except for code), we can conclude that there is exactly one requestUri such that
S(as).authorizationRequests[requestUri ][code_challenge] ≡ hash(codeVerifier).

(IV) Proof for 2). As shown above, requestUri is a fresh nonce chosen and stored by as when processing a PAR request send
by c. requestUri is not sent out by authorization servers anywhere, except in the response to the PAR request (under the key
request_uri) that lead to the “creation” of requestUri .
Since we already established that the receiver of that PAR response is c (see above), we now have to check how c uses
requestUri . c only reads a value stored under the key request_uri from an incoming message when processing the response
to a PAR request. While c does store that value in its session storage, it never accesses that stored value. However, after



processing the PAR response, c constructs an authorization request containing requestUri as part of the query parameters
(under key request_uri). That authorization request is a redirect which “points” to the authorization endpoint of the
authorization server stored under key selected_AS under lsid in c’s session storage (i.e., as by (c)). By (d), we also know
that c does not execute Line 36 of Algorithm 2, i.e., does not leak the authorization request for lsid .
Before looking at the receiver of the aforementioned redirect, we note that as only ever reads the value of a request parameter
request_uri in Line 19 of Algorithm 9 – that value is neither stored, nor sent out by as .
The redirect sent out by c when processing the PAR response is an HTTPS response which – among other things – contains a
Set-Cookie header with a cookie of the form ⟨⟨__Host, sessionId⟩, ⟨lsid ,⊤,⊤,⊤⟩⟩. We note that this is the only place in
which c sets such a cookie.
Since we know from (a) that b knows such a cookie, and (II) implies that c must have set this cookie, we know that the HTTPS
response containing the redirect with requestUri , sent by c, was sent to b.
We now only have to show that b does not leak requestUri . The aforementioned redirect contains a Location header (Line 29
of Algorithm 2) and status code 303, hence b will enter the location header handling in Line 11 of Algorithm 21 when
processing that redirect (note that the redirect is sent by c with an empty script, i.e., no leakage through a script is possible).
This handling will either end in a stop without any changes to b’s state and no output event – which means that b does neither
store, nor send out requestUri – or with a call of HTTP_SEND in Line 27 of Algorithm 21. While HTTP_SEND does store
the message to be send (containing requestUri ), that stored value is only ever accessed when processing a DNS response and
is then encrypted and sent out. We already established above that the redirection target is one of as’s authorization endpoints
and that as does not leak any requestUri values received there. Hence, we have that only b, c, and as know requestUri , i.e.,
for all processes p /∈ {b, c, as}, we have requestUri /∈ d∅(S(p)). ■

B. Authorization Property

In this section, we show that the authorization property from Definition 2 holds.

Lemma 20 (Authorization). For
• every run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of FAPI with a network attacker,
• every resource server rs ∈ RS that is honest in Sn,
• every identity id ∈⟨⟩ srs0 .ids with b = ownerOfID(id) being an honest browser in Sn,
• every processing step in ρ

Q = (SQ, EQ, NQ)
eQin →rs
−−−−−→
rs→EQ

out

(SQ′
, EQ′

, NQ′
)

• every resourceID ∈ S with as = authorizationServerOfResourcers(resourceID) being honest in SQ,
it holds true that:

If ∃r, x, y, k,mresp.⟨x, y, encs(mresp, k)⟩ ∈⟨⟩ EQ
out such that mresp is an HTTP response, r := mresp.body[resource], and

r ∈⟨⟩ SQ′
(rs).resourceNonce[id ][resourceID ], then

1) There exists a processing step

P = (SP , EP , NP )
ePin →rs−−−−−→
rs→EP

out

(SP ′
, EP ′

, NP ′
)

such that
a) either P = Q or P prior to Q in ρ, and
b) ePin is an event ⟨x, y, enca(⟨mreq, k1⟩, k2)⟩ for some x, y, k1, and k2 where mreq ∈ TN is an HTTP request which contains

a term (access token) t in its Authorization header, i.e., t ≡ mreq.headers[Authorization].2, and
c) r is a fresh nonce generated in P at the resource endpoint of rs in Line 46 of Algorithm 12.

2) t is bound to a key k ∈ TN , as , and id in SQ (see Definition 1).
3) If there exists a client c ∈ C such that k ≡ pub(signkey(c)) or k ≡ pub(tlskey(dc)) and dc ∈ dom(c), and if c is honest in

Sn, then r is not derivable from the attackers knowledge in Sn (i.e., r ̸∈ d∅(S
n(attacker))).

PROOF. Resource server sends resource to correct client. The first and the second postcondition are shown in Lemma 13,
where we also showed that the message contained in the event ePin was created by c (as intuitively, the access token is bound to
c via mTLS or DPoP, and no other process can prove possession of the secret key to which the token is bound). The resource
r is sent back as a response to ePin : If the resource server sends out the resource in Line 69 of Algorithm 12, then it encrypts
the HTTPS response (symmetrically) with the key contained in ePin . Otherwise, the resource server sends out the response in
Line 22 of Algorithm 13, encrypted (symmetrically) with the key contained in ePin (the resource server stored the key in its
state).



Thus, the resource server sends out the resource r back to c, encrypted with a symmetric key that only c and rs can derive. This
response can only be decrypted by c: A resource server can decrypt symmetrically only in Line 19 of Algorithm 31 (i.e., in the
generic server model), where the decryption key is taken from the pendingRequests state subterm. The application-layer
model of a resource server does not access this state subterm, and the generic HTTPS server model stores only fresh nonces
as keys (see Line 15 of Algorithm 31).

Client never sends resource r to attacker. In the following, we show that c does not send the resource nonce r to the attacker by
contradiction, i.e., we assume that the client does send r to the attacker.
Redirection request was created by attacker. The client processes the response of the resource server (containing the
resource r) in Line 49 of Algorithm 2 (as a client sends out requests with an Authorization header only by calling
HTTPS_SIMPLE_SEND in Line 30 of Algorithm 4 with the reference RESOURCE_USAGE) in some processing step R =

(SR, ER, NR)
eRin →c−−−−→
c→ER

out

(SR′
, ER′

, NR′
) (R happens after Q). The client stores the resource into its sessions in Line 51 of

Algorithm 2, but never access it again in any other location. The client sends the resource as a response to a request req redir
stored in SR.sessions[sessionId [redirectEpRequest], for some value sessionId (and in particular, encrypts the response
with the key contained in req redir), see Line 11, Line 53, and Line 54 of Algorithm 2.
An honest client sets redirectEpRequest values only in the redirection endpoint in Line 12 of Algorithm 1, i.e.,
req redir is a request that was previously received by the client. This request contains a value (an authorization code) in
req redir.parameters[code] (which the client puts into the token request in Algorithm 3).
As we assume that the client sends r to the attacker, it follows that req redir was created by the attacker, in particular, the
attacker can derive the symmetric key and all other values in the request.
Access token was sent by correct authorization server. Before sending the resource request, the client ensures that it sent the
token request to the correct authorization server, i.e., the authorization server managing the resource: The client sends resource
requests only in Algorithm 4. In Line 7 of Algorithm 4, the client checks whether the input argument tokenEPDomain is a
domain of the authorization server managing the resource that the client wants to request at the resource server. Algorithm 4
is called only in Line 44 of Algorithm 2, and the value tokenEPDomain is the domain of the token request, i.e., the client
received the access token from authorizationServerOfResourcers(resourceID) (see Definition 16). This authorization server
is honest, as required by the precondition of the lemma.
Attacker can derive authorization code issued for honest client and id. The access token that the client received in the
token request is bound to its signing key or TLS key, the authorization server as , and the identity id (as shown in the second
postcondition, it is bound to some key, as , and id , and the third postcondition has the requirement that the key is a key of the
client). The authorization server created the access token in the token endpoint in Line 81 of Algorithm 9 in some processing

step T = (ST , ET , NT )
eTin →as−−−−−→
as→ET

out

(ST ′
, ET ′

, NT ′
). The token request contains a code code such that there is a record

rec ∈⟨⟩ ST (as).records with rec[code] ≡ code and code ̸≡ ⊥ (Line 92 of Algorithm 9). Furthermore, the record has the
following values:
• rec[clientId] is a client identifier of c at as , as the token request was sent by c
• rec[subject] ≡ id (as the access token is bound to this identity)
As shown in Lemma 5, the code that the client uses is the same code that it received in the request to the redirection endpoint,
i.e., req redir.
However, this is a contradiction to Lemma 17, i.e., such an authorization code cannot leak to the attacker.

■

C. Authentication Property

In this section, we show that the authentication property from Definition 4 holds. This will be a proof by contradiction, i.e., we
assume that there is a FAPI web system FAPI in which the authentication property is violated and deduce a contradiction.

Assumption 1. There exists a FAPI web system with a network attacker FAPI such that there exists a run ρ of FAPI with a
configuration (S,E,N) in ρ, some c ∈ C that is honest in S, some identity id ∈ ID with as = governor(id) being an honest AS
and b = secretOfID(id) being browser honest in S, some service session identified by some nonce n for id at c, and n is derivable
from the attacker’s knowledge in S (i.e., n ∈ d∅(S(attacker))).

Lemma 21 (Authentication Property Holds). Assumption 1 is a contradiction.

PROOF. By Assumption 1, there is a service session identified by n for id at c, and hence, by Definition 3, we have
that there is a session id x and a domain d ∈ dom(governor(id)) with S(c).sessions[x][loggedInAs] ≡ ⟨d, id⟩ and
S(c).sessions[x][serviceSessionId] ≡ n. Assumption 1 says that n is derivable from the attacker’s knowledge. Since we
have S(c).sessions[x][serviceSessionId] ≡ n, we can check where such an entry in c’s state can be created.



The only place in which an honest client stores a service session id is in the function CHECK_ID_TOKEN, specifically in
Line 15 of Algorithm 5. There, the client chooses a fresh nonce as the value for the service session id, in this case n. In the line
before, it sets the value for S(c).sessions[x][loggedInAs], in this case ⟨d, id⟩.

CHECK_ID_TOKEN, in turn, is only called in a single place: When processing an HTTPS response to a token request, in
Line 48 of Algorithm 2. From the check in Line 47 of Algorithm 2, we know that this response came from (one of) as’s token
endpoints (cf. Lemma 16). Since as is an honest authorization server, it will only reply to a token request if that request contains
a valid authorization code, i.e., the token request must contain a code such that there is a record rec ∈⟨⟩ S(as).records with
rec[code] ≡ code, rec[client_id] ≡ clientId , and rec[subject] ≡ id where clientId must be one of c’s identifiers at as
(otherwise, client authentication would fail and as would not output an id token, see Lemma 10).

By tracking backwards from Line 15 of Algorithm 5, it is easy to see that the same party that finally receives the service
session id n in an HTTPS response sent in Line 19 of Algorithm 5 must have sent an HTTPS request req to c containing the
aforementioned code.

We now have to differentiate between two cases: Either (a) the sender of req is one of b, c, as; or (b) the sender of req is any
other process (except for b, c, and as).

In case (a), we know that the only party sending an HTTPS request with an authorization code (i.e., with a body dictionary
containing a key code) is b. If b sent req , b receives the service session id n in a set-cookie header with the httpOnly and secure
flags set (see Line 17 of Algorithm 5). Hence, b will only ever send n to c in a cookie header as part of HTTPS requests, which
does not leak n. Neither does c leak received service session id cookie values – in fact, c never even accesses a cookie named
serviceSessionId. Furthermore, neither b, nor c leak n in any other way (the value is not even accessed), resulting in a
contradiction to Assumption 1.

In case (b), that other process which sent req would need to know code in order to be able to include it in req . This contradicts
Lemma 17. ■

D. Session Integrity for Authentication Property

In this section, we show that the authentication property from Definition 24 holds.

Assumption 2. There exists a FAPI web system with a network attacker FAPI such that there exists a run ρ of FAPI with a
processing step Q = (S,E,N) −→ (S′, E′, N ′) in ρ, a browser b honest in S, an authorization server as ∈ AS, an identity id , a
client c ∈ C honest in S, and a nonce lsid with loggedInQρ (b, c, id , as, lsid) and c did not leak the authorization request for lsid ,
such that

(1) there is no processing step Q′ prior to Q in ρ such that startedQ
′

ρ (b, c, lsid), or
(2) as is honest in S, and there is no processing step Q′′ prior to Q in ρ such that authenticatedQ

′′

ρ (b, c, id , as, lsid).

Lemma 22 (Session Integrity for Authentication Property Holds). Assumption 2 is a contradiction.

PROOF. (1). We have that loggedInQρ (b, c, id , as, lsid). With Definition 19, we know that c sent out a service session id associated
with lsid to b. This can only happen when the client’s function CHECK_ID_TOKEN was called with lsid as the first argument –
which, in turn, can only happen in Line 48 of Algorithm 2 when c processes a response to a token request. Such a response is only
accepted by c if c sent a corresponding token request before. Clients only send token requests in Line 21 of Algorithm 1, when
processing an HTTPS request req redir.

req redir must contain a cookie [⟨__Host, sessionId⟩ : lsid ]: The response (containing the service session id) sent by c to b in
Line 19 of Algorithm 5 is sent to and encrypted for the sender of req redir, because c looks these values up in the login session record
stored in S(c).sessions[lsid ] under the key redirectEpRequest. Such an entry in c’s session storage is only ever created in
Line 20 of Algorithm 1 when processing an HTTPS request containing a login session cookie as described above.

We can now track how that cookie was stored in b: Since the cookie is stored under a domain of c (otherwise, b would not include
it in requests to c) and the cookie is set with the __Host prefix, the cookie must have been set by c. A cookie with the properties
shown above is only set in Line 30 of Algorithm 2. Similar to the redirectEpRequest session entry above, c sends this cookie
as a response to a stored request, in this case, using the key startRequest to determine receiver and encryption key. A session
entry with key startRequest is only ever created in Line 10 of Algorithm 1. Hence, for b to receive the cookie, there must have
been a request from b to c to the /startLogin endpoint, using the POST method, and with an origin header for an origin of c (see
Line 6 of Algorithm 1).

Due to the origin check, this request must have been sent by a script under one of c’s origins. There is only one script which
could potentially send such a request: script_client_index . Hence, there must be a processing step Q′ (prior to Q) in ρ in which b
executed script_client_index and in that script, executed Line 8 of Algorithm 8.

In addition, we already established above that c replied to this request (stored under the key startRequest) with a response
containing a header of the form ⟨Set-Cookie, [⟨__Host, sessionId⟩ : ⟨lsid ,⊤,⊤,⊤⟩]⟩.

Hence, we have that startedQ
′

ρ (b, c, lsid).



(2). Again, we have loggedInQρ (b, c, id , as, lsid) and we know that c sent out a service session id associated with lsid to b. This
can only happen in the client’s function CHECK_ID_TOKEN, which only produces an output if c received an id token t (via a
token response). From S(c).sessions[lsid ][loggedInAs] ≡ ⟨d, id⟩, we know that for tc := extractmsg(t), we have tc[iss] ≡ d,
tc[sub] ≡ id , and tc[aud] ≡ clientId (for some clientId ). Due to the check in Line 47 of Algorithm 2, this id token must have been
sent by as (because d ∈ dom(as)). as will only output such a term t if there is a record rec in as’s records state subterm with
rec[subject] ≡ id , rec[client_id] ≡ clientId , rec[code_challenge] ≡ codeChallenge (for some value of codeChallenge).
We note that as issuing an id token with tc[aud] ≡ clientId implies that c has client identifier clientId at as (see Definition 13
and Definition 17).

By construction of c and tracking of sessions[lsid ] in c’s state, it is easy to see that once c reaches CHECK_ID_TOKEN, the
session storage S(c).sessions[lsid ] must contain a key code_verifier under which a nonce codeVerifier is stored. We note
that S(b).cookies[dc] must contain a cookie ⟨⟨__Host, sessionId⟩, ⟨lsid ,⊤,⊤,⊤⟩⟩ for dc ∈ dom(c), because b sends a cookie
[⟨__Host, sessionId⟩ : lsid ] as explained above, b is honest (and will thus not accept __Host headers for dc from parties other
than c), and if c sets a cookie ⟨__Host, sessionId⟩, it will do with the attributes set as shown here.

Hence, we can apply Lemma 19 (note that S(c).sessions[lsid ][loggedInAs] ≡ ⟨d, id⟩ with d ∈ dom(as) implies
S(c).sessions[lsid ][selected_AS] ≡ d ∈ dom(as)). I.e., we now have that there is exactly one requestUri such
that S(as).authorizationRequests[requestUri ][code_challenge] ≡ hash(codeVerifier), and only b, c, and as know
requestUri .

We know from Line 95 of Algorithm 9 that the token request which leads to as issuing t must contain a code verifier such
that hash(codeVerifier) ≡ rec[code_challenge] (with rec from above). Since we know that c must have sent the token request
(otherwise, c would not have received t), we can track where and how c creates such a request. This is only the case in function
SEND_TOKEN_REQUEST. There, c selects the value for the code verifier and based on the session id which c received from b
via the sessionId cookie. At the same time, c includes the code from b’s request’s parameters.

Going back to as , we can track where a rec as described above can be stored into as’s state: This is only the case at as’s /auth2
endpoint (Lines 31ff. of Algorithm 9). There, as will only store a record rec, if there is an authZrec, stored under the key reqUri
in the authorizationRequests state subterm such that there is an auth2Reference with authZrec[auth2_reference] ≡
auth2Reference and that auth2Reference is contained in the request to as’s /auth2 endpoint. Such an auth2Reference, in turn,
is only created at as’s /auth endpoint. For a request to this endpoint to lead to storing auth2Reference, the request must contain
reqUri under the key request_uri.

Note that by Lemma 19, we established that there is exactly one requestUri in as’s state such that
S(as).authorizationRequests[requestUri ][code_challenge] ≡ hash(codeVerifier). Therefore, reqUri ≡ requestUri . In
addition, it is easy to see that c and as do not send any requests to as’s /auth endpoint. Hence, b must have sent a request with
reqUri to /auth.

Since auth2Reference from above is only sent to whoever sent the first request to /auth (and – if b receives it – b does not leak
that value) we know that b must have sent the request to /auth2 as well. As b is honest, this can only happen trough a script –
together with the origin header check in Line 31 of Algorithm 9, and script_as_form being the only script ever sent by as , we
can conclude that there must have been a processing step Q′′ prior to Q′ in ρ in which b was triggered, selected a document under
one of as’s origins with script script_as_form , executed that script, selected id from its identities (because we know from above
that rec[subject] ≡ id and such a rec is only stored at /auth2 endpoint, if the identity in the request is equivalent to id ) and sent
a request to as’s /auth2 endpoint containing auth2Reference – hence, the scriptstate contained a key auth2_reference with
value auth2Reference.

Hence, we have authenticatedQ
′′

ρ (b, c, id , as, lsid) which – together with (1). from above – contradicts Assumption 2, therefore
proving the lemma.

■

E. Session Integrity for Authorization Property

In this section, we show that the session integrity property from Definition 25 holds.

Lemma 23 (Session Integrity for Authorization Property Holds). For every run ρ of FAPI , every processing step Q =
(S,E,N) −→ (S′, E′, N ′) in ρ, every browser b that is honest in S, every as ∈ AS, every identity u, every client c ∈ C that is honest
in S, every rs ∈ RS that is honest in S, every nonce r, every nonce lsid , we have that if accessesResourceQρ (b, r , u, c, rs, as, lsid)
and c did not leak the authorization request for lsid (see Definition 23), then (1) there exists a processing step Q′ in ρ (before
Q) such that startedQ

′

ρ (b, c, lsid), and (2) if as is honest in S, then there exists a processing step Q′′ in ρ (before Q) such that
authenticatedQ

′′

ρ (b, c, u, as, lsid).

PROOF. (1). Due to accessesResourceQρ (b, r , u, c, rs, as, lsid), it holds true that the browser b has a sessionid cookie with the
session identifier lsid for the domain of the client c. This cookie is set with the __Host prefix, i.e., it follows that the cookie was
set by c, which responds with a Set-Cookie (with sessionid) only in Line 30 of Algorithm 2. The remaining proof is analogous



to the proof of the first postcondition of Lemma 22.
(2).
Client received resource from rs . As the client executes Line 55 of Algorithm 2 (precondition of the lemma), and as
S′(c).sessions[lsid ][resourceServer] ∈ dom(rs) is only set in Line 52 of Algorithm 2, it follows that c received the resource

r in a response from rs , i.e., it sent the corresponding resource request to rs .
Resource request contains access token associated with u at as . An honest resource server sends out an HTTP response

respresource with resource ∈⟨⟩ respresource.body either in Line 69 of Algorithm 12 or Line 22 of Algorithm 13. As shown
in the proof of Lemma 20, the resource server received a resource request req resource containing an access token t (either in
the same processing step when storing the resource or in a previous processing step). Furthermore, as the resource server
stores the resource in S(rs).resourceNonces[u][resourceId ] (with resourceId ∈ TN ), it follows that req resource has the path
resourceId . Thus, it follows that the value responsibleAS chosen by the resource server in Line 15 of Algorithm 12 is a
domain of as (as the resource server never changes the resourceASMapping subterm of its state, see also Definition 18).
If rs returns the resource r in Line 69 of Algorithm 12, then the access token is a structured JWT signed by as (Line 60
of Algorithm 12) and containing the sub value u (Line 62 of Algorithm 12). Otherwise, if r is returned in Line 22 of
Algorithm 13, then the resource server received a response from as containing the sub value u and asserting that the access
token contained in req resource is valid. In both cases (structured access token or opaque token) it follows that the authorization
server as has a sequence rec in the records subterm of its state with rec[access_token] ≡ t and rec[subject] ≡ u.

Token request was sent to as . An honest client sends resource requests only in Algorithm 4, which is called only in Line 44
of Algorithm 2, i.e., after receiving the token response. The check in Line 7 of Algorithm 4 ensures that the token request
req token was sent to as (as the client calls Algorithm 4 with the domain of the token request, see also Definition 16). From this,
it follows that S(c).sessions[lsid ][selected_AS] is a domain of as , as the client sends the token request to this domain,
see Line 4, Line 10, and Line 11 of Algorithm 3.

PAR request was sent to as . The token request req token sent from c to as contains an authorization code code and a PKCE code
verifier pkce_cv (see Line 6 of Algorithm 3). As the authorization server responds with an access token, it follows that the
checks at the token endpoint in Line 81 of Algorithm 9 passed successfully. In particular, this implies that the token request
contains the correct PKCE verifier for the code, i.e., the authorization code and the PKCE challenge corresponding to the
PKCE verifier were stored in the same record entry in the records state subterm (see Line 89 and Line 95 of Algorithm 9).
An authorization server adds these records to its records state subterm only in Line 44 of Algorithm 9, and the sequence
that is added is taken from the authorizationRequests state subterm, see Line 40 of Algorithm 9. In this processing step,
the authorization server also creates the authorization code (Line 43 of Algorithm 9) and associates the identity with the code
(Line 41 of Algorithm 9).
Thus, as the authorization server as exchanged the authorization code code at the token endpoint and the issued access token is
associated with the identity u, it follows that identity u logged in at the /auth2 endpoint of as , and the request to /auth2 con-
tained a value auth2_reference in its body equal to S′′(as).authorizationRequests[requestUri ][auth2_reference]
(with S′′ being the state of a configuration prior to Q; see also Line 39 of Algorithm 9). The authorization server received
the requestUri value at the auth endpoint, i.e., the process that can derive the request URI value can also derive the auth2
reference.
As S(c).sessions[lsid ][selected_AS] is a domain of as , it follows that the client sent the pushed authorization request to
as in Line 36 of Algorithm 6 in a previous processing step of the trace. In this processing step, the client chose the PKCE
verifier pkce_cv in Line 26 of Algorithm 6 and stored this value into the lsid session in Line 34 of Algorithm 6.
Now, we can apply Lemma 19 and conclude that the request URI can only be derived by b, c, and as . As as does not send
requests to itself and c does not send any request to an auth endpoint, it follows that the request to the auth endpoint of as
was sent by b. The remaining argumentation is the same as for the proof of Lemma 22.

■

F. Proof of Theorem

Theorem 1 follows from Lemma 20, Lemma 21, Lemma 22, and Lemma 23.



deca(enca(x, pub(y)), y) = x (6)
decs(encs(x, y), y) = x (7)

checksig(sig(x, y), pub(y)) = ⊤ (8)
extractmsg(sig(x, y)) = x (9)

checkmac(mac(x, y), y) = ⊤ (10)
extractmsg(mac(x, y)) = x (11)

πi(⟨x1, . . . , xn⟩) = xi if 1 ≤ i ≤ n (12)
πj(⟨x1, . . . , xn⟩) = 3 if j ̸∈ {1, . . . , n} (13)

πj(t) = 3 if t is not a sequence (14)

Figure 8. Equational theory for Σ.

APPENDIX G
TECHNICAL DEFINITIONS

Here, we provide technical definitions of the WIM. These follow the descriptions in [28, 33–38].

A. Terms and Notations

Definition 26 (Signature Σ). We define the signature Σ, over which we will define formal terms, as the union of the following
pairwise disjoint sets:
Constants C = S ∪ IPs ∪ {⊥,⊤,3} with the three sets pairwise disjoint. Sis the set of all (ASCII) strings, including the empty

string ε. IPsis the set of IP addresses.
Function Symbols to represent public keys, asymmetric encryption and decryption, symmetric encryption and decryption,

signatures, signature verification, MACs, MAC verification, message extraction from signatures and MACs, and hashing,
respectively: pub(·), enca(·, ·), deca(·, ·), encs(·, ·), decs(·, ·), sig(·, ·), checksig(·, ·), mac(·, ·), checkmac(·, ·), extractmsg(·),
hash(·).

Sequences of any length ⟨⟩, ⟨·⟩, ⟨·, ·⟩, ⟨·, ·, ·⟩, etc. Note that formally, these sequence “constructors” are also function symbols.
Projection Symbols to access sequence elements: πi(·) for all i ∈ N∅. Note that formally, projection symbols are also function

symbols.

Definition 27 (Nonces and Terms). By X = {x0, x1, . . . } we denote a set of variables and by N we denote an infinite set of
constants (nonces) such that Σ, X , and N are pairwise disjoint. For N ⊆ N , we define the set TN (X) of terms over Σ ∪N ∪X
inductively as usual: (1) If t ∈ N ∪X ∪C, then t is a term. (2) If f ∈ Σ is an n-ary function symbol for some n ≥ 0 and t1, . . . , tn
are terms, then f(t1, . . . , tn) is a term.

By ≡ we denote the congruence relation on TN (X) induced by the theory associated with Σ (see Figure 8). For example, we
have that π1(deca(enca(⟨a, b⟩, pub(k)), k)) ≡ a.

Definition 28 (Ground Terms, Messages, Placeholders, Protomessages). By TN = TN (∅), we denote the set of all terms over
Σ ∪N without variables, called ground terms. The set M of messages (over N ) is defined to be the set of ground terms TN .

We define the set Vprocess = {ν1, ν2, . . . } of variables (called placeholders). The set M ν := TN (Vprocess) is called the set of
protomessages, i.e., messages that can contain placeholders.

Example 1. For example, k ∈ N and pub(k) are messages, where k typically models a private key and pub(k) the corresponding
public key. For constants a, b, c and the nonce k ∈ N , the message enca(⟨a, b, c⟩, pub(k)) is interpreted to be the message ⟨a, b, c⟩
(the sequence of constants a, b, c) encrypted by the public key pub(k).

Definition 29 (Events and Protoevents). An event (over IPs and M ) is a term of the form ⟨a, f,m⟩, for a, f ∈ IPs and m ∈ M ,
where a is interpreted to be the receiver address and f is the sender address. We denote by E the set of all events. Events over
IPs and M ν are called protoevents and are denoted Eν . By 2E⟨⟩ (or 2Eν⟨⟩, respectively) we denote the set of all sequences of
(proto)events, including the empty sequence (e.g., ⟨⟩, ⟨⟨a, f,m⟩, ⟨a′, f ′,m′⟩, . . . ⟩, etc.).

Definition 30 (Normal Form). Let t be a term. The normal form of t is acquired by reducing the function symbols from left to
right as far as possible using the equational theory shown in Figure 8. For a term t, we denote its normal form as t↓.

Definition 31 (Pattern Matching). Let pattern ∈ TN ({∗}) be a term containing the wildcard (variable ∗). We say that a term t
matches pattern iff t can be acquired from pattern by replacing each occurrence of the wildcard with an arbitrary term (which may



be different for each instance of the wildcard). We write t ∼ pattern . For a sequence of patterns patterns we write t ∼̇ patterns
to denote that t matches at least one pattern in patterns .

For a term t′ we write t′| pattern to denote the term that is acquired from t′ by removing all immediate subterms of t′ that do
not match pattern .

Example 2. For example, for a pattern p = ⟨⊤, ∗⟩ we have that ⟨⊤, 42⟩ ∼ p, ⟨⊥, 42⟩ ̸∼ p, and

⟨⟨⊥,⊤⟩, ⟨⊤, 23⟩, ⟨a, b⟩, ⟨⊤,⊥⟩⟩| p = ⟨⟨⊤, 23⟩, ⟨⊤,⊥⟩⟩ .

Definition 32 (Variable Replacement). Let N ⊆ N , τ ∈ TN ({x1, . . . , xn}), and t1, . . . , tn ∈ TN .
By τ [t1/x1, . . . , tn/xn] we denote the (ground) term obtained from τ by replacing all occurrences of xi in τ by ti, for all

i ∈ {1, . . . , n}.

Definition 33 (Sequence Notations). Let t = ⟨t1, . . . , tn⟩ and r = ⟨r1, . . . , rm⟩ be sequences, s a set, and x, y terms. We define
the following operations:

• t ⊂⟨⟩ s ⇐⇒ t1, . . . , tn ∈ s
• x ∈⟨⟩ t ⇐⇒ ∃i : ti = x
• t+⟨⟩ y := ⟨t1, . . . , tn, y⟩
• t ∪ r := ⟨t1, . . . , tn, r1, . . . , rm⟩

• t−⟨⟩ y :=

{
⟨t1, . . . , ti−1, ti+1, . . . , tn⟩ if ∃i : ti = x (i.e., y ∈⟨⟩ t)
t otherwise (i.e., y ̸∈⟨⟩ t)

If y occurs more than once in t, t−⟨⟩ y non-deterministically removes one of the occurrences.
• t−⟨⟩∗ y is t with all occurrences of y removed.
• |t| := n. If t′ is not a sequence, we set |t′| := 3.
• For a finite set M with M = {m1, . . . ,mn} we use ⟨M⟩ to denote the term of the form ⟨m1, . . . ,mn⟩. The order of the

elements does not matter; one is chosen arbitrarily.

Definition 34 (Dictionaries). A dictionary over X and Y is a term of the form

⟨⟨k1, v1⟩, . . . , ⟨kn, vn⟩⟩

where k1, . . . , kn ∈ X , v1, . . . , vn ∈ Y . We call every term ⟨ki, vi⟩, i ∈ {1, . . . , n}, an element of the dictionary with key ki and
value vi. We often write [k1 : v1, . . . , kn : vn] instead of ⟨⟨k1, v1⟩, . . . , ⟨kn, vn⟩⟩. We denote the set of all dictionaries over X and
Y by [X × Y ]. Note that the empty dictionary is equivalent to the empty sequence, i.e., [] = ⟨⟩; and dictionaries as such may
contain duplicate keys (however, all dictionary operations are only defined on dictionaries with unique keys).

Definition 35 (Operations on Dictionaries). Let z = [k1 : v1, k2 : v2, . . . , kn : vn] be a dictionary with unique keys, i.e.,
∀i, j : ki ̸= kj . In addition, let t and v be terms. We define the following operations:

• t ∈ z ⇐⇒ ∃i ∈ {1, . . . , n} : ki = t

• z[t] :=

{
vi if ∃ki ∈ z : t = ki

⟨⟩ otherwise (i.e., if t ̸∈ z)

• z − t :=

{
[k1 : v1, . . . , ki−1 : vi−1, ki+1 : vi+1, . . . , kn : vn] if ∃ki ∈ z : t = ki

z otherwise (i.e., if t ̸∈ z)
• In our algorithm descriptions, we often write let z[t] := v. If t ̸∈ z prior to this operation, an element ⟨t, v⟩ is appended to z.

Otherwise, i.e., if there already is an element ⟨t, x⟩ ∈⟨⟩ z, this element is updated to ⟨t, v⟩.
We emphasize that these operations are only defined on dictionaries with unique keys.

Given a term t = ⟨t1, . . . , tn⟩, we can refer to any subterm using a sequence of integers. The subterm is determined by repeated
application of the projection πi for the integers i in the sequence. We call such a sequence a pointer:

Definition 36 (Pointers). A pointer is a sequence of non-negative integers. We write τ.p for the application of the pointer p to the
term τ . This operator is applied from left to right. For pointers consisting of a single integer, we may omit the sequence braces for
brevity.

Example 3. For the term τ = ⟨a, b, ⟨c, d, ⟨e, f⟩⟩⟩ and the pointer p = ⟨3, 1⟩, the subterm of τ at the position p is c = π1(π3(τ)).
Also, τ.3.⟨3, 1⟩ = τ.3.p = τ.3.3.1 = e.

To improve readability, we try to avoid writing, e.g., o.2 or π2(o) in this document. Instead, we will use the names of the
components of a sequence that is of a defined form as pointers that point to the corresponding subterms. E.g., if an Origin term is
defined as ⟨host , protocol⟩ and o is an Origin term, then we can write o.protocol instead of π2(o) or o.2. See also Example 4.



Definition 37 (Concatenation of Sequences). For a sequence a = ⟨a1, . . . , ai⟩ and a sequence b = ⟨b1, b2, . . . ⟩, we define the
concatenation as a · b := ⟨a1, . . . , ai, b1, b2, . . . ⟩.

Definition 38 (Subtracting from Sequences). For a sequence X and a set or sequence Y we define X \ Y to be the sequence X
where for each element in Y , a non-deterministically chosen occurence of that element in X is removed.

B. Message and Data Formats

We now provide some more details about data and message formats that are needed for the formal treatment of the web model
presented in the following.

1) URLs:

Definition 39. A URL is a term of the form

⟨URL, protocol , host , path, parameters, fragment⟩

with protocol ∈ {P, S} (for plain (HTTP) and secure (HTTPS)), a domain host ∈ Doms, path ∈ S, parameters ∈
[
S× TN

]
, and

fragment ∈ TN . The set of all valid URLs is URLs.

The fragment part of a URL can be omitted when writing the URL. Its value is then defined to be ⊥. We sometimes also write
URLhost

path to denote the URL ⟨URL, S, host , path, ⟨⟩,⊥⟩.
As mentioned above, for specific terms, such as URLs, we typically use the names of its components as pointers (see

Definition 36):

Example 4. For the URL u = ⟨URL, a, b, c, d⟩, u.protocol = a. If, in the algorithms described later, we say u.path := e then
u = ⟨URL, a, b, c, e⟩ afterwards.

2) Origins:

Definition 40. An origin is a term of the form ⟨host , protocol⟩ with host ∈ Doms and protocol ∈ {P, S}. We write Origins for
the set of all origins.

Example 5. For example, ⟨FOO, S⟩ is the HTTPS origin for the domain FOO, while ⟨BAR, P⟩ is the HTTP origin for the domain BAR.

3) Cookies:

Definition 41. A cookie is a term of the form ⟨name, content⟩ where name ∈ TN , and content is a term of the form
⟨value, secure, session, httpOnly⟩ where value ∈ TN , secure, session , httpOnly ∈ {⊤,⊥}. As name is a term, it may also be
a sequence consisting of two parts. If the name consists of two parts, we call the first part of the sequence (i.e., name.1) the prefix
of the name. We write Cookies for the set of all cookies and Cookiesν for the set of all cookies where names and values are defined
over TN (V ).

If the secure attribute of a cookie is set, the browser will not transfer this cookie over unencrypted HTTP connections.8 If the
session flag is set, this cookie will be deleted as soon as the browser is closed. The httpOnly attribute controls whether scripts
have access to this cookie.

When the __Host prefix (see [15]) of a cookie is set (i.e., name consists of two parts and name.1 ≡ __Host), the browser
accepts the cookie only if the secure attribute is set. As such cookies are only transferred over secure channels (i.e., with TLS),
the cookie cannot be set by a network attacker. Note that the WIM does not model the domain attribute of the Set-Cookie header,
so cookies in the WIM are always sent to the originating domain and not some subdomain. Therefore, the WIM models only the
__Host prefix, but not the __Secure prefix.

Also note that cookies of the form described here are only contained in HTTP(S) responses. In HTTP(S) requests, only the
components name and value are transferred as a pairing of the form ⟨name, value⟩.

4) HTTP Messages:

Definition 42. An HTTP request is a term of the form shown in (15). An HTTP response is a term of the form shown in (16).

⟨HTTPReq,nonce,method , host , path, parameters, headers, body⟩ (15)
⟨HTTPResp,nonce, status, headers, body⟩ (16)

The components are defined as follows:
• nonce ∈ N serves to map each response to the corresponding request.
• method ∈ Methods is one of the HTTP methods.

8Note that secure cookies can be set over unencrypted connections (c.f. RFC 6265).



• host ∈ Doms is the host name in the HOST header of HTTP/1.1.
• path ∈ S indicates the resource path at the server side.
• status ∈ S is the HTTP status code (i.e., a number between 100 and 505, as defined by the HTTP standard).
• parameters ∈

[
S× TN

]
contains URL parameters.

• headers ∈
[
S× TN

]
contains request/response headers. The dictionary elements are terms of one of the following forms:

– ⟨Origin, o⟩ where o is an origin,
– ⟨Set-Cookie, c⟩ where c is a sequence of cookies,
– ⟨Cookie, c⟩ where c ∈

[
S× TN

]
(note that in this header, only names and values of cookies are transferred),

– ⟨Location, l⟩ where l ∈ URLs,
– ⟨Referer, r⟩ where r ∈ URLs,
– ⟨Strict-Transport-Security,⊤⟩,
– ⟨Authorization, ⟨username, password⟩⟩ where username, password ∈ S (this header models the ‘Basic’ HTTP

Authentication Scheme, see [67]),
– ⟨ReferrerPolicy, p⟩ where p ∈ {noreferrer, origin}.

• body ∈ TN in requests and responses.
We write HTTPRequests/HTTPResponses for the set of all HTTP requests or responses, respectively.

Example 6 (HTTP Request and Response).

r :=⟨HTTPReq, n1, POST, example.com, /show, ⟨⟨index, 1⟩⟩,
[Origin : ⟨example.com, S⟩], ⟨foo, bar⟩⟩ (17)

s :=⟨HTTPResp, n1, 200, ⟨⟨Set-Cookie, ⟨⟨SID, ⟨n2,⊥,⊥,⊤⟩⟩⟩⟩⟩, ⟨somescript, x⟩⟩ (18)

An HTTP POST request for the URL http://example.com/show?index=1 is shown in (17), with an Origin header and a body that
contains ⟨foo, bar⟩. A possible response is shown in (18), which contains an httpOnly cookie with name SID and value n2 as well
as a string somescript representing a script that can later be executed in the browser (see Section G-K) and the scripts initial
state x.

a) Encrypted HTTP Messages: For HTTPS, requests are encrypted using the public key of the server. Such a request contains
an (ephemeral) symmetric key chosen by the client that issued the request. The server is supposed to encrypt the response using
the symmetric key.

Definition 43. An encrypted HTTP request is of the form enca(⟨m, k′⟩, k), where k ∈ terms, k′ ∈ N , and m ∈ HTTPRequests.
The corresponding encrypted HTTP response would be of the form encs(m

′, k′), where m′ ∈ HTTPResponses. We call the sets
of all encrypted HTTP requests and responses HTTPSRequests or HTTPSResponses, respectively.

We say that an HTTP(S) response matches or corresponds to an HTTP(S) request if both terms contain the same nonce.

Example 7.

enca(⟨r, k′⟩, pub(kexample.com)) (19)
encs(s, k

′) (20)

The term (19) shows an encrypted request (with r as in (17)). It is encrypted using the public key pub(kexample.com). The term (20)
is a response (with s as in (18)). It is encrypted symmetrically using the (symmetric) key k′ that was sent in the request (19).

5) DNS Messages:

Definition 44. A DNS request is a term of the form ⟨DNSResolve, domain,nonce⟩ where domain ∈ Doms, nonce ∈ N . We
call the set of all DNS requests DNSRequests.

Definition 45. A DNS response is a term of the form ⟨DNSResolved, domain, result ,nonce⟩with domain ∈ Doms, result ∈ IPs,
nonce ∈ N . We call the set of all DNS responses DNSResponses.

DNS servers are supposed to include the nonce they received in a DNS request in the DNS response that they send back so that
the party which issued the request can match it with the request.

C. Atomic Processes, Systems and Runs

Entities that take part in a network are modeled as atomic processes. An atomic process takes a term that describes its current
state and an event as input, and then (non-deterministically) outputs a new state and a sequence of events.

http://example.com/show?index=1


Definition 46 (Generic Atomic Processes and Systems). A (generic) atomic process is a tuple

p = (Ip, Zp, Rp, sp0)

where Ip ⊆ IPs, Zp ⊆ TN is a set of states, Rp ⊆ (E × Zp)× (2Eν⟨⟩ × TN (Vprocess)) (input event and old state map to sequence
of output events and new state), and sp0 ∈ Zp is the initial state of p. For any new state s and any sequence of nonces (η1, η2, . . . )
we demand that s[η1/ν1, η2/ν2, . . . ] ∈ Zp. A system P is a (possibly infinite) set of atomic processes.

Definition 47 (Configurations). A configuration of a system P is a tuple (S,E,N) where the state of the system S maps every
atomic process p ∈ P to its current state S(p) ∈ Zp, the sequence of waiting events E is an infinite sequence9 (e1, e2, . . . ) of
events waiting to be delivered, and N is an infinite sequence of nonces (n1, n2, . . . ).

Definition 48 (Processing Steps). A processing step of the system P is of the form

(S,E,N)
ein→p−−−−→
p→Eout

(S′, E′, N ′)

where
1) (S,E,N) and (S′, E′, N ′) are configurations of P ,
2) ein = ⟨a, f,m⟩ ∈ E is an event,
3) p ∈ P is a process,
4) Eout is a sequence (term) of events

such that there exists
1) a sequence (term) Eν

out ⊆ 2Eν⟨⟩ of protoevents,
2) a term sν ∈ TN (Vprocess),
3) a sequence (v1, v2, . . . , vi) of all placeholders appearing in Eν

out (ordered lexicographically),
4) a sequence Nν = (η1, η2, . . . , ηi) of the first i elements in N

with
1) ((ein, S(p)), (E

ν
out, s

ν)) ∈ Rp and a ∈ Ip,
2) Eout = Eν

out[η1/v1, . . . , ηi/vi],
3) S′(p) = sν [η1/v1, . . . , ηi/vi] and S′(p′) = S(p′) for all p′ ̸= p,
4) E′ = Eout · (E \ {ein}),
5) N ′ = N \Nν .

We may omit the superscript and/or subscript of the arrow.

Intuitively, for a processing step, we select one of the processes in P , and call it with one of the events in the list of waiting events
E. In its output (new state and output events), we replace any occurences of placeholders νx by “fresh” nonces from N (which we
then remove from N ). The output events are then prepended to the list of waiting events, and the state of the process is reflected in
the new configuration.

Definition 49 (Runs). Let P be a system, E0 be sequence of events, and N0 be a sequence of nonces. A run ρ of a system P
initiated by E0 with nonces N0 is a finite sequence of configurations ((S0, E0, N0), . . . , (Sn, En, Nn)) or an infinite sequence of
configurations ((S0, E0, N0), . . . ) such that S0(p) = sp0 for all p ∈ P and (Si, Ei, N i) −→ (Si+1, Ei+1, N i+1) for all 0 ≤ i < n
(finite run) or for all i ≥ 0 (infinite run).

We denote the state Sn(p) of a process p at the end of a finite run ρ by ρ(p).

Usually, we will initiate runs with a set E0 containing infinite trigger events of the form ⟨a, a, TRIGGER⟩ for each a ∈ IPs,
interleaved by address.

D. Atomic Dolev-Yao Processes

We next define atomic Dolev-Yao processes, for which we require that the messages and states that they output can be computed
(more formally, derived) from the current input event and state. For this purpose, we first define what it means to derive a message
from given messages.

Definition 50 (Deriving Terms). Let M be a set of ground terms. We say that a term m can be derived from M with placeholders
V if there exist n ≥ 0, m1, . . . ,mn ∈ M , and τ ∈ T∅({x1, . . . , xn} ∪ V ) such that m ≡ τ [m1/x1, . . . ,mn/xn]. We denote by
dV (M) the set of all messages that can be derived from M with variables V .

For example, the term a can be derived from the set of terms {enca(⟨a, b, c⟩, pub(k)), k}, i.e., a ∈ d∅({enca(⟨a, b, c⟩, pub(k)), k}).

9Here: Not in the sense of terms as defined earlier.



A (Dolev-Yao) process consists of a set of addresses the process listens to, a set of states (terms), an initial state, and a relation
that takes an event and a state as input and (non-deterministically) returns a new state and a sequence of events. The relation models
a computation step of the process. It is required that the output can be derived from the input event and the state.

Definition 51 (Atomic Dolev-Yao Process). An atomic Dolev-Yao process (or simply, a DY process) is a tuple p = (Ip, Zp, Rp, sp0)
such that p is an atomic process and for all events e ∈ E , sequences of protoevents E, s ∈ TN , s′ ∈ TN (Vprocess), with
((e, s), (E, s′)) ∈ Rp it holds true that E, s′ ∈ dVprocess({e, s}).

E. Attackers

The so-called attacker process is a Dolev-Yao process which records all messages it receives and outputs any finite sequence of
events it can possibly derive from its recorded messages. Hence, an attacker process carries out all attacks any Dolev-Yao process
could possibly perform. Attackers can corrupt other parties (using corrupt messages).

Definition 52 (Atomic Attacker Process). An (atomic) attacker process for a set of sender addresses A ⊆ IPs is an atomic DY
process p = (I, Z,R, s0) such that for all events e, and s ∈ TN we have that ((e, s), (E, s′)) ∈ R iff s′ = ⟨e, E, s⟩ and
E = ⟨⟨a1, f1,m1⟩, . . . , ⟨an, fn,mn⟩⟩ with n ∈ N, a1, . . . , an ∈ IPs, f1, . . . , fn ∈ A, m1, . . . ,mn ∈ dVprocess({e, s}).

Note that in a web system, we distinguish between two kinds of attacker processes: web attackers and network attackers. Both
kinds match the definition above, but differ in the set of assigned addresses in the context of a web system. While for web attackers,
the set of addresses Ip is disjoint from other web attackers and honest processes, i.e., web attackers participate in the network
as any other party, the set of addresses Ip of a network attacker is not restricted. Hence, a network attacker can intercept events
addressed to any party as well as spoof all addresses. Note that one network attacker subsumes any number of web attackers as
well as any number of network attackers.

F. Notations for Functions and Algorithms

When describing algorithms, we use the following notations:
1) Non-deterministic choosing and iteration: The notation let n← N is used to describe that n is chosen non-deterministically

from the set N . If N is empty, the corresponding processing step in which this selection happens does not finish. We write
for s ∈ M do to denote that the following commands are repeated for every element in M , where the variable s is the current
element. The order in which the elements are processed is chosen non-deterministically. We write, for example,

let x, y such that ⟨Constant, x, y⟩ ≡ t if possible; otherwise doSomethingElse

for some variables x, y, a string Constant, and some term t to express that x := π2(t), and y := π3(t) if Constant ≡ π1(t) and
if |⟨Constant, x, y⟩| = |t|, and that otherwise x and y are not set and doSomethingElse is executed.

2) Function calls: When calling functions that do not return anything, we write
call FUNCTION_NAME(x, y)

to describe that a function FUNCTION_NAME is called with two variables x and y as parameters. If that function executes the
command stop E, s′, the processing step terminates, where E is the sequence of events output by the associated process and s′ is
its new state. If that function does not terminate with a stop, the control flow returns to the calling function at the next line after
the call.

When calling a function that has a return value, we omit the call and directly write
let z := FUNCTION_NAME(x, y)

to assign the return value to a variable z after the function returns. Note that the semantics for execution of stop within such
functions is the same as for functions without a return value.

3) Stop without output: We write stop (without further parameters) to denote that there is no output and no change in the state.
4) Placeholders: In several places throughout the algorithms we use placeholders to generate “fresh” nonces as described in

our communication model (see Definition 27). Table I shows a list of some of the placeholders, generally denoted by ν with some
subscript to distinguish between multiple fresh values.

5) Abbreviations for URLs and Origins: We sometimes use an abbreviation for URLs. We write URLdpath to describe the
following URL term: ⟨URL, S, d, path, ⟨⟩⟩. If the domain d belongs to some distinguished process P and it is the only domain
associated to this process, we may also write URLPpath . For a (secure) origin ⟨d, S⟩ of some domain d, we also write origind. Again,
if the domain d belongs to some distinguished process P and d is the only domain associated to this process, we may write originP.

G. Browsers

Here, we present the formal model of browsers.



Placeholder Usage
ν1 Algorithm 22, new window nonces
ν2 Algorithm 22, new HTTP request nonce
ν3 Algorithm 22, lookup key for pending HTTP requests entry
ν4 Algorithm 20, new HTTP request nonce (multiple lines)
ν5 Algorithm 20, new subwindow nonce
ν6 Algorithm 21, new HTTP request nonce
ν7 Algorithm 21, new document nonce
ν8 Algorithm 17, lookup key for pending DNS entry
ν9 Algorithm 14, new window nonce
ν10, . . . Algorithm 20, replacement for placeholders in script output

Table I: List of placeholders used in browser algorithms.

1) Scripts: Recall that a script models JavaScript running in a browser. Scripts are defined similarly to Dolev-Yao processes.
When triggered by a browser, a script is provided with state information. The script then outputs a term representing a new internal
state and a command to be interpreted by the browser (see also the specification of browsers below).

Definition 53 (Placeholders for Scripts). By Vscript = {λ1, . . . } we denote an infinite set of variables used in scripts.

Definition 54 (Scripts). A script is a relation R ⊆ TN × TN (Vscript) such that for all s ∈ TN , s′ ∈ TN (Vscript) with (s, s′) ∈ R it
follows that s′ ∈ dVscript(s).

A script is called by the browser which provides it with state information (such as the script’s last scriptstate and limited
information about the browser’s state) s. The script then outputs a term s′, which represents the new scriptstate and some command
which is interpreted by the browser. The term s′ may contain variables λ1, . . . which the browser will replace by (otherwise
unused) placeholders ν1, . . . which will be replaced by nonces once the browser DY process finishes (effectively providing the
script with a way to get “fresh” nonces).

Similarly to an attacker process, the so-called attacker script outputs everything that is derivable from the input.

Definition 55 (Attacker Script). The attacker script Ratt outputs everything that is derivable from the input, i.e., Ratt = {(s, s′) |
s ∈ TN , s′ ∈ dVscript(s)}.

2) Web Browser State: Before we can define the state of a web browser, we first have to define windows and documents.

Definition 56. A window is a term of the form w = ⟨nonce, documents, opener⟩ with nonce ∈ N , documents ⊂⟨⟩ Documents
(defined below), opener ∈ N ∪ {⊥} where d.active = ⊤ for exactly one d ∈⟨⟩ documents if documents is not empty (we then
call d the active document of w). We write Windows for the set of all windows. We write w.activedocument to denote the active
document inside window w if it exists and ⟨⟩ else.

We will refer to the window nonce as (window) reference.
The documents contained in a window term to the left of the active document are the previously viewed documents (available to

the user via the “back” button) and the documents in the window term to the right of the currently active document are documents
available via the “forward” button.

A window a may have opened a top-level window b (i.e., a window term which is not a subterm of a document term). In this
case, the opener part of the term b is the nonce of a, i.e., b.opener = a.nonce.

Definition 57. A document d is a term of the form

⟨nonce, location, headers, referrer , script , scriptstate, scriptinputs, subwindows, active⟩

where nonce ∈ N , location ∈ URLs, headers ∈
[
S× TN

]
, referrer ∈ URLs ∪ {⊥}, script ∈ TN , scriptstate ∈ TN ,

scriptinputs ∈ TN , subwindows ⊂⟨⟩ Windows, active ∈ {⊤,⊥}. A limited document is a term of the form ⟨nonce, subwindows⟩
with nonce, subwindows as above. A window w ∈⟨⟩ subwindows is called a subwindow (of d). We write Documents for
the set of all documents. For a document term d we write d.origin to denote the origin of the document, i.e., the term
⟨d.location.host, d.location.protocol⟩ ∈ Origins.

We will refer to the document nonce as (document) reference.

Definition 58. For two window terms w and w′ we write

w
childof−−−→ w′

if w ∈⟨⟩ w′.activedocument.subwindows. We write childof+−−−−→ for the transitive closure and we write childof∗−−−−→ for the reflexive
transitive closure.



In the web browser state, HTTP(S) messages are tracked using references, where we distinguish between references for
XMLHttpRequests and references for normal HTTP(S) requests.

Definition 59. A reference for a normal HTTP(S) request is a sequence of the form ⟨REQ,nonce⟩, where nonce is a window
reference. A reference for a XMLHttpRequest is a sequence of the form ⟨XHR,nonce, xhrreference⟩, where nonce is a document
reference and xhrreference is some nonce that was chosen by the script that initiated the request.

We can now define the set of states of web browsers. Note that we use the dictionary notation that we introduced in Definition 34.

Definition 60. The set of states Zwebbrowser of a web browser atomic Dolev-Yao process consists of the terms of the form

⟨windows, ids, secrets, cookies, localStorage, sessionStorage, keyMapping ,

sts,DNSaddress, pendingDNS , pendingRequests, isCorrupted , cibaBindingMessages, tlskeys⟩

with the subterms as follows:
• windows ⊂⟨⟩ Windows contains a list of window terms (modeling top-level windows, or browser tabs) which contain

documents, which in turn can contain further window terms (iframes).
• ids ⊂⟨⟩ TN is a list of identities that are owned by this browser (i.e., belong to the user of the browser).
• secrets ∈

[
Origins× TN

]
contains a list of secrets that are associated with certain origins (i.e., passwords of the user of the

browser at certain websites). Note that this structure allows to have a single secret under an origin or a list of secrets under an
origin.

• cookies is a dictionary over Doms and sequences of Cookies modeling cookies that are stored for specific domains.
• localStorage ∈

[
Origins× TN

]
stores the data saved by scripts using the localStorage API (separated by origins).

• sessionStorage ∈
[
OR × TN

]
for OR := {⟨o, r⟩| o ∈ Origins, r ∈ N } similar to localStorage, but the data in sessionStor-

age is additionally separated by top-level windows.
• keyMapping ∈

[
Doms× TN

]
maps domains to TLS encryption keys.

• sts ⊂⟨⟩ Doms stores the list of domains that the browser only accesses via TLS (strict transport security).
• DNSaddress ∈ IPs defines the IP address of the DNS server.
• pendingDNS ∈

[
N × TN

]
contains one pairing per unanswered DNS query of the form ⟨reference, request , url⟩. In

these pairings, reference is an HTTP(S) request reference (as above), request contains the HTTP(S) message that awaits
DNS resolution, and url contains the URL of said HTTP request. The pairings in pendingDNS are indexed by the DNS
request/response nonce.

• pendingRequests ∈ TN contains pairings of the form ⟨reference, request , url , key , f⟩ with reference, request , and url as
in pendingDNS , key is the symmetric encryption key if HTTPS is used or ⊥ otherwise, and f is the IP address of the server
to which the request was sent.

• isCorrupted ∈ {⊥, FULLCORRUPT, CLOSECORRUPT} specifies the corruption level of the browser.
• cibaBindingMessages ∈ TN contains pairings of the form ⟨dom, bindingMsg⟩, where bindingMsg is a CIBA binding

message received from the (client) domain dom . The browser compares this binding message to the value received from an
AS.

• tlskeys ∈ [Doms×N ] is a mapping from domains to private keys.
In corrupted browsers, certain subterms are used in different ways (e.g., pendingRequests is used to store all observed messages).

3) Web Browser Relation: We will now define the relation Rwebbrowser of a standard HTTP browser. We first introduce some
notations and then describe the functions that are used for defining the browser main algorithm. We then define the browser relation.

a) Helper Functions: In the following description of the web browser relation Rwebbrowser we use the helper functions
Subwindows, Docs, Clean, CookieMerge, AddCookie, and NavigableWindows.

Subwindows and Docs. Given a browser state s, Subwindows(s) denotes the set of all pointers10 to windows in the window
list s.windows and (recursively) the subwindows of their active documents. We exclude subwindows of inactive documents
and their subwindows. With Docs(s) we denote the set of pointers to all active documents in the set of windows referenced by
Subwindows(s).

Definition 61. For a browser state s we denote by Subwindows(s) the minimal set of pointers that satisfies the following conditions:
(1) For all windows w ∈⟨⟩ s.windows there is a p ∈ Subwindows(s) such that s.p = w. (2) For all p ∈ Subwindows(s), the active
document d of the window s.p and every subwindow w of d there is a pointer p′ ∈ Subwindows(s) such that s.p′ = w.

Given a browser state s, the set Docs(s) of pointers to active documents is the minimal set such that for every p ∈ Subwindows(s)
with s.p.activedocument ̸≡ ⟨⟩, there exists a pointer p′ ∈ Docs(s) with s.p′ = s.p.activedocument.

By Subwindows+(s) and Docs+(s) we denote the respective sets that also include the inactive documents and their subwindows.

10Recall the definition of a pointer in Definition 36.



Clean. The function Clean will be used to determine which information about windows and documents the script running in
the document d has access to.

Definition 62. Let s be a browser state and d a document. By Clean(s, d) we denote the term that equals s.windows but with (1)
all inactive documents removed (including their subwindows etc.), (2) all subterms that represent non-same-origin documents
w.r.t. d replaced by a limited document d′ with the same nonce and the same subwindow list, and (3) the values of the subterms
headers for all documents set to ⟨⟩. (Note that non-same-origin documents on all levels are replaced by their corresponding
limited document.)

CookieMerge. The function CookieMerge merges two sequences of cookies together: When used in the browser, oldcookies is
the sequence of existing cookies for some origin, newcookies is a sequence of new cookies that was output by some script. The
sequences are merged into a set of cookies using an algorithm that is based on the Storage Mechanism algorithm described in
RFC6265.

Definition 63. For a sequence of cookies (with pairwise different names) oldcookies , a sequence of cookies newcookies ,
and a string protocol ∈ {P, S}, the set CookieMerge(oldcookies,newcookies, protocol) is defined by the following algo-
rithm: From newcookies remove all cookies c that have c.content.httpOnly ≡ ⊤ or where (c.name.1 ≡ __Host) ∧
((protocol ≡ P) ∨ (c.secure ≡ ⊥)). For any c, c′ ∈⟨⟩ newcookies , c.name ≡ c′.name, remove the cookie that appears left
of the other in newcookies . Let m be the set of cookies that have a name that either appears in oldcookies or in newcookies , but
not in both. For all pairs of cookies (cold, cnew) with cold ∈⟨⟩ oldcookies , cnew ∈⟨⟩ newcookies , cold.name ≡ cnew.name, add cnew to
m if cold.content.httpOnly ≡ ⊥ and add cold to m otherwise. The result of CookieMerge(oldcookies,newcookies, protocol) is
m.

AddCookie. The function AddCookie adds a cookie c received in an HTTP response to the sequence of cookies contained in
the sequence oldcookies . It is again based on the algorithm described in RFC6265 but simplified for the use in the browser model.

Definition 64. For a sequence of cookies (with pairwise different names) oldcookies , a cookie c, and a string protocol ∈
{P, S} (denoting whether the HTTP response was received from an insecure or a secure origin), the sequence
AddCookie(oldcookies, c, protocol) is defined by the following algorithm: Let m := oldcookies . If (c.name.1 ≡ __Host) ∧
¬((protocol ≡ S) ∧ (c.secure ≡ ⊤)), then return m, else: Remove any c′ from m that has c.name ≡ c′.name. Append c to m
and return m.

NavigableWindows. The function NavigableWindows returns a set of windows that a document is allowed to navigate. We
closely follow [7], Section 5.1.4 for this definition.

Definition 65. The set NavigableWindows(w , s′) is the set W ⊆ Subwindows(s′) of pointers to windows that the active document
in w is allowed to navigate. The set W is defined to be the minimal set such that for every w ′ ∈ Subwindows(s′) the following is
true:

• If s′.w ′.activedocument.origin ≡ s′.w .activedocument.origin (i.e., the active documents in w and w ′ are same-
origin), then w ′ ∈W , and

• If s′.w childof∗−−−−→ s′.w ′ ∧ ∄w ′′ ∈ Subwindows(s′) with s′.w ′ childof∗−−−−→ s′.w ′′ (w ′ is a top-level window and w is an ancestor
window of w ′), then w ′ ∈W , and

• If ∃ p ∈ Subwindows(s′) such that s′.w ′ childof+−−−−→ s′.p
∧ s′.p.activedocument.origin = s′.w .activedocument.origin (w ′ is not a top-level window but there is an ancestor
window p of w ′ with an active document that has the same origin as the active document in w ), then w ′ ∈W , and

• If ∃ p ∈ Subwindows(s′) such that s′.w ′.opener = s′.p.nonce ∧ p ∈W (w ′ is a top-level window—it has an opener—and
w is allowed to navigate the opener window of w ′, p), then w ′ ∈W .

b) Functions:
• The function GETNAVIGABLEWINDOW (Algorithm 14) is called by the browser to determine the window that is actually

navigated when a script in the window s′.w provides a window reference for navigation (e.g., for opening a link). When it is
given a window reference (nonce) window , this function returns a pointer to a selected window term in s′:
– If window is the string _BLANK, a new window is created and a pointer to that window is returned.
– If window is a nonce (reference) and there is a window term with a reference of that value in the windows in s′, a pointer
w ′ to that window term is returned, as long as the window is navigable by the current window’s document (as defined by
NavigableWindows above).

In all other cases, w is returned instead (the script navigates its own window).
• The function GETWINDOW (Algorithm 15) takes a window reference as input and returns a pointer to a window as above,

but it checks only that the active documents in both windows are same-origin. It creates no new windows.



Algorithm 14 Web Browser Model: Determine window for navigation.
1: function GETNAVIGABLEWINDOW(w , window , noreferrer , s′)
2: if window ≡ _BLANK then → Open a new window when _BLANK is used
3: if noreferrer ≡ ⊤ then
4: let w′ := ⟨ν9, ⟨⟩,⊥⟩
5: else
6: let w′ := ⟨ν9, ⟨⟩, s′.w .nonce⟩
7: let s′.windows := s′.windows +⟨⟩ w′

↪→ and let w ′ be a pointer to this new element in s′

8: return w ′

9: let w ′← NavigableWindows(w , s′) such that s′.w ′.nonce ≡ window
↪→ if possible; otherwise return w

10: return w ′

Algorithm 15 Web Browser Model: Determine same-origin window.
1: function GETWINDOW(w , window , s′)
2: let w ′← Subwindows(s′) such that s′.w ′.nonce ≡ window

↪→ if possible; otherwise return w
3: if s′.w ′.activedocument.origin ≡ s′.w .activedocument.origin then
4: return w ′

5: return w

Algorithm 16 Web Browser Model: Cancel pending requests for given window.
1: function CANCELNAV(reference , s′)
2: remove all ⟨reference, req , url , key , f ⟩ from s′.pendingRequests for any req , url , key , f
3: remove all ⟨x, ⟨reference,message, url⟩⟩ from s′.pendingDNS

↪→ for any x , message , url
4: return s′

Algorithm 17 Web Browser Model: Prepare headers, do DNS resolution, save message.
1: function HTTP_SEND(reference , message , url , origin , referrer , referrerPolicy , a, s′)
2: if message.host ∈⟨⟩ s′.sts then
3: let url .protocol := S

4: let cookies := ⟨{⟨c.name, c.content.value⟩ | c ∈⟨⟩ s′.cookies [message.host]
↪→ ∧ (c.content.secure ≡ ⊤ =⇒ (url .protocol ≡ S))}⟩

5: let message.headers[Cookie] := cookies
6: if origin ̸≡ ⊥ then
7: let message.headers[Origin] := origin

8: if referrerPolicy ≡ no-referrer then
9: let referrer := ⊥

10: if referrer ̸≡ ⊥ then
11: if referrerPolicy ≡ origin then
12: let referrer := ⟨URL, referrer .protocol, referrer .host, /, ⟨⟩,⊥⟩

→ Referrer stripped down to origin.
13: let referrer .fragment := ⊥

→ Browsers do not send fragment identifiers in the Referer header.
14: let message.headers[Referer] := referrer

15: let s′.pendingDNS[ν8] := ⟨reference,message, url⟩
16: stop ⟨⟨s′.DNSaddress, a, ⟨DNSResolve,message.host, ν8⟩⟩⟩, s′

Algorithm 18 Web Browser Model: Navigate a window backward.
1: function NAVBACK(w ′, s′)
2: if ∃ j ∈ N, j > 1 such that s′.w ′.documents.j .active ≡ ⊤ then
3: let s′.w ′.documents.j .active := ⊥
4: let s′.w ′.documents.(j − 1).active := ⊤
5: let s′ := CANCELNAV(s′.w ′.nonce, s′)

6: stop ⟨⟩, s′



Algorithm 19 Web Browser Model: Navigate a window forward.
1: function NAVFORWARD(w ′, s′)
2: if ∃ j ∈ N such that s′.w ′.documents.j .active ≡ ⊤

↪→ ∧ s′.w ′.documents.(j + 1) ∈ Documents then
3: let s′.w ′.documents.j .active := ⊥
4: let s′.w ′.documents.(j + 1).active := ⊤
5: let s′ := CANCELNAV(s′.w ′.nonce, s′)

6: stop ⟨⟩, s′

Algorithm 20 Web Browser Model: Execute a script.
1: function RUNSCRIPT(w , d , a, s′)
2: let tree := Clean(s′, s′.d)
3: let cookies := ⟨{⟨c.name, c.content.value⟩|c ∈⟨⟩ s′.cookies

[
s′.d .origin.host

]
↪→ ∧ c.content.httpOnly ≡ ⊥
↪→ ∧

(
c.content.secure ≡ ⊤ =⇒

(
s′.d .origin.protocol ≡ S

))
}⟩

4: let tlw ← s′.windows such that tlw is the top-level window containing d
5: let sessionStorage := s′.sessionStorage

[
⟨s′.d .origin, tlw .nonce⟩

]
6: let localStorage := s′.localStorage

[
s′.d .origin

]
7: let secrets := s′.secrets

[
s′.d .origin

]
8: let R := script−1(s′.d .script) if possible; otherwise stop
9: let in := ⟨tree , s′.d .nonce, s′.d .scriptstate, s′.d .scriptinputs, cookies,

↪→ localStorage , sessionStorage , s′.ids, secrets⟩
10: let state ′← TN (Vprocess), cookies ′ ← Cookiesν , localStorage ′ ← TN (Vprocess),

↪→ sessionStorage ′ ← TN (Vprocess), command ← TN (Vprocess),
↪→ out := ⟨state ′, cookies ′, localStorage ′, sessionStorage ′, command⟩
↪→ such that out := outλ[ν10/λ1, ν11/λ2, . . . ] with (in, outλ) ∈ R

11: let s′.cookies
[
s′.d .origin.host

]
:=

↪→ ⟨CookieMerge(s′.cookies
[
s′.d .origin.host

]
, cookies ′, s′.d .origin.protocol)⟩

12: let s′.localStorage
[
s′.d .origin

]
:= localStorage ′

13: let s′.sessionStorage
[
⟨s′.d .origin, tlw .nonce⟩

]
:= sessionStorage ′

14: let s′.d .scriptstate := state′

15: let referrer := s′.d .location
16: let referrerPolicy := s′.d .headers[ReferrerPolicy]
17: let docorigin := s′.d .origin
18: switch command do
19: case ⟨HREF, url , hrefwindow ,noreferrer⟩
20: let w ′ := GETNAVIGABLEWINDOW(w , hrefwindow , noreferrer , s′)
21: let reference := ⟨REQ, s′.w ′.nonce⟩
22: let req := ⟨HTTPReq, ν4, GET, url .host, url .path, url .parameters, ⟨⟩, ⟨⟩⟩
23: if noreferrer ≡ ⊤ then
24: let referrerPolicy := noreferrer

25: let s′ := CANCELNAV(reference, s′)
26: call HTTP_SEND(reference , req , url , ⊥, referrer , referrerPolicy , a, s′)
27: case ⟨IFRAME, url ,window⟩
28: if window ≡ _SELF then
29: let w ′ := w
30: else
31: let w ′ := GETWINDOW(w ,window , s′)

32: let req := ⟨HTTPReq, ν4, GET, url .host, url .path, url .parameters, ⟨⟩, ⟨⟩⟩
33: let w′ := ⟨ν5, ⟨⟩,⊥⟩
34: let s′.w ′.activedocument.subwindows := s′.w ′.activedocument.subwindows+⟨⟩ w′

35: call HTTP_SEND(⟨REQ, ν5⟩, req , url , ⊥, referrer , referrerPolicy , a, s′)
→Algorithm continues on next page.



36: case ⟨FORM, url ,method , data, hrefwindow⟩
37: if method ̸∈ {GET, POST} then
38: stop
39: let w ′ := GETNAVIGABLEWINDOW(w , hrefwindow , ⊥, s′)
40: let reference := ⟨REQ, s′.w ′.nonce⟩
41: if method = GET then
42: let body := ⟨⟩
43: let parameters := data
44: let origin := ⊥
45: else
46: let body := data
47: let parameters := url .parameters
48: let origin := docorigin

49: let req := ⟨HTTPReq, ν4,method , url .host, url .path, parameters, ⟨⟩, body⟩
50: let s′ := CANCELNAV(reference, s′)
51: call HTTP_SEND(reference , req , url , origin , referrer , referrerPolicy , a, s′)
52: case ⟨CIBAFORM, url ,method , data, hrefwindow , clientDomain, cibaBindingMessage⟩

→Custom CIBA FORM command: When starting a CIBA flow, the client returns a binding message. When authenticating at the
AS, the end-user has to make sure that they receive the same value. For modeling this behavior, we extend the browser state
by the cibaBindingMessages subterm and define this command which first checks if the cibaBindingMessage is stored
by the browser and then continues as the FORM command. Note that this command is a modeling artifact.

53: if ⟨clientDomain, cibaBindingMessage⟩ ̸∈⟨⟩ s′.cibaBindingMessages then
54: stop
55: if method ̸∈ {GET, POST} then
56: stop
57: let w ′ := GETNAVIGABLEWINDOW(w , hrefwindow , ⊥, s′)
58: let reference := ⟨REQ, s′.w ′.nonce⟩
59: if method = GET then
60: let body := ⟨⟩
61: let parameters := data
62: let origin := ⊥
63: else
64: let body := data
65: let parameters := url .parameters
66: let origin := docorigin

67: let req := ⟨HTTPReq, ν4,method , url .host, url .path, parameters, ⟨⟩, body⟩
68: let s′ := CANCELNAV(reference, s′)
69: call HTTP_SEND(reference , req , url , origin , referrer , referrerPolicy , a, s′)
70: case ⟨SETSCRIPT,window , script⟩
71: let w ′ := GETWINDOW(w ,window , s′)
72: let s′.w ′.activedocument.script := script
73: stop ⟨⟩, s′

74: case ⟨SETSCRIPTSTATE,window , scriptstate⟩
75: let w ′ := GETWINDOW(w ,window , s′)
76: let s′.w ′.activedocument.scriptstate := scriptstate
77: stop ⟨⟩, s′

78: case ⟨XMLHTTPREQUEST, url ,method , data, xhrreference⟩
79: if method ∈ {CONNECT, TRACE, TRACK} ∨ xhrreference ̸∈ Vprocess ∪ {⊥} then
80: stop
81: if url .host ̸≡ docorigin.host ∨ url .protocol ̸≡ docorigin.protocol then
82: stop
83: if method ∈ {GET, HEAD} then
84: let data := ⟨⟩
85: let origin := ⊥
86: else
87: let origin := docorigin

88: let req := ⟨HTTPReq, ν4,method , url .host, url .path, url .parameters, ⟨⟩, data⟩
89: let reference := ⟨XHR, s′.d .nonce, xhrreference⟩
90: call HTTP_SEND(reference , req , url , origin , referrer , referrerPolicy , a, s′)
91: case ⟨BACK,window⟩
92: let w ′ := GETNAVIGABLEWINDOW(w , window , ⊥, s′)
93: call NAVBACK(w ′, s′)
→Algorithm continues on next page.



94: case ⟨FORWARD,window⟩
95: let w ′ := GETNAVIGABLEWINDOW(w , window , ⊥, s′)
96: call NAVFORWARD(w ′, s′)
97: case ⟨CLOSE,window⟩
98: let w ′ := GETNAVIGABLEWINDOW(w , window , ⊥, s′)
99: remove s′.w ′ from the sequence containing it
100: stop ⟨⟩, s′

101: case ⟨POSTMESSAGE,window ,message, origin⟩
102: let w ′← Subwindows(s′) such that s′.w ′.nonce ≡ window
103: if ∃j ∈ N such that s′.w ′.documents.j .active ≡ ⊤

↪→ ∧ (origin ̸≡ ⊥ =⇒ s′.w ′.documents.j .origin ≡ origin) then
104: let s′.w ′.documents.j .scriptinputs := s′.w ′.documents.j .scriptinputs

↪→ +⟨⟩ ⟨POSTMESSAGE, s′.w .nonce, docorigin,message⟩
105: stop ⟨⟩, s′

106: case else
107: stop

• The function CANCELNAV (Algorithm 16) is used to stop any pending requests for a specific window. From the pending
requests and pending DNS requests it removes any requests with the given window reference.

• The function HTTP_SEND (Algorithm 17) takes an HTTP request message as input, adds cookie and origin headers to
the message, creates a DNS request for the hostname given in the request and stores the request in s′.pendingDNS until the
DNS resolution finishes. reference is a reference as defined in Definition 59. url contains the full URL of the request (this is
mainly used to retrieve the protocol that should be used for this message, and to store the fragment identifier for use after the
document was loaded). origin is the origin header value that is to be added to the HTTP request.

• The functions NAVBACK (Algorithm 18) and NAVFORWARD (Algorithm 19), navigate a window backward or forward.
More precisely, they deactivate one document and activate that document’s preceding document or succeeding document,
respectively. If no such predecessor/successor exists, the functions do not change the state.

• The function RUNSCRIPT (Algorithm 20) performs a script execution step of the script in the document s′.d (which is part
of the window s′.w ). A new script and document state is chosen according to the relation defined by the script and the new
script and document state is saved. Afterwards, the command that the script issued is interpreted.

• The function PROCESSRESPONSE (Algorithm 21) is responsible for processing an HTTP response (response) that was
received as the response to a request (request) that was sent earlier. reference is a reference as defined in Definition 59.
requestUrl contains the URL used when retrieving the document.
The function first saves any cookies that were contained in the response to the browser state, then checks whether a redirection
is requested (Location header). If that is not the case, the function creates a new document (for normal requests) or delivers
the contents of the response to the respective receiver (for XHR responses).
c) Browser Relation: We can now define the relation Rwebbrowser of a web browser atomic process as follows:

Definition 66. The pair ((⟨a, f,m⟩, s) , (M, s′)) belongs to Rwebbrowser iff the non-deterministic Algorithm 22 (or any of the
functions called therein), when given (⟨a, f,m⟩, s) as input, terminates with stop M , s′, i.e., with output M and s′.

Recall that ⟨a, f,m⟩ is an (input) event and s is a (browser) state, M is a sequence of (output) protoevents, and s′ is a new
(browser) state (potentially with placeholders for nonces).

H. Definition of Web Browsers

Finally, we define web browser atomic Dolev-Yao processes as follows:

Definition 67 (Web Browser atomic Dolev-Yao Process). A web browser atomic Dolev-Yao process is an atomic Dolev-Yao
process of the form p = (Ip, Zwebbrowser, Rwebbrowser, s

p
0) for a set Ip of addresses, Zwebbrowser and Rwebbrowser as defined above,

and an initial state sp0 ∈ Zwebbrowser.

Definition 68 (Web Browser Initial State). An initial state sp0 ∈ Zwebbrowser for a browser process p is a web browser state
(Definition 60) with the following properties:

• sp0.windows ≡ ⟨⟩
• sp0.ids ⊂⟨⟩ TN (intended to be constrained by instantiations of the Web Infrastructure Model)
• sp0.secrets ∈

[
Origins× TN

]
(intended to be constrained by instantiations of the Web Infrastructure Model)

• sp0.cookies ≡ ⟨⟩
• sp0.localStorage ≡ ⟨⟩
• sp0.sessionStorage ≡ ⟨⟩



Algorithm 21 Web Browser Model: Process an HTTP response.
1: function PROCESSRESPONSE(response , reference , request , requestUrl , a, f , s′)
2: if Set-Cookie ∈ response.headers then
3: for each c ∈⟨⟩ response.headers [Set-Cookie], c ∈ Cookies do
4: let s′.cookies [request .host]

↪→ := AddCookie(s′.cookies [request .host] , c, requestUrl .protocol)

5: if Strict-Transport-Security ∈ response.headers ∧ requestUrl .protocol ≡ S then
6: let s′.sts := s′.sts +⟨⟩ request .host

7: if Referer ∈ request .headers then
8: let referrer := request .headers[Referer]
9: else

10: let referrer := ⊥
11: if Location ∈ response.headers ∧ response.status ∈ {303, 307} then
12: let url := response.headers [Location]
13: if url .fragment ≡ ⊥ then
14: let url .fragment := requestUrl .fragment

15: let method ′ := request .method
16: let body ′ := request .body
17: if Origin ∈ request .headers

↪→ ∧ request .headers[Origin] ̸= 3

↪→ ∧ (⟨url .host, url .protocol⟩ ≡ ⟨request .host, requestUrl .protocol⟩
↪→ ∨ ⟨request .host, requestUrl .protocol⟩ ≡ request .headers[Origin]) then

18: let origin := request .headers[Origin]
19: else
20: let origin := 3

21: if response.status ≡ 303 ∧ request .method ̸∈ {GET, HEAD} then
22: let method ′ := GET
23: let body ′ := ⟨⟩
24: if ∃w ∈ Subwindows(s′) such that s′.w .nonce ≡ π2(reference) then → Do not redirect XHRs.
25: let req := ⟨HTTPReq, ν6,method ′, url .host, url .path, url .parameters, ⟨⟩, body ′⟩
26: let referrerPolicy := response.headers[ReferrerPolicy]
27: call HTTP_SEND(reference , req , url , origin , referrer , referrerPolicy , a, s′)
28: else
29: stop ⟨⟩, s′

30: switch π1(reference) do
31: case REQ
32: let w ← Subwindows(s′) such that s′.w .nonce ≡ π2(reference) if possible;

↪→ otherwise stop → normal response
33: if response.body ̸∼ ⟨∗, ∗⟩ then
34: stop ⟨⟩, s′

35: let script := π1(response.body)
36: let scriptstate := π2(response.body)
37: let d := ⟨ν7, requestUrl , response.headers, referrer , script , scriptstate, ⟨⟩, ⟨⟩,⊤⟩
38: if s′.w .documents ≡ ⟨⟩ then
39: let s′.w .documents := ⟨d⟩
40: else
41: let i ← N such that s′.w .documents.i .active ≡ ⊤
42: let s′.w .documents.i .active := ⊥
43: remove s′.w .documents.(i + 1) and all following documents

↪→ from s′.w .documents
44: let s′.w .documents := s′.w .documents +⟨⟩ d
45: stop ⟨⟩, s′

46: case XHR
47: let w ← Subwindows(s′), d such that s′.d .nonce ≡ π2(reference)

↪→ ∧ s′.d = s′.w .activedocument if possible; otherwise stop
→ process XHR response

48: let headers := response.headers− Set-Cookie
49: let s′.d .scriptinputs := s′.d .scriptinputs +⟨⟩

⟨XMLHTTPREQUEST, headers, response.body, π3(reference)⟩
50: stop ⟨⟩, s′



• sp0.keyMapping ∈
[
Doms× TN

]
(intended to be constrained by instantiations of the Web Infrastructure Model)

• sp0.sts ≡ ⟨⟩
• sp0.DNSaddress ∈ IPs (note that this includes the possibility of using an attacker-controlled address)
• sp0.pendingDNS ≡ ⟨⟩
• sp0.pendingRequests ≡ ⟨⟩
• sp0.isCorrupted ≡ ⊥
• sp0.cibaBindingMessages ≡ ⟨⟩
• sp0.tlskeys ≡ tlskeysp (see Appendix D-C)

Note that instantiations of the Web Infrastructure Model may define different conditions for a web browser’s initial state.

I. Helper Functions

In order to simplify the description of scripts, we use several helper functions.
a) CHOOSEINPUT (Algorithm 23): The state of a document contains a term, say scriptinputs , which records the input

this document has obtained so far (via XHRs and postMessages). If the script of the document is activated, it will typically need
to pick one input message from scriptinputs and record which input it has already processed. For this purpose, the function
CHOOSEINPUT(s′, scriptinputs) is used, where s′ denotes the scripts current state. It saves the indexes of already handled
messages in the scriptstate s′ and chooses a yet unhandled input message from scriptinputs . The index of this message is then
saved in the scriptstate (which is returned to the script).

b) CHOOSEFIRSTINPUTPAT (Algorithm 24): Similar to the function CHOOSEINPUT above, we define the function
CHOOSEFIRSTINPUTPAT. This function takes the term scriptinputs , which as above records the input this document has
obtained so far (via XHRs and postMessages, append-only), and a pattern. If called, this function chooses the first message in
scriptinputs that matches pattern and returns it. This function is typically used in places, where a script only processes the first
message that matches the pattern. Hence, we omit recording the usage of an input.

c) PARENTWINDOW: To determine the nonce referencing the parent window in the browser, the function
PARENTWINDOW(tree, docnonce) is used. It takes the term tree, which is the (partly cleaned) tree of browser windows the
script is able to see and the document nonce docnonce, which is the nonce referencing the current document the script is running
in, as input. It outputs the nonce referencing the window which directly contains in its subwindows the window of the document
referenced by docnonce. If there is no such window (which is the case if the script runs in a document of a top-level window),
PARENTWINDOW returns ⊥.

d) PARENTDOCNONCE: The function PARENTDOCNONCE(tree, docnonce) determines (similar to PARENTWINDOW
above) the nonce referencing the active document in the parent window in the browser . It takes the term tree , which is the (partly
cleaned) tree of browser windows the script is able to see and the document nonce docnonce, which is the nonce referencing the
current document the script is running in, as input. It outputs the nonce referencing the active document in the window which
directly contains in its subwindows the window of the document referenced by docnonce. If there is no such window (which is
the case if the script runs in a document of a top-level window) or no active document, PARENTDOCNONCE returns docnonce.

e) SUBWINDOWS: This function takes a term tree and a document nonce docnonce as input just as the function above.
If docnonce is not a reference to a document contained in tree, then SUBWINDOWS(tree, docnonce) returns ⟨⟩. Otherwise,
let ⟨docnonce, location , ⟨⟩, referrer , script , scriptstate, scriptinputs , subwindows , active⟩ denote the subterm of tree
corresponding to the document referred to by docnonce. Then, SUBWINDOWS(tree, docnonce) returns subwindows .

f) AUXWINDOW: This function takes a term tree and a document nonce docnonce as input as above. From all window terms
in tree that have the window containing the document identified by docnonce as their opener, it selects one non-deterministically
and returns its nonce. If there is no such window, it returns the nonce of the window containing docnonce.

g) AUXDOCNONCE: Similar to AUXWINDOW above, the function AUXDOCNONCE takes a term tree and a document
nonce docnonce as input. From all window terms in tree that have the window containing the document identified by docnonce
as their opener, it selects one non-deterministically and returns its active document’s nonce. If there is no such window or no active
document, it returns docnonce.

h) OPENERWINDOW: This function takes a term tree and a document nonce docnonce as input as above. It returns the
window nonce of the opener window of the window that contains the document identified by docnonce. Recall that the nonce
identifying the opener of each window is stored inside the window term. If no document with nonce docnonce is found in the tree
tree or the document with nonce docnonce is not directly contained in a top-level window, 3 is returned.

i) GETWINDOW: This function takes a term tree and a document nonce docnonce as input as above. It returns the nonce of
the window containing docnonce.

j) GETORIGIN: To extract the origin of a document, the function GETORIGIN(tree, docnonce) is used. This function
searches for the document with the identifier docnonce in the (cleaned) tree tree of the browser’s windows and documents. It
returns the origin o of the document. If no document with nonce docnonce is found in the tree tree, 3 is returned.



Algorithm 22 Web Browser Model: Main Algorithm.
Input: ⟨a, f,m⟩, s
1: let s′ := s
2: if s.isCorrupted ̸≡ ⊥ then
3: let s′.pendingRequests := ⟨m, s.pendingRequests⟩ → Collect incoming messages
4: let m′← dV (s′)
5: let a′← IPs
6: stop ⟨⟨a′, a,m′⟩⟩, s′

7: if m ≡ TRIGGER then → A special trigger message.
8: let switch ← {script, urlbar, reload, forward, back}
9: if switch ≡ script then → Run some script.

10: let w ← Subwindows(s′) such that s′.w .documents ̸= ⟨⟩
↪→ if possible; otherwise stop → Pointer to some window.

11: let d := w +⟨⟩ activedocument
12: call RUNSCRIPT(w , d , a, s′)
13: else if switch ≡ urlbar then → Create some new request.
14: let newwindow ← {⊤,⊥}
15: if newwindow ≡ ⊤ then → Create a new window.
16: let windownonce := ν1
17: let w′ := ⟨windownonce, ⟨⟩,⊥⟩
18: let s′.windows := s′.windows +⟨⟩ w′

19: else → Use existing top-level window.
20: let tlw ← N such that s′.tlw .documents ̸= ⟨⟩

↪→ if possible; otherwise stop → Pointer to some top-level window.
21: let windownonce := s′.tlw .nonce
22: let protocol ← {P, S}
23: let host ← Doms
24: let path ← S
25: let fragment ← S
26: let parameters ← [S× S]
27: let body := ⟨⟩
28: let startciba ← {⊤,⊥}
29: if startciba ≡ ⊤ then
30: let body [authServ]← Doms
31: let body [identity]← s′.ids

32: let url := ⟨URL, protocol , host , path, parameters, fragment⟩
33: let req := ⟨HTTPReq, ν2, GET, host , path, parameters, ⟨⟩, body⟩
34: call HTTP_SEND(⟨REQ,windownonce⟩, req , url , ⊥, ⊥, ⊥, a, s′)
35: else if switch ≡ reload then → Reload some document.
36: let w ← Subwindows(s′) such that s′.w .documents ̸= ⟨⟩

↪→ if possible; otherwise stop → Pointer to some window.
37: let url := s′.w .activedocument.location
38: let req := ⟨HTTPReq, ν2, GET, url .host, url .path, url .parameters, ⟨⟩, ⟨⟩⟩
39: let referrer := s′.w .activedocument.referrer
40: let s′ := CANCELNAV(s′.w .nonce, s′)
41: call HTTP_SEND(⟨REQ, s′.w .nonce⟩, req , url , ⊥, referrer , ⊥, a, s′)
42: else if switch ≡ forward then
43: let w ← Subwindows(s′) such that s′.w .documents ̸= ⟨⟩

↪→ if possible; otherwise stop → Pointer to some window.
44: call NAVFORWARD(w , s′)
45: else if switch ≡ back then
46: let w ← Subwindows(s′) such that s′.w .documents ̸= ⟨⟩

↪→ if possible; otherwise stop → Pointer to some window.
47: call NAVBACK(w , s′)
48: else if m ≡ FULLCORRUPT then → Request to corrupt browser
49: let s′.isCorrupted := FULLCORRUPT
50: stop ⟨⟩, s′
51: else if m ≡ CLOSECORRUPT then → Close the browser
52: let s′.secrets := ⟨⟩
53: let s′.windows := ⟨⟩
54: let s′.pendingDNS := ⟨⟩
55: let s′.pendingRequests := ⟨⟩
56: let s′.sessionStorage := ⟨⟩
57: let s′.cookies ⊂⟨⟩ Cookies such that

↪→ (c ∈⟨⟩ s′.cookies)⇐⇒ (c ∈⟨⟩ s.cookies ∧ c.content.session ≡ ⊥)
58: let s′.isCorrupted := CLOSECORRUPT
59: stop ⟨⟩, s′



60: else if ∃ ⟨reference, request , url , key , f⟩ ∈⟨⟩ s′.pendingRequests such that
↪→ π1(decs(m, key)) ≡ HTTPResp then → Encrypted HTTP response

61: let m′ := decs(m, key)
62: if m′.nonce ̸≡ request .nonce then
63: stop
64: remove ⟨reference, request , url , key , f⟩ from s′.pendingRequests
65: if binding_message ∈⟨⟩ m′.body then
66: let s′.cibaBindingMessages := s′.cibaBindingMessages +⟨⟩ ⟨request .host,m′.body[binding_message]⟩
67: call PROCESSRESPONSE(m′, reference , request , url , a, f , s′)
68: else if π1(m) ≡ HTTPResp ∧ ∃ ⟨reference, request , url ,⊥, f⟩ ∈⟨⟩ s′.pendingRequests such that

↪→ m.nonce ≡ request .nonce then → Plain HTTP Response
69: remove ⟨reference, request , url ,⊥, f⟩ from s′.pendingRequests
70: call PROCESSRESPONSE(m, reference , request , url , a, f , s′)
71: else if m ∈ DNSResponses then → Successful DNS response
72: if m.nonce ̸∈ s.pendingDNS ∨m.result ̸∈ IPs

↪→ ∨m.domain ̸≡ s.pendingDNS[m.nonce].request.host then
73: stop
74: let ⟨reference,message, url⟩ := s.pendingDNS[m.nonce]
75: if url .protocol ≡ S then
76: let s′.pendingRequests := s′.pendingRequests

↪→ +⟨⟩ ⟨reference , message , url , ν3, m.result⟩
77: let message := enca(⟨message, ν3⟩, s′.keyMapping [message.host])
78: else
79: let s′.pendingRequests := s′.pendingRequests

↪→ +⟨⟩ ⟨reference , message , url , ⊥, m.result⟩
80: let s′.pendingDNS := s′.pendingDNS −m.nonce
81: stop ⟨⟨m.result, a,message⟩⟩, s′
82: else if ∃mdec, k, k′, inDomain such that ⟨mdec, k⟩ ≡ deca(m, k′) ∧ ⟨inDomain, k′⟩ ∈ s.tlskeys then

→ For modelling CIBA, we allow the browser to receive requests. By this, the AS can contact its users and ask to give their consent
for a given CIBA flow

83: let n, method , path , parameters , headers , body such that
↪→ ⟨HTTPReq, n,method , inDomain, path, parameters, headers, body⟩ ≡ mdec
↪→ if possible; otherwise stop

84: if path ̸≡ /start− ciba− authentication then stop
85: let newwindow ← {⊤,⊥}
86: if newwindow ≡ ⊤ then → Create a new window.
87: let windownonce := ν1
88: let w′ := ⟨windownonce, ⟨⟩,⊥⟩
89: let s′.windows := s′.windows +⟨⟩ w′

90: else → Use existing top-level window.
91: let tlw ← N such that s′.tlw .documents ̸= ⟨⟩

↪→ if possible; otherwise stop → Pointer to some top-level window.
92: let windownonce := s′.tlw .nonce
93: let url := body [ciba_url]
94: let req := ⟨HTTPReq, νciba_req, POST, url .host, ε, ⟨⟩, ⟨⟩, body⟩
95: call HTTP_SEND(⟨REQ,windownonce⟩, req , url , ⊥, ⊥, ⊥, a, s′)
96: stop

Algorithm 23 Function to retrieve an unhandled input message for a script.
1: function CHOOSEINPUT(s′, scriptinputs)
2: let iid such that iid ∈ {1, · · · , |scriptinputs|} ∧ iid ̸∈⟨⟩ s′.handledInputs if possible;

↪→ otherwise return (⊥, s′)
3: let input := πiid(scriptinputs)
4: let s′.handledInputs := s′.handledInputs+⟨⟩ iid
5: return (input , s′)

Algorithm 24 Function to extract the first script input message matching a specific pattern.
1: function CHOOSEFIRSTINPUTPAT(scriptinputs, pattern)
2: let i such that i = min{j : πj(scriptinputs) ∼ pattern} if possible; otherwise return ⊥
3: return πi(scriptinputs)



Algorithm 25 Relation of a DNS server Rd.
Input: ⟨a, f,m⟩, s
1: let domain, n such that ⟨DNSResolve, domain, n⟩ ≡ m if possible; otherwise stop ⟨⟩, s
2: if domain ∈ s then
3: let addr := s[domain]
4: let m′ := ⟨DNSResolved, domain, addr , n⟩
5: stop ⟨⟨f, a,m′⟩⟩, s
6: stop ⟨⟩, s

k) GETPARAMETERS: Works exactly as GETORIGIN, but returns the document’s parameters instead.

J. DNS Servers

Definition 69. A DNS server d (in a flat DNS model) is modeled in a straightforward way as an atomic DY process
(Id, {sd0}, Rd, sd0). It has a finite set of addresses Id and its initial (and only) state sd0 encodes a mapping from domain names to
addresses of the form

sd0 = ⟨⟨domain1, a1⟩, ⟨domain2, a2⟩, . . .⟩ .

DNS queries are answered according to this table (if the requested DNS name cannot be found in the table, the request is ignored).

The relation Rd ⊆ (E × {sd0})× (2E × {sd0}) of d above is defined by Algorithm 25.

K. Web Systems

The web infrastructure and web applications are formalized by what is called a web system. A web system contains, among
others, a (possibly infinite) set of DY processes, modeling web browsers, web servers, DNS servers, and attackers (which may
corrupt other entities, such as browsers).

Definition 70. A web system WS = (W , S , script, E0) is a tuple with its components defined as follows:
The first component, W , denotes a system (a set of DY processes) and is partitioned into the sets Hon, Web, and Net of honest,

web attacker, and network attacker processes, respectively.
Every p ∈Web ∪ Net is an attacker process for some set of sender addresses A ⊆ IPs. For a web attacker p ∈Web, we require

its set of addresses Ip to be disjoint from the set of addresses of all other web attackers and honest processes, i.e., Ip ∩ Ip
′
= ∅

for all p′ ̸= p, p′ ∈ Hon ∪Web. Hence, a web attacker cannot listen to traffic intended for other processes. Also, we require that
A = Ip, i.e., a web attacker can only use sender addresses it owns. Conversely, a network attacker may listen to all addresses (i.e.,
no restrictions on Ip) and may spoof all addresses (i.e., the set A may be IPs).

Every p ∈ Hon is a DY process which models either a web server, a web browser, or a DNS server. Just as for web attackers,
we require that p does not spoof sender addresses and that its set of addresses Ip is disjoint from those of other honest processes
and the web attackers.

The second component, S , is a finite set of scripts such that Ratt ∈ S . The third component, script, is an injective mapping from
S to S, i.e., by script every s ∈ S is assigned its string representation script(s).

Finally, E0 is an (infinite) sequence of events, containing an infinite number of events of the form ⟨a, a, TRIGGER⟩ for every
a ∈

⋃
p∈W Ip.

A run of WS is a run of W initiated by E0.

L. Generic HTTPS Server Model

This base model can be used to ease modeling of HTTPS server atomic processes. It defines placeholder algorithms that can be
superseded by more detailed algorithms to describe a concrete relation for an HTTPS server.

Definition 71 (Base state for an HTTPS server). The state of each HTTPS server that is an instantiation of this relation must
contain at least the following subterms: pendingDNS ∈

[
N × TN

]
, pendingRequests ∈ TN (both containing arbitrary terms),

DNSaddress ∈ IPs (containing the IP address of a DNS server), keyMapping ∈
[
Doms× TN

]
(containing a mapping from

domains to public keys), tlskeys ∈ [Doms×N ] (containing a mapping from domains to private keys), and corrupt ∈ TN (either
⊥ if the server is not corrupted, or an arbitrary term otherwise).

We note that in concrete instantiations of the generic HTTPS server model, there is no need to extract information from these
subterms or alter these subterms.

Let νn0 and νn1 denote placeholders for nonces that are not used in the concrete instantiation of the server. We now define the
default functions of the generic web server in Algorithms 26–30, and the main relation in Algorithm 31.



Algorithm 26 Generic HTTPS Server Model: Sending a DNS message (in preparation for sending an HTTPS message).
1: function HTTPS_SIMPLE_SEND(reference , message , a, s′)
2: let s′.pendingDNS[νn0] := ⟨reference,message⟩
3: stop ⟨⟨s′.DNSaddress, a, ⟨DNSResolve,message.host, νn0⟩⟩⟩, s′

Algorithm 27 Generic HTTPS Server Model: Default HTTPS response handler.
1: function PROCESS_HTTPS_RESPONSE(m, reference , request , a, f , s′)
2: stop

Algorithm 28 Generic HTTPS Server Model: Default trigger event handler.
1: function PROCESS_TRIGGER(a, s′)
2: stop

Algorithm 29 Generic HTTPS Server Model: Default HTTPS request handler.
1: function PROCESS_HTTPS_REQUEST(m, k, a, f , s′)
2: stop

Algorithm 30 Generic HTTPS Server Model: Default handler for other messages.
1: function PROCESS_OTHER(m, a, f , s′)
2: stop



Algorithm 31 Generic HTTPS Server Model: Main relation of a generic HTTPS server
Input: ⟨a, f,m⟩, s
1: let s′ := s
2: if s′.corrupt ̸≡ ⊥ ∨m ≡ CORRUPT then
3: let s′.corrupt := ⟨⟨a, f,m⟩, s′.corrupt⟩
4: let m′← dV (s′)
5: let a′← IPs
6: stop ⟨⟨a′, a,m′⟩⟩, s′

7: if ∃mdec, k, k′, inDomain such that ⟨mdec, k⟩ ≡ deca(m, k′) ∧ ⟨inDomain, k′⟩ ∈ s.tlskeys then
8: let n, method , path , parameters , headers , body such that

↪→ ⟨HTTPReq, n,method , inDomain, path, parameters, headers, body⟩ ≡ mdec
↪→ if possible; otherwise stop

9: call PROCESS_HTTPS_REQUEST(mdec, k, a, f , s′)
10: else if m ∈ DNSResponses then → Successful DNS response
11: if m.nonce ̸∈ s.pendingDNS ∨m.result ̸∈ IPs

↪→ ∨m.domain ̸≡ s.pendingDNS[m.nonce].2.host then
12: stop
13: let reference := s.pendingDNS[m.nonce].1
14: let request := s.pendingDNS[m.nonce].2
15: let s′.pendingRequests := s′.pendingRequests +⟨⟩ ⟨reference , request , νn1, m.result⟩
16: let message := enca(⟨request , νn1⟩, s′.keyMapping [request .host])
17: let s′.pendingDNS := s′.pendingDNS −m.nonce
18: stop ⟨⟨m.result, a,message⟩⟩, s′
19: else if ∃ ⟨reference, request , key , f⟩ ∈⟨⟩ s′.pendingRequests

↪→ such that π1(decs(m, key)) ≡ HTTPResp then → Encrypted HTTP response
20: let m′ := decs(m, key)
21: if m′.nonce ̸≡ request .nonce then
22: stop
23: if m′ ̸∈ HTTPResponses then
24: call PROCESS_OTHER(m, a, f , s′)
25: remove ⟨reference, request , key , f⟩ from s′.pendingRequests
26: call PROCESS_HTTPS_RESPONSE(m′, reference , request , a, f , s′)
27: else if m ≡ TRIGGER then → Process was triggered
28: call PROCESS_TRIGGER(a, s′)
29: else
30: call PROCESS_OTHER(m, a, f , s′)
31: stop



M. General Security Properties of the WIM

We now repeat general application independent security properties of the WIM [34].
Let WS = (W , S , script, E0) be a web system. In the following, we write sx = (Sx, Ex) for the states of a web system.

Definition 72 (Emitting Events). Given an atomic process p, an event e, and a finite run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn))
or an infinite run ρ = ((S0, E0, N0), . . . ) we say that p emits e iff there is a processing step in ρ of the form

(Si, Ei, N i) −−−→
p→E

(Si+1, Ei+1, N i+1)

for some i ≥ 0 and a sequence of events E with e ∈⟨⟩ E. We also say that p emits m iff e = ⟨x, y,m⟩ for some addresses x, y.

Definition 73. We say that a term t is derivably contained in (a term) t′ for (a set of DY processes) P (in a processing step
si → si+1 of a run ρ = (s0, s1, . . .)) if t is derivable from t′ with the knowledge available to P , i.e.,

t ∈ d∅({t′} ∪
⋃
p∈P

Si+1(p))

Definition 74. We say that a set of processes P leaks a term t (in a processing step si → si+1) to a set of processes P ′ if there
exists a message m that is emitted (in si → si+1) by some p ∈ P and t is derivably contained in m for P ′ in the processing step
si → si+1. If we omit P ′, we define P ′ := W \ P . If P is a set with a single element, we omit the set notation.

Definition 75. We say that a DY process p created a message m in a processing step

(Si, Ei, N i)
ein→p−−−−→
p→Eout

(Si+1, Ei+1, N i+1)

of a run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) if all of the following hold true
• m is a subterm of one of the events in Eout
• m is and was not derivable by any other set of processes

m ̸∈ d∅
( ⋃
p′∈W \{p}
0≤j≤i+1

Sj(p′)
)

We note a process p creating a message does not imply that p can derive that message.

Definition 76. We say that a browser b accepted a message (as a response to some request) if the browser decrypted the message (if
it was an HTTPS message) and called the function PROCESSRESPONSE, passing the message and the request (see Algorithm 21).

Definition 77. We say that an atomic DY process p knows a term t in some state s = (S,E,N) of a run if it can derive the term
from its knowledge, i.e., t ∈ d∅(S(p)).

Definition 78. Let N ⊆ N , t ∈ TN (X), and k ∈ TN (X). We say that k appears only as a public key in t, if
1) If t ∈ N ∪X , then t ̸= k
2) If t = f(t1, . . . , tn), for f ∈ Σ and ti ∈ TN (X) (i ∈ {1, . . . , n}), then f = pub or for all ti, k appears only as a public key

in ti.

Definition 79. We say that a script initiated a request r if a browser triggered the script (in Line 10 of Algorithm 20) and the first
component of the command output of the script relation is either HREF, IFRAME, FORM, or XMLHTTPREQUEST such that the browser
issues the request r in the same step as a result.

Definition 80. We say that an instance of the generic HTTPS server s accepted a message (as a response to some request) if the
server decrypted the message (if it was an HTTPS message) and called the function PROCESS_HTTPS_RESPONSE, passing
the message and the request (see Algorithm 31).

For a run ρ = s0, s1, . . . of any WS , we state the following lemmas:

Lemma 24. If in the processing step si → si+1 of a run ρ of WS an honest browser b
(I) emits an HTTPS request of the form

m = enca(⟨req , k⟩, pub(k′))

(where req is an HTTP request, k is a nonce (symmetric key), and k′ is the private key of some other DY process u), and
(II) in the initial state s0, for all processes p ∈W \ {u}, the private key k′ appears only as a public key in S0(p), and

(III) u never leaks k′,



then all of the following statements are true:
(1) There is no state of WS where any party except for u knows k′, thus no one except for u can decrypt m to obtain req .
(2) If there is a processing step sj → sj+1 where the browser b leaks k to W \ {u, b} there is a processing step sh → sh+1 with

h < j where u leaks the symmetric key k to W \ {u, b} or the browser is fully corrupted in sj .
(3) The value of the host header in req is the domain that is assigned the public key pub(k′) in the browsers’ keymapping

s0.keyMapping (in its initial state).
(4) If b accepts a response (say, m′) to m in a processing step sj → sj+1 and b is honest in sj and u did not leak the symmetric

key k to W \ {u, b} prior to sj , then u created the HTTPS response m′ to the HTTPS request m, i.e., the nonce of the HTTP
request req is not known to any atomic process p, except for the atomic processes b and u.

PROOF. (1) follows immediately from the preconditions.
The process u never leaks k′, and initially, the private key k′ appears only as a public key in all other process states. As the

equational theory does not allow the extraction of a private key x from a public key pub(x), the other processes can never derive
k′.

Thus, even with the knowledge of all nonces (except for those of u), k′ can never be derived from any network output of u, and
k′ cannot be known to any other party. Thus, nobody except for u can derive req from m.

(2) We assume that b leaks k to W \ {u, b} in the processing step sj → sj+1 without u prior leaking the key k to anyone except
for u and b and that the browser is not fully corrupted in sj , and lead this to a contradiction.

The browser is honest in si. From the definition of the browser b, we see that the key k is always chosen as a fresh nonce
(placeholder ν3 in Lines 71ff. of Algorithm 22) that is not used anywhere else. Further, the key is stored in the browser’s state in
pendingRequests . The information from pendingRequests is not extracted or used anywhere else (in particular it is not accessible
by scripts). If the browser becomes closecorrupted prior to sj (and after si), the key cannot be used anymore (compare Lines 51ff.
of Algorithm 22). Hence, b does not leak k to any other party in sj (except for u and b). This proves (2).

(3) Per the definition of browsers (Algorithm 22), a host header is always contained in HTTP requests by browsers. From Line 77
of Algorithm 22 we can see that the encryption key for the request req was chosen using the host header of the message. It is
chosen from the keyMapping in the browser’s state, which is never changed during ρ. This proves (3).

(4) An HTTPS response m′ that is accepted by b as a response to m has to be encrypted with k. The nonce k is stored by the
browser in the pendingRequests state information. The browser only stores freshly chosen nonces there (i.e., the nonces are not
used twice, or for other purposes than sending one specific request). The information cannot be altered afterwards (only deleted)
and cannot be read except when the browser checks incoming messages. The nonce k is only known to u (which did not leak it to
any other party prior to sj) and b (which did not leak it either, as u did not leak it and b is honest, see (2)). The browser b cannot
send responses. This proves (4).

Corollary 1. In the situation of Lemma 24, as long as u does not leak the symmetric key k to W \ {u, b} and the browser does
not become fully corrupted, k is not known to any DY process p ̸∈ {u, b} (i.e., ∄ s′ = (S′, E′) ∈ ρ: k ∈ dNp(S′(p))).

Lemma 25. If for some si ∈ ρ an honest browser b has a document d in its state Si(b).windows with the origin ⟨dom, S⟩ where
dom ∈ Domain, and Si(b).keyMapping[dom] ≡ pub(k) with k ∈ N being a private key, and there is only one DY process p that
knows the private key k in all sj , j ≤ i, then b extracted (in Line 37 in Algorithm 21) the script in that document from an HTTPS
response that was created by p.

PROOF. The origin of the document d is set only once: In Line 37 of Algorithm 21. The values (domain and protocol) used
there stem from the information about the request (say, req) that led to the loading of d. These values have been stored in
pendingRequests between the request and the response actions. The contents of pendingRequests are indexed by freshly chosen
nonces and can never be altered or overwritten (only deleted when the response to a request arrives). The information about the
request req was added to pendingRequests in Line 76 (or Line 79 which we can exclude as we will see later) of Algorithm 22.
In particular, the request was an HTTPS request iff a (symmetric) key was added to the information in pendingRequests . When
receiving the response to req , it is checked against that information and accepted only if it is encrypted with the proper key and
contains the same nonce as the request (say, n). Only then the protocol part of the origin of the newly created document becomes S.
The domain part of the origin (in our case dom) is taken directly from the pendingRequests and is thus guaranteed to be unaltered.

From Line 77 of Algorithm 22 we can see that the encryption key for the request req was actually chosen using the host
header of the message which will finally be the value of the origin of the document d. Since b therefore selects the public key
Si(b).keyMapping[dom] = S0(b).keyMapping[dom] ≡ pub(k) for p (the key mapping cannot be altered during a run), we can
see that req was encrypted using a public key that matches a private key which is only (if at all) known to p. With Lemma 24 we
see that the symmetric encryption key for the response, k, is only known to b and the respective web server. The same holds for
the nonce n that was chosen by the browser and included in the request. Thus, no other party than p can encrypt a response that is
accepted by the browser b and which finally defines the script of the newly created document.



Lemma 26. If in a processing step si → si+1 of a run ρ of WS an honest browser b issues an HTTP(S) request with the Origin
header value ⟨dom, S⟩ where Si(b).keyMapping[dom] ≡ pub(k) with k ∈ N being a private key, and there is only one DY
process p that knows the private key k in all sj , j ≤ i, then

• that request was initiated by a script that b extracted (in Line 37 in Algorithm 21) from an HTTPS response that was created
by p, or

• that request is a redirect to a response of a request that was initiated by such a script.

PROOF. The browser algorithms create HTTP requests with an origin header by calling the HTTP_SEND function (Algorithm 17),
with the origin being the fourth input parameter. This function adds the origin header only if this input parameter is not ⊥.

The browser calls the HTTP_SEND function with an origin that is not ⊥ only in the following places:
• Line 51 of Algorithm 20
• Line 90 of Algorithm 20
• Line 27 of Algorithm 21 ■

In the first two cases, the request was initiated by a script. The Origin header of the request is defined by the origin of the script’s
document. With Lemma 25 we see that the content of the document, in particular the script, was indeed provided by p.

In the last case (Location header redirect), as the origin is not 3 , the condition of Line 17 of Algorithm 21 must have been
true and the origin value is set to the value of the origin header of the request. In particular, this implies that an origin header does
not change during redirects (unless set to 3; in this case, the value stays the same in the subsequent redirects). Thus, the original
request must have been created by the first two cases shown above.

The following lemma is similar to Lemma 24, but is applied to the generic HTTPS server (instead of the web browser).

Lemma 27. If in the processing step si → si+1 of a run ρ of WS an honest instance s of the generic HTTPS server model
(I) emits an HTTPS request of the form

m = enca(⟨req , k⟩, pub(k′))

(where req is an HTTP request, k is a nonce (symmetric key), and k′ is the private key of some other DY process u), and
(II) in the initial state s0, for all processes p ∈W \ {u}, the private key k′ appears only as a public key in S0(p),

(III) u never leaks k′,
(IV) the instance model defined on top of the HTTPS server does not read or write the pendingRequests subterm of its state,
(V) the instance model defined on top of the HTTPS server does not emit messages in HTTPSRequests,

(VI) the instance model defined on top of the HTTPS server does not change the values of the keyMapping subterm of its state,
and

(VII) when receiving HTTPS requests of the form enca(⟨req ′, k2⟩, pub(k′)), u uses the nonce of the HTTP request req ′ only as
nonce values of HTTPS responses encrypted with the symmetric key k2,

(VIII) when receiving HTTPS requests of the form enca(⟨req ′, k2⟩, pub(k′)), u uses the symmetric key k2 only for symmetrically
encrypting HTTP responses (and in particular, k2 is not part of a payload of any messages sent out by u),

then all of the following statements are true:
(1) There is no state of WS where any party except for u knows k′, thus no one except for u can decrypt m to obtain req .
(2) If there is a processing step sj → sj+1 where some process leaks k to W \ {u, s}, there is a processing step sh → sh+1 with

h < j where u leaks the symmetric key k to W \ {u, s} or the process s is corrupted in sj .
(3) The value of the host header in req is the domain that is assigned the public key pub(k′) in S0(s).keyMapping (i.e., in the

initial state of s).
(4) If s accepts a response (say, m′) to m in a processing step sj → sj+1 and s is honest in sj and u did not leak the symmetric

key k to W \ {u, s} prior to sj , then u created the HTTPS response m′ to the HTTPS request m, i.e., the nonce of the HTTP
request req is not known to any atomic process p, except for the atomic processes s and u.

PROOF. (1) follows immediately from the preconditions. The proof is the same as for Lemma 24:
The process u never leaks k′, and initially, the private key k′ appears only as a public key in all other process states. As the

equational theory does not allow the extraction of a private key x from a public key pub(x), the other processes can never derive
k′.

Thus, even with the knowledge of all nonces (except for those of u), k′ can never be derived from any network output of u, and
k′ cannot be known to any other party. Thus, nobody except for u can derive req from m.

(2) We assume that some process leaks k to W \ {u, s} in the processing step sj → sj+1 without u prior leaking the key k to
anyone except for u and s and that the process s is not corrupted in sj , and lead this to a contradiction.

The process s is honest in si. s emits HTTPS requests like m only in Line 18 of Algorithm 31:



• The message emitted in Line 3 of Algorithm 26 has a different message structure
• As s is honest, it does not send the message of Line 6 of Algorithm 31
• There is no other place in the generic HTTPS server model where messages are emitted and due to precondition (V), the

application-specific model does not emit HTTPS requests. ■

The value k, which is the placeholder νn1 in Algorithm 31, is only stored in the pendingRequests subterm of the state of s, i.e.,
in Si+1(s).pendingRequests. Other than that, s only accesses this value in Line 19 of Algorithm 31, where it is only used to
decrypt the response in Line 20 (in particular, the key is not propagated to the application-specific model, and the key cannot be
contained within the payload of an response due to (VIII)). We note that there is no other line in the model of the generic HTTPS
server where this subterm is accessed and the application-specific model does not access this subterm due to precondition (IV).
Hence, s does not leak k to any other party in sj (except for u and s). This proves (2).

(3) From Line 16 of Algorithm 31 we can see that the encryption key for the message m was chosen using the host header of
the request. It is chosen from the keyMapping subterm of the state of s, which is never changed during ρ by the HTTPS server
and never changed by the application-specific model due to precondition (VI). This proves (3).

(4)
Response was encrypted with k. An HTTPS response m′ that is accepted by s as a response to m has to be encrypted with k:
The decryption key is taken from the pendingRequests subterm of its state in Line 19 of Algorithm 31, where s only stores

fresh nonces as keys that are added to requests as symmetric keys (see also Lines 15 and 16). The nonces (symmetric keys) are
not used twice, or for other purposes than sending one specific request.

Only s and u can create the response. As shown previously, only s and u can derive the symmetric key (as s is honest in sj).
Thus, m′ must have been created by either s or u.

s cannot have created the response. We assume that s emitted the message m′ and lead this to a contradiction.
The generic server algorithms of s (when being honest) emit messages only in two places: In Line 3 of Algorithm 26, where

a DNS request is sent, and in Line 18 of Algorithm 31, where a message with a different structure than m′ is created (as m′ is
accepted by the server, m′ must be a symmetrically encrypted ciphertext).

Thus, the instance model of s must have created the response m′.
Due to Precondition (IV), the instance model of s cannot read the pendingRequests subterm of its state. The symmetric key

is generated freshly by the generic server algorithm in Lines 15 and 16 of Algorithm 31 and stored only in pendingRequests.
As the generic algorithms do not call any of the handlers with a symmetric key stored in pendingRequests., it follows that

the instance model derived the key from a message payload in the instantiation of one of the handlers. Let m̃ denote this message
payload.

As the server instance model cannot derive the symmetric key without processing a message from which it can derive the
symmetric key, and as the server algorithm only create the original request m as the only message with the symmetric key as a
payload, it follows that u must have created m̃, as no other process can derive the symmetric key from m.

However, when receiving m, u will use the symmetric key only as an encryption key, and in particular, will not create a message
where the symmetric key is a payload (Precondition (VIII)).

Thus, the symmetric key cannot be derived by the instance of the server model, which is a contradiction to the statement that
the instance model of s must have created the response m′.
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