
Extending the Tally-Hiding Ordinos System:
Implementations for Borda, Hare-Niemeyer,

Condorcet, and Instant-Runoff Voting?

Fabian Hertel1, Nicolas Huber2, Jonas Kittelberger3, Ralf Küsters2, Julian
Liedtke2, and Daniel Rausch2

1 University of Stuttgart st151599@stud.uni-stuttgart.de
2 University of Stuttgart {firstname.lastname}@sec.uni-stuttgart.de

3 University of Stuttgart jonas.kittelberger@gmail.com

Abstract. Modern electronic voting systems (e-voting systems) are de-
signed to achieve a variety of security properties, such as verifiability,
accountability, and vote privacy. Some of these systems aim at so-called
tally-hiding : they compute the election result, according to some result
function, like the winner of the election, without revealing any other
information to any party. In particular, if desired, they neither reveal
the full tally consisting of all (aggregated or even individual) votes nor
parts of it, except for the election result, according to the result func-
tion. Tally-hiding systems offer many attractive features, such as strong
privacy guarantees both for voters and for candidates, and protection
against Italian attacks. The Ordinos system is a recent provably se-
cure framework for accountable tally-hiding e-voting that extends Helios
and can be instantiated for various election methods and election result
functions. So far, practical instantiations and implementations for only
rather simple result functions (e.g., computing the k best candidates)
and single/multi-vote elections have been developed for Ordinos.

In this paper, we propose and implement several new Ordinos instan-
tiations in order to support Borda voting, the Hare-Niemeyer method for
proportional representation, multiple Condorcet methods, and Instant-
Runoff Voting. Our instantiations, which are based on suitable secure
multi-party computation (MPC) components, offer the first tally-hiding
implementations for these voting methods. To evaluate the practicality
of our MPC components and the resulting e-voting systems, we provide
extensive benchmarks for all our implementations.

Keywords: E-Voting · Tally-Hiding · MPC · Accountability · Privacy ·
Implementations · Benchmarks.

1 Introduction

There is a multitude of different voting methods ranging from relatively sim-
ple ones, such as plurality/single-choice voting, to more complex ones, such as

? This work was in part funded by the Deutsche Forschungsgemeinschaft (DFG) KU
1434/11-1 and the Center for Integrated Quantum Science and Technology (IQST).

cumulative voting with multiple votes as well as preferential elections and multi-
round votings. Also, there are many different result functions used in elections.
For example, one might be interested only in the winner of the election (e.g.,
for presidential elections), the number of seats of parties in a parliament, or the
k best or worst candidates (ranked or not ranked), e.g., to fill positions or to
decide who moves on to a runoff election.

Tally-Hiding. A desirable and strong security property that several e-voting
systems try to achieve is tally-hiding [1,2,3,4,5,6,7]. A tally-hiding system com-
putes and publishes the election result, according to some result function, e.g.,
the winner of an election, without revealing any other information to any party.
In particular, if desired, except for the election result itself, they neither reveal
the full tally consisting of all (aggregated or even individual) votes nor parts of
it, such as the winner of an election round or the number of votes of a candidate.
Even internal parties, like trustees, should not learn anything besides the result.
In essence, tally-hiding is a strong form of privacy that not just avoids leaking
the content of individual ballots but rather avoids leaking any unnecessary infor-
mation altogether. As discussed, e.g., in [6], tally-hiding is an attractive feature
in many situations: it prevents introducing biases in voters during multi-round
elections, losing candidates are not unnecessarily embarrassed due to a (poten-
tially very low) number of votes, mandates of winning candidates remain strong
even if they won only by a small margin, tally-hiding helps prevent gerrymander-
ing since the exact vote distributions remain hidden, and it also prevents Italian
attacks. To retain trust in the overall result, tally-hiding elections, like other
elections, have to provide verifiability : Each voter must be able to verify that
her vote was counted correctly and that the overall result is correct. Moreover, it
should not only be possible to verify the result, but, if verification fails, it should
be possible to identify misbehaving parties and hold them accountable for the
failure. This stronger form of verifiability is called accountability [8].

There are also several systems that achieve what we call partial tally-hiding,
e.g., [9,10,11,12,13,14]. These systems generally focus on solving specific issues,
most notably Italian attacks, and achieve this by hiding only those parts of the
tally that are critical for the issue at hand, e.g., the individual votes. However,
they still reveal certain information besides the election result, e.g., the losers of
intermediate election rounds. In this work, we focus on (full) tally-hiding where
nothing but the final result is revealed.

Current State. As mentioned, several e-voting systems have been designed
to be tally-hiding. These systems generally follow the same underlying idea,
namely, using a publicly verifiable secure multi-party computation (MPC) pro-
tocol to compute the election result from an encrypted tally. From a theoretical
point of view, it is clear that essentially arbitrary functions, and thus election
results, can be computed in this way. The main challenge lies in constructing
an efficient MPC tallying component. For example, in recent work Cortier et al.
[7] tackles, among others, this challenge by proposing tally-hiding MPC com-
ponents (for single-vote elections, majority judgement, Condorcet-Schulze, and
STV) and studying their asymptotic complexity.

So far, there are only very few (fully) tally-hiding protocols that have been
implemented, benchmarked, and shown to be viable. Specifically, Canard et.
al. [5] proposed and implemented a tally-hiding protocol for majority judgement
that is shown to achieve practical performance. In [6], Küsters et. al. proposed
the general Ordinos framework for provably secure accountable tally-hiding e-
voting. They also designed and implemented several Ordinos instantiations and
demonstrated their practicality. Specifically, they considered the following highly
relevant but relatively simple result functions for single/multi-vote elections:
computing the k candidates with the highest/lowest number of votes, computing
all candidates that pass a certain threshold of votes, a combination of both,
with or without revealing the ranking among the winners, and with or without
revealing the number of votes the candidates in question have obtained.

Our Goal. In this work, we want to extend the state-of-the-art by implement-
ing and benchmarking MPC components for tally-hiding elections also for many
other voting methods. To this end, we build on the Ordinos system, since, as
mentioned, Ordinos provides a general provably secure framework for account-
able (and hence, verifiable) tally-hiding elections, and because we can base our
work on the practical instantiations of Ordinos that have been proposed before.

Our Contributions. We propose and implement several new instantiations of
Ordinos for complex election types and result functions. Specifically, we propose
MPC components for Borda voting, the Hare-Niemeyer method for proportional
representation, Instant-Runoff Voting, and multiple versions of Condorcet (plain
Condorcet, weak Condorcet, Copeland evaluation, Minimax evaluation, Smith
set, and Schulze evaluation). As we explain, our MPC components for tallying
satisfy the requirements of the Ordinos framework and therefore yield provably
secure e-voting systems, i.e., they inherit the accountability, privacy, and tally-
hiding properties of the Ordinos framework.

Our implementations of the MPC components are available at [15]. We ac-
curately assess the performance and scalability of our MPC components for
practical applications. While our algorithms do not asymptotically improve over
naturally expected baselines (e.g., IRV performs exponentially in the number of
candidates), which was not the main goal of this work anyways, we are indeed
able to show that the concrete performance is practical for real world elections
(in the case of IRV and Schulze only for relatively small numbers of candidates).

Structure. In Section 2 we recall the Ordinos framework. We then, in Section 3,
present and construct important building blocks used in subsequent sections. In
Sections 4 to 7, we present our instantiations, implementations, and evaluations
for the various voting methods we consider. We conclude in Section 8.

2 The Ordinos Framework

We need the following notation and terminology. We write [n] to denote the set
{0, . . . , n−1}. Let nc be the number of candidates/choices on a ballot and let nv
be the (maximal) number of voters. The format of a plain ballot is defined via a

finite choice space C ⊆ Nnc , i.e., a ballot assigns each candidate/choice a number
subject to constrains defined by C. For example, a single vote election where a
plain ballot contains one vote for a single candidate/choice can be modeled via
the choice space Csingle := {(b0, . . . , bnc−1) ∈ {0, 1}nc |

∑
i bi = 1}. For voter j

we denote her plain ballot by vj := (vji)i∈[nc] ∈ C. Ordinos uses an additively
homomorphic t-out-of-nt threshold4 public key encryption scheme E = (E,D)
with Epk(a) denoting a ciphertext obtained as an encryption of plaintext a under
the public key pk of the election.

Given this terminology, Ordinos [6] works roughly as follows. The protocol is
run among a voting authority, the voters, nt trustees, an authentication server,
and an append-only bulletin board (BB). In the setup phase, parameters of the
election are generated, including a public key and corresponding secret key shares
for E , one for each trustee, along with a NIZKP πKeyShareGen from each trustee
to prove knowledge of their key share. Additionally, C and the result function
fres of the election (see below) are fixed and published. In the voting phase, the
voters first encrypt their ballots and then publish them on the BB, authenti-
cating themselves as eligible voters with the help of the authentication server.
An encrypted ballot of voter j has the form (Epk(v

j
i))i∈[nc], i.e., each component

of the plain ballot is encrypted separately. The encrypted ballot also contains a
NIZKP πEnc that proves validity of the plain ballot, i.e., vj = (vji)i∈[nc] ∈ C. The
published encrypted ballots can then be (publicly) homomorphically aggregated
to obtain the encrypted and aggregated full tally, i.e., one obtains ciphertexts
for vi :=

∑
j∈[nv] v

j
i where vi is the total number of votes/points that candi-

date/choice i obtained in the election. In the tallying phase, the trustees run a
publicly accountable MPC protocol PMPC to compute fres. This protocol takes as
(secret) inputs the secret key shares of the trustees and the (public) encrypted
aggregated tally and outputs fres(v0, . . . , vnc−1). This result, along with any ma-
terial that is needed to verify the MPC computation, is published by the trustees
on the BB. Finally, in the verification phase, voters can check that their ballots
appear on the BB and everyone can verify the result by checking all NIZKPs as
well as the (accountable) MPC computation.

Security of Ordinos (privacy and accountability) was shown independently of
specific instantiations of the mentioned primitives, and hence, security is guaran-
teed by any instantiation fulfilling the necessary requirements. In what follows,
we briefly recall the two generic security results of Ordinos (including the require-
ments for the underlying primitives), which have been formalized and proven in
[6]. The first result states accountability of Ordinos, where accountability was
formalized using the KTV framework [8].

Theorem 1 (Accountability [6], informal). Let E be a correct additively
homomorphic threshold public-key encryption scheme E, πKeyShareGen and πEnc be
secure NIZKPs for E, and PMPC be a publicly accountable MPC protocol, i.e.,
if the result does not correspond to the input, then this can be detected and at
least one misbehaving trustee can be identified; this must hold true even if all

4 I.e., there are nt secret key shares with t ≤ nt secret shares being necessary for
successful decryption.

trustees running the MPC protocol are malicious. Then (the resulting instance
of) Ordinos is accountable.5

Importantly, Ordinos provides accountability (and hence, by results in [8] also
verifiability) even if all trustees are malicious.

The following theorem (that was formalized and proven in [6]) states privacy
of Ordinos, i.e., the tally-hiding property that no information besides the final
result, according to the result function, is revealed to anyone, including the
trustees. It was proven using the privacy definition given in [16].

Theorem 2 (Privacy/Tally Hiding [6], informal). Let E be an additively
homomorphic IND-CPA-secure t-out-of-nt threshold public-key encryption scheme,
πKeyShareGen and πEnc be secure NIZKPs for E, and let PMPC be an MPC protocol
that securely realizes (in the sense of UC [17,18]) an ideal MPC functionality
which essentially takes as input a vector of ciphertexts and returns ftally eval-
uated on the corresponding plaintexts without leaking any other information if
at most t − 1 trustees are malicious. Then (the resulting instance of) Ordinos
provides privacy/is tally-hiding in presence of up to t− 1 malicious trustees.

Instantiations of Ordinos. As mentioned in the introduction, for practical
instantiations of Ordinos the main challenge lies in finding efficient and suitable
instantiations of the primitives, including the MPC component, that work well
and efficiently together. For certain kinds of elections and result functions this
has been achieved by Küsters et al. in [6]. These instantiations use a threshold
variant of the Paillier encryption scheme [19] to implement E . To design their
MPC protocols PMPC for their result functions, Küsters et al. make use of and
combine NIZKPs and publicly accountable MPC protocols from the literature
that implement the following basic operations:

– Epk(c) = fadd(Epk(a), Epk(b)) s.t. c = a+ b, directly from the additive homo-
morphic property of Paillier encryption; for brevity we write Epk(a)+Epk(b).
Similarly, Epk(c) = fmul(Epk(a), b) s.t. c = a ·b; for brevity we write Epk(a) ·b.

– Epk(c) = fmul(Epk(a), Epk(b)) s.t. c = a ·b, using a publicly accountable MPC
protocol for multiplication [19]; for brevity we write Epk(a) · Epk(b).

– Epk(c) = fgt(Epk(a), Epk(b)) s.t. c = 1 iff a ≥ b and 0 otherwise, using a
publicly accountable MPC protocol for the greater-than test [20].

– Epk(c) = feq(Epk(a), Epk(b)) s.t. c = 1 iff a = b and 0 otherwise, using a
publicly accountable MPC protocol for equality tests from [20].

– c = fdec(Epk(a)) s.t. Epk(a) is an encryption of c, using publicly accountable
distributed Paillier decryption [19].

The above components have been chosen not only because they meet the nec-
essary security requirements but also due to their efficiency, which facilitates
constructing practical instantiations. That is, fadd and multiplication with a

5 We note that the security proof for accountability (and also for privacy) makes
certain standard assumptions, such as honesty of the BB. We refer interested readers
to [6] for full details. We also note that if PMPC provides only public verifiability,
instead of public accountability, then Ordinos provides verifiability.

publicly known value can be computed locally for the Paillier scheme. Further-
more, both fgt and feq as proposed by [20] run in sublinear time independently
of the actual plaintext space of the encryption scheme if plaintexts contained
within the ciphertexts are upper bounded by some bound bct. Ordinos indeed
has this property, where the bound generally depends on nv and C. Furthermore,
both fgt and feq and Paillier synergize rather well. As discussed in [6], while fgt
and feq can in principle also be used with exponential ElGamal, both functions
use decryption for a (upper-bounded but still) relatively large plaintext space,
and hence, would perform poorly with exponential ElGamal.

We note that the above components have a useful property, namely, they
can be combined to compute more complex functions such that the resulting
protocol is still a secure publicly accountable MPC protocol. In other words,
they allow for building protocols PMPC for Ordinos that meet the requirements
of Theorems 1 and 2.

Our Instantiations and Parameters. In this work, we use Paillier encryp-
tion and the above basic building blocks. The main challenge and indeed a core
contribution of our paper is to show and empirically demonstrate that these
components are not just suitable for constructing protocols PMPC for simple re-
sult functions (e.g., revealing the candidate with the most votes in a single-vote
election), but also for much more complex voting methods and result functions.
To benchmark our implementations, we use the parameters as [6]. That is, we
use a Paillier key of size 2048 bits and for the greater-than and equality proto-
cols we use the range [216], i.e., bct = 216, for the (encrypted) plaintext inputs.
This range can be increased if needed, i.e., to account for cases where aggre-
gated ciphertexts might contain plaintexts outside of [216]. Note that, except for
requiring a suitable upper bound bct, the performance of our MPC protocols is
otherwise independent of the exact number of voters nv due to aggregation of the
ballots. The setup for our benchmarks consists of three trustees communicating
over a local network. Each trustee ran on an ESPRIMO Q957 (64bit, i5-7500T
CPU @ 2.70GHz, 16 GB RAM). As in [6], the benchmarks of our MPC protocols
start with an already aggregated tally. Küsters et al. [6] showed for their MPC
protocols that the number of trustees does not influence the benchmarks in a
noticeable way and that, due to the sublinear communication complexity of the
comparison protocols, there is no significant difference between a local network
and the Internet. Both results also hold for our MPC constructions which are
based on the same primitives. Hence, our benchmarks focus on the number of
candidates which is the main factor for the performance of our protocols.

3 Building Blocks

In this section, we describe three MPC building blocks that can be obtained
using the basic operations described in Section 2 and which we use to construct
PMPC for our Ordinos instances, where the first building block is from [6].

Minimum k and Maximum k Values. Often, we have a vector (Epk(ai))i∈[n]

and want to compute ciphertexts (Epk(bi))i∈[n] of a vector (bi)i∈[n] such that

Floor Division
Input: Epk(a), b, n
Result: Epk(i) with i ∈ [n] such that i · b ≤ a and (i + 1) · b > a

1 for j ∈ [n + 1] do
2 Epk(rj) = fgt(Epk(a), Epk(j · b))
3 for j ∈ [n] do
4 Epk(r̂j) = Epk(rj)− Epk(rj+1)
5 Epk(i) =

∑
j∈[n] Epk(j) · Epk(r̂j)

6 return Epk(i)

Fig. 1: Algorithm for Floor Division.

bi = 1 if ai is one of the k largest (resp. smallest) values in (ai)i∈[n] and bi = 0
otherwise. We do so as described in [6]. That is, we first construct the lower halve
of the comparison matrix M such that Mi,j<i := fgt(Epk(ai), Epk(aj)). From
this matrix, which consists of ciphertexts containing 0 or 1, one can compute a
ciphertext for each ai that contains the number of comparisons that i has won,
i.e., where ai ≥ aj for some j 6= i. We can then use fgt to compare this ciphertext
(containing the results for ai) with a ciphertext on the number n − k − 1 and
obtain Epk(bi).

6 One can proceed similarly in order to find the smallest k values.
Note that this algorithm can also be applied if k is not publicly known but
rather only available as a ciphertext; in this situation, k is also not revealed by
the algorithm. We make use of this property in the context of the Hare-Niemeyer
method, see Section 4. We denote these algorithms for computing the vectors
Epk(bi) by GetBest(), resp. GetWorst(). These algorithms have runtime O(n2).

Maximum. If we are just interested in obtaining a ciphertext Epk(ai) of the
maximum value ai in the vector (Epk(ai))i∈[n], we can do so more efficiently in
linear runtime. That is, we start with the possible maximum m = Epk(a0) and
iterate through all ai’s. For each ai we test whether it is greater than the current
maximum with g = fgt(Epk(ai),m) and adapt the maximum accordingly with
m = g ·Epk(ai)+(Epk(1)−g)·m. The minimum can be computed accordingly. We
denote these algorithms by GetMax() resp. GetMin(). If we are interested in the
indices of the values that are the maximum resp. minimum, we can first compute
the encrypted maximum m and then compute for each index the encrypted
indicator Epk(bi) := feq(Epk(ai),m), bi ∈ {0, 1}. We denote these algorithms for
obtaining the tuple of encrypted indicators with GetMaxIdx() and GetMinIdx().

Floor Division. Given a ciphertext Epk(a) of some a ∈ N and a plain value
b ∈ N>1, this algorithm, described in Figure 1, is used to compute a ciphertext
Epk(i) with i = bab c. The algorithm also requires a value n ∈ N, s.t. n ·b does not
exceed the plaintext space size and i ∈ [n]. The algorithm compares all possible
values. The sequence (rj)j∈[n+1] consists of a sequence of zeros followed by a
sequence of ones, where rj = 0 if a < jb and rj = 1 otherwise. We are interested
in the index i such that ri = 1 and ri+1 = 0. We obtain this index by computing
for each j the value r̂j := rj − rj+1. Then, we can use these r̂j as indicators to
obtain the correct division result.

6 If there are multiple ai with the same value, there might be more than k bi that are
1. In cases where always exactly k such values are required, one can use a tie breaker
mechanism such as the one described in [7].

4 Hare-Niemeyer Method

The Hare-Niemeyer method is an evaluation method for proportional allocation
of seats that is used for example in Ukraine and Italy, but has also been used
for German federal elections until 2005. The Hare-Niemeyer method is used for
situations where a fixed number of seats needs to be assigned to candidates from
different parties, where a voter typically votes only for the party and not the
candidates themselves. Often, this type of proportional voting is also combined
with some form of plurality or majority voting, such as first-pass-the-post-voting
for electing single representatives for electoral districts, in so-called mixed elec-
toral systems. Such mixed systems are also used for elections in many state
parliaments in Germany, elections for the Scottish and Welsh parliaments and
elections for the New Zealand House of Representatives. More specifically, the
Hare-Niemeyer method for proportional voting works as follows: Assume that
there are ns seats to be assigned among nc parties. Then, if there are a total of
nv valid votes and party ci has received vi votes, the number of seats that ci is
awarded is computed using the “ideal quota” given by qi := vi·ns

nv
. Initially, the

number of seats awarded to each ci is set to be s′i := bqic. However, since these
s′i usually do not add up to ns, the remaining nr ∈ [nc] seats are distributed in
the order of the highest remainders of vi·ns

nv
. That is, the nr parties ci with the

highest remainders di = qi − s′i receive one additional seat each. Note that it
could happen that multiple parties have the same remainders di, and thus, more
than nr additional seats are assigned. If this is not desired, then one would use a
tie-breaking algorithm (cf. Section 5 and Footnote 6). There are many possible
ways to vote in proportional elections. Our algorithm can handle every possible
ballot format, as long as the ballots can be aggregated such that we obtain one
ciphertext per party containing the total number of votes for the party. In the
simplest case, one can use Csingle as choice space with ballot format NIZKPs
πEnc from, for example, [21] and [19].

Our MPC algorithm for computing the Hare-Niemeyer method is presented
in Figure 2. On a high-level, the algorithm follows the above description, i.e., it
first computes the seat distribution without taking the remainder seats into ac-
count. Next, for each party, the remainder of the division (see above) is computed
and the remainder seats are distributed among the parties with the highest re-
mainder values. Importantly, this is achieved without revealing the total number
of remainder seats or the set of parties that have received an additional seat.

We present benchmarks for our MPC tallying protocol in Figure 3. The
runtime of the algorithm is linear in nc · ns. As the figure shows, evaluating the
Hare-Niemeyer method is highly efficient for a practical number of seats (1000)
and (up to) 4 parties. Due to the linear growth, this should still be the case even
if there are more parties than the maximum of 4 that we benchmarked. Also,
recall from Section 2 that these benchmarks are essentially independent of the
number of voters and trustees. In terms of security for our Ordinos instantiation,
we obtain the following.

Theorem 3 (Security of Hare-Niemeyer method with Ordinos). Let E
be an additively homomorphic IND-CPA-secure t-out-of-nt threshold public-key

Tally-Hiding Hare-Niemeyer Evaluation

Input: Encrypted aggregated votes per party: {Epk(vi)}i∈[nc]

Number of seats in total ns and number of total votes nv

Result: Vector s such that si is the number of seats of party i.
1 for i ∈ [nc] do
2 mi = Epk(vi) · ns

3 Epk(s
′
i) = FloorDivision(mi, nv, ns)

4 Epk(nr) = Epk(ns)−
∑

i∈[nc]
Epk(s

′
i)

5 for i ∈ [nc] do
6 Epk(di) = Epk(vi) · ns − nv · Epk(s

′
i).

7 (Epk(d
best
i))i∈[nc] = GetBest((Epk(d0), . . . , Epk(dnc−1)), Epk(nr))

8 for i ∈ [nc] do

9 Epk(si) = Epk(s
′
i) + Epk(d

best
i)

10 si = fdec(Epk(si))

11 return s

Fig. 2: Tally-Hiding Hare-Niemeyer Evaluation

encryption scheme and πKeyShareGen be a secure NIZKP for E such as, e.g., the
primitives used in [6]. Let πEnc be the ballot format NIZKP from above, and let
PMPC be our MPC component for the Hare-Niemeyer method as defined above.
Then, the Ordinos instance using these primitives is an accountable and private
(and hence tally-hiding) voting system for the Hare-Niemeyer method.

Proof Sketch. This theorem is a direct corollary of Theorems 1 and 2 which
were proven in [6]. Observe that the primitives E , πKeyShareGen, and πEnc already
fulfill the requirements of Theorems 1 and 2. The only thing left to show for
Theorems 1 and 2 is that our new tallying protocol PMPC is secure. That is, we
have to show that PMPC is a private and publicly accountable implementation of
the Hare-Niemeyer method.

Both properties follow because our MPC protocol is built from combinations
of the basic components presented in Section 2. As mentioned in that section,
each of these basic components guarantees privacy and public accountability. As
for the connections of these components, the respective inputs and outputs are
all encrypted (except for the final decryption of the election result) and published
on the BB. Due to the encryption, these intermediate results do not leak any
additional information, neither to internal parties nor to external observers. Also,
since the intermediate results are published, external observers can check that
the output of one step is used correctly as the input to the next step. Thus, if
some trustee tries to use a different input, she can be held accountable. ut

5 Instant Runoff Voting (IRV)

Instant-runoff-voting (IRV) is a ranked voting method which can be used in
single-seat elections. It is often used, e.g., in Australia, India, the UK and the
US. In IRV, if a candidate has been ranked first by an absolute majority of
voters, this candidate is the winner of the election. Otherwise, the candidate
ranked first least often is eliminated, i.e., removed from the pool of candidates.
Then, all ballots are adjusted accordingly, i.e., the eliminated candidate is re-
moved and other (lower-ranked) candidates are moved up a rank. This process

Candidates Runtime

3 6min 0s
4 18min 0s
5 327min 30s

Fig. 3: Benchmarks for the Hare-Niemeyer method (left) and IRV (right).

is repeated until one of the remaining candidates has received the absolute ma-
jority of votes and thus wins the election. An algorithm for evaluating IRV in
a fully tally-hiding way has already been proposed in [3]. However, this algo-
rithm does not support aggregation and therefore scales with the number of
ballots/voters. Hence, instead of building on and providing the first implemen-
tations and benchmarks of this algorithm, we rather follow a different approach:
we propose an algorithm that is compatible with the aggregation approach of
Ordinos. By supporting aggregation, the performance of our solution remains
essentially independent of the number of voters. For our instantiation, we use
Csingle but interpret each choice as a ranking of candidates. For example, for
ncand = 5, we have nc = ncand! = 120 choices, where each choice represents a
permutation of the set of candidates. Observe that this encoding indeed allows
for aggregating IRV ballots to obtain the full (encrypted) tally as usually done in
Ordinos. NIZKPs πEnc for showing the well-formedness of such a ballot are given
in [21] and [19]. Note that the size of this choice space (and thus the runtime
of our algorithm) scales exponentially in the number of candidates. However,
we are able to show that this approach is still practical for a small amount of
candidates (≤ 5) as they have occurred in practice (see benchmarks presented
in Figure 3 and the discussion below).

We present our algorithm to evaluate an IRV election with Ordinos in Fig-
ure 4. The idea of our algorithm is that in round i, i.e. after i candidates have
been eliminated, we have to consider the first k = i+ 1 candidates of each ballot
to find a candidate that has not been eliminated. We can then look at each pos-
sible ordering ri of k candidates and check how many votes every permutation
that starts with ri received. These votes are then assigned to the respective first
non-eliminated candidate in that permutation and the candidate with the least
votes is eliminated. Note that it can happen that two candidates are assigned
the same (lowest) number of votes in a round. Typically, IRV does not eliminate
multiple candidates in the same round, hence in these situations some kind of
tie-breaking algorithm is required. Often, this is done by lot - for example, this
is the default method for IRV elections in Maine [22]. We address this issue, by
letting GetMinIdx() output only the first candidate (i.e., the lower index) with
the least amount of votes. To obtain randomized tie-breaking, one starts with

Tally-Hiding IRV Evaluation

Input: ncand, (vj)j∈nc , the aggregated single-vote ballots for the choices.
Result: An indicator vector (bi)i∈ncand

such that bi = 1 iff i-th candidate is eliminated.

1 X = (Epk(0))i∈[ncand] // Encrypted indicator bits.

2 for i ∈ [ncand − 1] do // perform ncand − 1 elimination rounds
3 (vs

j = Epk(0))j∈[ncand] // Votes received in this round.

4 k = i + 1
5 for (ordered) k-tuple ri with entries in [ncand] do // go over ranking prefixes
6 cf = Epk(0), d = Epk(0) // cf will be the winner of prefix, d is a helper bit
7 for c in ri do // find winner in prefix
8 cf = d · cf + (1− d) · c, d = d + (1− d) · (1−Xc)
9 for c in ri do // add points from ballots for current prefix to the winner

10 b = feq(Epk(c), cf)
11 for j ∈ [nc] s.t. j represents a ranking where the top k candidates are ri do
12 vs

c = vs
c + b · vj

13 (ej)j∈[ncand] ← GetMinIdx((vs
0, . . . , v

s
ncand−1))

14 for r ∈ [ncand] do // Update/add one eliminated candidate
15 Xr = Xr + (1−Xr) · er
16 return fdec(X)

Fig. 4: Tally-Hiding IRV Evaluation.

a uniformly randomly ordered list of candidates. It is interesting future work to
explore implementations of more sophisticated tie-breaking algorithms.

We provide benchmarks for our IRV algorithm in Figure 3. Due to the encod-
ing of IRV ballots as permutations of [ncand], the algorithm has runtimeO(ncand!).
But as can be seen in Figure 3, for small numbers of candidates the evaluation is
still feasible. Indeed, 5 candidates is already a realistic scenario for real world IRV
elections. E.g., in the 2015 New South Wales state election [23], which, however,
uses a different IRV instance than we consider here, most electoral districts had
5 or less candidates. Using the properties of our basic building blocks described
in Section 2, one can check that our IRV algorithm does not leak information.
By the same reasoning as for Theorem 3 we obtain:

Theorem 4 (Security of Instant-Runoff voting with Ordinos). Let E
and πKeyShareGen be as for Theorem 3. Let πEnc be the NIZKP from above, and let
PMPC be our MPC component for the Instant-Runoff voting voting as defined in
this section. Then, the Ordinos instance using these primitives is an accountable
and private (and hence tally-hiding) voting system for Instant-Runoff voting.

6 Condorcet methods

Condorcet is a ranked voting method that aims to determine a so-called Con-
dorcet winner, i.e., a candidate that would beat all other candidates in a pairwise
runoff election (we will call these pairwise runoff elections comparisons). It might
happen that no candidate exists that wins all comparisons. There are several vari-
ants of (plain) Condorcet that deal with this, i.e., they output the Condorcet
winner if it exists but additionally define mechanisms for obtaining a winner
(or a set of winning candidates) also in some cases where no Condorcet winner
exists. We discuss certain variants and their applications in practice below. We
represent Condorcet ballots (which specify a full ranking of ncand candidates

Fig. 5: Benchmarks for Condorcet voting (left) and benchmarks for Borda voting
(right). The evaluation of the Schulze method for Condorcet took 135 minutes
for 5 candidates and 9 days, 10 hours and 27 minutes for 20 candidates (not
included in the figure).

without ties7) in Ordinos by interpreting them as a comparison matrix, i.e., an
(ncand × ncand)-matrix M , where Mij ∈ {0, 1} and Mij = 1 means that a voter
V prefers ci over cj . In order to obtain a choice space in the sense of definition
of Section 2, we encode a comparison matrix as a vector of length nc = n2

cand

as expected way. Combined with some checks that ensure such a matrix indeed
encodes a ranking (e.g., comparisons must be transitive), we obtain the choice
space:

CCondorcet =
{
M ∈ {0, 1}ncand×ncand

∣∣∣ ∀i, j, k ∈ [ncand] :

i 6= j =⇒Mij +Mji = 1 ∧Mij = Mjk = 1⇒Mik = 1
}

We can use the NIZKP πEnc presented in [9] for showing the well-formedness
of such ballots. As usual, Ordinos aggregates all the comparison matrices of all
voters, yielding (encryptions of) a matrix containing at entry (i, j) the total
number of comparisons that ci wins versus cj . This is then used as input for the
various Condorcet variants that (try to) compute a winner in different ways.

We have implemented MPC tallying protocols for several such Condorcet
variants, with details provided below. The benchmarks of these algorithms are
presented in Figure 5. Apart from the Schulze method, the runtime of the MPC
components of all Condorcet versions grow quadratically in ncand, as expected
due to the nature of pairwise comparisons, but remain practical for reasonable
numbers of candidates. (We note that the verification of the NIZKPs given in [9]
requires runtime that is asymptotically cubic in the number of candidates but is
not included/shown in the benchmarks.) Plain Condorcet in particular exhibits
runtime that suggests practicality even for very large numbers of candidates.
Also, recall that our benchmarks are essentially independent of nv and nt. With
the same reasoning as for Theorem 3 we obtain:

Theorem 5 (Security of Condorcet voting with Ordinos). Let E and
πKeyShareGen be as for Theorem 3. Let πEnc be the NIZKP from above, and let

7 Often, one allows for ties in Condorcet voting. However, in this work we do not
consider this case.

PMPC be one of our MPC components for a Condorcet voting method as defined
below. Then, the Ordinos instance using these primitives is an accountable and
private (and hence tally-hiding) voting system for that Condorcet method.
Next, we give details of the individual Condorcet variants and our corresponding
MPC algorithms.

Plain Condorcet. We denote the vanilla Condorcet method, that outputs the
unique Condorcet winner if and only if such a candidate exists, as Plain Con-
dorcet. In Figure 6 (for bit b = 1), we present an algorithm for Plain Condorcet
that is based on the building blocks described in Section 3. Note that, by choosing
the bit b = 0 in Figure 6, the algorithm instead returns (encrypted) intermediate
values, namely N , sg and s′g, which can be used for computing other Condorcet
methods. Here, N denotes the strict comparison matrix that denotes in each
entry Ni,j ∈ {0, 1} whether ci has won the majority of comparisons against cj
(Ni,j = 1) or won the same or less comparisons (Ni,j = 0). Additionally, for each
candidate ci, s

g
i denotes the number of comparisons that she has won or tied,

while s′gi only counts the winning comparisons.

Weak Condorcet. In this method all candidates that did not lose any com-
parisons (but that might be tied with other candidates and thus no Condorcet
winners), i.e. all weak Condorcet winners are output. This method can be ob-
tained via a straightforward extension of Figure 6 for b = 0. That is, for each ci,
compute and check whether fdec(feq(s

g
i , Epk(ncand − 1))) = 1.

Copeland. This method, as opposed to the previous two methods, is guaranteed
to output some winning candidate(s). To do so, it considers the wins and losses
of each candidate in their comparisons and outputs all candidates with the most
Copeland points, that is the highest difference between wins and losses. For b = 0,
Figure 6 can be extended to first obtain the Copeland points of a candidate ci via
Epk(pi) := Epk(s

′g
i +sgi). We then compute the candidate with the most Copeland

points with the GetMaxIdx() discussed in Section 3 and applying fdec().

Schulze Method. This method is more complicated than the previous ones
and is very commonly used in practice (e.g., [24]). This method defines the
score of candidate ci’s comparison versus cj to be the difference of the number
of comparisons that ci wins versus cj minus the number of comparisons that cj
wins versus ci. The candidates and the comparisons between them are considered
as a directed weighted graph Γ , where the nodes of Γ represent the candidates
and an arrow ci → cj is weighted with the score of ci’s comparison versus cj .
Now, for any path p in Γ , we define the value of p as the lowest weight among
the arrows involved in p. We then consider the path value matrix PathMatrix,
an (ncand × ncand)-matrix with entry PathMatrixij being the highest path value
among paths from ci to cj . The Schulze method then outputs all candidates ci
such that PathMatrixij ≥ PathMatrixji for each j ∈ [ncand]. Note that the Schulze
method is guaranteed to output some candidate(s). And if a unique Condorcet
winner exists, then it will be returned by the Schulze method. The intuitive
and probably most natural way to implement the Schulze method is to simply
compute the standard algorithm while using MPC building blocks to implement
all operations, which, for example, is also done in [7]. The main challenge lies

Condorcet Evaluation
Input: Encrypted aggregated comparison matrix: A := Epk(M)

b ∈ {0, 1}: indicator whether plain Condorcet should be evaluated.

1 N = 0ncand×ncand
, sg = 0ncand

, s′g = 0ncand
2 for i ∈ [ncand] do
3 for j ∈ [i + 1, ncand] do

4 g = fgt(Ai,j, Aj,i), e = feq(Ai,j, Aj,i), g
′ = g − e

5 Ni,j = g′, Nj,i = Epk(1) − g

6 s
g
i

= s
g
i

+ g, s
g
j

= s
g
j

+ Epk(1) − g′, s′g
i

= s
′g
i

+ g′, s′g
j

= s
′g
j

+ Epk(1) − g

7 if b = 1 then

8 if fdec(feq(s
′g
i

, Epk(ncand) − 1)) then

9 return i

10 return N, sg, s′g

Fig. 6: Condorcet Evaluation.

Condorcet: Schulze Evaluation
Input: Encrypted aggregated comparison matrix: M
Result: Vector (bi)i∈[ncand] such that bi = 1 if ci is a Schulze winner and bi = 0 otherwise.

1 PathMatrix = (Epk(0))ncand×ncand
2 for i ∈ [ncand], j ∈ [ncand] \ {i} do
3 PathMatrixi,j = Mi,j −Mj,i
4 for i ∈ [ncand], j ∈ [ncand] \ {i}, k ∈ [ncand] \ {i, j} do
5 m = GetMin(PathMatrixj,i, PathMatrixi,k)

6 PathMatrixj,k = GetMax(Mj,k,m)

7 MSchulze = (Epk(0))[ncand]×[ncand]

8 for i ∈ [ncand], j ∈ [i] do
9 g = fgt(PathMatrixi,j , PathMatrixj,i)

10 e = feq(PathMatrixi,j , PathMatrixj,i)

11 MSchulze
i,j = g,MSchulze

j,i = Epk(1) − g + e

12 b = (Epk(0))ncand
13 for i ∈ [ncand] do

14 w =
∑

j∈[ncand]\{i}MSchulze
i,j

15 bi = fdec(feq(w,Epk(ncand − 1)))

16 return (bi)i∈[ncand]

Fig. 7: Condorcet: Schulze Evaluation.

in choosing suitable MPC building blocks such that the resulting tally-hiding
Schulze algorithm performs well. Here we use the sublinear comparison protocols
from Section 2, with the resulting algorithm presented in Figure 7.

Further Condorcet methods: We have also implemented and benchmarked
the so-called Smith set and Minmax Condorcet methods. Intuitively, the smith
set outputs a set of candidates such that each candidate from this set wins the
comparisons against every candidate outside of the set. Minmax intuitively con-
siders the “worst” comparison of each candidate and then output all candidates
that have the “best” of these worst comparisons. Our algorithms for these Con-
dorcet methods are constructed using the same techniques and building blocks
as for the previous methods. Due to space constraints, we do not present our
algorithms in detail her but rather refer the reader to our implementation [15].

7 Borda

Borda count is a ranked voting method where each assignable rank is associated
with a pre-defined number of points that the corresponding candidate receives.
The winner typically is the candidate who has received the most points in total
(summed over all ballots). A famous application of Borda count is the election

of the winner of the grand final in the Eurovision Song Contest, but it is also
used for national elections, for example in the Republic of Nauru.

The following choice space can be used to capture Borda, where we interpret
P both as a list and a set: CBorda(P) = {(x1, . . . , xnc

) | ∀i : xi ∈ P ∧ ∀i ∈
P∃j : xj = i}. A NIZKP πEnc for the well-formedness of ballots for this choice
space is presented in [21]. By definition of Ordinos, the encrypted aggregated
tally (Epk(pi))i∈[nc] then consists of encryptions of the sum of points pi that
candidate ci received. In principle, one can now use the same MPC tallying
protocols presented in [6] for single-/multi-vote to (i) output the candidate with
the highest points, (ii) output the k candidates with the most points, or (iii)
output all candidates that cleared a certain threshold of points. However, for the
standard case (i) we propose a more efficient way that is not quadratic but linear
in the number of candidates: We use the algorithm GetMaxIdx() (cf. Section 3)
and then apply fdec; the winner is the candidate for whom decryption yields 1.8

The benchmarks of these algorithms are presented in Figure 5, where the
result functions (ii) and (iii) are implemented using the algorithms by [6]. As
the benchmarks show, our algorithm for (i) and the algorithm for (iii) can be
computed highly efficiently. Due to the linear growth, this should still be the
case even if there are much more candidates than the maximum of 40 that we
benchmarked. Result function (ii) shows, as expected, a quadratic growth in
the number of candidates. However, the runtime for ≤ 40 candidates remains
in a range that is often still reasonable for practical elections. Also, recall that
our benchmarks are essentially independent from nv and nt. With the same
reasoning as for Theorem 3 we obtain:
Theorem 6 (Security of Borda voting with Ordinos). Let E and πKeyShareGen

be as for Theorem 3. Let πEnc be the NIZKP from above, and let PMPC be one
of our MPC components for (one of the result functions for) Borda voting as
defined in this section. Then, the Ordinos instance using these primitives is an
accountable and private (and hence tally-hiding) voting system for Borda (using
that result function).

8 Conclusion

We have proposed, implemented, and benchmarked several new accountable
tally-hiding MPC components for Ordinos. These are the first tally-hiding im-
plementations for the Hare-Niemeyer method, IRV, multiple variants of Con-
dorcet, and Borda. The performance of our MPC components is determined by
the number of candidates while being essentially independent of the number of
trustees and the number of voters, as long as the aggregated ballots still meet
the bound bct. Analogously to [6], due to the comparison protocols with sublin-
ear communication cost, our runtimes are almost independent of the network
(local vs. Internet). Our instantiations achieve reasonable runtimes that allow

8 If always a single winner should be determined, one can use a tie-breaking algorithm
after GetMaxIdx(), similarly to what we describe in Section 5 for GetMinIdx(). Note
that this adds only a small linear overhead.

for deployment in real-world applications. In future work, it would be interesting
to investigate optimizations for our algorithms and to implement further voting
methods.

References

1. J. D. Cohen, Improving Privacy in Cryptographic Elections. Citeseer, 1986.
2. A. Hevia and M. A. Kiwi, “Electronic jury voting protocols,” TCS, 2004.
3. R. Wen and R. Buckland, “Minimum Disclosure Counting for the Alternative

Vote,” in VoteID, Luxembourg., 2009.
4. A. Szepieniec and B. Preneel, “New Techniques for Electronic Voting,” ePrint

Report 2015/809.
5. S. Canard, D. Pointcheval, Q. Santos, and J. Traoré, “Practical Strategy-Resistant

Privacy-Preserving Elections,” in ESORICS 2018, vol. 11099. Springer, 2018.
6. R. Küsters, J. Liedtke, J. Müller, D. Rausch, and A. Vogt, “Ordinos: A Verifiable

Tally-Hiding E-Voting System,” in EuroS&P. IEEE, 2020, pp. 216–235.
7. V. Cortier, P. Gaudry, and Q. Yang, “A toolbox for verifiable tally-hiding e-voting

systems,” ePrint Report 2021/491.
8. R. Küsters, T. Truderung, and A. Vogt, “Accountability: Definition and Relation-

ship to Verifiability,” in CCS, 2010.
9. T. Haines, D. Pattinson, and M. Tiwari, “Verifiable Homomorphic Tallying for the

Schulze Vote Counting Scheme,” in VSTTE 2019, 2019.
10. K. Ramchen, C. Culnane, O. Pereira, and V. Teague, “Universally Verifiable MPC

and IRV Ballot Counting,” in FC 2019, ser. LNCS. Springer, 2019.
11. W. Jamroga, P. B. Rønne, P. Y. A. Ryan, and P. B. Stark, “Risk-Limiting Tallies,”

in E-Vote-ID 2019, 2019.
12. A. Juels, D. Catalano, and M. Jakobsson, “Coercion-Resistant Electronic Elec-

tions,” ePrint Report 2002/165.
13. J. Heather, “Implementing STV securely in Prêt à Voter,” in CSF, 2007.
14. J. Benaloh, T. Moran, L. Naish, K. Ramchen, and V. Teague, “Shuffle-sum:

coercion-resistant verifiable tallying for STV voting,” TIFS, 2009.
15. F. Hertel, N. Huber, J. Kittelberger, R. Küsters, J. Liedtke, and D. Rausch, “Or-

dinos Code Repository,” https://github.com/JulianLiedtke/ordinos.
16. R. Küsters, T. Truderung, and A. Vogt, “Verifiability, Privacy, and Coercion-

Resistance: New Insights from a Case Study,” in S&P 2011, 2011.
17. R. Canetti, “Universally Composable Security: A New Paradigm for Cryptographic

Protocols,” in FOCS 2001. IEEE Computer Society, 2001.
18. R. Küsters, “Simulation-Based Security with Inexhaustible Interactive Turing Ma-

chines,” in CSFW-19, 2006, see [25] for a full and revised version.
19. I. Damg̊ard, M. Jurik, and J. B. Nielsen, “A Generalization of Paillier’s Public-Key

System with Applications to Electronic Voting,” Int. J. Inf. Sec., 2010.
20. H. Lipmaa and T. Toft, “Secure Equality and Greater-Than Tests with Sublinear

Online Complexity,” in ICALP 2013, vol. 7966. Springer, 2013, pp. 645–656.
21. J. Groth, “Non-interactive Zero-Knowledge Arguments for Voting,” in ACNS 2005.
22. Maine State Legislature, “Ranked Choice Voting in Maine,” http://legislature.

maine.gov/lawlibrary/ranked-choice-voting-in-maine/9509, 2020.
23. Electoral Commission NSW, “NSW State Election Results 2015,” https://pastvtr.

elections.nsw.gov.au/SGE2015/la-home.htm, 2021.
24. M. Schulze, “The Schulze Method of Voting,” CoRR, 2018.
25. R. Küsters, M. Tuengerthal, and D. Rausch, “The IITM Model: A Simple and

Expressive Model for Universal Composability,” Journal of Cryptology, 2020.

https://github.com/JulianLiedtke/ordinos
http://legislature.maine.gov/lawlibrary/ranked-choice-voting-in-maine/9509
http://legislature.maine.gov/lawlibrary/ranked-choice-voting-in-maine/9509
https://pastvtr.elections.nsw.gov.au/SGE2015/la-home.htm
https://pastvtr.elections.nsw.gov.au/SGE2015/la-home.htm

	Extending the Tally-Hiding Ordinos System: Implementations for Borda, Hare-Niemeyer, Condorcet, and Instant-Runoff Voting

