
Overdrive LowGear 2.0:
Reduced-Bandwidth MPC without Sacrifice

Sebastian Hasler
sebastian.hasler@sec.uni-stuttgart.de

Institute of Information Security
University of Stuttgart, Germany

Toomas Krips
toomas.krips@ut.ee

Institute of Computer Science
University of Tartu, Estonia

Ralf Küsters
ralf.kuesters@sec.uni-stuttgart.de
Institute of Information Security
University of Stuttgart, Germany

Pascal Reisert
pascal.reisert@sec.uni-stuttgart.de
Institute of Information Security
University of Stuttgart, Germany

Marc Rivinius
marc.rivinius@sec.uni-stuttgart.de
Institute of Information Security
University of Stuttgart, Germany

ABSTRACT
Some of the most efficient protocols for Multi-Party Computation
(MPC) follow a two-phase approach where correlated randomness,
in particular Beaver triples, is generated in the offline phase and
then used to speed up the online phase. Recently, more complex
correlations have been introduced to optimize certain operations
even further, such asmatrix triples formatrixmultiplications. In this
paper, our goal is to improve the efficiency of the triple generation
in general and in particular for classical field values as well as
matrix operations. To this end, we modify the Overdrive LowGear
protocol to remove the costly sacrificing step and therewith reduce
the round complexity and the bandwidth. We extend the state-of-
the-art MP-SPDZ implementation with our new protocols and show
that the new offline phase outperforms state-of-the-art protocols
for the generation of Beaver triples and matrix triples. For example,
we save 33 % in bandwidth compared to Overdrive LowGear.
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1 INTRODUCTION
Multi-Party Computation (MPC) allows several parties to compute
an arithmetic circuit on private inputs without revealing informa-
tion about the inputs apart from the result. Modern two-phase
protocols, like SPDZ [19] and related protocols [18, 30, 31], consist
of an offline phase, where (structured) random data, classically in
the form of Beaver triples [3], is precomputed, and an online phase,
where the precomputed data is used to compute the desired output
from the private inputs. This general design principle allows par-
ties to speed up the online phase considerably. A reasonably less
efficient offline phase is usually considered acceptable since pre-
processing can start well before the input data becomes available.
Efficiency in these types of two-phase protocols and generally in
MPC protocols heavily depends on the number of communication
rounds needed and the bandwidth, i.e. the amount of data that has
to be sent. Local computation times are often considered less rele-
vant for real-world applications as long as hardware requirements,
e.g. memory requirements, do not get out of hand. Apart from their
effect on the overall runtime of an MPC scheme, communication
costs, memory requirements, and bandwidth also contribute to the
incurring (financial) costs when the scheme is actually deployed,
e.g. on commercial cloud infrastructure. For SPDZ-like protocols,

bandwidth currently is most expensive given the high prices for
outgoing traffic.

SPDZ and its variants are state-of-the-art actively secure pro-
tocols. As long as at least one MPC party is honest, i.e. even if an
adversary controls all but one honest party and deviates arbitrarily
from the protocol, the adversary cannot gain any information on the
honest party’s inputs. Furthermore, the honest party is guaranteed
that an output is correct—if not, the protocol aborts.1

ML Applications. The high security guarantees as well as the
steadily improving efficiency of SPDZ-like protocols in recent years
has led to a growing interest in using MPC in industrial grade ap-
plication like privacy-preserving cloud computing and Machine
Learning (ML) [20, 36, 45, 46]. ML usually requires a large amount
of diversified data, often more than a single company can contribute.
MPC offers a solution for distrustful industry competitors to train
and evaluate an ML model without revealing private input data,
which could for example contain business secrets or costumer data
protected by law. While some applications like large ML training
algorithms are still out of reach of current MPC protocols, evaluat-
ing neural networks or secure decision trees has been performed
successfully in reasonable time [16, 27, 37, 41, 43, 44]. The large
application potential of MPC inML has also led to targeted improve-
ments of the underlying MPC protocols themselves. One focus of
these optimizations are operations that often occur in ML tasks, like
matrix multiplications or tensor convolutions, and have therefore,
a large impact on the performance of an ML algorithm.
Beaver Triples and Matrix Triples. Classically in the SPDZ
framework, matrix multiplications (and similarly convolutions) are
reduced to a series of sums and multiplications in the underlying fi-
nite field𝐾 = F𝑝𝑑 , e.g. for𝑋 = (𝑥𝑖 𝑗 ) ∈ 𝐾𝑢×𝑣 and𝑌 = (𝑦 𝑗𝑘 ) ∈ 𝐾𝑣×𝑤
one gets 𝑍 = 𝑋 · 𝑌 = (𝑧𝑖𝑘 ) ∈ 𝐾𝑢×𝑤 as 𝑧𝑖𝑘 =

∑𝑣
𝑗=1 𝑥𝑖 𝑗𝑦 𝑗𝑘—a sum

over 𝑣 multiplications in 𝐾 . To perform these multiplication in a
secure way, SPDZ uses classical Beaver triples, i.e. shared random
triples (𝑎, 𝑏, 𝑐) with 𝑎𝑏 = 𝑐 , which are used to mask the inputs
𝑥𝑖 𝑗 , 𝑦 𝑗𝑘 and compute a secure field multiplication. For a product of
a𝑢×𝑣 and a 𝑣 ×𝑤 matrix, this leads to𝑢𝑣𝑤 Beaver triples and there-
with to much more (shared) masks than inputs. An easy solution
to this overproduction of correlated random data was presented by
[37] for a semi-honest MPC protocol. Namely, the parties directly
construct a shared random matrix triple (𝐴, 𝐵,𝐶) with 𝐶 = 𝐴𝐵 as
1Both properties, i.e. privacy and correctness, are guaranteed with overwhelming
probability in the security parameter.
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a matrix product in the offline phase and use this matrix triple to
mask 𝑋,𝑌 and compute 𝑍 = 𝑋𝑌 . This approach then only needs
an equivalent of 𝑢𝑣 + 𝑣𝑤 + 𝑢𝑤 field elements in the online phase.
Furthermore, [37] showed that matrix triples can be produced by a
linear homomorphic encryption scheme in the offline phase. This
construction was still only passively-secure and instantiated with
the cryptosystems of Paillier [40] or Damgard-Geisler-Kroigaard
[17], rather than a lattice-based cryptosystem as in SPDZ. A transfer
to an actively secure protocol compatible with the SPDZ frame-
work is, in fact, possible—as we show as a byproduct of our work.
In particular, this seems very promising, as Overdrive LowGear
[31] – the fastest SPDZ-like protocol (for a small number of parties)
– is also based on the linear homomorphic properties of the BGV
encryption scheme [9]. Unfortunately, the resulting lattice-based ac-
tively secure version of [37] is not the most efficient way to produce
higher-structured randomness like matrix triples.

In fact, the first and currently best actively secure matrix triple
generation protocol appeared in [11] and is based on the levelled
homomorphic structure of BFV [8, 21]. The protocol reaches a very
low bandwidth per generated matrix triple and is therewith not
only significantly faster than a naive application of Overdrive with
Beaver triples, but also faster than the before mentioned lattice-
based linear homomorphic approach (along the lines of [37]). While
most of the improvements compared to Overdrive are certainly
based on the use of matrix triples instead of Beaver triples, [11]
gains an additional advantage by using suitable matrix packing
techniques and by avoiding a costly sacrificing technique inherent
in all SPDZ-like protocols since SPDZ [19] itself. To this end, the
BFV ciphertext modulus is extended significantly to support a larger
number of homomorphic multiplications. The negative effect of
this extension is compensated by removing the need for sacrificing.
Our Approach. The success of [11] leads to the question, whether
(for matrix triples or even more general) lattice-based linear homo-
morphic encryption should be abandoned and replaced by a levelled
homomorphic approach as in [11] or whether there is a better linear
homomorphic solution. In this paper we show that the latter is the
case by constructing a new linear homomorphic offline phase that,
e.g. outperforms [11] for matrix triples by approximately 39 % in
bandwidth and 62 % in runtime in the 2-party setup.

Our new offline phase is based on the following easy exchange
protocol between two parties 𝑃1 and 𝑃2, just as [31, 37]: 𝑃1 has 𝑎 and
sends Encpk1 (𝑎) to 𝑃2 for Enc a suitable homomorphic (asymmetric)
encryption scheme and pk1 the public key of 𝑃1. 𝑃2 has pk1, 𝑏,
computes Enc(𝑐1) = Encpk1 (𝑎)𝑏 − Encpk1 (𝑟 ) for some random
element 𝑟 and sends Enc(𝑐1) to 𝑃1. 𝑃1 can decrypt this to 𝑐1 = 𝑎𝑏−𝑟
since the encryption scheme is linear homomorphic.2 As 𝑃2 knows
𝑐2 = 𝑟 , the two parties have a sharing of 𝑐 = 𝑎𝑏 = 𝑐1 + 𝑐2. This
pairwise routine can be easily extended to construct a sharing of
𝑐 = 𝑎𝑏 from shares of 𝑎 and 𝑏 in an 𝑛-party protocol, i.e. to construct
a shared structure random triple (𝑎, 𝑏, 𝑐) where each party 𝑃𝑖 holds
a share [𝑎]𝑖 , [𝑏]𝑖 , [𝑐]𝑖 of (𝑎, 𝑏, 𝑐). If 𝑎, 𝑏 are field values, we get a
classical Beaver triple. If they are matrices, one gets a matrix triple.

Now in order to reach active security (as in [31]), triple shares
are authenticated, i.e. each party 𝑃𝑖 receives additional shares [𝛼𝑎]𝑖 ,

2Please see Section 3 for details on the sharing scheme and the linear homomorphic
property. Appendix A repeats the BGV scheme used in SPDZ like protocols like ours.

[𝛼𝑏]𝑖 , [𝛼𝑐]𝑖 for some secret 𝛼 . It can be shown that an adversary
that deviates from the protocol will cause a protocol abort with
overwhelming probability in the security parameter as long as he
does not know 𝛼 . However, he can change the shares or corrupted
parties after the pairwise production—but before the authentication.
In this way, he can get correctly authenticated shares which no
longer add up to 𝑐 = 𝑎𝑏. In order to prevent this misbehavior, [31]
(and all SPDZ-like protocols) use a sacrificing step. This sacrificing
step results in a bandwidth overhead of 80% to 100% depending
on the actual sacrificing protocol. We avoid this sacrificing step
by intertwining the pairwise multiplication protocol and the au-
thentication. In this way, the adversary no longer has the choice to
enter different values into the authentication and the integrity of
the triple is guaranteed without further sacrificing. Together with
some further optimizations of the pairwise protocol itself we reduce
the bandwidth compared to Overdrive [31] generally by 33 %.

We also extend the general approach to evaluate bilinear opera-
tion (e.g., matrix multiplications) to allow for even more efficient
computations of special (matrix) operations. Notably, this includes
𝑚𝑚 (squaring of matrices) and𝑚𝑚T (e.g., inner products) for ma-
trices 𝑚. The corresponding reduced online phase only needs a
structured pair instead of a triple—our bandwidth advantage in
these cases is consequentially in the online phase around 33%, a
suitably constructed offline saves around 50 % bandwidth.

Furthermore, our offline protocols reduce the number of com-
munication rounds per (batch of) triples produced from 3 down to
2. The effect of our round reduction becomes the more significant
the slower the connection becomes, e.g. given a large geographical
distance between compute parties. Please note that apart from a
correspondingly smaller runtime, the lower traffic will also result
in smaller monetary costs if the MPC protocols runs paid clouds.

We have implemented our new protocols as an extension to
the MP-SPDZ framework [29]. It therefore contains all subpro-
tocols already available in MP-SPDZ, including key generation,
offline/online protocols (unless replaced by our optimized versions),
the zero-knowledge proofs (ZKPs) from [31] and [2], MAC checks,
and so on. In particular, it is compatible with MP-SPDZ based
cloud platforms like Carbyne Stack [12]. Our implementation will
profit from future improvements of MP-SPDZ [29]. We compare
our protocols to a state-of-the-art Beaver triple based protocol [31]
(Overdrive LowGear) for generic field operations, matrix operations
and sample ML algorithms. We further run our triple production
protocol against the best known matrix triple generation protocol
[11]. Our benchmarks confirm our theoretical advantage.

Contributions.

- We present a new offline phase based on linear homomorphic
encryption that reduces the bandwidth and number of communi-
cations rounds compared to the state-of-the-art MPC protocol
for a small number of parties – Overdrive LowGear [31] – by
around 33%. We prove security of the new protocols.

- We develop new offline and online protocols for specialized oper-
ations like matrix squares and inner products. The offline band-
width advantage in the case of computations in a field compared
to [31] is then even 50%.

- We apply our results to the production of matrix triples to save
39% in bandwidth in a 2-party setup compared to the best known
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matrix triple production in [11]. For specialized operations, this
advantage is between 55% and 62%.

- We modify and extend the MP-SPDZ implementation [29] with
the before mentioned protocols. We give benchmarks for generic
field and matrix operations and benchmarks for Machine Learn-
ing applications. We compare our results to state-of-the-art MPC
solutions like [31] (including improved TopGear zero-knowledge
proofs [2]) and [11]. Our evaluation results confirm the theoreti-
cal predictions, e.g. in our ML benchmarks we save 28 %-74 % in
runtime and 57 %-66 % bandwidth on average against Overdrive;
we save 62 % in runtime against [11] for matrix operations and
58 % in bandwidth for ResNet-50 in the 2-party setup.3

2 RELATEDWORK
We place our work in a series of SPDZ-like protocols, e.g. [2, 11, 18,
19, 30, 31] (see also [38]). Therefore, we concentrate our discussion
on recent progress applicable to SPDZ-like papers, rather than
classical theoretical results like [1, 3, 4, 13, 24].

In addition to the already mentioned development of secure
matrix operations for MPC discussed in Section 1, first small opti-
mizations of the Beaver triple-based online phase in SPDZ already
appeared in [18], where square pairs are used to improve the squar-
ing of secret shared values—we extend this optimization to higher-
dimensional operations. This original idea has been picked up by
Morton Dahl who describes in [15] a variety of generalized struc-
tured randomness that can improve the online phase. In particular,
Dahl presents matrix triples and convolution triples, which have
also been discussed in [37] in the passively secure domain. Matrix
(and convolution) triples have since then seen further attention
and are by now available as part of the actively secure protocol
[11]. As mentioned before, the actively secure triple production in
[11] relies on leveled homomorphic BFV encryption scheme [8, 21]
together with classical packing methods like in [25, 28, 34]. Due to
the large impact of matrix operations on the overall performance
of ML algorithms, the secure evaluation of matrix products has
a natural application in privacy-preserving ML ([11, 37]). Recent
progress in the field of privacy-preserving ML with MPC include,
e.g., [16, 27, 41, 43–46].

Finally, note that with a pseudo-random generator, as, e.g., in [6],
structured randomness can be produced with only a small amount
of initial communication. Special solutions exist on a theoretical
level for other structured random data like matrix triples [7], too.

3 PRELIMINARIES
In this work, we will generally work over a commutative ring 𝑅
and 𝑅-modules𝑀 . All rings are assumed to be unitary.

Since we focus on MPC in the dishonest majority setting, we use
a classical additive secret-sharing, denoted by [·] on 𝑅-modules. A
secret𝑚 in an𝑅-module𝑀 is then shared among𝑛 parties 𝑃1, . . . , 𝑃𝑛
such that𝑚 =

∑𝑛
𝑖=1 [𝑚]𝑖 where [𝑚]𝑖 is the share of party 𝑃𝑖 . All

shares are needed to reconstruct a secret and 𝑛 − 1 or less shares
do not reveal any information. This secret sharing scheme is 𝑅-
linear, i.e., we can set [𝑚 +𝑚′]𝑖 B [𝑚]𝑖 + [𝑚′]𝑖 , [𝑟𝑚]𝑖 B 𝑟 · [𝑚]𝑖 ,
[𝑚 +𝑐]𝑖 B [𝑚]𝑖 +𝛿𝑖1 ·𝑐 for shared values𝑚,𝑚′ ∈ 𝑀 and a publicly
known constants 𝑟 ∈ 𝑅, 𝑐 ∈ 𝑀 , where 𝛿𝑖 𝑗 is the Kronecker delta. To

3Note that for more than 2 parties, [11] provides no runtimes or implementation.

open (or reconstruct) a secret-shared value, parties simply broadcast
their shares and compute the sum of all shares.

In SPDZ and related protocols, shares are additionally authenti-
cated to verify the outputs of the protocol using a MAC key [18, 19].
The MAC key 𝛼 ∈ 𝑅 is shared in the preprocessing phase. El-
ements 𝑚 of an 𝑅-module 𝑀 (e.g. like protocol inputs or struc-
tured randomness) are authenticated in the offline phase by adding
a sharing of 𝛼𝑚. We use ⟦𝑚⟧ = ( [𝑚], [𝛼𝑚]) to denote the au-
thenticated shares of𝑚 and ⟦𝒎⟧ = (⟦𝑚1⟧, . . . , ⟦𝑚𝑘⟧) for a tuple
𝒎 = (𝑚1, . . . ,𝑚𝑘 ). Linear operations on authenticated shares are
a trivial extension of linear operations on shares with except for
⟦𝑚 + 𝑐⟧𝑖 B ( [𝑚 + 𝑐]𝑖 , [𝛼𝑚]𝑖 + 𝑐 · [𝛼]𝑖 ). In slight abuse of nota-
tion we write [𝑚]𝑖 ∈ 𝑀 if each share [𝑚]𝑖 is an element of𝑀 and
analogously for authenticated shares.

A MAC check enables parties to verify the integrity of previously
opened shares (cf. [18, 19] or Protocol 7). The soundness of the MAC
check is proportional to 1/|𝑅 |, e.g. 2/|F𝑝𝑑 | in [19], can be aggregated
over many opened values, and does not reveal the MAC key [18].
We chose 𝑅 such that 1/|𝑅 | is negligible in the security parameter.

When we analyze the theoretical performance of our protocols,
bandwidth is measured in the number of ring elements sent. Analo-
gously, the size of the structured randomness needed in the online
phase, i.e. the tuple/triple size, is the number of ring elements
contained in the triple/tuple which have to be provided by the of-
fline phase. The round complexity of a protocol is the number of
communication rounds. One communication round consists of all
information that can be sent in parallel. In particular, if in a proto-
col party 𝑃1 has to wait for a message from 𝑃2 before 𝑃1 can send
her message, the protocol has round complexity 2. We note that
the opening phase in actively secure SPDZ-like protocols comes
with an additional invocation of a MAC check, which can be amor-
tized for all openings in the online phase and does therefore not
significantly influence the round complexity.

Finally, we use the UC model [10] to prove our schemes secure
against malicious, static adversaries, except for proofs of knowledge
where we allow rewinding to extract inputs from the adversary to
avoid sending additional ciphertexts. The same limited UC model
is also used in SPDZ-like protocols like Overdrive [31].

4 THE ONLINE PHASE
In this section, we first describe the general construction used
to evaluate bilinear authenticated operations in the online phase.
The most prominent example of these operations is classical (au-
thenticated) multiplication in a finite field. However, the general
construction also works for matrix products and tensor convolu-
tions (cf. [11, 37]). We therefore present the online multiplication
protocol in a universal form for modules over commutative rings—
however, we mostly use the protocol for vector spaces over finite
fields. Furthermore, we discuss special cases of this construction
that occur if certain constraints are satisfied.
Abstract Form of Bilinear Evaluation. Let 𝑅 be a commutative
ring and 𝑀,𝑀′, 𝑀′′ 𝑅-modules together with a bilinear map · :
𝑀 × 𝑀′ → 𝑀′′, (𝑚,𝑚′) ↦→ 𝑚 ·𝑚′ C 𝑚𝑚′.4 In the online phase
each party 𝑃𝑖 gets shares ⟦𝑚⟧𝑖 , ⟦𝑚′⟧𝑖 of 𝑚,𝑚′ and the parties
want to compute ⟦𝑚𝑚′⟧ together. To this end, one extends the
4 · refers here to an arbitrary bilinear map and not a specific product in a field.
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previously known classical constructions from Beaver [3] used in
[19] and more recent results from [5] or [11] on bilinear triples.5

In these protocols it is common that the parties 𝑃1, . . . , 𝑃𝑛 have
access to structured random data provided by the offline phase in
the form of a shared tuple. The tuple usually contains shared input
masks ⟦𝑎⟧ and ⟦𝑎′⟧ for uniformly random 𝑎 ∈ 𝑀 , 𝑎′ ∈ 𝑀′. The
parties then locally compute ⟦𝑚 − 𝑎⟧𝑖 and ⟦𝑚′ − 𝑎′⟧𝑖 and publish
their share. After this initial round of communication, each party
can locally add up the shares to get𝑚 − 𝑎 ∈ 𝑀 and𝑚′ − 𝑎′ ∈ 𝑀′.
As long as the masks 𝑎, 𝑎′ are not known to any party, the inputs
𝑚,𝑚′ are hidden information theoretically.

The random triple contains a further shared entry ⟦𝑎𝑎′⟧ which
depends on the masks 𝑎 and 𝑎′. Overall we have the shared triple
(⟦𝑎⟧, ⟦𝑎′⟧, ⟦𝑎𝑎′⟧) ∈ 𝑀×𝑀′×𝑀′′ which can be used by the parties
to compute a share of𝑚𝑚′ as follows:

⟦𝑚𝑚′⟧𝑖 = (𝑚 − 𝑎)⟦𝑚′⟧𝑖 + ⟦𝑎⟧𝑖 (𝑚′ − 𝑎′) + ⟦𝑎𝑎′⟧𝑖 (1)
The correctness of this construction follows from the definition.
Note in particular, that in the second componentwe use𝑅-bilinearity
to get

∑𝑛
𝑖=1 (𝑚 − 𝑎) [𝛼𝑚′]𝑖 = (𝑚 − 𝑎) · (𝛼𝑚′) = 𝛼 ((𝑚 − 𝑎)𝑚′).

Remark 1. While this construction works in general for applica-
tions in maliciously secure MPC, the orbits of the 𝑅-actions should not
become too small. E.g. for 𝑀 = 𝑀′ = 𝑀′′, and the trivial 𝑅-actions,
i.e., 𝑟 ·𝑚 =𝑚, we get independence of the MAC key and hence trivially
not malicious security.

Remark 2. Note that by local operations, the parties can locally
create any linear term in𝑀 and𝑀′. Thus, any quadratic term in the
inputs𝑚,𝑚′ can be created with a shared triple (⟦𝑎⟧, ⟦𝑎′⟧, ⟦𝑎𝑎′⟧)
in one round of communication.

Special Tuples. In some applications, the different spaces𝑀 and
𝑀′ obey certain constraints. One exceptionally useful case is when
𝑀 and𝑀′ admit an 𝑅-linear map 𝜙 : 𝑀 → 𝑀′. Then we only need
the structured pair (⟦𝑎⟧, ⟦𝑎𝜙 (𝑎)⟧) ∈ 𝑀 ×𝑀′′ to compute𝑚𝜙 (𝑚)
for any𝑚 ∈ 𝑀—we call this kind of structured randomness special
tuples/pairs. The corresponding protocol reduces to
⟦𝑚𝜙 (𝑚)⟧𝑖 = (𝑚 − 𝑎)𝜙 (⟦𝑚⟧𝑖 ) + ⟦𝑎⟧𝑖𝜙 (𝑚 − 𝑎)+⟦𝑎𝜙 (𝑎)⟧𝑖 . (2)

where 𝜙 (⟦𝑚⟧𝑖 ) B (𝜙 ( [𝑚]𝑖 ), 𝜙 ( [𝛼𝑚]𝑖 )).

Example 1. The most simple example is that of squares in a field
F𝑝𝑑 introduced in [18]. In this case, choose 𝑅 = F𝑝𝑑 = 𝑀 = 𝑀′ = 𝑀′′,
where 𝑅 acts by field multiplication. Choosing𝜙 = id𝑅 , (2) can be used
to compute the square of a shared value. In the field case, 𝜙 = id𝑅 is up
to some scalar multiplication the only possible homomorphism of the
underlying additive groups. While 𝜙 = 𝑧 · id𝑅, 𝑧 ∈ Z can theoretically
be used to compute ⟦𝑧𝑚2⟧, it is much more practical to compute ⟦𝑚2⟧
and multiply the constant 𝑧 locally.

The previous example trivially extends to 𝑅-matrices in 𝑀 =

𝑅𝑢×𝑣, 𝑀′ = 𝑅𝑣×𝑤 , 𝑀′′ = 𝑅𝑢×𝑣 for some dimensions 𝑢, 𝑣,𝑤 ∈ N≥1
with the natural 𝑅-scalar multiplication in the matrix rings. For 𝜙 =

id𝑅 (and hence 𝑢 = 𝑣 = 𝑤 ), we get matrix squares. However, in this
higher dimensional case there are more possible choices for 𝜙 , i.e.
𝜙 ∈ Hom𝑅 (𝑅𝑢×𝑣, 𝑅𝑣×𝑤) ≃ 𝑅𝑢𝑣

2𝑤 (as 𝑅-modules). When we recall
that by local computations we can also construct any linear term in
5[5] interprets (finitely-generated) abelian groups as Z-modules.

the matrix entries locally, we see that a pair (𝑎, 𝑎𝜙 (𝑎)) ∈ 𝑀 ×𝑀′′ is
in fact enough to compute any quadratic term in the matrix entries.

One particularly nice application exists for𝑤 = 𝑢 and𝜙 (𝑚) =𝑚T

for𝑚 ∈ 𝑀 = 𝑅𝑢×𝑣 . In this case, (2) computes𝑚𝑚T, i.e. the standard
(non-degenerated) bilinear form ⟨𝑚𝑖 ,𝑚 𝑗 ⟩ B 𝑚𝑖𝑚

T
𝑗
evaluated on the

rows𝑚1, . . . ,𝑚𝑢 of𝑀 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑢. Even more, for any sym-
metric matrix𝐻 ∈ 𝑅𝑣×𝑣 and𝜙 (𝑚) = 𝐻𝑚T we get the corresponding
non-degenerated symmetric bilinear form ⟨𝑚𝑖 ,𝑚 𝑗 ⟩𝐻 =𝑚𝑖𝐻𝑚

T
𝑗
. In

the case of 𝑢 = 1, we only need a tuple of size 𝑣 + 1 to compute an
inner product. Over R one gets scalar products and𝑚𝑚T or𝑚T𝑚,
respectively, is called Gram matrix. In particular, this special pairs
can be used to compute scalar products and norms on fixed-point
representations of real-valued data. The analogous construction
works for scalar products and norms over C.

Remark 3. We concentrate in this paper on matrix squares and
inner products, since the resulting special tuples for matrices are par-
ticularly interesting and have to our knowledge not been introduced.
Since constraints must preserve 𝑅-linearity to apply (2) in an MPC pro-
tocol, other special setups can usually be reduced to tuples (𝑎, 𝜙 (𝑎)).

Now that we have seen how to evaluate bilinear maps with
bilinear triple (⟦𝑎⟧, ⟦𝑎′⟧, ⟦𝑎𝑎′⟧) and special products of the form
𝑚𝜙 (𝑚) with special pairs (⟦𝑎⟧, ⟦𝑎𝜙 (𝑎)⟧) in the online phase, we
have to explain how this structured randomness can be produced
efficiently in the offline phase next.

5 THE OFFLINE PHASE
In this section we explain how to construct the randomness con-
sumed in the online phase of Section 4 in an actively secure offline
phase for generic bilinear triples and special tuples. In particular,
this section provides an offline phase to generate classical Beaver
triples and squares, matrix triples and special matrix pairs, but also
other forms of correlated randomness, like e.g. triples for tensor con-
volutions. For matrix triples we introduce additional optimizations
in Section 6.

We base our triple construction on the linear homomorphic prop-
erties of the BGV encryption scheme, like in [31]. Consequentially,
our starting point is the LowGear protocol [31] which is still con-
sidered the state-of-the art SPDZ-like protocol for a low number
of compute parties, e.g. 𝑛 = 2 or 3. We consider a recent variant
of this protocol with the more efficient zero-knowledge proofs in-
troduced in [2]. We ultimately improve the triple production in
[31] by intertwining the triple production and the authentication
of the produced triples in one protocol. This allows us to avoid the
sacrificing step common in SPDZ-like protocols like [31].

For this section we choose 𝑅 = F𝑝𝑑 a finite field.6 Let Φ𝑚 ∈ Z[𝑋 ]
be the𝑚-th cyclotomic polynomial of degree 𝑁 = 𝜑 (𝑚). Let 𝐴 =

Z[𝑋 ]/(Φ𝑚) the ring of integers of the algebraic number fieldQ(Z𝑚)
for Z𝑚 a primitive𝑚-th root of unity, e.g. Z𝑚 = exp(2𝜋𝑖/𝑚) ∈ C.
Let 𝑝 be a prime and 𝑑 the order of 𝑝 in Z∗𝑚 . Then Φ𝑚 mod𝑝 is
the product of 𝑠 = 𝑁 /𝑑 irreducible polynomials 𝑓1, . . . , 𝑓𝑠 such that
𝐴𝑝 B F𝑝 [𝑋 ]/(Φ𝑚 mod𝑝) ≃ Z[𝑋 ]/(Φ𝑚, 𝑝) ≃

>𝑠
𝑗=1 F𝑝 [𝑋 ]/(𝑓𝑗 ) ≃>𝑠

𝑗=1 F𝑝𝑑 . We consider elements𝑚 ∈ 𝐴𝑝 as 𝑠 = 𝑁 /𝑑-dimensional

6An extension to base rings 𝑅 = Z2a similar to [14, 39] seems possible. To check
compatibility with modified MAC checks and packing methods over Z2a is however
out of scope of this paper.
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Πreturn
𝑃 𝑗 has input (Encpk𝑖 (𝑎), (𝑏1, 𝑟1), . . . , (𝑏𝑙 , 𝑟𝑙 )) with (𝑏𝑘 , 𝑟𝑘 ) ∈
𝐴_𝑝 ×𝐴

`
𝑝 for 1 ≤ 𝑘 ≤ 𝑙 for some 𝑙 ∈ N≥1.

1. 𝑃 𝑗 sends Encpk𝑖 (𝑎)𝑏𝑘 − Enc
𝜒

pk𝑖
(𝑟𝑘 ) to 𝑃𝑖 for 1 ≤ 𝑘 ≤ 𝑙 .

2. 𝑃𝑖 decrypts this to get 𝑑𝑘 = 𝑎𝑏𝑘 − 𝑟𝑘 for 1 ≤ 𝑘 ≤ 𝑙 .

Protocol 1: Pairwise return protocol.

vectors (𝑚mod 𝑓𝑗 )𝑠𝑗=1.
7 This allows to use SIMD (Single Instruction

Multiple Data) operations, e.g. we can evaluate an F𝑝𝑑 -bilinear
operation · : 𝑀 ×𝑀′ → 𝑀′′ in the online phase for𝑀 = F^

𝑝𝑑
, 𝑀′ =

F_
𝑝𝑑
, 𝑀′′ = F`

𝑝𝑑
on 𝑠 pairs simultaneously. In more detail, we get

the natural induced bilinear map

𝑀𝑠 × (𝑀′)𝑠 → (𝑀′′)𝑠 , ((𝑚 𝑗 )𝑠𝑗=1, (𝑚
′
𝑗 )
𝑠
𝑗=1) ↦→ (𝑚 𝑗𝑚

′
𝑗 )
𝑠
𝑗=1 .

Since 𝑀𝑠 = 𝐴^𝑝 , (𝑀′)𝑠 = 𝐴_𝑝 , (𝑀′′)𝑠 = 𝐴
`
𝑝 this is a bilinear map

𝐴^𝑝 ×𝐴_𝑝 → 𝐴
`
𝑝 . Now we can use the BGV [9] encryption scheme

on the plaintext space 𝐴𝑝 to securely evaluate this bilinear map
and hence to evaluate 𝑠 F𝑝𝑑 -bilinear operations𝑀 ×𝑀′ → 𝑀′′.

The CPA-secure BGV [9] encryption scheme (Enc\pk,Dec𝑠𝑘 ) on
𝐴𝑝 is common in SPDZ-like protocols [19, 31], where \ denotes the
distribution from which the encryption randomness is chosen. The
ciphertext space is 𝐴2

𝑞 with 𝐴𝑞 B Z[𝑋 ]/(Φ𝑚, 𝑞) for some natural
number 𝑞 and 𝑝 ∤ 𝑞. We will usually drop the \ if we sample from
the standard distribution used in [31] (cf. Appendix A). However,
as in [31] we will occasionally sample from a larger distribution
𝜒 , i.e. set \ = 𝜒—the exact form of this distribution 𝜒 depends
on how the encryption scheme is employed. Most importantly for
our applications the BGV scheme is linearly homomorphic (for
suitably chosen parameters and suitable 𝜒), i.e. Decsk (Encpk (𝑟 )𝑟 ′ +
Enc𝜒pk (𝑟

′′)) = 𝑟𝑟 ′+𝑟 ′′ for 𝑟, 𝑟 ′, 𝑟 ′′ ∈ 𝐴𝑝 .8 For example Encpk (𝑎)𝑏𝑘−
Enc𝜒pk (𝑟𝑘 ) in Protocol 1 uses the standard distribution from [31] for
the encryption of 𝑎 and a larger distribution 𝜒 for the encryption
of 𝑟𝑘 (see also Remark 5 for further details on the distributions).
Furthermore, 𝜒 depends on the operations to be evaluated. For
example, if we use the encryption scheme with matrix operations
the distribution must be chosen differently than for simple field
operations—we will determine the exact size for matrix operations
in Section 6 to guarantee the same security level as in [31]. For
more details on the encryption scheme, see the reference literature
or Appendix A. We remark that our construction does not rely on
the specifics of this BGV-type encryption scheme and should be
applicable for other linearly homomorphic encryption schemes.
When we work over finite-dimensional free 𝐴𝑝 -modules 𝐴^𝑝 we
apply the encryption scheme on 𝐴𝑝 component-wise.

Finally we also use several ideal functionalities which mostly
coincide with those in [31]—these are included in Appendix E.

7See Appendix A for further details.
8Lattice-based encryption schemes like BGV usually do not have the homomorphic
property unconditionally, i.e. applying several linear transformations on ciphertexts
without intermediate decryption might lead to a wrong decryption results. By a correct
parameter choice, we will ensure that this does not happen in our protocols (cf. Secion
6 and Section 7) for the discussed use cases.

Πpair

𝑃𝑖 has input [𝑎]𝑖 ∈ 𝐴^𝑝 , 𝑃 𝑗 has input ( [𝑏𝑘 ] 𝑗 )1≤𝑘≤𝑙 ∈ (𝐴_𝑝 )𝑙 for
some 𝑙 ∈ N≥1.
1. 𝑃𝑖 sends Encpk𝑖 ( [𝑎]𝑖 ) to 𝑃 𝑗 using FZKP (cf. Protocol 10).
2. 𝑃 𝑗 samples (𝑟𝑖 𝑗𝑘 )1≤𝑘≤𝑙 ∈ (𝐴

`
𝑝 )𝑙 and invokes Πreturn with

input (Encpk𝑖 ( [𝑎]𝑖 ), ( [𝑏𝑘 ]𝑖 , 𝑟𝑖 𝑗𝑘 )1≤𝑘≤𝑙 ) and 𝑃𝑖 receives 𝑑𝑖 𝑗𝑘 .

Protocol 2: Pairwise multiplication protocol in [31].

5.1 Classical Triple Production with Sacrificing
Wewill first present the classical triple production from [31]. For the
triple production we assume that the parties 𝑃1, . . . , 𝑃𝑛 alreadywent
through a setup phase such that 𝑃𝑖 possesses the following data: Her
own private keys sk𝑖 , sk′𝑖 , her own share [𝛼]𝑖 of the MAC key, the
public keys9 of all parties pk𝑗 , pk′𝑗 for all 1 ≤ 𝑗 ≤ 𝑛, and encryptions
of all MAC key shares Encpk′𝑗 ( [𝜶 ] 𝑗 ) with [𝜶 ] 𝑗 B ( [𝛼] 𝑗 , . . . , [𝛼] 𝑗 ),
and [𝛼] 𝑗 ∈ 𝐴𝑝 for all 1 ≤ 𝑗 ≤ 𝑛. Possible realizations of a secure
setup phase are discussed, e.g. in [18] or [42].

The classical triple production ΠLowGear in Overdrive LowGear
is given in Protocol 9.10 We subdivided the original protocol [31, Fig.
7] into two (sub)protocols 1 and 2 in order to reuse these two pair-
wise subroutines in our new protocols later. Recall that to compute
𝑐1 = 𝑎𝑏1 = (∑𝑛𝑖=1 [𝑎]𝑖 ) (∑𝑛𝑗=1 [𝑏1] 𝑗 ) it is enough to compute each
summand [𝑎]𝑖 [𝑏1] 𝑗 . Πpair does just that, i.e. for two parties 𝑃𝑖 with
[𝑎]𝑖 and 𝑃 𝑗 with [𝑏1] 𝑗 the protocol outputs a (2-party) sharing of
[𝑎]𝑖 [𝑏1] 𝑗 . By using a zero-knowledge functionality FZKP (cf. [31]
or Protocol 10) for BGV ciphertexts, Πpair furthermore guarantees
that the parties know suitable plaintexts [𝑎]𝑖 and that the cipher-
text noise stays small enough and can be masked securely. If all
pairs of parties run this subroutine Πpair all mixed terms [𝑎]𝑖 [𝑏1] 𝑗
can be constructed and then added as in ΠLowGear, step 3, to get a
sharing of the product 𝑐1 = 𝑎𝑏1. Overall, ΠLowGear outputs an au-
thenticated 5-tuple (⟦𝑎⟧𝑗 , ⟦𝑏1⟧𝑗 , ⟦𝑐1⟧𝑗 , ⟦𝑏2⟧𝑗 , ⟦𝑐2⟧𝑗 ) in 𝐴𝑝 such
that 𝑐1 = 𝑎𝑏1 and 𝑐2 = 𝑎𝑏2.

Unfortunately, malicious parties can easily manipulate the prod-
uct entries 𝑐1, 𝑐2 before authentication, i.e. a malicious party 𝑃 𝑗 sim-
ply modifies his shares to [𝑎] 𝑗 , [𝑏1] 𝑗 , [𝑐1] 𝑗 + Δ1, [𝑏2] 𝑗 , [𝑐2] 𝑗 + Δ2.
Now the parties hold a sharing of (𝑎, 𝑏1, 𝑐1 +Δ1, 𝑏2, 𝑐2 +Δ2). The au-
thentication subprotocol in step 4 of ΠLowGear will authenticate this
tuple to (⟦𝑎⟧𝑗 , ⟦𝑏1⟧𝑗 , ⟦𝑐1 + Δ1⟧𝑗 , ⟦𝑏2⟧𝑗 , ⟦𝑐2 + Δ2⟧𝑗 ). In particular,
the MAC checks in the online phase cannot detect this modifica-
tion. To prevent against this kind of attack, the parties have to run
an additional sacrificing step. The usual sacrificing step is, e.g., de-
scribed in [18] and also given in Appendix B. As a result, if the check
goes through, the parties get one triple (⟦𝑎⟧, ⟦𝑏1⟧, ⟦𝑐1⟧) such that
with overwhelming probability 𝑐1 = 𝑎𝑏1. The sacrificing step is
the reason why we have to generate the other two entries 𝑏2, 𝑐2 in
the first place. After the sacrificing, these cannot be used anymore
(without compromising the security of the protocol), which creates
a significant overhead no longer necessary in our protocol.
9We require the same security guarantees from the setup phase as [31], e.g. for pk =

(𝑎,𝑏 ) ∈ 𝐴2
𝑞 , 𝑎 sufficiently random for all parties. As in [29] we do not use seperate

keys for each pair of parties. The security proofs of [31] still hold. We use the second
key pk′ mostly for the MAC keys for security reasons (cf. Appendix E, security proof).
10Note that original LowGear only considered Beaver triples, i.e. ^ = _ = ` = 1.
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Πreduced
𝑃 𝑗 has input Encpk𝑖 ( [𝑎]𝑖 ), Encpk𝑖 ( [𝑏]𝑖 ), ( [𝑎] 𝑗 , [𝑏] 𝑗 , 𝑟𝑖 𝑗 ) ∈ 𝐴

^
𝑝 ×

𝐴_𝑝 ×𝐴
`
𝑝 .

1. 𝑃 𝑗 sends Encpk𝑖 ( [𝑎]𝑖 ) [𝑏] 𝑗 + [𝑎] 𝑗 Encpk𝑖 ( [𝑏]𝑖 ) − Enc
𝜒 ′

pk𝑖
(𝑟𝑖 𝑗 )

to 𝑃𝑖 (cf. Remark 5 for details on 𝜒 ′).
2. 𝑃𝑖 decrypts this to get 𝑑𝑖 𝑗 = [𝑎]𝑖 [𝑏] 𝑗 + [𝑎] 𝑗 [𝑏]𝑖 − 𝑟𝑖 𝑗 .

Protocol 3: Reduced return protocol.

5.2 Reduced Communication Protocol
Before we present our new offline protocol in the next subsection,
we first discuss how the parties can use all available information to
reduce the bandwidth in the pairwise subprotocol Πpair.

Namely, if in Πreturn (Protocol 1), 𝑃 𝑗 has access to not only
Encpk𝑖 ( [𝑎]𝑖 ) and ( [𝑏] 𝑗 , 𝑟𝑖 𝑗 ) but also to Encpk𝑖 ( [𝑏]𝑖 ), [𝑎] 𝑗 then they
can return Encpk𝑖 ( [𝑎]𝑖 ) [𝑏] 𝑗+[𝑎] 𝑗 Encpk𝑖 ( [𝑏]𝑖 )−Enc

𝜒 ′

pk𝑖
(𝑟𝑖 𝑗 ) which

decrypts to [𝑎]𝑖 [𝑏] 𝑗 + [𝑎] 𝑗 [𝑏]𝑖 −𝑟𝑖 𝑗 . Note that we use a different dis-
tribution 𝜒 ′ (instead of 𝜒 inΠreturn) tomask sumsEncpk𝑖 ( [𝑎]𝑖 ) [𝑏] 𝑗+
[𝑎] 𝑗 Encpk𝑖 ( [𝑏]𝑖 )—wewill discuss choices for 𝜒, 𝜒

′ inmore detail in
Remark 5. Since we use the pairwise protocol to compute the mixed
terms [𝑎]𝑖 [𝑏] 𝑗 + [𝑎] 𝑗 [𝑏]𝑖 in the sum 𝑎𝑏 = (∑𝑛𝑖=1 [𝑎]𝑖 ) (∑𝑛𝑗=1 [𝑏] 𝑗 ),
the parties can use this fact to reduce from two invocations of the
pairwise subprotocol – each party acts once as sender and once
as receiver – down to one invocation, where one party 𝑃𝑖 pro-
vides Encpk𝑖 ( [𝑎]𝑖 ) and Encpk𝑖 ( [𝑏]𝑖 ) and the other one returns an
encryption of [𝑎]𝑖 [𝑏] 𝑗 + [𝑎] 𝑗 [𝑏]𝑖 − 𝑟𝑖 𝑗 .

In more detail: Let offset← 𝑗 − 𝑖mod𝑛. Note that 𝑆 = {(𝑖, 𝑗) ∈
{0, . . . , 𝑛 − 1}2 : (0 < 2 · offset < 𝑛) ∨(2 · offset = 𝑛 ∧ 𝑗 > 𝑖)} has
exactly 𝑛(𝑛 − 1)/2 elements. Moreover, if (𝑖, 𝑗) ∈ 𝑆 than ( 𝑗, 𝑖) ∉ 𝑆 ,
i.e. for each (𝑖, 𝑗) with 𝑖 ≠ 𝑗 either (𝑖, 𝑗) ∈ 𝑆 or ( 𝑗, 𝑖) ∈ 𝑆 . Now
each pair (𝑃𝑖 , 𝑃 𝑗 ) with (𝑖, 𝑗) ∈ 𝑆 runs a pairwise protocol Πreduced
(Protocol 3) such that 𝑃𝑖 receives 𝑑𝑖 𝑗 = [𝑎]𝑖 [𝑏] 𝑗 + [𝑎] 𝑗 [𝑏]𝑖 −𝑟𝑖 𝑗 and
𝑃 𝑗 receives 𝑟𝑖 𝑗 . Oberve that each [𝑎]𝑘 [𝑏]𝑘 ′ for any 0 ≤ 𝑘, 𝑘′ < 𝑛

occurs exactly once in one of the 𝑑𝑖 𝑗 for (𝑖, 𝑗) ∈ 𝑆 . Locally 𝑃𝑖
combines the outputs of the different pairwise protocols to 𝑒𝑖 =
[𝑎]𝑖 [𝑏]𝑖 +

∑
𝑗 :(𝑖, 𝑗 ) ∈𝑆 𝑑𝑖 𝑗 , 𝑓𝑖 =

∑
𝑗 :(𝑖, 𝑗 ) ∈𝑆 𝑟𝑖 𝑗 and [𝑐]𝑖 = [𝑎𝑏]𝑖 = 𝑒𝑖 + 𝑓𝑖 .

As expected, we have 𝑐 = 𝑎𝑏.
This reduced pairwise protocol has a clear bandwidth advantage

if both Encpk𝑖 ( [𝑎]𝑖 ) and Encpk𝑖 ( [𝑏]𝑖 ) are already available to the
second party 𝑃 𝑗 , e.g. since they have been sent (and verified) in
another subprotocol. For example, this is the case when 𝑎 = 𝑏 and
can be used to compute a sharing of 𝑎2 (cf. ΠSpecial in Protocol 11).

If one encryption is not yet available and has to be provided
additionally by party 𝑃𝑖 , the situation is far less clear and often
the standard Protocol 1 is still the best choice, since to send a new
ciphertext alsomeans to invoke a usually expensive zero-knowledge
proof to realize FZKP. We will discuss this issue in more detail once
our new protocol ΠTriple has been established (cf. Remark 4).

5.3 Triple Production without Sacrificing
Our new offline protocol is presented as ΠTriple in Protocol 5. In
contrast to ΠLowGear we construct the MAC share of 𝑐 = 𝑎𝑏 not
from 𝑐 itself but we use 𝑎 and 𝛼𝑏, i.e. 𝛼𝑐 = 𝑎(𝛼𝑏). By this changed

Πred-pair

𝑃𝑖 has input [𝑎]𝑖 ∈ 𝐴^𝑝 , [𝑏]𝑖 ∈ 𝐴_𝑝 , 𝑃 𝑗 has input [𝑎] 𝑗 ∈ 𝐴^𝑝 , [𝑏] 𝑗 ∈
𝐴_𝑝 .
1. 𝑃𝑖 sends Encpk𝑖 ( [𝑎]𝑖 ), Encpk𝑖 ( [𝑏]𝑖 ) to 𝑃 𝑗 using FZKP.
2. 𝑃 𝑗 samples 𝑟𝑖 𝑗 ∈ 𝐴𝑝 and invokes Πreduced with input
(Encpk𝑖 ( [𝑎]𝑖 ), Encpk𝑖 ( [𝑏]𝑖 ), [𝑎] 𝑗 , [𝑏] 𝑗 , 𝑟𝑖 𝑗 ). 𝑃𝑖 receives 𝑑𝑖 𝑗 .

Protocol 4: Reduced pairwise protocol.

ΠTriple
Generate. 𝑃𝑖 has input [𝜶 ]𝑖 , Encpk′𝑗 ( [𝜶 ] 𝑗 ) for all 1 ≤ 𝑗 ≤ 𝑛.

1. 𝑃𝑖 samples [𝑎]𝑖 ∈ 𝐴^𝑝 , [𝑏]𝑖 ∈ 𝐴_𝑝 .
2. Each (ordered) pair (𝑃𝑖 , 𝑃 𝑗 ) invokes Πpair, Step 2, where 𝑃 𝑗

inputs (Encpk′𝑖 ( [𝜶 ]𝑖 ), [𝑏] 𝑗 ). 𝑃𝑖 receives 𝑑𝑖 𝑗 . 𝑃 𝑗 gets 𝑟𝑖 𝑗 .
3. The results are locally combined by 𝑃𝑖 to ⟦𝑏⟧𝑖 .
4. Each (ordered) pair (𝑃𝑖 , 𝑃 𝑗 ) invokes Πpair where 𝑃𝑖 has input
[𝑎]𝑖 and 𝑃 𝑗 has input [𝛼] 𝑗 , [𝑏] 𝑗 , [𝛼𝑏] 𝑗 . 𝑃𝑖 gets 𝑑𝑖 𝑗𝑘 , 𝑃 𝑗 gets
𝑟𝑖 𝑗𝑘 for 𝑘 = 1, 2, 3.

5. 𝑃𝑖 locally combines the outputs to get (⟦𝑎⟧, ⟦𝑏⟧, ⟦𝑐⟧) ∈ 𝐴^𝑝×
𝐴_𝑝 ×𝐴

`
𝑝 .

Check. Each party 𝑃𝑖 samples [𝑦0]𝑖 ∈ 𝑅. The parties invoke
F⟦·⟧ to authenticate 𝑦0 =

∑𝑛
𝑖=1 [𝑦0]𝑖 . Each party receives ⟦𝑦0⟧𝑖 .

To check the MACs of 𝑙 (components of) triple entries ⟦𝑦𝑘⟧, 1 ≤
𝑘 ≤ 𝑙 , the parties use Frandom to generate 𝑡 ∈ 𝑅𝑙 . 𝑃𝑖 opens
[𝑧]𝑖 = [𝑦0]𝑖 +

∑𝑙
𝑘=1 𝑡𝑘 [𝑦𝑘 ]𝑖 . The parties run F⟦·⟧.Check with

input 𝑧 =
∑𝑛
𝑖=1 [𝑧]𝑖 . If the check fails, abort.

Triple. The parties invoke Generate and receive 𝑠 triples
(⟦𝑎⟧, ⟦𝑏⟧, ⟦𝑐⟧) ∈ 𝐴^𝑝 × 𝐴_𝑝 × 𝐴

`
𝑝 . The parties invoke Check

on these triples. They store the 𝑠 authenticated triples if the
check succeeds.

Protocol 5: New LowGear-type Protocol.

authentication of the third triple entry 𝑐 , we avoid the attack which
required previous protocols to add the sacrificing technique. Ma-
licious parties can no longer enter a modified 𝑐 into the authenti-
cation step, since the authentication and multiplication are now
intertwined. In particular, each party has to commit to her share of
𝑎 and her share of 𝛼𝑏 before 𝑐 and 𝛼𝑐 are constructed—if a party
modifies his shares of 𝑎 (or 𝛼𝑏) after Encpk𝑖 ( [𝑎]𝑖 ) was sent in step
4 of ΠTriple, he also must change 𝛼𝑎 (or 𝑏) suitably.11 As long as
he does not know the MAC key he will fail to do so (with over-
whelming probability)—the MAC check then fails and the overall
protocol aborts. The MACs are checked in ΠTriple. Check in the
usual way on field values. This means Generate outputs 𝑠 triples
(⟦𝑎a⟧, ⟦𝑏a⟧, ⟦𝑐a⟧) ∈ 𝑅^ × 𝑅_ × 𝑅` for 1 ≤ a ≤ 𝑠 . Now the new
variable 𝑦𝑘 runs through all components of the ⟦𝑎a⟧, ⟦𝑏a⟧, ⟦𝑐a⟧,
e.g. ⟦𝑎a⟧ = (⟦𝑎a[⟧) for 1 ≤ [ ≤ ^ has the components [𝑎a[ ] ∈ 𝑅.
The MAC check then takes an arbitrary linear combination of the
𝑦𝑘 and adds a secret mask𝑦0 ∈ 𝑅 such that no information is leaked

11In Appendix E we shortly repeat the standard argument, why sending Encpk𝑖 ( [𝑎]𝑖 )
results in the same [𝑎]𝑖 being authenticated in step 4.
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when the linear combination 𝑧 = [𝑦0] +
∑𝑙
𝑘=1 𝑡𝑘 [𝑦𝑘 ] is opened. The

opened value 𝑧 is checked with the standard functionality F⟦·⟧ from
[31]. F⟦·⟧ (cf. Protocol 15) is the standard MPC functionality from
[31] that allows one to input values, perform local computations,
and receive (verified) outputs. F⟦·⟧ can be realized by applying the
input protocol Π⟦·⟧ from [31] suitably, e.g. component-wise for
every 𝐴𝑝 -valued component of an input. We will prove security
and privacy of ΠTriple below.

Remark 4 (Variants). In ΠTriple (cf. Protocol 5), the reduced
communication protocol Πreduced is not used. An alternative pro-
tocol is included as ΠTriple-2 (Protocol 12). Namely, the 𝑃𝑖 sends
Encpk′𝑖 ( [𝑎]𝑖 ), Encpk′𝑖 ( [𝑏]𝑖 ) and later Encpk′𝑖 ( [𝛼𝑏]𝑖 ) only for (0 <

2 offset < 𝑛) ∨ (2 offset = 𝑛 ∧ 𝑗 > 𝑖). We remark that step 1 and step
2 of ΠTriple-2 can be combined. 𝑃𝑖 can then send Encpk′ ( [𝜶 ]𝑖 [𝑏]𝑖 +∑
𝑗≠𝑖 (𝑑𝑖 𝑗2 + 𝑟 ′𝑗𝑖2 + 𝑟

′′
𝑗𝑖2)) and together with step 2b the other parties

can construct Encpk′𝑖 ( [𝛼𝑏]𝑖 ), i.e. the protocol has in fact communi-
cation complexity 3. Since the reduced return protocol is now used 2
times this reduces the communication by 1 ciphertext. However, the
additional ciphertexts to be provided by 𝑃𝑖 , add half a ciphertext (per
pair of parties) which has to be verified with a zero-knowledge proof.
Using the a zero-knowledge proof from [2, 19, 31] requires another
half ciphertext plus some plaintexts, i.e. overall ΠTriple-2 has slightly
larger bandwidth than ΠTriple. Furthermore, ΠTriple-2 needs one more
round of communication. We will therefore stick with Protocol 5 and
also run our evaluation with ΠTriple. Nevertheless, ΠTriple-2 might
be of some interest in cases where only a small number of triples is
produced. Namely, the zero-knowledge proofs usually amortize over
several ciphertexts.12 If only a small number of triples and therewith
a small number of Encpk𝑖 ( [𝑎]𝑖 ) has to be verified, one invocation
of the zero-knowledge proof is enough to prove Encpk𝑖 ( [𝑎]𝑖 ) and
Encpk𝑖 ( [𝑏]𝑖 ) simultaneously. Without additional costs for the ZKP,
ΠTriple-2 retains a slight advantage of half a ciphertext over ΠTriple
(per pair of parties).

Theoretical Performance. In Table 1 we give a short comparison
of our new protocols to Overdrive’s LowGear protocol [31]. To
simplify the comparison, we present the number of ciphertexts
sent. The number in brackets denotes the number of additional
ciphertexts sent in a TopGear-style ZKP [2]. Please note that in
this ZKP an amortized amount of two plaintexts per ciphertext
verification are sent additionally. Due to the small size of a plaintext
in 𝐴𝑝 compared to a ciphertext in 𝐴2

𝑞 (for our applications with
𝑝 ≪ 𝑞) we did not include the plaintexts in the comparison. The
same holds for plaintexts sent during the MAC checks and the
sacrificing protocol. Moreover, we remark that ciphertexts in the
different protocols can be of different modulus 𝑞 due to security
considerations. However, the difference is small, i.e. protocols that
use the reduced pairwise protocol need a one bit larger 𝑞 due to
the larger noise 𝜒 ′. Furthermore, the ciphertext modulus depends
on 𝐴^𝑝 , 𝐴_𝑝 , 𝐴

`
𝑝—more details for the special case of matrices can be

found in Section 6.
Finally, please note that in the round count in Table 1 we already

parallelized steps that do not depend on each other. E.g., Step 2 and
Step 1 of Πpair (as part of Step 4) can be run in parallel in ΠTriple,
12For our benchmarks we use (comparable to [29]) a TopGear zero-knowledge proof
with amortization over 6 ciphertexts.

Table 1: Comparison of triple production.Bandwidth in number
of ciphertexts send per ordered pair (𝑃𝑖 , 𝑃 𝑗 ), 𝑖 ≠ 𝑗 . Ciphertext sizes
may variate slightly between the different protocols (cf. Remark 5).

Approach Comm. Rounds Bandwidth
ΠTriple (Protocol 5) 2 5 (+1)
ΠTriple-2 (Protocol 12) 3 4.5 (+1.5)
ΠSpecial (Protocol 11) 3 3.5 (+1)
ΠSpecial-2 (Protocol 14) 2 3.5 (+1)
ΠLowGear (Protocol 9, [31]) 3 8 (+1)

which reduces the number of communication rounds from 3 down
to 2. As a result, we see that our new protocols have the same or a
smaller round complexity and come with a significant bandwidth
reduction of around 33% compared to LowGear in the generic case
and up to 50% for special operations.
Proof of Correct Multiplication.We have to check that an adver-
sary can not tamper with the input of Step 4 of ΠTriple (cf. Protocol
5). The security of [31] then guarantees that the outputs are correct,
i.e. on input 𝑎, 𝑏′, 𝑏′′, Step 6 will output ⟦𝑎⟧, ⟦𝑏⟧, ( [𝑎𝑏′], [𝑎𝑏′′]).
More formally, we have the following security game:

Security Game. The challenger C samples 𝛼 ∈ 𝑅. The adversary
A sends 𝛿, 𝛿 ′,Δ,Δ′ to C. C checks whether 𝛼 (𝑎(𝑏 + 𝛿) + Δ) =

𝑎(𝛼𝑏+𝛿 ′)+Δ′, i.e. whether the MAC check succeeds. The adversary
wins if the check goes through and 𝑎𝛿 + Δ ≠ 0, i.e. if 𝑎𝑏 ≠ 𝑐 for
(⟦𝑎⟧, ⟦𝑏⟧, ⟦𝑐⟧) the produced shared triple. We claim that A wins
the game with probability smaller or equal 1

|𝑅 | .
Proof.We first note that the check by C is equivalent to 𝛼 (𝑎𝛿 +

Δ) = 𝑎𝛿 ′ +Δ′. Now ifA chooses 𝑎𝛿 +Δ = 0 he looses. IfA chooses
𝑎𝛿 +Δ ≠ 0 then he only wins if 𝛼 = 𝛿 ′𝑎+Δ′

𝛿𝑎+Δ . The probability for this
case is 1

|𝑅 |1 since A has no information on the uniformly sampled
MAC key 𝛼 . Thus, the probability that the adversary wins the game
is bounded by 1

|𝑅 | . □

Please note that the argument directly extends (as in [19, 30]) to
the linear combination used in Check of ΠTriple.

Remark 5 (Ciphertext Noise Size). For privacy we require that
𝜒 and 𝜒 ′ in ΠTriple and ΠSpecial (or subprotocols thereof) are chosen
such that Enc𝜒pk𝑖 (𝑟 ) and Encpk𝑖 ( [𝑎]𝑖 ) [𝑏] 𝑗 − Enc

𝜒

pk𝑖
(𝑟𝑖 𝑗 ) are statisti-

cally indistinguishable (w.r.t. the security parameter sec) for every
valid output Enc𝜒pk𝑖 ( [𝑎]𝑖 ) of F𝑍𝐾𝑃 and any [𝑏] 𝑗 ∈ 𝐴_𝑝 and 𝑟, 𝑟𝑖 𝑗 sam-

pled uniformly from 𝐴
`
𝑝 . If slack is the slack of the zero-knowledge

proof, we get ∥ [𝑎]𝑖 ∥∞ ≤ 𝑝
2 slack where ∥ · ∥∞ denotes the largest

absolute value among all polynomial coefficients in any entry of
𝑎 ∈ 𝐴𝑞 .13 In particular, in the case 𝑅 = F𝑝𝑑 the indistinguishability is
guaranteed if we choose the encryption noise 𝜒 in Enc𝜒pk𝑖 by a factor
2sec𝑝 slack larger than the encryption noise in Encpk𝑖 . Furthermore,
𝜒 ′ must be twice the size of 𝜒 in the reduced protocol Πred-pair to com-
pensate the additional sum Enc( [𝑎]𝑖 ) [𝑏] 𝑗 + [𝑎] 𝑗 Enc( [𝑏]𝑖 ). From
now on, we will only use 𝜒, 𝜒 ′ which guarantee security as described

13More details on the norm are included e.g. in [19]. Here, (𝑎𝑙 )1≤𝑙≤^ ∈ 𝐴^
𝑞 and

∥𝑎∥∞ = max1≤𝑙≤^ ∥𝑎𝑙 ∥∞ where 𝑎𝑙 is identified with
∑𝑁 −1

𝑗=0 𝑎𝑙 𝑗𝑋
𝑗 ∈ F𝑞 [𝑋 ]/(Φ𝑚 )

and ∥𝑎𝑙 ∥∞ = max0≤ 𝑗<𝑁 |𝑎𝑙 𝑗 | .
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above. Section 6 will present the concrete values necessary for matrix
rings over 𝐴𝑝 .

Theorem 5.1. ΠTriple implements FTriple in the (F⟦·⟧, Frand)-
hybrid model with at least one honest party.

Proof. We use the simulator STriple from Protocol 13, which re-
places all inputs by honest parties with the value 0 and then runs the
Generate and Check part of ΠTriple honestly. Since by assumption
Encpk𝑖 ( [𝑎]𝑖 ) [𝑏 𝑗 ] − Enc𝜒pk𝑖 (𝑟𝑖 𝑗 ) ≈ −Enc

𝜒

pk𝑖
(𝑟 ′
𝑖 𝑗
) for 𝑟𝑖 𝑗 , 𝑟 ′𝑖 𝑗 ← 𝐴

`
𝑝

uniformely, the adversary cannot distinguish the real and ideal
world instances of Πreturn. Note that by FZKP, he still needs to
provide an encryption Encpk𝑖 ( [𝑎]𝑖 ) for a sufficiently small input
[𝑎]𝑖 ∈ 𝐴𝑞 , i.e., ∥ [𝑎]𝑖 ∥∞ ≤ 𝑝

2 · slack, such that the indistinguishabil-
ity is guaranteed. Furthermore, the adversary cannot distinguish
Encpk𝑖 ( [𝑎]𝑖 ) for a share [𝑎]𝑖 in the real world from Encpk𝑖 (0) by
the CPA-security of the encryption scheme. Moreover, observe that
[𝑧]𝑖 is distributed randomly, since 𝑦0 is random.

Now the adversary is commited to (the sum of) his shares by
the MAC check and the simulator can retrieve the (sum of the)
inputs by the rewinding step. Hence, S can adapt the dummy
shares ( [𝑎]𝑖 , [𝛼𝑎]𝑖 , [𝑏]𝑖 , [𝛼𝑏]𝑖 , [𝑐]𝑖 , [𝛼𝑐]𝑖 ) of honest parties 𝑖 ∈ 𝐻
used in Generate to correct shares for the random outputs 𝑎, 𝑏, 𝑐
from FTriple. More precisely, for 𝑎 =

∑𝑛
𝑖=1 [𝑎]𝑖 , 𝑏 =

∑𝑛
𝑖=1 [𝑏]𝑖 , 𝑐 =∑𝑛

𝑖=1 [𝑐]𝑖 , the output ofGenerate and 𝑖0 ∈ 𝐻 set ⟦𝑎⟧𝑖 = ⟦𝑎⟧𝑖 , ⟦𝑏⟧𝑖 =
⟦𝑏⟧𝑖 , ⟦𝑐⟧𝑖 = ⟦𝑐⟧𝑖 for all 𝑖 ≠ 𝑖0 and [𝑎]𝑖0 = [𝑎]0 + 𝑎 − 𝑎, [𝑏]𝑖0 =

[𝑏]0 +𝑏 −𝑏, [𝑐]𝑖0 = [𝑐]0 + 𝑐 − 𝑐 . Since S has access to the MAC key
𝛼 , S futher sets [𝛼𝑎]𝑖0 = [𝛼𝑎]0 + 𝛼 (𝑎 − 𝑎), [𝛼𝑏]𝑖0 = [𝛼𝑏]0 + 𝛼 (𝑏 −
𝑏), [𝛼𝑐]𝑖0 = [𝛼𝑐]0 + 𝛼 (𝑐 − 𝑐). □

Remark 6. Please also note that we do not prove security of the
subroutines Πpair or Πreturn but of the complete protocol ΠTriple. In
particular, ΠTriple is not the composition of these subroutines in the
UC sense. However, the whole protocol ΠTriple has been proven secure
above and can be composed with other UC secure protocols, e.g. the
secure online protocol from [19], within our limited UC framework.

Modifications for Special Tuples. For the production of special
tuples, one can further optimize ΠTriple. As before in Section 4
we assume that Encpk𝑖 is 𝑅-linear and 𝜙 : 𝑀 → 𝑀′ is a 𝑅-linear
map, i.e. can be represented as 𝜙 (∑𝑘𝑖=1 𝑟𝑖𝑚𝑖 ) = ∑𝑘

𝑖=1 𝑟𝑖
∑𝑙
𝑗=1 𝜙𝑖 𝑗𝑚 𝑗

for some 𝜙𝑖 𝑗 ∈ 𝑅 and a basis 𝑚𝑖 of the finite-dimensional free
𝑅-module 𝑀 . Again we get an induced 𝑅-linear map 𝐴^𝑝 → 𝐴_𝑝
which we denote in slight abuse of notation also by 𝜙 . Then a
party 𝑃 𝑗 that is in possession of Encpk𝑖 ( [𝑎]𝑖 ) can locally compute
𝜙 (Encpk𝑖 ( [𝑎]𝑖 )) = Encpk𝑖 (𝜙 ( [𝑎]𝑖 )). Thus, the parties can use the
reduced protocol Πred-pair to compute [𝑎𝜙 (𝑎)]. The detailed proto-
col ΠSpecial is included as Protocol 11—please note that Steps 3 and
4 can be run in parallel to reduce the number of communication
rounds. The theoretical advantage for the generation of special
pairs can be found in Table 1. The security of ΠSpecial can be proven
analogously to the proof of Theorem 5.1. Please also note that, sim-
ilar to Remark 4, other combinations of the subprotocols might be
considered. One example is given as ΠSpecial-2 in Protocol 14, with
its theoretical performance given in Table 1.

6 MATRIX TRIPLES
Besides improving the performance of Overdrive itself, another
focus of this paper is to optimize MPC protocols for bilinear op-
erations on higher-dimensional 𝑅-modules (which are in our case
usually vector spaces over finite fields) and not only for field ele-
ments. We concentrate onmatrix triples but note that similar results
will also hold more general, e.g. for tensor convolutions.

Let 𝑀 = 𝑅𝑢×𝑣, 𝑀′ = 𝑅𝑣×𝑤 and 𝑀′′ = 𝑅𝑢×𝑤 where the bi-
linear map 𝑀 × 𝑀′ → 𝑀′′ is the usual matrix multiplication.
Over the plaintext space we get the induced matrix multiplication
𝐴𝑢×𝑣𝑝 × 𝐴𝑣×𝑤𝑝 → 𝐴𝑢×𝑤𝑝 , i.e. in the general notation from Section
5 ^ = 𝑢 × 𝑣, _ = 𝑣 ×𝑤, ` = 𝑢 ×𝑤 . Recall that the security of our
protocol relies on the indistinguishability of ciphertexts Enc𝜒pk𝑖 (𝑟 )
and Encpk𝑖 ( [𝑎]𝑖 ) [𝑏] 𝑗 −Enc

𝜒

pk𝑖
(𝑟𝑖 𝑗 ) where 𝑟, 𝑟𝑖 𝑗 ← 𝐴𝑢×𝑤𝑝 . Since the

matrix multiplication [𝑎]𝑖 [𝑏] 𝑗 is defined by a sum over 𝑣 products
of field elements, we choose 𝜒 𝑣-times larger than in the field case.

In more detail: Let 𝑎 = (𝑎a[ )a[ ∈ 𝐴𝑢×𝑣𝑝 and 𝑏 = (𝑏[𝜋 )[𝜋 ∈
𝐴𝑣×𝑤𝑝 . FZKP guarantees that ∥𝑎a[ ∥∞ ≤ 𝑝

2 slack. Hence,

∥∑𝑣
a=1 𝑎a[𝑏[𝜋 ∥∞ ≤ 𝑣

𝑝2

4 slack. In particular, these terms can be
up to a factor 𝑣 larger than simple multiplication in 𝐴𝑝 . Thus, we
also have to increase the encryption noise suitably. We choose 𝜒
2sec𝑝 slack ·𝑣 times larger than normal encryption noise in Enc and
therewith a factor 𝑣 larger than necessary for simple field multi-
plications (cf. [31]). 𝜒 ′ must be adapted accordingly, i.e. a factor 2
larger than 𝜒 . Please note that the size of 𝜒 and 𝜒 ′, respectively,
does affect the ciphertext modulus 𝑞. However, the ciphertext mod-
ulus increases only by 𝑣 compared to field multiplication, e.g for
usual matrix sizes like 𝑣 = 1024 one needs a log2 (𝑣) = 10 bit longer
ciphertext modulus. In particular, if we apply our protocol to matri-
ces, our ciphertexts are slightly larger than those used in [31]. The
effect on the bandwidth comparison (cf. Table 1) is minor.

For special matrix operations like matrix squares 𝜙 = id𝑀
(𝑢 = 𝑣 = 𝑤) ΠSpecial (or variations therof like ΠSpecial-2) should be
used depending on the setup, i.e. for a strict bandwidth restriction
one uses the bandwidth optimized protocol ΠSpecial, for setup with
high network delays one decreases the number of communication
rounds withΠSpecial-2. In some setups the properties of𝜙 and 𝑥𝜙 (𝑥),
respectively, allow further optimizations. E.g. for matrices of scalar
products, i.e. the case 𝜙 (𝑥) = 𝑥T (𝑢 = 𝑤 ), 𝑥𝜙 (𝑥) is a symmetric
𝑢 ×𝑢 matrix. Hence, it is enough to return the 𝑢 (𝑢+1)2 entries above
and on the diagonal to compute the upper part of 𝑎𝜙 (𝑎). Then each
party can locally recover the remaining 𝑢 (𝑢−1)

2 entries below the
diagonal. Hence, the bandwidth can be reduced in Steps 3 and 5 of
ΠSpecial and similiarly in ΠSpecial-2. Compared to classical matrix
triples where we need a bandwidth of 3𝑢𝑣 + 𝑣𝑤 + 2𝑢𝑤 = 4𝑢𝑣 + 2𝑢2
modulus 𝑞 ciphertexts, with specialized pairs for 𝜙 (𝑥) = 𝑥T one
only needs ≈ 3𝑢𝑣 + 0.75𝑢𝑤 = 3𝑢𝑣 + 0.75𝑢2 ciphertexts per pair of
parties—the later ciphertexts are one bit longer.

Packing methods. As already recognized in previous work in [37]
and [11] our paper shows again that matrix triples have a clear band-
width advantage compared to the generic Beaver triples approach,
where for each of the 𝑢𝑣𝑤 products that occur in a 𝑢 × 𝑣 times
𝑢 ×𝑤 matrix multiplication one Beaver triple has to be created and
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later consumed in the online phase. Furthermore, the lattice based
BGV ciphertexts allow for producing a larger number of (matrix)
triples, namely 𝑠 = 𝑁 /𝑑 in one round of our protocol. While this is
an advantage for many real world use cases, for some applications
only a small number of matrix triples is needed. Additionally, the
production of a larger number of matrix triples can lead to memory
issues on small machines. While this problem exists for all kinds
of triples and in particular for Beaver triples produced in [31], for
large dimensional matrices it is more pressing. We therefore use
the well-known packing method from [25] to pack one dimension
of the matrix into the slots of the ciphertext, i.e. we only produce
𝑠/𝑢 matrix triples at once. For details and alternatives see App. C.

We remark that the packing becomes particularly efficient for the
production of matrix triples with ΠTriple since matrix multiplication
can then be soley based on plaintext manipulations of the [𝑏]𝑖 . For
special matrix pairs in order to use the reduced pairwise protocols
the parties must also be able to manipulate ciphertexts which is
slightly less efficient and requires some additional key switching
material. Again, details can be found in Appendix C.

Finally, note that since ciphertexts are usually verified by the
ZKPs in batches, we also pack the second matrix dimension into
these batches. E.g. if the ZKP amortizes as in [31] over 40 ciphertexts
(for sec = 40) and the parties want to compute 10×10matrix triples
they should run 4 instances of ΠTriple in parallel and use only one
invocation of the ZKP to verify all 40 ciphertexts Enc( [𝑎]𝑖 ). The
effect of this packing is less significant for larger matrix dimensions
or smaller ZKP amortization.

Table 2: ResNet-50.We compare the effect of matrix triples and
ReLUs on the 2-party evaluation of ResNet-50 based on benchmarks.

Protocol Matrix Mult. ReLUs Overall
[11] 51GB 1007GB 1058GB
Ours 31 GB 413GB 444 GB

7 IMPLEMENTATION AND EVALUATION
To illustrate the practicality of our approach, we have implemented
our protocols in the MP-SPDZ framework [29] and run several
benchmarks. This includes implementations of ΠTriple for matrices
of arbitrary size and field elements, ΠSpecial for matrix squares and
Gram matrices—both of arbitrary size, as well as the new online
protocols for special matrix tuples. As a result, we have fully usable
implementations of MPC protocols for the online phase, the offline
phase, and the full protocol (online and offline phase combined).

Please note that the total runtime is dominated by the triple/pair
generation and hence benchmarks of the full protocol are only
slightly larger than the actual offline runtime. Therefore, we only
benchmark the online phase and the full protocol (with the excep-
tion of offline-only benchmarks for the throughput in Table 8). Our
implementation is available at [33].

We compare our results to the MP-SPDZ implementations of
Overdrive LowGear, as well as the implementation of [11]. As far as
we can see, the currently available implementation of [11] does not
include an implementation to benchmark all parts of their protocol—
only the homomorphic multiplication of (encrypted) matrices can

Table 3: Benchmarks for secure matrix multiplication of
square matrices. Timings for LowGear [31] and [11] are taken
from [11]. All experiments are for 𝑛 = 2 parties. Our experiments
emulate the network settings of the experiments in [11]: LAN set-
ting with 10ms network delay and 5Gbit s−1 network bandwidth,
and WAN setting with 35ms delay and 320Mbit s−1 bandwidth.

Network Matrix Dims. LowGear [11] Ours
128 × 128 128 s 36.1 s 8.54 s
256 × 256 900 s 214.5 s 64.1 s

LAN 384 × 384 46.8min 653.6 s 216.3 s
512 × 512 105min 24.5min 500.0 s
1024 × 1024 735min 173min 67.1 min
128 × 128 24.6min 38.15 s 9.13 s
256 × 256 172.8min 222.6 s 67.3 s

WAN 384 × 384 540min 672 s 221.1 s
512 × 512 20.2 h 25min 509.5 s
1024 × 1024 141.1 h 175.1min 67.4 min

be benchmarked. Therefore, we compare our implementation only
to the numbers given in [11].

Setup. In all our benchmarks we use a prime 𝑝 of size 128 bits,
𝑁 = 8132 and 𝑝 = 1mod 2𝑁 , i.e. Φ𝑚 decomposes mod 𝑝 into
linear factors. We can in particular process 𝑁 = 8192 F𝑝 -elements
with one plaintext or ciphertext, respectively. Furthermore, we
use TopGear [2] zero-knowledge proof with 𝑉 = 12 and 𝑈 = 6
to get soundness security of more than 128 bits. Overall we have
computational security of at least 128 bits. As default in [29] we use
statistical security parameter 40. We choose a ciphertext modulus of
383 bits to guarantee the computational security as well as correct
decryption in all our protocols. We run [29] with the same setup
(which is the default for its LowGear implementation). Note that
[11] uses a slightly larger 𝑉 = 16 given their larger cyclotomic
polynomial with 𝑁 = 32768.

We ran the benchmarks on two different computers: PC 1 (AMD
EPYC 7443, 512GB RAM) for Tables 3, 4, 5, 6, 7 and PC 2 (Intel i7-
10700K, 80GB RAM) for Tables 8, 9, 10. For better comparability we
ran all our benchmarks on a single core. Please note however, that
our triple production can be parallelized completely, i.e. we expect
that the throughput increases linearly in the number of threads
used. To simulate realistic MPC settings, we ran all our benchmarks
for no delay and no imposed bandwidth restriction (on a single
machine), with a network delay of 10ms/bandwidth restriction
5Gbit/s (LAN setup) and with a network delay of 35ms/bandwidth
rate restriction 320Mbit/s.

Remark 7. All benchmarks in this section are in a 2-party setup
to stay comparable with the reference literature. For [11] only bench-
mark for the 2-party setup are available. Our comparison against
Overdrive [31] presented here in the 2-party case directly transfers to
more than two parties since both protocols are based on a pairwise
subprotocol and scale linearly in the number of pairs. We remark that
our implementation can be run (just as the LowGear implementation
in MP-SPDZ) with an arbitrary number of parties.
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Comparison for Matrix Triples. [11] sends around 15.41MB per
party for the generation of one (𝑢, 𝑣,𝑤) = (128, 128, 128) matrix
triple. This number is slightly higher than originally claimed by the
authors, since in their theoretical analysis (Equation (10) of [11])
two ciphertexts are missing (2 ciphertexts equivalent to 4𝐴𝑞 ele-
ments in step 2 of the matrix production in Fig. 1 and 4𝐴𝑞-elements
from the distributed decryption lead to 8𝐴𝑞-elements instead of 6.)
At the same time, our bandwidth amounts to around 9.44MB per
(128, 128, 128) matrix triple per party in a 2-party setup. Hence in
the 2-party setup our protocol has around 39 % less bandwidth. As
can be seen from our benchmarks in Table 3 we even have a larger
runtime advantage against [11], i.e. in average by around 62 %. As
mentioned before, there is currently no data available for more than
two parties for [11]. We expect however, that as usual for pairwise
protocols, the levelled homomorphic approach [11], which is linear
in the number of parties 𝑛, will outperform our protocol for large 𝑛.

To stay comparable to [11] we shortly discuss the effect of our
new protocols on an private interference of ResNet-50 [26]. As in
[11] we rewrite the convolutions as matrix multiplications—we
provide more details in Appendix D. As a result one gets 3298
multiplications of 128× 128matrices. Additionally, we compare the
effect of our protocol on the 9,608,704 ReLUs of ResNet-50. Each
ReLU requires 122 Beaver triples and some shared bits that have
a minor impact on the bandwidth. We remark that ReLU layers
(just like other types of layers, e.g. batch normalization, pooling
layers) are implemented in [29]. Since for [11] only data on the
convolutions and the ReLUs is available, we also restrict to these two
layers for this paragraph. In the next paragraph, we then provide
benchmark for small ML algorithms which consist of different type
layers (including convolutions, dense layers and ReLUs). The result
of the comparison with [11] on ResNet-50 can be seen in Table 2.
We assumed 6.874 64 kbit per Beaver triple (cf. Table 8).

Special Matrix Pairs. The Tables 5 and 7 compare the runtime and
bandwidth costs for an online matrix multiplication with classical
LowGear, our matrix triples based online phase and for the reduced
online phase with special pairs. The Tables 4 and 6 contain the cor-
responding complete protocol including the triple/pair production.
For the special pair benchmarks we used our implementation of
transpose pairs for multiplications 𝐴𝐴T, which performs better in
the offline phase due to specific further optimizations. For com-
pleteness, we also added the bandwidth benchmarks for squares
in the offline phase to show that matrix transpose pairs have the
expected advantage of around 16 % (cf. Section 6).

We see that although special matrix pairs have a clear band-
width advantage the effect of the reduced bandwidth on the overall
runtime is covered for small matrix dimensions by the network
delay in a realistic LAN or WAN setup. Due to the higher number
of communication rounds in ΠSpecial compared to ΠTriple, special
matrix pairs might be slightly slower. However, depending on the
setup, a minimally slower runtime can be acceptable given the large
bandwidth advantage, e.g. if higher bandwidth comes with higher
costs in cloud computing.

Comparison to Generic LowGear. We also compared our pro-
tocol to generic Overdrive in Table 8. The comparison confirms
the theoretical advantage of our protocols for generic field opera-
tions. Please note that the throughput is lower than in the original

Table 4: Benchmarks for secure special matrix operations of
square matrices. We use the same network settings as in Table 3.
The “local” setting corresponds to running the code of the parties
on the same machine without any network delay or bandwidth
restrictions. Timings are amortized over 8192 tuples. For LowGear,
we ran normal matrix multiplication as no special matrix operations
are available in SPDZ.

Net- Matrix Ours Ours
work Dims. LowGear (Mult.) (Special)

Local

2 × 2 1.12ms 249.36 µs 152.04 µs
4 × 4 6.57ms 820.06 µs 550.15 µs
8 × 8 47.90ms 4.14 ms 2.65 ms
16 × 16 375.76ms 22.96 ms 15.11 ms
32 × 32 2.98 s 151.77 ms 98.13 ms
64 × 64 23.68 s 1.08 s 693.15 ms

LAN

2 × 2 22.38ms 20.60 ms 20.49ms
4 × 4 33.49ms 21.25 ms 20.92 ms
8 × 8 123.62ms 24.83 ms 23.11ms
16 × 16 825.47ms 45.05 ms 36.38 ms
32 × 32 6.19 s 180.26 ms 124.93 ms
64 × 64 49.07 s 1.12 s 724.89 ms

WAN

2 × 2 75.90ms 70.91 ms 70.73 ms
4 × 4 104.37ms 72.04 ms 71.41 ms
8 × 8 323.95ms 77.72 ms 74.57 ms
16 × 16 2.01 s 104.89 ms 91.61 ms
32 × 32 15.33 s 267.52 ms 193.45 ms
64 × 64 121.72 s 1.34 s 864.30 ms

[31] paper since we only use a single core instead of 8 threads in
[31]. As mentioned before the triple generation can be completely
parallelized such that with 8 threads our protocol will produce
approximately 8 times as many triples per second.
Machine Learning. Finally we provide benchmarks for ML ap-
plication. We therefore use 4 benchmark programs available in
MP-SPDZ. These programs combine different ML layers to reflect
different architecture common in dense and convolutional network:
- Benchmark Net A contains the following layers in this order:
Dense, Square, Dense, Square, Dense, Argmax.

- Benchmark Net B contains the following layers in this order: 2𝑑
Convolution, MaxPool, ReLU, 2𝑑 Convolution, MaxPool, ReLU,
Dense, ReLU, Dense, Argmax.

- Benchmark Net C has layers as B but with different dimensions.
- Benchmark Net D contains the following layers in this order: 2𝑑
Convolution, ReLU, Dense, ReLU, Dense, Argmax.

For further specifics on the layers, e.g. number of inputs, we refer
to the corresponding programs available in our implementation.
The results of our evaluation for our protocol as well as Overdrive
LowGear are included in Table 10 for the online phase and Table 9
for the overall protocol. Recall that we realize the convolution layers
by matrix multiplications as [11] (cf. Appendix D). Furthermore, the
matrix operations in the dense layers use matrix triples. If Beaver
triples are used, e.g. in ReLU Layers, we use ΠTriple for field values.
In the online phase we have an average advantage in runtime of
28 %, in the offline phase we are in average approximately a factor
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Table 5: Benchmarks for secure special matrix operations of
square matrices in the online phase. We use the same network
settings as in Table 4. Timings are amortized over 100 multipli-
cations. For LowGear, we ran normal matrix multiplication as no
special matrix operations are available in SPDZ.

Net- Matrix Ours Ours
work Dims. LowGear (Mult.) (Special)

Local

2 × 2 26.24 µs 19.68 µs 16.53 µs
4 × 4 52.36 µs 23.58 µs 24.18 µs
8 × 8 288.21 µs 62.86 µs 53.92 µs
16 × 16 2.07ms 318.36 µs 284.71 µs
32 × 32 16.14ms 2.20ms 2.04ms
64 × 64 127.96ms 16.37ms 15.43ms

LAN

2 × 2 20.60ms 20.59ms 20.58ms
4 × 4 20.63ms 20.58ms 20.61ms
8 × 8 20.93ms 20.64ms 20.64ms
16 × 16 24.82ms 20.95ms 20.96ms
32 × 32 45.69ms 23.40ms 23.12ms
64 × 64 265.53ms 39.41ms 38.04ms

WAN

2 × 2 71.83ms 71.87ms 71.95ms
4 × 4 71.96ms 71.85ms 71.85ms
8 × 8 73.02ms 71.98ms 71.91ms
16 × 16 85.16ms 72.64ms 72.41ms
32 × 32 158.84ms 76.30ms 75.26ms
64 × 64 842.21ms 102.36ms 96.06ms

Table 6: Bandwidth measurements for secure special matrix
operations of square matrices. The measurements were taken
in the experiments for Table 4, i.e. in the same setting. Bandwidth
is given as average per party.

Matrix Ours Ours Ours
Dims. LowGear (Mult.) (Transp.) (Square)
2 × 2 14.66 kB 3.59 kB 2.03 kB 2.18 kB
4 × 4 88.47 kB 11.27 kB 6.69 kB 7.55 kB
8 × 8 650.11 kB 45.06 kB 25.03 kB 29.06 kB
16 × 16 5.09MB 161.82 kB 97.81 kB 115.09 kB
32 × 32 40.45MB 647.28 kB 387.78 kB 459.21 kB
64 × 64 323.17MB 2.52 MB 1.55 MB 1.84 MB

of 3.80 faster. On average, the bandwidth in our protocol is reduced
by a factor of 2.35 in the online phase and 2.95 in the offline phase.

In summary, we have seen that the newly presented protocols
and our implementation improve significantly in runtime and band-
width over Overdrive LowGear, which is the most efficient MPC
protocols for generic field operations for a low number parties, as
well as [11], the best known protocol for matrix triple generation.
Our sample ML inference benchmarks further show the application
potential of our protocols.
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Table 7: Bandwidth measurements for secure special matrix
operations of square matrices in the online phase. The mea-
surements were taken in the experiments for Table 5, i.e. in the
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Matrix Ours Ours
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Table 8: Bandwidth per triple and throughput

Protocol sec = 40 sec = 64 sec = 128

LowGear 10 283 triple/s 8454 triple/s 6840 triple/s
14.133 kbit/triple 15.950 kbit/triple 17.767 kbit/triple

Ours 25778 triple/s 21382 triple/s 17012 triple/s
6.875 kbit/triple 7.783 kbit/triple 8.691 kbit/triple

Table 9: Benchmarks for secure ML inference.We use the same
network settings as in Table 3. ML model names (A–D) designate
the neural networks in [32, 44] (with the implementation included
in [29]).

Protocol Model Local LAN WAN

LowGear

A 15.65 s 36.76 s 99.25 s
B 252.31 s 10.06min 28.50min
C 7.88min 20.01min 49.01min
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Ours

A 5.17 s 9.69 s 22.53 s
B 95.18 s 184.45 s 7.56min
C 156.24 s 292.46 s 11.59min
D 12.43 s 24.75 s 56.21 s

Protocol A B C D
LowGear 439.90MB 7.09GB 13.68GB 920.01MB
Ours 141.47MB 2.72GB 4.27GB 361.62MB
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A THE BGV ENCRYPTION SCHEME
In the offline phase we use the [9] cryptosystem (Encpk,Decsk).14
Wewill stick closely to its use in [19], [18] or [31] in order to be able
to compare our approach for the construction of matrix triples with
the state of the art protocols. We will describe the cryptosystem
on some base ring 𝐴𝑝—the extension to 𝐴𝑝 -modules 𝐴𝑘𝑝 is as usual
entrywise.

We choose a message space 𝐴𝑝 B F𝑝 [𝑋 ]/(Φ𝑚 mod𝑝) for a𝑚-
th cyclotomic polynomial Φ𝑚 ∈ Z[𝑋 ] of degree 𝑁 = 𝜑 (𝑚) and
𝑝 a prime. Note that 𝐴𝑝 ≃

>𝑠
𝑗=1 F𝑝𝑑 for 𝑝 of order 𝑑 modulo 𝑚

and 𝑠 = 𝑁 /𝑑 . Please recall that Φ𝑚 decomposes into 𝑠 degree 𝑑
(pairwise prime) irreducible polynomials over F𝑝 then. Let 𝑝 ∤ 𝑞
and embed 𝐴𝑝 into 𝐴𝑞 = (Z/𝑞Z) [𝑋 ]/Φ𝑚 in the usual way, i.e.
identify 𝑓 =

∑𝑁
𝑗=0 𝑓𝑗𝑋

𝑗 ∈ 𝐴𝑝 with
∑𝑁
𝑗=0 𝑔 𝑗𝑋

𝑗 and 𝑔 𝑗 = 𝑓𝑗 mod𝑝
if 𝑓𝑗 ≤ 𝑝/2 and 𝑔 𝑗 = 𝑓𝑗 mod 𝑝 − 𝑝 for 𝑓𝑗 > 𝑝/2 where 𝑓𝑗 mod𝑝
denotes the representative of 𝑓𝑗 ∈ F𝑝 in {0, . . . , 𝑝 − 1} under the
natural quotient map Z→ F𝑝 ≃ Z/𝑝Z. Furthermore note that Z𝑞
naturally embeds (as a set) in Z and Q and that Q[𝑋 ]/Φ𝑚 embeds
under the canonical embedding into C𝑁 .

We consider the following distributions on 𝐿 = 𝐴𝑝 or 𝐿 = 𝐴𝑞 :
- U(𝐿) is the uniform distribution on𝑀 .
- D𝜎 (𝐿) the discrete Gaussian distribution of variance 𝜎2 on 𝐿.
- ZO1/2 = (U({−1, 0}) ∗ U({0, 1}))𝑁 .15

- HWTℎ = U({𝑥 ∈ {0,±1}𝑁 |∑𝑁𝑗=1 |𝑥 𝑗 | ≥ ℎ}).16
Key Generation. Take sk←HWTℎ, 𝑎 ← 𝐴𝑞, 𝑒 ← 𝐷𝜎 (𝐴𝑞). Set
𝑏 ← sk𝑎 + 𝑝𝑒 and pk← (𝑎, 𝑏).
Encryption. Let𝑚 ∈ 𝐴𝑝 be a message. Sample 𝑣 ←ZO1/2, 𝑒0 →
𝜒, 𝑒1 ← 𝐷𝜎 (𝐴𝑞) and set Encpk (𝑚) = (𝑐0, 𝑐1) with 𝑐0 = 𝑏𝑣 + 𝑝𝑒0 +
𝑚 ∈ 𝐴𝑞 and 𝑐1 = 𝑎𝑣 + 𝑝𝑒1 ∈ 𝐴𝑞 .
Decryption. Decrypt (𝑐0, 𝑐1) ∈ 𝐴2

𝑞 using sk by (𝑐0 − sk 𝑐1mod𝑞)
mod 𝑝 . Correct decryption is guaranteed for 𝑝𝑒0 +𝑚 − sk𝑝𝑒1 < 𝑞.

Classically 𝜒 = 𝐷𝜎 (𝐴𝑞). For larger encryption noise adapt 𝜎 ac-
cordingly, i.e. for log2 𝑣 = 10 times larger encryption noise, sample
from 𝜒 = 𝐷10𝜎 (𝐴𝑞). For other parameter choice, e.g. 𝜎, 𝑝, sec we
use the same values as in [31]. If 𝑞 is the ciphertext modulus in [31]
then 𝑞′ = 𝑞 + log2 (𝑣) + 1 is the ciphertext modulus needed for 𝑣 × 𝑣
matrix multiplications (cf. Section 5 for the theoretical discussion).

B CLASSICAL SACRIFICING AND MAC
CHECK

We present the optimized sacrificing technique ΠSac used in [31]
(cf. Protocol 6). We also include the classical MacCheck ΠMC from
[18] in Protocol 7.

C PACKING METHODS FOR MATRICES
In this appendix we first repeat the diagonal packing method for
matrices presented in [34] and [25].

Let 𝑠 = 𝑁 /𝑑 be the number of plaintext slots and 𝑟 = ⌊𝑠/𝑢⌋.
For 0 ≤ 𝑡 < 𝑟 let 𝐴𝑟 = (𝑎𝑡,𝑖 𝑗 ) ∈ 𝑅𝑢×𝑣, 𝐵𝑟 = (𝑏𝑡, 𝑗𝑘 ) ∈ 𝑅𝑣×𝑤 ,𝐶𝑡 =

14For a precise overview of the algebraic and number theoretic background you may
consult [35].
15𝑥 = (𝑥𝑖 )𝑖 ∈ {−1, 0, 1}𝑁 and 𝑥𝑖 = 𝑥𝑖− + 𝑥𝑖+ with 𝑥𝑖± uniformly from {±1, 0}.
16[23] uses ℎ = 64, Overdrive [31] adds sec for enhanced CPA-security, i.e. chooses
ℎ′ = ℎ+sec. We will stick with the Overdrive convention. sec is the security parameter,
e.g. sec = 40 or sec = 128.

ΠSac
𝑃𝑖 has input [𝑎]𝑖 ∈ 𝐴^𝑝 , [𝑏1]𝑖 , [𝑏2]𝑖 ∈ 𝐴_𝑝 , [𝑐1]𝑖 , [𝑐2]𝑖 ∈ 𝐴

`
𝑝 .

1. Call Frandom to generate 𝑟 ∈ 𝑅.
2. Call F⟦·⟧ . LinearCombination. Each party 𝑃𝑖 receives to
⟦𝜌⟧𝑖 ← 𝑟⟦𝑏1⟧ − ⟦𝑏2⟧. Open 𝜌 with F⟦·⟧ .Open

3. Open 𝜏 ← 𝑟𝑐1 − 𝑐2 − 𝜌𝑎 with F⟦·⟧ .Open. Abort if 𝜏 ≠ 0.
4. Call F⟦·⟧ .Check on all opened values, abort if any check

fails.

Protocol 6: Sacrificing in [31].

ΠMC
Every party 𝑃𝑖 has ⟦𝑦 𝑗⟧𝑖 = ( [𝑦 𝑗 ]𝑖 , [𝛼𝑦 𝑗 ]𝑖 , [𝛼]𝑖 ), 1 ≤ 𝑗 ≤ 𝑙 .
𝑦 = (𝑦1, . . . , 𝑦𝑙 ) ∈ 𝑅𝑙 is public and has to be checked. Denote
[𝛼𝑦]𝑖 B ( [𝛼𝑦1]𝑖 , . . . , [𝛼𝑦𝑙 ]𝑖 ).
1. The parties sample a random 𝑟 ∈ 𝑅𝑙 .
2. Each 𝑃𝑖 sets [𝜎]𝑖 = 𝑟𝑡 ( [𝛼𝑦]𝑖 − [𝛼]𝑖𝑦) for 𝑟𝑡 transpose of 𝑟 .
3. Each 𝑃𝑖 uses Fcommit to commit to her share [𝜎]𝑖 .
4. After each party has committed, call Fcommit to open [𝜎]𝑖 .
5. If

∑𝑛
𝑖=1 [𝜎]𝑖 ≠ 0 then abort.

Protocol 7: MAC Check in [18].

𝐴𝑡𝐵𝑡 = (𝑐𝑡,𝑖𝑘 ) ∈ 𝑅𝑢×𝑤 where 0 ≤ 𝑖 < 𝑢, 0 ≤ 𝑗 < 𝑣, 0 ≤ 𝑘 <

𝑤 . Let 𝑎𝑡, 𝑗 = (𝑎𝑡,𝑖,𝑖+𝑗 mod 𝑣)𝑖 ∈ 𝑅𝑢 , i.e. (secondary) diagonals of
𝐴. Write 𝑎𝑡, 𝑗 for fixed 𝑗 into the plaintext slots of some plain-
text 𝒂 𝑗 ∈ 𝑅𝑠 , i.e. 𝒂 𝑗 = (𝑎⌊𝑙/𝑢 ⌋,𝑙 mod𝑢,(𝑙 mod𝑢+𝑗 ) mod 𝑣)𝑙 ∈ 𝑅𝑠 for
0 ≤ 𝑙 < 𝑠 . Encrypt 𝒂 𝑗 with the usual BGV encryption scheme to
and Encpk (𝒂 𝑗 ). Furthermore, let 𝑏𝑡, 𝑗,𝑘 = (𝑏𝑡,𝑖+𝑗 mod 𝑣,𝑘 )𝑖 ∈ 𝑅𝑢 and
𝒃 𝑗 = (𝑏 ⌊𝑙/𝑢 ⌋,(𝑙 mod𝑢+𝑗 ) mod 𝑣,𝑘 )𝑙 ∈ 𝑅𝑠 , i.e. we rotated the 𝑘-th col-
umn by 𝑗 entries. Then the (𝑡𝑢+𝑖)-th slot of∑𝑣

𝑗=1 Encpk (𝒂 𝑗 )𝒃 𝑗,𝑘 de-
crypts to 𝑐𝑡,𝑖,𝑘 =

∑𝑣
𝑗=1 𝑎𝑡,𝑖,𝑖+𝑗 mod 𝑣𝑏𝑡,𝑖+𝑗 mod 𝑣,𝑘 since the encryption

scheme is linearly homomorphic. Hence we can use this packing
technique to produce 𝑟 matrix products with 𝑣𝑘 ciphertext-plaintext
multiplications and 𝑣 plaintext rotations. We use this packing in
our implementation of ΠTriple.

In ΠSpecial and ΠSpecial-2 we have to compute terms Encpk (𝐴)𝐵+
𝐴 Encpk (𝐵). Unfortunately, the previous packing method cannot
trivially be applied to this setup, since now we have to rotate ci-
phertexts slots of Encpk (𝐵). [22] showed that this is in fact possi-
ble for our cyclotomic ring, since the action of the Galois group
GalQ (Q[Z𝑚]) for a primitive 𝑚-th root Z rotates the ciphertext
slots.17 Unfortunately, this rotation applied to a plaintext (𝑐0, 𝑐1) ∈
𝑀2
𝑞 also shifts the secret key, i.e. GalQ (Q[Z𝑚]) acts as 𝑋 ↦→ 𝑋𝑔

for some 𝑔 ∈ (Z/𝑚Z)∗ and hence 𝑐1 is rotated to sk(𝑋𝑔)𝑣 (𝑋𝑔) +
𝑤 (𝑋𝑔)𝑝 . [23] solved this problem with their key switching algo-
rithm, i.e. as part of the public key a party also provides a suitably
formed term𝑊 such that sk𝑊 (sk(𝑋𝑔)𝑣 (𝑋𝑔) +𝑤 (𝑋𝑔)𝑝)mod𝑞 =

sk(𝑋𝑔)𝑣 (𝑋𝑔) + a𝑝 mod𝑞 for a suitably small a that allows decryp-
tion. Of course,𝑊 cannot leak information on the secret key sk.
Given that key switching protocol, we can after each ciphertext
rotation, rotate the second component of the ciphertext back by𝑊
17More precisely, representatives in GalQ (Q[Z𝑚 ] ) of GalQ (Q[Z𝑚 ] )/⟨Frob𝑝𝑛 ⟩
(since the (generalized) Frobenius automorphism Frob𝑝𝑛 actually preserves the slots).
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FTriple
On input (Triple, id𝑎, id𝑏 , id𝑐 ) sample 𝑎 ← 𝑀,𝑏 ← 𝑀′ and store
(Val[id𝑎],Val[id𝑏 ],Val[id𝑐 ]) = (𝑎, 𝑏, 𝑐) where 𝑐 = 𝑎𝑏 ∈ 𝑀′′.

Protocol 8: Triple Generation.

ΠLowGear
𝑃𝑖 has input [𝜶 ]𝑖 ∈ 𝐴𝑝 , Encpk′𝑗 ( [𝜶 ] 𝑗 ) for all 1 ≤ 𝑗 ≤ 𝑛.
1. Each party 𝑃𝑖 samples uniformly [𝑎]𝑖 , [𝑏]𝑖 , [𝑏′]𝑖 ∈ 𝐴𝑝 .
2. Each (ordered) pair of parties (𝑃𝑖 , 𝑃 𝑗 ) runs Πpair where 𝑃𝑖

has input [𝑎]𝑖 and 𝑃 𝑗 has input [𝑏] 𝑗 , [𝑏′] 𝑗 . 𝑃𝑖 gets 𝑑𝑖 𝑗 and
𝑑′
𝑖 𝑗
. 𝑃 𝑗 gets 𝑟𝑖 𝑗 and 𝑟 ′𝑖 𝑗 .

3. 𝑃𝑖 locally sets 𝑓𝑖 B
∑
𝑗 :𝑗≠𝑖 𝑟 𝑗𝑖 , 𝑓

′
𝑖
B

∑
𝑗 :𝑗≠𝑖 𝑟

′
𝑗𝑖
and 𝑒𝑖 B

[𝑎]𝑖 [𝑏]𝑖 +
∑
𝑗≠𝑖 𝑑𝑖 𝑗 , 𝑒

′
𝑖
B [𝑎]𝑖 [𝑏]𝑖 +

∑
𝑗≠𝑖 𝑑

′
𝑖 𝑗
, which are com-

bined to [𝑐]𝑖 = [𝑎𝑏]𝑖 B 𝑒𝑖 + 𝑓𝑖 , [𝑐′]𝑖 = [𝑎𝑏′]𝑖 B 𝑒′
𝑖
+ 𝑓 ′

𝑖
.

4. Each (ordered) pair (𝑃𝑖 , 𝑃 𝑗 ) invokes Πpair, Step 2, where
Encpk′𝑖 ( [𝜶 ]𝑖 ) is provided by the preprocessing and 𝑃 𝑗 inputs
[𝑎] 𝑗 , [𝑏] 𝑗 , [𝑐] 𝑗 , [𝑏′] 𝑗 , [𝑐′] 𝑗 . 𝑃𝑖 receives 𝑑𝑖 𝑗𝑘 for 𝑘 = 1, . . . , 5.
𝑃 𝑗 gets 𝑟𝑖 𝑗𝑘 for 𝑘 = 1, . . . , 5.

5. The results are locally combined as in Step 2. Each party
receives (⟦𝑎⟧𝑖 , ⟦𝑏⟧𝑖 , ⟦𝑐⟧𝑖 , ⟦𝑏′⟧𝑖 , ⟦𝑐′⟧𝑖 ).

Protocol 9: Triple production in [31].

and we remain a ciphertext for sk. The resulting ciphertexts for the
same key sk can than be summed up homomorphically as before.

Remark 8. Please note that other packings might be advantageous
for certain matrix dimensions 𝑢, 𝑣,𝑤 . E.g. if we pack rows (𝑎𝑖,𝑘+𝑗 ) 𝑗
of a matrix 𝐴 and diagonals 𝑏𝑘+𝑗,𝑘 then we get vectors of length 𝑤
and hence can process 𝑠/𝑤 matrices in one go. Depending on 𝑠 mod𝑢,
𝑤 mod𝑢 this might lead to less unused slots.

D CONVOLUTIONS
An often-used operation in ML are (tensor) convolutions. One way
to securely realize a 2D convolution of an input tensor𝐴 ∈ 𝑅ℎ×𝑤×𝑐
and a kernel 𝐵 ∈ 𝑅𝑐′×ℎ′×𝑤′×𝑐 is by representing the convolution
as matrix multiplication. This is done, for example, in [11] to get
the result

𝑅ℎ×𝑤×𝑐
′
∋ 𝐶𝑖, 𝑗,𝑘 ′ =

ℎ′∑︁
𝑖′=1

𝑤′∑︁
𝑗 ′=1

𝑐∑︁
𝑘=1

𝐴𝑖+𝛿𝑖′ , 𝑗+𝛿 𝑗 ′ ,𝑘 · 𝐵𝑘 ′,𝑖′, 𝑗 ′,𝑘

with a single matrix multiplication for 𝛿𝑖′ = 𝑖′ − ⌊ℎ′/2⌋, 𝛿 𝑗 ′ =

𝑗 ′ − ⌊𝑤 ′/2⌋, 𝐴𝑖, 𝑗,𝑘 B 0 if (𝑖, 𝑗) ∉ {1, . . . , ℎ} × {1, . . . ,𝑤}. For this,
we can define a ℎ𝑤 × ℎ′𝑤 ′𝑐 matrix 𝑋,𝑋 (𝑖, 𝑗 ),(𝑖′, 𝑗 ′,𝑘 ) = 𝐴𝑖+𝛿𝑖′ , 𝑗+𝛿 𝑗 ′ ,𝑘
and a ℎ′𝑤 ′𝑠 × 𝑠′ matrix 𝑌,𝑌(𝑖′, 𝑗 ′,𝑘 ),𝑘 ′ = 𝐵𝑘 ′,𝑖′, 𝑗 ′,𝑘 . Here, (𝑖, 𝑗) uses
the canonical mapping of {1, . . . , ℎ} × {1, . . . ,𝑤} to {1, . . . , ℎ𝑤} and
(𝑖′, 𝑗 ′, 𝑘) analogously. We then have 𝐶𝑖, 𝑗,𝑘 ′ = (𝑋 · 𝑌 ) (𝑖, 𝑗 ),𝑘 ′ . We
implemented convolutions for the networks in Section 7 like this
in MP-SPDZ. Different approaches to compute convolutions with
homomorphic encryption exists (e.g. [27]) and could be compared
to the matrix-based approach in future work.

FZKP
On input (ZKP, pk𝑖 , slack) from two parties 𝑃𝑖 , 𝑃 𝑗 the following
can happen repeatedly:
1. 𝑃𝑖 inputs 𝑥 ∈ 𝐴𝑝 .
2. If 𝑃𝑖 is honest 𝑃 𝑗 receives Encpk𝑖 (𝑥). Otherwise 𝑃𝑖 receive

Enc′pk𝑖 (𝑥) where Enc
′ has noise at most slack-times as much

as regular encryption.
3. The adversary can abort any time.

Protocol 10: Zero-Knowledge Proof of Plaintext Knowledge.

ΠSpecial

Generate. Let 𝜙 : 𝐴^𝑝 → 𝐴_𝑝 be an 𝑅-linear map. 𝑃𝑖 has input
[𝜶 ]𝑖 for all 1 ≤ 𝑗 ≤ 𝑛.
1. 𝑃𝑖 samples [𝑎]𝑖 ∈ 𝐴^𝑝 .
2. Each (ordered) pair (𝑃𝑖 , 𝑃 𝑗 ) invokes Πpair, Step 1, where 𝑃𝑖

inputs Encpk𝑖 ( [𝑎]𝑖 ). 𝑃 𝑗 locally computes Encpk𝑖 (𝜙 ( [𝑎]𝑖 )).
3. Let offset = 𝑗 − 𝑖mod𝑛. If (0 < 2 offset < 𝑛) ∨ (2 offset =
𝑛 ∧ 𝑗 > 𝑖) the parties (𝑃𝑖 , 𝑃 𝑗 ) run Πred-pair, Step 2, where
𝑃 𝑗 inputs Encpk𝑖 ( [𝑎]𝑖 ), Encpk𝑖 (𝜙 ( [𝑎]𝑖 )), 𝜙 ( [𝑎] 𝑗 ), [𝑎] 𝑗 . 𝑃𝑖 re-
ceive 𝑑𝑖 𝑗 . 𝑃 𝑗 gets 𝑟𝑖 𝑗 .

4. Each (ordered) pair (𝑃𝑖 , 𝑃 𝑗 ) invokes Πpair, Step 2, where 𝑃 𝑗
inputs (Encpk𝑖 ( [𝑎]𝑖 ), [𝜶 ] 𝑗 ). 𝑃𝑖 receive 𝑑𝑖 𝑗 . 𝑃 𝑗 gets 𝑟𝑖 𝑗 .

5. Each (ordered) pair (𝑃𝑖 , 𝑃 𝑗 ) invokes Πpair, Step 2, where 𝑃 𝑗
inputs (Encpk𝑖 ( [𝜙 (𝑎)]𝑖 ), [𝛼𝑎] 𝑗 ). 𝑃𝑖 receives 𝑑𝑖 𝑗 . 𝑃 𝑗 gets 𝑟𝑖 𝑗 .

6. 𝑃𝑖 locally combines the outputs to get (⟦𝑎⟧, ⟦𝑎𝜙 (𝑎)⟧) ∈ 𝐴^𝑝×
𝐴
`
𝑝 .

Check. Each party 𝑃𝑖 uses Frandom to sample [𝑦0]𝑖 ∈ 𝑀 . The
parties emulate F⟦·⟧ to authenticate 𝑦0 =

∑𝑛
𝑖=1 [𝑦0]𝑖 . Each party

receives ⟦𝑦0⟧𝑖 . To check the MACs of 𝑙 (components of) pair
entries ⟦𝑦𝑘⟧, 1 ≤ 𝑘 ≤ 𝑙 , the parties use Frandom to generate
𝑡 ∈ 𝑅𝑙 . 𝑃𝑖 opens [𝑧]𝑖 = [𝑦0]𝑖 +

∑𝑙
𝑘=1 𝑡𝑘 [𝑦𝑘 ]𝑖 . The parties run

F⟦·⟧.Check with input 𝑧 =
∑𝑛
𝑖=1 [𝑧]𝑖 . If the check fails, abort.

Triple. The parties invoke Generate and receive 𝑠 pairs
(⟦𝑎⟧, ⟦𝑎𝜙 (𝑎)⟧) ∈ 𝐴^𝑝 ×𝐴

`
𝑝 . The parties invoke Check on these

pairs. They store the 𝑠 authenticated pairs if the check succeeds.

Protocol 11: Protocol for Special Tuples.

E FUNCTIONALITIES
This appendix contains the additional protocols discussed in Section
5. Also, the simulator for the proof of Theorem 5.1 can be found
in Protocol 13. We additionally added ideal functionalities for our
protocols which coincide mostly (and intentionally) with those of
[31]. The functionalities Frandom outputs the same random element
to all parties; the functionality Fcommit is a simple commitment
functionality as presented in [18]. Both Frandom and Fcommit can
be implemented as in [18]. FTriple outputs a bilinear triple.

Finally, we also include a short proof why sending Encpk𝑖 ( [𝑎]1)
in step 4 of ΠTriple forces parties to authenticate the same [𝑎]1 later
in the same step:
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STriple
𝐻 = {𝑖 ∈ {1, . . . , 𝑁 } : 𝑃𝑖 is honest} be the set of honest parties.
Generate.
1. For each (𝑖, 𝑗 ) run Πpair, Step 2 with

- if 𝑗 ∈ 𝐻 input (Encpk′𝑖 ( [𝜶 ]𝑖 ), 0) . Set [𝑏 ] 𝑗 B 0.
For each 𝑖 ∈ 𝐻 receive and store 𝑑𝑖 𝑗 . For each 𝑗 ∈ 𝐻 store 𝑟𝑖 𝑗 .

2. For each 𝑖 ∈ 𝐻 locally combine the results to [𝛼𝑏 ]𝑖 .
3. For each (𝑖, 𝑗 ) run Πpair with:

- if 𝑖 ∈ 𝐻 input [�̃�]𝑖 B 0.
- if 𝑗 ∈ 𝐻 input (0, [𝛼𝑏 ] 𝑗 ) .

Store the outputs 𝑑𝑖 𝑗𝑘 for 𝑖 ∈ 𝐻 , and 𝑟𝑖 𝑗𝑘 for 𝑘 = 1, 2 and 𝑗 ∈ 𝐻 .
Store all ciphertexts Encpk𝑖 ( [�̃�]𝑖 ) for all parties 1 ≤ 𝑖 ≤ 𝑛.

4. For each (𝑖, 𝑗 ) run Πpair, Step 2 with:
- if 𝑗 ∈ 𝐻 input (Encpk𝑖 ( [�̃�]𝑖 ),𝜶 𝑗 ) .

If 𝑖 ∈ 𝐻 receive and store 𝑑𝑖 𝑗 . If 𝑗 ∈ 𝐻 store 𝑟𝑖 𝑗 .
5. If 𝑖 ∈ 𝐻 combine the outputs to (⟦�̃�⟧𝑗 , ⟦𝑏⟧𝑗 , ⟦𝑐⟧𝑗 ) .
Check.
1. Use Frandom to sample [𝑦0 ]𝑖 ∈ 𝑅 for each 𝑖 ∈ 𝐻 . Emulate F⟦·⟧

to authenticate 𝑦0 =
∑𝑛

𝑖=1 [𝑦0 ]𝑖 . Store ⟦𝑦0⟧𝑖 for each 𝑖 ∈ 𝐻 .
2. Emulate Frandom to generate 𝑡 ∈ 𝑅𝑙 . Send [𝑧 ]𝑖 = [𝑦0 ]𝑖 +∑𝑙

𝑘=1 𝑡𝑘 [𝑦𝑘 ]𝑖 to the adversary for all 𝑖 ∈ 𝐻 . Receive [𝑧 ] 𝑗
from the adversary for all 𝑗 ∉ 𝐻 . Run F⟦·⟧.Check with input
𝑧 =

∑𝑛
𝑖=1 [𝑧 ]𝑖 . If the check fails, abort.

3. Rewind the adversary for random 𝑡 ∈ 𝑅𝑙 to reconstruct∑
𝑗∉𝐻 [𝑦𝑘 ] 𝑗 for each 1 ≤ 𝑘 ≤ 𝑙 .

Triple. Invoke Generate and receive 𝑠 triples (⟦�̃� 𝑗⟧, ⟦𝑏 𝑗⟧, ⟦𝑐 𝑗⟧) ∈
𝐴^
𝑝 ×𝐴_

𝑝 ×𝐴
`
𝑝 for 1 ≤ 𝑗 ≤ 𝑠 . InvokeCheck on these triples. For each

1 ≤ 𝑗 ≤ 𝑠 emulate FTriple to receive (𝑎 𝑗 , 𝑏 𝑗 , 𝑐 𝑗 ) ∈ 𝐴^
𝑝 ×𝐴_

𝑝 ×𝐴
`
𝑝 with

𝑎 𝑗𝑏 𝑗 = 𝑐 𝑗 . Adapt the shares (⟦𝑎 𝑗⟧𝑖 , ⟦𝑏 𝑗⟧𝑖 , ⟦𝑐 𝑗⟧𝑖 ) of honest parties
𝑖 ∈ 𝐻 suitably (given the shares from adversarial parties determined
by rewinding inCheck). Store the 𝑠 authenticated triples if the check
succeeds, else abort.

Protocol 13: Simulator for ΠTriple.

ΠSpecial-2

Generate. 𝑃𝑖 has input [𝜶 ]𝑖 , Encpk′𝑗 ( [𝜶 ] 𝑗 ) for all 1 ≤ 𝑗 ≤ 𝑛.
1. 𝑃𝑖 samples [𝑎]𝑖 ∈ 𝐴^

𝑝 .
2. Each (ordered) pair (𝑃𝑖 , 𝑃 𝑗 ) invokes Πpair, Step 2, where 𝑃 𝑗 in-

puts (Encpk′𝑖 ( [𝜶 ]𝑖 ), [𝑎] 𝑗 ) . 𝑃𝑖 receives 𝑑𝑖 𝑗 . 𝑃 𝑗 has 𝑟𝑖 𝑗 .
3. The results are locally combined by 𝑃𝑖 to [𝛼𝑎]𝑖 .
4. Let offset = 𝑗−𝑖 mod𝑛. If (0 < 2 offset < 𝑛)∨(2 offset = 𝑛∧ 𝑗 >
𝑖 ) the parties (𝑃𝑖 , 𝑃 𝑗 ) runs Πred-pair, where 𝑃𝑖 inputs [𝑎]𝑖 and
𝑃 𝑗 inputs𝜙 ( [𝑎] 𝑗 ), [𝑎] 𝑗 , and Encpk𝑖 (𝜙 ( [𝑎]𝑖 ) ) computed locally
after Step 1. 𝑃𝑖 receive 𝑑𝑖 𝑗 . 𝑃 𝑗 has 𝑟𝑖 𝑗 .

5. Each (ordered) pair (𝑃𝑖 , 𝑃 𝑗 ) invokes Πpair, Step 2, where 𝑃 𝑗 in-
puts (Encpk𝑖 ( [𝜙 (𝑎) ]𝑖 ), [𝛼𝑎] 𝑗 ) . 𝑃𝑖 receives 𝑑𝑖 𝑗 . 𝑃 𝑗 has 𝑟𝑖 𝑗 .

6. 𝑃𝑖 combines the outputs to (⟦𝑎⟧, ⟦𝑎𝜙 (𝑎)⟧) ∈ 𝐴^
𝑝 × 𝐴

`
𝑝 .

Check. Run ΠSpecial.Check.
Triple. Run ΠSpecial.Generate.

Protocol 14: Alternative Protocol for Special Tuples.

F⟦·⟧
The dictionary Val keeps track of authenticated values. For
simplicity entries of Val cannot be changed. Val is indexed by
Val .Keys. Entries of Val are elements of 𝑅.
Input. On input (Input, id1, . . . , id𝑚, 𝑥1, . . . , 𝑥𝑚, 𝑃𝑖 ) from 𝑃𝑖 and
(Input, id1, . . . , id𝑚, 𝑃 𝑗 ) from all other parties, set Val[id𝑗 ] ← 𝑋 𝑗
for all 1 ≤ 𝑗 ≤ 𝑚.
Linear Combination.Given (LC, idLC, (id𝑗 )1≤ 𝑗≤𝑚, (𝑎 𝑗 )0≤ 𝑗≤𝑚)
for 𝑎 𝑗 ∈ 𝑅 from all parties with id𝑗 ∈ Val .Keys for all 1 ≤ 𝑗 ≤ 𝑚,
set Val[idLC] = 𝑎0 +

∑𝑚
𝑗=1 𝑎 𝑗 Val[id𝑗 ].

Open. If (Open, id) from all parties, send Val[id] to Adv. After
receiving 𝑋 from Adv return 𝑋 to all parties.
Check. Given (Check, (id𝑗 )1≤ 𝑗≤𝑚, (𝑥 𝑗 )1≤ 𝑗≤𝑚) from all parties,
if Adv sends Ok and Val[id𝑗 ] = 𝑥 𝑗 for all 1 ≤ 𝑗 ≤ 𝑚, send Ok to
everyone. Else abort ⊥.
Abort. On input ⊥ from Adv, send ⊥ to all parties.

Protocol 15: Input Functionality.

ΠTriple-2

Generate. 𝑃𝑖 has input [𝜶 ]𝑖 , Encpk𝑗 ( [𝜶 ] 𝑗 ) for all 1 ≤ 𝑗 ≤ 𝑛.
1. 𝑃𝑖 samples [𝑎]𝑖 ∈ 𝐴^

𝑝 , [𝑏 ]𝑖 ∈ 𝐴_
𝑝 .

2. Let offset = 𝑗 − 𝑖 mod𝑛. If (0 < 2 offset < 𝑛) ∨ (2 offset =

𝑛 ∧ 𝑗 > 𝑖 ) the parties (𝑃𝑖 , 𝑃 𝑗 ) run:
a. 𝑃𝑖 sends Encpk′𝑖 ( [𝑎]𝑖 ), Encpk′𝑖 ( [𝑏 ]𝑖 ) invoking FZKP.
b. Πpair, Step 2, twice where 𝑃 𝑗 inputs (Encpk′𝑖 ( [𝑎]𝑖 ), [𝜶 ] 𝑗 )

and (Encpk′𝑖 ( [𝑏 ]𝑖 ), [𝜶 ] 𝑗 ) . 𝑃𝑖 gets 𝑑
′
𝑖 𝑗1 and 𝑑 ′𝑖 𝑗2. 𝑃 𝑗 gets 𝑟 ′𝑖 𝑗1

and 𝑟 ′𝑖 𝑗2.
c. Πpair, Step 2, where 𝑃𝑖 inputs (Encpk𝑖 ( [𝜶 ] 𝑗 ), [𝑎] 𝑗 , [𝑏 ] 𝑗 ) .
𝑃𝑖 gets 𝑑 ′′𝑖 𝑗1 and 𝑑 ′′𝑖 𝑗2. 𝑃 𝑗 gets 𝑟 ′′𝑖 𝑗1 and 𝑟 ′′𝑖 𝑗2.

d. The results are locally combined by 𝑃𝑖 to ⟦𝑎⟧𝑖 , ⟦𝑏⟧𝑖 . 𝑃𝑖
sends Encpk′𝑖 ( [𝛼𝑏 ]𝑖 ) invoking FZKP.

e. Πred-pair, Step 2, where 𝑃 𝑗 inputs Encpk′𝑖 ( [𝑎]𝑖 ) ,
Encpk′𝑖 ( [𝑏 ]𝑖 ), 𝑎 𝑗 , 𝑏 𝑗 . 𝑃𝑖 gets 𝑑𝑖 𝑗1. 𝑃 𝑗 gets 𝑟𝑖 𝑗1.

f. Πred-pair, Step 2, where 𝑃 𝑗 inputs Encpk′𝑖 ( [𝑎]𝑖 ) ,
Encpk′𝑖 ( [𝛼𝑏 ]𝑖 ), 𝑎 𝑗 , 𝛼𝑏 𝑗 . 𝑃𝑖 gets 𝑑𝑖 𝑗2. 𝑃 𝑗 gets 𝑟𝑖 𝑗2.

3. The results are locally combined by 𝑃𝑖 to ⟦𝑎⟧𝑖 , ⟦𝑏⟧𝑖 , [𝑐 ]𝑖 .
4. 𝑃𝑖 combines the outputs to (⟦𝑎⟧, ⟦𝑏⟧, ⟦𝑐⟧) ∈ 𝐴^

𝑝 × 𝐴_
𝑝 × 𝐴

`
𝑝 .

Check. Invoke ΠTriple.Check.
Triple. Invoke ΠTriple.Triple.

Protocol 12: New LowGear-type Protocol.

Security Game for Authentication. The challenger C samples
[𝑎]1, [𝛼]1, 𝑟12 and sends an encryption Encpk1 ( [𝑎]1) under her pub-
lic key to the adversaryA.A sends Encpk2 ( [𝑎]2) with FZKP (under
his public key), and additionally Encpk1 ( [𝑎]1) ( [𝛼]2 + 𝛿2) − 𝑟21. C
returns Encpk1 ( [𝑎]2) [𝛼]1−𝑟12. Set 𝑎 = [𝑎]1 + [𝑎]2, 𝛼 = [𝛼]1 + [𝛼]2.
ThenA has to provide 𝛿1 ≠ 0,Δ such that 𝛼𝑎+[𝑎]1𝛿2+Δ = 𝛼 (𝑎+𝛿).
Note that this challenge is equivalent to finding 𝛿1 ≠ 0, 𝛿2,Δ such
that 𝛼𝛿1 = [𝑎]1𝛿2 + Δ, i.e. to guessing 𝛼 correctly, which has proba-
bility 1

|𝑅 | . Also note that A has no information on [𝑎]1 (and hence
on 𝑎) by the CPA-security of the encryption scheme; he has no
information on a Encpk (𝛼1) (with pk instead of pk′); he has no in-
formation on [𝛼]1 (and hence on𝛼) by the information-theoretically
secure masking with 𝑟12.
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