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Abstract—Test methods that can keep up with the ongoing
increase in complexity of semiconductor products and their un-
derlying technologies are an essential prerequisite for maintaining
quality and safety of our daily lives and for continued success of
our economies and societies. There is a huge potential how test
methods can benefit from recent breakthroughs in domains such
as artificial intelligence, data analytics, virtual/augmented reality,
and security. The Graduate School on “Intelligent Methods for
Semiconductor Test and Reliability” (GS-IMTR) at the University
of Stuttgart is a large-scale, radically interdisciplinary effort to
address the scientific-technological challenges in this domain. It is
funded by Advantest, one of the world leaders in automatic test
equipment. In this paper, we describe the overall philosophy of
the Graduate School and the specific scientific questions targeted
by its ten projects.

I. INTRODUCTION

Semiconductor technology has been a foundation of scientific
progress, societal development and economic growth since
decades. Test methods are a main pillar of this technology and
are an essential prerequisite for obtaining high-quality products,
from low-cost consumer segment to enormously complex and
safety-critical installations, at reasonable cost. As a scientific
area, test methods are currently undergoing a transformation
triggered by the advent of next-generation artificial intelligence
technology. Therefore, a new, radically interdisciplinary and
large-scale research effort is needed to enable the products of
tomorrow and meet the needs of their makers.

To give a major impetus on applied semiconductor test and
reliability research, Advantest and the University of Stuttgart
jointly established a Graduate School on “Intelligent Methods
for Semiconductor Test and Reliability” (GS-IMTR). Advantest,
a major automatic test equipment (ATE) vendor, has first-hand
understanding of the technological developments pursued by
its customers and their practical needs; it also has access
to relevant technology data. GS-IMTR directly supports ten
PhD candidates in projects selected using a competitive peer-
review-based process; one Assistant Professor (Juniorprofessor
in German); and the required infrastructure for six years. These
projects are stemming from a broad set of partner institutes
that bring in interdisciplinary expertise in fields as diverse as
machine learning; visualization; security; radio-frequency circuit
design; emerging technologies and architectures. The last of the
ten projects has started in the beginning of 2021, and therefore
the Graduate School is still in an early phase.

GS-IMTR supports international exchange by inviting aca-
demic and industrial researchers from abroad and providing the

funded PhD candidates with opportunities for stays abroad. In
addition, GS-IMTR can associate further PhD candidates from
the University, who are funded from other sources but work on
related topics, thus forming a strong University-wide nucleus
on test research. The Graduate School includes an Advisory
Board consisting of international researchers, representatives
of Advantest, and professors of the University. It determines
the strategic research orientation of the school, organizes peer-
review of PhD project proposals, makes funding decisions, and
oversees the progress of the projects.

The need for a heavily interdisciplinary and data-driven
approach is underscored by Fig. 1, which presents a detailed
view of today’s test processes being placed between design,
fabrication and in-field operation of integrated circuits. Test
usually consists of several test insertions, each with its own
requirements. In general, different assembly and test (OSAT)
providers are in charge of the individual test insertions. In
addition, post-silicon validation (PSV) and characterization are
run before the start of volume fabrication, creating non-trivial
interactions between the (fabless) design house and the fab
(foundry). Test-related data collected during all these steps
contains valuable information, which is heavily under-utilized
today. To this end, GS-IMTR brings together specialists on test
and reliability with researchers working on a broad range of
interdisciplinary topics.

The remainder of this paper introduces the research questions
investigated by GS-IMTR’s ten peer-reviewed projects P1 . . . P10
and by (currently three) associated projects PA1 . . . PA3. Fig. 1
provides a rough positioning of all projects within the test value
chain. Note that the numbering of the projects is based on the
time of their acceptance rather than on their thematic coherence;
therefore we organize the following content by larger topic areas
to which the individual projects belong.

II. INTELLIGENT METHODS FOR PSV AND BEYOND

The first three projects discussed in this section focus on
post-silicon validation. They provide machine-learning methods
for tuning parameters, for selecting most relevant variables,
and visually explaining to engineers the issues identified during
PSV. The fourth project applies brain-inspired Hyperdimensional
Computing to chip testing towards improving the yield.

A. Self-Learning Tuning for Post-Silicon Validation (P3)
In PSV, devices under test (DUTs) are examined to identify

tuning parameters such that the DUTs meet their specifications
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Fig. 1. Test-oriented circuit design and manufactured flow with GS-IMTR’s projects.1

under all operating conditions. This project aims to determine
a tuning law or sweet spots for tuning based on randomly
generated test data from one or multiple DUTs. The goal is
to develop a generic, data-driven approach that automatizes
the PSV tuning task, copes with less assumptions, and scales
well. We deal with up to a few hundred conditions and tuning
parameters as input and several output parameters. Depending on
the context, one refers to parameters, variables, or dimensions.

Conventionally, the identification of tuning configurations
relies on classical point-wise optimization methods. Point-wise
optimization methods such as Powell’s method [1] assume
certain properties of the objective function or approximate the
objective to fulfill these properties. Given the properties, the
methods implement different iterative strategies to converge to
the optimal tuning configuration. This approach is insufficient
and makes it difficult to allow more flexibility and robustness
with respect to function properties. An approach based on
random search is also impractical due to the high-dimensional
parameter space and the related curse of dimensionality. How-
ever, flexibility and robustness are essential in PSV because the
properties of the objective function are unknown even for experts.
Due to process variations in the manufacturing process, devices
are black-box functions with varying performances. In case of
severe problems in manufacturing, devices can even be faulty.
Moreover, classical point-wise methods are not well suited to
optimize mixed data types in high-dimensional parameter spaces
and thus often perform poorly in such setups.

As DUTs have very unique properties including heteroge-
neous parameters (numerical, integer, nominal) and non-smooth
dependencies, the aim is to learn a tuning law in an adaptive,
self-learning way. Therefore, we aim to follow the path of learn-
to-optimize and examine approaches based on reinforcement
learning for deep neural networks, active learning, and novel
approaches to optimization as seen in [2].

The resulting methodology will lead to a deployable tuning
law that is robust and flexible. The project is closely related to
the projects P6 and P2. P2 will use the results and the gathered

knowledge about the input-output relationships to visualize
and possibly guide tuning as well as test case generation in
interaction with human experts. P6 will benefit from robust
solutions that detect or compensate influences of faulty devices
(e.g. [3]) to employ deep learning (DL) variable selection
methods based on test data, while this project can benefit from
information about learned sets of input variables.

B. Deep Learning Based Variable Selection for Post-silicon
Validation (P6)

As mentioned before, DUT in modern PSV is often equipped
with tuning knobs with up to hundreds of process parameters.
To enable an efficient tuning and debugging of DUT by human
experts, a few most important variables must be identified for
visualization (e.g. P2) and efficient modeling (e.g. P3). This has
been typically done based on expert knowledge and conventional
statistical approaches. They are, however, not scalable to high-
dimensional data. This project aims to leverage DL techniques
for variable selection with high scalability for PSV.

In order to achieve this goal, we have proposed a novel feature
mask (FM) module [4, 5] that can be jointly trained with a neural
network for solving a regression task to predict a given target
variable. After that, the FM module generates an importance
vector, each element of which indicates the importance of the
corresponding candidate variable. Specifically, the FM module
has only linear complexity w.r.t. the data dimension, while
most conventional methods have exponential complexity. This
property ensures an efficient selection even for a large number of
input variables. Furthermore, the FM method does not introduce
sensitive hyperparameters so that even non-DL-experts can use
it without difficulties. Last but not least, the implementation is
highly modular and the FM method can be easily integrated into
existing PSV tools. As future research, we plan to explore more
use cases of the FM method in the entire semiconductor industry,
including but not limited to test selection and measurements
reduction.

1Image Source: https://www.gs-imtr.uni-stuttgart.de

https://www.gs-imtr.uni-stuttgart.de


Fig. 2. Abstraction of the proposed visual analytics process

C. Visual Analytics for Post-Silicon Validation (P2)

Visual analytics is a subfield of visualization research that
tightly incorporates automatic methods and interactive visual-
ization techniques into coherent approaches. Visual analytics
approaches are in particular suitable for situations where
applying fully automatic solutions is impossible due to problem
complexity and where manual analysis is inappropriate because
of data size and dimensionality [6, 7]. Our project aims to
tackle some of the ill-posed challenges occurring in post-silicon
validation and chip tuning with visual analytics methods, to
speed up problem analysis while making it more reliable and
accountable. For this purpose, we develop interactive workflows,
shown in Fig. 2, that integrate validation engineers into human-
computer analysis loops. By visually explaining the problems
detected during post-silicon validation to engineers, we help
them steer subsequent analysis methods to test hypotheses, to
drill down into problems, or to find good chip settings avoiding
issues. The result of such analyses is again visualized for further
interactive refinement and exploration, closing the analysis loop.

To support engineers in understanding chip validation data
and the problems it contains, we develop different visual
representations to show large numbers of high-dimensional val-
idation results in a digestible form. This comprises scatterplots
that are generated through dimensionality reduction techniques
(e.g., t-SNE [8] or UMAP [9]) as well as other solutions
capable of depicting multi-dimensional data in a comprehensible
manner including matrix-based views, customized node-link
representations with glyphs, and parallel coordinates plots
[10]. In addition, we aim to visually explain multivariate
correlations of input value ranges and out-of-spec behavior
as well as sensitivity of the validation data. From these visual
representations of validation data, users can select subsets for
further processing or detailed visualization and inspection.

The methods to analyze subsets of interest include machine
learning techniques for both traditional approaches, but also
more recent neural network-based ones that generate results,
which can be visually explained in an accountable way and fast
enough to be integrated into an interactive approach [11]. The
models created from such local analyses can then be used to
further restrict or broaden filter criteria for the data sets under
inspection to understand which inputs cause which problems.

D. Hyperdimensional Computing for Chip Testing—Towards
Learning Fast from Little Data (P10)

This project explores for the first time how principles from
brain-inspired Hyperdimensional Computing (HDC) can be
applied to chip testing towards improving the yield [12]. The
promises of HDC are: 1) strong robustness against noise and
randomness in data, 2) ability to perform fast learning, and 3)
ability to learn from little data. These aforementioned properties
of HDC make it a very promising method for chip testing when
it comes to advanced sub-5nm technology nodes because at
such extreme scales, new emerging problems start to challenge
the existing learning methods (e.g., deep neural networks and
other traditional machine learning methods). These challenges
can be summarized as follows:
1) The very noisy measurements due the inherent randomness
caused by quantum mechanisms which become dominant at
the 5nm technology node and below. Hence, the robustness
of the learning method against noise becomes essential. 2)
The necessity of an intelligent method to selectively collect
the data measurements because the accuracy of deep learning
methods heavily depends of the quality of input data. Hence,
performing very fast learning during the measurement phase
itself (i.e., during data collection) to enable active leaning be-
come increasingly important. 3) The overwhelming complexity
of circuits and systems in sub-7nm technology leads to more
seldom problems in which the availability of data to learn those
seldom problems is extremely limited. Hence, learning from
little data becomes a key.

III. TEST APPLICATION

The three projects in this section consider test applications
from rather different points of view. P7 designs an extension to
ATE for applying radio-frequency (RF) test signals, covering
the frequency ranges of several important emerging applications.
P8 deals with optimizing software used for test application and
ensuring its quality. P4 aims at achieving secure processing
of sensitive manufacturing-related data on an ATE while
keeping their confidentiality, by using modern secure multi-
party computation protocols.

A. Miniaturized Millimeter-Wave RF Interface Module (P7)

This project addresses the research area “Advanced design
methodologies for testing next generation and beyond RF
devices” by proposing a miniaturized and multi-functional fre-
quency extension into the high millimeter-wave frequency range
for RF testing. One goal of this project is to cover the frequency
range from 17 to 90 GHz to enable testing for applications
such as 24 GHz ISM, i.e., from K-band to E-band, including
important frequency ranges like 77 to 79 GHz for automotive
radar or 81 to 86 GHz fixed wireless point-to-point links by
using high-speed semiconductor technologies (see Fig. 3).

The transceiver module is designed to be coupled to a 20 GHz
RF base card from Advantest. The project covers the most
challenging components of an entire transceiver chain including
RF up-conversion, RF multi-pole switching, RF adaptive power
amplification, RF filtering and LO multiplication over the entire
frequency range (see Fig. 4).



Fig. 3. Target Operational Frequency Range of the INWAVE transceiver module.

Fig. 4. Signal processing and transceiver chain.

For the implementation of the INWAVE interface module
with its challenging requirements in terms of bandwidth (136 %
relative RF bandwidth, 4 GHz IF bandwidth), dynamic range
(>70 dB adjacent channel power ratio in a power range of
−60 to +15 dB), and linearity (high OIP3), we consider two
alternative approaches: a hybrid integration that will select the
most suitable semiconductor technology for each element of
the design, and a compact system on chip (SoC) version based
on a state-of-the-art CMOS process (e.g., 22 nm FD-SOI).

B. Software Test Suite Optimization for Complex High Data-
Volume Software (P8)

Software plays a vital role in large-scale hardware testing. Test
programs allow hardware testers to deal with the complexity
of modern chips and enable them to automate the tests. A
tester operating system and development environment (TOSDE)
connects the customer test programs to the test system with the
DUT. The TOSDE is a complex high data-volume software,
for which it is extremely challenging to provide and assure
the requested level of correctness, robustness, and performance.
This is due to the ecosystem being many-fold and only partially
under the control of the ATE platform developers. For instance,
typical test system hardware handles millions of instructions per
second running an embedded software that communicates with
the tester operating system. Customers define and/or generate
test programs. As a result of growing chip complexity, the
test program complexity and the resulting data volumes are
growing exponentially. Hence, this leads to performance-related
questions about the TOSDE, including data transfer rates to
local discs and network drives.

In this project, we develop and evaluate a novel approach
to analyze and optimize software test suites for correctness,
robustness, and performance. The particular focus is the support
for testing high and exponentially growing data-volume software
in a context in which unknown code (test programs) will run
on top of this software, which has not been considered by
previous approaches. We started by analyzing existing test
suites. We found that mutation testing and a variant of it can
be applied to identify untested code [13]. To extend the test
suites, generating tests using fuzzing seems like a promising
approach to tackle the vast space of possible test programs.
Yet, to overcome the problems discussed above, we need to
find a novel combination of tailored techniques from functional
(e.g., coverage analysis, fuzzing, mutation testing) and non-
functional testing (e.g., operational profile-based scalability
testing), as well as model-based performance analysis (e.g.,
antipattern detection, what-if-analysis). This will allow us to
decide what is interesting and important to test so that we
get enough performance to handle the high data-volume while
reducing the test execution time to feasible levels. We will
evaluate all techniques in empirical analyses using an industry-
leading TOSDE software and open-source systems.

C. Secure and Privacy-Preserving Semiconductor Testing (P4)

Semiconductor testing plays an important role in the semi-
conductor manufacturing process. The tests not only ensure
the quality of individual chips, but the data obtained during
the tests is used to improve the manufacturing process itself.
Manufacturers often use third-party services (shown as OSAT
and service providers in Fig. 1) to perform the tests and evaluate
the test data, as this requires special expertise. Since the test
data and the models and methods to evaluate the data, such as
machine learning models, are typically highly sensitive trade
secrets, on the one hand, semiconductor manufacturers are
reluctant to share their test data with third-party test services,
and on the other hand, those services do not want to reveal
information about their evaluation methods and models.

The idea of the project is to use, further develop and adapt
a well-established cryptographic technique called secure multi-
party computation (MPC) to protect the digital assets in a
globalized and distributed semiconductor manufacturing flow.
MPC allows two or more parties to evaluate a function on the
local inputs of the parties without the parties revealing their
inputs to the other parties. While MPC has been invented in the
1980s by Andrew Yao [14], MPC is currently a very active and
hot research topic both in academia and industry since it is one
way to solve the problem of privacy-preserving data processing.

However, in order for this approach to work, MPC has to be
tailored to the specific requirements of the project. Whether or
not these requirements can be met also depends on the type of
test data and evaluation algorithm. At the end of the project,
we would like to have a library that supports efficient privacy-
preserving semiconductor testing for a big class of test data and
evaluation algorithms, ideally with various levels of security.
Test services should be able to easily and automatically compile
their evaluation algorithms into MPC protocols that can then
be carried out by them and the semiconductor manufacturers.



TABLE I
SLT ASPECTS CONSIDERED IN GS-IMTR RELATED TO TRADITIONAL TEST

Traditional Test System-Level Test

Covered defects Gross and marginal Unknown → Project P1

Coverage metrics Fault coverage Lacking → Project P5

Test quality
assessment

Fault simulation Systematic technology lacking
→ Project P1

Test generation ATPG, manually
written test programs

Reusing OS and application soft-
ware → Project P5

IV. TEST OF EMERGING TECHNOLOGIES AND SYSTEM
PARADIGMS

The first two projects in this section focus on System-level
test (SLT) [15, 16] (see Fig. 1), a test insertion based on
workloads such as booting an operating system while the
integrated circuit is mounted on a special board that includes
memories and peripheral interfaces found in its target system.
They investigate failures detected by SLT but not by prior test
insertions, and targeted generation of suitable SLT workloads.
Tab. I summarizes the essential research gaps closed by these
projects. The final project focuses on the self-heating effects
that manifests itself in advanced technology nodes, and its
implications to test and reliability.

A. Systematic Analysis of System-level Test Fails (P1)
The scientific objective of P1 is to establish a theoretical and

systematic understanding of mechanisms behind SLT-unique
fails, i.e., erroneous conditions that manifest themselves during
SLT but not during conventional structural or functional test.
The initial hypotheses for the origin of SLT-unique fails are: (1)
complex defect mechanisms not covered by standard automatic
test pattern generation (ATPG) tools; (2) systematic ATPG
coverage holes (e.g., defects in clock trees); (3) effects of
marginal defects during system-level interactions. To this end, an
experimentation platform of sufficient complexity to reproduce
these possible causes will be created within the project.

A further objective of Project P1 is to propose solutions to
counteract SLT-unique fails. While complex defect mechanisms
can be targeted by existing cell-aware test tools [17], special
design-for-testability infrastructure can make SLT-unique fails
detectable during regular test application. A better understanding
of causes for SLT-unique fails can lead to design rules and
guidelines for their elimination. One result will be a better-
defined design space, where the designer can make informed
choices whether to invest effort into designing, e.g., clean clock
domain boundaries, or into a more thorough SLT application
after manufacturing.

B. Automated Generation of SLT Programs for Characterization
of Parametric Device Properties (P5)

Project P5 aims at generating SLT programs with desired
characteristics and at exploring approaches to assess the quality
of such test programs by means of special coverage metrics. The
central challenge during generation is to obtain an SLT program
that can fulfill the desired extra-functional properties, e.g., a
certain power consumption profile. To this end, model-driven

performance stress test generation techniques from high-level
software architecture models are used. Such techniques originate
from the software engineering domain; they have previously
been applied to enterprise software [18].

Another concept from software engineering will be used
for quality assessment of SLT programs: coverage metrics
used for black-box integration testing in, e.g., automotive
domain that bears similarities to the SLT scenario [19]. An
interesting question is the utilization of self-awareness present
in many modern SoCs into SLT. For instance, the test equipment
could monitor the built-in sensors during test application and
dynamically schedule more or less stress-inducing SLT programs
depending on the measured temperature.

C. Design for Testing and Reliability in the Presence of
Transistor Self-Heating for Advanced Technologies (P9)

Existing state-of-the-art FinFET technology has enabled the
semiconductor industry to continue transistor scaling below
7 nm. However, at such extreme feature sizes, FinFET technol-
ogy reaches its limit and replacing it with another technology
becomes inevitable. Among many innovations, nanosheet tran-
sistors have been already adopted by semiconductor vendors
for the upcoming generations as is evidenced by the 3 nm node
offered by Samsung [20].

The very confined 3-D structure that nanosheet provides
enables an excellent control but it imposes a serious challenge
when it comes to reliability. The excessive heat generated inside
the transistor’s channel faces a profound difficulty to escape
outside and be dissipated because the gate fully surrounds the
channel [21]. This, in turn, accelerates the underlying defect
generation mechanism and largely reduces not only the circuit’s
reliability but it also shorten its entire lifetime. The key research
questions, which this project aims at answering: (1) How we
can unveil during testing whether the underlying transistors in
the chip suffer from internal self-heating or not? (2) How can
information from IC tests (e.g., wafer and parametric test) be
employed by the fab to not only accurately predict IC yield but
to also improve it?

V. ASSOCIATE PROJECTS TO THE GRADUATE SCHOOL

The Graduate School is supported by basic research projects
with different funding. These projects are associated with the
Graduate School, cooperate with other GS-IMTR projects,
and cover lifecycle test problems. Modern circuits show high
variations in their functional and extra-functional parameters
which complicate the distinction between defect and defect-free
circuits over a lifetime.

The first associated project (PA1 in Fig. 1) focuses on the
test challenges of innovative, highly scaled technologies during
the offline stage of the device lifetime, which include pre- and
post-silicon validation (PSV) and manufacturing test. In this
project, cell libraries are characterized under different operating
conditions for defect and defect-free cases and are further reused
for evaluating the PSV-prototypes and the manufactured devices.
Robust test techniques which can detect infant mortalities
without affecting the yield are developed by employing advanced
machine learning methods [22, 23].



Moreover, the failure rate does not remain constant and there
is an increasing failure rate throughout the useful life with
respect to modern and latest technologies. The second associated
project (PA2 in Fig. 1) exploits the behavior changes, such as
measured delays under different operating conditions, over the
past lifetime in order to create a lifetime model that detects
abnormal behavior. This project uses this information to evaluate
the current health state of the device. The information about
the current behavior is collected using an extensive number of
non-functional instruments like sensors, aging monitors, and
built-in self-test registers mostly already integrated into a device.

Reconfigurable scan networks (RSNs) [24] offer an efficient
way to access these instruments as well the device’s registers
throughout the lifetime, starting from PSV and also during the
test insertions shown in the upper part of Fig. 1. At the same
time, improper integration of RSNs can affect the system-level
dependability. The third associated project (PA3 in Fig. 1),
establishes a methodology to integrate dependable RSNs for a
given device considering the following dependability aspects:

• Accessibility: A single fault in an RSN can prevent
extracting complete data from the device during PSV, or
lead to inaccessibility of a runtime-critical instrument and
consequently lead to a system failure. Therefore, it has
to be ensured that an RSN provides robust access to the
underlying device [25].

• Testability: To ensure reliable access and to prevent silent
data corruption via RSNs, the RSN itself has to remain
testable, as shown in [26].

• Security Compliance: The accessibility via RSNs may
violate the security requirements placed by the designer,
e.g., the data confidentiality of certain instruments and
the allowed accessibility of specific users. The security
compliance of an RSN with the device is analyzed,
possible violations are identified [27], and an RSN is
correspondingly modified in a cost-efficient way [28, 29].

VI. CONCLUSION

The Graduate School Intelligent Methods for Test and
Reliability at the University of Stuttgart provides a very unique
research experience in which several institutes are working
along with a tight collaboration with one of the world leaders in
chip testing: Advantest. It will play a major role in advancing
the different research areas in design for testing and design
for reliability. It will open new doors for bridging the gap
between artificial intelligence and chip manufacturing, which
might profoundly impact the future of technology.
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