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ABSTRACT
In the past few years blockchains have been a major focus for

security research, resulting in significant progress in the design,

formalization, and analysis of blockchain protocols. However, the

more general class of distributed ledgers, which includes not just

blockchains but also prominent non-blockchain protocols, such as

Corda and OmniLedger, cannot be covered by the state-of-the-art

in the security literature yet. These distributed ledgers often break

with traditional blockchain paradigms, such as block structures to

store data, system-wide consensus, or global consistency.

In this paper, we close this gap by proposing the first frame-

work for defining and analyzing the security of general distributed

ledgers, with an ideal distributed ledger functionality, called F
ledger

,

at the core of our contribution. This functionality covers not only

classical blockchains but also non-blockchain distributed ledgers

in a unified way.

To illustrate F
ledger

, we first show that the prominent ideal block-

chain functionalities G
ledger

and GPL realize (suitable instantiations

of) F
ledger

, which captures their security properties. This implies

that their respective implementations, including Bitcoin, Ouroboros

Genesis, and Ouroboros Crypsinous, realize F
ledger

as well. Sec-

ondly, we demonstrate that F
ledger

is capable of precisely modeling

also non-blockchain distributed ledgers by performing the first

formal security analysis of such a distributed ledger, namely the

prominent Corda protocol. Due to the wide spread use of Corda

in industry, in particular the financial sector, this analysis is of

independent interest.

These results also illustrate that F
ledger

not just generalizes the

modular treatment of blockchains to distributed ledgers, but more-

over helps to unify existing results.
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1 INTRODUCTION
In the past few years, researchers made significant progress in

formalizing and analyzing the security of blockchain protocols [3,

5, 16, 21, 26]. Initially analyzed in the game-based setting based

on trace properties [15, 20, 38], blockchain security research has

moved to simulation-based security which leverages modularity

and strong security guarantees offered by universal composability

(UC) frameworks [11, 12, 32]. Several ideal blockchain function-

alities have been proposed – most notably the functionality by

Badertscher et al. [5], called G
ledger

, and its privacy-preserving de-

rivative GPL [26]. They have successfully been applied to prove the

security of various, partly newly designed blockchains (cf. [3, 5, 26]).

However, the more general class of distributed ledgers has been

out of reach so far:

Distributed ledgers are a generalization of blockchains. A dis-

tributed ledger allows for establishing consensus on and distribu-

tion of data. While the class of distributed ledgers includes block-

chains as a special case, there are several prominent non-blockchain

distributed ledgers, such as Corda [9], OmniLedger [30], and Can-

ton [44], which break with several central blockchain paradigms.

For example, some of these ledgers do not establish a system-wide

consensus, do not use a block structure to store data, and/or do not

provide central security goals of traditional blockchains, such as

global consistency, chain-growth, or chain-quality. By departing

from such blockchain paradigms, these systems aim for higher trans-

action throughput and security properties like transaction privacy

that are not easily provided by blockchains. Both of these aspects

are highly desired by industry, thereby making non-blockchain dis-

tributed ledgers very attractive for practical use [14, 19, 23, 24, 39].

Due to the conceptual differences between traditional block-

chains and non-blockchain distributed ledgers, existing security

definitions and results for blockchains do not apply to the class
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of distributed ledger protocols in general, and non-blockchain dis-

tributed ledgers in particular (cf. Section 3 and Section 4).

In this work, we close this gap by proposing the ideal distributed

ledger functionality F
ledger

. This functionality provides a highly

flexible tool set that allows for the modular security analysis of

virtually arbitrary distributed ledgers, thereby, for the first time,

covering not only classical blockchains but also non-blockchain

distributed ledgers. It does so in a single unified framework.

The Ideal Ledger Functionality F
ledger

. To capture and ana-

lyze security properties of arbitrary distributed ledger protocols

including blockchains, the design of and the features offered by

F
ledger

follow these main objectives:

Firstly, F
ledger

is highly flexible due to various parameters, mod-

eled as generic subroutines. This not only allows for capturing a

wide range of distributed ledgers, but also a broad spectrum of se-

curity properties without having to change the ideal functionality

itself. Such security properties include both established (blockchain)

security notions, such as consistency and chain-growth, but also

entirely new security properties such as partial consistency, which
we propose of the first time in this work (see below).

Secondly, the interface and core logic of F
ledger

abstract from

technical details of the envisioned implementations/realizations,

such as purely internal roles (miners or notaries), maintenance

operations such as mining, consensus mechanisms (proof-of-work,

proof-of-stake, Byzantine agreement, . . . ), and setup assumptions

(networkswith bounded delay, honestmajorities, trusted parties, . . . ).

All of these details are left to realizations/implementations. Hence,

F
ledger

can not only be implemented using vastly different, e.g., con-

sensus mechanisms, but F
ledger

also offers a very simple, clean, and

implementation-independent interface to higher-level protocols

which should facilitate their specification, modeling, and analysis.

Thirdly, F
ledger

is built for a very general interpretation of cor-

ruption: parties in a realization cannot only be corrupted directly,

and hence controlled by the adversary, but whether or not they are

considered corrupted may also depend on the security assumptions,

such as an honest majority. For example, if the honest majority

assumption, say in Bitcoin, is violated, one would consider all par-
ticipants to be corrupted, even if they are not directly controlled by

the adversary but still run the protocol honestly, since it is impossi-

ble for honest parties to provide any security guarantees in this case.

We believe that this technique, which has already been successfully

employed in the non-blockchain UC literature before (e.g., in [33]),

will improve security analyses in the field of distributed ledgers. For

example, and as also illustrated by our case study, the commonly

used environment-restricting wrapper is typically obsolete when

using this general corruption model.

We show the power and generality of F
ledger

via two core results,

as further explained below: Firstly, as a fundamental result, we show

that existing results for the modular security of blockchains carry

over to F
ledger

. Secondly, as a case study, we provide the first formal

model and security analysis of a non-blockchain distributed ledger,

namely the prominent Corda system.

Covering Blockchains. To demonstrate that F
ledger

generalizes

the existing literature on blockchains, we first show that F
ledger

is indeed able to capture blockchains as a special case. Instead

of illustrating this via a classical case study, which would typi-

cally prove that, e.g., Bitcoin realizes F
ledger

, we choose a more

general approach. We show that the so far most commonly used

blockchain functionalityG
ledger

[5] (with some syntactical interface

alignments) realizes a suitable instantiation of F
ledger

which cap-

tures the security properties provided by G
ledger

, and demonstrate

that this result also holds for its privacy-preserving variantGPL [26].

Hence, any realization of G
ledger

or GPL (with the mentioned align-

ments) also realizes F
ledger

, which covers all published UC analyses

of blockchains, including Bitcoin [5], Ouroboros Genesis [3], and

Ouroboros Crypsinous [26].

We want to emphasize that, while G
ledger

realizes F
ledger

, both

functionalities differ fundamentally in several core design choices.

For example, G
ledger

is designed for the special case of blockchains

and hence, among others, requires the security property of consis-

tency for realizations. In contrast, F
ledger

requires only the exis-

tence of a totally ordered set of transactions. Similarly, the design

rationales for GPL and F
ledger

are quite different as well.

We also discuss how other published ideal blockchain function-

alities are captured by F
ledger

– though these functionalities have

only been used as setup assumptions for higher-level protocols.

Altogether, this shows that F
ledger

can cover the blockchain

literature and unifies existing models and results.

Case study: Corda. We demonstrate that F
ledger

can capture

non-blockchain distributed ledgers, making F
ledger

the first such

functionality. We do so via a case study. That is, we provide the first

formal analysis of a non-blockchain distributed ledger: Corda [8, 9,
40, 41]. We emphasize that existing ideal blockchain functionalities

are not suitable for capturing Corda (cf. Section 3 and Section 4).

Corda is one of the most widely used distributed ledgers. It is

used by more than 60 companies, banks, and institutions, including

HP Enterprise, Intel, Microsoft, and also by NASDAQ [14, 19, 23–

25, 39, 42]. Leading consulting groups identify Corda as the most

prominent distributed ledger technology [1, 7, 37].

Understanding the security and privacy of Corda is not only

interesting due to its wide spread use in practice, but also from a

scientific perspective because of its conceptual differences to other

distributed ledger technologies. Compared to traditional block-

chains, such as Bitcoin, three major differences strike immediately.

First, Corda does not structure transactions in blocks. The second

one is the lapse of a common state, i. e., no party has a full view

of the state, which in turn improves privacy of transactions. In

particular, while blockchains strive to achieve the notion of consis-
tency, where every party is supposed to have the same full view of

the global state, Corda aims to provide a weaker security notion,

which we call partial consistency. For partial consistency, which
we formalize for the first time in this work, parties may see only

part of the state but these views put together should result in a

consistent global state. The third major difference is the inclusion

of a number of trusted parties in Corda, so-called notaries, which
are used to prevent double-spending (see Section 4 for details).

In our case study, we model Corda and formalize its security and

privacy properties via an instantiation of F
ledger

. We then show that

Corda realizesF
ledger

. Our analysis uncovers and defines the level of

privacy provided for transactions in Corda, including several meta-

information leakages that Corda does not protect against. Further,



while the official specification of Corda requires security only under

the assumption that all notaries are honest, our analysis shows that
Corda achieves security even in the presence of some corrupted

notaries, thereby improving on the official security claims.

Summary of Our Contributions. In summary, our contribu-

tions are as follows:

• We propose, in Section 2, an ideal functionality – called F
ledger

– for general distributed ledgers. It is the first functionality that

can be applied to non-blockchain distributed ledgers. As demon-

strated in this work, it covers both traditional blockchains and

non-blockchain distributed ledgers. Our functionality offers

high flexibility to support a wide variety of different implemen-

tations with various security properties while simultaneously

exposing a simple and implementation independent interface

to higher-level protocols. Thereby F
ledger

not only generalizes

but also unifies the landscape of existing functionalities for

blockchains.

• We show in Section 3 that our functionality subsumes G
ledger

and GPL. In particular, this allows for directly transferring all

published results on the modular security of blockchains, such

as Bitcoin and the Ouroboros family, to our functionality. We

further discuss that other published ideal blockchain functional-

ities, which have so far only been used to model setup assump-

tions, are also captured by F
ledger

.

• In Section 4, we provide the first formal model and security

analysis of a non-blockchain distributed ledger, Corda. As part

of this, we develop and formalize the novel security notion of

partial consistency. Due to Corda’s wide-spread use in practice,

this case study is a significant contribution in its own right.

We provide further details including full formal specifications and

proofs in our technical report [22].

2 AN IDEAL FUNCTIONALITY FOR GENERAL
DISTRIBUTED LEDGERS

In this section, we present the main contribution of our paper: our

ideal functionality F
ledger

for distributed ledgers, which includes

“common” blockchains as a special case. At a high level, F
ledger

is

designed around a read and write operation offered to higher-level

protocols. This captures the two common operations of distributed

ledgers, which allow parties from higher-level protocols to submit
data to the ledger and get access to data from other parties. In what

follows, we firstly explain F
ledger

in detail. Afterwards, we elabo-

rate on F
ledger

’s capabilities to capture different distributed ledger

technologies and established distributed ledger security properties.

2.1 Description of Fledger:
Our functionality F

ledger
is defined in the iUC framework [11],

which is a recently proposed, expressive, and convenient general

framework for universal composability similar in spirit to Canetti’s

UC model [12]. We explain our functionality in such a way that

readers familiar with the UC model are able to understand it even

without knowing the iUC framework.

The functionality F
ledger

is a single machine containing the core

logic for handling incoming read and write requests. In addition

to this main machine, there are also several subroutine machines

Figure 1: Overview of F
ledger

and its subroutines. The open
headed arrow indicates thatA also connects to all of F

ledger
’s

subroutines

that serve as parameters which must be instantiated by a protocol

designer to customize the exact security guarantees provided by

F
ledger

. Figure 1 illustrates the structure of the functionality.
1
Intu-

itively, F
ledger

’s subroutines have the following purposes: F
submit

handles write requests and, e. g., ensures the validity of submitted

transactions, F
read

processes read requests and, e. g., models situa-

tions that not all clients are up-to-date or ensures privacy properties,

F
update

handles updates to F
ledger

’s global state, F
updRnd

controls

updates to F
ledger

’s built-in clock, Finit determines the initial state

of F
ledger

, and F
leak

defines the information that leaks upon cor-

ruption of a party in F
ledger

. As we exemplify in our Corda analysis

in Section 4, these subroutines can, in principle, also specify and

even share their own additional subroutines. For example, all of

the parameterized subroutines could share and access an additional

(potentially global) random oracle subroutine in order to obtain con-

sistent hashes for transactions throughout all operations. We note,

however, that only the fixed parameterized subroutines can directly

access, influence, and change the state of F
ledger

. Any additional

subroutines are transparent to F
ledger

and only serve to further

structure, modularize, and/or synchronize the fixed parameterized

subroutines. The rest of this section describes and discusses the

static subroutines in more detail.

During a run of F
ledger

, there can be multiple instances of the

ideal functionality, each of which models a single session of a dis-

tributed ledger that can be uniquely addressed by a session ID (SID).

Each of these instances/sessions handles an unbounded number of

parties that can read from and write to the ledger, where a party

ID identifies each party (PID). A party (in a session) can either be

honest or corrupted, where only honest parties obtain any form of

security guarantees. In what follows, we explain – from the point of

view of honest parties – the process of submitting new transactions,

adding those transactions to the global state, and then reading from

that state (cf. Figure 2 for a formal definition of these operations).

Dishonest parties and further details are discussed afterwards.

Submitting transactions. During the run of F
ledger

, a higher-

level protocol can instruct an honest party pid in session sid of the

distributed ledger to submit a transaction tx. Upon receiving such

a request, F
ledger

forwards the request to the subroutine F
submit

,
2

which then decides whether the transaction is accepted, i.e., is

“valid”, and which exact information of tx should leak to the adver-

sary. As a result, F
ledger

expects to receive a boolean value from

F
submit

indicating whether the transaction is accepted as well as

1
We choose machines, instead of just algorithms, as parameters since they are more

flexible in terms of storing and sharing state, and since they can interact with the

adversary. For example, they could all have access to a global random oracle.

2
Requests forwarded to subroutines always also contain a copy of the full internal

state of F
ledger

to allow subroutines to make decisions based on, e.g., the current list

of corrupted parties. In what follows, we keep this implicit for better readability.



Figure 2: Excerpt of F
ledger

’s handling of submit, read, and
update operations. See Figure 5 to 6 in Appendix B for the
full specification. pidcur is the current party and sidcur the
ledger’s current session . round is the current time.

an arbitrary leakage. If the transaction tx is accepted, F
ledger

adds

tx together with the submitting party pid and a time stamp (see

below) to a buffer list requestQueue that keeps track of transactions
from honest parties which have not yet been added to the global

transaction list. In any case, both the acceptance result as well as

the leakage are then forwarded to the adversary.

As mentioned above, the specification of F
submit

is a parameter

that is left to the protocol designer to instantiate. This allows for

customizing how the format of a “valid transaction” looks like and

whether submitted transactions are supposed to remain (partially)

private or fully leak to the adversary on the network. For example,

most blockchains do not provide any privacy for transactions, and

hence, for those blockchains the leakage generated byF
submit

would

be the full transaction tx. We provide example instantiations of

F
submit

as well as of all other subroutines in Sections 3 and 4.

Adding transactions to the global transaction list. At the

core of F
ledger

is a global list of transactions msglist, representing
the global state of the ledger. These transactions are ordered, i.e.,

they are numbered without gaps starting from 0, and form the basis

for reading requests of honest parties. Furthermore, they are stored

along with some additional information: the ID of the party which

submitted the transaction and two time stamps indicating when

the transaction was submitted, and when it was added to the global

state (we discuss the modeling of time further below). In addition

to transactions submitted by parties, we also allow the ledger to

contain ordered meta-information represented as a special type of

transaction without a submitting party and without a submitting

a time stamp. This meta transaction can be useful, e.g., to store

block boundaries of a blockchain in those cases where this should

be captured as an explicit property of a realization. Similar to ideal

functionalities for blockchains, the global transaction list of F
ledger

is determined and updated by the adversary, subject to restrictions

that ensure expected security properties.

More specifically, at any point in time, the adversary on the

network can send an update request to F
ledger

. This request, which

contains an arbitrary bit string, is then forwarded to the subroutine

F
update

. The exact format of the bit string provided by the adversary

is not a priori fixed and can be freely interpreted by F
update

. This

subroutine then computes and returns to F
ledger

an extension of

the current global state, an update to the list requestQueue of

submitted transactions that specify transactions which should be

removed (as those have now become part of the global state, or they

became invalid concerning the updated global state), and leakage for

the network adversary. Upon receiving the response from F
update

,

F
ledger

ensures that appending the proposed extension to msglist
still results in an ordered list of transactions. If this is the case,

then F
ledger

applies the proposed changes to both lists. In any

case, F
ledger

sends the leakage from F
update

as well as a boolean

indicating whether any changes have been applied to the adversary.

The functionality F
ledger

, by default, guarantees only that there

exists a unique and ordered global list of transactions. Further

security properties which should be enforced for the global state

can be specified by appropriately instantiating F
update

. For example,

F
update

can be used to enforce the security properties of double
spending protection and no creation.

We note that the default guarantee provided by F
ledger

(existence

of a unique and ordered global list of transactions) is somewhat

weaker than the security notion of consistency for blockchains,

which additionally requires that all honest parties also obtain the

same (prefix of) that global state. Indeed, many distributed ledgers,

such as Corda, are not designed to and do not meet this notion of

consistency in its traditional sense (cf. our case study in Section 4). If

desired, the property of consistency can, of course, also be captured

in F
ledger

, namely via a suitable instantiation of F
read

(see below).

Reading from the global state. A higher-level protocol can

instruct a party of F
ledger

to read from the global state. There are

two types of reading requests that we distinguish, namely, local and
non-local read requests: a local read request generates an immedi-

ate output based on the current global state, whereas a non-local



read request might result in a delayed output, potentially based

on an updated global transaction list, or even no output at all (as

determined by the adversary on the network). Local reads capture

cases where a client already has a copy of the ledger stored within

a local buffer and reads from that buffer. To the best of our knowl-

edge local reads offered by realizations have not been formalized

in idealizations before in the blockchain literature. This is a very

useful feature for higher-level protocols since when local reads are

possible they do not have to deal with arbitrarily delayed responses,

dropped responses, or intermediate state changes. In contrast, a

non-local read instead models a thin client that first has to retrieve

the data contained in the ledger via the network, and hence, cannot

guarantee when (and if at all) the read request finishes.

More specifically, when F
ledger

receives a read request, the sub-

routine F
read

is used to decide whether the read request is per-

formed locally or non-locally (this decision might depend on, e.g.,

party names or certain prefixes contained in the read-request) and

which exact information leaks to the adversary by the read opera-

tion. F
ledger

provides the adversary with the responses of F
read

. The

adversary is then supposed to provide a bit string used to determine

the output for the read request. This response is forwarded back to

F
read

, which uses the bit string to generate the read request’s final

output. The exact format of the bit string provided by the adversary

is not a priori fixed and can be freely interpreted by F
read

. Finally,

the output is forwarded by F
ledger

to the higher-level protocol.

On a technical level, for properly modeling local read requests,

we use a feature of the iUC framework that allows for forcing the

adversary to provide an immediate response to certain network

messages (in Figure 2 the operation “send responsively” indicates

such network messages with immediate responses). That is, if the

adversary receives such a network message and wants to continue

the protocol run at all, then in the next interaction with the protocol

he has to provide the requested response; he cannot interact with

any part of the overall protocol before providing the response. As

shown in [10], this mechanism can, in principle, also be added

to Canetti’s UC model. Non-local read requests are split into two

separate activations of F
read

, with the adversary being activated

in-between: the adversary has to be able to delay a response to such

requests and potentially also update the global state.

Besides local and non-local reads, any further security properties

regarding reading requests can be specified by instantiating F
read

appropriately. F
read

can also be used to model access and privacy
properties of the global state where, e.g., parties may read only those

transactions from the global state where they have been involved

in. We use the latter in our analysis of Corda (cf. Section 4).

Having explained the basic operations of submitting transactions,

we now explain several further details and features of F
ledger

.

Initialization of F
ledger

. Distributed ledgers often rely on some

initial setup information – in blockchains often encoded in a so-

called genesis block – that is shared between all participants. To

allow for capturing such initially shared state F
ledger

includes an

ideal initialization subroutine Finit that can be defined by a protocol

designer and is used to initialize the starting values of all internal

variables of F
ledger

, including transactions that are already part

of the global transaction list (say, due to a genesis block that is

assumed to be shared by all parties).

Built-in clock. Our functionality F
ledger

includes a clock for

capturing security properties that rely on time. More specifically,

F
ledger

maintains a counter starting at 0 used as a timer. One can in-

terpret this counter as an arbitrary atomic time unit or the number

of communication rounds determined by an ideal network func-

tionality. As mentioned above, both the transactions submitted to

the buffer requestQueue and transactions included in the global

ordered transaction list msglist are stored with timestamps repre-

senting the time they were submitted respectively added to the

global state. This allows for defining security properties, which can

depend on this information.

Higher-level protocols/the environment can request the current

value of the timer, which not only allows for checking that passed

time was simulated correctly but also allows for building higher-

level protocols that use the same (potentially global) timer for their

protocol logic. The adversary on the network is responsible for

increasing the timer. More specifically, he can send a request to

F
ledger

to increase the timer by 1. This request is forwarded to and

processed by a subroutine F
updRnd

, which gets to decide whether

the request is accepted and whether potentially some information

is to be leaked to the adversary. If the request is accepted, then

F
ledger

increments the timer by 1. In any case, both the decision

and the (potentially empty) leakage are returned to the adversary.

The subroutine F
updRnd

can be instantiated to model various

time-dependent security properties, such as various forms of live-
ness [20, 21, 38] (see below). Note that the timer in F

ledger
is optional

and can be ignored entirely if no security properties that rely on

time should be modeled. In this case, F
updRnd

can reject (or accept)

all requests from the adversary without performing any checks.

Corrupted parties. At any point in time, the adversary can

corrupt an honest party in a certain session of a distributed ledger.

This is done by sending a special corrupt request to the correspond-

ing instance of F
ledger

. Upon receiving such a request, the ideal

functionality uses a subroutine F
leak

to determine the leakage upon

a party’s corruption. In the case of ledgers without private data

where the adversary already knows all transactions’ content, this

leakage can be empty. However, in cases where privacy should

be modeled and hence the adversary does not already know all

transactions, this leakage typically includes those transactions that

the corrupted party has access to.

As is standard for ideal functionalities, we give the adversary

full control over corrupted parties. More specifically, F
ledger

acts

as a pure message forwarder between higher-level protocols/the

environment and the network adversary for all corrupted parties.

Also, the adversary may send a special request to F
ledger

to perform

a read operation in the name of a corrupted party; this request is

then forwarded to and processed by the subroutine F
read

, and the

response is returned to the adversary. Just as forF
leak

, this operation

is mainly included for instantiations of F
ledger

that include some

form of privacy for transactions, as in all other cases, the adversary

already knows the full contents of all transactions.

Novel interpretation of corruption in realizations. Typi-

cally, realizations of ideal functionalities use the same corruption

model as explained above. That is, a party in a realization considers

itself to be corrupted if it (or one of its subroutines) is under direct

control of the adversary. While realizations with this corruption



model are supported by F
ledger

, we also propose to use a more

general interpretation of corruption in realizations (cf., e.g., [33]):

parties in a realization of F
ledger

should consider themselves to be

corrupted – essentially by setting a corruption flag – not just if the

adversary directly controls them, but also if an underlying security

assumption, such as honest majority or bounded network delay, is

no longer met. Importantly, even if a party sets a corruption flag

due to broken assumptions it still follows the protocol honestly. Set-

ting a corruption flag allows a simulator to tell F
ledger

that a party

is corrupted, and hence, F
ledger

no longer has to provide security

guarantees for parties that rely on broken assumptions.
3

This interpretation of corruption, which is a novel concept in

the field of universally composable security for blockchains and

distributed ledgers, avoids having to encode specific security as-

sumptions into F
ledger

(and more generally ideal functionalities

for blockchains and distributed ledgers), and hence, makes such

functions applicable to a wider range of security assumptions and

corruption settings: the corruption status of a party is sufficient to

determine whether F
ledger

must provide security guarantees for

that party. It is not necessary to include any additional security

assumptions of an intended realization in F
ledger

explicitly (e.g., by

providing consistency only as long as there is an honest majority

of parties) or to add a wrapper on top of F
ledger

that forces the

environment to adhere to the security assumptions. Such security

assumptions can rather be specified by and stay at the level of

the realization, which in turn reduces the complexity of the ideal

functionality while enabling a wide variety of realizations based

on potentially vastly different security assumptions. We use this

more general concept of corruption in our case study of Corda

(cf. Section 4.2), where a client considers itself to be corrupted not

only if she is under the direct control of the adversary but also if

she relies on a corrupted notary. This models that Corda assumes

(and indeed requires) notaries to be honest in order to provide se-

curity guarantees. Importantly, this is possible without explicitly

incorporating notaries and their corruption status in F
ledger

. In fact,

following the above rationale, F
ledger

still only has to take care of

the corruption status of clients.

Further features. F
ledger

also provides and supports many

other features, including dynamic registration of clients, different

client (sub-)roles with potentially different security guarantees, full

support for smart contracts, and a seamless transition between

modeling of public and private ledger without having to reprove

any security results. We discuss these features in Appendix C.

2.2 Ledger Technologies and Security
Properties

Having explained the technical aspects of F
ledger

, this section dis-

cusses that F
ledger

can indeed capture various types and features of

distributed ledgers as well as their security properties – including

new ones – illustrating the generality and flexibility of F
ledger

.

3
We note that this concept can easily be extended to capture multiple different levels

of “broken” assumptions, e.g., to handle cases where the assumption for the security

property of liveness is broken, but another assumption that guarantees the property

of consistency still holds. The main requirement is that the environment can check

that real and ideal world are consistent in their corruption levels.

2.2.1 Ledger Technologies. F
ledger

supports a wide range of ledger

types and features, including all of the following:

Types of global state. At the core of F
ledger

is the totally or-

dered msglist, which includes transactions and meta data and is

interpreted by F
read

and F
update

. By defining both subroutines

in a suitable manner, it is possible to capture a wide variety of

different forms of global state, including traditional blockchains

(e.g., [4, 16, 20, 26, 45]), ledgers with a graph structure (e.g., [6, 8]) or

ledgers that use sharding [30, 36, 47]. In Section 3, we describe how

blockchains are captured and in Section 4 we capture the global

graph used by Corda. To capture sharding, where participants are

assigned to a shard of a ledger and are supposed to have a full view

of their respective shard, F
update

ensures that each transaction is as-

signed to a specific shard (this information is stored together with

the transaction in msglist). F
read

then ensures that parties have

access only to transactions assigned to their respective shard(s).

Consensus protocols. F
ledger

itself is agnostic to the consensus

protocol used in the realization. This allows for realizations using a

wide variety of consensus protocols such as Byzantine fault-tolerant

protocols, Proof-of-Work, Proof-of-Stake, Proof-of-Elapsed-Time,

Proof-of-Authority, etc. If desired, it is also possible to customize

F
update

to capture properties that are specific to a certain consensus

algorithm. In Section 3, we exemplify that F
ledger

can indeed cap-

ture Proof-of-Work and Proof-of-Stake blockchains. In Section 4, we

show that F
ledger

can capture the partially centralized consensus

service of Corda, i.e., Proof-of-Authority. Other consensus mecha-

nisms can be captured using analogous techniques.

Network models. F
ledger

can capture various types of network

models, including, e.g., (i) synchronous, (ii) partially synchronous,

and (iii) asynchronous networks. To model these cases, F
updRnd

needs to be customized appropriately. For synchronous/partially

synchronous network models one typically enforces in F
updRnd

that time/rounds cannot advance as long as messages are not de-

livered within expected boundaries, say 𝛿 rounds (cf. Section 4).

Additionally, one might also define F
read

to give honest parties read

access to (at least) all messages in msglist that are more than 𝛿 (or

𝑐 · 𝛿 for some constant 𝑐) rounds old. To model fully asynchronous

networks, F
updRnd

and F
read

do not impose any restrictions.

Time models. F
ledger

can capture different time models includ-

ing, e.g., (i) synchronous clocks, (ii) clocks with bounded time drift,

and (iii) asynchronous clocks. For synchronous clocks, we can di-

rectly use the global clock of F
ledger

which then defines the time for

all parties. For other types of clocks, protocol designers typically

add a new type of read request (via the bit stringmsg that is part of

read requests, say, by using msg = getLocalTime and interpreting

this in F
read

) for reading the local time of a party. F
read

then allows

the adversary to determine the local time freely (for asynchronous

clocks) or subject to the condition that it is within a certain time

frame w.r.t. the global time (for clocks with bounded shift).

Smart contracts and dynamic party (de-)registration. As

noted above and detailed in Appendix C, F
ledger

can capture both

of these features.

2.2.2 Security Properties. F
ledger

can capture a wide variety of

(combinations of) security properties from the blockchain secu-

rity literature, including existing properties from both game-based

and universally composable settings. This includes the following



properties, which have game-based and/or universally composable

formalizations:

Consistency [21, 30, 38] as already explained above, states that

honest parties share a prefix of the global state of a ledger. This can

be enforced by properly defining F
read

as we also show in Section 3.

We note that the notions of agreement, persistence, and common

prefix [2, 20] are closely related to consistency and can be covered

in an analogous way.

Chain-growth [5, 16, 20, 28, 38] ensures that a blockchain grows

at least with a certain speed, i.e., a certain minimal number of

blocks is created per time unit. As we show in Section 3, this can

be captured in F
ledger

via F
updRnd

. Specifically, F
updRnd

rejects

round/time update requests whenever there are not sufficiently

many blocks yet as would be required for the next time period.

Chain-quality [5, 16, 20, 28, 38] requires that honest users

create a certain ratio of blocks in a blockchain in order to prevent

censorship. This can be captured in F
ledger

, e.g, by recording the

block creators as metadata in F
ledger

’s msglist. F
update

then rejects

updates if they violate chain-quality .

Liveness [5, 16, 20, 28, 38] ensures that transactions submitted

by honest clients enter the global state respectively the state read by

other honest clients within 𝜌 rounds. As we exemplify in Section 3

and 4, protocol designers can use F
updRnd

to ensure various forms of

liveness. Specifically, F
updRnd

forbids the adversary from advancing

time as long as conditions for the next time unit are not yet met,

e.g., because a transaction that is already 𝜌 rounds old is not yet in

the global state.

Privacy Properties, such as transaction privacy [31, 35, 43, 46],

ensure secrecy of transactions, e.g., that only parties involved

in a transaction are aware of its contents. To capture different

forms/levels of privacy in F
ledger

, the leakages of its subroutines

are specified to keep private information hidden from the adver-

sary as long as the adversary does not control any parties that have

access to this information. Furthermore, F
read

ensures that also

honest parties gain read access only to information that they are

allowed to see. In Section 4, we use this technique to formalize and

analyze the level of privacy of Corda, including which information

is leaked to the adversary for honest transactions.

Soundness Properties, such as transaction validity and double-

spending protection, can be captured by customizing F
submit

and/or

F
update

to reject incoming messages that violate soundness prop-

erties. This is exemplified in Sections 3 and 4 with further details

provided in our technical report [22].

New security properties that have not yet been formally defined

in the distributed ledger security literature can potentially also be

supported by F
ledger

. One example is our novel notion of partial

consistency (cf. Section 4).

In summary, as discussed above, F
ledger

is indeed able to formalize

existing security notions from the game-based blockchain secu-

rity literature [16, 20, 21, 28, 31, 35, 38, 43, 46]. For the univer-

sally composable blockchain security literature we show an even

stronger statement in Section 3: F
ledger

can not only formalize exist-

ing security properties; existing security proofs and security results

obtained for concrete blockchains, such as Bitcoin, carry over to

F
ledger

(after lifting them to the abstraction level of F
ledger

).

3 COVERING BLOCKCHAINS WITH Fledger

In this section, we demonstrate that F
ledger

is able to capture tra-

ditional blockchains as a special case. Firstly, we show that the

so far most commonly used blockchain functionality G
ledger

[5]

(with some syntactical interface alignments) realizes a suitable in-

stantiation of F
ledger

, which captures the security guarantees of

G
ledger

, and demonstrate that this result also holds for its privacy-

preserving variant GPL [26]. Hence, any realization of G
ledger

or

GPL (with interface alignments) also realizes F
ledger

. This in fact

covers all published UC analyses of blockchains, including Bit-

coin [5], Ouroboros Genesis [3], and Ouroboros Crypsinous [26].

Secondly, we discuss that F
ledger

can also capture other published

ideal blockchain functionalities, which so far have been used only

to model setup assumptions for higher-level protocols. Altogether,

this illustrates that F
ledger

not only generalizes but also unifies the

landscape of ideal blockchain functionalities from the literature.

The ideal blockchain functionality G
ledger

. Let us start by

briefly summarizing the ideal blockchain functionality G
ledger

(fur-

ther information, including a formal specification of G
ledger

in the

iUC framework, is available in in our technical report [22]. G
ledger

offers a write and read interface for parties and is parameterized

with several algorithms, namely validate, extendPolicy,Blockify,
and predictTime, which have to be instantiated by a protocol de-

signer to capture various security properties. By default, G
ledger

provides only the security property of consistency which is stan-

dard for blockchains. An honest party can submit a transaction

to G
ledger

. If this transaction is valid, as decided by the validate
algorithm, then it is added to a buffer list. G

ledger
has a global list of

blocks containing transactions. This list is updated (based on a bit

string that the adversary has previously provided) in a preprocess-

ing phase of honest parties. More specifically, whenever an honest

party activates G
ledger

, the extendPolicy algorithm is executed to

decide whether new “blocks” are appended to the global list of

blocks, with the Blockify algorithm defining the exact format of

those new blocks. Then, the validate algorithm is called to remove

all transactions from the buffer that are now, after the update of

the global blockchain, considered invalid. An honest party can then

read from the global blockchain. If the honest party has been regis-

tered for a sufficiently long amount of time (larger than parameter

𝛿), then it is guaranteed to obtain a prefix of the chain that contains

all but the last at most windowSize blocks. This captures the prop-
erty of consistency. In addition to these basic operations, G

ledger

also supports dynamic (de-)registration of parties and offers a clock,

modeled via a subroutine G
clock

, that advances depending on the

output of the predictTime algorithm (and further constraints).

As becomes clear from the above short description of G
ledger

,

F
ledger

draws inspiration from G
ledger

. However, there are several

fundamental differences:

• G
ledger

is designed for capturing blockchains and therefore, e.g.,

requires that transactions are stored in a “block” format (via the

Blockify algorithm) and always provides the security property

of consistency. As already discussed in Section 2, F
ledger

only

requires the existence of a totally ordered list of transactions.

• Read operations in G
ledger

always output a full prefix of G
ledger

’s

blockchain in plain, i.e., G
ledger

is built for blockchains without

privacy guarantees and those that do not modify/interpret data



in any way. F
ledger

includes a parameter F
read

to modify and also

restrict the contents of outputs for read requests, which in turn

allows for capturing, e.g., privacy properties (as illustrated by

our Corda case study).

• G
ledger

takes a lower level of abstraction compared to F
ledger

.

That is, G
ledger

has several details of the envisioned realization

built into the functionality and higher-level protocols have to

take these details into account. In other words, the rationale

of how higher-level protocols see and deal with blockchains

is different to F
ledger

. G
ledger

requires active participation of

higher-level protocols/the environment, while F
ledger

models

blockchains (and distributed ledgers) essentially as black boxes

that higher-level protocols use. More specifically, G
ledger

includes

a mining or maintenance operation MaintainLedger that higher-
level protocols/the environment have to call regularly, modeling

that higher-level protocols have to manually trigger mining or

state update operations in the blockchain for security to hold true.

Similarly, the clock used by G
ledger

also has to be regularly and

manually triggered by higher-level protocols/the environment

for the run of the blockchain to proceed. In contrast, F
ledger

abstracts from such details and leaves them to the realization.

The motivation for this is that higher-level protocols usually do

not (want to) actively participate in, e.g., mining operations and

rather expect this to be handled internally by the underlying

distributed ledger.

• G
ledger

includes a predictTime parameter that, based on the num-

ber of past activations (but not based on the current global

state/blockchain), determines whether time should advance. This

parameter can be synchronized with suitable definitions of the

extendPolicy, which has access to and determines the global

state, to model time dependent security properties such as live-

ness. F
ledger

instead allows the adversary to choose arbitrarily

when time should advance. The single parameter F
updRnd

can

then directly enforce time dependent security properties without

requiring synchronization with other parameters (cf. Section 2.2).

• G
ledger

uses algorithms as parameters, whereas F
ledger

uses sub-

routines, with the advantages explained in Footnote 1.

In summary, the main differences between G
ledger

and F
ledger

are

due to (i) different levels of abstraction to higher-level protocols

and (ii) the fact that G
ledger

is built specifically for traditional block-

chains. Both of these aspects have to be addressed to show that

G
ledger

is a realization of a suitable instantiation of F
ledger

. To ad-

dress (i), we use a wrapperW
ledger

that we add on top of the I/O

interface of G
ledger

and which handles messages from/to the envi-

ronment. This wrapper mainly translates the format of data output

by G
ledger

to the format used by F
ledger

(e.g., from a blockchain to a

list of transactions). It also handles the fact that F
ledger

does not in-

clude certain operations on the I/O interface by instead allowing the

adversary A to run the maintenance operation MaintainLedger
and perform clock updates in G

clock
even in the name of honest

parties. That is,W
ledger

models real world behavior, using A as a

scheduler, where blockchain participants perform mining based on

external events, such as incoming network messages, without first

waiting to receive an explicit instruction from a higher-level proto-

col to do so (see also the remarks following Corollary 3.2). Issue (ii)
is addressed via a suitable instantiation of the parameters of F

ledger

Figure 3: Realization relation ofG
ledger

and F Gledger
ledger

as stated
in Theorem 3.1. The system E denotes the environment,
modeling arbitrary higher level protocols. All machines are
additionally connected to the network adversary.

in order to capture the same (blockchain) properties provided by

G
ledger

respectively the parameterized algorithms of G
ledger

. This

instantiation roughly works as follows, with full definitions and

details provided in our technical report [22]:

• Finit is defined to run the extendPolicy algorithm to generate

the initial transaction list (that is read from the blocks output

by the algorithm). This is because extendPolicy might already

generate a genesis block during the preprocessing of the first

activation of the functionality before any transactions have even

been submitted.

• F
submit

executes the validate algorithm to check validity of in-

coming transactions.

• F
update

executes the extendPolicy and Blockify algorithms to

generate new blocks from the update proposed by the adversary.

These blocks are transformed into individual transactions which

are appended to the global transaction list of F
ledger

together

with a special meta transaction that indicates a block bound-

ary. Additionally, the validate algorithm is used to decide which

transactions are removed from the transaction buffer.

• F
read

checks whether a party has already been registered for

an amount of time larger than 𝛿 and then either requests the

adversary to provide a pointer to a transaction within the last

windowSize blocks or lets the adversary determine the full output

of the party. We note that F
read

has to always use non-local reads:

this is because a read operation inG
ledger

might change the global

state during the preprocessing phase and before generating an

output, i.e., read operations are generally not immediate (in the

sense defined in Section 2).

• If the parameters of G
ledger

are such that they guarantee the prop-

erty of liveness, then F
updRnd

can be defined to also encode this

property (cf. Section 2); similarly for the time dependent security

property of chain-growth and other time-related properties.

• F
leak

does not leak (additional) information as all information is

leaked during submitting and reading.

Let F Gledger

ledger
be the protocol stack consisting of F

ledger
with all of

its subroutines instantiated as sketched above. Then we can indeed

show that G
ledger

(with the wrapper W
ledger

) realizes F Gledger
ledger

(cf.

Figure 3).

Theorem 3.1 (informal). LetF Gledger

ledger
be as above and letW

ledger

be the wrapper for G
ledger

and its subroutine clock G
clock

. Then,

(W
ledger

| G
ledger

,G
clock

) ≤ F Gledger

ledger
.

We formalize this theorem and provide precise specifications of

F Gledger

ledger
, W

ledger
, G

ledger
, and G

clock
as well as a full proof in the



full version of this paper [22]. As explained above, the additional

componentW
ledger

merely aligns the syntax of G
ledger

and F
ledger

,

and makes explicit that maintenance operations and clock updates

are performed automatically based on external events. In fact, all

existing higher-level protocols we are aware of do not trigger main-

tenance operations and do not update the clock themselves (see,

e.g., [27]). They rather leave this to the adversary/environment, as

one might expect. Hence, from the point of view of a higher-level

protocol, typically it does not matter whether it uses G
ledger

or

F Gledger
ledger

; there are only slight syntactical alignments necessary.

From Theorem 3.1, transitivity of the realization relation, and

the composition theorem of the iUC framework we immediately

obtain that existing realizations of G
ledger

also apply to and can be

re-used with F
ledger

.

Corollary 3.2 (informal). Let Pblockchain be a realization of

G
ledger

, e.g., Bitcoin or Ouroboros Genesis. Furthermore, let QFGledger
ledger

be a higher-level protocol using F Gledger

ledger
and let QP be the same

protocol as Q but using Pblockchain (plus the wrapper W
ledger

and

G
clock

) instead of F Gledger

ledger
. Then, QP realizes QFGledger

ledger .

The corollary intuitively states that if we have analyzed and proven

secure a higher-level protocol Q based on F Gledger
ledger

, then Q remains

secure even if we run it with an actual blockchain P
blockchain

that

realizes G
ledger

.

GPL and other ideal blockchain functionalities. Similarly to

the above result, we provide a proof sketch showing that G
ledger

’s

privacy preserving variant GPL [26] (plus a wrapper aligning syntax

and mapping abstraction levels) also realizes a suitable instantiation

of F
ledger

in our technical report [22]. Hence, the famous privacy

preserving blockchain protocol Ouroboros Crypsinous [26], which

has been proven to realize GPL, also realizes F
ledger

with slight

adjustments to the interface as described above. Besides GPL, we

also discuss further ideal ledger functionalities [17, 18, 29] in our

technical report [22] which so far have only been used to model

setup assumptions for higher-level protocols and which have not

been realized yet. We show that F
ledger

can be instantiated to model

the same security properties as those ideal functionalities and hence

can be used as an alternative within higher-level protocols.

4 CASE STUDY: SECURITY AND PRIVACY OF
THE CORDA LEDGER

Corda is one of the most widely employed distributed ledgers. It is

a privacy-preserving distributed ledger where parties share some

information about the ledger but not the full view. It is mainly

used to model business processes within the financial sector. In

this section, we first give a description of Corda. We then provide

a detailed security and privacy analysis by proving that Corda

realizes a carefully designed instantiation of F
ledger

.

4.1 Description of the Corda Protocol
There are two types of participants/roles in Corda: (i) Nodes or
clients, who can submit transactions to and read from the ledger, and

(ii) notary services (called just notaries in what follows) which are

trusted services that are responsible for preventing double spending.

Each participant is identified via its public signing key, which is cer-

tified via one or more certificate agencies and then distributed via a

so-called network service provider to all participants. All participants
communicate via secure authenticated channels.

Clients own states (sometimes also called facts) in Corda. A state

typically represents an asset that the party owns in reality, e.g.,

money, bonds, or physical goods, like a car. States can be “spent”

via a transaction, which consumes a set of input states and creates

a set of new output states. These transactions are validated by

notaries to prevent double spending of states.

States, transactions, attachments. On a technical level, a state
is represented via a tuple consisting of at least one owner of the

state (identified via public signature keys) and an arbitrary bit

string that encodes the asset. States are stored as the outputs of

transactions in Corda, similar to how Bitcoin stores ownership

of currency as an output of a transaction. Transactions in Corda

consist of a (potentially empty) set of pointers to input states, a
(potentially empty) set of pointers to reference states (see below), a
set of output states, a non-empty set of participants (clients), a notary
that is responsible for validating this transaction and for preventing

double spending of its inputs, a (potentially empty) set of pointers to

smart contracts, an arbitrary bit string that can encode parameters

for the transaction, and an ID that is computed as a hash over the

transaction. The participants contain at least all owners of input

states, who are expected to confirm the transaction by a signature.

One of the participants takes the role of an initiator, who starts and
processes the transaction, while the other participants, if any, act

as so-called signees who, if they agree with the transaction, only

add their signatures to confirm the transaction. The set of input

states can be empty, which allows for adding new assets to Corda

by creating new output states. The referenced smart contracts are

stored in so-called attachments with a unique ID (computed via

the hash of the attachment) and can be used to impose further

conditions for the transaction to be performed. These conditions

may in particular depend on reference states, which, unlike input
states, are not consumed by the transaction but rather only provide

some additional information for the smart contracts. For example,

a smart contract might state that an initiator’s car is bought by

a signee only if its age is below a certain threshold. A reference

state might contain the manufacturing date of the car, including a

signature of the manufacturer, which can then be validated.
4

In the following, we call the set of input states, reference states,

and smart contracts the direct dependencies of a transaction. The set
of (full) dependencies of a transaction is a set of all direct dependen-

cies, their respective direct dependencies, and so on. A transaction

is called valid if the format of the transaction is correct, the set

of participants includes all owners of input states, and all smart

contracts referenced by the transaction allow the transaction.

Partial views. In a Corda instance, the set of all transactions

and attachments used by those transactions forms a global directed

graph (which is not necessarily a tree or a forest). However, clients

do not obtain a full view of this graph. Instead, each client has only

a partial view of the global graph consisting of those transactions it

is involved in as an initiator/signee as well as the full dependencies

4
In addition to reference states, smart contracts can also access so-called oracles, which

are trusted third parties, to provide data points. Since the same can also be achieved

by reference states, we did not explicitly include oracles in our analysis.



of those transactions. Generally speaking, a client forwards one

of its known transactions 𝑡𝑥 (or one of its known attachments) to

another client only if both clients are involved in a transaction

𝑡𝑥 that (directly or also indirectly) depends on 𝑡𝑥 , i.e., where both

clients are allowed to and need to learn 𝑡𝑥 in order to validate 𝑡𝑥 .

This decentralized graph structure, where clients are supposed to

learn only those parts that they actually are involved in, facilitates

privacy but makes it impossible for an individual client to detect

and protect itself against double spending attacks: Assume Alice

has an input state representing a car and she uses this state in a

transaction with Bob. Now, Alice might use the same state again in

a transaction with Carol. Both Bob and Carol would assume that

they now own Alice’s car, however, neither of them can detect that

Alice has sold her car twice since neither of them is able to see

both transactions. To solve this problem, Corda, as already briefly

mentioned, introduces the concept of notaries, which are trustees

that are responsible for validating transactions and preventing

double spending, as discussed in more detail in what follows.

Each transaction 𝑡𝑥 is assigned one notaryN who is responsible

for this transaction; N , just as the participants, also learns the

full dependencies of 𝑡𝑥 . To be able to detect double spending of

input states, it is required that 𝑡𝑥 only uses inputs for which N
is also responsible for, i. e., the input state was produced as an

output for which N is responsible. The notary then checks that 𝑡𝑥

is valid (which entails checking that the set of participants of 𝑡𝑥

contains all owners of input states), there are valid signatures of all

participants, and also that no input state has already been used by

another transaction. If this is the case, the notary signs 𝑡𝑥 , which

effectively adds 𝑡𝑥 to the global graph of Corda. To change the

notary N responsible for a certain state to a different one, say N ′
,

Corda offers a special notary change transaction. This transaction
takes a single input state, generates a single output state that is

identical to the input, and is validated by the notary N who is

responsible for the input state. The responsibility for the output is

then transferred toN ′
, i.e., future transactions need to rely on that

notary instead.

Submitting transactions. A new transaction is first signed by

the initiator, who then forwards the transaction to all signees to

collect their signatures. The initiator then sends the transaction

together with the signatures to the notary, who adds his own sig-

nature to confirm validity of the transaction. The initiator finally

informs all signees that the transaction was successful. The initiator

is required to know the full dependencies of the transaction such

that he can distribute this information to signees and the notary.

To obtain this knowledge in the first place, which might include

input states known only to, say, one of the signees, clients/signees

can proactively send known transactions to other clients. In what

follows, we say that a client pushes a transaction .

Customization and security goals. All protocol operations

in Corda, such as the process of submitting a transaction, can be

customized and tailored towards the specific needs of a deployment

of Corda. For example, one could decide to simply accept transac-

tions without signatures of a notary, with all of its implications for

security and double spending. Our description given above (and

our analysis carried out below) of Corda follows the predefined

standard behavior which captures the most typical deployment as

Figure 4: Corda protocol Pc and realization statement.

specified by the documentation [41]. The white paper of Corda [9]

states three major security goals:

Partial consistency: Whenever parties share some transaction,

they agree on the content of the transaction as well as on (contents

of) all dependencies. In this work we propose and formalize the

novel notion of partial consistency to capture this goal, which is

stated only on an intuitive level in the white paper.

Double spending protection: Transaction’s output states can-
not be spent twice.

Privacy: A transaction between a group of parties is only visible

to them and all parties that need to validate this transaction as part

of validating another (dependent) transaction in the future.

According to the Corda white paper, these goals should be achieved

under the assumption that all notaries behave honestly. Jumping

slightly ahead, while some level of trust into notaries is clearly

necessary, our analysis refines this requirement by showing that

participants enjoy security guarantees as long as they do not rely

on a dishonest notary (even if other notaries are dishonest).

4.2 Model of Corda in the iUC Framework
Our model Pc

of Corda in the iUC framework closely follows

the above description. Formally, Pc
is the protocol (client |

notary, Funicast, Fcert, Fro) consisting of a client machine that

is accessible to other (higher-level) protocols/the environment, an

internal notarymachine, and three ideal subroutines Funicast, Fcert,
and Fro modeling secure authenticated channels, certificate based

signatures using a EUF-CMA signature scheme, and idealized hash

functions respectively (cf. Figure 4). In a run, there can be multiple

instance of machines, modeling different participants of the proto-

col. We consider a static but unbounded number of participants, i.e.,

clients and notaries. We discuss technical details of our modeling

in what follows.

Recall from above that signees are free to agree or decline an

incoming transaction, depending on whether their higher-level pro-

tocol wants to perform that transaction. We model agreement to a

transaction by letting the higher-level protocol submit the transac-

tion (but not its dependencies) to the signee first. Upon receiving a

new transaction from an initiator, the signee then checks whether

it has previously received the same transaction from the higher-

level protocol and accepts or declines accordingly. This modeling

is realistic: in practice, the users of the initiator and signee clients

would typically have to first agree on some transaction out of band,

and can then input this information into the protocol. Since this

modeling means that transactions are submitted to both clients in

the initiator and the signee roles, we assume w.l.o.g. that transac-

tions indicate which party is supposed to perform the initiation

process (e.g., by listing this party first in the list of participants).



In addition to explicit agreement of signees, we also model the

process of pushing a transaction to another client. On a technical

level, this is modeled via a special submit request that instructs a

client to push one of its known transactions to some client with a

certain PID. Explicitly modeling agreement of signees and pushing

of transactions, instead of assuming that this is somehow done

out-of-band, allows for obtaining more realistic privacy results.

A notary in Corda may not just be a single machine but a ser-

vice distributed across multiple machines. In our modeling, for

simplicity of presentation, we model a notary as a single machine.

However, the composition theorem of the iUC framework then

allows for replacing this single machine with a distributed system

that provides the same guarantees, thereby extending our results

also to distributed notaries.

All network communication between parties of Corda is via an

ideal functionality Funicast, modeling authenticated secure unicast

channels between all participants. This functionality also offers

a notion of time and guarantees eventual message delivery, i.e.,

time may not advance if there is any message that still needs to be

delivered and has been sent at least 𝛿 time units ago.

We allow dynamic corruption of clients and notaries. The ad-

versary gains full control over corrupted clients and notaries and

can receive/send messages in their name from/to other parts of

the protocol/higher-level protocols. While the ideal subroutines

are not directly corruptible, the adversary can simply corrupt the

client/notary using the subroutine to, e.g., sign messages in the

name of that client/notary.

In addition to being explicitly corruptible by the adversary, clients

also consider themselves to be (implicitly) corrupted – they set a

corruption flag but otherwise follow the protocol honestly – if they

know a transaction that relies on (signatures of) a corrupted no-

tary.
5
More specifically, we capture the fact that Corda needs to

assume honesty of notaries to be able to provide its security guar-

antees. Consequently, if a client relies on a corrupted notary, then

it cannot obtain the intended security guarantees such as double

spending protection anymore. Note that this modeling actually cap-

tures a somewhat weaker security assumption than Corda: Corda

officially requires all notaries to be honest in order to provide se-

curity guarantees. Our modeling only assumes that those notaries

that a specific client actually relies on are honest, i.e., our analysis

shows that security guarantees can be given to clients even in the

presence of corrupted notaries as long as these notaries are not

used by the clients.

4.3 Corda Realizes F c
ledger

In this section, we present our security analysis of Corda. On a high-

level, we will show the following security properties for Corda:

Partial consistency: All honest parties read subsets of the same

global transaction graph. Hence, for every transaction ID they

in particular also agree on the contents and dependencies of the

corresponding transaction.

Double spending protection: The global graph, which honest

parties read from, does not contain double spending.

5
Here we use the more general corruption model we proposed in Section 2 to capture

the security assumption of honest notaries in Corda. Using this modeling, we do not

have to hardwire this assumption explicitly into F
ledger

.

Liveness: If a transaction involves honest clients only, then, once
it has been approved by all clients, it will end up in the global graph

within a bounded time frame. Further, after another bounded time

frame, all participating clients will consider this transaction to be

part of their own partial view of the local state, i. e., this transaction

will be part of the output of read requests from those participants.

Privacy: A dishonest party (or an outside attacker) does not

learn the body of a transaction 𝑡𝑥6 unless he is involved in 𝑡𝑥

(e.g., (i) because he is an initiator, signee, or the notary of 𝑡𝑥 , or

(ii) because one of the honest clients who has access to 𝑡𝑥 pushes

𝑡𝑥 or a transaction that depends on 𝑡𝑥 to the dishonest party).

Formally, we first define F c
ledger

, an instantiation of F
ledger

, which

formalizes and enforces the above security properties. This is the

first formalization of the novel notion of partial consistency. As
part of defining this instantiation, we also identify the precise pri-

vacy level provided by Corda, including several (partly unexpected)

privacy leakages. That is, we define F c
ledger

to leak only the informa-

tion that an attacker on Corda can indeed obtain but not anything

else, as discussed at the end of this section. We then show that

Corda indeed realizes F c
ledger

and discuss why this result implies

that Corda itself in fact enjoys the above mentioned properties.

Technically, we define the subroutines of F
ledger

to obtain the

instantiation F c
ledger

= (F
ledger

| F c
submit

, F c
read

, F c
update

, F c
updRnd

,

F c
init
, F c

leak
, F c

storage
) as described next (cf. Figure 1, the additional

subroutine F c
storage

is explained below). We provide formal specifi-

cations of the subroutines in F c
ledger

in the technical report [22].

In what follows, we call the set of transaction and attachment IDs

a party pid may have access to in plain its potential knowledge. More

specifically, the potential knowledge of pid includes all transactions

from the buffer and global graph that involve only honest clients

and which either directly involve pid, or which have been pushed to
pid by another honest party that knows the transaction. In addition,

it also contains arbitrary transactions that involve at least one

corrupted client, with the exact set of transactions determined

by A. We use the term current knowledge to describe the set of

transactions that a party pid currently knows, where we allow A
to determine this set as a growing subset of the potential knowledge.

• F c
init

is parameterized by a set of participants. It provides this

set to F
ledger

.

• F c
submit

handles (i) transaction and attachment submission, and

(ii) pushing transactions from one party to another party. In

Case (i), F c
submit

ensures that incoming transactions and attach-

ments are valid according to a validation algorithm, a parameter

of F c
submit

. If pid is the initiator of the transaction, F c
submit

also

checks that pid can execute the validation, i. e., whether all

dependent objects of the transaction are in pid’s current knowl-
edge. For valid transactions and attachments, F c

submit
generates

an object ID and leaks all meta-information (e.g., involved par-

ties, IDs of dependent objects, ...) to A plus the length of the

transaction/attachment body. If a corrupted party is involved,

6
We consider the “transaction body” to consist of the bit string contained in the

transaction (and which might contain, e.g., inputs for the smart contracts) as well as

the bit strings contained in output states (encoding, e.g., assets modeled by those states).

We consider everything else to be meta-information of the transaction, including its

ID, references to input states and smart contracts, and the set of participants.



then F c
submit

also leaks the body. If a party pid𝑎 (tries to) push a

transaction identified by txID to a party pid𝑏 (Case (ii)), F c
submit

first ensures that all dependencies of tx are in the current knowl-
edge of pid𝑎 and, if so, then leaks to A that pid𝑎 shared txID
with pid𝑏 . From then on, tx and all of its dependencies are

considered to be part of the potential knowledge of pid𝑏 .
• F c

update
mainly handles updates to the state (proposed by A).

The adversaryA can specify a set of IDs of transactions/attach-

ments that have previously been submitted by honest parties

and submit a set of transactions/attachments from dishonest

parties to extend the transaction graph. F c
update

ensures that

(i) all (honest) participants agreed to a transaction, (ii) all de-
pendencies are included in the global graph, (iii) dishonest
transactions are valid, and (iv) there is no double spending. If
any of the checks fails, the graph update is rejected.

• F c
read

always enforces local read operations. Upon receiving

such a read request for an honest party pid, the adversary is

expected to provide a subgraph𝑔 of the global graph. This graph

𝑔 must also be a subset of pid’s current knowledge, must be

self-consistent, i. e., it must contain at least the previous outputs

to pid’s read requests, and it must be complete, i. e., the graph 𝑔

contains all dependencies of objects in𝑔. Furthermore, if there is

a transaction tx in the global graphwhich has an honest initiator,
pid is a participant, and which has been submitted at least

2𝛿 time units ago, where 𝛿 is a parameter which specifies the

network delay, then tx must be included in𝑔. The graph𝑔 is then

returned as response to the read request. For read requests from

corrupted parties F c
read

returns an empty response. Intuitively,

this is because F
submit

and F
leak

already leak all information

known to corrupted parties.

• WheneverA requests to advance time, F c
updRnd

checks whether

a transaction 𝑡𝑥 exists in the buffer where all participants are

honest, agreed on the transaction, and the last acknowledgment

respectively the initiation (if no signees are involved) was re-

ceived more than 𝜔 (tx) time units ago.
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If such a transaction

exists, then the time increment request is denied. Otherwise, it

is accepted.

• As explained in Section 2, the subroutines of F
ledger

can them-

selves share other subroutines, e.g, to exchange shared state.

We use this feature by adding an additional subroutine F c
storage

which provides an interface for all other F c
ledger

subroutines

(i) to query the potential knowledge of a party, (ii) to gen-

erate unique IDs, to store them, and to distribute them, and

(iii) to access transactions/attachments by ID. F c
storage

simpli-

fies the specification as it allows to easily synchronize internal

state used for bookkeeping purposes across the subroutines of

F
ledger

.

• Upon corruption of a client, F c
leak

computes its potential knowl-

edge and forwards this information to A.

• To capture Pc
’s random oracle, the adversaryA is also allowed

to query F c
update

for (new) transaction and attachment IDs.

7𝜔 (tx) is a function that linearly depends on the network delay 𝛿 and the size of the

subgraph defined by the transaction tx and all of its inputs (including their respective

inputs, etc.). Such a function is necessary due to the way parties in Corda retrieve

unknown dependencies for transactions.

• To capture that Corda might leak the validity of a transaction,

F c
read

allows the adversary to query the validity of transactions

regarding a parties pid current state.

Using this instantiation of F
ledger

, we can state our main theorem.

Theorem 4.1. Let Pc and F c
ledger

be as described above. Then,
Pc ≤ F c

ledger
.

Here we provide a proof sketch with the core intuition. We provide

the full proof in our technical report [22].

Sketch. We show that F c
ledger

leaks just enough details for a simu-

lator to internally simulate a blinded version of the Corda protocol.

As mentioned and discussed at the end of this section, all leakages

defined by F c
ledger

are indeed necessary for a successful simulation

since the same information is also leaked by Corda. Hence, F c
ledger

precisely captures the actual privacy level of Corda. As explained

above, all meta-information of transactions leak, only transaction

bodies stay private. The meta data information already allows to ex-

ecute all checks in the Corda protocol except for the validity check

of the transaction body. For honest participants, we can directly

derive the validity of the transaction body from the leakage during

transaction submission of the transaction’s initiator and use this

during the simulation.

Our simulator S internally simulates a blinded instance of Pc
,

in the following called Pc
. During the simulation, S uses dummy

transactions generated from the submission leakage. The dummy

transaction is identified by the original transaction ID, contains all

leaked data and pads the transaction body such that the dummy

version has the same length as the original transaction. As S can

extract the knowledge of honest parties, the transaction graph struc-

ture, and the validity of transactions, S can derive all steps in Pc

without having access to the full data. In particular, S knows for all

honest parties which transaction/attachment IDs are in the parties

knowledge. This allows it to perfectly simulate all network inter-

action of Pc
as S knows when a party needs to trigger, e. g., the

SendTransactionFlow subprotocol instead of directly simulating

the approval to a transaction. Further, S can keep states of honest

parties in Pc
and F c

ledger
synchronous such that read requests lead

to the same output in real and ideal world. We observe that the out-

put from S to F c
ledger

never fails. Pc
ensures that knowledge does

not violate the boundaries of F c
ledger

, e. g., Pc
’s build-in network

Funicast ensures delivery boundaries.

Regarding S interaction with the network. As corrupted parties

send transactions and attachments in plain to S and S can evaluate

the validity of transactions (according to a parties knowledge), S
has access to all relevant information to answer request/handle

operations indistinguishably between Pc
and F c

ledger
. This is due

to the fact that S replaces the dummy transaction by the original

transaction as soon as they leak (and regenerate dependent data,

especially signatures, to make both worlds indistinguishable).

We highlight two edge cases: Firstly, an attacker may try to break

privacy of transactions by brute forcing the hashes. As S queries

F c
ledger

for IDs, this attack would be successful in both real and ideal

world. Secondly, when corrupted parties push arbitrary transactions

to honest parties, S might not know whether the validity check



succeeds (since this transaction might reference input states that

the corrupted party and hence S does not know). In this case (and

only in this case), S directly queries F c
ledger

for the validity of the

transaction according to the honest party’s knowledge. We will

discuss both cases in more detail in the following discussion. □
We now discuss the implications of Theorem 4.1 for the security

properties of Corda.

Partial consistency. By definition of F c
read

, the responses to

read requests of honest parties are subsets of the global graph.

This directly implies that honest clients (i. e., clients that are neither

controlled by the adversary nor rely on a malicious notary) of Corda

obtain consistent partial views of the same global state.

Double spending protection. By definition ofF c
update

, the global

graph does not contain any double spending. Since this global graph

is a superset of read outputs of honest parties (as per F c
read

), this

implies that Corda protects honest clients from double spending.

Liveness. F c
updRnd

guarantees that transactions which involve

only honest clients end up in the global graph after an upper

bounded delay (once all clients have acknowledged the transac-

tion). Furthermore, F c
read

ensures that transactions with honest

initiators end up in the local state of all honest signees after an-

other bounded time delay. By Theorem 4.1, these properties directly

translate to Corda. A stronger liveness statement is not possible for

Corda: if a notary is corrupted (and by extension all clients that rely

on this notary also consider themselves to be corrupted), then a

transaction might never be signed by that notary and hence not en-

ter the global graph. Further, since the initiator is solely responsible

for forwarding responses from the notary, such a response might

not end up in the local state of a signee if the initiator misbehaves.

Privacy. Privacy needs a bit more explanation than the other

properties. Firstly, observe that F c
read

ensures that honest parties

can only read transactions that are part of their potential knowl-

edge, i. e., those they are directly involved in or that have been

forwarded to them by someone that already knew the transaction.

Furthermore, by definition of F c
submit

, if no dishonest client is in-

volved in a new transaction, only the length of the body is leaked.

For Corda, this implies that the body of a transaction that involves

only honest clients (and in extension an honest notary) stays secret

from everyone, unless one of those clients intentionally forwards

the transaction to another party.

We can also derive what a dishonest client or dishonest notary

in Corda can learn at most, thereby determining the level of privacy

that Corda provides: By definition of F c
submit

and F
leak

, all of the

metadata of transactions is leaked. In contrast, the message bodies

of transactions leak only if they involve a dishonest client. Hence,

an adversary on Corda learns at most the metadata of transactions,

all transaction bodies that use a dishonest notary, and all transac-

tion bodies that involve a dishonest client. An adversary cannot

learn anything else since otherwise the simulation of dishonest

clients/notaries would fail, i. e., Theorem 4.1 could not be shown.

We note that Corda indeed leaks (some) meta-information of

transactions. This is because an outside adversary can observe

the network communication, which in itself strongly depends and

changes based on the meta-information of a transaction. For exam-

ple, the initiator of an honest transaction collects the approvals of

all signees, which makes it trivial to derive the set of participating

clients. Similarly, the notary is obvious from watching where a

transaction is sent by the initiator after collecting approvals from

signees. Even the set of inputs to a transaction is partially visible

as, e.g., the signees and the notary request missing inputs from

the initiator. While we slightly over approximate this information

leakage by leaking the full meta-information in F c
ledger

, it is not

possible to obtain a reasonably stronger privacy statement for meta-

information in Corda.

Furthermore, observe that the adversary on F c
ledger

is allowed

to obtain IDs for arbitrary transactions. This captures that the

IDs of transactions in Corda are computed as hashes over the full

transaction, including the body of the transaction in plain. Hence,

if an attacker gets hold of such an ID, then he can use it to try and

brute force the content of the transaction.

Finally, observe that an adversary on F c
ledger

is also allowed to

validate arbitrary transactions with respect to the current partial

view of some honest client, which might in particular leak informa-

tion about input states. This captures the following attack on Corda:

If an adversary is in control of a notary and he knows an ID of a

(currently secret) transaction 𝑡𝑥 from an honest client, then he can

create (and let the notary sign) a new transaction 𝑡𝑥 ′ that uses one
or more output states from the secret transaction 𝑡𝑥 as input. Now,

the adversary can push this transaction via a corrupted client to the

honest client, which then verifies the transaction and, depending

on whether verification succeeds, adds 𝑡𝑥 ′ to his partial view of

the global state. Since this is generally observable, the adversary

learns the result of the verification, which, depending on the smart

contracts involved, might leak parts of 𝑡𝑥 .

We emphasize that both of the above leakages, respectively at-

tacks, on Corda are possible only if an ID of a transaction is leaked

by a higher-level protocol, illustrating the importance of the IDs for

secrecy. Since we consider arbitrary higher-level protocols (simu-

lated by the environment) in our proof, we cannot circumvent these

leakages. However, if we were to consider a specific higher-level

protocol, say, Q using Corda/the ideal ledger such that Q keeps

the transaction IDs secret (at least for honest parties), then one can

actually prove that Corda in this specific context realizes a variant

of F c
ledger

that does not leak transaction IDs, does not give access

to a hash oracle, and does not leak verification results. But, again,

our results show that this is not true in general.
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APPENDIX:
A A BRIEF INTRO TO THE IUC FRAMEWORK
This section provides a brief introduction to the iUC framework,

which underlies all results in this paper. The iUC framework [11]

is a highly expressive and user friendly model for universal com-

posability. It allows for the modular analysis of different types of

protocols in various security settings.

The iUC framework uses interactive Turing machines as its un-

derlying computational model. Such interactive Turing machines

can be connected to each other to be able to exchange messages.

A set of machines Q = {M1, . . .,M𝑘 } is called a system. In a run

of Q, there can be one or more instances (copies) of each machine

in Q. One instance can send messages to another instance. At any

point in a run, only a single instance is active, namely, the one to

receive the last message; all other instances wait for input. The

active instance becomes inactive once it has sent a message; then

the instance that receives the message becomes active instead and

can perform arbitrary computations. The first machine to run is

the so-called master. The master is also triggered if the last active

machine did not output a message. In iUC, the environment (see

next) takes the role of the master. In the iUC framework a special

user-specified CheckID algorithm is used to determine which in-

stance of a protocol machine receives a message and whether a new

instance is to be created (see below).

To define the universal composability security experiment (cf.

Camenisch et al. [11]), one distinguishes between three types of

systems: protocols, environments, and adversaries. As is standard

in universal composability models, all of these types of systems

have to meet a polynomial runtime notion . Intuitively, the secu-

rity experiment in any universal composability model compares a

protocol P with another protocol F , where F is typically an ideal

specification of some task, called ideal protocol or ideal functionality.
The idea is that if one cannot distinguish P from F , then P must

be “as good as” F . More specifically, the protocol P is considered

secure (written P ≤ F ) if for all adversaries A controlling the

network of P there exists an (ideal) adversary S, called simulator,
controlling the network of F such that {A,P} and {S, F } are in-
distinguishable for all environments E. Indistinguishability means

that the probability of the environment outputting 1 in runs of the

system {E,A,P} is negligibly close to the probability of outputting
1 in runs of the system {E,S, F } (written {E,A,P} ≡ {E,S, F }).
The environment can also subsume the role of the network attacker

A, which yields an equivalent definition in the iUC framework. We

usually show this equivalent but simpler statement in our proofs,

i.e., that there exists a simulator S such that {E,P} ≡ {E,S, F }
for all environments.

A protocol P in the iUC framework is specified via a system of

machines {𝑀1, . . ., 𝑀𝑙 }; the framework offers a convenient template

for the specification of such systems. Each machine𝑀𝑖 implements

one or more roles of the protocol, where a role describes a piece of

code that performs a specific task. For example, a (real) protocol

Psig for digital signatures might contain a signer role for signing

messages and a verifier role for verifying signatures. In a run

of a protocol, there can be several instances of every machine,

interacting with each other (and the environment) via I/O interfaces

and interacting with the adversary (and possibly the environment

subsuming a network attacker) via network interfaces. An instance

of a machine𝑀𝑖 manages one or more so-called entities. An entity

is identified by a tuple (pid , sid , role) and describes a specific party

with party ID (PID) pid running in a session with session ID (SID)

sid and executing some code defined by the role role where this role
has to be (one of) the role(s) of𝑀𝑖 according to the specification of

𝑀𝑖 . Entities can send messages to and receive messages from other

entities and the adversary using the I/O and network interfaces

of their respective machine instances. More specifically, the I/O

interfaces of both machines need to be connected to each other

(because one machine specifies the other as a subroutine) to enable

communication between entities of those machines.

Roles of a protocol can be either public or private. The I/O in-

terfaces of private roles are only accessible by other (entities be-

longing to) roles of the same protocol, whereas I/O interfaces of

public roles can also be accessed by other (potentially unknown)

protocols/the environment. Hence, a private role models some

internal subroutine that is protected from access outside of the

protocol, whereas a public role models some publicly accessible

operation that can be used by other protocols. One uses the syn-

tax “(pubrole1, . . . , pubrolen | privrole1, . . . , privrolen)” to

https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/blockchain-beyond-the-hype-what-is-the-strategic-business-value
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/blockchain-beyond-the-hype-what-is-the-strategic-business-value
https://www.r3.com/press-media/r3s-corda-partner-network-grows-to-over-60-companies-including-hewlett-packard-enterprise-intel-and-microsoft/
https://www.r3.com/press-media/r3s-corda-partner-network-grows-to-over-60-companies-including-hewlett-packard-enterprise-intel-and-microsoft/
https://www.r3.com/press-media/r3s-corda-partner-network-grows-to-over-60-companies-including-hewlett-packard-enterprise-intel-and-microsoft/
https://docs.corda.net/docs/corda-os/4.4.html
https://docs.corda.net/docs/corda-os/4.4.html
https://www.reuters.com/article/us-banks-blockchain/nine-of-worlds-biggest-banks-join-to-form-blockchain-partnership-idUSKCN0RF24M20150915
https://www.reuters.com/article/us-banks-blockchain/nine-of-worlds-biggest-banks-join-to-form-blockchain-partnership-idUSKCN0RF24M20150915
https://www.canton.io/publications/canton-whitepaper.pdf
https://www.canton.io/publications/canton-whitepaper.pdf
https://gavwood.com/paper.pdf


uniquely determine public and private roles of a protocol. Two

protocols P and Q can be combined to form a new more complex

protocol as long as their I/O interfaces connect only via their public

roles. In the context of the new combined protocol, previously pri-

vate roles remain private while previously public roles may either

remain public or be considered private, as determined by the proto-

col designer. The set of all possible combinations of P and Q, which

differ only in the set of public roles, is denoted by Comb(Q,P).
An entity in a protocol might become corrupted by the adver-

sary, in which case it acts as a pure message forwarder between

the adversary and any connected higher-level protocols as well as

subroutines. In addition, an entity might also consider itself (implic-

itly) corrupted while still following its own protocol because, e.g.,

a subroutine has been corrupted. Corruption of entities in the iUC

framework is highly customizable; one can, for example, prevent

corruption of certain entities during a protected setup phase.

The iUC framework supports the modular analysis of protocols

via a so-called composition theorem:

Corollary A.1 (Concurrent composition in iUC; informal).

Let P and F be two protocols such that P ≤ F . Let Q be another
protocol such that Q and F can be connected. Let R ∈ Comb(Q,P)
and let I ∈ Comb(Q, F ) such that R and I agree on their public
roles. Then R ≤ I.

By this theorem, one can first analyze and prove the security

of a subroutine P independently of how it is used later on in the

context of a more complex protocol. Once we have shown that

P ≤ F (for some other, typically ideal protocol F ), we can then

analyze the security of a higher-level protocol Q based on F . Note

that this is simpler than analyzing Q based on P directly as ideal

protocols provide absolute security guarantees while typically also

being less complex, reducing the potential for errors in proofs.

Once we have shown that the combined protocol, say, (Q | F )
realizes some other protocol, say, F ′

, the composition theorem and

transitivity of the ≤ relation then directly implies that this also

holds true if we run Q with an implementation P of F . That is,

(Q | P) is also a secure realization of F ′
. Please note that the

composition theorem does not impose any restrictions on how the

protocols P, F , and Q look like internally. For example, they might

have disjoint sessions, but they could also freely share some state

between sessions, or they might be a mixture of both. They can

also freely share some of their subroutines with the environment,

modeling so-called globally available state. This is unlike most other

models for universal composability, such as the UC model, which

impose several conditions on the structure of protocols for their

composition theorem.

Notation in Pseudo Code. ITMs in our paper are specified in

pseudo code. Most of our pseudo code notation follows the notation

of the iUC framework as introduced by Camenisch et al. [11]. To

ease readably of our figures, we provide a brief overview over the

used notation here.

The description in the main part of the ITMs consists of blocks of

the form Recv ⟨msg⟩ from ⟨sender⟩ to ⟨receiver⟩, s.t. ⟨condition⟩:
⟨code⟩ where ⟨msg⟩ is an input pattern, ⟨sender⟩ is the receiving
interface (I/O or NET), ⟨receiver⟩ is the dedicated receiver of the

message and ⟨condition⟩ is a condition on the input. ⟨code⟩ is the

(pseudo) code of this block. The block is executed if an incoming

message matches the pattern and the condition is satisfied. More

specifically, ⟨msg⟩ defines the format of the message𝑚 that invokes

this code block. Messages contain local variables, state variables,

strings, and maybe special characters. To compare a message𝑚 to

a message pattern msg, the values of all global and local variables

(if defined) are inserted into the pattern. The resulting pattern 𝑝

is then compared to𝑚, where uninitialized local variables match

with arbitrary parts of the message. If the message matches the

pattern 𝑝 and meets ⟨condition⟩ of that block, then uninitialized

local variables are initialized with the part of the message that they

matched to and ⟨code⟩ is executed in the context of ⟨receiver⟩; no
other blocks are executed in this case. If 𝑚 does not match 𝑝 or

⟨condition⟩ is not met, then 𝑚 is compared with the next block.

Usually a recv from block ends with a send to clause of form

send ⟨msg⟩ to ⟨sender⟩ where msg is a message that is send via

output interface sender.
If an ITM invokes another ITM, e.g., as a subroutine, ITMs may

expect an immediate response. In this case, in a recv from block,

a send to statement is directly followed by a wait for statement.

We writewait for ⟨msg⟩ from ⟨sender⟩, s.t. ⟨condition⟩ to denote
that the ITM stays in its current state and discards all incoming

messages until it receives a message𝑚 matching the pattern msg
and fulfilling the wait for condition. Then the ITM continues the

run where it left of, including all values of local variables.

To clarify the presentation and distinguish different types of

variables, constants, strings, etc. we follow the naming conventions

of Camenisch et al. [11]:

1. (Internal) state variables are denoted by sans-serif fonts, e.g., a.
2. Local (i.e., ephemeral) variables are denoted in italic font.
3. Keywords are written in bold font (e.g., for operations such as

sending or receiving).

4. Commands, procedure, function names, strings and constants

are written in teletype.

Additional Notation. To increase readability, we use the fol-

lowing non-standard notation during the specifications of machines

in the iUC template:

• For a set of tuples 𝐾 , 𝐾.add(_) adds the tuple to 𝐾 .
• For a string 𝑆 , 𝑆.add(_) concatenates the given string to 𝑆 .

• 𝐾.remove(_) removes always the first appearance of the given

element/string from the list/tuple/set/string 𝐾 .

• 𝐾.contains(_) checks whether the requested element/string is

contained in the list/tuple/set/string 𝐾 and returns either true
oder false.

• We further assume that each element as a tuple in a list or set

can be addressed by each element in that tuple if it is a unique

key.

• Elements in a tuple are ordered can be addressed by index,

starting from 0. We write [𝑛] = {1, . . . , 𝑛}.
• For tuples, lists, etc. we start index counting at 0.

B THE IDEAL LEDGER FUNCTIONALITY
In this section, we present the full specification of the ideal ledger

functionality F
ledger

in Figure 5.

In what follows, we first briefly explain the iUC notation used

in the figures:



• The CheckID algorithm is used to determine which machine

instance is responsible for and hence manages which entities.

Whenever a new message is sent to some entity 𝑒 whose role

is implemented by a machine𝑀 , the CheckID algorithm is run

with input 𝑒 by each instance of𝑀 (in order of their creation) to

determine whether 𝑒 is managed by the current instance. The

first instance that accepts 𝑒 then gets to process the incoming

message. By default, CheckID accepts entities of a single party

in a single session, which captures a traditional formulation of

a real protocol. Other common definitions include accepting

all entities from the same session, which captures a traditional

formulation of an ideal functionality.

• The special variable (pidcur, sidcur, rolecur) refers to the cur-

rently active entity of the current machine instance (that was

previously accepted by CheckID). If the current activation is

due to a message received from another entity, then (pidcall,
sidcall, rolecall) refers to that entity.

• The special macro corr(pid𝑠𝑢𝑏 , sid𝑠𝑢𝑏 , role𝑠𝑢𝑏 ) can be used to

obtain the current corruption status (i.e., whether this entity

is still honest or considers itself to be implicitly/explicitly cor-

rupted) of an entity belonging to a subroutine.

• Eachmachine instance in iUC includes the variableCorruptionSet.
The set contains all corrupted entities (pid , sid , role) in this in-

stance.

• The iUC framework supports so-called responsive environ-

ments and responsive adversaries [10]. Such environments and

adversaries can be forced to respond to certain messages on

the network, called restricting messages, immediately and with-

out first activating the protocol in any other way. This is a

useful mechanism for modeling purposes, e.g., to leak some

information to the attacker or to let the attacker decide upon

the corruption status of a new entity but without disrupting the

intended execution of the protocol. Such network messages are

marked by writing send responsively to instead of just send
to.

• After sending a message, a machine instance may wait in its

current state for an expected answer. Thewait for command is

used to express this. In this “waiting” state, themachine instance

does not accept any other input message.

• The symbol “_” is used as a wildcard symbol.

Handling corruption: As already indicated, iUC includes a speci-

fication for the behavior during corruption of parties and the be-

havior of corrupted parties (similar to the UC model). Essentially,

corrupted parties act as forwarders, i. e., they forward messages

dedicated to them to A and A may act in behalf of them, i. e., can

use the connections of the corrupted party to send messages. In

particular, iUC allows to restrict the behavior of A when imper-

sonating a corrupted party via several parameters. In F
ledger

, we

use LeakedData to specify which data is leaked on corruption of a

party. Further, we restrict A via AllowAdvMessage to use any of

the subroutines of F
ledger

on behalf of a corrupted party.

More technical details regarding iUC are available in the full

version of the paper [22] and the iUC paper [11].

Note that, in addition to what is described in Section 2, F
ledger

as

defined in Figure 5 also provides a read interface for the adversary

(CorruptedRead) on behalf of corrupted parties. This may allow

A to query F
ledger

on behalf of a corrupted party, e. g., to access

private data of the party which has not been leaked so far.

C FURTHER FEATURES OF Fledger

Here we explain and discuss some features of F
ledger

that were only

briefly mentioned in Section 2.

Roles in F
ledger

. By default, F
ledger

does not distinguish be-

tween different roles of participants. Every party is a client with

the same read and write access to the ledger, while any additional

internal non-client roles, such as miners and notaries, only exist

in the realization. If one needs to further differentiate clients into

different client roles, e.g., to capture that in a realization certain

clients can read only part of the global transaction list while others

can read the full list, then this can be done via a suitable instantia-

tion of the subroutines of F
ledger

– such client-roles can easily be

added as prefixes within PIDs. The subroutines that specify security

properties, such as F
read

, can then depend on this prefix and, e.g.,

offer a more or less restricted access to the global transaction list.

Dynamic party registration. The ideal functionality F
ledger

keeps track of all currently registered honest parties, including the

time when they registered. An honest party is considered regis-

tered once it issues its first read or write request, modeling that

participants in a distributed ledger first register themselves before

interacting with the ledger. A higher-level protocol can also dereg-

ister a party by sending a deregister command. Such a party is

removed from the set of registered parties (and will be added again

with a new registration time if it ever issues another read or write

request).

This mechanism allows for capturing security properties that

depend on the (time of) registration. For example, an honest party

might only obtain consistency guarantees after it has been regis-

tered for a certain amount of time (due to network delays in the

realization). We note that, just like a clock, party registration is an

entirely optional concept that can be ignored by not letting any

subroutines depend on this information. This is useful to capture

realizations that, e.g., do not model an explicit registration phase

but rather assume this information to be static and fixed at the start

of the protocol run.

Public and private ledgers. Existing functionalities for block-

chains have so far been modeled as so-called global functionalities

using the GUC extension [13] of the UC model. The difference be-

tween a global and a normal/local ideal functionality is that, when

a global functionality is used as a subroutine of a higher-level proto-

col, then also the environment/arbitrary other (unknown) protocols

running in parallel can access and use the same subroutine. This is

often themost reasonable modeling for public blockchains: here, the

same blockchain can be accessed by arbitrarily many higher-level

protocols running in parallel. However, such global functionalities

do not allow for capturing the case of, e.g., a permissioned block-

chain that is used only within a restricted context. This situation

rather corresponds to a local ideal blockchain functionality.

The iUC framework that we use here provides seamless support

for both local and global functionalities, and in particular allows

for arbitrarily changing one to the other. Hence, our functionality

F
ledger

can be used both as a global or as a local subroutine for

higher-level protocols, allowing for faithfully capturing both public



Figure 5: The ideal ledger functionality F
ledger

(Part 1).

and private subroutine ledgers. This is possible without proving any

of the realizations again, i.e., once security of a specific realization

has been shown, this can be used in both a public and private

context. As already explained at the beginning of this section, it

is also possible to instantiate subroutines of F
ledger

in such a way

that they also are (partially) globally accessible, e.g., to provide a

global random oracle to other protocols. This can be done even in

cases where F
ledger

itself is used as a private subroutine.

Modelling smart contracts. We also note that F
ledger

fully

supports capturing smart contracts, if needed. Typically, smart con-

tracts are modeled by fixing some arbitrary programming language

for specifying those smart contracts as a parameter of F
ledger

(the

security analysis is then performed for an arbitrary but fixed pa-

rameter which makes the security result independent of a specific

smart contract language). Smart contracts are then simply bit strings

which are interpreted by the subroutines F
submit

, F
update

, F
read

, etc.



Figure 6: The ideal ledger functionality F
ledger

(Part 2).

according to the fixed smart contract programming language.While

interpreting a smart contract, these subroutines can then enforce

additional security properties as desired, e.g., they might ensure

that all smart contracts added to the global state are indeed well

defined (according to the fixed programming language) and/or that

running the smart contracts yields the correct results as specified

in some transaction.

We use this concept to model smart contracts in our Corda case

study. Here, our subroutines of F
ledger

(as part of transaction valida-

tion) guarantee the property of correct execution of smart contracts,

i.e., the output states of transactions were indeed computed by run-

ning the referenced smart contracts correctly. As stated above, our

security analysis of Corda treats the programming language as an

arbitrary parameter and hence our results show that Corda provides

correct execution of smart contracts independently of the chosen

smart contract programming language as long as all participants

agree on the same language.

We note that, if the algorithm used by smart contracts can be

provided externally by the adversary/environment, then the exe-

cution of smart contracts in F
ledger

needs to be upper bounded by

some polynomial in order to preserve the polynomial runtime of

the ideal functionality as required for composition. Observe, how-

ever, that most if not all distributed ledgers in reality, including

Corda, already hard code such a polynomial upper bound into their

protocol to prevent malicious clients form creating smart contracts

with exponential (or worse) runtime. The same bound can be used

for F
ledger

.

D FURTHER DETAILS Gledger REALIZES Fledger

In this section, we provide a detailed explanation the instantiation of

F
ledger

to cover the ideal blockchain functionality G
ledger

. Further,

we provide an additional comparison between G
ledger

and F
ledger

.

In our technical report [22], we provide the full formal specifications

of all machines and a formal proof of Theorem 3.1.

Our ideal functionality F
ledger

is in the spirit of and adopts some

of the underlying ideas from the existing ideal blockchain func-

tionality G
ledger

. As a result, both functionalities share similarities

at a high level. More specifically, G
ledger

also offers a writing and

reading interface for parties. It is parameterized with several algo-

rithms validate, extendPolicy,Blockify, and predictTime that have
to be instantiated by a protocol designer to capture various security

properties. By default, G
ledger

provides only the security property

of consistency. An honest party can submit a transaction to G
ledger

.

If this transaction is valid, as decided by the validate algorithm,

then it is added to a buffer list. G
ledger

has a global list of blocks

containing transactions. This list is updated (based on a bit string

that the adversary has previously provided) in a preprocessing

phase of honest parties. More specifically, whenever an honest

party activates G
ledger

, the extendPolicy algorithm is executed to

decide whether new blocks are appended to the global list of blocks,

with the Blockify algorithm defining the exact format of those new

blocks. Then the validate algorithm is called to remove all transac-

tions from the buffer that are now, after the update of the global

blockchain, considered invalid. An honest party can then read from

the global blockchain. More specifically, if the honest party has

been registered for a sufficiently long amount of time (larger than

parameter 𝛿), then it obtains a prefix of the chain that contains

all but the last at most windowSize ∈ N blocks. This captures the

security property of consistency. In addition to these basic opera-

tions, G
ledger

also supports dynamic (de-)registration of parties and

offers a clock, modeled via a subroutine G
clock

, that is advanced by

G
ledger

depending on the output of the predictTime algorithm (and

some additional constraints).



While there are many similarities, there are also several key

differences between G
ledger

and our functionality F
ledger

:

• G
ledger

requires all transactions to be arranged in “blocks” (gen-

erated via the Blockify algorithm) and then always provides the

security property of consistency for those blocks. As already

explained in Section 2, these are strictly stronger requirements

than the ones from F
ledger

, which only require the existence

of a global ordered list of transactions. In particular, many dis-

tributed ledgers, such as Corda, are not designed to generate

blocks or to provide consistency, and hence, cannot realize

G
ledger

.

• While G
ledger

already includes several parameters to customize

security properties, there are no parameters for customizing

the reading operation. Hence, G
ledger

cannot capture access

and privacy security properties for transactions in a blockchain

(as all honest participants can always read a full prefix of the

chain).
9

• The view G
ledger

provides to higher-level protocols is lower

level and closer to the envisioned realization than the one of

F
ledger

. In particular, G
ledger

includes an additional operation

MaintainLedger which has to be called by a higher-level pro-

tocol in order to allow time to advance, modeling that a higher-

level protocol has to regularly and manually trigger mining

operations (or some similar security relevant tasks) for security

to hold true. Similarly, the clock used by G
ledger

prevents any

time advances unless all parties have notified the clock to allow

for time to advance, again forcing a higher-level protocol to

manually deal with this aspect.

• While G
ledger

includes a predictTime parameter to customize

advancing time, this parameter is actually more restricted than

the one from F
ledger

: the predictTime can depend only on the

set of activations from honest parties but not, e.g., the global

state or buffer list of transactions.

As can be seen from the above list, the main differences between

G
ledger

and F
ledger

are due to (i) different levels of abstraction on the
I/O interface to higher-level protocols and (ii) the fact that G

ledger
is

tailored towards publicly accessible blockchains. Hence, intuitively,

it should be possible to show that F
ledger

is a generalization of

G
ledger

. Indeed, one can instantiate F
ledger

appropriately to transfer

security properties provided by G
ledger

to the level of F
ledger

.

Formally, we define the instantiation F Gledger
ledger

as the protocol

(F
ledger

| F Gledger

init
, F Gledger

submit
, F Gledger

update
, F Gledger

read
, F Gledger

updRnd
, F Gledger

leak
).

The general idea for the instantiated subroutines is to run the same

operations as G
ledger

, including the parameterized algorithms of

G
ledger

that determine the precise security properties provided by

the global transaction list. By this, the instantiation F Gledger
ledger

, just as

G
ledger

, enforces the security property of consistency for all partic-

ipants while also inheriting all further security properties provided

for the global state, if any, from the parameterized algorithms. More

specifically:

• F Gledger

init
is defined to run the extendPolicy algorithm to gen-

erate the initial transaction list (that is read from the blocks

9
This aspect is actually one of the key differences between G

ledger
and its variant GPL

for privacy in blockchains: the latter also introduces a parameter for read operations.

output by the algorithm). This is because extendPolicy might

already generate a genesis block during the preprocessing of

the first activation of the functionality, before any transactions

have even been submitted.

• F Gledger

submit
executes the validate algorithm to check validity of

incoming transactions.

• F Gledger

update
executes the extendPolicy and Blockify algorithms to

generate new blocks from the update proposed by the adver-

sary. These blocks are transformed into individual transactions,

which are appended to the global transaction list of F
ledger

to-

gether with a special meta transaction that indicates a block

boundary. Additionally, the validate algorithm is used to decide

which transactions are removed from the transaction buffer.

• F Gledger

read
checks whether a party has already been registered

for an amount of time larger than 𝛿 and then either requests

the adversary to provide a pointer to a transaction within the

last windowSize blocks or lets the adversary determine the full

output of the party. We note that F Gledger
read

has to always use

non-local reads: this is because a read operation in G
ledger

might

change the global state during the preprocessing phase and

before generating an output, i.e., read operations are generally

not immediate (in the sense defined in Section 2).

• If the parameters of G
ledger

are such that they guarantee the

property of liveness, then F Gledger

updRnd
can be defined to also encode

this property (cf. Section 2); similarly for the time dependent

property of chain-growth and other time-related properties.

• F Gledger

leak
does not leak (additional) information as all informa-

tion is leaked during submitting and reading.

There are, however, some technical details one has to take care

of in order to implement this high-level idea, mostly due to some

conceptual differences in and the higher abstraction level of F
ledger

.

More specifically:

• A key technical difference between F
ledger

and G
ledger

is that

updates to the global state in F
ledger

are explicitly triggered by

the adversary, whereas G
ledger

performs those updates automat-

ically during a preprocessing phase whenever an honest party

activates the functionality, before then processing the incoming

request of that party.

As a result of this formulation, both read and submit requests

might change the global transaction list in G
ledger

before the

request is answered. In the case of F
ledger

, this means the simu-

lator has to be given the option to update the global state before
a read/submit request is performed. In the case of read requests,

this directly matches the properties of non-local read requests,

i.e., we simply have to define F Gledger
read

in such a way that it

uses non-local reads only. Such non-local reads then enable the

simulator to first update the global state of F
ledger

before then

finishing the read request, which directly matches the behavior

of G
ledger

.

In the case of submit requests, F
ledger

does not directly include a

mechanism for updating the state before processing the request.

This is because, for realistic distributed ledger protocols, an

incoming submit request that has not even been processed and

shared with the network yet will not cause any changes to the



global state. This, however, might technically occur in G
ledger

depending on how its parameters, such as the extendPolicy
and validate algorithms, are instantiated. We could address

this by limiting the set of parameters of G
ledger

to those that

update the global state independently of (the content of) future

submit requests, which matches the behavior of realistic ledger

protocols from practice. Nevertheless, sincewewant to illustrate

the generality of F
ledger

, we choose a different approach.

To model that the global transaction list might change depend-

ing on and before processing a new submit request, we define

F Gledger

submit
such that it internally first performs an update of the

global state, based on some information requested from the

simulator via a restricting message, before then validating the

incoming transaction. Since F Gledger

submit
cannot actually apply this

update itself (as this operation is limited to F Gledger

update
when it is

triggered by update requests from the adversary), the update is

then cached in the subroutine F
update

. The adversary is forced

to apply this cached update first whenever he wants to further

update the global transaction list, advance time, or perform a

read request. This formulation provides the simulator with the

necessary means to update the global state before an incoming

submit request, if necessary, while not weakening the security

guarantees provided by F
ledger

compared to G
ledger

. In particu-

lar, read requests will always be answered based on the most

recent update of the state, including any potentially cached

updates.

• Due to a lower level of abstraction, the parameterized algo-

rithms used in G
ledger

take some inputs that are not directly

included in F
ledger

, such as a list of all honest activations and

a future block candidate (which is an arbitrary message pro-

vided by the adversary at some point in the past). We could in

principle add the same parameters to subroutines in F
ledger

, i.e.,

essentially encode the full state and logic of G
ledger

within our

instantiations of subroutines. Observe, however, that a higher-

level protocol generally does not care about (security guarantees

provided for) technical details such as cached future block can-

didates or lists of honest activations. A higher-level protocol

only cares about the security properties that are provided by

the global transaction list, such as consistency, double spending

protection, and liveness.
10

Such security properties can already

be defined based on the information that is included in F
ledger

by performing suitable checks on the global transaction list,

buffer list, and current time. In particular, it is not actually nec-

essary to include further technical details such as a list of honest

activations. This is true even if a security property within a real-

ization (of G
ledger

or F
ledger

) actually also depends on, say, the

number of honest activations. Such a realization can still realize

an ideal functionality that requires, e.g., consistency to always

hold true independently of the number of honest activations:

one can force the environment to always activate a sufficient

number of honest parties within each time frame, modeling a

setup assumption that is required for security to holds. This

is a common technique that has already been used, e.g., for

10
We consider the standard definition of liveness in distributed ledger, resp. blockchain,

context [20, 38]: A transaction casted by an honest client should become part of the

ledger after some (known) upper time boundary.

analyzing Bitcoin [5, 20], including an analysis based on G
ledger

.

Alternatively to limiting the environment, parties can simply

consider themselves to be corrupted if the environment did not

activate a sufficient number of honest parties, modeling that

they cannot provide any security guarantees such as consis-

tency once the environment violates the setup assumptions.

This modeling technique is novel in the field of distributed

ledgers and blockchains. We use this technique in our modeling

of Corda (cf. Section 4.2).

Hence, in the spirit of abstraction and simplification, we choose

not to include further technical details of G
ledger

in F Gledger
ledger

but rather use the following mechanism to deal with any addi-

tional inputs to parameterized algorithms such as the algorithm

extendPolicy: Whenever one of the parameterized algorithms

from G
ledger

is run within F
ledger

, the adversary provides any

missing inputs that are not defined in F Gledger

ledger
, such as the next

block candidate variable for the extendPolicy algorithm. By this

definition, the adversary can freely determine technical details

that are present only in G
ledger

while F Gledger

ledger
still inherits all

properties that are enforced for the global transaction list, buffer

list, and/or are related to time.

• The functionality G
ledger

is also parameterized with an algo-

rithm predictTime which determines, based on the set of acti-

vations by honest parties, whether time advances. While we

could also add this algorithm into F
ledger

, more specifically

into F Gledger
updRnd

, by the same reasoning as above a higher-level

protocol is typically not interested in this property: it has not

implications for the security properties of the global transaction

list. Hence, we chose not to include this additional restriction

of the adversary via the predictTime in F
ledger

.

However, if the parameters of G
ledger

are such that a certain

time-related security property of the global transaction/block

list is met, then F Gledger
updRnd

enforces the same properties, i.e., pre-

vents the adversary from advancing time unless all properties

are met. We exemplify this for the common security properties

of liveness and chain-growth. That is, we include parameters

into F Gledger
updRnd

that, when they are set, enforce one or both of

these security properties, and then show that this can be re-

alized as long as G
ledger

is instantiated in such a way that it

also provides these security properties. Clearly the same mecha-

nism can also be used for capturing arbitrary other time-related

security properties.

• There are some slight differences in the format of transactions

and the global state between F
ledger

and G
ledger

, with the key

difference being that the global state of G
ledger

is a list of blocks,

whereas the global state in F
ledger

is a list of individual trans-

actions. We therefore require the existence of an efficient in-

vertible function toMsglist that maps the output of the Blockify
algorithm to a list of transactions contained in that algorithm.

Note that such an algorithm always exists: for natural defini-

tions of Blockify that are used by reasonable blockchains, there

will always be a list of well-formed transactions encoded into

each block. For artificial definitions of Blockify that do not pro-

vide outputs which can be mapped to a reasonable definition of



a list of transactions, one can always interpret the full block as

a single transaction. In addition, we store the end of each block

as a special meta transaction in the global transaction list of

F
ledger

, so one can define still identify the boundaries of individ-

ual blocks. This is necessary for lifting the security properties of

consistency from G
ledger

to F
ledger

, namely, honest users (that

have already been registered for a sufficiently long time) are

guaranteed obtain a prefix of the global transaction list except

for at most the last windowSize ∈ N blocks.

As already explained, we want to show that G
ledger

realizes

F Gledger
ledger

. Since G
ledger

has a slightly different interface and works

on a lower abstraction level than F
ledger

, we also have to add a

wrapperW
ledger

on top of G
ledger

that transforms the interface and

lifts the abstraction level to the one of F
ledger

. On a technical level,

W
ledger

acts as a message forwarder between the environment and

G
ledger

/G
clock

that translates message formats between those of

F
ledger

and those of G
ledger

while also taking care of some low level

operations that are not present on F
ledger

. More specifically:

• Incoming submit and read requests are simply forwarded by

the wrapper.

• The output to read requests provided by G
ledger

is in the form of

a list of blocks. W
ledger

uses the toMsglist function mentioned

above to translate these blocks to a list of transactions to match

the format of outputs for read requests from F
ledger

.

• Time in G
ledger

is modeled via a separate subroutine G
clock

,

whereas F
ledger

includes all time management operations in

the same functionality. Hence, the wrapper is also responsible

to answering requests for the current time, which it does by

forwarding those requests to the subroutine G
clock

of G
ledger

and then returning the response.

• As mentioned, the functionality G
ledger

includes a maintenance

operation MaintainLedger that can be performed by higher-

level protocol and which models, e.g., a mining operation that

must be performed in a realization. In contrast, F
ledger

does

not include such an operation as higher-level protocols typi-

cally do not want to explicitly performmining, but rather expect

such operations to be performed automatically “under the hood”

of the protocol. This also matches how ideal blockchain func-

tionalities have been used in the literature so far: we are not

aware of a higher-level protocol that uses an ideal blockchain

functionality and which manually takes care of, e.g., triggering

mining operations. This is true even for [27], where a higher-

level protocol was built directly on top of G
ledger

. That protocol

simply assumes that the environment takes care of triggering

MaintainLedger via a direct connection from the environment

to G
ledger

.

The wrapper resolves this mismatch by allowing the adversary

on the network to freely perform MaintainLedger operations,

also for honest parties, modeling that parties might or might

not execute a mining operation. This models that parties au-

tomatically perform mining without first waiting to receive

an explicit instruction from a higher-level protocol to do so.

Since the exact set of parties which performing mining opera-

tions is determined by the network adversary, this safely over

approximates all possible cases that can occur in reality.

Note that this change actually does not alter or weaken the

security statement of G
ledger

. Without a wrapper, G
ledger

al-

ready allows the environment to perform (or not perform at

all) arbitrary MaintainLedger operations for both honest and

dishonest parties. Hence switching this power from the envi-

ronment to the adversary on the network provides the same

overall security statement. The only difference is that now the

operation is indeed performed “under the hood” of the protocol,

i.e., a higher-level protocol need not care about manually per-

forming this operation anymore. This also matches how G
ledger

was used by a higher-level protocol in [27] (see above).

• Registration of both honest and corrupted parties in G
ledger

(and the clock G
clock

) must be handled manually by higher-

level protocols. In contrast, F
ledger

considers an honest party to

be registered once it performs the first operation, modeling that

a party automatically registers itself before interacting with

the ledger, while not including a registration mechanism for

dishonest parties. The former is because higher-level protocols

typically expect registration, if even required, to be handled

“under the hood”, while the latter is because a list of registered

dishonest parties generally is not necessary to define expected

security properties for the global transaction list (this follows

the same reasoning given above on why we did not include

certain technical details from G
ledger

in F Gledger

ledger
).

To match this behavior, W
ledger

also automatically registers

honest parties in bothG
ledger

andG
clock

when they receive their

first request from a higher-level protocol. For dishonest parties,

W
ledger

keeps the original behavior of G
ledger

and G
clock

, i.e.,

the network adversary can freely register dishonest parties.

• The subroutine G
clock

requires all registered parties to notify

the clock during each time unit before time can advance, mod-

eling that every party must have been able to perform some

computations during each time unit. Following the same rea-

soning as for the MaintainLedger operation, this is a detail

that higher-level protocols typically expect to be managed “un-

der the hood” of the protocol and generally do not want to

manually take care of. For this reason, this restriction is not

included in F
ledger

.
11

The wrapper uses the same mechanism as

for MaintainLedger operations to map between both abstrac-

tion levels, i.e., the adversary on the network can freely instruct

parties to notify the clock G
clock

that time may advance. Again,

this safely over approximates all possible cases in reality while

not giving the environment any more power than it already

has.

11
We note that, if desired, this restriction could easily be added to F

ledger
via a suitable

instantiation of the F
updRnd

subroutine. Our realization proof would still work for this

case. However, as explained, we expect that this is generally not needed/desired.
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