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Abstract

Bulletin boards (BB) are important cryptographic building blocks that, at their core, provide a broadcast channel with
memory. BBs are widely used within many security protocols, including secure multi-party computation protocols, e-
voting systems, and electronic auctions. Even though the security of protocols crucially depends on the underlying BB,
as also highlighted by recent works, the literature on constructing secure BBs is sparse. The so-far only provably secure
BBs requiretrusted components and sometimes also networks without message loss, which makes them unsuitable for
applications with particularly high security needs where these assumptions might not always be met.
In this work, we fill this gap by leveraging the concepts of accountability and universal composability (UC). More
specifically, we propose the first ideal functionality for accountable BBs that formalizes the security requirements
of such BBs in UC. We then propose Fabric∗BB as a slight extension designed on top of Fabric∗, which is a variant
of the prominent Hyperledger Fabric distributed ledger protocol, and show that Fabric∗BB UC-realizes our ideal BB
functionality. This result makes Fabric∗BB the first provably accountable BB, an often desired, but so far not formally
proven property for BBs, and also the first BB that has been proven to be secure based only on standard cryptographic
assumptions and without requiring trusted BB components or network assumptions. Through an implementation and
performance evaluation we show that Fabric∗BB is practical for many applications of BBs.

I. INTRODUCTION

Electronic bulletin boards (BBs) are crucial components that are used as central building blocks by many security-
sensitive protocols including, e. g., e-voting protocols [1, 10, 27, 41, 49, 56] electronic auctions [53], or multi-party
computation (MPC) [7, 8, 55, 63] protocols. At their core, BBs are essentially broadcast channels with memory [36]
that allow clients to submit messages/items such that all other clients can then read (a prefix of) the same sequence of all
messages/items submitted so far. This security property is called (delayed) consistent view, persistence, or consistency
and implies, among others, that a BB stores an unalterable or append-only history. Depending on the specific context
of a higher-level protocol in which a BB is to be used, additional security properties are often required, e. g., (i) liveness
or non-discrimination states that honestly transmitted messages will appear eventually on the BB, (ii) no data injection,
sometimes called correctness or authorized access, ensures that only items posted by authorized users appear on the
BB, (iii) receipt consistency ensures that, if the BB returns a receipt acknowledging that a message has been received,
then the message will eventually appear on the BB, (iv) some systems require that BB items are non-clashing [24]
while other systems require that clashing items can appear on the BB [38], and (v) message validity requires that all
messages on the BB adhere to a specific message format. From a functional point of view, it is desirable for BBs to be
fail-safe resp. crash-fault tolerant [36], i. e., the BB should still stay functional if parts of the BB components fail.

Many works have already proposed constructions of BB protocols including [9, 20, 22, 24, 36, 37, 46]. However,
only [24, 39, 46] come with a formal security proof of their protocols. The BB protocols in these works assume trust
in some parties running the BB, such as a trusted core component [24, 46], an honest majority [46], or a threshold of
honest BB parties [39]. For applications of BBs with particularly high security requirements such trust assumptions can
be undesirable and sometimes even unrealistic. For example, in high-stakes applications such as electronic elections
or (MPC-based) auctions the parties running a BB might have a vested interest in modifying the result to their benefit.
The same is true for the closely related field of distributed ledgers and blockchains, which are often used as a drop-in
replacement for BBs in practice: so far, all existing provably secure distributed ledgers (e. g., [5, 25, 30, 35, 47]) require
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an honest (super-)majority or an equivalent assumption. In many cases, they also require strong network assumptions,
such as networks without message loss which, again, might not be met in practice. Altogether, a BB protocol that is
provably secure without requiring honesty of any BB party, compatible with fully asynchronous real world networks,
and only based on standard cryptographic assumptions is still missing.

In the literature, including works on e-voting and MPC [1, 7, 8, 41, 49, 52, 55], it is very common to construct higher-
level protocols/applications and prove their security by simply assuming the existence of a perfect, never failing,
incorruptible BB with instantaneous message delivery. Of course, such a perfect BB does not exist in reality and it
remains unclear in how far security proofs still apply in practice when protocols are deployed with an actual BB
implementation. Indeed, recent works show that this oversimplification leads to severe real-world attacks [21, 39].

Altogether, this raises the following open research questions: Can we construct a provably secure BB protocol
without requiring trust in any of the parties running the BB and without restricting the network? Can we further make
this result re-usable such that higher-level protocols can be constructed and shown to be secure based on this BB?
In this work, we answer these questions affirmatively by leveraging accountability and universal composability as our
main tools.
Tool 1: Accountability. Previous works that construct BB protocols aim to achieve so-called preventive security [28].
That is, it should be impossible to break a security property of the BB, such as consistency, even if parties running the
BB actively misbehave. Achieving preventive security properties generally requires introducing (sometimes strong)
assumptions which might not always be met in practice. For example, all previous provably secure BBs [24, 39, 46]
require trust in at least some parties running the BB.

In this work, we take a different route and propose using the concept of (individual) accountability [28, 33, 48, 50]
to obtain a secure BB. Individual accountability intuitively states that, if some intended security property of a protocol,
e. g., consistency in a BB, is violated, then one can obtain undeniably cryptographic evidence that identifies at least
one misbehaving protocol participant that has deviated from the protocol.1,2 In addition to this completeness property,
identification based on evidence must also be fair in that parties honestly following the correct protocol are never
mistakenly blamed. Given such evidence, it is then possible to hold parties accountable for misbehavior, e. g., via
financial or contractual penalties. This in turn serves as a strong incentive for malicious parties to honestly follow the
protocol such that security properties will not break in the first place. In the case of BBs and the applications discussed
in this paper, accountability should be public. That is, everyone including all clients and even external observers of
the BB should be able to detect and obtain evidence of misbehavior. While accountability is often cited as desirable
and sometimes even claimed as a feature of BBs [24, 37, 46], so far there is no BB that has been proven to achieve
accountability with respect to at least some of its security properties.

As discussed in detail in [33], preventive security and accountability are orthogonal concepts which take different
viewpoints on how a protocol can be protected, each with its own advantages and tradeoffs: Preventive security
guarantees that security properties cannot be broken at all no matter what malicious parties do but require certain
(sometimes very strong) assumptions for this to hold true. Accountability rather accepts that malicious parties can
in principle choose to break a security property but uses detection and deterrence to discourage them from making
use of this option. As a result, accountability-based security can often already be achieved under weaker and possibly
more realistic assumptions, which is why we follow this approach in this work. For example, Fabric∗ [31] provides
accountability w.r.t. consistency without assuming eventual message delivery or honest protocol participants. To
achieve preventive consistency in a Byzantine-fault tolerant (BFT) algorithm, e. g., PBFT [19], one typically requires
an honest supermajority among the protocol participants. On the flip side, accountability-based security might fail to
protect a protocol if penalties for detected misbehavior are chosen to be too small to act as a deterrence.

While both preventive and accountability-based security can be used each on their own to protect a protocol, they
can also be combined to create a layered defense (cf. [33]). In such a case, a property is shown to be preventively
secure as long as certain assumptions hold true, with accountability serving as a backup for cases when one or more
of those assumptions are no longer met.

1In this work, we always mean “individual accountability” when we say “accountability”. Other works sometimes also consider weaker
accountability forms where it might not be possible to identify a single misbehaving party.

2Ideally, one might want to identify all misbehaving parties. This is generally not possible since some types of misbehavior cannot be
observed [50].
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Tool 2: Universal Composability. The universal composability (UC) paradigm (e. g., [12, 13, 40, 51]) is an approach
for designing, modeling, and analyzing security protocols. Compared to game-based analyses, UC provides strong
security guarantees and supports the modular design and analysis of protocols. In a UC analysis one first defines an
ideal functionality/protocol F that specifies the intended security properties of a target protocol, i. e., F is secure by
definition but typically cannot be run in reality. For a concrete realization, the real protocol P , one then proves that P
is at least as secure as F for a suitable simulator that has full control over the network traffic of F , i. e., no environment
E can distinguish P from F where F runs with the simulator. One can then build higher-level protocols P ′ on top
of F and analyze their security. A so-called composition theorem provided by the underlying UC model immediately
implies that P ′ remains secure even after the ideal subroutine F is replaced/implemented by the concrete realization
P .

Ideal BB Functionalities. As a first contribution of this work and for the first time in the literature, we formalize the
notion of an ideal functionality for individually accountable BBs in a universal composability model.

As explained above, while typical applications require that a BB at least provides append-only and consistency, the
exact properties expected from a secure BB strongly depend on and vary wildly between different applications that
are built on top of the BB. The BB properties needed by one application can even be mutually exclusive with the
BB properties required by another application, e. g., [24] requires a BB with non-clashing items while [38] requires
a BB that supports clashing items. Altogether, there does not exist the “one-size fits all” BB with a single fixed set
of security properties. This is reflected in our work. We first design the ideal BB functionality Facc

BB that captures the
typically expected BB security properties, namely (accountability w.r.t.) consistency, which also ensures that data can
only be appended. For many applications, Facc

BB therefore is already sufficient. We further explain how Facc
BB may be

extended to capture all standard BB security properties from the literature. We merge these extensions into the highly
customizable BB functionality Facc

cBB which can be instantiated to capture arbitrary combinations of additional security
properties on top of consistency, including all of the aforementioned ones.

We note that, while the focus of this work lies on accountability, Facc
cBB is actually able to capture both preventive

and accountable security properties, even in combination. Also, to the best of our knowledge, these BB functionalities
are not only the first ones with accountability, they are, more generally, also the first ideal BB functionalities that
are not just modeling a perfect setup assumption but that can actually be realized by a concrete implementation (cf.
Section VI).

An Individually Accountable BB Fabric∗BB.Next, we propose the first provably secure BB that does not require trust
in any party running the BB and is compatible with a fully asynchronous network. Our starting point is Hyperledger
Fabric, one of the most prominent open-source distributed ledgers. According to Forbes, many important companies
in different economic sectors, such as Amazon, IBM, ING, Intel, Microsoft, VISA, Walmart, and NASDAQ are using
Fabric [26]. In [31], Graf et al. proposed a minor modification to Fabric, called Fabric∗, which improves accountability.
They show in a game-based analysis that the core components of Fabric∗ are accountable w.r.t. consistency.

We design our BB Fabric∗BB by slightly extending and instantiating Fabric∗. Among others, this extension lifts
accountability guarantees from the core components to the full protocol including clients. We then formally prove that
Fabric∗BB realizes an instantiation of Facc

cBB, i. e., is a secure BB that achieves accountability w.r.t. consistency. Among
others, this extends the previous accountability result of Graf et al. to the full protocol and lifts it from the game-based
to the stronger and modular UC setting.

We further translate, adapt, and specialize the concept of smart contracts from DLTs to the setting of BBs; we call
the resulting concept smart read. Intuitively speaking, a BB with smart read not only provides its state to clients but
also allows clients to obtain the (correct) output of functions evaluated on that state. By this, clients can outsource
computational tasks to the BB. For example, electronic elections often require running verification procedures on the
contents of the BB which can be outsourced to the BB itself via smart reads.

We formalize accountability w.r.t. smart read in our instantiation of Facc
cBB and show that Fabric∗BB also achieves

this property. As we discuss in Section IV-C, this implies as a simple corollary that Fabric∗BB offers (accountability
w.r.t.) several other of the aforementioned BB properties as well since many of these properties directly follow from
the smart read property.

This result answers both of our initial research questions. We are able to show that Fabric∗BB realizes Facc
cBB based
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on standard cryptographic assumptions such as EUF-CMA-secure signatures; no trust in any of the parties running
the BB or network assumption are needed thanks to accountability-based security (cf. Section IV-F for an overview
of assumptions). Since this is a UC security result, higher-level protocols P ′ can be designed and analyzed based on
the ideal BB Facc

cBB. The UC composition theorem then implies that all security results for P ′ are retained even if P ′ is
later implemented using Fabric∗BB.

Performance Evaluation of Fabric∗BB.As we detail in Section V, the overall performance of Fabric∗BB is essentially
the same as for the underlying Fabric∗ which, however, has not been implemented and benchmarked so far. As
a contribution of independent interest, we therefore provide the so-far missing implementation and evaluation of
Fabric∗ [34]. Our results show that Fabric∗BB/Fabric∗ can write up to 500 items per second to the BB/ledger which is
sufficient for many BB applications. For example, in the context of e-voting 200,000 ballots can be added to the BB
in less than 10 minutes.

Summary of Our Contributions.
• We provide the first ideal accountable BB functionalities, namely Facc

BB and Facc
cBB. They are also the first ideal

(including non-accountable) BB functionalities that are not just perfect setup assumptions but can be realized.
• We propose the novel property of smart read for BBs.
• We propose Fabric∗BB by instantiating and slightly extending Fabric∗ and prove that Fabric∗BB UC-realizes an

instantiation of Facc
cBB, i. e., provides accountability w.r.t. consistency and smart read. This is the first provably

secure BB that does not require trust in any BB party or assumptions on the network. This is also the first BB that
is provably UC secure and hence the first BB security result that can directly be re-used by higher-level protocols.

• We implement and benchmark the underlying Fabric∗. Our results demonstrate that Fabric∗BB is practical.

Structure of this paper. After recalling preliminaries in Section II, we propose Facc
BB and Facc

cBB in Section III.
Section IV recalls the Fabric∗ protocol, proposes Fabric∗BB based on Fabric∗, and shows that Fabric∗BB realizes an
instantiation of Facc

cBB. Section V presents our implementation and benchmarks of Fabric∗ (available for download
at [34]) and discusses the implications for Fabric∗BB. We discuss related work in Section VI. Full details and proofs
are given in the appendix.

II. PRELIMINARIES

Here we briefly recall relevant details of our main tools.

A. Computational Model

There are many different models following the universal composability paradigm, e. g., [12, 13, 40, 51]. Formally,
here we use the iUC model, a highly general model by Camenisch et al. [12]. However, all of our definitions and
results can also be translated to other models for universal composability such as the aforementioned ones. We will
keep the presentation on a level such that readers familiar with any of these UC models can understand the paper.

In all UC models, the security experiment compares a real protocol P with the so-called ideal protocol or
functionality F which is typically an ideal specification of some task. The idea is that if one cannot distinguish P from
F , then P must be “as good as” F , written P≤F . More specifically, we have P≤F if there exists a simulator/ideal
adversary S that controls the network ofF such that P andF (alongside S) are indistinguishable, i.e., no environment
E can tell whether it interacts with P (on both P’s I/O and network interface) or with F along with S on F’s I/O
interface and the network interface of S it exposes to E ; equivalently one can consider a real adversary that runs
alongside P , analogously to F running with S.

A protocol in a UC model is typically modeled as a set of interacting Turing machines. An instance of a machine
manages or represents one or more so-called entities. An entity is identified by a tuple (pid , sid , role ). It describes a
specific party with party ID (PID) pid running in a session with session ID (SID) sid and executes some code defined
by the role role. Entities can send messages to and receive messages from other entities and the adversary using the
I/O and network interfaces of their respective machine instances. In what follows, we use the terms entity and party
interchangeably.

We call a party in a protocol main if it can directly receive inputs from and send outputs to the distinguisher/en-
vironment (who subsumes arbitrary higher-level protocols). We call a party internal otherwise, i. e., if it is part of an
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internal subroutine. Whether a party is internal or main can be determined from its role. As in all UC models, an ideal
functionality and a realization share the same sets of main parties/roles. A realization might have additional internal
parties/roles that are not present in the ideal protocol and vice versa.

The adversary is allowed to corrupt a party by sending a special corrupt command on the party’s network interface.
If an entity is corrupted, the adversary generally gets full control over the entity. The environment can obtain the
current corruption status of main parties in a protocol, which allows for checking whether corruption of main parties
is simulated correctly.

We provide an extended overview of iUC and a formal definition of our pseudo code notation in Appendix A, resp.
in Appendix B.

B. Accountability in UC

Graf et al. [32] recently proposed the AUC framework, which provides a general blueprint for modeling and formally
proving accountability of arbitrary security properties of protocols within any model for universal composability.
Therefore, AUC provides a template for how accountability is incorporated into ideal and real protocols. To formally
prove that a real protocol provides accountability w.r.t. a security property, one then shows – as common in UC – that
the real protocol is indistinguishable from the ideal protocol. Here we briefly recall those aspects of AUC that we use
in this work. For interested readers, additional details are available in Appendix C and [32].

Formalizing Accountability in Ideal Functionalities. Start with an ideal functionality F that formalizes (preventive
security of) a certain set of security properties Sec, such as consistency, non-clashing, or liveness. Intuitively, AUC
modifies F using the following main ideas to capture accountability of a subset Secacc ⊆Sec of those properties. At
any point in time, the adversary/simulator on the network is allowed to send a special message requesting that the
ideal functionality F should from now on consider a property p ∈ Secacc to be broken. This request must contain a
so-called verdict, which identifies at least one unique party that has been misbehaving and hence has led to this breach
of security. Verdicts in AUC are positive boolean formulas consisting of terms of the from dis((pid , sid , role )) where
(pid , sid , role ) is a protocol participant.

The ideal functionality F verifies that the verdict is fair, i. e., does not blame any parties that are currently
uncorrupted and hence honestly following the protocol. If this check succeeds, then the request is accepted and p is
marked as broken property, stored in a new state variable brokenProps in F , and the adversary gains additional power
depending on the property p. AUC further introduces a new role called (ideal) public judge3 in F which represents the
party that is responsible for computing the verdict. This ideal judge inF allows higher-level protocols/the environment
to obtain the current verdict as previously provided by the attacker. Since a public judge computes verdicts based on
public data, such a judge can be executed by anyone in reality including arbitrary honest parties. Thus, it makes sense
to model (public) judges in AUC as incorruptible.

AUC provides ready-to-use pieces of code that can be included in an ideal functionality F to establish the above
infrastructure, including the judge role, and which we also use here. The protocol designer then still has to define the
set Secacc and manually define new logic for F which specifies the exact implications of breaking a security property
p. For example, if p represents consistency in a BB, then breaking p should allow the attacker to send contradicting
outputs to clients of the BB.

Formalizing Accountability in Real Protocols. A real protocol P that is supposed to realize an ideal accountable
functionality F additionally includes a dedicated real public judge J that implements the ideal public judge from F .
The real judge J describes the exact inputs/evidence and the algorithm/logic that is used to compute verdicts from
that evidence in the actual protocol. Hence, the specification of J is one of the key tasks in designing and proving the
security of P .

One then shows that P UC-realizes F . This implies that P provides accountability w.r.t. all p ∈ Secacc: As long as
the real judge J has not output a verdict, by indistinguishability to F property p has not been broken. Conversely, if
the adversary manages to use the logic of P and its control over corrupted parties in P to break p, then J must have
already computed a verdict and this verdict has to be fair, again, by indistinguishability to the ideal judge in F .

3AUC also supports other types of judges. In this work, we focus on public accountability and hence only use public judges, sometimes just
called judge in what follows.
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III. AN IDEAL INDIVIDUALLY ACCOUNTABLE BB

In this section, we propose the ideal BB functionality Facc
BB and its customizable variant Facc

cBB.

A. The Ideal Accountable BB Functionality Facc
BB

As explained in the introduction, the most essential property that virtually every BB should provide is consistency.
That is, clients reading from the BB should obtain (prefixes of) the same global state as stored in the BB. Commonly,
consistency also includes the expectation that this global state should be append-only, i. e., information that was
already read by some client will not change in the future. Here we construct an ideal Facc

BB functionality that formalizes
accountability w.r.t. consistency and hence also append-only. Thus, Facc

BB provides already sufficient security for
constructing many higher-level protocols which only require a broadcast channel with memory, including most of
the existing e-voting protocols.
Existing Ideal BB Functionalities in the Literature. As a starting point, we revisit previously existing ideal BB
functionalities from UC literature (e.g., [4, 7, 14, 16–18, 61, 62]). These functionalities have only been used to model
setup assumptions within higher-level protocols and, at their core, all work similarly to FBB reproduced in Figure 1.
That is, clients can write a message to FBB which is then internally appended to a global list of messages msglist.
Clients can also read fromFBB to obtain the current msglist. ThusFBB formalizes (preventive security of) consistency
and an append-only state.

Description of FBB:
Implemented role(s): {client}
Corruption model: incorruptible
CheckID(pid , sid , role ):

Accept all messages with the same sid .
{

Each instance of this functionality is re-
sponsible for an entire session sid

Main:
recv (Write,msg) from I/O: {Write request from a honest identity

id← id+ 1;msglist.add(id,msg) {Record message at position id

recv Read from I/O: {Read request from an honest identity
reply (Read,msglist) {Provide full item list to requestor

Fig. 1: Sketch of a common ideal BB setup assumption FBB.

All ideal functionalities in the spirit of FBB [4, 7, 14, 16–18, 61, 62] model a perfectly secure BB that does not exist
in reality. For example, FBB implies network connections between parties running the BB and BB client without
latency. Hence, even under very strong assumptions such as trusted third parties running the BB, we have for any
realistic implementation PBB of a BB that PBB does not realize FBB. As a result, FBB cannot be used for the security
analysis of realistic BBs. Even more, security results obtained for higher-level protocols based on FBB, including all
of the aforementioned works [1, 7, 8, 41, 49, 52, 55], might not hold true when those higher-level protocols are based
on an actual implementation PBB.

In what follows, we therefore lift FBB from a setup assumption to Facc
BB which can be realized by realistic BB

protocols. We also incorporate accountability-based security into Facc
BB which, as previously mentioned, allows us

to prove security statements based on mild security assumptions compared to preventive security and is a desirable
property by itself.
Constructing the first realizable and accountable ideal BB. By the previous observations, constructing Facc

BB not
only requires adding accountability toFBB, we also have to add infrastructure to support (possibly fully asynchronous)
real-world networks as well as corrupted parties which are necessary for being able to UC-realize such an ideal BB
functionality with an actual real-world BB protocol PBB, irrespective of accountability. We present the core logic of
our proposed Facc

BB in Figure 2, with lines capturing accountability following the AUC approach being highlighted in
blue.4 In what follows, we motivate and explain the definition of Facc

BB . Full details are available in Appendix III-A.

4By removing those blue lines, one can easily obtain an alternative version that is still realizable but captures preventive security instead of
accountability. While not the focus of this work, this might be of independent interest.
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Description of Facc
BB :

Main:
recv (Write,msg) from I/O: {Write request from a honest identity

writeCtr← writeCtr + 1
writeQueue.add(writeCtr,msg) {Store msg for update
send (Write,writeCtr,msg) to NET {Leak full msg .

recv Read from I/O: {Read request from an honest identity
readCtr← readCtr + 1
readQueue.add((pidcall, sidcall, rolecall), readCtr, false, 0)

{Store for later processing, where (pidcall, sidcall, rolecall) denotes the calling entity
send (Read, readCtr) to NET {Leak full details

recv (DeliverRead, readCtr , (sugPtr , sugOutput)) from NET

s.t. ((pid , sid , role ), readCtr , false, 0) ∈ readQueue: {A triggers message delivery

if brokenProps[consistency] = false: {Facc
BB provides consistency in the absence of a verdict

if ∃((pid , sid , role ), , true, prt) ∈ readQueue :
s.t. prt > sugPtr
send nack to NET {Delivery request of A was denied

else:
readQueue.remove((pid , sid , role ), readCtr , false, 0) {Clean up
readQueue.add((pid , sid , role ), readCtr , true, sugPtr)
send (Read,msglist(sugPtr)) to (pid , sid , role )

else: {A defines the output if consistency is broken
readQueue.remove((pid , sid , role ), readCtr ,msg , false, 0)
readQueue.add((pid , sid , role ), readCtr ,msg , true, 0)
send (Read, sugOutput) to (pid , sid , role )

recv (Update, appendToMsglist , updRequestQueue) from NET

s.t. updRequestQueue ⊂ writeQueue∧
all entries from updRequestQueue appear in appendToMsglist:

{
Update or maintain request trig-
gered by the adversary.

msglist.append(appendToMsglist)a

for all item ∈ updRequestQueue do: {Remove “consumed” elements from writeQueue
writeQueue.remove(item)

reply (Update,msglist) {Leak data

Include static code provided by AUC(cf. Appendix C and [33]) here. This code adds a public judge judge.A can send
a verdict v to judge indicating that consistency should be broken. judge checks whether v is fair. If so, judge marks
consistency as broken and sets brokenProps[consistency] to true; otherwise it remains false. If the environment
E asks judge regarding verdicts, judge provides current verdicts (if any) to E .

aappend adds each entry from appendToMsglist to msglist including consecutive IDs

Fig. 2: Excerpt of the accountable BB functionality Facc
BB .

The ideal functionality Facc
BB captures accountability w.r.t. consistency, i. e., we consider Secacc = {consistency}

and no other (preventive) security properties. Clients in Facc
BB can issue Write and Read requests. However, unlike

FBB, these requests are not executed instantly. If a client calls Write with some input msg , Facc
BB stores the request

with an index/ID writeCtr in writeQueue for later processing. Similarly, Facc
BB stores Read requests in readQueue,

including an index/ID, a flag that indicates that the request has not been processed yet, and a pointer indicating what
the entity has read so far. For both read and write, Facc

BB leaks the full requests to the network adversaryA, resp. the
simulator. The adversary is then responsible for deciding whether and when requests are processed, which captures a
real-world asynchronous network with latency and potential message loss.

To finish processing a read request and to generate an output, the adversary A can issue a DeliverRead command
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to Facc
BB . For this purpose, A specifies the unique ID of the pending read request as well as the output that shall be

provided. The exact behavior depends on whether the property of consistency can still be guaranteed. By default and
as long as the public judge did not detect any misbehavior yet (see below), we have that consistency must still hold true
(i. e., brokenProps[consistency] = false) and hence only the black code is executed. In this case, Facc

BB enforces
consistency for all clients. Therefore, A provides sugPtr to Facc

BB which determines the exact prefix of the msglist to
be output. Facc

BB accepts sugPtr only if it includes at least all messages that the same client has previously already read,
if any.5 Therefore, Facc

BB checks that all stored output pointers for the requesting party in requestQueue are smaller or
equal to sugPtr . Afterwards, Facc

BB then stores that the request was processed and that Facc
BB delivered the msglist prefix

up to sugPtr to the requestor.
If consistency is broken, i. e., brokenProps[consistency] is set to true, Facc

BB does not ensure consistency any
longer and it executes the blue code in DeliverRead. In this case, Facc

BB returns the string sugOutput as provided by
A to the requestor. This allows A to freely choose Facc

BB ’s output including the option to send contradicting outputs to
different clients. Again, Facc

BB stores that the request was processed but does not store which data was delivered.
To add pending write requests from writeQueue to the Facc

BB ’s state, A can at any point in time issue a Update

command to Facc
BB . This new Update command is an abstraction of a concrete consensus mechanism that is used in

a real-world BB to process and sort incoming messages. In an Update, A specifies (i) an ordered list of messages
appendToMsglist that shall be appended to the global state msglist and (ii) the set of pending write requests that are
processed by this update and hence will be removed from writeQueue. As long as these inputs are well-formed, Facc

BB

will perform such an Update request, i. e., change both msglist and writeQueue accordingly. We note that A may not
only append messages from honest clients that are contained in writeQueue. He can also add arbitrary other messages
which captures malicious parties that might add items to the bulletin board without first being triggered via a write
command issued by a higher-level protocol.

If the adversary A provides a fair verdict v to the public judge that identifies at least one unique corrupted party,
then Facc

BB marks consistency as broken, i. e., it sets brokenProps[consistency] = true (this operation is part of
the static code that we include from AUC as indicated at the bottom of Figure 2). Such a verdict indicates that the
public judge has detected that a malicious party deviated from the protocol and hence consistency can no longer be
guaranteed.

Discussion. Observe that Facc
BB indeed formalizes accountability w.r.t. consistency: As long as the public judge has

not received a fair verdict from A, who by this also indicates that consistency should be considered broken, Facc
BB

enforces consistency by requiring that all outputs are (non-decreasing) prefixes of the same globally unique msglist.
Conversely, as soon as the judge’s verdict is non-empty, Facc

BB does not guarantee consistency any longer. However, the
party from the verdict can then be held accountable for this security breach.

Hence, if we can show that an actual implementation of a BB PBB realizes Facc
BB , then PBB must enjoy the same

security properties. Since Facc
BB and PBB have to have the same behavior towards the environment E , PBB has also to

provide consistency as long as the judge (in the real protocol) does not render a verdict. As soon PBB’s judge renders
a verdict, PBB does not guarantee consistency any longer.

One can also build higher-level protocols P ′ on top of Facc
BB , which then use that Facc

BB provided consistency
guarantees as long as the public judge does not output a verdict (and if there is a verdict, then P ′ can hold the same
person accountable also for any failure in the higher-level protocol). By UC composition, all security results shown
for Q carry over when Facc

BB is later implemented via PBB.

B. Capturing Additional Properties by Customizing Facc
BB

As explained in the introduction, some applications require BBs that achieve additional properties beyond
just (accountability w.r.t.) consistency. Our ideal functionality Facc

BB can be customized to also capture arbitrary
combinations of other properties, both in an accountable but also in a preventively secure fashion. Such customization
mainly entails introducing additional checks while processing Write, Update, and/or DeliverRead commands to
enforce further security properties. In what follows, we describe how Facc

BB is modified to obtain the customization

5We require only a prefix, instead of the full msglist, to allow for realizations PBB without any network assumptions, i. e., that can be deployed
in a fully asynchronous real-world network where messages might be lost or delayed.
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framework Facc
cBB which can be instantiated in various ways to capture arbitrary combinations of properties. The main

task of protocol designers is then to define suitable instantiations for the desired properties. We describe how all
security properties mentioned in the introduction can be captured via such instantiations of Facc

cBB. In Section IV-C, we
further establish a full instantiation of Facc

cBB that formalizes the precise security properties provided by Fabric∗.
We provide the full formal definition of the customization framework Facc

cBB inAppendix D. In summary, it involves
the following changes compared to Facc

BB :
Customizations of operations: The customization framework Facc

cBB is derived from Facc
BB mainly by introducing

several additional subroutines, namely Fwrite, Fupdate, and Fread, which are called during the Write, Update,
and DeliverRead operations.6 Protocol designers have to specify these subroutines to capture the exact conditions
imposed on each operation and thereby formalize modifications to Facc

cBB. When called by Facc
cBB, a subroutine receives

the full internal state allowing it make decisions given the full view. The subroutines Fwrite, Fupdate, and Fread

can (i) impose additional requirements on, (ii) abort, or (iii) influence the output/result of Write, Update, and
DeliverRead operations. Below we give examples of how this can be used to capture a wide range of security
properties.

Supporting multiple types of read requests: The Read command is extended to also take an auxiliary input msg ,
which is an arbitrary bit string. This auxiliary input can be used to distinguish multiple types of reads with possibly
differing security properties. We use this feature to formalize the novel security property of smart read in Section IV-C.

Addition of an internal clock: To be able to formalize time-based properties such as liveness, the Facc
cBB framework

additionally contains an internal clock. Formally, this is just an internal counter round which models arbitrary discrete
time steps such as seconds or network rounds. The environment/higher-level protocols can query Facc

cBB to obtain the
current time, i.e., the value of round. The adversary can send a new UpdateRound command to request increasing the
current value of round by one time unit. The ideal Facc

cBB uses a new subroutine FupdRnd to decide whether this request
is granted, where FupdRnd just as for the other subroutines is a parameter that formalizes the precise conditions and
hence security properties that a protocol designer wants to consider.

As a mostly straightforward sanity check, in Appendix D.4 we formally verify that the Facc
cBB customization

framework captures Facc
BB as a special case:

Lemma 1 (informal). There exists an instantiation of (the subroutines of) Facc
cBB such that Facc

cBB UC-realizes Facc
BB and

Facc
BB UC-realizes Facc

cBB.

Capturing standard security properties via Facc
cBB. Standard security properties of BBs, including the ones

mentioned in the introduction, can be captured via instantiations of Facc
cBB. Here we illustrate several examples, starting

with preventive security. The remaining properties are discussed in Appendix D.3.
Liveness states that write requests will become part of the state of the BB within a bounded time frame, say δ.

Furthermore, once stored in the BB, the message will be part of outputs read by clients after another bounded time
frame, typically also δ. The first aspect can be formalized by instantiating FupdRnd to prevent the adversary from
advancing time as long as writeQueue still contains pending requests that have been submitted δ time units ago. The
second aspect can be formalized by instantiating Fread to only allow outputs that contain at least all messages that
have been added to the global state more than δ time units ago.

Authorized (Write) Access states that only a certain set of clients is allowed to write messages on the BB. This can
be formalized by instantiating Fwrite and Fupdate to drop write requests and state updates, respectively, containing
messages from clients that are not part of the authorized set.

Allowing or preventing clashing items in the global state of the BB can be captured by instantiating Fupdate to
allow or prevent such updates.

Starting with the above preventive formalizations, it is easy to switch to accountability, if desired, using the same
method as for accountability w.r.t. consistency in Facc

BB . For example, to consider accountability w.r.t. liveness one
starts with the above instantiation of preventive security and first adds the property liveness to the set Secacc. By
the static code of AUC, this has the effect that the adversary can now set brokenProps[liveness] = true if and

6Only Facc
cBB can call the subroutines. To allow the subroutines to make decisions based on Facc

cBB’s state, Facc
cBB always includes its internal state

and transcript to calls to the defined subroutines.
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only if he provides a verdict v identifying a misbehaving party to the public judge. The protocol designer then only
has to modify FupdRnd and Fread to first check whether brokenProps[liveness] = true and, if so, skip all security
checks that enforce liveness. We finally emphasize that using the above techniques one can easily formalize preventive
security for some properties while others are protected by accountability in Facc

cBB.7

IV. FABRIC∗

We show that the Fabric∗ distributed ledger proposed by Graf et al. in [31] can be slightly extended and instantiated
to obtain a provably secure, composable, and accountable BB which we call Fabric∗BB. Notably, we are able to prove
this result based on standard cryptographic assumptions and without requiring trust in any of the parties running
Fabric∗BB or network assumptions.

We structure this section as follows: In Section IV-A, we recall the Fabric∗ protocol. In Section IV-B, we recall
previous results regarding Fabric∗ and relate this to our work. We then, in Section IV-C, formalize, via an instantiation
Facc
cBB,FAB∗

BB
of Facc

cBB, the security guarantees that we want our BB to achieve. In Section IV-D we present our BB
protocol Fabric∗BB based on Fabric∗. Finally, in Section IV-E we formally prove the security of Fabric∗BB, with full
details given in Appendix E and F.

A. Recap: The Fabric∗ Protocol

The Fabric∗ protocol is derived from the prominent Hyperledger Fabric ledger [2]. Graf et al. [31] construct Fabric∗

by slightly adapting Fabric to improve accountability of the system. In what follows, we recall Fabric∗ closely
following the terminology and presentation of Graf et al. [31]. Along the way, we recall how Fabric∗ differs from
the original Hyperledger Fabric.

Fabric∗ is a permissioned blockchain protocol typically executed by a set of organizations that do not fully trust each
other. These organizations set up a new Fabric∗ instance – a so-called channel – by agreeing externally on a Genesis
block. The Genesis block defines the channel’s configuration including (i) the channel’s organizations/participants,
(ii) the components/parties that run the Fabric∗ protocol, and (iii) the set of (deterministic) smart contracts available
in this channel.

Roles in Fabric∗. In Fabric∗, all protocol participants are identified via certificates which include their role, the
organization they belong to, and their public key.

Clients initiate transactions to read from or to write to the blockchain. They typically obtain inputs for transactions
from end users. All client interactions in Fabric∗ are calls to smart contracts that are executed by so-called peers. The
smart contracts compute, among others, the outputs that clients obtain and whether any new data is written to the
ledger state (see below). Clients do not keep a copy of the chain.

(Endorsing) Peers are essentially the “miners” and “full-nodes” of Fabric∗. They execute transactions from clients.
They also replicate the chain, i. e., they keep a copy of the full blockchain and allow clients to query data from the
chain. Peers also convert the blockchain to a current ledger state. They are then responsible for executing smart
contracts based on the current ledger state. Peers differ from traditional miners in that they are not directly involved in
the block generation process. This process is outsourced to a so-called ordering service.

An Ordering Service is an abstract concept that provides a “consensus service”. Transactions from clients are first
executed by peers. Afterwards, transactions and execution results are forwarded to the ordering service who forms
blocks from the incoming transactions. The service then distributes the blocks to all peers and peers mark transactions
in the chain as invalid if necessary.

Transaction Flow. In what follows, we explain how Fabric∗ runs by following the steps used by clients for reading
from or submitting a new transaction to the ledger (cf. Figure 3):

7Using techniques established by AUC, it is even possible to formalize security statements in Facc
cBB of the form “as long as certain assumptions

hold true, then a property is guaranteed to hold true, i.e., preventively secure. If assumptions are broken at some point, then the property is
still accountable, i.e., still holds true as long as the judge has not yet obtained a verdict.” Since this is not the main focus of this work, we refer
to [33] for more details.
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Fig. 3: Example Flow in Fabric∗ with Client C, (endorsing) peers P1, . . . , Pn, and ordering service OS (cf. [31]).

Ordering Service

txCommitment1txCommitment1

txCommitment1txCommitment1

txCommitment2txCommitment2

txCommitment2txCommitment2

Message StreamMessage Stream

Message StreamMessage Stream

Message StreamMessage Stream

BlockBlock

BlockBlock

BlockBlock

C1 C2 O1 O2 Om K P

1

2

3

C1 C2 O1 O2 Om K P

. . .

. . .

Fig. 4: Ordering and block generation with clients C1, C2, orderers O1, . . . , Om, a Apache Kafka K, and (endorsing)
peers P (cf. [31]).

Proposal: To interact with a channel, i. e., to read from or to write to it, clients call smart contracts at peers by
sending a signed (transaction) proposal to the (endorsing) peers (cf. 1 ). After having distributed the proposal, clients
wait for the results of their request, the so-called endorsements.

Endorsement: Peers execute proposals by running the smart contract with the input parameters specified in the
proposal. Smart contracts in Fabric∗ can be implemented in several common programming languages, such as Go,
Java, and node.js. Peers execute this code natively but isolated in Docker containers [43]. At the end of a successful
smart contract execution, peers generate an endorsement. An endorsement contains the original transaction proposal,
the data read from the peer’s ledger state during the execution (called readset), possibly some changes in the ledger
state caused by the execution of the proposal (called writeset), and/or potential output for the client. This endorsement
is a confirmation of the peer that the transaction and its results are allowed to become part of the blockchain. Peers
send the signed endorsement to the client initiating the proposal (cf. 2 ) but do not apply the writesets to their state
yet. If the proposal is a read request, the client extracts the output from the endorsements and stops the protocol at this

11



point. Read requests are thus “off-chain” in that they are not added and confirmed to the blockchain but also do not
change the ledger state. Please note that, since the ledger state of different peers may differ, readsets, writesets, and
output computed by different peers for the same proposal may differ as well.

Commitment: For a write request that the client wants to add to the ledger state, she keeps collecting endorsements
for her proposal until she collects sufficiently many endorsements, e. g., from all peers she queried. The exact number
of endorsements that are required is specified as part of the channel setup. Then, the client forwards the proposal and
all endorsements as a so-called commitment to the ordering service (cf. 3 ).

Block Generation and Distribution: The ordering service is responsible for block generation (cf. 4 ). After
generating the blocks, the ordering service distributes them to peers. We explain the specific ordering service used
by Fabric∗ below.

Block Validation and Ledger State Update Upon receiving a new block, peers validate whether they accept the
block including checking that blocks are correctly signed by the ordering service. After accepting a new block, peers
update their current view on the ledger state by iterating over the commitments contained in the block. A commitment
is invalid and hence ignored if (i) endorsements in the commitment do not agree on the readset and writeset or (ii) the
readset does not match the current state of the ledger. If a commitment is valid, then the peer applies the writeset to
update its current view of the ledger state before checking the next commitment.

Fabric∗’s Ordering Service. The original Hyperledger Fabric supports various ordering services, including an Apache
Kafka-based ordering service [3, 42]. Fabric∗ uses this ordering service but with one major modification.

As depicted in Figure 4, the Kafka-based ordering service consists of two components: (i) so-called orderers provide
the interface for clients and peers to the ordering service. They collect commitments from clients that should enter the
blockchain, forward them to Apache Kafka [3] (in short Kafka), and receive a totally ordered sequence of messages
back. Thereupon, orderers follow a deterministic algorithm to split this message sequence into blocks, sign them, and
then distribute those blocks to peers. (ii) Kafka is a crash fault-tolerant distributed consensus service optimized for
durability, high throughput, and reliable message distribution. A Kafka cluster consists of several machines called
Kafka brokers. One of the brokers is the so-called Kafka leader. The leader receives all incoming messages from
orderers, establishes a total order, and returns the resulting message sequence to the orderers. All non-leading brokers
replicate the state of the leader to provide redundancy. If the leader crashes, then the remaining brokers elect a new
leader who takes over the duties of the former leader. In practice, the whole Kafka cluster, including all broker
machines, is supposed to be run as a service in a data center operated by a single entity [54, 60]. This entity is then
responsible for providing a correct execution of the entire Kafka protocol.

By default, the Kafka component as used by Hyperledger Fabric does not provide any accountability. Intuitively,
this is improved in Fabric∗ by letting Kafka leaders additionally sign their ordered sequences of messages and letting
orderers include this information in the generated blocks.

B. Results for Fabric∗

Graf et al. [31] prove in a game-based security analysis that Fabric∗ provides public and individual accountability
w.r.t. consistency for peers. For our purposes, however, this result is not sufficient: (i) Security was shown for Fabric∗

as a ledger, not a BB. Notably, providing and proving security guarantees for clients was out of scope. (ii) Since
the security analysis is game-based, it is not directly composable with higher-level protocols that might want to use
Fabric∗. (iii) While smart contracts were formally modeled, no security results were shown for (the execution of) those
smart contracts.

We build on these results for Fabric∗ to design and prove the security of Fabric∗BB, thus showing that this and similar
distributed ledgers can be used to build accountable BBs (cf. Section IV-F). Along the way, we also extend prior results
for Fabric∗ in various ways: (i) As part of Fabric∗BB, we propose a slight extension of the clients of Fabric∗ which is
needed to lift consistency from peers to clients. (ii) The security proof of Fabric∗BB extends the previous consistency
result for Fabric∗ from peers to clients (using the aforementioned extension of clients). We also show, for the first time,
that smart contract execution of Fabric∗ is accountable, which is in turn needed for Fabric∗BB. (iii) Our proofs are for a
UC security notion and thus immediately imply composability with higher-level protocols. (iv) As part of evaluating
the practical performance of our Fabric∗BB, we have implemented and provide the first benchmarks for the underlying
Fabric∗.
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C. Intended Security Properties of Fabric∗BB

We want to show accountability w.r.t. two security properties for Fabric∗BB: Firstly, we consider the standard notion
of consistency, i. e., clients can read a (growing) prefix of the same globally unique state of the BB. Secondly, we
consider a novel BB property called smart read.
Smart Read. Intuitively speaking, a BB with smart read offers two types of read operation: The standard read
operation to retrieve the full state of the BB (we call this full read in what follows) and a second operation, called
smart read. A smart read is closely related to and can be implemented by smart contracts offered by distributed
ledgers: it allows clients to instruct the BB to run a (potentially arbitrary) algorithm on the BB state and then return
the output. If the BB is secure, then the output of such a smart read must be correct and fresh, i. e., (i) it was obtained
by running the algorithm requested by the client and (ii) the input to the algorithm was a prefix of the current global
state that is at least as long as any prefix previously read by the client, either as part of a full read or during a smart
read.

Thus, similar to smart contracts for distributed ledgers, smart reads allow for outsourcing tasks to the BB that would
usually be performed in higher-level protocols. For example, in e-voting protocols [1, 41, 49] it is often necessary to
perform verification checks on the state of the BB. It is of course possible for, e. g., a voter to just query the entire
state of the BB via a full read and then perform those checks locally, which is what systems have been doing so far. By
using a BB with smart read, it is possible to outsource these verification checks to the BB and only obtain the (correct)
output.
Smart Read Implies Many Standard BB Properties. If a BB provides (secure) smart read, then it also provides
many further standard BB security properties as special cases. This is because often clients can choose a suitable
algorithm that computes a view on the BB’s state which has the desired security properties, even if the state itself
might not have these properties. Security then immediately follows from the correctness property of smart reads. For
example:

No Data Injection: Given a list of eligible parties, define the algorithm used during a smart read to return all entries
of the BB that are signed by a party in that list, i. e., all entries that were not injected.

Non-clashing: Just as for “no data injection”, a smart read algorithm that filters out and removes any clashing items,
e. g., by always returning the item that was submitted earlier, can be used to ensure non-clashing.

Message Validity: Given a message validation procedure, a smart read that returns all BB items which are valid
according to that procedure can be used to implement message validity.

Receipt-consistency can also be implemented via smart reads but requires a more involved construction. We provide
more details regarding receipt consistency in Appendix D.3.

Formalization of these security properties. We formalize accountability w.r.t. consistency and smart read by
providing an instantiation of our customization framework Facc

cBB. We refer to this instantiation as Facc
cBB,FAB∗

BB
in

what follows.
The functionality Facc

cBB,FAB∗
BB

sets Secacc = {consistency, smartRead}. It is parameterized with an arbitrary but
fixed set of algorithms that are identified via IDs 1, . . . , n. This set specifies all algorithms that can be executed via a
smart read, where each algorithm takes as input a prefix of the current global state of the BB as well as, optionally,
additional input from the client. To distinguish different types of read requests, we use the auxiliary input msg added
to read requests in Facc

cBB: msg = 0 indicates a full read whereas msg = (id , clientInput), id ∈ {1, . . . , n} indicates
a smart read using the algorithm with ID id and additional input clientInput . Security properties are then formalized
via the following instantiations of subroutines:
• Fwrite,FAB∗

BB
discards inputs that do not follow the input format of Fabric∗BB.

• Fread,FAB∗
BB

works differently depending on the type of read request, i. e., the auxiliary input msg . For a full read
with msg = 0, Fread,FAB∗

BB
captures accountability w.r.t. consistency by using the same logic as Facc

BB in Figure 2. For
smart reads with msg = (id , clientInput), Fread,FAB∗

BB
first checks whether the property has already been broken,

i. e., brokenProps[smartRead] = true, due to a verdict obtained by the public judge. If so, then the adversary A is
allowed to choose the output freely. Otherwise, if the property still holds true, the adversaryA is expected to provide a
prefix p of the current global state msglist that is used as input for the smart read. Fread,FAB∗

BB
verifies that p is strictly

growing, i. e., larger than all prefixes previously used to respond to any read of the same client. If so, then Fread,FAB∗
BB
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runs the algorithm with ID id on BB state p and additional input clientInput and instructs Facc
cBB,FAB∗

BB
to return the

result to the client.
• Fupdate,FAB∗

BB
uses the same logic as the Update procedure in Facc

BB (cf. Figure 2) to ensure that updates to the
global msglist are append-only. It further checks that any message added to msglist follows the message format of
Fabric∗.
• FupdRnd,FAB∗

BB
always allows time updates since we do not formalize any time-based security properties.

D. Deriving the Accountable BB Fabric∗BB from Fabric∗

In what follows, we define our Fabric∗BB based on Fabric∗. To obtain Fabric∗BB, we consider one Fabric∗ channel
with the following smart contracts: (i) one write contract that appends a message to the ledger state without modifying
or deleting any prior messages, (ii) one read-only contract with ID 0 to implement full reads by returning the current
ledger state of the peer to the client, and (iii) n read-only contracts to implement smart reads. That is, for each algorithm
alg supported by Facc

cBB,FAB∗
BB

, we use a corresponding smart contract sc in Fabric∗ which runs alg to obtain the result
out . The smart contract then returns the tuple (ctr , out), where ctr is the length of the ledger state that was used to
run alg .

Fabric∗BB is then built on top of this Fabric∗ instance by adding some additional client logic. That is, the client keeps
an indicator recentState ∈ N for storing the length of the most recent state used for full or smart read. Now, to write a
message msg to the BB, clients use the write contract with input msg and then follow the standard Fabric∗ logic such
that msg is added to the ledger state of the underlying Fabric∗ channel.

To run a full read in Fabric∗BB, clients start a transaction proposal for the full read smart contract in the underlying
Fabric∗ channel. After obtaining and verifying the signature of the resulting endorsement8 according to the standard
Fabric∗ logic, clients additionally check for the output out , which is the current ledger state as seen by the peer,
whether |out | ≥ recentState. If so, then the client accepts out and it sets recentState := |out |. Otherwise, the client
discards the response. Intuitively, this is needed to ensure that full reads in Fabric∗BB return strictly growing prefixes
of the ledger state and also that data is fresh compared to former smart reads.

To run a smart read in Fabric∗BB, clients start a transaction proposal for the corresponding smart read contract in the
Fabric∗ channel. After obtaining and verifying the signature of the resulting endorsement according to the standard
Fabric∗ logic, clients additionally verify for the output (ctr , out) that ctr ≥ recentState. If so, the client returns out
(and updates recentState to ctr ). Intuitively, this is necessary to ensure in Fabric∗BB that the smart read was performed
on a growing prefix of the state even if different peers are used.

Note that smart reads in Fabric∗BB are implemented via read-only smart contracts in Fabric∗ which are evaluated
off-chain. Hence, a smart read essentially consists of a client sending a signed request to a peer, the peer running the
requested algorithm in native code, and the peer sending the signed output to the client. The runtime of a smart read in
Fabric∗BB is thus essentially the same as if the client were to run the same algorithm locally; there is only a negligible
additional overhead due to sending two network messages and computing/verifying two signatures. This is a feature
of Fabric∗BB which in turn leverages a feature of Fabric∗.

Modeling Fabric∗BB as a (real) UC protocol. We model Fabric∗BB as a protocol Pacc
FAB∗

BB
in the iUC model [12],

with the structure of the resulting protocol depicted in Figure 5. We provide a formal specification of all machines in
Appendix F. Here, we provide a high-level overview of Pacc

FAB∗
BB

.
One session of Pacc

FAB∗
BB

models one Fabric∗BB instance. There can be several sessions of Pacc
FAB∗

BB
running in parallel.

Pacc
FAB∗

BB
mainly consists of the machines client, peer, and orderer – one machine instance per protocol participant.

The sets of client, peer, and orderer identities within each session are arbitrary but fixed and the corresponding
machines follow the specification of the Fabric∗BB protocol. In each Pacc

FAB∗
BB

session, there is a single kafka instance.
The kafka instance models an ideal but accountable consensus service that is under the control of one party. This
models the realistic setting that the entire Kafka cluster is carried out by one service provider in one data center. In
particular, kafka signs the sequence of messages it distributes to orderers. Finit provides the channel setup to the

8As common for read requests in blockchains, we expect that clients query only one peer for a read request. However, one could also model,
e. g., that clients query several peers and only output the response to the environment E if all peers provide the same readset and output.
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participants, we use a random oracle Fro to model hash functions, and the ideal certificate functionality Fcert (see,
e. g., [32]) captures secure digital signatures with a PKI.
Pacc
FAB∗

BB
allows for dynamic corruption of all participants. There are no assumptions on the network and communi-

cation is unprotected, i. e., there are no authenticated or secure channels.

E. Security Analysis of Fabric∗BB

Showing security of Fabric∗BB, as for any other accountability-based protocol, involves two major steps. Firstly,
it is necessary to establish the exact evidence required by and the procedure that a public judge can use to detect
misbehavior and blame parties in Fabric∗BB. Secondly, we then have to show that Fabric∗BB together with this specific
judge is a secure realization of Facc

cBB,FAB∗
BB

and hence achieves all desired accountability-based properties. In this
sense, the judge can also be seen as part of the specification of Fabric∗BB that we complete in the first step.
Specifying the public judge. Our judge collects evidence from clients and peers. More specifically, (honest) clients
forward accepted responses to full and smart read requests, i. e., the signed endorsements containing the desired output
generated by a peer. (Honest) peers forward all blocks that they have accepted to the judge. This captures the following
situation in reality: at any point in time one or more clients suspecting misbehavior can come together to share or
publish their knowledge. They can then run the judging procedure on this information. If the procedure detects any
issues such as inconsistent full reads or smart reads that were not executed on the data obtained from full reads, then
peers that have been involved with these requests will be able to prove their innocence by showing their current copy
of the blockchain.

We define the judging procedure as follows. In what follows, we group logical blocks according to the property that
is checked and the corresponding party that is affected:

Validity (Peers): The judge checks whether blocks provided by peers are valid, i. e., they have the correct format as
required by Fabric∗BB and all signatures contained therein are valid. If a peer provides an invalid block as evidence,
then he violates the Fabric∗BB protocol (honest peers only provide accepted and therefore valid blocks as evidence)
and the judge therefore renders a verdict blaming those peers. Note that rendering a verdict also stops the judging
procedure.
This initial check is necessary to be able to detect other types of misbehavior that might break, e. g., consistency.

Consistency (Peers): If correctness still holds in the current run, the judge checks whether consistency has been
broken already for peers, i. e., purely based on the blocks that peers provided. This is the case iff there are two blocks
B1,B2 reported by peers with the same ID but differing bodies (that are signed and hence were generated by two not
necessarily distinct orderers according to the previous check). In this case, the judge computes the verdict as follows:
the judge first checks whether there are two different Kafka messages with the same ID (and, by the previous check,
valid signatures of the Kafka cluster) in B1 and B2. If so, then the service provider running the Kafka cluster has
misbehaved and thus the judge blames him. Otherwise, all blocks are derived from the same Kafka message stream,
i. e., the two blocks have to differ due to a different number of messages. Since the block-cutting algorithm of Fabric∗

and thus of Fabric∗BB is deterministic and always cuts blocks at the same position(s), irrespective of the length of the
message stream that is being processed, we have that at least one orderer has misbehaved. The judging procedure thus
re-runs the block-cutting algorithm on the Kafka message stream and blames all orderers that have signed blocks that
differ from the result.
Note that if there has not been a verdict so far, then the judge has successfully computed a globally unique sequence
of messages that is consistent with the view of all peers (who have provided evidence).

Consistency (Clients): If a client reports a response to a full read request which contains an ordered sequence of
messages seq and is signed with a valid signature from a peer p, then the judge checks whether seq is a prefix of the
previously reconstructed globally unique sequence of messages. If seq is not a prefix, then the peer p did not or was
unable to provide evidence that seq is a copy of the state of the blockchain. Since honest peers always can and will
provide this evidence to show their innocence, the judge blames this peer in a verdict.

Smart Read (Clients): Finally, if a client reports a response to a smart read which is validly signed by a peer p, then
the judge proceeds as follows. Recall that such a response is an endorsement on the smart contract output (ctr , out),
where the (signed) endorsement also contains the client input clientInput of the client as well as the ID id of the
smart contract. The judge takes the prefix pre of the globally unique message sequence computed above up to position
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Fig. 5: Figure of Theorem 2. All machines have access to all (AUC) subroutines. A is connected to all machines.
Dotted arrows indicate intended message flows.

ctr and then simulates the deterministic smart contract with ID id on inputs pre and clientInput . If the simulated
output is different from (ctr , out), then the peer p misbehaved by providing an incorrect result to the client (or by not
providing his entire copy of the chain to show his innocence) and hence is blamed in a verdict.

Altogether, by the above reasoning, it already follows that verdicts of this judge are fair, i. e., never blame an honest
party. Intuitively, we also have that the properties of consistency and smart read still hold true for all (honest) clients
as long as the judge does not output a verdict: In that case, the judge was able to compute a globally unique message
sequence such that both full reads and smart reads of all clients (that have provided evidence) were computed correctly
from prefixes of that message sequence. While the judge does not check whether those results were computed based
on growing prefixes, this is done by the clients themselves.
Security proof. We can show the following security result as also depicted in Figure 5:
Theorem 2 (Informal). Let Facc

cBB,FAB∗
BB

be as defined Section IV-C with an arbitrary set of deterministic smart read
algorithms. Let Pacc

FAB∗
BB

with the public judge as defined above. Then,

Pacc
FAB∗

BB
UC-realizes Facc

cBB,FAB∗
BB

.

The description and intuition of the public judge above serve as a proof sketch. We provide the formal proof of
Theorem 2 and the description of the judge as an iUC machine in Appendix F. As part of Theorem 2, we show
that FabricBB provides smart read. As detailed in Section IV-C, it hence directly follows that Fabric∗BB also provides
several additional security properties.

As an interesting side note, our formal security proof is structured into two separate steps. First, in a rather simple
initial step we show that an ideal accountable ledger Facc

ledger with certain properties realizes Facc
cBB,FAB∗

BB
. By this, we

not only establish the first formal definition of an accountable ideal ledger functionalityFacc
ledger which is of independent

interest. We also formally verify the corresponding folk wisdom: ledgers with specific properties can be used to build
BBs. The bulk of the proof then shows that Pacc

FAB∗
BB

is such an accountable ledger, i. e., realizes Facc
ledger. By transitivity

of UC security, this gives the overall result.

F. Discussion

In this section, we discuss important aspects and features of our Fabric∗BB construction and security result.
Summary of Assumptions and Abstractions From Reality. In our model of Fabric∗BB (cf. Figure 5), we use Fcert

which can be UC-realized with an EUF-CMA secure signature scheme and a PKI for distributing public keys of the
parties running the BB [17]. We use a random oracleFro as a setup assumption capturing ideal hash functions. Beyond
these standard cryptographic assumptions, we also assume that all parties know and agree on the parameters of the
underlying Fabric∗ channel. This is a standard assumption in the distributed ledger space [6, 30, 35] and formalized
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via Finit, which distributes the (unbounded but statically fixed) set of participants, genesis block, and smart contracts
to all parties. Finally, we abstract from the internals of the Kafka cluster and instead model this as a single machine
kafka. We note, however, that this machine still captures the capabilities of a malicious service provider running the
Kafka cluster that might choose to deviate from the intended protocol, e. g., by providing inconsistent outputs.

While we model the public judge in Fabric∗BB as incorruptible, this is actually not a trust assumption but rather
reflects the fact that the judging algorithm defined in Section IV-E can be executed by anyone, including external
observers, given the needed evidence. Hence, if any party such as a client does not want to trust others or is afraid
of faulty judges, then that party can collect the signed statements and compute the verdict herself by following the
correct judging procedure. Altogether, we therefore indeed show Theorem 2 without introducing any assumptions on
the network and without assuming that any parties running Fabric∗BB are trusted/honest.

Practical Security Guarantees of the Accountable Fabric∗BB. As already explained in the introduction, accountabil-
ity is a very different approach for obtaining security guarantees compared to preventive security, with both approaches
complementing each other. Notably, a preventively secure BB provides the guarantee that, e. g., consistency always
holds true no matter what malicious parties do as long as certain assumptions, including the existence of trusted parties
are met (cf. Section VI).

In our accountable Fabric∗BB a security property such as consistency can in principle be broken by malicious parties.
For example, a malicious Kafka cluster can decide to deviate from the protocol by providing inconsistent message
sequences to orderers. This in turn breaks consistency for clients of the BB. However, accountability w.r.t. consistency
guarantees that based on the inconsistent data provided to clients it is possible to identify a misbehaving party along
with publicly verifiable cryptographic evidence for the misbehavior such that this party can be held accountable for the
inconsistency. Relying on deterrence, as opposed to ensuring that properties cannot be broken at all as in preventive
security, is the main reason why Fabric∗BB can still provide reasonable security guarantees even when all parties
running the BB are untrusted and might misbehave.9

For a practical deployment of Fabric∗BB it is therefore necessary to determine suitable penalties which can indeed
act as deterrence, where “suitability” depends on the application at hand and how much misbehaving parties stand to
gain from breaking, e. g., consistency. This can be determined by a deterrence analysis (cf. [33]).
Using Other Distributed Ledgers. In principle, the ideas that we used to construct Fabric∗BB based on Fabric∗ in
Section IV-D can also be applied more generally to other distributed ledgers as long as those ledgers meet certain
requirements.

An obvious requirement for the underlying ledger is accountable w.r.t. to consistency. As part of this, the ledger
should provide finality [2] which ensures that transactions in the state/blocks in the chain will not be revoked/changed
at a later point in time. Without finality, the state of the chain and hence the output of the BB might be inconsistent
between different points in time even when all parties are honest/trusted, i. e., no party can be held accountable. This
rules out certain common ledgers such as Bitcoin which does not provide finality due to its longest chain rule (but can
be shown, under certain assumptions, to achieve preventive security of consistency [6, 30]).

Another major requirement is the accountable correct execution of general smart contracts which is necessary to
implement accountable smart reads. In most distributed ledgers, obtaining correctness for smart contract executions
requires submitting the contract call to the chain, including establishing consensus over the outputs. This results
in more overhead compared to the read-only smart contracts offered by Fabric∗. However, it might be possible to
implement the off-chain read-only smart contract system of Fabric∗ on top of other distributed ledgers to support
smart reads with similar performance.

Given these considerations, the most promising other ledger, beside Fabric∗, for applying our BB construction is the
one proposed in [58]. This is the so far only other distributed ledger with proven accountability (but which requires
some honest parties). We leave exploring this to future work.
Using Fabric∗BB as Building Block for Secure BB Applications. Since Theorem 2 is a UC security result which
supports full composability, one can easily re-use this security result in the context of applications/higher-level

9This is also why Theorem 2 does not contradict the well-known FLP result [29], which roughly states that deterministic consensus algorithms
cannot establish consensus in an asynchronous network: Fabric∗BB does not guarantee consensus; it only guarantees that misbehavior will be
detected whenever clients obtain inconsistent states.
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Fig. 6: Performance comparison of Hyperledger Fabric and Fabric∗ with an transaction size of 2000 bytes.

protocols Q, say an MPC protocol, that want to use our BB. More specifically, protocol designers can model and
prove the security of such an applicationQ based on the ideal functionality Facc

cBB,FAB∗
BB

. As discussed in Section IV-C,
Facc
cBB,FAB∗

BB
not just offers (accountability w.r.t.) consistency to Q but, due to smart read, can be instantiated via

suitable algorithms to also offer several additional properties that might be required by Q. Once the security of the
combined protocol (Q | Facc

cBB,FAB∗
BB
) has been proven based on the ideal BB, the UC composition theorem combined

with Theorem 2 immediately implies as a corollary that Q using our Fabric∗BB, i. e., the protocol (Q | Fabric∗BB),
retains at least the same security guarantees.

This sets our work apart from existing provably secure BBs [24, 39, 46] which do not offer full and automatic
composition of their security results with BB applications Q. It also sets our work apart from applications Q that
were shown secure based on ideal subroutines similar to FBB (cf. Figure 1) which cannot be UC-realized by a
real BB protocol PBB . Indeed, as observed in [21, 39] and unlike for our Facc

cBB,FAB∗
BB

, security properties shown
for applications Q based on an idealized “perfect” BB, such as FBB (cf. Figure 1), might not apply once the ideal
subroutine is replaced with any actual BB PBB .

V. PERFORMANCE OF FABRIC∗ RESP. FABRIC∗BB

Fabric∗BB is essentially an instantiation of Fabric∗ with a specific set of smart contracts as well as some added
client logic that is negligible in terms of overhead. Thus performance of Fabric∗BB is directly determined by the
performance of the underlying Fabric∗ channel. So far, Fabric∗ had neither been implemented nor evaluated for its
practicality. In what follows, we therefore first fill this gap by providing the missing implementation, benchmarks, and
also comparison to the original unmodified Hyperledger Fabric. We then discuss how those Fabric∗ results carry over
to Fabric∗BB and their implications for practical deployments of our BB. We provide our Fabric∗ implementation and
raw benchmark data at [34].

A. Test Setup

We conduct our benchmarks for a single Fabric/Fabric∗ channel that consists of four peer organizations, each of
them running two peers and one CA. The underlying ordering service uses three orderers and a Kafka cluster with
four Kafka brokers. The experiments utilize 17 Ubuntu 20.4 LTS VMs located in three different data centers.10 of
bwCloud: (i) each VM is equipped with a 60GB hard disk, (ii) instances belonging to the same organization are placed

10The data centers are located in Karlsruhe, Mannheim, and Ulm.
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in the same data center, (iii) the Kafka-based ordering service is deployed across four 4-vCPU VMs with 8GB of
RAM, and two 8-vCPU VMs with 16GB of RAM, (iv) peers are placed on different VMs equipped with 16-vCPUs
and 32GB of RAM, (v) in each data center, there is one VM that generates workload, i.e., inputs for clients, via 20
Caliper Workers (see below).

B. Methodology

We measure throughput in terms of messages, resp. transactions, per second (TPS) and latency of our Fabric∗ imple-
mentation. We also measure both quantities for the unmodified Hyperledger Fabric v1.4.8 using Kafka-based ordering.

We performed the experiments with Hyperledger Caliper [44, 45], which is the standard tool for benchmarking
Hyperledger Fabric instances. Caliper generates inputs for clients utilizing a range of smart contracts either at a fixed
or dynamically varying rate and orchestrates the whole test execution. We set up Caliper such that it inputs a fixed
rate of transactions per second, also called transaction load, into the tested Fabric∗ instances. We utilize the standard
create asset benchmark/smart contract which writes transactions to the blockchain with a predefined transaction size.
To cover a wide range of possible applications, we benchmark transaction sizes of 100, 1000, 2000, 4000, 8000, and
16000 bytes. For each transaction size, we further select a reasonable interval and sampling rate which yields good
results. Each experiment is repeated ten times and results are then averaged.

In our experiments, we use the following configuration: (i) Client transactions solely require a single endorsement in
their commitment to enter the blockchain. (ii) New blocks are created from 300 transactions or 2MB of data, whichever
is reached first. (iii) Communication between entities is unencrypted.

C. Results for Fabric∗

We present our results for a transaction size of 2000 bytes in Figure 6 with the other results being available
in Appendix G, in particular Figure 46. Figure 6 shows the average throughput, including the standard deviation
bounds, and the min/avg/max latencies (the time it takes for an issued transaction to be completed); min is in a
darker blue/yellow and very close to the x-axis, avg is given in solid colors, and max is indicated via partially
transparent colors. As becomes apparent from the figure, throughput gradually increases before becoming eventually
more stationary.

As expected, the additional signature checks of Fabric∗ to achieve accountability result in a slight performance
decrease compared to an unmodified Fabric instance: There is an average throughput loss of 10.7% with the worst case
being 18.1%; this is irrespective of the transaction size. The change in latency depends on the transaction size, with
average latency increasing at most by 16.7% and 24.6% for a transaction size of 2000 and 16000 bytes, respectively.
For a transaction size of 2000 bytes, Fabric∗ reaches a maximum throughput of roughly 420 TPS. Using smaller
transaction sizes of 100 and 1000 bytes, the maximum throughput in our setting can be further increased to roughly
640 and 500 TPS, respectively.

D. Implications for Fabric∗BB

The create asset smart contract that we use for our benchmarks of Fabric∗ performs essentially the same operations
as the write contract used by Fabric∗BB. The main difference is that create asset uses a fixed transaction size. The
transaction sizes that we benchmarked cover a common range of BB item sizes in particular, such as ballots from
e-voting systems [27, 41, 49]. Hence, the TPS measured for Fabric∗ also show the throughput of Fabric∗BB in terms of
how many write requests/items per second can be added to the BB.

This indicates that the performance of Fabric∗BB is sufficient for many practical applications of BBs. For example,
in an electronic election with typical ballot sizes of about 2000 bytes, our results indicate that Fabric∗BB can add more
than 220, 000 incoming ballots to its state in 10 minutes.

Regarding the performance of smart read operations in Fabric∗BB, note that these are implemented using off-chain
read-only smart contract execution. As already explained in Section IV-D, the runtime of a smart read for some
algorithm is therefore basically the same as the runtime needed by a client for locally running the same algorithm. The
only additional and generally negligible overhead is due to sending two network messages and computing/verifying
two signatures. We therefore did not benchmark this operation separately as it would not provide any new insights.
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VI. RELATED WORK

In this section, we discuss and compare closely related works organized by area.

BB Proven Properties Security Type Assumptionsa Proof Technique / Composability Benchmarks

[24]
- no data injection
- receipt-consistency
- non-clashing

preventive

- trusted central component (WBB)
- > 2/3n honest peers
- static corruption
- synchronous network

simulation-based / ✗ ✗

[46] - liveness
- persistence confirmable

- > 1/2m honest WBB parties
- > 2/3n honest peers
- static corruption
- partially synchronous network
- global clock

game-based / ✗ ✗

[39] - final agreement preventive

- ≥ 1 honest peers
- dynamic corruption
- asynchronous network
- authenticated channels
- phase-based

mechanized / ✗ ✗

Fabric∗BB

- consistency
- smart read, including:

- no data injection
- non-clashing

accountable

- no trusted BB component/party
- dynamic corruption
- asynchronous network
- random oracle

UC / ✓ ✓

aAll works additionally assume secure (threshold) signature schemes as well as a trusted PKI or equivalently pre-distributed identities. All works also assume
that all protocol algorithms and parameters, potentially including some initial state, are securely distributed.

TABLE I: Comparison of different provably secure BB solutions from the literature.

Accountability for BBs. Several works mention and discuss that accountability is a desirable mechanism that can or
even should be used to protect the security of BBs, e. g., [22, 24, 36]. However, we are the first to formalize the notion
of accountability for security properties of BBs and the first to prove accountability of a concrete BB.
Secure BBs in the UC literature. In UC literature, there exist many ideal BB functionalities, e. g., [4, 7, 14, 16–
18, 61, 62]. Typically, these ideal functionalities ensure (i) consistency/consistent view, (ii) total ordering of BB items,
(iii) append-only, and/or (iv) persistence preventively. As explained in detail in Section III-A, to the best of our
knowledge all existing ideal BB functionalities in UC were only designed as setup assumptions and cannot be UC-
realized by an actual implementation of a BB, which was not the goal of these works anyways.

With Facc
BB and Facc

cBB we provide the first ideal BB functionalities in UC that permit realizations and thus support
composing security results for BBs with applications (cf. Section IV-F). We are also the first to formally prove UC-
security for a concrete real-world BB.
Secure BBs in other literature. Outside of the UC literature, there exist several works on implementing BBs. Often,
such implementations are directly integrated into and tailored towards the specific system at hand, e. g., [11, 20, 23, 24].
Security proofs are then given for the entire system, not for the integrated BB itself. The integrated BB cannot easily be
used as a building block for other applications. There are also several papers such as [37, 57] that focus on constructing
stand-alone BBs but do not formalize, let alone prove, their security properties.

There are only three works that formally analyze and prove the security of (stand-alone) BBs [24, 39, 46]. Table I
summarizes and compares key properties of these BBs with our Fabric∗BB. Culnane et al. [24] construct a BB consisting
of n ∈ N peers that receive and forward client inputs to a trusted component called the Web BB (WBB). They show,
among others, that their construction achieves receipt-consistency.

Kiayias et al. [46] build on and improve the construction of [24] by, among others, distributing the central WBB
among m parties half of which are assumed to be trusted. They then show that their BB provides confirmable
persistence and confirmable liveness. Persistence intuitively states that, once an honest peer adds an item to its local
view of the BB state, then all other honest peers either agree on the position of this item or do not have this item in
their state (yet). This property is therefore closely related to our notion of consistency. Confirmability is essentially a
strictly weaker version of accountability that does not require fairness of verdicts: if a security property is broken at
some point, then one can identify a party where the property broke down. However, this party might not be malicious
but might have been honestly following the protocol.
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As a part of their work, Hirschi et al. [39] propose a conceptually very simple BB: n peers are responsible for signing
incoming items and clients interpret items as part of the BB iff at least γ many BB peers have signed it. Hirschi et al.
suggest selecting γ = ⌊n − nh

2 + 1⌋, where nh ≥ 1 is the number of peers that are assumed to be trusted. This
construction therefore gives a tradeoff between trust assumption and performance/availability. Hirschi et al. show that
their BB achieves final agreement which mainly states that, if a client receives a valid final state of the BB, then this
is the same as for other clients who have received a valid final state. Note that this property is related to consistency
and can be implemented on top of BBs providing consistency.11

The approach taken by Hirschi et al. is simple, and while not discussed in their paper, it might provide an alternative
route for constructing an accountable BB without trusted parties. One of the main reasons why we have designed our
BB based on the more complex Fabric∗ is due to performance: Hirschi et al. expect that their protocol needs further
modifications and enhancements to achieve availability and scalability as required for practical deployments. Such
extensions might then also require additional mechanisms to retain security guarantees. In contrast, Fabric/Fabric∗

is designed specifically for practical deployments with high throughput and therefore includes several scalability
and availability mechanisms out of the box [2]. Another functional difference is that, unlike Fabric∗, Hirschi et al.’s
approach is not designed to and indeed does not establish a total order among the BB items.

Altogether, by leveraging accountability our work is the first to formally prove the security of a BB based only
on standard cryptographic assumptions and without requiring any trusted BB component or network assumptions.
Fabric∗BB is also the first BB that is shown to be UC secure and which can therefore be directly composed with
higher-level protocols while retaining security results for the BB (cf. IV-F).
Alternative approaches to protect against malicious BBs. In recent works, researchers investigated how (e-voting)
systems can be hardened to remain secure even if the underlying BB is malicious [21, 39]. In other words, while many
works including ours focus on constructing secure BBs, these works (also) investigate how to deal with broken BBs
at the next protocol level.
Distributed ledgers. There are numerous provably secure distributed ledgers, including provably UC-secure ones,
(e. g., [5, 25, 30, 35, 47, 58]) which, according to folk wisdom, might be candidates for secure BBs. Before our work,
this had not been formally verified for any ledger and might indeed require additional modifications as was the case
for Fabric∗. Also, all of the aforementioned works rely on strong honesty and/or network assumptions, such as honest
(super-)majorities and networks without message loss. They are therefore not suitable for implementing BBs in many
applications.

Furthermore, our work is the first to formalize and prove accountability of a DLT in a UC model as part of showing
Theorem 2. More generally, so far the only DLTs with proven accountability properties (shown via non-UC and
hence non-composable proof techniques) are Fabric∗ [31] and the relatively recent DLT construction presented by
Shamis et al. [58] (cf. Section IV-F). Unlike Fabric∗, the construction by Shamis et al. still requires some honest
parties to achieve accountability.
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[50] R. Küsters, T. Truderung, and A. Vogt, “Accountability: Definition and Relationship to Verifiability,” in Proceedings of the 17th ACM
Conference on Computer and Communications Security (CCS 2010). ACM, 2010, pp. 526–535, the full version is available at http:
//eprint.iacr.org/2010/236.
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APPENDIX

A. A Brief Introduction to the iUC Framework
This section provides a brief introduction to the iUC framework, which underlies all results in this paper. The iUC

framework [12] is a highly expressive and user friendly model for universal composability. It allows for the modular
analysis of different types of protocols in various security settings. This section is mainly taken verbatim from [35].

The iUC framework uses interactive Turing machines as its underlying computational model. Such interactive
Turing machines can be connected to each other to be able to exchange messages. A set of machines Q = {M1,
. . .,Mk} is called a system. In a run of Q, there can be one or more instances (copies) of each machine in Q. One
instance can send messages to another instance. At any point in a run, only a single instance is active, namely, the one
to receive the last message; all other instances wait for input. The active instance becomes inactive once it has sent a
message; then the instance that receives the message becomes active instead and can perform arbitrary computations.
The first machine to run is the so-called master. The master is also triggered if the last active machine did not output a
message. In iUC, the environment (see next) takes the role of the master. In the iUC framework a special user-specified
CheckID algorithm is used to determine which instance of a protocol machine receives a message and whether a
new instance is to be created (see below).

To define the universal composability security experiment (cf. [12]), one distinguishes between three types of
systems: protocols, environments, and adversaries. As is standard in universal composability models, all of these
types of systems have to meet a polynomial runtime notion. Intuitively, the security experiment in any universal
composability model compares a protocol P with another protocol F , where F is typically an ideal specification of
some task, called ideal protocol or ideal functionality. The idea is that if one cannot distinguish P from F , then P
must be “as good as” F . More specifically, the protocol P is considered secure (written P ≤ F) if for all adversaries
A controlling the network of P there exists an (ideal) adversary S, called simulator, controlling the network of F such
that {A,P} and {S,F} are indistinguishable for all environments E . Indistinguishability means that the probability
of the environment outputting 1 in runs of the system {E ,A,P} is negligibly close to the probability of outputting 1
in runs of the system {E ,S,F} (written {E ,A,P} ≡ {E ,S,F}). The environment can also subsume the role of the
network attacker A, which yields an equivalent definition in the iUC framework. We usually show this equivalent but
simpler statement in our proofs, i.e., that there exists a simulator S such that {E ,P} ≡ {E ,S,F} for all environments.

A protocol P in the iUC framework is specified via a system of machines {M1, . . .,Ml}; the framework offers
a convenient template for the specification of such systems. Each machine Mi implements one or more roles of the
protocol, where a role describes a piece of code that performs a specific task. For example, a (real) protocol Psig for
digital signatures might contain a signer role for signing messages and a verifier role for verifying signatures. In
a run of a protocol, there can be several instances of every machine, interacting with each other (and the environment)
via I/O interfaces and interacting with the adversary (and possibly the environment subsuming a network attacker) via
network interfaces. An instance of a machine Mi manages one or more so-called entities. An entity is identified by a
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tuple (pid , sid , role ) and describes a specific party with party ID (PID) pid running in a session with session ID (SID)
sid and executing some code defined by the role role where this role has to be (one of) the role(s) of Mi according
to the specification of Mi. Entities can send messages to and receive messages from other entities and the adversary
using the I/O and network interfaces of their respective machine instances. More specifically, the I/O interfaces of
both machines need to be connected to each other (because one machine specifies the other as a subroutine) to enable
communication between entities of those machines.

Roles of a protocol can be either public or private. The I/O interfaces of private roles are only accessible by other
(entities belonging to) roles of the same protocol, whereas I/O interfaces of public roles can also be accessed by
other (potentially unknown) protocols/the environment. Hence, a private role models some internal subroutine that is
protected from access outside of the protocol, whereas a public role models some publicly accessible operation that
can be used by other protocols. One uses the syntax “(pubrole1, . . . , pubrolen | privrole1, . . . , privrolen)” to
uniquely determine public and private roles of a protocol. Two protocols P and Q can be combined to form a new
more complex protocol as long as their I/O interfaces connect only via their public roles. In the context of the new
combined protocol, previously private roles remain private while previously public roles may either remain public or
be considered private, as determined by the protocol designer. The set of all possible combinations of P andQ, which
differ only in the set of public roles, is denoted by Comb(Q,P).

An entity in a protocol might become corrupted by the adversary, in which case it acts as a pure message forwarder
between the adversary and any connected higher-level protocols as well as subroutines. In addition, an entity might
also consider itself (implicitly) corrupted while still following its own protocol because, e.g., a subroutine has
been corrupted. Corruption of entities in the iUC framework is highly customizable; one can, for example, prevent
corruption of certain entities during a protected setup phase.

The iUC framework supports the modular analysis of protocols via a so-called composition theorem:

Corollary 3 (Concurrent composition in iUC; informal). Let P and F be two protocols such that P ≤ F . Let Q be
another protocol such that Q and F can be connected. Let R ∈ Comb(Q,P) and let I ∈ Comb(Q,F) such that R
and I agree on their public roles. ThenR ≤ I.

By this theorem, one can first analyze and prove the security of a subroutine P independently of how it is used
later on in the context of a more complex protocol. Once we have shown that P ≤ F (for some other, typically ideal
protocol F), we can then analyze the security of a higher-level protocol Q based on F . Note that this is simpler than
analyzingQ based on P directly as ideal protocols provide absolute security guarantees while typically also being less
complex, reducing the potential for errors in proofs. Once we have shown that the combined protocol, say, (Q | F)
realizes some other protocol, say, F ′, the composition theorem and transitivity of the ≤ relation then directly implies
that this also holds true if we run Q with an implementation P of F . That is, (Q | P) is also a secure realization of
F ′. Please note that the composition theorem does not impose any restrictions on how the protocols P , F , andQ look
like internally. For example, they might have disjoint sessions, but they could also freely share some state between
sessions, or they might be a mixture of both. They can also freely share some of their subroutines with the environment,
modeling so-called globally available state. This is unlike most other models for universal composability, such as the
UC model, which impose several conditions on the structure of protocols for their composition theorem.

B. Notation in Pseudo Code
ITMs in our paper are specified in pseudo code. Most of our pseudo code notation follows the notation introduced

by Camenisch et al. [12]. To ease readably of our figures, we provide a brief overview over the used notation here.
This section is mainly taken verbatim from [35].

The description in the main part of the ITMs consists of blocks of the form recv ⟨msg⟩ from ⟨sender⟩ to ⟨receiver⟩
s.t. ⟨condition⟩:⟨code⟩ where ⟨msg⟩ is an input pattern, ⟨sender⟩ is the receiving interface (I/O or NET), ⟨receiver⟩
is the dedicated receiver of the message and ⟨condition⟩ is a condition on the input. ⟨code⟩ is the (pseudo) code of
this block. The block is executed if an incoming message matches the pattern and the condition is satisfied. More
specifically, ⟨msg⟩ defines the format of the message m that invokes this code block. Messages contain local variables,
state variables, strings, and maybe special characters. To compare a message m to a message pattern msg, the values
of all global and local variables (if defined) are inserted into the pattern. The resulting pattern p is then compared to m,
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where uninitialized local variables match with arbitrary parts of the message. If the message matches the pattern p and
meets ⟨condition⟩ of that block, then uninitialized local variables are initialized with the part of the message that they
matched to and ⟨code⟩ is executed in the context of ⟨receiver⟩; no other blocks are executed in this case. If m does not
match p or ⟨condition⟩ is not met, then m is compared with the next block. Usually a recv from block ends with a
send to clause of form send ⟨msg⟩ to ⟨sender⟩ where msg is a message that is send via output interface sender.

If an ITM invokes another ITM, e. g., as a subroutine, ITMs may expect an immediate response. In this case, in a
recv from block, a send to statement is directly followed by a wait for statement. We write wait for ⟨msg⟩ from
⟨sender⟩ s.t. ⟨condition⟩ to denote that the ITM stays in its current state and discards all incoming messages until it
receives a message m matching the pattern msg and fulfilling the wait for condition. Then the ITM continues the run
where it left of, including all values of local variables.

To clarify the presentation and distinguish different types of variables, constants, strings, etc. we follow the naming
conventions of Camenisch et al. [12]:

1. (Internal) state variables are denoted by sans-serif fonts.
2. Local (i.e., ephemeral) variables are denoted in italic font.
3. Keywords are written in bold font (e. g., for operations such as sending or receiving).
4. Commands, procedure, function names, strings and constants are written in teletype.

To increase readability, we use the following notation:

• For a set of tuples K, K.add( ) adds the tuple to K.
• For a string S, S.add( ) concatenates the given string to S.
• For a verdicts v1 and v2, we define v1.add(v2) := v1 ∧ v2.
• K.remove( ) removes always the first appearance of the given element/string from the list/tuple/set/string K.

We use the following additional nomenclature from [12]:

• (pidcur, sidcur, rolecur) denotes the currently active entity and (pidcall, sidcall, rolecall) denotes the entity which called
the currently active ITM.

• The macro corr(pid , sid , role ) is simply a shortcut to invoke the ITM of (pid , sid , role ) and query it for its
corruption status.

• The macro init(pid , sid , role ) triggers the initialization of (pid , sid , role ) and returns the activation to the calling
ITM.

• K.contains( ) checks whether the requested element/string is contained in the list/tuple/set/string K and returns
either true or false.

• We further assume that each element as a tuple in a list or set can be addressed by each element in that tuple if it
is a unique key.

• Elements in a tuple are ordered can be addressed by index, starting from 0. We write [n] = {1, . . . , n}.
• For tuples, lists, etc. we start index counting at 0.

C. A Brief Introduction to AUC

As already discussed in Section II, AUC mainly provides a generic transformation that allows replacing hard-coded
preventive security properties of an ideal functionality F with accountability properties in any ideal functionality.
Typically, AUC guarantees properties for honest users/components. The transformation includes two steps. The
first step adds static code to the ideal functionality (cf. Figure 7 to 9). AUC’s first transformation step adds the
“infrastructure” and additional judge and supervisor roles. The second transformation step then changes the behavior
of the ideal functionality to capture accountability-based security. The result of the transformation is the accountable
variant of F , called F acc.

We provide only a brief presentation of AUC which focuses on adding public individual accountability properties
to an ideal functionality. We refer an interested reader to [33] which explains all details and possibilities of AUC.

Step 1. The first transformation step adds a public judge to F as well as a supervisor (cf. Figure 7 to 9). As
stated earlier, accountability incentivizes parties to behave honestly by identifying and blaming parties who violate
a protocol’s accountability properties. In the publicly accountable variant of AUC, a public judge – an incorruptible
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Additional roles: judge, supervisor
Additional protocol parameters: {They may be polynomially checkable predicates

– Secacc ⊂ {0, 1}∗ {Accountability properties
– Secassumption ⊂ {0, 1}∗ {Assumption-based security properties
– pidsjudge ⊂ {0, 1}∗ {set of judge entities/(P)IDs in the protocol (which are often directly related to some protocol participants)

– idsassumption ⊂ {0, 1}∗ {set of entities/IDs where properties are ensured via assumptions

Additional subroutines: FjudgeParams

Additional Corruption behavior:
– AllowCorruption(pid , sid , role ):

Do not allow corruption of (pid , sid , supervisor).
if role = judge:

send (Corrupt, (pid , sid , judge), internalState)
to (pid , sid ,FjudgeParams : judgeParams) {FjudgeParams decides whether judges can be corrupted

wait for b
return b

– DetermineCorrStatusa(pid , sid , role):
if role = judge: {FjudgeParams may determine a judge’s corruption status

send (CorruptionStatus?, (pid , sid , judge), internalState)
to (pid , sid ,FjudgeParams : judgeParams)

wait for b; return b

– AllowAdvMessage(pid , sid , role, pidreceiver, sidreceiver, rolereceiver,m)

Do not allow sending messages to FjudgeParams. {A is not allowed to invoke FjudgeParams in the name of corrupted parties.
Additional internal state:

– brokenProps : (Secassumption ∪ Secacc)× (pidsjudge ∪ idsassumption)→ {true, false}
{

Stores broken security properties per judge/id, ini-
tially false ∀entries

– verdicts : pidsjudge → {0, 1}∗ {Verdicts per p ∈ pidsjudge, initially ε

– brokenAssumptions : Secassumption × idsassumption → {true, false}
{

Stores broken security assumptions per id, initially false
∀entries

– corruptedIntParties ⊂ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ \ (RolesF b ∪ {judge, supervisor}), initially ∅
{

The set of corrupted internal
parties (pid , sid , role)

aDetermineCorrStatus allows protocol designers to specify whether an entity that is currently not directly controlled by the attacker should
nevertheless consider itself to be corrupted. E.g., a local judge will typically consider itself to be corrupted already if its corresponding party is
corrupted.

bRolesF is the set of (main) roles provided byF to the environment. For example, RolesF = {signer, verifier} for an ideal signature functionality
F := Fsig.

Fig. 7: Parameters and state added by the transformation T1(F) to an ideal functionality F .

entity – is responsible for rendering verdicts in this case and she is also responsible for guaranteeing the fairness of
the verdict.

The (ideal) judge in AUC allows A to break accountability properties defined in the parameter Secacc, e. g.,
consistency ∈ Secacc, in exchange for a verdict via the BreakAccProp interface. Verdicts in AUC are positive
boolean formulas consisting of terms of the from dis(A) where A is a protocol participant. The judge ensures that
(i) there is indeed a verdict if an accountability property is broken and (ii) the verdict is fair, i. e., the judge never
blames honest parties for misbehavior. The detailed checks on the verdict or conditions when accountability properties
may break are not a priori fixed in AUC. AUC requires to customize a new additional subroutine FjudgeParams to fix
the judge’s details.

The judge provides further interfaces to higher-level protocols: (i) GetVerdict provides access to the judge’s
rendered verdicts and (ii) GetJudicialReport12 allows the judge to provide consolidated information for modular
security/accountability analysis. While we construct our ideal functionalities such that they can be used in modular
security analysis, we will not focus on this feature in what follows.

Public judges in real protocols formalize (i) the judging procedure (based on publicly available or checkable data)
used for rendering verdicts, (ii) inputs and hence evidence needed for obtaining the verdict, and (iii) which parties are
supposed to provide which information as evidence.

The supervisor provides higher-level protocols access to the corruption status of internal protocol participants

12Technically, AUC uses a customizable subroutine called FjudgeParams to define judicial reports for the protocol at hand as well as it details
the restrictions and rules for breaking accountability properties, e. g., whether verdicts need to be individual or not.
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Additional code for the judge role:
recv (BreakAccProp, verdict , toBreak) from NETa to (pid , sid , judge)

s.t. toBreak ⊆ Secacc × pidsjudge ∧ verdict maps from pidsjudge → {0, 1}∗:
(successful , leakage)← breakAttempt(verdict , toBreak) {breakAttempt is defined below
reply (BreakAccProp, successful , leakage)

recv GetVerdict from I/O to (pidj , sid , judge): {The environment can query the verdicts of local and public judges
reply (GetVerdict, verdicts[pidj ])

recv (GetJudicialReport,msg) from I/O to (pidj , sid , judge): {The environment may query for local or public judicial reports

send (GetJudicialReport,msg, internalState) to (pidj , sid ,FjudgeParams : judgeParams)

{
Forward judicial report re-
quest to FjudgeParamswait for (GetJudicialReport, report)

reply (GetJudicialReport, report)

Helperfunctions:
procedure breakAttempt(verdict , toBreak) : {Process break attempt

Check for all non-ε verdicts in verdict , i.e., ∀pidj s.t. verdict [pidj ] ̸= ε:
1. it holds true that verdict [pidj ] is a positive boolean expression built from propositions of the form dis((pid , sid , role )),
2. it holds true that eval(verdict [pidj ]) = true, b

Check that ∀(prop, pidj) ∈ toBreak :
3. verdict [pidj ] ̸= ε,
4. brokenAssumptions[prop, pidj ] = true, if prop ∈ Secassumption ∧ pidj ∈ Secassumption.

if any of the above check fails:
return(false, ε)

send (BreakAccProp, verdict , toBreak , internalState) to ( , ,FjudgeParams : judgeParams)


FjudgeParams can impose
further conditions, e.g., on
verdicts or whether it is al-
lowed to violate breakable
security properties.

wait for (BreakAccProp, successful , leakage)
if successful:

for all ∀pidj s.t. verdict [pidj ] ̸= ε do:
verdicts[pidj ]← verdict [pidj ] {Record accepted local and public verdict

for all (prop, pidj) ∈ toBreak do:
brokenProps[prop, pidj ]← true

return(successful , leakage)

a
NET denotes message from the network adversary. I/O denotes messages from the environment.

beval evaluates the bolean expression, where dis(pid , sid , role) evaluates to true if (pid , sid , role) ∈ CorruptionSet or (pid , sid , role) ∈
corruptedIntParties. CorruptionSet is a predefined variable of iUC that contains all corrupted main parties of this functionality. We set eval(ε) :=
true.

Fig. 8: Judge code added by the transformation T1(F) to an ideal functionality F .

(which are otherwise hidden to them). Without the supervisor, it would be impossible to evaluate whether a verdict is
fair in the case that an internal protocol participant is blamed for misbehavior.
Step 2. The second step of the AUC transformation specifies the effects of a broken property. As the exact implications
in terms of the behavior of F strongly depend on the individual accountability properties, AUC abstractly guidelines
protocol designers for the adaptions in F : Modeling the effects of a broken accountability property p, generally
entails introducing (one or more) conditional clauses of the form “if (p, id) is not marked as broken then <original
behavior> else <new behavior>”. As the name suggests, <original behavior> denotes the original unchanged
behavior of the functionality F , i.e., the code that enforces p. The code <new behavior> then defines what “breaking
p” actually means, typically by giving more power to the adversary (cf. [33]).

D. Additional Details on the Ideal BB Functionalities
In this section, we provide further details regarding the two BB functionalities we introduce in Section III.

D.1 Full Details on Facc
BB : Here, we provide the full formal specification of Facc

BB in Figure 10 to 12. The explanation
regarding Facc

BB ’s inner workings can be found in Section III-A-

D.2 Full Details on Facc
cBB: In this section, we explain further details of the customizable ideal BB functionality

Facc
cBB. As Facc

cBB and Fledger [35] share many similarities (cf. also Appendix E), also their descriptions are similar.
Figure 15 provides an overview over Facc

cBB structure.

Description of Facc
cBB: Our functionality Fledger is defined in the iUC framework [12] – a recently proposed an easy-

to-use framework for universal composability similar in spirit to Canetti’s UC model [13]. Accountability features are
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Additional code for the supervisor role:
recv (BreakAssumption, toBreak) from NET to ( , , supervisor) s.t. toBreak ⊆ Secassumption × idsassumption:

{A may break
these assump-
tionsfor all (prop, id) ∈ toBreak do:

brokenAssumptions[prop, id ]← true {Record broken assumptions
if prop /∈ Secacc ∨ id /∈ pidsjudge:

brokenProps[prop, id ]← true
{Record property as broken if not additionaly secured via accountability

send (BreakAssumption, toBreak , internalState)
to (pid , sid ,FjudgeParams : judgeParams)

{FjudgeParams provides leakage
wait for (BreakAssumption, leakage)
reply (BreakAssumption, leakage)

recv (corruptInt, (pid , sid , role )) from NET to ( , , supervisor)

s.t. role /∈ RolesF ∪ {judge, supervisor}:
{
A is allowed to corrupt internal protocol
parties

corruptedIntParties.add((pid , sid , role ))
reply (corruptInt, ack)

recv (IsAssumptionBroken?, prop, id) from I/O
to ( , , supervisor) s.t. id ∈ idsassumption:

{
The environment may ask whether proper-
ties are brokenif prop ∈ Secassumption:

reply (IsAssumptionBroken?, brokenAssumptions[prop, id ])
else:

reply (IsAssumptionBroken?,⊥)
recv (corruptInt?, (pid , sid , role )) from I/O to ( , , supervisor)

s.t. role /∈ RolesF ∪ {judge, supervisor}:
{The environment may ask for the corruption status of internal parties

if (pid , sid , role ) ∈ corruptedIntParties:
reply (corruptInt, true)

else:
reply (corruptInt, false)

Fig. 9: Supervisor code added by the transformation T1(F) to an ideal functionality F .

captured within AUC which is not explicitly explained here (cf. Section II). We present the formal specification of
Facc
cBB in Figure 13 and 14 (adaptions/changes due to AUC are highlighted in blue.)
The functionality Facc

cBB is a single machine containing the logic for handling incoming read and write requests.
In addition to this main machine, Facc

cBB uses several subroutine machines that serve as parameters which must be
customized by a protocol designer to match the exact security guarantees provided by Facc

cBB.
Intuitively, Facc

cBB’s subroutines have the following purposes: Fwrite handles write requests and, e. g.ensures the
validity of submitted items, Fread processes read requests and Fupdate handles updates to Facc

cBB’s global state, and
FupdRnd controls updates to Facc

cBB’s in-built clock
In what follows, we explain Facc

cBB from the point of view of an honest party – the process of submitting new items
to the BB, adding those to the BB’s state, and then read from that state.
Submitting Messages/Items. A higher-level protocol or the environment E can instruct an honest party pid to submit
a message msg . Upon receiving such a request, Facc

cBB forwards the request to the subroutine Fwrite, which then
decides whether the message is valid. Facc

cBB expects Fwrite to return a boolean value indicating whether the message is
accepted. If the transaction msg is accepted, Facc

cBB adds msg together with the submitting party pid and a time stamp
(see below) to a buffer list writeQueue that keeps track of write requests from honest parties which have not yet been
added to the BB’s state. The acceptance result including the full item is then leaked to the adversary.

As mentioned above, the specification of Fwrite is a parameter that is left to the protocol designer to customize. This
allows for customizing what the format of a “valid message” looks like.
Adding message to the BB’s global state. Facc

cBB’s msglist, contains the BB’s state. The items in msglist are totally
ordered and form the basis for honest party’s read requests. Furthermore, items are stored together with some additional
information: the ID of the party which submitted the transaction and two-time stamps indicating when the transaction
was submitted, and when it was added to the BB’s state. Similar to ideal functionalities for blockchains, the state of
Facc
cBB is determined and updated by the adversary, subject to restrictions that ensure expected security properties.
More specifically, at any point in time, the adversary on the network can send an update request to Facc

cBB. This
request, which contains an arbitrary bit string, is then forwarded (together with a copy of the internal state of Facc

cBB)
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Description of the protocol Facc
BB = (client, judge, supervisor):

Participating roles: {client, judge, supervisor}
Corruption model: dynamic corruption

Description of MsBB:

Implemented role(s): {client, judge, supervisor}
Subroutines: FBB

judgeParams : judgeParams
Internal state:

– msglist ⊂ N× ({0, 1}∗)2,msglist = ∅.
{

(Totally ordered) sequence of recorded messages that is considered as stable/im-
mutable of the form (id ,msg, pid).

– writeQueue ⊂ N× ({0, 1}∗),writeQueue = ∅
{

The list of so far not ordered, honest, incoming messages. Format
(tmpCtr ,msg).

– readQueue ⊂ ({0, 1}∗)3 × N× {true, false} × N, readQueue = ∅,
{

The queue of read responses that need to be deliv-
ered (pid , responseId , delivered , ptr)

– readCtr ∈ N, readCtr = 0, {readCtr is temporary ID for transactions in the readQueue.

– writeCtr ∈ N,writeCtr = 0, {writeCtr are temporary IDs for transactions in the writeQueue.

– brokenProps : {consistency} × {public} → {true, false}
{Stores broken accountability properties for the public judge, initially false ∀entries

– verdicts : pidsjudge → {0, 1}∗ {Verdicts per p ∈ pidsjudge, initially ε

– corruptedIntParties ⊂ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ \ (RolesF a ∪ {judge, supervisor}), initially ∅
{

The set of corrupted internal
parties (pid , sid , role)

CheckID(pid , sid , role ):
Accept all messages with the same sid .

Corruption behavior:
– AllowCorruption(pid , sid , role ):

Do not allow corruption of (pid , sid , supervisor).
if role = judge:

send (Corrupt, (pid , sid , judge), internalState)
to (pid , sid ,FjudgeParams : judgeParams) {FjudgeParams decides whether judges can be corrupted

wait for b
return b

– DetermineCorrStatusb(pid , sid , role):
if role = judge: {FjudgeParams may determine a judge’s corruption status

send (CorruptionStatus?, (pid , sid , judge), internalState)
to (pid , sid ,FjudgeParams : judgeParams)

wait for b; return b

– AllowAdvMessage(pid , sid , role, pidreceiver, sidreceiver, rolereceiver,m):
A is not allowed to call subroutines on behalf of a corrupted party.

aRolesF is the set of (main) roles provided by F to the environment. Here, RolesF = {client}
bDetermineCorrStatus allows protocol designers to specify whether an entity that is currently not directly controlled by the attacker should
nevertheless consider itself to be corrupted. E.g., a local judge will typically consider itself to be corrupted already if its corresponding party is
corrupted.

Fig. 10: The basic ideal individually accountable bulletin board functionality Facc
BB (Part 1).

to the subroutine Fupdate. The exact format of the bit string provided by the adversary is not a priori fixed and can be
freely interpreted by Fupdate. This subroutine then computes and returns to Fupdate an extension of the current BB
state and an update to the list writeQueue of submitted transactions that specify transactions that should be removed
(as those have now become part of the BB’s state).

Upon receiving the response from Fupdate, Facc
cBB ensures that appending the proposed extension to msglist still

results in an ordered list of items. If this is the case, Facc
cBB applies the changes to both lists. In any case, Facc

cBB leaks all
information as well as a boolean indicating whether any changes have been applied to the adversary.
Reading the BB’s state. A higher-level protocol can instruct a party of Facc

cBB to read from the BB’s state. The read
request is stored and asynchronously handled. The adversary is supposed to provide input to Facc

cBB to determine the
output for the read request. Facc

cBB forwards the input to Fread. Fread uses the A’s input to generate the read request’s
final output. The exact format of A’s input is not a priori fixed and can be freely interpreted by Fread. Finally, the
resulting output is forwarded by Facc

cBB to the higher-level protocol.

D.3 Covering Further BB Standard Security Properties With Facc
cBB: Here, we briefly discuss how one can

capture other standard BB security properties mentioned in Section I with Facc
cBB which we have not discussed in

Section III-B.

30



Description of MsBB (continued):
Main:

recv (Write,msg) from I/O: {Write request from a honest identity
writeCtr← writeCtr + 1
writeQueue.add(writeCtr,msg)a {Record message, identity and its state for “consensus”.
send (Write,writeCtr,msg) to NET {Leak full msg .

recv Read from I/O: {Read request from an honest identity
readCtr← readCtr + 1
readQueue.add((pidcall, sidcall, rolecall), readCtr, false, 0) {Store request for later processing
send (Read, readCtr) to NET {Leak full details

recv (DeliverRead, readCtr , (sugPtr , sugOutput)) from NET s.t. ((pid , sid , role ), readCtr , false, 0) ∈ readQueue:
{sugPtr points to the prefix to be delivered. sugOutput contains the message to be delivered (if consistency is broken)

if brokenProps[consistency, public] = false: {Facc
BB provides consistency in the absence of a verdict

if ∃((pid , sid , role ), , true, prt) ∈ readQueue, s.t. prt > sugPtr :
send nack to NET {Delivery request ofA was denied

else:
readQueue.remove((pid , sid , role ), readCtr , false, 0) {Clean up readQueue.
readQueue.add((pid , sid , role ), readCtr , true, sugPtr)
send (Read,msglist(sugPtr)b) to (pid , sid , role )

else: {A fully defines the output if accountability w.r.t. consistency is broken
readQueue.remove((pid , sid , role ), readCtr , false, 0) {Clean up readQueue.
readQueue.add((pid , sid , role ), readCtr ,msg, true, 0)
send (Read, sugOutput) to (pid , sid , role )

recv (Update, appendToMsglist , updRequestQueue) from NET s.t. updRequestQueue ⊂ writeQueue∧
all entries from updRequestQueue appear in appendToMsglist: {Update or maintain request triggered by the adversary.

msglist.append(appendToMsglist) {append adds each entry from appendToMsglist to msglist including consecutive IDs
for all item ∈ updRequestQueue do: {Remove “consumed” elements from writeQueue

writeQueue.remove(item)

reply (Update, check ,msglist) {InformA if update was successful and leake data.

Include static code provided by AUC [33] here (see also Appendix C).c

awriteQueue.add( ) equals writeQueue← writeQueue ∪ { }.
bFor n ∈ N, we define msglist(n), n ∈ N = {(id,msg) | (id ,msg, ) ∈ msglist ∧ id ≤ n}.
cTechnically, there need to be several minor adaptions in the AUC transformation However, the changes follow immediately from [33].

Fig. 11: The basic ideal individually accountable bulletin board functionality Facc
BB (Part 2).

Certified Publishing: We note that this property is rather specific to the BB of Heather and Lundin [37] where the
BB add all items to it sequentially and clients exactly determine the position of their item on the board via a timestamp
(timestamps need to be increasing for each item). Heather and Lundin define certified as follows “A [. . .] BB has
certified publishing if whenever a reader retrieves the contents of the board, either he can detect corruption of the
board, or he will have proof, for each message on the board:

1. of who wrote the message;
2. that the writer intended the message to be published with the stated timestamp and at this point in the board’s

sequence of messages.”
To capture that a read request of an item from the BB’s state also includes the writing party, we need to define Fread

such that it also outputs the party that submitted an item to the BB (as stored in msglist). The second part requires that
(i) Fwrite enforces that the data format for BB items includes a timestamp and (ii) Fupdate ensures that the timestamp
increases when the next item is added to the BB.

Message Validity: As also discussed in Section III-B, Fwrite is intended to ensure message validity. However, for
items added by A it is also necessary to ensure correct message formats in Fupdate.

Receipt Consistency: Culnane and Schneider [24] and Kiayias et al. [46] require that “[a]ny item that has a valid
receipt must appear on the [B]B.” According to their constructions, a subset of the BB peers receives the votes and
another BB component is responsible for finally storing the item and providing parties read-access to the item. To
model such a requirement in Facc

cBB one would define a sub-call of the Read interface to retrieve the desired Receipt.
FupdRnd would then ensure that the item enters Facc

cBB’s state according to some defined network delay, let us say δ.
More specifically, FupdRnd would deny time updates if there was a receipt handed δ ago but the corresponding item
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Description of FBB
judgeParams = (judgeParams):

Participating roles: {judgeParams}
Corruption model: incorruptible

Description of MBB
judgeParams:

Implemented role(s): {judgeParams}
CheckID(pid , sid , role ):

Accept all messages with the same sid .
Main:

recv (BreakAccProp, verdict , toBreak , internalState) from I/O:
if verdict [public] ensures individual accountability: {Ensure public individual accountability

if toBreak = {consistency, public}: {Handle violation of accountability w.r.t. consistency
reply (BreakAccProp, true, ε)

else:
reply (BreakAssumption, false, ε)

recv (GetJudicialReport,msg, internalState) from I/O: {Generate judicial report
if verdicts ̸= ε:

reply (GetJudicialReport, ε) {Cannot provide a judicial report in this case
else:

Extract maxPtr from Facc
BB ’s transcript as the highest pointer that was used to answer a read request.

send responsively GetState to NET (∗) {A may define the prefix to be delivered as judicial report
wait for (GetState, ptr)
if ptr < maxPtr ∨ ptr > |msglist |:

Go to (∗).
list ← {(id ,msg ′) | (id ,msg ′, ) ∈ msglist[maxPtr ]}
reply (GetJudicialReport, list) {Return state as report

recv (Corrupt, (public, sid , judge), internalState) from I/O:
{
FBB

judgeParams declines corruption requests for the public judge
reply false {The public judge is incorruptible

recv (CorruptionStatus?(public, sid , judge), internalState) from I/O:
{
FBB

judgeParams asks for the public judge’s corruption sta-
tusreply false {The public judge is incorruptible

Fig. 12: The judge parameter functionality FBB
judgeParams.

is not in Facc
cBB’s state yet. Also, Fread would ensure that the item is included in read responses of honest parties (also

after δ).
Several BB constructions do not include receipts out of the box. In these cases, one could interpret that reading the
client’s item from the BB is a sufficient receipt to confirm that the item is actually part of the BB’s state. In this case,
receipt consistency collapses to traditional consistency.
Finally, there are also other constructions regarding receipts common. In, e. g., Helios [1], clients/voters do write their
ballots directly to the BB. They send their ballots to the Helios election server. The server provides the voter a receipt
when he accepts the ballot. The server then internally processes the ballot and writes it to the BB. In such a case,
receipt consistency needs to be ensured in the higher-level (e-voting) protocol in combination with the accountable
BB.

D.4 The Facc
cBB Instantiation to Cover Facc

BB : As a sanity check, that Facc
cBB is indeed a generalization of Facc

BB , we
show that Facc

cBB realizes Facc
BB , resp. vice versa. In what follows, we call the instantiation that covers Facc

BB Facc
cBB,BB.

In Facc
cBB,BB, Fwrite,BB does not perform additional checks and allows all write requests to enter the writeQueue.

Fread,BB records which state was provided to which party and as long as consistency hods, it enforces checks
that the state provided to parties is equal or an extension of their previously received state. If public consistency

is broken, it forwards A input as response to the parties request to Facc
cBB. As Facc

BB does not include a clock, we do
not impose limitations on clock updates in FupdRnd,BB. Fupdate,BB also mimics Facc

BB ’s behavior during update and
accepts updates that match the Facc

BB ’s update requirements. To handle accountability properties, Fread,BB simply uses
Facc
BB ’s AUC subroutine FBB

judgeParams (cf. Figure 12).
We provide the specification of the subroutine of Facc

cBB,BB in Figures 16 to 19. FBB
judgeParams was already introduced

in Figure 12.
To formally show that Facc

cBB,BB realizes Facc
BB and vice versa, we need to enhance Facc

BB with a clock. Therefore,
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Description of the protocol Facc
cBB = (client, judge, supervisor):

Participating roles: {client, judge, supervisor}
Corruption model: static or dynamic corruption
Protocol parameters:

– Secacc ⊂ {0, 1}∗ {Accountability propertie
– Secassumption ⊂ {0, 1}∗ {Assumption-based security properties
– pidsjudge ⊂ {0, 1}∗ {set of judge entities/(P)IDs in the protocol (which are often directly related to some protocol participants)

– idsassumption ⊂ {0, 1}∗ {set of entities/IDs where properties are ensured via assumptions

Description of MBB:

Implemented role(s): {client, judge, supervisor}
Subroutines: Fwrite : validate,Fupdate : update,Fread : read,FupdRnd : updRnd,FBB

judgeParams : judgeParams
Internal state:

– round ∈ N≥0, round = 0 {Current (network) round in the protocol execution.

– msglist ⊂ N× N× {0, 1}∗ × N× {0, 1}∗,
msglist = ∅.

{(Totally ordered) sequence of recorded messages that is consid-
ered as stable/immutable of the form (id , commitRound ,msg,
submitRound , pid).

– writeQueue ⊂ N× {0, 1}∗ × N× {0, 1}∗,
writeQueue = ∅

{
The list of so far not ordered, honest, incoming “transactions”. Format
(tmpCtr , tx , submittingRound , submittingParty).

– readQueue ⊂ {0, 1}∗ × N× N× {0, 1}∗,
readQueue = ∅, {The queue of read responses that need to be delivered (pid , responseId , round ,msg)

– readCtr ∈ N, readCtr = 0, {readCtr is temporary ID for transactions in the readQueue.

– writeCtr ∈ N,writeCtr = 0, {writeCtr are temporary IDs for transactions in the writeQueue.

– brokenProps : (Secassumption ∪ Secacc)× (pidsjudge ∪ idsassumption)→ {true, false}
{

Stores broken security properties per judge/id, ini-
tially false ∀entries

– verdicts : pidsjudge → {0, 1}∗ {Verdicts per p ∈ pidsjudge, initially ε

– brokenAssumptions : Secassumption × idsassumption → {true, false} {Stores broken security assumptions per id, initially false ∀entries

– corruptedIntParties ⊂ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ \ (RolesF a ∪ {judge, supervisor}), initially ∅
{

The set of corrupted internal
parties (pid , sid , role)

CheckID(pid , sid , role ):
Accept all messages with the same sid .

Corruption behavior:
– AllowCorruption(pid , sid , role ):

Do not allow corruption of (pid , sid , supervisor).
if role = judge:

send (Corrupt, (pid , sid , judge), internalState)
to (pid , sid ,FjudgeParams : judgeParams) {FjudgeParams decides whether judges can be corrupted

wait for b
return b

– DetermineCorrStatusb(pid , sid , role):
if role = judge: {FjudgeParams may determine a judge’s corruption status

send (CorruptionStatus?, (pid , sid , judge), internalState)
to (pid , sid ,FjudgeParams : judgeParams)

wait for b; return b

– AllowAdvMessage(pid , sid , role, pidreceiver, sidreceiver, rolereceiver,m): A is not allowed to call subroutines on behalf of a
corrupted party.

aRolesF is the set of (main) roles provided byF to the environment. For example, RolesF = {signer, verifier} for an ideal signature functionality
F := Fsig.

bDetermineCorrStatus allows protocol designers to specify whether an entity that is currently not directly controlled by the attacker should
nevertheless consider itself to be corrupted. E.g., a local judge will typically consider itself to be corrupted already if its corresponding party is
corrupted.

Fig. 13: The ideal individually accountable bulletin board functionality Facc
cBB (Part 1).

we put a wrapperWBB in front of Facc
BB which (i) forwards all requests to Facc

BB with the exception of GetCurRound
interface, (ii) WBB has an internal clock, i. e., it contains a state variable round ∈ N, round = 0, (iii) On the call
UpdateRound via NET, WBB increases round by one 1 and replies (Update, true). (iv) On GetCurRound via I/O
interface,WBB replies (GetCurRound, round).
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Description of MBB (continued):
Main:

recv (Write,msg) from I/O: {Write request from a honest identity
send (Write,msg, internalState) to (pidcur, sidcur,Fwrite : validate) {Forward request to Fwrite

wait for (Write, response) s.t. response ∈ {true, false}
if response = true:

writeCtr← writeCtr + 1
writeQueue.add(writeCtr, round, pidcur,msg)a {Record message, round, identity and its state for “consensus”.

send (Write, response,msg) to NET {Leak full msg .

recv (Read,msg) from I/O: {Read request from an honest identity
readCtr← readCtr + 1; readQueue.add((pidcall, sidcall, rolecall), readCtr, round,msg) {In case of network read, store request
send (Read, readCtr,msg) to NET {If Fread leakes data, this is forwarded toA.

recv (DeliverRead, readCtr , suggestedOutput) from NET s.t. ((pid , sid , role ), readCtr , r ,msg) ∈ readQueue:{
A tiggers message delivery per message (this may include reordering of messages, non-delivery of messages, and manipulation of
delivered data - if not enforced by FupdRnd).

send (Read,msg, suggestedOutput , internalState) to (pidcur, sidcur,Fread : read)
wait for (Read, output)
if output ̸= ⊥:

send responsively (Read, readCtr , output) to NET
wait for ack
readQueue.remove((pid , sid , role ), readCtr , r ,msg) {Clean up readQueue.
send (Read, output) to (pid , sid , role )

else:
send nack to NET {Delivery request ofA was denied

recv (Update,msg) from NET: {Update or maintain request triggered by the adversary.
send (Update,msg, internalState) to (ϵ, sidcur,Fupdate : update)
wait for (Update,msglist , updRequestQueue

s.t msglist ⊂ N× {round} × {0, 1}∗ × N× {0, 1}∗
{
Fupdate outputs which data to append to
msglist and an updated writeQueue.

max ← max{i|(i, , , , ) ∈ msglist}
{

Check that msglist is a totally ordered sequence, extending the existing
msglist. If msglist = ∅ then max defaults to −1

check ← msglist ̸= ∅ ∨ updRequestQueue ̸= ∅
for i = max + 1 to max + |msglist | do:

if ∄1(i, , , , ) ∈ msglist:
{

Check that there exists exactly one entry for every id i in
a continous sequence (no gaps)

check ← false

if check :
{

If the update is totally ordered and no new messages were added to
writeQueue, we accept the update.

msglist.add(msglist)
for all item ∈ updRequestQueue do: {Remove elements “consumed” elements from writeQueue

writeQueue.remove(item)

reply (Update, check ,msglist) {InformA if update was successful and leake data.

recv UpdateRound from NET: {A triggers round update if current round satisfies rules of FupdRnd.
send (UpdateRound, internalState) to (pidcur, sidcur,FupdRnd : updRnd)
wait for (UpdateRound, response)
if response = true:

round← round+ 1
reply (UpdateRound, response)

recv GetCurRound: {A and E are allowed to query the current round.
reply (GetCurRound, round)

Include static code from the AUC transformation T1(·) [33] here.
awriteQueue.add( ) equals writeQueue← writeQueue ∪ { }.

Fig. 14: The ideal individually accountable bulletin board functionality Facc
cBB (Part 2).

Lemma 4 ((WBB | Facc
BB )

13 ≤ Facc
cBB,BB and vice versa). Let Facc

BB , Facc
cBB,BB, andWBB as defined above. Let Fupdate

be the ppt update subroutine of Facc
BB and Fupdate,BB = Fupdate.14 Then, we conclude

(WBB | Facc
BB ) ≤ Facc

cBB,BB and
Facc
cBB,BB ≤ (WBB | Facc

BB ).

Proof. Note that the overall systems run in ppt if Fupdate/Fupdate,BB also run in ppt. The result follows directly from
the definitions of Facc

BB , Facc
cBB,BB, andWBB as the differences between both functionalities are only semantical.

13The notation (Q | F) describes the system consisting of the two protocols where Q has a direct I/O interface to the environment E and Q
uses F as a subroutine.

14For common instantiations the update state process for BBs, this is a realistic requirement.
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Facc
cBB

FupdateFreadFwrite FupdRnd FjudgeParams

Subroutines

interface
to E

Fig. 15: Overview of Facc
cBB and its subroutines. All machines are also connected to A.

Description of the subroutine Fread,BB = (read):

Participating roles: {read}
Corruption model: incorruptible

Description of Mread:

Implemented role(s): {read}
Internal state:

– readQueue ⊂ {0, 1}∗ × N× N× {0, 1}∗ × {true, false} × N,
readQueue = ∅, {The queue of read responses that need to be delivered (pid , responseId , round ,msg, delivered , ptr)

CheckID(pid , sid , role ):
Accept all messages with the same sid .

Main:
recv (Read,msg, suggestedOutput , internalStatea) from I/O s.t. suggestedOutput can be parsed as (sugPtr , sugOutput):

if brokenProps[consistency, public] = false: {Facc
BB provides consistency in the absence of a verdict

if ∃(pid , , , true, prt) ∈ readQueue, s.t. ptr > sugPtr :
reply (FinishRead,⊥)

else:
readQueue.add(pid , readCtr , r ,msg, true, sugPtr)
send (Read,msglist(sugPtr)b) to (pid , sidcur, client)

else: {A fully defines the output if accountability w.r.t. consistency is broken
reply (FinishRead, sugOutput)

aFor brevity we use data from internalState with the local variant of the variable name from Facc
cBB. This includes local variables such as

msglist, requestQueue, readQueue, and round .
bFor n ∈ N, we define msglist(n), n ∈ N = {(id,msg) | (id , ,msg, , ) ∈ msglist ∧ id ≤ n}.

Fig. 16: The read functionality Fread,BB

Description of the subroutine FupdRnd,BB = (updRnd):

Participating roles: {updRnd}
Corruption model: incorruptible
Protocol parameters:

– δ ∈ N {The upper bound in rounds after which a honest tx should be in the state.

Description of MBBupdRnd:

Implemented role(s): {updRnd}
CheckID(pid , sid , role ):

Accept all messages with the same sid .
Main:

recv (UpdateRound,msg, internalState) from I/O: {See Figure 13 for definition of internalState and the local variables it includes
reply (UpdateRound, true)

Fig. 17: The round update/time update functionality FupdRnd,BB.

Note: To prove Lemma 4, one technically needs to define a simulator S and show that the environment can not
distinguish whether she interacts with the S and Facc

cBB,BB or with (WBB | Facc
BB ). The simulator to prove Lemma 4

internally simulates the real protocol, i. e., Facc
cBB,BB or (WBB | Facc

BB ), depending on the direction we are currently
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Description of the subroutine Fwrite,BB = (validate):

Participating roles: {validate}
Corruption model: incorruptible

Description of MBB
validate:

Implemented role(s): {validate}
CheckID(pid , sid , role ):

Accept all messages with the same sid .
Main:

recv (Write,msg, internalState) from I/O: {See Figure 13 for definition of internalState and the local variables it includes
reply (Write, true) {Facc

BB accepts all write requests

Fig. 18: The write functionality Fwrite,BB

Description of the subroutine FupdateBB = (update):

Participating roles: {update}
Corruption model: incorruptible

Description of Mupdate:

Implemented role(s): {update}
CheckID(pid , sid , role ):

Accept all messages with the same sid .

Main:
recv (Update,msg, internalState) from I/O:

if msg = (appendToMsglist , updRequestQueue)∧
updRequestQueue ⊂ writeQueue∧ all entries from updRequestQueue appear in appendToMsglist:
reply (Update,msgListAppend , updRequestQueue,msglist ∪msgListAppend)

{Return list extension and updated queue, leak full new state
else:
reply (Update, ε, ε, ε)

Fig. 19: The update functionality Fupdate,BB

considering. The simulator needs to keep – as usual – the corruption status of entities in the simulated real protocol and
the ideal protocol synchronous. For corrupted entities, S forwards inputs and outputs from/toA. S forwards messages
from NET typically to its internal simulation. When the ideal protocol outputs some message on its network interface,
S forwards the message (maybe with some minor mapping, e. g., to match the input format) to its internal simulation
of the real protocol: with the following exceptions: iUC subroutines call A to query for their corruption status on
initialization. That means, in case Facc

BB ≤ (WBB | Facc
cBB,BB) S would block these messages to A. The other way

round, S would generate these corruption requests and send them to A if the interface that would call the subroutine
is called for the first time. Additionally, the simulator has to decline A SetCorruptionStatus requests with false

and no leakage. Also, the simulator instructs the ideal world to output data to I/O if this occurs in the simulation.

E. Facc
ledger Realizes Facc

cBB

In this section, we formally prove the folk wisdom that distributed ledgers may be good BBs, i. e., a suitable
instantiation of the (accountable) general ledger functionality Facc

ledger – an accountable variant of the distributed ledger
functionality Fledger [35] – realizes Facc

cBB. We use this intermediate result to show that the distributed ledger Fabric∗

realizes (an instantiation of) Facc
ledger. iUC’s composition theorem then allows us to conclude that Fabric∗ also realizes

(an appropriate instantiation of) Facc
cBB.

Fledger. We briefly recall the high-level concepts of Fledger by comparing Fledger to Facc
cBB. We refer an interested

reader to [35] for a detailed discussion of the possibilities and limitations of Fledger.
Similar toFacc

cBB,Fledger is meant to impersonate different ledger protocols. Thus,Fledger is also customizable via its
subroutines. Figure 20 depicts the structure of Fledger including its subroutines. As expected, Facc

cBB and Fledger share
many similarities. From I/O perspective, Fledger also mainly provides the same read- and write interfaces (modulo
naming of the operations) which allow modeling different network models (cf. Facc

cBB). Both operations are also
customizable, the write interface via Fsubmit – which essentially has the same meaning as Fwrite – and the read
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FreadFsubmit Fupdate
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Fig. 20: Overview of Fledger, resp. Facc
ledger, and its subroutines [35]. Changes between both functionalities are

highlighted in blue. All machines are also connected to A.

interface via Fread. While the core concepts behind both Fread variants are the same, Fledger’s Fread covers more
functionality (see below). Also, Fledger’s Fread is meant to include smart contracts, i. e., calls to Fread may process
data from the state and compute a response based on the data.15 One key difference of the Read interface between
both functionalities is thatFledger allows modeling local reads. Local reads allow answering read requests immediately
without simulating network traffic. Fledger’ s Update interface including the subroutines Fupdate and its internal clock
and FupdRnd work analogously as in Facc

cBB.
Another key difference between both functionalities is Fledger registering process for clients. Fledger automatically

registers when parties first participate in the protocol and allows them to leave the protocol via the DeRegister

interface. With these processes, Fledger should be able to capture security properties dependent on the time a party is
participating in a ledger protocol. BBs do not aim for such security properties.

As ledgers may strive for privacy properties of stored data/transactions, all (above and upcoming) operations may
or may not leak data (as specified by the protocol designer). In contrast, Facc

cBB always leaks all details submitted items
and current state toA. AsA may have direct access to some parts of the private data, Fledger allows reading data from
its state via the CorruptedRead. In Fread protocol designers then customize the data A is allowed to access.

Besides these differences, Fledger also uses two additional subroutines which do not match on Facc
cBB subroutines:

Fleak andFinit.Fleak allows customizing data leaked upon the corruption of a party. Such functionality is not necessary
for Facc

cBB as all data is publicly known anyways. Finit is meant to handle so-called “Genesis blocks” in distributed
ledgers – the externally agreed initial state of a ledger. As one typically does not consider BBs with an initial state,
this feature is not relevant for Facc

cBB.16

To derive the accountable ledger functionality Facc
ledger – which can additionally handle assumption-based security

properties and accountability properties – we apply Step 1 of the AUC transformation to Fledger (which solely adds
static code to Fledger). To translate preventive security properties from an instantiation of Fledger to its assumption-
based or accountable variant, protocol designers need to apply AUC’s second transformation.

Facc
ledger realizes Facc

cBB. To formally prove that (accountable) distributed ledgers may indeed serve as suitable
(accountable) BB, we prove that a suitable instantiation of Facc

ledger, called Facc
ledger,BB, realizes Facc

cBB. Before explaining
Facc
ledger,BB, we remark that – similarly to Lemma 4 – it is necessary to use a wrapper WBB in front of Facc

ledger,BB

to formally prove the realization statement. WBB (i) maps Fledger’s Submit interface to Facc
cBB’s write interface and

(ii) makes Fledger’s DeRegister interface inaccessible. In Fledger,BB Fwrite is used as Fsubmit with the difference that
Fsubmit needs to add that the full input message is leaked to A. Similarly, Fledger,BB used Facc

cBB’s Fread subroutine
also as Fread subroutine. Again, Fledger,BB’s Fread needs to ensure that the full output of a read request is leaked to

15We remark that we did not restrict Facc
cBB here, i. e., Facc

cBB can also process “smart contracts”. However, one would typically use Facc
cBB’s Fread

to model filtering of BB content, etc.
16We note that one can also use Facc

cBB’s Fread to model initial state if desired.
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Name Message Structure S R Description
Proposal (Propose, txId, c, nT, ch, chaincodeId, txPayload, σT) C P Call of chaincode
Endorsement (Endorsed, p, txId, nE, chaincodeId, tx , resp, readset ,writeset , σE) P C Vote for proposal
Commitment (Commit, c, txId, proposal , txEnd1, txEnd2, . . .) C O Request transaction commitment
Block Delivery (Deliver, blockNum, h, B, o, σB) O P Block distribution
Kafka Delivery (Deliver, ch, startOffset, T ′) K O Stream segment distribution
Chain Evidence (Evidence, blockNum, h, B, o, σB) P J Forward accepted blocks

S denotes the intended sending ITM, R denotes the intended receiving ITM, commands are not repeated in other message
types
Variables: c is a client identity, nT is a sequence number of c, txPayload specifies function call and input,
tx = c, ch, chaincodeId, txPayload, σT = Signsk(c)(tx ), txId = H(tx , σT), where H is a collision-resistant hash func-
tion, p is a peer identity, nE is a sequence number of p, σE = Signsk(p)(p, txId, nE, chaincodeId, tx , readset ,writeset),
proposal is a transaction proposal, txEnd1, txEnd2, . . . are endorsements, o is an orderer identity, h is the previous

block hash, B is a block body, σB = Signsk(o)(blockNum, h, B) startOffset is an offset number, T ′ is a segment of a
Kafka message stream, T ′ starts at offset startOffset, and S is a state.

TABLE II: Important Messages in the Fabric∗ Model (cf. [31])

A.17 For Fupdate, Fledger uses the same subroutines as Facc
cBB with the following adaptions: (i) All state entries are of

the technical type transaction. Facc
ledger,BB also to store data of type meta in the state – such a concept is not used

in Facc
cBB. (ii) The leakage for both subroutines is the full msglist18 For FupdRnd, Facc

ledger also uses the same FupdRnd

subroutine as Facc
cBB (without providing additional leakage).

We define Facc
ledger,BB “additional” subroutines in Figures 24 and 25. As we do not consider initial state in Facc

cBB,
Finit,BB does not include/generate an initial state for Facc

ledger,BB and as all data is already publicly known in the context
of Facc

cBB, Fleak,BB does not provide additional leakage to A.
To cover the same accountability properties as Facc

cBB, Facc
ledger,BB uses Facc

cBB’s FjudgeParams.

Lemma 5 ((WBB | Facc
ledger,BB) ≤ Facc

cBB). Let Facc
cBB, Facc

ledger,BB, andWBB be as defined above. Let all subroutines of
Facc
cBB such that they are ppt and the overall system Facc

cBB is also ppt.19 Then, we conclude

(WBB | Facc
ledger,BB) ≤ Facc

cBB.

Proof. Follows directly as the (WBB | Facc
ledger,BB) behaves exactly likeFacc

cBB. The differences here are only semantical
changes. The note after Lemma 4 also holds for Lemma 5.

We note that there are also other possibilities to prove that Facc
ledger realizes Facc

cBB.

F. Full Details on Fabric∗BB

Here, we provide the formal definition of the Fabric∗BB protocol Pacc
FAB∗

BB
= (PFAB∗

client : client | PFAB∗

peer : peer,

PFAB∗

orderer : orderer,FK : consens,Finit : init,Fjudge : judge,Fsv : supervisor,Fcert : (signer, verifier),
Fro : randomOracle). In Figures 26 to 40, we provide the formal specification of Pacc

FAB∗
BB

in iUC. We refer to
Graf et al. [31] for a detailed description of the Fabric∗ model that mainly matches the Fabric∗BB model here.
Differences between Graf et al.’s model and our model here are explained in Section IV. In Table II, we also provide
an overview of the different message types in the Fabric/Fabric∗/Fabric∗BB protocol.

F.1 Details on Fabric∗BB realizes Facc
ledger,FAB∗

BB
: In this section, we provide additional specifications and details

regarding Theorem 2. In particular, we provide the missing formal definitions of the subroutine of Facc
ledger,FAB∗

BB
in

Figures 41 to 45.

17We note that Facc
ledger,BB’s local read function is never used in this context, thus we specify the read functionality to contain

recv (InitRead,msg, internalState) from I/O:
reply (InitRead, false, ϵ))

18Technically, the output needs to adapted and the type transaction needs to be fully removed.
19For common instantiations of Facc

cBB this is a realistic assumption.
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Description of the protocol Facc
ledger = (client, judge, supervisor):

Participating roles: {client, judge, supervisor}
Corruption model: dynamic corruption
Protocol parameters:

– Secacc ⊂ {0, 1}∗ {Accountability properties
– Secassumption ⊂ {0, 1}∗ {Assumption-based security properties
– pidsjudge ⊂ {0, 1}∗ {set of judge entities/(P)IDs in the protocol (which are often directly related to some protocol participants)

– idsassumption ⊂ {0, 1}∗ {set of entities/IDs where properties are ensured via assumptions

Description of Mclient:

Implemented role(s): {client, judge, supervisor}
Subroutines:

Fsubmit : submit,Fupdate : update,Fread : read,FupdRnd : updRnd,Finit : init,
Fleak : leak,FBB

judgeParams : judgeParams
Internal state:

– identities ⊂ {0, 1}∗ × N, identities = ∅ {The set of participants and the round when they occurred first.
– round ∈ N≥0, round = 0 {Current (network) round in the protocol execution.
– msglist ⊂ N× N× {tx, meta} × {0, 1}∗ × N× {0, 1}∗,

msglist = ∅.
{(Totally ordered) sequence of recorded messages that is consid-

ered as stable/immutable of the form (id , commitRound , type,msg,
submitRound , pid). If type = meta, pid = submitRound = ⊥.

– requestQueue ⊂ N× {0, 1}∗ × N× {0, 1}∗,
requestQueue = ∅

{
The list of so far not ordered, honest, incoming “transactions”. Format
(tmpCtr , tx , submittingRound , submittingParty).– readQueue ⊂ ({0, 1}∗)3 × N× N× {0, 1}∗,

readQueue = ∅,
{

The queue of read responses that need to be delivered
((pid , sid , role ), responseId , round ,msg)

– readCtr ∈ N, readCtr = 0, {readCtr is temporary ID for transactions in the readQueue.
– reqCtr ∈ N, reqCtr = 0, {reqCtr are temporary IDs for transactions in the requestQueue.
– brokenProps : (Secassumption ∪ Secacc)× (pidsjudge ∪ idsassumption)→ {true, false}

{
Stores broken security properties per judge/id, ini-
tially false ∀entries

– verdicts : pidsjudge → {0, 1}∗ {Verdicts per p ∈ pidsjudge, initially ε

– brokenAssumptions : Secassumption × idsassumption → {true, false} {Stores broken security assumptions per id, initially false ∀entries

– corruptedIntParties ⊂ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ \ (RolesF a ∪ {judge, supervisor}), initially ∅
{

The set of corrupted internal
parties (pid , sid , role)

In the following, we pass through the complete internal state of Facc
ledger to its subroutines. Thus, we use the variable internalState as

follows: internalState← (identities, round,msglist, requestQueue, readQueue, δ,CorruptionSet, transcript)

We often use the CorruptionSet as specified in [12]. We often write pid ∈ CorruptionSet instead of (pid , sidcur, rolecur) ∈ CorruptionSet
for brevity.

CheckID(pid , sid , role ): Accept all messages with the same sid .
Corruption behavior:

– LeakedData(pid , sid , role ):
if ∃(pid , registrationRound) ∈ identities, registrationRound ∈ N:

identities.remove(pid , registrationRound)

send (corrupt, pid , sid , internalState) to (pidcur, sidcur,Fleak : leak)
wait for (corrupt, leakage)
return(leakage)

{
Depending on the desired properties of Facc

ledger, output after corruption needs to be specified
– AllowCorruption(pid , sid , role ):

Do not allow corruption of (pid , sid , supervisor).
if role = judge:

send (Corrupt, (pid , sid , judge), internalState)
to (pid , sid ,FjudgeParams : judgeParams) {FjudgeParams decides whether judges can be corrupted

wait for b
return b

– DetermineCorrStatusb(pid , sid , role):
if role = judge: {FjudgeParams may determine a judge’s corruption status

send (CorruptionStatus?, (pid , sid , judge), internalState)
to (pid , sid ,FjudgeParams : judgeParams)

wait for b; return b

– AllowAdvMessage(pid , sid , role, pidreceiver, sidreceiver, rolereceiver,m): A is not allowed to call subroutines on behalf of a
corrupted party.

aRolesF is the set of (main) roles provided byF to the environment. For example, RolesF = {signer, verifier} for an ideal signature functionality
F := Fsig.

bDetermineCorrStatus allows protocol designers to specify whether an entity that is currently not directly controlled by the attacker should
nevertheless consider itself to be corrupted. E.g., a local judge will typically consider itself to be corrupted already if its corresponding party is
corrupted.

Fig. 21: The ideal ledger functionality Facc
ledger (Part 1).
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Description of Mclient (continued):
Initialization:

send InitMe to (pidcur, sidcur,Finit : init) {Finit handels initilaization if necessary.
wait for (Init, identities,msglist , corrupted , leakage) s.t.

1. identities ⊂ {0, 1}∗ × {0}, round ∈ N,msglist ⊂ N× N× {meta} × {0, 1}∗ × N× {0, 1}∗},
2. corrupted ⊂ {0, 1}∗ × {sidcur} × {client},
3. msg ∈ msglist are consecutivley enumarted started at 0,
4. ∃( , , , , a, b) ∈ msglist , s.t. a ̸= ⊥ ∨ b ̸= ⊥

identities← identities,msglist← msglist ,CorruptionSet← corrupted {We enforce formats and total odrder in msglist.
send responsively (Init, leakage) to NET {Send leaked information from initilaization toA.
wait for ack from NET

MessagePreprocessing:
recv (pidcur, sidcur, rolecur,msg) from I/O:

if (pidcur, ) /∈ identities ∧msg starts with Submit or Read: {Register unknown party before its first submit/read operation
identities.add(pidcur, round)

Main:
recv (Submit,msg) from I/O: {Submission request from a honest identity

send (Submit,msg, internalState) to (pidcur, sidcur,Fsubmit : submit) {Forward request to Fsubmit

wait for (Submit, response, leakage) s.t. response ∈ {true, false}
if response = true:

reqCtr← reqCtr + 1
requestQueue.add(reqCtr, round, pidcur,msg)

{
requestQueue.add( ) equals requestQueue← requestQueue∪{ }.
Records message, round, identity and its state for “consensus”

send (Submit, response, leakage) to NET

{
If Fsubmit leakes data regarding the submitted transaction, this is
forwarded toA.

recv (Read,msg) from I/O: {Read request from an honest identity
send (InitRead,msg, internalState) to (pidcur, sidcur,Fread : read) {Forward the request to Fread.

wait for (InitRead, local , leakage) s.t. local ∈ {true, false}
{
local = true models a “local” read, clients get an immediate
response otherwise, it is a network readif local:

send responsively (InitRead, leakage) to NET (⋆) {Fread leakes data, this is forwarded toA.
wait for (InitRead, suggestedOutput) {A may influence the read processing
send (FinishRead,msg, suggestedOutput , internalState) to (pidcur, sidcur,Fread : read)
wait for (FinishRead, output , leakage′)
if output = ⊥: {IfA’s input for Fread is not accepted, he is triggered again.

Go back to (⋆) and repeat the request (local variables suggestedOutput , output , and leakage′ are cleared)
send responsively (FinishRead, leakage′) to NET {Fread leakes data, this is forwarded toA.
wait for ack
reply (Read, output)

else:
readCtr← readCtr+1; readQueue.add((pidcall, sidcall, rolecall), readCtr, round,msg) {In case of network read, store request

send (Read, readCtr, leakage) to NET {If Fread leakes data, this is forwarded toA.

recv (DeliverRead, readCtr , suggestedOutput) from NET s.t. ((pid , sid , role ), readCtr , r ,msg) ∈ readQueue:{
A tiggers message delivery per message (this may include reordering of messages, non-delivery of messages, and manipulation of
delivered data - if not enforced by FupdRnd).

send (FinishRead,msg, suggestedOutput , internalState) to (pidcur, sidcur,Fread : read)
wait for (FinishRead, output , leakage′)
if output ̸= ⊥:

send responsively (FinishRead, readCtr , leakage′) to NET
wait for ack
readQueue.remove((pid , sid , role ), readCtr , r ,msg) {Clean up readQueue.
send (Read, output) to ((pid , sid , role ), I/O)

else:
send nack to NET {Delivery request ofA was denied

recv (CorruptedRead, pid ,msg) from NET s.t. pid ∈ CorruptionSet: {Read request from a corrupted identity.

send (CorruptedRead, pid ,msg, internalState) to (pid , sidcur,Fread : read) {Forward request to Fread

wait for (FinishRead, leakage)
send (Read, pid , leakage) to NET {Forwarded data toA.

Fig. 22: The ideal ledger functionality Facc
ledger (Part 2).

After having defined both the real protocol Pacc
FAB∗

BB
and the ideal protocol Facc

ledger,FAB∗
BB

, we can now formally state
the main result of this section (cf.Theorem 2 in Section IV).

As Pacc
FAB∗

BB
does not include a clock, we need to adjust interfaces between Pacc

FAB∗
BB

and Facc
ledger,FAB∗

BB
to prove our

intended realization statement. We use the wrapperWFAB∗
BB

that handles clock requests to prove that Pacc
FAB∗

BB
realizes
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Description of Mclient (continued):
Main:

recv (Update,msg) from NET: {Update or maintain request triggered by the adversary.
send (Update,msg, internalState) to (ϵ, sidcur,Fupdate : update)
wait for (Update,msglist , updRequestQueue, leakage)

s.t msglist ⊂ N× {round} × {tx, meta} × {0, 1}∗ × N× {0, 1}∗
{Fupdate outputs which data to append to msglist and an updated requestQueue.

max ← max{i|(i, , , , , ) ∈ msglist}
{

Check that msglist is a totally ordered sequence, extending the
existing msglist. If msglist = ∅ then max defaults to −1

check ← msglist ̸= ∅ ∨ updRequestQueue ̸= ∅
for i = max + 1 to max + |msglist | do:

if ∄1(i, , , , , ) ∈ msglist:
{

Check that there exists exactly one entry for every id i in
a continous sequence (no gaps)

check ← false
if ∃(i, , meta, , a, b) ∈ msglist ∧ (a ̸= ⊥ ∨ b ̸= ⊥): {Check that meta data has correct format

check ← false

if check :
{

If the update is totally ordered and no new messages were added to
requestQueue, we accept the update.

msglist.add(msglist)
for all item ∈ updRequestQueue do: {Remove elements “consumed” elements from requestQueue

requestQueue.remove(item)

reply (Update, check , leakage) {InformA if update was successful and leake data.

recv UpdateRound from NET: {A triggers round update if current round satisfies rules of FupdRnd.
send (UpdateRound, internalState) to (pidcur, sidcur,FupdRnd : updRnd)
wait for (UpdateRound, response, leakage)
if response = true:

round← round+ 1
reply (UpdateRound, response, leakage)

recv GetCurRound: {A and E are allowed to query the current round.
reply (GetCurRound, round)

recv DeRegister from I/O: {De-register honest party
Remove the unique tuple (pidcur, r) from identities
send responsively DeRegister to NET {InformA on the deregistration
wait for ack
reply DeRegister

Include static code from the AUC transformation T1(·) [33] here.

Fig. 23: The ideal ledger functionality Facc
ledger (Part 3).

Description of the protocol Finit,BB = (Init):

Participating roles: {init}
Corruption model: incorruptible

Description of MBB
init:

Implemented role(s): {init}
CheckID(pid , sid , role ):

Accept all messages with the same sid .
Main:

recv Init: {Empty initialization.
reply (Init, ϵ, ϵ, ϵ, ϵ)

Fig. 24: The initialization functionality Finit,BB.

Facc
ledger,FAB∗

BB
.20 Also, WFAB∗

BB
emulates the DeRegister interface an always forwards the message responsively to

NET, waits for the replay ack, and then replys DeRegister to the initial sender (cf. the specification for Facc
ledger in

Figure 23).

Theorem 6. Let η ∈ N be the security parameter and Σ = (gen(1η), sig, ver) be an EUF-CMA secure
signature scheme. Let Pacc

FAB∗
BB

be the Fabric∗BB protocol that uses the signature scheme Σ, Secassumption = ∅,
Secacc = {consistency, smartRead}, pidsjudge = {public}, idsassumption = ∅, and simulateTx such that they
ensure that read outputs of chaincodeId = 0 is the message list (as specified, e. g., in Figure 27) and all read contracts
such that they ensure that the output is prefixed by the length of the executing peer’s blockchain and vep, simulateTx

20WFAB∗
BB

is essentially equal to WBB from Section III-B but forwards messages to Pacc
FAB∗

BB
for all non-clock related interfaces.
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Description of the subroutine Fleak,BB = (leak):

Participating roles: {leak}
Corruption model: incorruptible

Description of MBB
leak:

Implemented role(s): {leak}
CheckID(pid , sid , role ):

Accept all messages with the same sid .
Main:

recv (Corrupt, pid , internalState) from I/O: {See Figure 21 for definition of internalState and the local variables it includes
reply (corrupt, ε)

Fig. 25: The leakage subroutine Fleak,BB.

both are deterministic and in polynomial time, further parameters be selected arbitrarily such that all parameterized
algorithms are deterministic and in polynomial time, all chaincode IDs are in N, ch ∈ N, and there exists only one
write smart contract which appends the transaction to the state without further processing. Let the interaction of the
set of clients, orderers, and peers be the empty set and Sinit ∈ {0, 1}∗. Let applyBlock be a deterministic algorithm
matching the explanation in Section IV-A (see the “Block Generation or Cutting” paragraph there) Let WFAB∗

BB
be

the wrapper as defined above and Facc
ledger,FAB∗

BB
be the instantiation of Facc

ledger as described above, where the internal
subroutines use the same parameters as Pacc

FAB∗
BB

. Then:

(WFAB∗
BB
| Pacc

FAB∗
BB
) ≤ Facc

ledger,FAB∗
BB

Proof. As part of the proof, we first define a responsive simulator S such that the real world running the protocolR :=
(WFAB∗

BB
| Pacc

FAB∗
BB
) is indistinguishable from the ideal world running {S, I}, with the protocol I := Facc

ledger,FAB∗
BB

,
for every ppt environment E .

The simulator S is defined as follows: it is a single machine that is connected to I and the environment E via
their network interfaces. In a run, there is only a single instance of the machine S that accepts and processes all
incoming messages. The simulator S internally simulates the realization R, including its behavior on the network
interface connected to the environment, and uses this simulation to compute responses to incoming messages. For
ease of presentation, as mentioned above we will refer to this internal simulation byR′.

Before digging into the details, we emphasize that I does not ensure privacy properties, i. e., all communication/data
sent to/from I via I/O are leaked in plain on NET to A/S. This allows us to perfectly simulate the real protocol as
explained later on.

Network communication from/to the environment
• Messages that S receives on the network connected to the environment (and which are hence meant for R) are

forwarded to internal simulationR′.
• Any messages sent by R′ on its network interface (that are hence meant for the environment or A) are forwarded

on the network interface to E /A.

Corruption handling
• The simulator S keeps the corruption status of (main and internal) entities in R′ and I synchronized. That

is, whenever a main or internal entity in R′ starts to consider itself corrupted, the simulator first corrupts the
corresponding entity of Facc

ledger,FAB∗
BB

in I before continuing its simulation.
• Incoming messages from corrupted entities of Facc

ledger,FAB∗
BB

in I are forwarded on the network interface to the
environment/A in the name of the corresponding entity in R′. Conversely, whenever a corrupted entity of R′
wants to output a message to a higher-level protocol, S instructs the corresponding entity of Facc

ledger,FAB∗
BB

to
output the same message to the higher-level protocol.

Transaction submission
Whenever an honest client (pid , sid , role ) submits a new message via I/O, i. e.Facc

ledger,FAB∗
BB

receives (Submit,msg),
the subroutine Fsubmit,FAB∗

BB
processes the request and Facc

ledger,FAB∗
BB

then leaks the full submission message to S.
When S receives the leakage from Facc

ledger,FAB∗
BB

, he inputs the request intoR′ and simulates the input.
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Description of the protocol PFAB∗
client = (client):

Participating roles: {client}
Corruption model: Dynamic corruption without secure erasures

Description of Mclient:

Implemented role(s): {client}
Subroutines: Fcert : signer,Fcert : verifier,Fro : randomOracle,Finit : init
Internal state:

– corruptedinit ∈ {true, false}, corruptedinit = false {Record whether instance was corrupted on initialization
– seqNum ∈ N, seqNum = 0 {Sequence number, replacement for the timestamp
– peersC ⊆ {0, 1}∗, peersC = ∅ {The set of peers
– orderersC ⊆ {0, 1}∗, orderersC = ∅ {The set of orderers
– txPropSet ⊂ {0, 1}∗, txPropSet = ∅ {The storage for transaction proposals
– endorsments ⊆ {0, 1}η × {0, 1}∗, endorsments = ∅ {The endorsement storage
– chaincodes ⊊ N, ch ∈ N, chaincodes = ∅ {The set of known chaincode ids and the current channel ID
– vep

a {Algorithms check whether endorsement policies are met
– readQueue : N→ peersC → {0, 1}∗, {Stores read request for asynchronous handling, initially all ε
– receiver : N→ ({0, 1}∗)3 {Maps attaches a receiver to each read request, initially all entries ⊥
– readCtr ∈ N, readCtr = 0 {Counter/IDs for read requests
– recentState ∈ N, initially recentState = 0 {The most recent state the client saw during a read request

CheckID(pid , sid , role ):
Accept all messages with the same sid and role = client.

Corruption behavior:
DetermineCorrStatus(pid , sid , role ):

if corrupted = true ∨ corruptedinit = true: {Checks whether node itself is corrupted.
return true

corrRes ← corr(pidcur, (pidcur, sidcur, rolecur), signer) {Request corruption status at Fcert

if corrRes = true: {Checks whether Fcert instance is corrupted
return true

See Appendix B for notation details. We start index counting at 1.

Initialization:
send InitClient to (pidcur, sidcur,Finit : init) {Request initialization at InitClient
wait for (InitClient, peersC , orderersC , chaincodes, channel , vep , corrupted)
peersC ← peersC ; orderersC ← orderersC ; chaincodes← chaincodes; ch← channel ; vep ← vep ; corruptedinit ← corrupted

Main:
recv (Submit, (ch, chaincodeId, txPayload)) from I/O s.t. chaincodeId ∈ chaincodes: {Submission of Transaction proposal

seqNum← seqNum+ 1
send (Sign, (pidcur, seqNum, ch, chaincodeId, txPayload)) to (pidcur, (pidcur, sidcur, rolecur),Fcert : signer)

{Sign transaction proposal
wait for (Signature, σ)
proposal ← (pidcur, seqNum, ch, chaincodeId, txPayload, σ)
send (pidcur, proposal) to (pidcur, sidcur,Fro : randomOracle) {Generate transaction id
wait for (pidcur, txId)
proposal ← (txId, proposal)
if wT(proposal) = true: {Check well-formdness of generated transaction

msg← ⟨Propose, proposal⟩
txPropSet.add({proposal})
msg′ ← ε
for P ∈ peersC do: {For simplicity, broadcast tx proposal to all known peers

msg′ ← msg′ ||(P,msg)
send msg′ to NETC {Broadcasting of transaction proposal is a duty of the adversary

recv (Endorsed, txEnd , σ) from NET: {Receive a Transaction Endorsement From Peers
if txEnd = (pidP , txId, seqNumP, chaincodeId, proposal , resp, readset ,writeset) ∧ proposal ∈ txPropSet
∧ pidP ∈ peersC ∧ txId, chaincodeId match txIdproposal , chaincodeIdproposal from proposal:
send (Verify, txEnd , σ) to (pidcur, (pidP , sidcur, peer),Fcert : verifier)
wait for (VerResult, b)
if b: {If the signature is valid, the endorsement is recorded

endorsments.add({(txId, txEnd , σ)})
aNote that the endorsement verification procedure vep has two duties: vep allows clients to verify whether a planned transaction commit should
be accepted without having access to a state, vep allows peers to verify whether they accept transactions during endorsement generation and state
generation

Fig. 26: The Fabric model PFAB∗

client, specification of the Fabric∗ client Mclient (Part 1)

After simulating the input to the (honest) client entity inR′, S outputs the result of the activation, i. e., the simulated
transaction proposal, via NET to E , resp. A.

43



Description of Mclient (cont.):
Main:

recv (Commit, pidO, txId) from NET s.t. pidO ∈ orderersC ∧ (txId, ·) ∈ txPropSet: {Send commit request to orderer
TtxId ← {(txId, proposal) | (txId, proposal) ∈ txPropSet}
TtxId.add({(t,msg) ∈ endorsments | t = txId})
if vep(TtxId) = true

{
If the transaction commitment TtxId meets
endorsement policy, request the ordering
service to commit the transaction

:
send (pidO, ⟨Commit, txId,TtxId⟩) to NET

recv (Read,msg) from I/O: {E /a higher-level protocol calls a chaincode/queries Fabric∗

if msg = (pidP , 0, ) ∧ pidP ∈ peersC:

{We model, w.l.o.g. that chaincode ID 0 outputs the full message list of
a channel to model a BB. Therefore, our statements only hold for a
restricted set of parameters, e. g., simulateTx.readCtr← readCtr + 1; seqNum← seqNum+ 1

receiver[readCtr]← (pidcall, sidcall, rolecall)
readQueue[readCtr, pidP]← open
send (Sign, (readCtr, pidcur, seqNum, ch, 0, 0)) to (pidcur, (pidcur, sidcur, rolecur),Fcert : signer)
wait for (Signature, σ)
send (Read, (readCtr, pidcur, seqNum, ch, 0, 0, σ), pidP) to NET {A is responsible for dispatching the messages.

else if msg = (pidP , id , query) ∧ pidP ∈ peersC: {Query that does not aim for Fabric∗ full message list
readCtr← readCtr + 1; seqNum← seqNum+ 1; receiver[readCtr]← (pidcall, sidcall, rolecall)
readQueue[readCtr, pidP]← open
send (Sign, (readCtr, pidcur, seqNum, ch, id , query)) to (pidcur, (pidcur, sidcur, rolecur),Fcert : signer)
wait for (Signature, σ)
send (Read, (readCtr, pidcur, seqNum, ch, id , query, σ), pidP) to NET {A is responsible for dispatching the messages.

recv (DeliverRead, pidcur, (pidP , queryID , seqNum, chaincodeId, queryToBeProcessed , resp, readset ,writeset), σP ) from NET
s.t. readQueue(queryID , pidP) = open ∧ queryToBeProcessed = (queryID , seqNumC, pidcur, ch, chaincodeId, query, σ):

{Response to Read request
send (Verify, (queryID , seqNumC , pidcur, ch, chaincodeId, query), σ) to (pidcur, (pidcur, sidcur, rolecur),Fcert : verifier)
wait for (VerResult, b1) {Check correctness of request
send (Verify, (pidP , queryID , seqNum, chaincodeId, queryToBeProcessed , resp, readset ,writeset , σP ))

to (pidcur, (pidP , sidcur, peer),Fcert : verifier)
wait for (VerResult, b2) {Check correcly signed endorsement
if b1 ∧ b2:

if ∃ an entry readQueue[queryID , ] = open:
if chaincodeId = 0: {In case of chaincodeId = 0, resp is a message list (cf. Figure 37)

if recentState ≤ |resp|: {Check that client has not seen newer data than resp
recentState← |resp|
send (Evidence, (pidP , queryID , seqNum, chaincodeId, queryToBeProcessed , resp, readset ,writeset , σP ))

to (public, sidcur,Fjudge : judge) {Forward evidence to Fjudge

wait for ack
else:

if resp is prefixed with ptr ′ and ptr ′ ≥ recentState: {Only accept output that indicated to be generated on recent state
recentState← ptr ′

send (Evidence, (pidP , queryID , seqNum, chaincodeId, queryToBeProcessed , resp, readset ,writeset , σP ))
to (public, sidcur,Fjudge : judge) {Forward evidence to Fjudge

wait for ack
readQueue[queryID , ]← done
send (Read, resp) to receiver[readCtr]

Fig. 27: Specification of the Fabric∗ client PFAB∗

client (Part 2)

S stores the leaked request IDs from Facc
ledger,FAB∗

BB
(including message and submitter) for later processing the

updates of the write queue.
Read requests
Whenever an honest client entity in Facc

ledger,FAB∗
BB

receives a request (Read,msg), Facc
ledger,FAB∗

BB
leaks this request to

S and waits for S to (asynchronously) provide the necessary details to produce and deliver the response to entity .
S simulates the read request in R′ and stores the ID of the read request for later processing internally. S extracts
the output of the read request the simulated entity would output via I/O. If consistency is publicly broken, S
sends the output directly to Facc

ledger,FAB∗
BB

. Otherwise, if the request aimed for getting the full state from the BB, i. e.,
chaincodeId = 0, S extracts the highest ID from the output generated inR′ and forwards this pointer to Facc

ledger,FAB∗
BB

.
If chaincodeId ̸= 0 and smartRead is publicly broken, S sends the output directly to Facc

ledger,FAB∗
BB

. Otherwise, it
extracts the state pointer from the endorsement which triggers the I/O output and sends this as suggestedOutput to I.
In all cases above, the instruction to Facc

ledger,FAB∗
BB

includes the formerly stored read request ID which Facc
ledger,FAB∗

BB

initially leaked to S.
Verdicts
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In the case that the judge renders a verdict inR′. S extracts the verdict v from the judge and provides it to I. As we do
not provide further guarantees as soon we have a verdict, S sends (BreakAccProp, v, {(consistency, publicly),
(smartRead, public)}) to I.
Judicial reports
In the case of someone requesting a judicial report via I/O, I will trigger S via the GetState interface. In this case, S
simulates the input of GetJudicialReport to its simulated judge in R′. It then extracts the highest ID id from the
output judge produces and forwards it via (GetState, id) to I.
State updates
As soon as S sees an state update in R′, he updates Facc

ledger,FAB∗
BB

’s state. More specifically, the following cases are
interpreted as a “state update” in R′: (i) msglist of an honest client, (ii) msgStream of the judge, (iii) chain of an
honest peer, (iv) msgStream of an honest orderer, or (v) msgStream of an honest Kafka cluster extend such that the
former “longest” state S was aware of is a prefix of the new state (and after mapping them from their data object to a
totally ordered sequence of messages) – in what follows, we will sometimes call the longest list of messages extracted
from these parties the state of R′. S extracts the differences between the former state and the state update in the
form [(i,msg i), (i + 1,msg i+1), . . .]. It checks whether the message matches a message from the stored write queue
(see message submission) and extends with this information to [(i, reqCtr i,msg i), (i + 1, reqCtr i+1,msg i+1), . . .]
where reqCtr j = ε if S cannot find a matching submission ID. S then sends (Update, [(i, reqCtr i,msg i), (i +
1, reqCtr i+1,msg i+1), . . .]) to Facc

ledger,FAB∗
BB

. Further, S also removes the items with a valid reqCtr from its internal
write queue.
Further details
S keeps the clocks/rounds of R′ and Facc

ledger,FAB∗
BB

synchronous. That is, S sends UpdateRound to Facc
ledger,FAB∗

BB

whenever a round update in the simulatedWFAB∗
BB

is performed and before continuing the simulation.

This concludes the description of the simulator. It is easy to see that (i) {S, I} is environmentally bounded 21 and (ii) S
is a responsive simulator for I, i. e., restricting messages from I are answered immediately as long as {S, I} runs
with a responsive environment. We now argue that R and {S, I} are indeed indistinguishable for any (responsive)
environment E ∈ Env(R).

Now, let E ∈ Env(R)22 be an arbitrary but fixed environment. In the following, we will go over all possible
interactions on the network and the I/O interface and argue, by induction, that all of those interactions result in identical
behavior towards the E , i. e., I and R are indistinguishable. At the start of a run, there were no interactions on the
network, resp. I/O, interface yet. Thus, the induction base case holds true. In the following, assume that all network,
resp. I/O, interactions so far have resulted in the same behavior visible towards the environment in both the real and
ideal world. In the argumentation below, we mainly argue the case where no verdict is present – as in this case,
Facc
ledger,FAB∗

BB
ensures its properties and its restrictions need to be met. We discuss afterward that S’s simulation also

ensures indistinguishable between real and ideal world in the presence of verdicts.
We note that the argumentation in the following indirectly relies on the case that signatures cannot be forged as the

signature scheme we use in the real world is EUF-CMA. Thus, the probability that the signature can be faked in R is
negligible.

Corrupting parties: In the following, we argue that S is always able to keep corrupting in R′ and I synchronous.
As there are no restrictions for corruption in I, we have nothing to show here: For corrupted parties, S forwards the
output A instructed the corrupted party to output to I with the same forwarding request. As parties are also corrupted
in I, I will also forward the message. Thus, the I/O behavior in real and ideal world are identical in this case. This
holds true for main parties as well as for internal parties.

Interaction via network:
As already mentioned, I leaks all data in plain to S including sufficient information about all requests performed by
higher-level protocols. In particular, S has access to all necessary data to provide the correct leakage via NET to E /A

21As all algorithms are in polynomial time and parameters ensure that the execution of non-a-priori fixed code finishes in polynomial time.
22For some system Q, we denote by Env(Q) the set of all environments E that can be connected to Q.
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or to provide data in plain in case corrupted parties are involved in a transaction. As a result, the network behavior
simulated by S towards the environment is indistinguishable from the network behavior ofR.

Interaction (of honset parties) via I/O: Firstly, we show that the I/O behavior simulated by S towards the
environment is indistinguishable from the I/O behavior ofR.

Submission requests: By construction of R and I, submission requests do not directly result in an input to the
environment but they might influence future read requests. Thus, the main goal here is to prove that the states of R′
and I stay “synchronized” after message submissions, i. e., the set of potential messages submitted by honest clients is
equal inR′ and I. If a party submits a message to Facc

ledger,FAB∗
BB

, it adds the message to its write queue (requestQueue)
if it matches the expected format and is dedicated to the Fabric∗BB channel we are currently considering. The
submission message is forwarded to S which simulates its input toR′. Also, the simulation considers the message as a
valid update candidate for the state asR and I execute the same message validations. InR′, we consider a message to
be queued as soon as a client tries to send it to a peer. Thus, the write queues in I and R are, resp. stay, synchronized
when an honest transaction is newly submitted to Facc

ledger,FAB∗
BB

.

State updates:
Though state updates do not directly lead to outputs to I/O, I’s state is the basis for answers to read requests. Thus,

we show here that I always accepts state updates provided by S and thus – by construction of Ssys – I’s state is
always a prefix of the state of all honest parties in R′. This allows us to conclude later on, that read requests are
processed as S desired.

We already concluded above that the set of requestQueue is synchronized between I and R′. Further, we note that
I does not impose further limitations to state updates besides that messages need to be totally ordered, starting at the
current state’s highest ID plus one. Indeed, S matches these requirements. By induction base case, we assume that the
last states between I and R′ are synchronized, i. e., they also have the same highest ID. Thus, S extracted extension
starts with the same highest ID plus one. As defined, S provides a state extension to I which is the current “longest”
state known by honest parties (and this state is a prefix of the states of all honest parties). Thus, I’s new state is also a
prefix of all honest parties’ states. Thus, states inR′ and I are the same after S updates I’s state.

Though less relevant, the update provided by S will also keep the requestQueues of I and R′ synchronized (as by
construction IDs match between I andR′).

Read requests:
Whenever an honest entity entity receives a request (Read,msg) to read from the BB’s state, I forwards this read
request (in plain) to S (including an identifier) and waits to receive a suggested output. S simulates the read request
internally by forwarding the request to the simulated instance of PFAB∗

client inR′. As defined above, S extracts the output
from the (asynchronously) simulated response, i. e., (as we only consider the absence of verdicts here) (i) the highest
ID of the message list in case of chaincodeId = 0 or (ii) the state pointer in case of a call to another smart contract.

In particular, S’s suggested output for the read request will not fail I’s validations and will lead to the same output:
1. By construction of the state updates, I’s state is always a prefix of R′ state. Thus, the ID extracted from honest

parties inR′ is always lower (or equal) to the highest ID in I.
2. As consistency holds true in this argumentation here, I will output its prefix up to the message ID provided by S

in case we consider chaincodeId = 0. By construction, this is the same message sequence inR′ and I. Thus, the
output to I/O is the same. Thus, we can conclude that real and ideal world remain indistinguishable in this case.

3. In case of another read request (and as long as smartRead holds), S provides the state pointer based on which
the output was computed to I (as above, the ID provided will be smaller or equal to the highest message ID in I).
By construction of Fread,FAB∗

BB
in Facc

ledger,FAB∗
BB

, the input for the smart contract (contained in simulateTx) is the
same inR′ and I. Thus, also their output is the same (recall that simulateTx is equal inR′ and I and is required
to be deterministic). Thus, the output to I/O is the same and real and ideal world remain indistinguishable.
Remark:
We briefly discuss two cases where the above explanation might fall short:

a) Full reads: A corrupted peer provides a longer full read output than the currently longest msgStream:
As we consider the case, where no verdict is present so far and a corrupted peer provides a message stream
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msgStream′ to an honest client, such that the |msgStream′| > |msgStream| (from Facc
ledger,FAB∗

BB
). When this

case appears, the simulation provides this output message to the judge which then renders a verdict against
the corrupted peer (as the state is not a prefix of the currently valid state) and the verdict is then “forwarded”
to Facc

ledger,FAB∗
BB

. Thus, we are no longer in the case, that there is no verdict and simulation will succeed as
explained later on.

b) Smart contracts: A corrupted peer provides a smart contract output based on a state pointer that is
longer than the current msgStream: Consider the case, where no verdict is present so far and a corrupted
peer provides smart contract output to an honest client, such that ptr > |msgStream| where ptr is the state
pointer from the response to the client and msgStream the variable fromFacc

ledger,FAB∗
BB

. When this case appears,
the simulation provides this output message to the judge which then renders a verdict against the corrupted
peer (as the judge is not able to recreate the state based on which the computation is executed). Again, the
simulator “forwards” the verdict to Facc

ledger,FAB∗
BB

. Thus, we are no longer in the case, that there is no verdict
and simulation will succeed as explained later on.

Further interactions:
Verdicts:
Verdicts from S do not violate the rules of I, thus I will accept verdicts provided by S. Also, note that verdicts
always blame corrupted parties. This was already mainly shown in [31]. In what follows, we recall the argumentation
from Graf et al. and additionally discuss that the new (blue) parts of Fjudge in Figure 32 also only blames corrupted
parties. Note that we assume here that signatures are correctly generated and cannot be forged (we already handled
the probability of a forged signature above). In what follows, we mainly step over Fjudge’s code/verdicts in the order
they appear:

When peers provide evidence to the judge, then honest peers do not report (i) malformed blocks, (ii) chains with
gaps, (iii) blocks that are not generated by orderers, (iv) blocks with invalid signatures, or (v) blocks containing
messages with invalid Merkle proofs or wrong Kafka signature. Thus, none of these checks leads to a verdict against
an honest party.

In the function analyzeConflBlocks, the judge blames the Kafka cluster, if there exist two messages for the same
message ID which were correctly generated and signed by a Kafka entity. By construction of FK, this case never
appears if FK operates honestly.

Also, the judge blames orderers if the judge cannot recreate the blocks they created (according to Fabric∗BB’s
deterministic block-cutting algorithm). Honest peers would not create blocks that deviate from the intended block-
cutting algorithm-

When clients report data, the judge blames a peer when it provides a manipulated full-read output to a client that
deviates from the so-far unique message stream. Assuming the peer acted honestly and an orderer and/or the Kafka
cluster delivered a manipulated message stream/blockchain to the peer. However, assuming the peer is honest leads
to the fact that the peer would have reported its blockchain (including manipulated data from the orderer and Kafka)
already previously to the judge and the judge would then have rendered a verdict blaming the orderer or Kafka. As
this is not the case, this contradicts the assumption and shows that the peer is indeed corrupted.

When the judge checks the output of a smart contract/read was computed correctly, it first checks whether the state
the peer used to calculate the output (indicated by the state pointer from the signed response) is a valid starting point
for the computation. By construction, only corrupted peers hand in invalid starting points for the computation.

In the second step, the judge recomputes the output of the peer. The recomputation is indeed possible, as the smart
contracts (in simulateTx) are all deterministic (by assumption) and we can reconstruct the same input(s) to simulateTx
in the judge (based on the correct state reconstructed from the state pointer provided by S). By construction, only
corrupted peers would not provide the output from simulateTx in this case.

Thus, we can conclude that I always accepts verdicts from S.

Judicial Reports:
If the consistency and smart read are not yet broken, I always accepts the input (pointer) from S for generating the

judicial report: The state ofR′ is always a superset of the state of I (typically equal) and S updates I always such that
provided pointers are in the state of I.
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When consistency or smart read are violated, the judicial report is empty inR and I.
Thus,R and I remain indistinguishable when parties query judicial reports via I/O.

Current time requests:
As there are no restrictions for updating the time inR and I the simulator can hold clocks inR′ and I synchronized.
Thus, requests to the clock cannot be used to distinguish both worlds.

Deregistration: As Pacc
FAB∗

BB
does not include the concept of deregistration, WFAB∗

BB
mimics the behavior of I’s

DeRegister interface. As the code is the same here, the behavior on this interface is indistinguishable between I
andR.

Simulation in presence of a verdict
The simulation in case of broken accountability properties obviously is indistinguishable between R and I: (i) We
stress that S can perfectly simulate R′ as he has access to all necessary data. (ii) All I/O output of the Read interface
can be freely determined by S (who extracts when and what to send to whom as part of the simulation). (iii) Judicial
reports are empty in both worlds in this case. (iv) Verdicts stay synchronized betweenR′ and I. For all other interfaces,
the argumentation from above holds true.

Altogether, R and {S, I} behave identically in terms of behavior visible to the environment E and thus are
indistinguishable.

As the subroutines of Facc
ledger,FAB∗

BB
are compatible with the subroutine definitions in front of Lemma 5, we can

conclude that (WBB | WFAB∗
BB
,Pacc

FAB∗
BB
) realizes Facc

cBB,FAB∗
BB

(where Facc
cBB,FAB∗

BB
is the instance of Facc

cBB which we
get, if we reversely apply the subroutine construction before Lemma 5 to Facc

ledger,FAB∗
BB

).
Thus, we can conclude:

Corollary 7. Let η ∈ N be the security parameter and Σ = (gen(1η), sig, ver) be an EUF-CMA secure
signature scheme. Let Pacc

FAB∗
BB

be the Fabric∗BB protocol that uses the signature scheme Σ, Secassumption = ∅,
accSecProperties = {consistency, smartRead}, pidsjudge = {public}, idsassumption = ∅, and simulateTx such
that they ensure that read outputs of chaincodeId = 0 is the message list (as specified, e. g., in Figure 27) and all
read contracts such that they ensure that the output is prefixed by the length of the executing peer’s blockchain and
vep, simulateTx both are deterministic and in polynomial time, further parameters be selected arbitrarily such that
all parameterized, all chaincode IDs are in N algorithms are deterministic and in polynomial time, and there exists
only one write smart contract which appends the transaction to the state without further processing. Let WsysFAB∗

BB

andWBB be the wrappers as defined above and Facc
ledger,FAB∗

BB
, resp. Facc

cBB,FAB∗
BB

, be the instantiation of Facc
ledger, resp.

Facc
cBB, as described above, where the internal subroutines use the same parameters as Pacc

FAB∗
BB

. Then:

(WBB | WFAB∗
BB
,Pacc

FAB∗
BB
) ≤ (WBB | Facc

ledger,FAB∗
BB
) ≤ Facc

cBB,FAB∗
BB

Proof. The proof follows directly from Theorem 6, Lemma 5, and iUC’s composition theorem.
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Description of FK = (consens):

Participating roles: {consens}
Corruption model: Dynamic corruption without secure erasures

Description of Mconsens:

Implemented role(s): {init}
Subroutines: Fcert : signer,Fro : randomOracle
Internal state:

– corruptedinit ∈ {true, false}, corruptedinit = false {Record whether instance was corrupted on initialization
– orderers ⊆ {0, 1}∗, orderers = ∅ {The set of orderers
– kafka ⊂ {0, 1}∗, kafka = ∅ {The set of Kafka borkers

– pidpidKL ∈ kafka, ch ∈ N {Current “leader” of the Kafka cluster and the channel id

– seqNum ∈ N, initially seqNum = 0 {Sequence number, resp. message counter or offset

– msgStream ⊆ N× kafka× {0, 1}∗ × ({0, 1}∗ ∪ {⊥})3 ,msgStream = ∅,
{The ordered stream of messages/transactions of the form
(offset , leader ,msg,merkleRoot ,merkleProof ,
signature)CheckID(pid , sid , role ):

If kafka = ∅, accept all messages with the same sid and role = kafka, otherwise, accept all messages with same sid , role = kafka, and
pid ∈ kafka.

Corruption behavior:
DetermineCorrStatus(pid , sid , role ):

if corrupted = true ∨ corruptedinit = true: {Checks whether instance itself is corrupted.
return true

corrRes ← false
for all pid ∈ kafka do:

corrRes ← corrRes ∨ corra(pid , (pidcur, sidcur, rolecur), signer) {Request corruption status of Kafka brokers at Fcert

if corrRes = true: {Checks whether Fcert instance is corrupted
return true

See Appendix B for notation details. We start index counting at 1.

Initialization:
send InitKafka to (pidcur, sidcur,Finit : init)

wait for (InitKafka, ch, pidpidKL
, orderers, kafka, corrupted)

ch← ch; pidpidKL ← pidpidKL
; kafka← kafka; orderers← orderer ; corruptedinit ← corrupted

Main:
recv (Commit,msg, pidO) from NET s.t. pidO ∈ orderers, pidcur = pidpidKL , extCh(msg) = ch: {Leader should add and order messages

seqNum← seqNum+ 1 {Messages are ordered according to their arrival at FK
msgStream.add(seqNum, pidpidKL ,msg,⊥,⊥,⊥) {Merkle root and proof are generated upon request

recv (Pull, pidO, ch, r) from NET s.t. pidO ∈ orderers, pidcur = pidpidKL , r ≤ seqNum: {Pull request: request messages with ID ≥ r

msgStream ′ ← {(seq, pid ,msg,mr ,mp, σ) | (seq, pid ,msg, σ) ∈ msgStream ∧ seq ≥ r} {Extract requested data from msgStream
if ∃( , , ,⊥,⊥,⊥) ∈ msgStream ′: {There were no Merkle proof/valid signatures attached to these messages before

j ← min{i |(i, , ,⊥,⊥,⊥) ∈ msgStream ′}; M ← ε; N ← ∅ {M,N will be used to update msgStream
for i = j to |msgStream ′| do: {Generate Merkle proofs and signatures

t← (i, pidpidKL ,msg), s.t. (i, pid,msg,⊥,⊥,⊥) ∈ msgStream ′

t← (i, pid,msg,⊥,⊥,⊥), s.t. (i, pid,msg,⊥,⊥,⊥) ∈ msgStream ′

M.add(t), N.add(t)

U ← processMsgReq(M) {See definition of processMsgReq below
msgStream← msgStream \N ∪ U {Add Merkle proofs to storage
msgStream ′ ← msgStream ′ \N ∪ U {Add updated data in prepared answer

reply (Deliver, pidO, ch, r,msgStream ′)

recv (SetLeader, pidKL, ch) from NET s.t. pidcur, pidKL ∈ kafka: {Set new Kafka leader
pidKL ← pidKL
send ack to NET {Acknowledge

Procedures and Functions:
function processMsgReq (M s.t. M = (msg1,msg2, . . . ,msgm),msgj ∈ {0, 1}∗, j ∈ {1, . . . ,m}):

mr ← genMerkleTreeRootb(M)
send (Sign,mr) to (pidcur, (pidcur, sidcur, rolecur),Fcert : signer) {Sign Merkle Root

wait for (Signature, σ)
for i = 1 to m do:

mpi ← genMerkleProofc(M, i)

return {(msg1,mr ,mp1, σ), . . . , (msgm,mr ,mpm, σ)}
aThe corr macro is a iUC macro which sends CorruptionStatus? to the specified entity, waits for the response, and then outputs that response.
b
genMerkleTreeRoot gets as input a sequence of messages. It outputs the root of the Merkle tree over the input. Note that it is possible to generate a
Merkle root in O(log(n)) where n is the length of the input sequence. For a detailed specification, we refer to [59].

c
genMerkleProof gets as input a sequence of messages and an index x. It outputs Merkle proof for the message at position x. Note that it is possible
to generate a Merkle proof in O(log(n)) where n is the length of the input sequence. For a detailed specification, we refer to [59].

Fig. 28: The model of an idealized Kafka cluster FK for the Fabric∗ model.
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Description of the protocol Finit = (init):

Participating roles: {init}
Corruption model: incorruptible
Protocol parameters:

– clients, orderers, peers, kafka {The set of clients, orderers, peers, and Kafka brokers such that clients ∩ peers ∩ orderers ∩ kafka ̸= ∅
– Sinit {The initial state of the blockchain
– chaincodes ⊂ N, ch ∈ N {The set of chaincodes/chaincode IDs and current channel
– orderersC ⊆ orderers, peersC ⊆ peers,∀C ∈ clients {The orderers, resp. peers, each client knows.
– vep, simulateTx {Algorithms check whether endorsement policies are fulfilled and simulate all chaincodes

Description of Minit:

Implemented role(s): {init}
Subroutines: Fro : randomOracle
Internal state:

– pvHash ∈ {0, 1}η , pvHash = ⊥ {The hash of Sinit
CheckID(pid , sid , role ):

Accept all messages with the same sid .
See Appendix B for notation details. We start index counting at 1.

Initialization:
send (pidcur, (0,⊥,Sinit)) to (pidcur, sidcur,Fro : randomOracle) {Generate hash of initial state instead of genesis block

wait for (pidcur, h)
pvHash← h

Main:
recv InitClient from I/O s.t. pidcur ∈ clients: {Client Initialization:

send responsively (InitClient, pidcur) to NET {Request initialization information fromA
wait for (InitClient, corrupted) s.t. corrupted ∈ {true, false}
reply (InitClient, peersC , orderersC , chaincodes, ch, vep, corrupted)

recv InitOrderer from I/O s.t. pidcur ∈ orderers: {Orderer initialization
send responsively (InitOrderer, pidcur) to NET

{Request initialization information fromA: reported Kafka leader and corruption status
wait for (InitOrderer, corrupted , pidpidKL

, peersreceiver)
s.t. corrupted ∈ {true, false}, pidpidKL

∈ kafka, peersreceiver ⊂ peers
reply (InitOrderer, clients, peers, kafka, ch, pvHash, pidpidKL

, peersreceiver, corrupted)

recv InitPeer from I/O s.t. pidcur ∈ peers: {Peer initialization
send responsively (InitPeer, pidcur) to NET {Request initialization information fromA
wait for (InitPeer, corrupted) s.t. corrupted ∈ {true, false}
reply (InitPeer, clients, peers, orderers, kafka, chaincodes, ch, pvHash,Sinit, vep, simulateTx, corrupted)

recv InitKafka from I/O s.t. pidcur ∈ kafka: {Kafka initialization
send responsively (InitKafka, pidcur) to NET {Request initialization information fromA to get the initial Kafka leader
wait for (InitKafka, corrupted , pidpidKL

) s.t. corrupted ∈ {true, false}, pidpidKL
∈ kafka

reply (InitKafka, ch, pidpidKL
, orderers, kafka, corrupted)

recv InitJudge from I/O: {Judge initialization
reply (InitJudge, clients, orderers, peers, kafka, ch,Sinit, pvHash, chaincodes, simulateTx)

Fig. 29: The initialization functionality Finit for the Fabric∗ model
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Description of Fjudge = (judge):

Participating roles: {judge}
Corruption model: incorruptible
Protocol parameters:

– applyBlock {deterministic polynomial time algorithm that updates the ledger state on input a block

Description of Mjudge:

Implemented role(s): {judge}
Subroutines: Fcert : verifier,Fro : randomOracle,Finit : init
Internal state:

– clientsJ ⊆ {0, 1}∗, clients = ∅ {The set of clients
– peersJ ⊆ {0, 1}∗, peers = ∅ {The set of peers
– orderersJ ⊆ orderers× {0, 1}∗ {The set of orderers
– kafkaJ ⊆ kafka× {0, 1}∗ {The set of Kafka broker (identities)
– ch ∈ N,Sinit ∈ {0, 1}∗, pvHash ∈ {0, 1}η {The current channel id, initial state, and its hash

– WB ⊆ peers× orderers× N× {0, 1}η × {0, 1}∗ × {0, 1}∗,WB = ∅.
{

The set of evidence blocks, including reporter, creator, block
number, hash, and signature

– msgStream ⊆ N× kafka× {0, 1}∗ × {0, 1}∗,msgStream = ∅ {The collected Kafka messages including offset, leader, msg, signature
– S ⊆ peers× N× {0, 1}∗,S = ∅ {The reported states by peer (peer, delivery number, state)
– verdicts ∈ {0, 1}∗, verdicts = ε {Recorded verdict
– chaincodes ⊂ N, ch ∈ N {The set of known chaincodes and the current channel id
– simulateTx {Algorithm to execute all chaincodes

CheckID(pid , sid , role ):
Accept all messages with the same sid .

See Appendix B for notation details. We start index counting at 1.

Initialization:
send InitJudge to (pidcur, sidcur,Finit : init)
wait for (InitJudge, clients, orderers, peers, kafka, ch,Sinit , pvHash, chaincodes, simulateTx)
peersJ ← peers; orderersJ ← orderers; kafkaJ ← kafka; ch ← channel ;Sinit ← Sinit , pvHash ← pvHash, chaincodes ←
chaincodes, simulateTx← simulateTx

MessagePreprocessing:
if verdicts ̸= ε: {If there is a verdict, Fjudge does not produce further verdicts

reply (ack) {Construction to ensure direct execution of the next step

Fig. 30: The judging functionality Fjudge for the Fabric∗ model (Part 1)
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Description of Mjudge (cont.):

Main:
recv (Evidence,msg) from I/O s.t. pidcall ∈ peers ∧ role = peer ∧ sidcall = sidcur: {Process (block) evidence from peers

send responsively (Evidence,msg) to NET {Leak data toA - because we want to model a public judge
wait for ack

if msg ̸= ⟨blockNum, pvHash, B, pido, σ⟩, s.t. blockNum ∈ N, pvHash ∈ {0, 1}η , extCh(B) = ch and B, pido, σ ∈ {0, 1}∗:
verdicts.add(dis((pidcall, sidcall, rolecall))) {Peers have to report well-formed evidence

else:
chain ← {B|(pidcall, ·, ·, ·, B, ·) ∈WB} {Reported chain of pidcall
if vB(B) = false: {Orderers should produce well-formed blocks, peers should not accept malformed block

verdicts.add(dis((pidcall, sidcall, rolecall)))
else if extMaxMsgId(chain) ̸= extMinMsgId(B)− 1:

{
extMaxMsgId(∅) = 0; The lowest message ID in the block body needs
to be 1. Blocks, resp. the chain needs to be a the sequence of consecutive
Kafka messagesverdicts.add(dis((pidcall, sidcall, rolecall)))

else if pido /∈ orderers:
verdicts.add(dis((pidcall, sidcall, rolecall))) {Peers should only accept blocks from orderers

else:
send (Verify, ⟨blockNum, pvHash, B, pido⟩, σ) to (pidcur, (pido, sidcur, orderer),Fcert : verifier)

{
Check whether
signature is validwait for (Signature, b)

if ¬b: {Honest peers report valid signatures
verdicts.add(dis((pidcall, sidcall, rolecall)))

else:
parse ((n, pidn

K ,msgn,mrn,mpn, σn), . . . , (n+m, pidn+m
K ,msgn+m,mrn+m,mpn+m, σn+m)) from B

check ← true

for i = 0 to m do: {Check whether Kafka messages are protected by a Merkle root and a signature

v ← verifyMerkleProof(⟨n+ i, pidn+i
K ,msgn+i⟩,mrn+i,mpn+i)

Check whether n+i, pidn+i
K ,msgn+i was

part of the Merkle tree which root was
signedif v ∧ pidn+i

K ∈ kafka:
send (Verify, ⟨mrn+1⟩, σn+i) to (pidcur, (pid

n+i
K , sidcur, kafka),Fcert : verifier)

wait for (Signature, a)
check ← check ∧ a
if a:

msgStream← msgStream ∪ {(n+ i, pidn+i
K ,msgn+i, σn+i)}

{
Record correctly signed messages from the
message stream

else:
check ← false

if ∄(pidcall, ·, blockNum − 1, ·, ·, ·) ∈WB ∧ blockNum ̸= 1:
{

Honest peers/orderers report consecutive blocks starting
at 1 and do not report wrong signatures

verdicts.add(dis((pidcall, sidcall, rolecall)))
else if ¬check :

verdicts.add(dis((pidcall, sidcall, rolecall)))
{Orderers should build blocks from correct message streams and peers should not accept such blocks

else:
WB.add(pidcall, pido, blockNum, pvHash, B, σ) {Record block that fullfills basic correctness

if ∃(pidP,1, pido,1, i, pvHash1, B1, σ1), (pidP,2, pido,2, i, pvHash2, B2, σ2) ∈WB,
s.t. B1 ̸= B2 ∧ (pido,1, sidcur, orderer), (pido,2, sidcur, orderer) /∈ verdicts∧
∄pidK ∈ kafkajudge, s.t.(pidK , sidcur, kafka) ∈ verdicts:
analyzeConflBlocks[(pidP,1, pido,1, i, pvHash1, B1, σ1), (pidP,2, pido,2, i, pvHash2, B2, σ2)]

{See analyzeConflBlocks specification for details
reply ack {Construction to ensure direct execution of the next step

Fig. 31: The judging functionality Fjudge for the Fabric∗ model (Part 1)
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Description of Mjudge (cont.):

Main (continued):
recv (Evidence, (pidP , queryID , seqNum, chaincodeId, queryToBeProcessed , resp, readset ,writeset , σP )) from I/O

s.t. pidcall ∈ clients ∧ role = client ∧ sidcall = sidcur∧
queryToBeProcessed = (queryID , seqNumC , pidcall, ch, chaincodeId, query, σC)∧
pidP ∈ peersJ: {Process evidence from clients

send (Verify, (queryID , seqNumC , pidcur, ch, chaincodeId, query), σC) to (pidcur, (pidC , sidcur, client),Fcert : verifier)
wait for (VerResult, b1) {Check correctness of request
send (Verify, (Evidence, (pidP , queryID , seqNum, chaincodeId, queryToBeProcessed , resp, readset ,writeset , σP )))

to (pidcur, (pidP , sidcur, peer),Fcert : verifier)
wait for (VerResult, b2) {Check correcly signed endorsement
if b1 ∧ b2:
send responsively (Evidence, (pidP , queryID , seqNum, chaincodeId, queryToBeProcessed , resp, readset ,writeset , σP ))

to NET
wait for ack {Leak data toA - because we want to model a public judge

if chaincodeId = 0: {Peer should output a prefix of the message list
Let msgStream = {(i, tx) | (i, , tx, ) ∈ msgStream} {Remove Kafka broker ID and signature
if resp is not a prefix of msgStream:

verdicts.add(dis(pidP , sidcur, peer)) {Peer deviated from consensus result
else: {Otherwise check whether resp, readset , and writeset are consistent according to simulateTx

Check whether resp can be parsed (ptr , resp′)∧ ptr ≤ |msgStream| ∧ readset is valid: Generate blocks according to the Fabric
specification from msgStream up to ptr (cf. Figure 33) and generate the world state afterward (cf. Figure 35). Check whether the
readset can be found in the world state.
if check above fails: {Peer used an readset which is not based on the msgStream

verdicts.add(dis(pidP , sidcur, peer)) {Peer used readset which did not match the state of the blockchain
else:

if simulateTx((pidP , queryID , seqNum, chaincodeId, queryToBeProcessed , resp, readset ,writeset , σP )) ̸= resp:
{We assume that we can directly use simulateTx based on the data of the endorsement,

verdicts.add(dis(pidP , sidcur, peer)) {Peer did not provide deterministically computed response
reply ack

recv GetVerdict from I/O:
reply (GetVerdict, verdicts)

recv GetJudicialReport from I/O:
Let msgStream = {(i, tx) | (i, , tx, ) ∈ msgStream} {Remove Kafka broker ID and signature
reply (GetJudicialReport,msgStream) {Output the maximal message list seen so far as judicial report

Procedures and Functions:
function analyzeConflBlocks ([(pidP,1, pido,1, i, pvHash1, B1

i , σ
1
i ), (pidP,2, pido,2, i, pvHash2, B2

i , σ
2
i )]):

if ∃(n, p̂id
1

K , m̂sg1, m̂r1, m̂p1, σ̂1) ̸= (n, p̂id
2

K , m̂sg2, m̂r2, m̂p2, σ̂2)

s.t. (n, p̂id
1

K , m̂sg1, m̂r1, m̂p1, σ̂1) ∈ B1
i , (n, p̂id

2

K , m̂sg2, m̂r2, m̂p2, σ̂2) ∈ B2
i :

for all pidK ∈ kafkaJ do:
verdicts.add(dis((pidK , sidcur, peer))) {Kafka cluster should send unambiguous messages per offset

else:{Check whether B1 and B2 were generated honestly, maxTx denotes the maximum of transactions in a block as specified in cutBlock

if ∃(n, pidK ,msg,mr ,mp, σ) ∈ B1, s.t. msg = ⟨TTC, ch, i, pido⟩ ∧
(∄(m, pid ′

K ,msg′,mr ′,mp′, σ′) ∈ B1, s.t.
m < n ∧ msg′ = ⟨TTC, ch, i, pido

′⟩) ∧ |B1| < maxTx: {Cut was created based on cut block message
if ∃(n+ 1, pid∗

K ,msg∗,mr∗,mp∗, σ∗) ∈ B1: {Orderer did not use the first cut message to create the block
verdicts.add(pido,1, sidcur, orderer)

else if |B1| > maxTx: {maxTx denotes the maximum number of transactions in a block as specified in cutBlock

verdicts.add(pido,1, sidcur, orderer)

else if ∃(n, pidK ,msg,mr ,mp, σ) ∈ B2 s.t. msg = ⟨TTC, ch, i, pido⟩ ∧ (∄(m, pid ′
K ,msg′,mr ′,mp′, σ′) ∈ B2,

s.t. m < n ∧ msg′ = ⟨TTC, ch, i, pido
′⟩) ∧ |B2| < maxTx: {Cut was created based on cut block message

if ∃(n+ 1, pid∗
K ,msg∗,mr∗,mp∗, σ∗) ∈ B2: {Orderer did not use the first cut message to create the block

verdicts.add(pido,2, sidcur, orderer)

else if |B2| > maxTx: {maxTx denotes the maximum number of transactions in a block as specified in cutBlock

verdicts.add(pido,2, sidcur, orderer)

Fig. 32: The judging functionality Fjudge for the Fabric∗ model (Part 3)
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Description of PFAB∗
orderer = (orderer):

Participating roles: {orderer}
Corruption model: Dynamic corruption without secure erasures
Protocol parameters:

– η ∈ N {The security parameter

Description of Morderer:

Implemented role(s): {init}
Subroutines: Fcert : signer,Fcert : verifier,Fro : randomOracle
Internal state:

– corruptedinit ∈ {true, false}, corruptedinit = false {Record whether instance was corrupted on initialization
– clientsO ⊆ {0, 1}∗, clientsO = ∅ {The set of clients
– peersO ⊆ peers× {0, 1}∗, peersO = ∅ {The set of peers
– kafkaO ⊆ kafka× {0, 1}∗, kafkaO = ∅ {The set of Kafka brokers
– ch ∈ N, ch = 0 {The channel ID
– pvHash ∈ {0, 1}η , pvHash = ε {The previous blocks hash
– chain ∈ Cachain = ε, blockNum ∈ N, blockNum = 0 {The blockchain and the “current” block number
– submittedTx ⊂ {0, 1}∗, submittedTx = ∅ {The set of known transactions

– msgStream ⊆ N×kafka×{0, 1}∗× ({0, 1}∗ ∪ {⊥})3 ,msgStream = ∅
{

The ordered stream of transactions of the form (message ID,
leader, message, Merkle root, path for Merkle proof, signature)

– pidKL ∈ kafka, pidKL = ε {The current Kafka leader
– peersreceiver ⊆ peersO, peersreceiver = ∅ {The set of peers connected to the orderer

CheckID(pid , sid , role ):
Accept all messages with the same sid and role = orderer.

Corruption behavior:
DetermineCorrStatus(pid , sid , role ):

if corrupted = true ∨ corruptedinit = true: {Checks whether node itself is corrupted.
return true

corrRes ← corr(pidcur, (pidcur, sidcur, rolecur), signer) {Request corruption status at Fcert

if corrRes = true: {Checks whether Fcert instance is corrupted
return true

See Appendix B for notation details. We start index counting at 1.

Initialization:
send InitOrderer to (pidcur, sidcur,Finit : init)

wait for (InitOrderer, clients, peers, kafka, ch, pvHash, pidKL, peersreceiver, corrupted)
clientsO ← clients, peersO ← peers; orderersO ← orderers; kafkaO ← kafka; ch← channel
pvHash← pvHash; peersreceiver ← peersreceiver; corruptedinit ← corrupted

aC contains well-formed (block)chains according to the definition of Fabric∗, i. e., consecutive sequences of blocks, chain = (B0,B1, . . .), including
chain = ε.

Fig. 33: Specification of the Fabric∗ orderer PFAB∗

orderer (Part 1)
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Description of Morderer (cont.):
Main:

recv (Commit, TtxId ) from NET: {Forward commit requests to Kafka
if TtxId /∈ submittedTx:

submittedTx.add(TtxId )
send (Commit, TtxId , pidcur) to NET {Forward commit request to Kafka leader

recv (Deliver, pidcur, ch, seqNum,msgStream ′) from NET
s.t. seqNum = extractMessageId(msgStream),achkKafkaDeliveryb(msgStream ′, seqNum) = true:

{Delivery of messages and block dispatching. We set extractMessageId(∅) := 1
((n, pidn

K ,msgn,mrn,mpn, σn), . . . , (n+m, pidn+m
K ,msgn+m,mrn+m,mpn+m, σn+m))← msgStream ′ (∗)

{Extract messages from the message stream segment
check ← true
for i = 0 to m do:

if pidn+i
K ∈ kafka: {Messages need to be ordered by Kafka brokers

v ← verifyMerkleProofc(⟨n+ i, pidn+i
K ,msgn+i⟩,mrn+i,mpn+i) {Check Merkle proof

if v:
send (Verify,mrn+i, σn+i) to (sidcur, (pid

n+1
K , sidcur, kafka),Fcert : signer)

wait for b
check ← check ∨ b

else:
check ← check ∨ v

else:
check ← false

if check: {The received message stream segment is considered valid
msgStream.add(msgStream ′); chain ′ ← cutBlock(msgStream) {Start generating and dispatching blocks
B1, . . . Bd ← extractBody(chain)d; B1, . . . , Bd, Bd+1, . . . , Bd+g ← chain ′;msg← ε

{Generate message to “broadcast” blocks
for i = 1 to g do: {Generate block related data and dispatch block-wise

blockNum← blockNum+ 1; chain.add(blockNum, pvHash, Bd+i)
send (pidcur, (blockNum, pvHash, Bd+i)) to (pidcur, sidcur,Fro : randomOracle) {Generate hash for block
wait for (pidcur, h)
pvHash← h
send (Sign, (blockNum, pvHash, Bd+i, pidcur)) to (sidcur, (pidcur, sidcur, rolecur),Fcert : signer) {Sign block
wait for (Signature, σ)
chain.add(blockNum, pvHash, Bd+i);msg← (Deliver, blockNum, pvHash, Bd+i, pidcur, σ)
for all pidP ∈ peersreceiver do: {Send block to peers

msg.add(pidP ,msg, )
send msg to NET {Adversary is responsible for broadcasting

recv (SetLeader, pidKL) from NET s.t. pidKL ∈ kafka: {Adversary defines which broker to be the leader
pidKL ← pidKL
reply ack

recv TTC from NET: {Cut block/TTC message as specified in Fabric’s Kafka-based ordering service
reply (pidKL, (TTC, ch, blockNum, pidcur))

recv Pull from NET: {Pull request at Kafka leader to generate a block afterwards
seqNum ← extractMessageId(msgStream)e {Extract message ID from locally stored message stream
reply (Pull, pidcur, ch, seqNum)

recv (setBlockRec, peersreceiver) from NET s.t. peersreceiver ⊆ peersO:
{The adversary is allowed to update the peers that receive the blocks from pidcur

peersreceiver ← peersreceiver
reply ack

aThe algorithm extractMessageId outputs the current message ID. On input a message stream msgStream it outputs the highest message ID in
msgStream.

b
chkKafkaDelivery verifies that K′ has the correct form (cf. (∗) below the Deliver call) and that it is a consecutive sequence of messages starting
at seqNum .

c
verifyMerkleProof gets as input a message, a Merkle root, and Merkle proof. It outputs true or false. Note that it is possible to evaluate a Merkle
proof in O(n) where n is the size of the Merkle proof. For a detailed specification, we refer to [59].

dLet B = (blockNum, pvHash, B, pid , σ) be a block according to the Fabric∗ definition. extractBody(B) outputs B
eThe algorithm extractMessageId outputs the current message ID. On input a message stream msgStream it outputs the highest message ID in
msgStream.

Fig. 34: Specification of the Fabric∗ orderer PFAB∗

orderer (Part 2)
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Description of the protocol PFAB∗
peer = (peer):

Participating roles: {peer}
Corruption model: Dynamic corruption without secure erasures
Protocol parameters:

– applyBlock {deterministic polynomial time algorithm that updates the ledger state on input a block

Description of Mpeer:

Implemented role(s): {peer}
Subroutines: Fcert : signer,Fcert : verifier,Fro : randomOracle,Finit : init
Internal state:

– corruptedinit ∈ {true, false}, corruptedinit = false {Record whether instance was corrupted on initialization
– clientsP ⊆ {0, 1}∗ {The set of clients
– peersP ⊆ {0, 1}∗ {The set of peers
– orderersP ⊆ {0, 1}∗ {The set of orderers
– kafkaP ⊆ {0, 1}∗ {The set of Kafka broker (identities)
– seqNum ∈ N, initially seqNum = 0 {Sequence number, replacement for the timestamp
– chaincodes ⊂ N, ch ∈ N {The set of known chaincodes and the current channel id
– chain ∈ C, blockNum ∈ N, initially chain = ⊥, blockNum = 0 {The blockchain and the “current” block number
– pvHash ∈ {0, 1}η , S ∈ {0, 1}∗ {The previous blocks hash and the state based on the chain
– vep,a simulateTxb {Algorithms to endorsement policies and to simulate all chaincodes

– txValidity ⊆ N× {true, false}, initially txValidity = ∅ {Stores whether pidcur considers transactions as valid
CheckID(pid , sid , role ):

Accept all messages with the same sid and role = peer.
Corruption behavior:

DetermineCorrStatus(pid , sid , role ):
if corrupted = true ∨ corruptedinit = true: {Checks whether node itself is corrupted.

return true
corrRes ← corr(pidcur, (pidcur, sidcur, rolecur), signer) {Request corruption status at Fcert

if corrRes = true: {Checks whether Fcert instance is corrupted
return true

See Appendix B for notation details. We start index counting at 1.
Initialization:

send InitPeer to (pidcur, sidcur,Finit : init) {Request initialization at Finit

wait for (InitPeer, clientsP , peersP , orderersP , kafkaP , chaincodes, channel , prevhash, chainState, vep , simulateTx , corrupted)
clientsP ← clientsP ; peersP ← peersC ; orderersP ← orderersC ; kafkaP ← kafkaP ; chaincodes← chaincodes
ch← channel ; pvHash← prevhash; S← chainState; vep ← vep ; simulateTx← simulateTx ; corruptedinit ← corrupted

aNote that vep has two duties: (i) vep allows clients to verify whether a planned transaction commit should be accepted without having access to a state,
(ii) vep allows peers to verify whether they accept transactions during endorsement generation and state generation.

bsimulateTx should include all chaincodes. It should output readset and writeset .

Fig. 35: Specification of the Fabric∗ peer PFAB∗

peer (Part 1)
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Description of Mpeer (cont.):

Main:
recv (Deliver, blockNumB , pvHash, B, pidO, σ) from NET s.t. pidO ∈ orderers, blockNumB = blockNum+ 1: {Process blocks

if vB(B)a = true ∧ extCh(B)b = ch ∧ extMaxMsgId(chain)c = extMinMsgId(B)d − 1:
{Basic checks whether the new block is valid and whether it validly extends the chain

send (Verify, ⟨blockNumB , pvHash, B⟩, σ) to (pidcur, (pidO, sidcur, orderer),Fcert : verifier) {Check orderer signature
wait for (Signature, b)
if b:

((n, pidn
K ,msgn,mrn,mpn, σn), . . . , (n+m, pidn+m

K ,msgn+m,mrn+m,mpn+m, σn+m))← B

{
Disassemble B into
single messages

check ← true; txValidity ← ∅, S ← S
for i = 0 to m do:

v ← verifyMerkleProofe(⟨n+ i, pidn+i
K ,msgn+i⟩,mrn+i,mpn+i)

{
Check whether n + i, pidn+i

K ,msgn+i was
part of the Merkle tree which root was signed

if v ∧ pidn+i
K ∈ kafka:

send (Verify, pk(pidn+i
K ),mrn+i, σn+i) to (pidcur, sidcur,Fcert : verifier)

wait for b
check ← check ∨ b
if verifyTxCommitment(msgn+i)

f: {Check whether msgn+i can be parsed as transaction commitment
(txId , seqNumC , pidC , ch, chaincodeId, txPayload, σ)← extractPropg(msgn+i)

{Extract the tx proposal from msgn+i

tx ← (txId , seqNumC , pidC , ch, chaincodeId, txPayload)

send (Verify, tx , σ) to (pidcur, (pidC , sidcur, client),Fcert : verifier)
wait for (Signature, d) {Check signature validity
txValidity.add(n+ i, d ∧ (pidC ∈ clients) ∧ vep(msgn+i) ∧ applicableTx(S ,msgn+i)

h){
Mark tx as valid if signature is valid, pidC is a client identity, endorsing
policy is fulfilled, and the transaction fits into the current state.

S .add(msgn+i)
else:

txValidity.add(n+ i, false)

else:
check ← false

if check : {The received block is considered valid
send (Evidence, blockNumB , pvHash, B, pidO, σ) to (public, sidcur,Fjudge : judge)

{Forward an accepted block to the judge judge
wait for ack
chain.add(blockNumB , pvHash, B); blockNum← blockNum+ 1 {Apply updates to internal state
S.applyBlock(B);txValidity.add(txValidity)
send (pidcur, (blockNumB , pvHash, B)) to (pidcur, sidcur,Fro : randomOracle)

{PrevHash has as input the blockheader of a block
wait for (pidcur, h); pvHash← h

avB checks whether a block B is well-formed according to the Fabric∗ definition.
b
extCh extracts the block’s channel from B.

c
extMaxMsgId extracts the maximal transaction counter from chain.

d
extMinMsgId extracts the smallest transaction counter from a block B.

e
verifyMerkleProof gets as input a message, a Merkle root, and Merkle proof. It outputs true or false.

f
verifyTxCommitment output true if a transaction commitment is well-formed, otherwise false.

gAccording to the specification, msgn+i should be a transaction commitment (which starts with the proposal). If the first part of msgn+i does not fit the
structure of a proposal, extractProp(msgn+i) outputs ⊥.

h On input a state S and a transaction commitment tx , the function applicableTx outputs true if tx is applicable to S , i.e., the readset from the
endorsements in tx are equal and can be extracted from S . Otherwise, applicableTx outputs false.

Fig. 36: Specification of the Fabric∗ peer PFAB∗

peer (Part 2)
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Description of Mpeer (cont.):

Main:
recv (Propose, txId , pidC , seqNumC , ch, chaincodeId, txPayload, σ) from NET

s.t. pidC ∈ clients, chaincodeId ∈ chaincodes, ch = ch: {Tx proposal
send (Verify, ⟨txId , pidC , seqNumC , ch, chaincodeId, txPayload⟩, σ) to (pidcur, (pidC , sidcur, client),Fcert : verifier)

{Verify signature of proposal
wait for (Signature, b)
if b:

proposal ← (txId , seqNumC , pidC , ch, chaincodeId, txPayload, σ)
executableProposal ← (txId , seqNumC , pidC , ch, chaincodeId, txPayload)
if vep(S, proposal) = true: {Check whether proposal matches the endorsing policy

(resp, readset ,writeset)← simulateTx(S, executableProposal) {“Execute” transaction proposal
txEnd ← (pidcur, txId , seqNumP , chaincodeId, proposal , resp, readset ,writeset) {Generate transaction endorsement
seqNumP ← seqNumP + 1
send (Sign, txEnd) to (pidcur, (pidcur, sidcur, rolecur),Fcert : signer)
wait for (Signature, σtxEnd )
msg← (Endorsed, txEnd , σtxEnd ) {Construct response

else:
msg← (Invalid, txId , Rejected)

send (pidC ,msg) to NET {Return execution result to client

recv (Read, queryID , pidC , seqNumC , ch, chaincodeId, query, σ) from NET s.t. pidC ∈ clients, chaincodeId ∈ chaincodes, ch = ch:
{Read request

send (Verify, ⟨queryID , pidC , seqNumC , ch, chaincodeId, query⟩, σ) to (pidcur, (pidC , sidcur, client),Fcert : verifier)
{Verify signature of query

wait for (Signature, b)
if b:

queryToBeProcessed ← (queryID , seqNumC , pidC , ch, chaincodeId, query, σ)
if vep(S, queryToBeProcessed) = true: {Check whether query matches the endorsing policy

if chaincodeId = 0:
output ← msglist(chain)a {Generate query output

else:
(resp, readset ,writeset)← simulateTx(S, queryToBeProcessed) {“Execute” transaction proposal
output ← (pidcur, queryID , seqNumP , chaincodeId, queryToBeProcessed , resp, readset ,writeset)

{Generate query output
seqNumP ← seqNumP + 1
send (Sign, output) to (pidcur, (pidcur, sidcur, rolecur),Fcert : signer)
wait for (Signature, σoutput )

send (DeliverRead, pidC , output , σoutput ) to NET {Return execution result to client

aFor a chain chain, we define msglist(chain) = {(id,msg) | there exits an entry in chain with ID id and payload msg ∧ msg =
(S , chaincodeId, txPayload) from the initial transaction proposal included in msg , if parsing does not succeed ⊥}.

Fig. 37: Specification of the Fabric∗ peer PFAB∗

peer (Part 3)

Description of Fsv = (supervisor):

Participating roles: {supervisor}
Corruption model: incorruptible

Description of MFAB∗
BB

supervisor:

Implemented role(s): {supervisor}
CheckID(pid , sid , role ):

Accept all messages with the same sid .
Main:

recv (corruptInt?, (pid , sidcur, role)) s.t. role ∈ {kafka, orderer, peer}:
corrRes ← corr(pid , sidcur, role) {Request corruption status at dedictated machine
reply (corruptInt, corrRes) {Return corruption status

recv (IsAssumptionBroken?, prop, id):
reply (IsAssumptionBroken?, prop, false)

Fig. 38: The supervisor Fsv.
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Description of the protocol Fcert = (signer, verifier):

Participating roles: {signer, verifier}
Corruption model: incorruptible {See text below
Protocol parameters:

– p ∈ Z[x]. {Polynomial that bounds the runtime of the algorithms provided by the adversary.
– η ∈ N {The security parameter.
– sig {Signing algorithm, outputs a signature σ on input (msg, sk). The generated signature has a length of η bits
– ver {Signature verifying algorithm, outputs verification result on input (msg, σ, pk)
– gen {Key generation algorithm, outputs (pk, sk) on input 1η

Description of Msigner,verifier:

Implemented role(s): {signer, verifier}
Internal state:

– (pk, sk) ∈ ({0, 1}∗ ∪ {⊥})2 = (⊥,⊥). {Key pair.
– pidowner ∈ {0, 1}∗ ∪ {⊥} = ⊥. {Party ID of the key owner.
– msglist ⊂ {0, 1}∗ = ∅. {Set of recorded messages.
– corrupted ∈ {true, false} = false. {Is signature key corrupted?

CheckID(pid , sid , role ):
Check that sid = (pid ′, sid ′):
If this check fails, output reject.
Otherwise, accept all entities with the same SID.

{A single instance manages all parties and roles in a single
session. A session models one signature key pair belonging
to party pid ′.Corruption behavior:

– DetermineCorrStatus(pid , sid , role ): Return corrupted.
Initialization:

(pk, sk)
$← Gen(1η) {Generate public/secret key pair

Parse sidcur as (pid , sid).
pidowner← pid .

Main:
recv (Sign,msg) from I/O to (pidowner, , signer):

σ ← sig(p)(msg, sk).
add msg to msglist.
reply (Signature, σ). {Record msg for verification and return signature.

recv (Verify,msg, σ) from I/O to ( , , verifier):
b← ver(p)(msg, σ, pk). {Verify signature.
if b = true ∧msg /∈ msglist ∧ corrupted = false:

reply (VerResult, false). {Prevent forgery.
else:

reply (VerResult, b). {Return verification result.

recv corruptSigKey from NET: {Allow network attacker to corrupt signature keys.
corrupted← true.
reply (corruptSigKey, ok).

Fig. 39: The ideal signature functionality Fcert.

Description of the protocol Fro = (randomOracle):

Participating roles: {randomOracle}
Corruption model: incorruptible
Protocol parameters:

– η ∈ N {Security parameter, length of the hash

Description of MrandomOracle:

Implemented role(s): {randomOracle}
Internal state:

– hashHistory ⊆ {0, 1}∗ × {0, 1}η , initially hashHistory = ∅ {The set of recorded value/hash pairs
CheckID(pid , sid , role ):

Accept all messages with the same sid .
Main:

recv (pid , x): {Requesting the Fro for “hashes”
if ∃h ∈ {0, 1}η s.t. (x, h) ∈ hashHistory: {Extract existing value from hashHistory

reply (pid , h)
else:

h
$← {0, 1}η {Generate “hash value” uniformly at random

hashHistory← hashHistory.add((x, h)) {Store generated key, value pair in hashHistory
reply (pid , h)

Fig. 40: The random oracle Fro (cf. [15])
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Description of the subroutine Fread,FAB∗
BB

= (read):

Participating roles: {read}
Corruption model: incorruptible
Protocol parameters:

– simulateTx {Algorithms check whether endorsement policies are fulfilled and simulate all chaincodes
– ch ∈ N {The channel ID to match Fabric∗

Description of Mread:

Implemented role(s): {read}
Subroutines: Finit : init
Internal state:

– recentState : {0, 1}∗ →∈ N {The most recent eact client saw during a read requests
CheckID(pid , sid , role ):

Accept all messages with the same sid .
Main:

recv (Read,msg, suggestedOutput , internalStatea) from I/O s.t. msg ̸= (peers, id , query):
if brokenProps[consistency, public] = true ∧ id = 0:

{Facc
ledger does not provide consistency any longer

reply (FinishRead, suggestedOutput , ε) {A fully defines the output if accountability w.r.t. consistency is broken
if id = 0: {Handle case where the client queries for the prefix of the state/transactions

if recentState[pidcur] > suggestedOutput:
reply (FinishRead,⊥, ε) {Delivery request ofA was denied

else:
recentState[pidcur]← suggestedOutput
reply (FinishRead,msglist(suggestedOutput)b)

if brokenProps[smartRead, public] = true:
{Facc

ledger does not provide smart read any longer
reply (FinishRead, suggestedOutput , ε) {A fully defines the output if accountability w.r.t. consistency is broken

if recentState[pidcur] > suggestedOutput: {The state provided byA is not a prefix of pid’s known state
reply (FinishRead,⊥, ε) {Delivery request ofA was denied

else:
Extract queryID from Facc

ledger’s readQueue by counting all read requests of pidcur up to the current one.
Extract seqNum from Facc

ledger’s transcript by counting all read and write request of pidcur up to the current one.
queryToBeProcessed ← (queryID , seqNum, pidcur, ch, id , query)
Let S be Fabric∗ ledger state defined by prefix of msglist up to entry suggestedOutput
(resp, readset ,writeset)← simulateTx(S, queryToBeProcessed) {“Execute” transaction proposal
reply (FinishRead, resp) {Deliver output of the executed smart contract to requestor. Leak full information toA

aFor brevity we use data from internalState with the local variant of the variable name from Fledger. This includes local variables such as
msglist, requestQueue, readQueue, and round .

bFor n ∈ N, we define msglist(n), n ∈ N = {(id,msg) | (id , ,msg ′, , ) ∈ msglist ∧ id ≤ n ∧msg = (S , chaincodeId, txPayload)from the
initial transaction proposal included in msg , if parsing does not succeed ⊥}.

Fig. 41: Facc
ledger’s read functionality Fread,FAB∗

BB

Description of the subroutine Fsubmit,FAB∗
BB

= (submit):

Participating roles: {submit}
Corruption model: incorruptible
Protocol parameters:

– ch ∈ N {The channel ID to match Fabric∗

Description of MBB
submit:

Implemented role(s): {submit}
CheckID(pid , sid , role ):

Accept all messages with the same sid .
Main:

recv (Submit,msg, internalState) from I/O: {See Figure 21 for definition of internalState and the local variables it includes
if msg ̸= (ch, chaincodeId , txPayload):

reply (Submit, false, ϵ) {Submitted transactions need to have the expected data format
else:

reply (Submit, true, (reqCtr + 1, (ch, chaincodeId , txPayload)))
{

If requests have the correct form, they are accepted in the
first place. Full request leaks including request pointer.

Fig. 42: Facc
ledger’s submit functionality Fsubmit,FAB∗

BB
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Description of the protocol Finit,FAB∗
BB

= (Init):

Participating roles: {init}
Corruption model: incorruptible

Description of MFAB∗
BB

init :

Implemented role(s): {init}
CheckID(pid , sid , role ):

Accept all messages with the same sid .
Main:

recv Init: {Empty initialization.
reply (Init, ϵ, ϵ, ϵ, ϵ)

Fig. 43: The initialization functionality Finit,FAB∗
BB

.

Description of FjudgeParams,FAB∗
BB

= (judgeParams):

Participating roles: {judgeParams}
Corruption model: incorruptible

Description of MBB
judgeParams:

Implemented role(s): {judgeParams}
CheckID(pid , sid , role ):

Accept all messages with the same sid .
Main:

recv (BreakAccProp, verdict , toBreak , internalState) from I/O:
if verdict [public] ensures individual accountability: {Ensure public individual accountability

if toBreak = {consistency, public} ∨ {smartRead, public}∨ their union:
{Handle violation of accountability w.r.t. consistency/smart read

reply (BreakAccProp, true, ε)

else:
reply (BreakAssumption, false, ε)

recv (GetJudicialReport,msg, internalState) from I/O: {Generate judicial report
if verdicts ̸= ε:

reply (GetJudicialReport, ε) {Cannot provide a judicial report in this case
else:

Extract maxPtr from Facc
cBB’s transcript (from internalState) as the highest pointer that was used to answer a read request.

send responsively GetState to NET (∗) {A may define the prefix to be delivered as judicial report
wait for (GetState, ptr)
if ptr < maxPtr ∨ ptr > |msglist |:

Go to (∗).
list ← {(id ,msg ′) | (id ,msg ′, ) ∈ msglist[maxPtr ]}
reply (GetJudicialReport, list) {Return state as report

recv (Corrupt, (public, sid , judge), internalState) from I/O:
{FjudgeParams,FAB∗

BB
declines corruption requests for the public judge

reply false {The public judge is incorruptible

recv (CorruptionStatus?(public, sid , judge), internalState) from I/O:
{FjudgeParams,FAB∗

BB
asks for the public judge’s corrup-

tion statusreply false {The public judge is incorruptible

Fig. 44: The judge parameter functionality FjudgeParams,FAB∗
BB

.
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Description of the subroutine Fupdate,FAB∗
BB

= (update):

Participating roles: {update}
Corruption model: incorruptible

Description of MFAB∗
BB

update :

Implemented role(s): {update}
Subroutines: Finit : init
CheckID(pid , sid , role ):

Accept all messages with the same sid .
Main:

recv (Update,msg, internalState) from I/O: {See Figure 21 for definition of internalState and the local variables it includes
Let ctr be the highest ID in msglist
if msg ̸= ((ctr + 1, reqCtr1,msg1), . . . , (ctr +m, reqCtrm,msgm)):

reply (Update, ε, ε, ε) {Update rejected, empty msglist extension
msgListAppend ← ε; updRequestQueue ← ε
for i = 1 to m do:

if ∃(reqCtr i, , ) ∈ requestQueue with (reqCtr i, (ch
′, chaincodeId′, txPayload′), r, pid) ∈ requestQueue:

updRequestQueue.add((reqCtr i, (ch
′, chaincodeId′, txPayload′), r, pid))

msgi = (ch, chaincodeId′, txPayload′)
msgListAppend .add((ctr + i, round , tx,msgi, round ,A)))

reply (Update,msgListAppend , updRequestQueue,msgListAppend) {Return list extension and updated queue.

Fig. 45: The update functionality Fupdate,FAB∗
BB
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G. Performance Tests
In Figure 46, we provide further plots of our Fabric∗ performance tests as discussed in Section V. We provide a
summary of the performance decrease for Fabric∗ with some more details in Table III.

Transaction Size (bytes) 100 1000 2000 4000 8000 16000
Average Throughput Decrease (%) 7.4 10.3 12.0 11.8 12.0 10.2

Maximum Throughput Decrease (%) 13.9 16.5 18.1 17.2 16.7 17.8
Average Latency Increase (%) 5.7 9.8 11.4 11.2 12.0 11.5

Maximum Latency Increase (%) 10.9 16.3 16.7 15.0 18.1 24.5

TABLE III: Throughput decrease and latency increase for Fabric∗
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(a) 100 bytes asset size
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(b) 1000 bytes asset size
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(c) 2000 bytes asset size
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(d) 4000 bytes asset size
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(e) 8000 bytes asset size
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(f) 16000 bytes asset size
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Fig. 46: Performance Comparison of Hyperledger Fabric and Fabric∗
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