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Abstract—Bulletin boards (BB) are important cryptographic
building blocks that, at their core, provide a broadcast channel
with memory. BBs are widely used within many security protocols,
including secure multi-party computation protocols, e-voting sys-
tems, and electronic auctions. Even though the security of proto-
cols crucially depends on the underlying BB, as also highlighted by
recent works, the literature on constructing secure BBs is sparse.
The so-far only provably secure BBs requiretrusted components
and sometimes also networks without message loss, which makes
them unsuitable for applications with particularly high security
needs where these assumptions might not always be met.

In this work, we fill this gap by leveraging the concepts of
accountability and universal composability (UC). More specifi-
cally, we propose the first ideal functionality for accountable BBs
that formalizes the security requirements of such BBs in UC. We
then propose Fabricip as a slight extension designed on top of
Fabric*, which is a variant of the prominent Hyperledger Fabric
distributed ledger protocol, and show that Fabricgp UC-realizes
our ideal BB functionality. This result makes Fabric;y the first
provably accountable BB, an often desired, but so far not formally
proven property for BBs, and also the first BB that has been
proven to be secure based only on standard cryptographic assump-
tions and without requiring trusted BB components or network
assumptions. Through an implementation and performance eval-
uation we show that Fabrichg is practical for many applications
of BBs.

I. INTRODUCTION

Electronic bulletin boards (BBs) are crucial components
that are used as central building blocks by many security-
sensitive protocols including, e.g., e-voting protocols [1,37,
45,52] electronic auctions [49], or multi-party computation
(MPC) [7,8,51] protocols. At their core, BBs are essentially
broadcast channels with memory [33] that allow clients to
submit messages/items such that all other clients can then read
(a prefix of) the same sequence of all messages/items submitted
so far. This security property is called (delayed) consistent view,
persistence, or consistency and implies, among others, that a
BB stores an unalterable or append-only history. Depending
on the specific context of a higher-level protocol in which
a BB is to be used, additional security properties are often
required, e.g., (i) liveness or non-discrimination states that
honestly transmitted messages will appear eventually on the
BB, (ii) no data injection, sometimes called correctness or
authorized access, ensures that only items posted by authorized
users appear on the BB, (iii) receipt consistency ensures that, if
the BB returns a receipt acknowledging that a message has been

received, then the message will eventually appear on the BB,
(iv) some systems require that BB items are non-clashing [21]
while other systems require that clashing items can appear
on the BB [35], and (v) message validity requires that all
messages on the BB adhere to a specific message format. From
a functional point of view, it is desirable for BBs to be fail-
safe resp. crash-fault tolerant [33], i. e., the BB should still stay
functional if parts of the BB components fail.

Many works have already proposed constructions of BB pro-
tocols including [9, 17, 19,21, 33, 34,42]. However, only [21,
36,42] come with a formal security proof of their protocols.
The BB protocols in these works assume trust in some parties
running the BB, such as a trusted core component [21,42], an
honest majority [42], or a threshold of honest BB parties [36].
For applications of BBs with particularly high security require-
ments such trust assumptions can be undesirable and sometimes
even unrealistic. For example, in high-stakes applications such
as electronic elections or (MPC-based) auctions the parties run-
ning a BB might have a vested interest in modifying the result
to their benefit. The same is true for the closely related field
of distributed ledgers and blockchains, which are often used as
a drop-in replacement for BBs in practice: so far, all existing
provably secure distributed ledgers (e.g., [5,22,26,32,43])
require an honest (super-)majority or an equivalent assumption.
In many cases, they also require strong network assumptions,
such as networks without message loss which, again, might not
be met in practice. Altogether, a BB protocol that is provably
secure without requiring honesty of any BB party, compatible
with fully asynchronous real world networks, and only based
on standard cryptographic assumptions is still missing.

In the literature, including works on e-voting and MPC [1,
7,8,37,45,48,51], it is very common to construct higher-
level protocols/applications and prove their security by simply
assuming the existence of a perfect, never failing, incorruptible
BB with instantaneous message delivery. Of course, such a
perfect BB does not exist in reality and it remains unclear in
how far security proofs still apply in practice when protocols
are deployed with an actual BB implementation. Indeed, recent
works show that this oversimplification leads to severe real-
world attacks [18, 36].

Altogether, this raises the following open research questions:
Can we construct a provably secure BB protocol without re-
quiring trust in any of the parties running the BB and without
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restricting the network? Can we further make this result re-
usable such that higher-level protocols can be constructed and
shown to be secure based on this BB? In this work, we answer
these questions affirmatively by leveraging accountability and
universal composability as our main tools.

Tool 1: Accountability. Previous works that construct BB
protocols aim to achieve so-called preventive security [24].
That is, it should be impossible to break a security property
of the BB, such as consistency, even if parties running the BB
actively misbehave. Achieving preventive security properties
generally requires introducing (sometimes strong) assumptions
which might not always be met in practice. For example, all
previous provably secure BBs [21,36,42] require trust in at
least some parties running the BB.

In this work, we take a different route and propose using
the concept of (individual) accountability [24,29,44,46] to
obtain a secure BB. Individual accountability intuitively states
that, if some intended security property of a protocol, e.g.,
consistency in a BB, is violated, then one can obtain undeniably
cryptographic evidence that identifies at least one misbehaving
protocol participant that has deviated from the protocol.':? In
addition to this completeness property, identification based on
evidence must also be fair in that parties honestly following
the correct protocol are never mistakenly blamed. Given such
evidence, it is then possible to hold parties accountable for
misbehavior, e. g., via financial or contractual penalties. This
in turn serves as a strong incentive for malicious parties to hon-
estly follow the protocol such that security properties will not
break in the first place. In the case of BBs and the applications
discussed in this paper, accountability should be public. That is,
everyone including all clients and even external observers of the
BB should be able to detect and obtain evidence of misbehavior.
While accountability is often cited as desirable and sometimes
even claimed as a feature of BBs [21, 34, 42], so far there is no
BB that has been proven to achieve accountability with respect
to at least some of its security properties.

As discussed in detail in [29], preventive security and ac-
countability are orthogonal concepts which take different view-
points on how a protocol can be protected, each with its own
advantages and tradeoffs: Preventive security guarantees that
security properties cannot be broken at all no matter what
malicious parties do but require certain (sometimes very strong)
assumptions for this to hold true. Accountability rather accepts
that malicious parties can in principle choose to break a security
property but uses detection and deterrence to discourage them
from making use of this option. As a result, accountability-
based security can often already be achieved under weaker
and possibly more realistic assumptions, which is why we
follow this approach in this work. For example, Fabric* [27]
provides accountability w.r.t. consistency without assuming
eventual message delivery or honest protocol participants. To

n this work, we always mean “individual accountability” when we say “ac-
countability”. Other works sometimes also consider weaker accountability
forms where it might not be possible to identify a single misbehaving party.

2Ideally, one might want to identify all misbehaving parties. This is generally
not possible since some types of misbehavior cannot be observed [46].

achieve preventive consistency in a Byzantine-fault tolerant
(BFT) algorithm, e.g., PBFT [16], one typically requires an
honest supermajority among the protocol participants. On the
flip side, accountability-based security might fail to protect a
protocol if penalties for detected misbehavior are chosen to be
too small to act as a deterrence.

While both preventive and accountability-based security can
be used each on their own to protect a protocol, they can also be
combined to create a layered defense (cf. [29]). In such a case,
a property is shown to be preventively secure as long as certain
assumptions hold true, with accountability serving as a backup
for cases when one or more of those assumptions are no longer
met.

Tool 2: Universal Composability. The universal composability
(UC) paradigm (e. g., [10,11,47]) is an approach for design-
ing, modeling, and analyzing security protocols. Compared to
game-based analyses, UC provides strong security guarantees
and supports the modular design and analysis of protocols. In
a UC analysis one first defines an ideal functionality/protocol
F that specifies the intended security properties of a target
protocol, i.e., F is secure by definition but typically cannot be
run in reality. For a concrete realization, the real protocol P,
one then proves that P is at least as secure as JF for a suitable
simulator that has full control over the network traffic of F,i.e.,
no environment £ can distinguish P from F where F runs with
the simulator. One can then build higher-level protocols P’ on
top of F and analyze their security. A so-called composition
theorem provided by the underlying UC model immediately
implies that P’ remains secure even after the ideal subroutine
F is replaced/implemented by the concrete realization P.

Ideal BB Functionalities. As a first contribution of this work
and for the first time in the literature, we formalize the notion
of an ideal functionality for individually accountable BBs in a
universal composability model.

As explained above, while typical applications require that
a BB at least provides append-only and consistency, the exact
properties expected from a secure BB strongly depend on and
vary wildly between different applications that are built on top
of the BB. The BB properties needed by one application can
even be mutually exclusive with the BB properties required by
another application, e. g., [21] requires a BB with non-clashing
items while [35] requires a BB that supports clashing items.
Altogether, there does not exist the “one-size fits all” BB with
a single fixed set of security properties. This is reflected in
our work. We first design the ideal BB functionality F3f; that
captures the typically expected BB security properties, namely
(accountability w.r.t.) consistency, which also ensures that data
can only be appended. For many applications, /5% therefore
is already sufficient. We further explain how JF3% may be
extended to capture all standard BB security properties from
the literature. We merge these extensions into the highly cus-
tomizable BB functionality F255 which can be instantiated to
capture arbitrary combinations of additional security properties
on top of consistency, including all of the aforementioned ones.

We note that, while the focus of this work lies on account-



ability, F25% is actually able to capture both preventive and
accountable security properties, even in combination. Also, to
the best of our knowledge, these BB functionalities are not only
the first ones with accountability, they are, more generally, also
the first ideal BB functionalities that are not just modeling a
perfect setup assumption but that can actually be realized by a
concrete implementation (cf. Section VI).

An Individually Accountable BB Fabricy,;. Next, we pro-
pose the first provably secure BB that does not require trust in
any party running the BB and is compatible with a fully asyn-
chronous network. Our starting point is Hyperledger Fabric,
one of the most prominent open-source distributed ledgers [23].
In [27], Graf et al. proposed a minor modification to Fabric,
called Fabric*, which improves accountability. They show in a
game-based analysis that the core components of Fabric* are
accountable w.r.t. consistency.

We design our BB Fabrichp by slightly extending and instan-
tiating Fabric*. This extension lifts accountability guarantees
from the core components to the full protocol including clients.
We then formally prove that Fabricf;; realizes an instantiation
of F§%, 1. €., is a secure BB that achieves accountability w.r.t.
consistency. Among others, this extends the previous account-
ability result of Graf et al. to the full protocol and lifts it from
the game-based to the stronger and modular UC setting.

We further translate, adapt, and specialize the concept of
smart contracts from DLTs to the setting of BBs; we call the
resulting concept smart read. Intuitively speaking, a BB with
smart read not only provides its state to clients but also allows
clients to obtain the (correct) output of functions evaluated on
that state. By this, clients can outsource computational tasks to
the BB. For example, electronic elections often require running
verification procedures on the contents of the BB which can be
outsourced to the BB itself via smart reads.

We formalize accountability w.r.t. smart read in our instan-
tiation of F25% and show that Fabrichp also achieves this
property. As we discuss in Section IV-C, this implies as a simple
corollary that Fabricp offers (accountability w.r.t.) several
other of the aforementioned BB properties as well since many
of these properties directly follow from the smart read property.

This result answers both of our initial research questions.
We are able to show that Fabrichy realizes FZ55 based on
standard cryptographic assumptions such as EUF-CMA-secure
signatures; no trust in any of the parties running the BB or
network assumption are needed thanks to accountability-based
security (cf. Section IV-F for an overview of assumptions).
Since this is a UC security result, higher-level protocols P’ can
be designed and analyzed based on the ideal BB F25%;. The UC
composition theorem then implies that all security results for
P’ are retained even if P’ is later implemented using Fabricp.

Performance Evaluation of Fabricj;;.As we detail in Sec-
tion V, the overall performance of Fabricj is essentially the
same as for the underlying Fabric* which, however, has not
been implemented and benchmarked so far. As a contribu-
tion of independent interest, we therefore provide the so-far
missing implementation and evaluation of Fabric* [31]. Our

results show that Fabricjz/Fabric* can write up to 500 items
per second to the BB/ledger which is sufficient for many BB
applications. For example, in the context of e-voting 200,000
ballots can be added to the BB in less than 10 minutes.

Summary of Our Contributions.

o We provide the first ideal accountable BB functionalities,
namely F3E and FZ55. They are also the first ideal (includ-
ing non-accountable) BB functionalities that are not just
perfect setup assumptions but can be realized.

« We propose the novel property of smart read for BBs.

o We propose Fabric; by instantiating and slightly extend-
ing Fabric* and prove that Fabric;; UC-realizes an instan-
tiation of F255, 1. €., provides accountability w.r.t. consis-
tency and smart read. This is the first provably secure BB
that does not require trust in any BB party or assumptions
on the network. This is also the first BB that is provably
UC secure and hence the first BB security result that can
directly be re-used by higher-level protocols.

o We implement and benchmark the underlying Fabric*. Our
results demonstrate that Fabricgy is practical.

Structure of This Paper. After recalling preliminaries in Sec-
tion II, we propose F5% and FZ5% in Section III. Section IV re-
calls the Fabric* protocol, proposes Fabricy,; based on Fabric*,
and shows that Fabric};; realizes an instantiation of F25. Sec-
tion V presents our implementation and benchmarks of Fabric*
(available for download at [31]) and discusses the implications
for Fabricgy. We discuss related work in Section VI. Full

details and proofs are given in our technical report [30].

II. PRELIMINARIES
A. Computational Model

There are many different models following the univer-
sal composability paradigm, e.g., [10, 11,47]. Formally, here
we use the iUC model, a highly general model by Ca-
menisch et al. [10]. However, all of our definitions and results
can also be translated to other models for universal compos-
ability such as the aforementioned ones. We will keep the
presentation on a level such that readers familiar with any of
these UC models can understand the paper.

In all UC models, the security experiment compares a real
protocol P with the so-called ideal protocol or functionality
F which is typically an ideal specification of some task. The
idea is that if one cannot distinguish P from F, then P must
be “as good as” F, written P<JF. More specifically, we have
P<F if there exists a simulator/ideal adversary S that controls
the network of F such that P and F (alongside S) are indis-
tinguishable, i.e., no environment £ can tell whether it interacts
with P (on both P’s I/O and network interface) or with F along
with S on F’s I/O interface and the network interface of S it
exposes to &£; equivalently one can consider a real adversary
that runs alongside P, analogously to F running with S.

A protocol in a UC model is typically modeled as a set
of interacting Turing machines. An instance of a machine
manages or represents one or more so-called entities. An entity
is identified by a tuple (pid, sid, role). It describes a specific



party with party ID (PID) pid running in a session with session
ID (SID) sid and executes some code defined by the role role.
Entities can send messages to and receive messages from other
entities and the adversary using the I/O and network interfaces
of their respective machine instances. In what follows, we use
the terms entity and party interchangeably.

We call a party in a protocol main if it can directly receive
inputs from and send outputs to the distinguisher/environment
(who subsumes arbitrary higher-level protocols). We call a
party internal otherwise, i.e., if it is part of an internal sub-
routine. Whether a party is internal or main can be determined
from its role. As in all UC models, an ideal functionality
and a realization share the same sets of main parties/roles. A
realization might have additional internal parties/roles that are
not present in the ideal protocol and vice versa.

The adversary is allowed to corrupt a party by sending a
special corrupt command on the party’s network interface. If an
entity is corrupted, the adversary generally gets full control over
the entity. The environment can obtain the current corruption
status of main parties in a protocol, which allows for checking
whether corruption of main parties is simulated correctly.

We provide an extended overview of iUC and a formal defi-
nition of our pseudo code notation in our technical report [30].

B. Accountability in UC

Graf et al. [28] recently proposed the AUC framework, which
provides a general blueprint for modeling and formally prov-
ing accountability of arbitrary security properties of protocols
within any UC model. Therefore, AUC provides a template for
how accountability is incorporated into ideal and real protocols.
To formally prove that a real protocol provides accountability
w.r.t. a security property, one then shows — as common in
UC - that the real protocol is indistinguishable from the ideal
protocol. Here we briefly recall those aspects of AUC that we
use in this work. For interested readers, additional details are
available in [28] and our technical report [30].

Formalizing Accountability in Ideal Functionalities. Start
with an ideal functionality F that formalizes (preventive secu-
rity of) a certain set of security properties Sec, such as consis-
tency, non-clashing, or liveness. Intuitively, AUC modifies F
using the following main ideas to capture accountability of a
subset Sec®* CS8ec of those properties. At any point in time,
the adversary/simulator on the network is allowed to send a
special message requesting that the ideal functionality F should
from now on consider a property p € Sec® to be broken. This
request must contain a so-called verdict, which identifies at least
one unique party that has been misbehaving and hence has led
to this breach of security. Verdicts in AUC are positive boolean
formulas consisting of terms of the from dis((pid, sid, role))
where (pid, sid, role) is a protocol participant.

The ideal functionality F verifies that the verdict is fair, i.e.,
does not blame any parties that are currently uncorrupted and
hence honestly following the protocol. If this check succeeds,
then the request is accepted and p is marked as broken property,
stored in a new state variable brokenProps in F, and the adver-
sary gains additional power depending on the property p. AUC

further introduces a new role called (ideal) public judge® in F
which represents the party that is responsible for computing the
verdict. This ideal judge in F allows higher-level protocols/the
environment to obtain the current verdict as previously provided
by the attacker. Since a public judge computes verdicts based
on public data, such a judge can be executed by anyone in
reality including arbitrary honest parties. Thus, it makes sense
to model (public) judges in AUC as incorruptible.

AUC provides ready-to-use pieces of code that can be in-
cluded in an ideal functionality F to establish the above in-
frastructure, including the judge role, and which we also use
here. The protocol designer then still has to define the set Sec®*®
and manually define new logic for F which specifies the exact
implications of breaking a security property p. For example, if
p represents consistency in a BB, then breaking p should allow
the attacker to send contradicting outputs to clients of the BB.

Formalizing Accountability in Real Protocols. A real proto-
col P that is supposed to realize an ideal accountable function-
ality F additionally includes a dedicated real public judge J
that implements the ideal public judge from F. The real judge
J describes the exact inputs/evidence and the algorithm/logic
that is used to compute verdicts from that evidence in the actual
protocol. Hence, the specification of .J is one of the key tasks in
designing and proving the security of P.

One then shows that P UC-realizes F. This implies that P
provides accountability w.r.t. all p € Sec®*: As long as the real
judge J has not output a verdict, by indistinguishability to F
property p has not been broken. Conversely, if the adversary
manages to use the logic of P and its control over corrupted
parties in P to break p, then J must have already computed a
verdict and this verdict has to be fair, again, by indistinguisha-
bility to the ideal judge in F.

ITII. AN IDEAL INDIVIDUALLY ACCOUNTABLE BB

In this section, we propose the ideal BB functionality /3%

and its customizable variant F255.

A. The Ideal Accountable BB Functionality F3%

As explained in the introduction, the most essential property
that virtually every BB should provide is consistency. That is,
clients reading from the BB should obtain (prefixes of) the
same global state as stored in the BB. Commonly, consistency
also includes the expectation that this global state should be
append-only, i.e., information that was already read by some
client will not change in the future. Here we construct an
ideal FE% functionality that formalizes accountability w.r.t.
consistency and hence also append-only. Thus, F5f; provides
already sufficient security for constructing many higher-level
protocols which only require a broadcast channel with memory,
including most of the existing e-voting protocols.

Existing Ideal BB Functionalities in the Literature. As a
starting point, we revisit previously existing ideal BB function-
alities from UC literature (e.g., [4,7, 12—15]). These function-
alities have only been used to model setup assumptions within

3While AUC also supports other types of judges, we focus on public account-
ability and thus public judges, sometimes just called judge in what follows.



higher-level protocols and, at their core, all work similarly
to Fpp reproduced in Figure 1. That is, clients can write a
message to Fpp which is then internally appended to a global
list of messages msglist. Clients can also read from Fgp to
obtain the current msglist. Thus Fpp formalizes (preventive
security of) consistency and an append-only state.

Description of Fpg:

Implemented role(s): {client}
Corruption model: incorruptible

CheckID (pid, sid 0, role): . Each instance of this functionality is
Accept all messages with the same sid. R ire session sid
Main: responsible for an entire session sid.

recv (Write, msg) from I/0:
id < id + 1; msglist.add(id, msg)

{Write request from a honest identity
{Record message at position id

recv Read from I1,/0:
reply (Read, msglist)

{Read request from an honest identity
{Provide full item list to requestor

Fig. 1: Sketch of a common ideal BB setup assumption Fpg.

All ideal functionalities in the spirit of Fpp [4,7, 12-15]
model a perfectly secure BB that does not exist in reality. For
example, Fpp implies network connections between parties
running the BB and BB client without latency. Hence, even
under very strong assumptions such as trusted third parties
running the BB, we have for any realistic implementation Ppp
of a BB that Py does not realize Fgg. As aresult, Fgg cannot
be used for the security analysis of realistic BBs. Even more,
security results obtained for higher-level protocols based on
FpB, including all of the aforementioned works [1, 7, 8,37, 45,
48, 51], might not hold true when those higher-level protocols
are based on an actual implementation Ppp.

In what follows, we therefore lift /3 from a setup assump-
tion to S5 which can be realized by realistic BB protocols. We
also incorporate accountability-based security into F3§ which,
as previously mentioned, allows us to prove security statements
based on mild security assumptions compared to preventive
security and is a desirable property by itself.

Constructing the First Realizable and Accountable Ideal
BB. By the previous observations, constructing 5% not only
requires adding accountability to Fpp, we also have to add
infrastructure to support (possibly fully asynchronous) real-
world networks as well as corrupted parties which are necessary
for being able to UC-realize such an ideal BB functionality
with an actual real-world BB protocol Ppp, irrespective of
accountability. We present the core logic of our proposed /55
in Figure 2, with lines capturing accountability following the
AUC approach being highlighted in blue.* In what follows, we
motivate and explain the definition of 3% . We provide the full
formal definition of /3% in [30]

The ideal functionality F3% captures accountability w.r.t.
consistency, i.e., we consider Sec® = {consistency} and
no other (preventive) security properties. Clients in 3% can
issue Write and Read requests. However, unlike Fpp, these
requests are not executed instantly. If a client calls Write with

some input msg, FJE stores the request with an index/ID

4By removing those blue lines, one can easily obtain an alternative version that
is still realizable but captures preventive security instead of accountability.
While not the focus of this work, this might be of independent interest.

Description of FR%

Main:

recv (Write, msg) from I1/0:
writeCtr < writeCtr 4+ 1
writeQueue.add(writeCtr, msg)
send (Write, writeCtr, msg) to NET

recv Read from I,/0:
readCtr < readCtr + 1
readQueue.add((pidcal, sidcall, rolecan ), readCtr, false, 0)

{Store for later processing, where (pidcan, sidcai, roleca) denotes the calling entity
send (Read, readCtr) to NET {Leak full details

recv (DeliverRead, readCtr, (sugPtr, sugOutput)) from NET {.A triggers

{Write request from a honest identity

{Store msg for update
{Leak full msg.

{Read request from an honest identity

s.t. ((pid, sid, role), readCtr, false, 0) € readQueue: message
o R . Udelivery
Fip provides consistency in the
absence of a verdict
if 3((pid, sid, role), _, true, prt) € readQueue :
s.t. prt > sugPtr
send nack to NET
else:
readQueue.remove((pid, sid, role), readCtr, false,0) {Clean up
readQueue.add((pid, sid, role), readCtr, true, sugPtr)
send (Read, msglist(sugPtr)) to (pid, sid, role)
else: {\A defines the output if consistency is broken
readQueue.remove((pid, sid, role), readCtr, msg, false, 0)
readQueue.add((pid, sid, role), readCtr, msg, true, 0)
send (Read, sugOQutput) to (pid, sid, role)

if brokenProps[consistency] = false:

{Delivery request of A was denied

recv (Update, appendToMsglist, upd RequestQueue) from NET
s.t. updRequestQueue C writeQueueA
all entries from updRequest Queue appear in appendToMsglist:
{Update or maintain request triggered by the adversary.
msglist.append(append ToMsglist)
{append adds each entry from appendToMsglist to msglist including consec-
utive IDs
for all item € updRequestQueue do:
writeQueue.remove(item)

reply (Update, msglist) {Leak data

Include static code provided by AUC [29,30] here. This code adds a public judge
judge. A can send a verdict v to judge indicating that consistency should be broken.
judge checks whether v is fair. If so, judge marks consistency as broken and sets
brokenProps[consistency] to true; otherwise it remains false. If the environment
£ asks judge regarding verdicts, judge provides current verdicts (if any) to £.

Remove “consumed” ele-
ments from writeQueue

acc

Fig. 2: Excerpt of the accountable BB functionality F5% .

writeCtr in writeQueue for later processing. Similarly, F3f

stores Read requests in readQueue, including an index/ID, a
flag that indicates that the request has not been processed yet,
and a pointer indicating what the entity has read so far. For
both read and write, 73§ leaks the full requests to the network
adversary A, resp. the simulator. The adversary is then respon-
sible for deciding whether and when requests are processed,
which captures a real-world asynchronous network with latency
and potential message loss.

To finish processing a read request and to generate an
output, the adversary A can issue a DeliverRead command
to Fg%. For this purpose, A specifies the unique ID of the
pending read request as well as the output that shall be pro-
vided. The exact behavior depends on whether the property
of consistency can still be guaranteed. By default and as long
as the public judge did not detect any misbehavior yet (see
below), we have that consistency must still hold true (i.e.,
brokenProps[consistency] = false) and hence only the
black code is executed. In this case, F3% enforces consistency
for all clients. Therefore, A provides sugPtr to F5% which
determines the exact prefix of the msglist to be output. F5%
accepts sugPtr only if it includes at least all messages that



the same client has previously already read, if any.” Therefore,
FEE checks that all stored output pointers for the requesting
party in requestQueue are smaller or equal to sugPtr. After-
wards, F3F then stores that the request was processed and that
FEE dehvered the msglist prefix up to sugPtr to the requestor.

If consistency is broken, i. e., brokenProps[consistency] =
true, F35 does not ensure consistency any longer and it
executes the blue code in DeliverRead. In this case, F35
returns the string sugQOutput as provided by A to the requestor.
This allows A to freely choose F3§’s output including the
option to send contradicting outputs to different clients. Again,
JFEE stores that the request was processed but does not store
Wthh data was delivered.

acc?

To add pending write requests from writeQueue to the F3%’s
state, A can at any point in time issue a Update command to
FEE. This new Update command is an abstraction of a con-
crete consensus mechanism that is used in a real-world BB to
process and sort incoming messages. In an Update, A specifies
(i) an ordered list of messages appendToMsglist that shall be
appended to the global state msglist and (ii) the set of pending
write requests that are processed by this update and hence
will be removed from writeQueue. As long as these inputs
are well-formed, /5% will perform such an Update request,
i.e., change both msgllst and writeQueue accordingly. We note
that A may not only append messages from honest clients that
are contained in writeQueue. He can also add arbitrary other
messages which captures malicious parties that might add items
to the bulletin board without first being triggered via a write
command issued by a higher-level protocol.

If the adversary A provides a fair verdict v to the
public judge that identifies at least one unique corrupted
party, then F5% marks consistency as broken, i.e., it sets
brokenProps[consistency] = true (this operation is part of
the static code that we include from AUC as indicated at the
bottom of Figure 2). Such a verdict indicates that the public
judge has detected that a malicious party deviated from the

protocol and hence consistency can no longer be guaranteed.

Discussion. Observe that 3§ indeed formalizes accountabil-
ity w.r.t. consistency: As long as the public judge has not
received a fair verdict from .4, who by this also indicates
that consistency should be considered broken, /3% enforces
consistency by requiring that all outputs are (non-decreasing)
prefixes of the same globally unique msglist. Conversely, as
soon as the judge’s verdict is non-empty, /3% does not guaran-
tee consistency any longer. However, the par[y from the verdict
can then be held accountable for this security breach.

Hence, if we can show that an actual implementation of
a BB Ppp realizes F3%, then Ppp must enjoy the same
security properties. Since F3f5 and Pgpp have to have the same
behavior towards the environment £, Ppp has also to provide

consistency as long as the judge (in the real protocol) does not

5We require only a prefix, instead of the full msglist, to allow for realizations
Ppp without any network assumptions, i. e., that can be deployed in a fully
asynchronous real-world network where messages might be lost or delayed.

render a verdict. As soon Ppp’s judge renders a verdict, Ppp
does not guarantee consistency any longer.

One can also build higher-level protocols P’ on top of F&5s,
which then use that F3F provided consistency guarantees as
long as the public judge does not output a verdict (and if there is
a verdict, then P’ can hold the same person accountable also for
any failure in the higher-level protocol). By UC composition,
all security results shown for Q carry over when F3% is later
implemented via Ppp.

B. Capturing Additional Properties by Customizing F§%

As explained in the introduction, some applications require
BBs that achieve additional properties beyond just (account-
ability w.r.t.) consistency. Our ideal functionality F3f can
be customized to also capture arbitrary combinations of other
properties, both in an accountable but also in a preventively
secure fashion. Such customization mainly entails introducing
additional checks while processing Write, Update, and/or
DeliverRead commands to enforce further security properties.
In what follows, we describe how F5% is modified to obtain
the customization framework Fi5h Wthh can be instantiated
in various ways to capture arbitrary combinations of properties.
The main task of protocol designers is then to define suitable
instantiations for the desired properties. We describe how all se-
curity properties mentioned in the introduction can be captured
via such instantiations of F255. In Section IV-C, we further
establish a full instantiation of F25% that formalizes the precise
security properties provided by Fabric*.

We provide the full formal definition of the customization

framework F25% in [30]. In summary, it involves the following
changes compared to F55:

acc

Customizations of operations: The customization frame-
work F255 is derived from F5 mainly by introducing several
additional subroutines, namely Furite, Fupdates and Fread,
which are called during the Write, Update, and DeliverRead
operations.® Protocol designers have to specify these subrou-
tines to capture the exact conditions imposed on each operation
and thereby formalize modifications to F55. When called by

255 a subroutine receives the full internal state allowing it
make decisions given the full view. The subroutines Fyyite,
Fupdate> and Freaq can (i) impose additional requirements on,
(ii) abort, or (iii) influence the output/result of Write, Update,
and DeliverRead operations. Below we give examples of how
this can be used to capture a wide range of security properties.

Supporting multiple types of read requests: The Read com-
mand is extended to also take an auxiliary input msg, which
is an arbitrary bit string. This auxiliary input can be used
to distinguish multiple types of reads with possibly differing
security properties. We use this feature to formalize the novel
security property of smart read in Section IV-C.

Addition of an internal clock: To be able to formalize time-
based properties such as liveness, the F55 framework addi-
tionally contains an internal clock. Formally, this is just an in-

5Only F255 can call the subroutines. To allow the subroutines to make
decmons bdsed on FiEG’s state, A5G always includes its internal state
and transcript to calls to the defined subroutines.



ternal counter round which models arbitrary discrete time steps
such as seconds or network rounds. The environment/higher-
level protocols can query JFZ5% to obtain the current time,
i.e., the value of round. The adversary can send a new
UpdateRound command to request increasing the current value
of round by one time unit. The ideal F253 uses a new subrou-
tine Fpdrnd to decide whether this request is granted, where
FupdRnd just as for the other subroutines is a parameter that
formalizes the precise conditions and hence security properties

that a protocol designer wants to consider.

As a mostly straightforward sanity check, in [30] we formally
verify that the 7255 customization framework captures F3% as
a special case:

Lemma 1 (informal). There exists an instantiation of (the

subroutines of) FX5g such that Fi5g UC-realizes FEE and
FBE UC-realizes Fi55.
Capturing standard security properties via F253,. Standard

security properties of BBs, including the ones mentioned in the
introduction, can be captured via instantiations of FZ55. Here
we illustrate several examples, starting with preventive security.

The remaining properties are discussed in [30].

Liveness states that write requests will become part of the
state of the BB within a bounded time frame, say . Further-
more, once stored in the BB, the message will be part of outputs
read by clients after another bounded time frame, typically
also §. The first aspect can be formalized by instantiating
FupdRnd to prevent the adversary from advancing time as
long as writeQueue still contains pending requests that have
been submitted § time units ago. The second aspect can be
formalized by instantiating Fe,q to only allow outputs that
contain at least all messages that have been added to the global
state more than § time units ago.

Authorized (Write) Access states that only a certain set of
clients is allowed to write messages on the BB. This can be
formalized by instantiating Fyite and Fypdate to drop write
requests and state updates, respectively, containing messages
from clients that are not part of the authorized set.

Allowing or preventing clashing items in the global state of
the BB can be captured by instantiating Fpdate to allow or
prevent such updates.

Starting with the above preventive formalizations, it is easy
to switch to accountability, if desired, using the same method
as for accountability w.r.t. consistency in JF3%. For exam-
ple, to consider accountability w.r.t. liveness one starts with
the above instantiation of preventive security and first adds
the property liveness to the set Sec® . By the static code
of AUC, this has the effect that the adversary can now set
brokenProps[liveness] = true if and only if he provides a
verdict v identifying a misbehaving party to the public judge.
The protocol designer then only has to modify Fyparna and
Fread to first check whether brokenProps[liveness| = true
and, if so, skip all security checks that enforce liveness. We
finally emphasize that using the above techniques one can easily

formalize preventive security for some properties while others
are protected by accountability in F255%.”

IV. FABRIC*

We show that the Fabric* distributed ledger proposed by
Graf et al. in [27] can be slightly extended and instantiated
to obtain a provably secure, composable, and accountable BB
which we call Fabricj,;. Notably, we are able to prove this re-
sult based on standard cryptographic assumptions and without
requiring trust in any of the parties running Fabrich or network
assumptions.

We structure this section as follows: In Section IV-A, we
recall the Fabric* protocol. In Section IV-B, we recall previous
results regarding Fabric* and relate this to our work. We then,
in Section IV-C, formalize, via an instantiation F g pag.  Of

255> the security guarantees that we want our BB to achieve.
In Section IV-D we present our BB protocol Fabric};; based on
Fabric*. Finally, in Section IV-E we formally prove the security
of Fabricj;. We provide the full details in [30].

A. Recap: The Fabric* Protocol

The Fabric* protocol is derived from the prominent Hy-
perledger Fabric ledger [2]. Graf et al. [27] construct Fabric*
by slightly adapting Fabric to improve accountability of the
system. In what follows, we recall Fabric* closely following the
terminology and presentation of Graf et al. [27]. Along the way,
we recall how Fabric* differs from the original Hyperledger
Fabric.

Fabric* is a permissioned blockchain protocol typically ex-
ecuted by a set of organizations that do not fully trust each
other. These organizations set up a new Fabric* instance —
a so-called channel — by agreeing externally on a Genesis
block. The Genesis block defines the channel’s configuration
including (i) the channel’s organizations/participants, (ii) the
components/parties that run the Fabric* protocol, and (iii) the
set of (deterministic) smart contracts available in this channel.

Roles in Fabric*. In Fabric*, all protocol participants are iden-
tified via certificates which include their role, the organization
they belong to, and their public key.

Clients initiate transactions to read from or to write to the
blockchain. They typically obtain inputs for transactions from
end users. All client interactions in Fabric* are calls to smart
contracts that are executed by so-called peers. The smart con-
tracts compute, among others, the outputs that clients obtain
and whether any new data is written to the ledger state (see
below). Clients do not keep a copy of the chain.

(Endorsing) Peers are essentially the “miners” and “full-
nodes” of Fabric*. They execute transactions from clients. They
also replicate the chain, i.e., they keep a copy of the full
blockchain and allow clients to query data from the chain. Peers

7Using techniques established by AUC, it is even possible to formalize
security statements in F 255 of the form “as long as certain assumptions hold
true, then a property is guaranteed to hold true, i.e., preventively secure. If
assumptions are broken at some point, then the property is still accountable,
i.e., still holds true as long as the judge has not yet obtained a verdict.” Since
this is not the main focus of this work, we refer to [29] for more details.



also convert the blockchain to a current ledger state. They are
then responsible for executing smart contracts based on the
current ledger state. Peers differ from traditional miners in that
they are not directly involved in the block generation process.
This process is outsourced to a so-called ordering service.

An Ordering Service is an abstract concept that provides a
“consensus service”. Transactions from clients are first exe-
cuted by peers. Afterwards, transactions and execution results
are forwarded to the ordering service who forms blocks from
the incoming transactions. The service then distributes the
blocks to all peers and peers mark transactions in the chain as
invalid if necessary.

Endorsing Peers
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Fig. 3: Example Flow in Fabric* with Client C, (endorsing)

peers P, ..., P,, and ordering service OS (cf. [27]).
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Fig. 4: Ordering and block generation with clients Cy, Cs,
orderers Oy, . . ., O,,, a Apache Kafka /C, and (endorsing) peers
P (cf. [27])).

Transaction Flow. In what follows, we explain how Fabric*
runs by following the steps used by clients for reading from or
submitting a new transaction to the ledger (cf. Figure 3):

Proposal: To interact with a channel, i.e., to read from or
to write to it, clients call smart contracts at peers by sending a

signed (transaction) proposal to the (endorsing) peers (cf. @).
After having distributed the proposal, clients wait for the results
of their request, the so-called endorsements.

Endorsement: Peers execute proposals by running the smart
contract with the input parameters specified in the proposal.
Smart contracts in Fabric* can be implemented in several com-
mon programming languages, such as Go, Java, and node.js.
Peers execute this code natively but isolated in Docker contain-
ers [39]. At the end of a successful smart contract execution,
peers generate an endorsement. An endorsement contains the
original transaction proposal, the data read from the peer’s
ledger state during the execution (called readset), possibly
some changes in the ledger state caused by the execution of
the proposal (called writeset), and/or potential output for the
client. This endorsement is a confirmation of the peer that the
transaction and its results are allowed to become part of the
blockchain. Peers send the signed endorsement to the client
initiating the proposal (cf. (2)) but do not apply the writesets
to their state yet. If the proposal is a read request, the client
extracts the output from the endorsements and stops the proto-
col at this point. Read requests are thus “off-chain” in that they
are not added and confirmed to the blockchain but also do not
change the ledger state.

Commitment: For a write request that the client wants to
add to the ledger state, she keeps collecting endorsements for
her proposal until she collects sufficiently many endorsements,
e. g., from all peers she queried. The exact number of endorse-
ments that are required is specified as part of the channel setup.
Then, the client forwards the proposal and all endorsements as
a so-called commitment to the ordering service (cf. @).

Block Generation and Distribution: The ordering service is
responsible for block generation (cf. (4)). After generating
the blocks, the ordering service distributes them to peers. We
explain the specific ordering service used by Fabric* below.

Block Validation and Ledger State Update Upon receiving
a new block, peers validate whether they accept the block
including checking that blocks are correctly signed by the
ordering service. After accepting a new block, peers update
their current view on the ledger state by iterating over the
commitments contained in the block. A commitment is invalid
and hence ignored if (i) endorsements in the commitment do
not agree on the readset and writeset or (ii) the readset does not
match the current state of the ledger. If a commitment is valid,
then the peer applies the writeset to update its current view of
the ledger state before checking the next commitment.

Fabric*’s Ordering Service. The original Hyperledger Fabric
supports various ordering services, including an Apache Kafka-
based ordering service [3,38]. Fabric* uses this ordering ser-
vice but with one major modification.

As depicted in Figure 4, the Kafka-based ordering service
consists of two components: (i) so-called orderers provide the
interface for clients and peers to the ordering service. They col-
lect commitments from clients that should enter the blockchain,
forward them to Apache Kafka [3] (in short Kafka), and re-
ceive a totally ordered sequence of messages back. Thereupon,



orderers follow a deterministic algorithm to split this message
sequence into blocks, sign them, and then distribute those
blocks to peers. (ii) Kafka is a crash fault-tolerant distributed
consensus service optimized for durability, high throughput,
and reliable message distribution. A Kafka cluster consists of
several machines called Kafka brokers. One of the brokers is
the so-called Kafka leader. The leader receives all incoming
messages from orderers, establishes a total order, and returns
the resulting message sequence to the orderers. All non-leading
brokers replicate the state of the leader to provide redundancy.
If the leader crashes, then the remaining brokers elect a new
leader who takes over the duties of the former leader. In prac-
tice, the whole Kafka cluster, including all broker machines,
is supposed to be run as a service in a data center operated
by a single entity [50,55]. This entity is then responsible for
providing a correct execution of the entire Kafka protocol.

By default, the Kafka component as used by Hyperledger
Fabric does not provide any accountability. Intuitively, this
is improved in Fabric* by letting Kafka leaders additionally
sign their ordered sequences of messages and letting orderers
include this information in the generated blocks.

B. Results for Fabric*

Graf et al. [27] prove in a game-based security analysis
that Fabric* provides public and individual accountability w.r.t.
consistency for peers. For our purposes, however, this result is
not sufficient: (i) Security was shown for Fabric* as a ledger,
not a BB. Notably, providing and proving security guarantees
for clients was out of scope. (ii) Since the security analysis is
game-based, it is not directly composable with higher-level pro-
tocols that might want to use Fabric*. (iii) While smart contracts
were formally modeled, no security results were shown for (the
execution of) those smart contracts.

We build on these results for Fabric* to design and prove
the security of Fabricf, thus showing that this and similar
distributed ledgers can be used to build accountable BBs (cf.
Section I'V-F). Along the way, we also extend prior results for
Fabric* in various ways: (i) As part of Fabricjy, we propose
a slight extension of the clients of Fabric* which is needed to
lift consistency from peers to clients. (ii) The security proof of
Fabricl; extends the previous consistency result for Fabric*
from peers to clients (using the aforementioned extension of
clients). We also show, for the first time, that smart contract
execution of Fabric* is accountable, which is in turn needed
for Fabric;p. (iii) Our proofs are for a UC security notion
and thus immediately imply composability with higher-level
protocols. (iv) As part of evaluating the practical performance
of our Fabricjy, we have implemented and provide the first
benchmarks for the underlying Fabric*.

C. Intended Security Properties of Fabricgy

We want to show accountability w.r.t. two security properties
for Fabricf;: Firstly, we consider the standard notion of con-
sistency, i.e., clients can read a (growing) prefix of the same
globally unique state of the BB. Secondly, we consider a novel
BB property called smart read.

Smart Read. Intuitively speaking, a BB with smart read offers
two types of read operation: The standard read operation to
retrieve the full state of the BB (we call this full read in what
follows) and a second operation, called smart read. A smart
read is closely related to and can be implemented by smart
contracts offered by distributed ledgers: it allows clients to
instruct the BB to run a (potentially arbitrary) algorithm on the
BB state and then return the output. If the BB is secure, then the
output of such a smart read must be correct and fresh, i.e., (i) it
was obtained by running the algorithm requested by the client
and (ii) the input to the algorithm was a prefix of the current
global state that is at least as long as any prefix previously read
by the client, either as part of a full read or during a smart read.

Thus, similar to smart contracts for distributed ledgers, smart
reads allow for outsourcing tasks to the BB that would usually
be performed in higher-level protocols. For example, in e-
voting protocols [1,37,45] it is often necessary to perform
verification checks on the state of the BB. It is of course
possible for, e.g., a voter to just query the entire state of the
BB via a full read and then perform those checks locally, which
is what systems have been doing so far. By using a BB with
smart read, it is possible to outsource these verification checks
to the BB and only obtain the (correct) output.

Smart Read Implies Many Standard BB Properties. If a BB
provides (secure) smart read, then it also provides many further
standard BB security properties as special cases. This is because
often clients can choose a suitable algorithm that computes a
view on the BB’s state which has the desired security properties,
even if the state itself might not have these properties. Security
then immediately follows from the correctness property of
smart reads. For example:

No Data Injection: Given a list of eligible parties, define the
algorithm used during a smart read to return all entries of the
BB that are signed by a party in that list, i.e., all entries that
were not injected.

Non-clashing: Just as for “no data injection”, a smart read
algorithm that filters out and removes any clashing items, e. g.,
by always returning the item that was submitted earlier, can be
used to ensure non-clashing.

Message Validity: Given a message validation procedure, a
smart read that returns all BB items which are valid according
to that procedure can be used to implement message validity.

Receipt-consistency can also be implemented via smart reads
but requires a more involved construction. For space reasons,
we provide details in our technical report [30].

Formalization of these security properties. We formalize
accountability w.r.t. consistency and smart read by providing an
instantiation of our customization framework F255;. We refer to
this instantiation as . ’g pa.,  in What follows.

The functionality FZg pagy, , sets Sec™™ = {consistency,
smartRead}. It is parameterized with an arbitrary but fixed set
of algorithms that are identified via IDs 1, . . ., n. This set spec-
ifies all algorithms that can be executed via a smart read, where
each algorithm takes as input a prefix of the current global
state of the BB as well as, optionally, additional input from the



client. To distinguish different types of read requests, we use the
auxiliary input msg added to read requests in F255: msg = 0
indicates a full read whereas msg = (id, clientInput),id €
{1,...,n} indicates a smart read using the algorithm with ID id
and additional input clientInput. Security properties are then

formalized via the following instantiations of subroutines:

o Furite, FAB, discards inputs that do not follow the input
format of Fabricgp.

read,FAB, works differently depending on the type of
read request, i.e., the auxiliary input msg. For a full read
with msg = 0, .Fread’FAB*BB captures accountability w.r.t.
consistency by using the same logic as F3f5 in Figure 2. For
smart reads with msg = (id, clientInput), Fread FABy,, first
checks whether the property has already been broken, i.e.,
brokenProps[smartRead] = true, due to a verdict obtained
by the public judge. If so, then the adversary A is allowed to
choose the output freely. Otherwise, if the property still holds
true, the adversary A is expected to provide a prefix p of the
current global state msglist that is used as input for the smart
read. ]:readeBgB verifies that p is strictly growing, i. e., larger
than all prefixes previously used to respond to any read of the
same client. If so, then ‘FreadJ:AB])gB runs the algorithm with ID
id on BB state p and additional input clientInput and instructs
F BB, FaBy, o return the result to the client.

update,FABY,;, USES the same logic as the Update procedure
in 3% (cf. Figure 2) to ensure that updates to the global msglist
are append-only. It further checks that any message added to
msglist follows the message format of Fabric*.

updRnd,FAB}, always allows time updates since we do not

formalize any time-based security properties.

D. Deriving the Accountable BB Fabric}y from Fabric*

In what follows, we define our Fabric;;; based on Fabric*.
To obtain Fabric;, we consider one Fabric* channel with the
following smart contracts: (i) one write contract that appends a
message to the ledger state without modifying or deleting any
prior messages, (ii) one read-only contract with ID 0 to imple-
ment full reads by returning the current ledger state of the peer
to the client, and (iii) n read-only contracts to implement smart
reads. That is, for each algorithm alg supported by Fl55 rap:: -
we use a corresponding smart contract sc in Fabric* which runs
alg to obtain the result out. The smart contract then returns the
tuple (ctr, out), where ctr is the length of the ledger state that
was used to run alg.

Fabricj; is then built on top of this Fabric* instance by
adding some additional client logic. That is, the client keeps
an indicator recentState € N for storing the length of the most
recent state used for full or smart read. Now, to write a message
msg to the BB, clients use the write contract with input msg and
then follow the standard Fabric* logic such that msg is added
to the ledger state of the underlying Fabric* channel.

To run a full read in Fabrichp, clients start a transaction
proposal for the full read smart contract in the underlying
Fabric* channel. After obtaining and verifying the signature of
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the resulting endorsement® according to the standard Fabric*
logic, clients additionally check for the output out, which is
the current ledger state as seen by the peer, whether |out| >
recentState. If so, then the client accepts out and it sets
recentState := |out|. Otherwise, the client discards the re-
sponse. Intuitively, this is needed to ensure that full reads in
Fabrichp return strictly growing prefixes of the ledger state and
also that data is fresh compared to former smart reads.

To run a smart read in Fabricfp, clients start a transac-
tion proposal for the corresponding smart read contract in the
Fabric* channel. After obtaining and verifying the signature
of the resulting endorsement according to the standard Fabric*
logic, clients additionally verify for the output (ctr, out) that
ctr > recentState. If so, the client returns out (and updates
recentState to ctr). Intuitively, this is necessary to ensure in
Fabrich that the smart read was performed on a growing prefix
of the state even if different peers are used.

Note that smart reads in Fabricgy are implemented via read-
only smart contracts in Fabric* which are evaluated off-chain.
Hence, a smart read essentially consists of a client sending
a signed request to a peer, the peer running the requested
algorithm in native code, and the peer sending the signed output
to the client. The runtime of a smart read in Fabricgy is thus
essentially the same as if the client were to run the same
algorithm locally; there is only a negligible additional overhead
due to sending two network messages and computing/verifying
two signatures. This is a feature of Fabricjy which in turn
leverages a feature of Fabric*.

Modeling Fabricj;; as a (real) UC protocol. We model
Fabricgp as a protocol Pgag. in the iUC model [10], with
the structure of the resulting protocol depicted in Figure 5. We
provide a formal specification of all machines in [30]. Here, we
provide a high-level overview of PEXCBEB

One session of PEig. models one Fabricgy instance. There
can be several sessions of Pgag. ~running in parallel. Pggg.
mainly consists of the machines client, peer, and orderer
— one machine instance per protocol participant. The sets of
client, peer, and orderer identities within each session are
arbitrary but fixed and the corresponding machines follow the
specification of the Fabricgy protocol. In each PExg. = session,
there is a single kafka instance. The kafka instance models
an ideal but accountable consensus service that is under the
control of one party. This models the realistic setting that the
entire Kafka cluster is carried out by one service provider in
one data center. In particular, kafka signs the sequence of
messages it distributes to orderers. Fin;; provides the channel
setup to the participants, we use a random oracle F;, to model
hash functions, and the ideal certificate functionality Fe¢ (see,
e. g., [28]) captures secure digital signatures with a PKI.

P,?X%EB allows for dynamic corruption of all participants.
There are no assumptions on the network and communication is
unprotected, i. e., there are no authenticated or secure channels.

8We expect that clients query one peer for a read request. However, one could
also model, e. g., that clients query several peers and only output the response
to the environment £ if all peers provide the same readset and output.



E. Security Analysis of Fabricip

Showing security of Fabriciy, as for any other
accountability-based protocol, involves two major steps.
Firstly, it is necessary to establish the exact evidence required
by and the procedure that a public judge can use to detect
misbehavior and blame parties in Fabric;. Secondly, we then
have to show that Fabricp together with this specific judge
is a secure realization of FZgp FABS and hence achieves all
desired accountability-based propertles In this sense, the judge
can also be seen as part of the specification of Fabricjpy that
we complete in the first step.

Specifying the public judge. Our judge collects evidence from
clients and peers. More specifically, (honest) clients forward
accepted responses to full and smart read requests, i.e., the
signed endorsements containing the desired output generated
by a peer. (Honest) peers forward all blocks that they have
accepted to the judge. This captures the following situation in
reality: at any point in time one or more clients suspecting mis-
behavior can come together to share or publish their knowledge.
They can then run the judging procedure on this information.
If the procedure detects any issues such as inconsistent full
reads or smart reads that were not executed on the data obtained
from full reads, then peers that have been involved with these
requests will be able to prove their innocence by showing their
current copy of the blockchain.

We define the judging procedure as follows. In what follows,
we group logical blocks according to the property that is
checked and the corresponding party that is affected:

Validity (Peers): The judge checks whether blocks provided
by peers are valid, i. e., they have the correct format as required
by Fabricpp and all signatures contained therein are valid. If
a peer provides an invalid block as evidence, then he violates
the Fabricgp protocol (honest peers only provide accepted and
therefore valid blocks as evidence) and the judge therefore
renders a verdict blaming those peers. Note that rendering a
verdict also stops the judging procedure.

This initial check is necessary to be able to detect other types
of misbehavior that might break, e. g., consistency.

Consistency (Peers): If correctness still holds in the current
run, the judge checks whether consistency has been broken
already for peers, i.e., purely based on the blocks that peers
provided. This is the case iff there are two blocks B, B2
reported by peers with the same ID but differing bodies (that
are signed and hence were generated by two not necessarily
distinct orderers according to the previous check). In this case,
the judge computes the verdict as follows: the judge first checks
whether there are two different Kafka messages with the same
ID (and, by the previous check, valid signatures of the Kafka
cluster) in By and Bs. If so, then the service provider running
the Kafka cluster has misbehaved and thus the judge blames
him. Otherwise, all blocks are derived from the same Kafka
message stream, i. e., the two blocks have to differ due to a dif-
ferent number of messages. Since the block-cutting algorithm
of Fabric* and thus of Fabricjp is deterministic and always cuts
blocks at the same position(s), irrespective of the length of the
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message stream that is being processed, we have that at least
one orderer has misbehaved. The judging procedure thus re-
runs the block-cutting algorithm on the Kafka message stream
and blames all orderers that have signed blocks that differ from
the result.

Note that if there has not been a verdict so far, then the judge has
successfully computed a globally unique sequence of messages
that is consistent with the view of all peers (who have provided
evidence).

Consistency (Clients): If a client reports a response to a full
read request which contains an ordered sequence of messages
seq and is signed with a valid signature from a peer p, then
the judge checks whether seq is a prefix of the previously
reconstructed globally unique sequence of messages. If seq is
not a prefix, then the peer p did not or was unable to provide
evidence that seq is a copy of the state of the blockchain. Since
honest peers always can and will provide this evidence to show
their innocence, the judge blames this peer in a verdict.

Smart Read (Clients): Finally, if a client reports a response
to a smart read which is validly signed by a peer p, then the
judge proceeds as follows. Recall that such a response is an
endorsement on the smart contract output (ctr, out), where the
(signed) endorsement also contains the client input clientInput
of the client as well as the ID ¢d of the smart contract. The
judge takes the prefix pre of the globally unique message
sequence computed above up to position ctr and then simulates
the deterministic smart contract with ID ¢d on inputs pre and
clientInput. If the simulated output is different from (ctr, out),
then the peer p misbehaved by providing an incorrect result to
the client (or by not providing his entire copy of the chain to
show his innocence) and hence is blamed in a verdict.

Altogether, by the above reasoning, it already follows that
verdicts of this judge are fair, i. e., never blame an honest party.
Intuitively, we also have that the properties of consistency and
smart read still hold true for all (honest) clients as long as
the judge does not output a verdict: In that case, the judge
was able to compute a globally unique message sequence such
that both full reads and smart reads of all clients (that have
provided evidence) were computed correctly from prefixes of
that message sequence. While the judge does not check whether
those results were computed based on growing prefixes, this is
done by the clients themselves.

Security proof. We can show the following security result as
also depicted in Figure 5:
accC

Theorem 2 (Informal). Let FI5p papy =~ be as defined Sec-
tion IV-C with an arbitrary set of deterministic smart read
algorithms. Let P,?,KCBEB with the public judge as defined above.

Then,

acc
,PFAB]*BB

UC-realizes F 5 pagsy, -

The description and intuition of the public judge above serve as
a proof sketch. We provide the formal proof of Theorem 2 and
the description of the judge as an iUC machine in [30]. As part
of Theorem 2, we show that FabricBB provides smart read. As
detailed in Section I'V-C, it hence directly follows that Fabrich

also provides several additional security properties.
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Fig. 5: Figure of Theorem 2. All machines have access to all
(AUC) subroutines. A is connected to all machines. Dotted
arrows indicate intended message flows.

As an interesting side note, our formal security proof is
structured into two separate steps. First, in a rather simple
initial step we show that an ideal accountable ledger Fif,.,
with certain properties realizes fﬁ%,FABg . By this, we not
only establish the first formal definition of an accountable ideal
ledger functionality F{¢G. ., which is of independent interest.
We also formally verify the corresponding folk wisdom: ledgers
with specific properties can be used to build BBs. The bulk of
the proof then shows that PEXCBEB is such an accountable ledger,
i.e., realizes .., By transitivity of UC security, this gives
the overall result.

F. Discussion

In this section, we discuss important aspects of security
result.

Summary of Assumptions and Abstractions From Reality.
In our model of Fabricip (cf. Figure 5), we use Fcr, which
can be UC-realized with an EUF-CMA secure signature scheme
and a PKI for distributing public keys of the parties running
the BB [14]. We use a random oracle F,, as a setup assump-
tion capturing ideal hash functions. Beyond these standard
cryptographic assumptions, we also assume that all parties
know and agree on the parameters of the underlying Fabric*
channel. This is a standard assumption in the distributed ledger
space [6,26,32] and formalized via Fi,;;, which distributes
the (unbounded but statically fixed) set of participants, genesis
block, and smart contracts to all parties. Finally, we abstract
from the internals of the Kafka cluster and instead model this
as a single machine kafka. We note, however, that this machine
still captures the capabilities of a malicious service provider
running the Kafka cluster that might choose to deviate from the
intended protocol, e. g., by providing inconsistent outputs.
While we model the public judge in Fabricgy as incorrupt-
ible, this is actually not a trust assumption but rather reflects
the fact that the judging algorithm defined in Section I'V-E can
be executed by anyone, including external observers, given the
needed evidence. Hence, if any party such as a client does
not want to trust others or is afraid of faulty judges, then that
party can collect the signed statements and compute the verdict
herself by following the correct judging procedure. Altogether,
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Fig. 6: Performance comparison of Hyperledger Fabric and
Fabric* with an transaction size of 2000 bytes.

we therefore indeed show Theorem 2 without introducing any
assumptions on the network and without assuming that any
parties running Fabrichp are trusted/honest.

Practical Security Guarantees of the Accountable Fabricy .
As already explained in the introduction, accountability is a
very different approach for obtaining security guarantees com-
pared to preventive security, with both approaches complement-
ing each other. Notably, a preventively secure BB provides the
guarantee that, e. g., consistency always holds true no matter
what malicious parties do as long as certain assumptions, in-
cluding the existence of trusted parties are met (cf. Section VI).

In our accountable Fabricf,; a security property such as
consistency can in principle be broken by malicious parties.
For example, a malicious Kafka cluster can decide to deviate
from the protocol by providing inconsistent message sequences
to orderers. This in turn breaks consistency for clients of the
BB. However, accountability w.r.t. consistency guarantees that
based on the inconsistent data provided to clients it is possible
to identify a misbehaving party along with publicly verifiable
cryptographic evidence for the misbehavior such that this party
can be held accountable for the inconsistency. Relying on deter-
rence, as opposed to ensuring that properties cannot be broken
at all as in preventive security, is the main reason why Fabricj
can still provide reasonable security guarantees even when all
parties running the BB are untrusted and might misbehave.’

For a practical deployment of Fabricgy it is therefore nec-
essary to determine suitable penalties which can indeed act
as deterrence, where “suitability” depends on the application
at hand and how much misbehaving parties stand to gain
from breaking, e. g., consistency. This can be determined by a
deterrence analysis (cf. [29]).

V. PERFORMANCE OF FABRIC* RESP. FABRICEB

Fabric;; is essentially an instantiation of Fabric* with a
specific set of smart contracts as well as some added client

9This is also why Theorem 2 does not contradict the well-known FLP
result [25], which roughly states that deterministic consensus algorithms
cannot establish consensus in an asynchronous network: Fabric};; does not
guarantee consensus; it only guarantees that misbehavior will be detected
whenever clients obtain inconsistent states.



logic that is negligible in terms of overhead. Thus performance
of Fabricgy is directly determined by the performance of the
underlying Fabric* channel. So far, Fabric* had neither been
implemented nor evaluated for its practicality. In what follows,
we therefore first fill this gap by providing the missing imple-
mentation, benchmarks, and also comparison to the original
unmodified Hyperledger Fabric. We then discuss how those
Fabric* results carry over to Fabrichp and their implications
for practical deployments of our BB. We provide our Fabric*
implementation and raw benchmark data at [31].

A. Test Setup

We conduct our benchmarks for a single Fabric/Fabric*
channel that consists of four peer organizations, each of them
running two peers and one CA. The underlying ordering service
uses three orderers and a Kafka cluster with four Kafka brokers.
The experiments utilize 17 Ubuntu 20.4 LTS VMs located
in three different data centers.'? of bwCloud: (i) each VM is
equipped with a 60GB hard disk, (ii) instances belonging to the
same organization are placed in the same data center, (iii) the
Kafka-based ordering service is deployed across four 4-vCPU
VMs with 8GB of RAM, and two 8-vCPU VMs with 16GB
of RAM, (iv) peers are placed on different VMs equipped with
16-vCPUs and 32GB of RAM, (v) in each data center, there is
one VM that generates workload, i.e., inputs for clients, via 20
Caliper Workers (see below).

B. Methodology

We measure throughput in terms of messages, resp. trans-
actions, per second (TPS) and latency of our Fabric* imple-
mentation. We also measure both quantities for the unmodified
Hyperledger Fabric v1.4.8 using Kafka-based ordering.

We performed the experiments with Hyperledger
Caliper [40,41], which is the standard tool for benchmarking
Hyperledger Fabric instances. Caliper generates inputs for
clients utilizing a range of smart contracts either at a fixed
or dynamically varying rate and orchestrates the whole test
execution. We set up Caliper such that it inputs a fixed rate
of transactions per second, also called transaction load, into
the tested Fabric* instances. We utilize the standard create
asset benchmark/smart contract which writes transactions to
the blockchain with a predefined transaction size. To cover a
wide range of possible applications, we benchmark transaction
sizes of 100, 1000, 2000, 4000, 8000, and 16000 bytes. For
each transaction size, we further select a reasonable interval
and sampling rate which yields good results. Each experiment
is repeated ten times and results are then averaged.

In our experiments, we use the following configuration:
(i) Client transactions solely require a single endorsement in
their commitment to enter the blockchain. (ii) New blocks are
created from 300 transactions or 2MB of data, whichever is
reached first. (iii) Communication between entities is unen-
crypted.

10The used bwCloud data centers are located in Karlsruhe, Mannheim, and
Ulm.
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C. Results for Fabric*

We present our results for a transaction size of 2000 bytes in
Figure 6 with the other results being available in [30]. Figure 6
shows the average throughput, including the standard deviation
bounds, and the min/avg/max latencies (the time it takes for
an issued transaction to be completed); min is in a darker
blue/yellow and very close to the x-axis, avg is given in solid
colors, and max is indicated via partially transparent colors.
As becomes apparent from the figure, throughput gradually
increases before becoming eventually more stationary.

As expected, the additional signature checks of Fabric* to
achieve accountability result in a slight performance decrease
compared to an unmodified Fabric instance: There is an average
throughput loss of 10.7% with the worst case being 18.1%; this
is irrespective of the transaction size. The change in latency
depends on the transaction size, with average latency increasing
at most by 16.7% and 24.6% for a transaction size of 2000
and 16000 bytes, respectively. For a transaction size of 2000
bytes, Fabric* reaches a maximum throughput of roughly 420
TPS. Using smaller transaction sizes of 100 and 1000 bytes, the
maximum throughput in our setting can be further increased to
roughly 640 and 500 TPS, respectively.

D. Implications for Fabrichp

The create asset smart contract that we use for our bench-
marks of Fabric* performs essentially the same operations as
the write contract used by Fabric. The main difference is that
create asset uses a fixed transaction size. The transaction sizes
that we benchmarked cover a common range of BB item sizes
in particular, such as ballots from e-voting systems [37,45].
Hence, the TPS measured for Fabric* also show the throughput
of Fabricf in terms of how many write requests/items per
second can be added to the BB.

This indicates that the performance of Fabricf;p is sufficient
for many practical applications of BBs. For example, in an
electronic election with typical ballot sizes of about 2000 bytes,
our results indicate that Fabricf;z can add more than 220, 000
incoming ballots to its state in 10 minutes.

Regarding the performance of smart read operations in
Fabrici, note that these are implemented using off-chain
read-only smart contract execution. As already explained in
Section I'V-D, the runtime of a smart read for some algorithm is
therefore basically the same as the runtime needed by a client
for locally running the same algorithm. The only additional and
generally negligible overhead is due to sending two network
messages and computing/verifying two signatures. We there-
fore did not benchmark this operation separately as it would
not provide any new insights.

VI. RELATED WORK

In this section, we discuss and compare closely related works
organized by area.

Accountability for BBs. Several works mention and discuss
that accountability is a desirable mechanism that can or even
should be used to protect the security of BBs, e. g., [19,21,33].


https://www.bw-cloud.org/

BB Proven Properties Security Type Assumptions” Proof Technique / Composability Benchmarks
S - trusted central component (WBB)
- no data injection - > 2/3n honest peers
[21] - receipt-consistency preventive X estp simulation-based / X X
. - static corruption
- non-clashing
- synchronous network
- > 1/2m honest WBB parties
1 - > 2/3n honest peers
[42] hveqess confirmable - static corruption game-based / X X
- persistence .
- partially synchronous network
- global clock
- > 1 honest peers
- dynamic corruption
[36] - final agreement preventive - asynchronous network mechanized / X X
- authenticated channels
- phase-based
- consistency - no trusted BB component/party
- % - smart read, including: - dynamic corruption
Fabrich - 1o data injection accountable - asynchronous network uc/v v
- non-clashing - random oracle

4 All works additionally assume secure (threshold) signature schemes as well as a trusted PKI or equivalently pre-distributed identities. All works also assume that all protocol algorithms

and parameters, potentially including some initial state, are securely distributed.

TABLE I: Comparison of different provably secure BB solutions from the literature.

However, we are the first to formalize the notion of account-
ability for security properties of BBs and the first to prove
accountability of a concrete BB.

Secure BBs in the UC literature. In UC literature, there
exist many ideal BB functionalities, e. g., [4,7, 12-15]. Typi-
cally, these ideal functionalities ensure (i) consistency/consis-
tent view, (ii) total ordering of BB items, (iii) append-only,
and/or (iv) persistence preventively. As explained in detail in
Section ITI-A, to the best of our knowledge all existing ideal BB
functionalities in UC were only designed as setup assumptions
and cannot be UC-realized by an actual implementation of a
BB, which was not the goal of these works anyways.

With 785 and Fi5R we provide the first ideal BB functional-
ities in UC that permit realizations and thus support composing
security results for BBs with applications (cf. Section IV-F). We
are also the first to formally prove UC-security for a concrete
real-world BB.

Secure BBs in other literature. Outside of the UC literature,
there exist several works on implementing BBs. Often, such im-
plementations are directly integrated into and tailored towards
the specific system at hand, e. g., [17,20,21]. Security proofs
are then given for the entire system, not for the integrated BB
itself. The integrated BB cannot easily be used as a building
block for other applications. There are also several papers such
as [34,53] that focus on constructing stand-alone BBs but do
not formalize, let alone prove, their security properties.

There are only three works that formally analyze and prove
the security of (stand-alone) BBs [21,36,42]. Table I sum-
marizes and compares key properties of these BBs with our
Fabricfp. Culnane et al. [21] construct a BB consisting of
n € N peers that receive and forward client inputs to a trusted
component called the Web BB (WBB). They show, among
others, that their construction achieves receipt-consistency.

Kiayias et al. [42] build on and improve the construction
of [21] by, among others, distributing the central WBB among
m parties half of which are assumed to be trusted. They
then show that their BB provides confirmable persistence and
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confirmable liveness. Persistence intuitively states that, once an
honest peer adds an item to its local view of the BB state, then
all other honest peers either agree on the position of this item
or do not have this item in their state (yet). This property is
therefore closely related to our notion of consistency. Confirma-
bility is essentially a strictly weaker version of accountability
that does not require fairness of verdicts: if a security property
is broken at some point, then one can identify a party where
the property broke down. However, this party might not be
malicious but might have been honestly following the protocol.

As a part of their work, Hirschi et al. [36] propose a con-
ceptually very simple BB: n peers are responsible for signing
incoming items and clients interpret items as part of the BB
iff at least v many BB peers have signed it. Hirschi et al.
suggest selecting v = |n — 4+ + 1], where nj, > 1 is the
number of peers that are assumed to be trusted. This con-
struction therefore gives a tradeoff between trust assumption
and performance/availability. Hirschi et al. show that their BB
achieves final agreement which mainly states that, if a client
receives a valid final state of the BB, then this is the same as
for other clients who have received a valid final state. Note that
this property is related to consistency and can be implemented
on top of BBs providing consistency.!!

The approach taken by Hirschi et al. is simple, and while
not discussed in their paper, it might provide an alternative
route for constructing an accountable BB without trusted par-
ties. One of the main reasons why we have designed our BB
based on the more complex Fabric* is due to performance:
Hirschi et al. expect that their protocol needs further modi-
fications and enhancements to achieve availability and scala-
bility as required for practical deployments. Such extensions
might then also require additional mechanisms to retain security
guarantees. In contrast, Fabric/Fabric* is designed specifically
for practical deployments with high throughput and therefore

For example, some party publishes a special “end/final item” marker on the
BB. Clients then accept an output as finalized only if it contains this marker
and ignore anything after that marker. By consistency, any (finalized) output
that a client accepts must therefore be the same as for all other clients.



includes several scalability and availability mechanisms out
of the box [2]. Another functional difference is that, unlike
Fabric*, Hirschi et al.’s approach is not designed to and indeed
does not establish a total order among the BB items.

Altogether, by leveraging accountability our work is the
first to formally prove the security of a BB based only on
standard cryptographic assumptions and without requiring any
trusted BB component or network assumptions. Fabricjj is
also the first BB that is shown to be UC secure and which
can therefore be directly composed with higher-level protocols
while retaining security results for the BB (cf. IV-F).

Alternative approaches to protect against malicious BBs. In
recent works, researchers investigated how (e-voting) systems
can be hardened to remain secure even if the underlying BB is
malicious [18, 36]. In other words, while many works including
ours focus on constructing secure BBs, these works investigate
how to deal with broken BBs at the next protocol level.

Distributed ledgers. There are numerous provably secure dis-
tributed ledgers, including provably UC-secure ones, e. g., [5,
22,26,32,43,54], which, according to folk wisdom, might
be candidates for secure BBs. Before our work, this had not
been formally verified for any ledger and might indeed require
additional modifications as was the case for Fabric*. Also, all
of the aforementioned works rely on strong honesty and/or
network assumptions, such as honest (super-)majorities and
networks without message loss. They are therefore not suitable
for implementing BBs in many applications.

Furthermore, our work is the first to formalize and prove
accountability of a DLT in a UC model as part of show-
ing Theorem 2. More generally, so far the only DLTs with
proven accountability properties (shown via non-UC and
hence non-composable proof techniques) are Fabric* [27]
and the relatively recent DLT construction presented by
Shamis et al. [54] (cf. Section IV-F). Unlike Fabric*, the con-
struction by Shamis et al. still requires some honest parties to
achieve accountability.
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