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Abstract—While accountability is a well-known concept in
distributed systems and cryptography, in the literature on
blockchains (and, more generally, distributed ledgers) the
formal treatment of accountability has been a blind spot:
there does not exist a formalization let alone a formal proof
of accountability for any blockchain yet.

Therefore, in this work we put forward and propose
a formal treatment of accountability in this domain. Our
goal is to formally state and prove that if in a run of a
blockchain a central security property, such as consistency,
is not satisfied, then misbehaving parties can be identified
and held accountable. Accountability is particularly useful
for permissioned blockchains where all parties know each
other, and hence, accountability incentivizes all parties to
behave honestly.

We exemplify our approach for one of the most promi-
nent permissioned blockchains: Hyperledger Fabric in its
most common instantiation.

Index Terms—Accountability, Blockchain, Distributed
Ledger, Distributed Systems, Security, Hyperledger Fabric

1. Introduction

Since the invention of the blockchain in 2008 [52],
interest in this concept in particular and distributed ledger
technology in general has grown rapidly. Initially pro-
posed as a solution for payment systems without a cen-
tral authority, blockchains and distributed ledgers have
evolved into multi-purpose distributed systems with strong
security promises.

While there exists a wide range of established security
notions and formal security analyses for blockchains [8],
[9], [11], [21], [26], [37], [38], [43], [50], [54], there is
an important blind spot in the formal security analysis of
blockchains and distributed ledgers: accountability [44].
On a high level, accountability requires that if certain
security goals of a protocol are violated, then misbehaving
parties can be identified and held accountable for their
misbehavior via undeniable cryptographic evidence, which
incentivizes honest behavior.

Accountability itself is a well-known concept in dis-
tributed systems and cryptography that has already been
applied to a wide variety of settings (see, e.g., [6], [10],
[30], [41], [42], [44]–[46], [49], [62]).

In the context of blockchains, accountability is often
mentioned as a desirable property [12], [20], [24], [35],
[55] and some research papers on blockchains use the
concept of accountability on an informal level [14], [36].
However, there does not exist a formalization let alone
a formal proof of accountability for any blockchain or
distributed ledger yet (see also Section 7).

Therefore, in this work we put forward and pro-
pose a formal treatment of accountability for blockchains,
which we exemplify by a very prominent permissioned
blockchain (see below). With this, we provide a new
formal approach for designing and analyzing blockchains.

This approach is in fact orthogonal to established
security notions for blockchains, such as consistency:
these security notions [26], [54] require that security goals
are always fulfilled under certain assumptions. For exam-
ple, blockchains should always converge to a consistent
state, typically under the assumption of a round-based
network model with eventual message delivery and an
honest majority of participants. In this sense, security
(e.g., consistency) cannot be broken as long as certain
assumptions are fulfilled. We call such security notions
strict in what follows. In contrast, our accountability-
based approach accepts that security goals can be violated.
However, in such a case it is guaranteed that misbehaving
parties can be identified and rightfully blamed for their
misbehavior. Our approach can be used in two ways:

Accountability as a stand-alone property. On the one
hand, accountability is an interesting stand-alone prop-
erty that can be used instead of strict security notions
to obtain (different) security guarantees. Particularly for
permissioned blockchains, where parties know each other
and often collaborate on a contractual basis, having the
guarantee that if some central security goal breaks down,
then misbehaving parties can be identified and held ac-
countable will in many cases be considered a sufficiently
strong property. As demonstrated in this paper and further
detailed below, using accountability as a stand-alone prop-
erty allows for new constructions of secure blockchains
which can leverage one or more of the following fea-
tures: (i) Accountability might already be achievable with
weaker but more efficient components compared to what
is needed for strict goals. For example, as illustrated in
our case study, accountable blockchains can be built from



efficient crash-fault tolerant consensus protocols instead
of more complex Byzantine-fault tolerant consensus pro-
tocols in order to provide accountability w.r.t. consistency.
That is, while a misbehaving party can break consistency,
this party can then be identified and held accountable.
(ii) In order to fulfill accountability properties one might
need less assumptions. For example, in order to show
accountability w.r.t. consistency in our case study, we do
not require an honest majority or networks with eventual
message delivery; strict security notions have not been
proven in this setting for any blockchain yet. (iii) Account-
ability properties might be stronger in some aspects than
strict security notions: as explained for our case study, for
our notion of accountability w.r.t. consistency we require
(and prove for the considered protocol) consistency not
only for blockchains of honest parties but also of dishonest
ones.
Accountability as an additional, orthogonal layer of de-
fense. On the other hand, accountability can be used as an
additional security requirement and another security layer
on top of strict notions: Even in the strict setting, security
can still be broken because the underlying assumptions,
such as an honest majority, might not be fulfilled. In such a
case, with the accountability property in place one can still
identify and blame misbehaving parties. (As mentioned
for the stand-alone case, in order for accountability to
hold true one might need only weaker assumptions, e.g.,
a dishonest majority might be tolerated.) Such parties can
then be excluded from future executions. Moreover, faced
with the prospect of being held accountable, parties might
refrain from misbehaving in the first place, making certain
assumptions, such as honest majority, more likely to hold
true.
Levels of accountability. We note that there are different
levels of accountability (and hence levels of security)
that a blockchain can provide. If, for example, for some
violations of security goals only a group of parties, pos-
sibly from different companies collaborating on the same
chain, can be identified to have misbehaved, but it is only
clear that at least one of the parties within this group
must have misbehaved, then this is an insufficient level
of accountability: no individual party can for sure be held
accountable, and hence, be blamed and punished. To be
sufficient for practical purposes, it should be possible to
hold at least one individual party accountable for misbe-
havior, a property called individual accountability.
Analyzing accountability for blockchains. Our approach
for analyzing accountability for blockchains is based on a
generic accountability framework from Küsters et al. [44],
which we slightly adjust. A key task for instantiating this
framework for the analysis of blockchains is to formalize
appropriate security goals, for which parties can be held
accountability if they are violated. It seems difficult, if
not impossible, to formulate such goals in a way that
applies to all kinds of blockchains and distributed ledgers.
The reason is that even established security goals, such as
consistency, mean different things in different systems: for
some consistency might mean that the complete chains
of different parties are prefixes of each other, for other
systems this might only be required for certain parts
of the chains, e.g., possibly modulo the last T blocks
and/or modulo certain meta-data (where the definitions

of these parts again depend on the protocols at hand),
and yet for others, such as Corda [13], consistency might
rather require that the combination of the partial states of
different parties yields a consistent state.

We therefore chose to exemplify our approach on
accountability for blockchains via a case study of one
of the most important permissioned blockchains: Hyper-
ledger Fabric [2], [33]. Analyzing Fabric within the above
mentioned framework involves instantiating the frame-
work by carrying out the following main tasks: (i) build
an appropriate system model, including a model of cor-
ruption, (ii) formalize the security goals to be achieved,
including, among others, consistency, (iii) specify who is
to be blamed if a security goal is violated, including a
procedure for how to identify misbehaving parties, and
(iv) use the resulting instantiation of the accountability
framework to formally analyze accountability of Fabric
with respect to the specified security goals.

While the details of the above steps are specific to the
protocol at hand, the case study nevertheless illustrates
general techniques and serves as a blueprint for the formal
analysis of accountability of other blockchains as well as
distributed ledgers.
Hyperledger Fabric. Hyperledger Fabric [2], [33], or
short Fabric, is a success story in the blockchain sector
for the Linux Foundation [59]. This permissioned business
blockchain is widely used and accepted by the industry.
Forbes includes more than 20 important companies using
Fabric in the Forbes Blockchain 50 list [22] — a list
of leading companies that are implementing distributed
ledger technology for production usage.

The driving reasons behind the increasing adoption
of Fabric are several unique features tailored towards
industrial contexts, such as a execute-order-validate ar-
chitecture that allows for parallel executions of transac-
tions and thus increases throughput in Fabric over other
blockchains [23], [29] (cf. Section 2). Moreover, Fabric
introduced modularity to blockchain architectures, includ-
ing a pluggable consensus mechanism, i.e., the consensus
algorithm is defined via a “plugin”. This plugin can be
chosen depending on the specific requirements at hand
to create a customized instantiation of Fabric. Out of the
box, Hyperledger ships Apache Kafka [3], [32] (in short,
Kafka) and, very recently, Raft [32], [53] as the only
production ready consensus mechanisms for Fabric, both
of which are only crash-fault tolerant.

Our approach of accountability in blockchains can
in principle be applied to all possible instantiations of
Fabric. In particular, accountability can add a second
security layer to Fabric instantiations based on Byzantine-
fault tolerant consensus mechanisms (e.g., the prototype of
the PBFT SMaRT-based consensus mechanism [18], [57])
which already provide strict security guarantees under cer-
tain assumptions. More interesting for this work, however,
is an instantiation of Fabric using Apache Kafka: Not only
is this the most widely used instantiation in production
setups, it is, as mentioned, also based on a consensus
mechanism that is only crash-fault tolerant, and hence,
does not meet strict security notions in the presence of
active attackers. Therefore, it is interesting to investigate
in how far accountability as a stand-alone property can
help to assess and possibly improve the security of this
widely used instance of Fabric, for which the designers
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deliberately chose a crash-fault tolerant consensus mech-
anism.

In our analysis, we observe that Fabric using Kafka
provides a certain weak level of accountability with re-
spect to the most crucial security goal of blockchains:
consistency. That is, if blockchains of different parties are
inconsistent, one can blame a set of parties with the guar-
antee that at least of one of them misbehaved. However,
that level of accountability, as already argued above, it
insufficient for practice. Hence, we propose small modi-
fications to Fabric with Kafka and show that this slightly
modified version, which we call Fabric*, indeed achieves
individual accountability w.r.t. consistency. We also prove
that Fabric* achieves accountability w.r.t. further security
goals from the literature [2], [8], [9], [11], [21], [26],
[37], [38], [54] (cf. Section 3 and Appendix D). Given
the importance of Fabric in practice, besides illustrating
the formal treatment of accountability, we consider this
result to be of independent interest.

Our case study perfectly illustrates the aforementioned
features of accountability when used as a stand-alone
concept: (i) We obtain reasonable security guarantees for
a blockchain that is based on a crash-fault tolerant consen-
sus algorithm. More generally, the concept of accountabil-
ity enables new types of blockchain constructions that pro-
vide different, but reasonable forms of security guarantees.
(ii) We obtain security results without assuming honest
majorities and in a fully asynchronous network, including
message loss, without assuming a round-based model or
a global clock. Established strict security notions have
not been proven in this setting for any blockchain: proofs
typically rely on the assumptions that the majority of the
parties is honest and that messages are delivered eventu-
ally; assumptions that do not always hold true in reality.
(iii) We show accountability with respect to consistency
even for chains held by malicious parties. In contrast,
existing strict security notions for consistency can only
be shown for chains of honest parties as malicious parties
can trivially change their own chains to be inconsistent.
This shows that accountability allows for enforcing new
security goals that are not covered by existing security
notions.

We emphasize that we do not propose that accountabil-
ity should replace strict security notions. On the contrary,
as mentioned, it is highly desirable to have blockchains
fulfilling both strict security notions and accountability, as
these are orthogonal and complement each other. But in
some cases, such as typical deployments of permissioned
blockchains, accountability when used as a stand-alone
security property can offer an alternative approach to strict
security notions with several advantages.

Summary of our contributions.
• We put forward a formal treatment of accountability

for blockchains.
• We illustrate the use and features of accountability as

a stand-alone property by Hyperledger Fabric, one of
the most prominent and widely used (permissioned)
blockchains in practice.

• We formally define accountability w.r.t. consistency
and other central security goals for Fabric with Kafka.

• We identify individual accountability as the necessary
degree of accountability for Fabric.

• We argue that this instantiation of Fabric does not
provide individual accountability (w.r.t. consistency)
and then formally prove that Fabric*, a slight variant,
satisfies individual accountability (w.r.t. consistency
and other central security goals).

• Our case study, besides being interesting on its own
right given the importance of Fabric, can serve as a
blueprint for formally analyzing accountability of other
blockchains.

Structure of the paper. We introduce the Fabric protocol,
including the Kafka-based consensus mechanism, in Sec-
tion 2. In Section 3, we explain why Fabric using Kafka
does not achieve consistency in the presence of an active
adversary. We also give a first intuition of individual ac-
countability w.r.t. consistency and explain why Fabric fails
to achieve this security notion. We then propose Fabric*,
obtained from slight modifications to Fabric, with a formal
model of Fabric* described in Section 4. In Section 5
we introduce the accountability framework we use. Then,
we formally define accountability w.r.t. consistency in
Section 6 and prove that Fabric* satisfies this property. We
also discuss other security notions besides consistency in
Appendix D, with more details provided in the appendix.
We discuss related work in Section 7. We conclude in
Section 8. Full details are available in the appendix.

2. Hyperledger Fabric

Fabric is designed as a distributed operating sys-
tem [2]. Similar to Ethereum [61], the Fabric blockchain
allows distributed code execution: all transactions in Fab-
ric are calls to code stored in the blockchain. There
is not just a single global instance of Fabric but there
are multiple separate instances running in parallel. Each
instance has its own set of participants, chain, code,
ledger state (derived from the chain), and parameters, thus
allowing different (groups of) companies to run their own
separated Fabric blockchains. Such instances are called
channels. Fabric is a framework that can be instantiated
with different consensus algorithms. As already mentioned
in the introduction, we focus on Fabric using Kafka.

In this section, we first describe the general and ab-
stract protocol of Fabric independently of specific con-
sensus algorithms. We then explain the Apache Kafka-
based consensus mechanism as one possible instance of
a consensus algorithm. In our description of Fabric, we
follow the terminology and presentation of Fabric by
Androulaki et al. [2], which differs slightly from Fabric’s
read-the-docs [34].

2.1. Roles in Fabric

In Fabric, all participants have a role and are assigned
to an organization. One can think of an organization as
a company that takes part in the Fabric blockchain. The
central roles are the following:
Membership Service Providers (MSP) provide access to
the Fabric blockchain. More specifically, MSPs issue
certificates to participants, which include the participant’s
role, organization, and public key.

Clients initiate transactions. They typically obtain in-
puts for transactions from end users. Similar to other
blockchains, clients do not keep a copy of the chain.
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Endorsing Peers or Peers are essentially the “miners”
and “full-nodes” of Fabric. They execute transactions
from clients. They also verify and replicate the chain,
i.e., they keep a copy of the full Fabric chain and allow
clients to query data from the chain.

An Ordering Service is an abstract concept that provides
a “consensus service” in Fabric. The ordering service
is typically instantiated via a distributed protocol po-
tentially using multiple different sub-roles, but it can
also be implemented via a single centralized machine
(cf. the Solo ordering service [32]). This service is one
of the major differences compared to other blockchains.
With this service, consensus and transaction execution
are separated and an execute-order-validate architecture
is established. Transactions from clients are first executed
by (some or all of the) peers; afterwards, transactions
and execution results are forwarded by the clients to the
ordering service. The ordering service forms blocks from
the incoming transactions without re-executing transac-
tions or checking validity. The service then distributes
the blocks to all peers.

Besides these four central roles (MSP, client, peer,
ordering service), there are some additional (sub-)roles
in Fabric, namely administrators, leading peers, anchor
peers, and committing peers. Administrators are allowed
to, e.g., update smart contracts and to add organizations.
The various peer types describe different peers with spe-
cific tasks. For example, leading peers directly receive
blocks from the ordering service and then distribute these
blocks to other peers. While, for simplicity of presenta-
tion, we subsume all peer subroles into a single peer role
and omit administrators, all of our results also hold true
when these (sub-)roles are taken into account.

2.2. The Fabric Protocol

We now describe the Fabric protocol in detail, includ-
ing the precise interactions between the roles described
above.

A set of organizations creates a new Fabric channel by
first externally agreeing on a genesis block. The genesis
block contains an initial setup of the Fabric channel,
including a channel ID, organizations and thus participants
that are allowed to access the channel. For simplicity
of presentation, we also include in the genesis block an
initial state of the channel, smart contracts available in
the channel (i.e., deterministic programs which are called
chaincode in Fabric), and a so-called endorsement policy
for each chaincode; formally, all of this information is also
agreed upon externally but would be installed separately
from the genesis block. We explain endorsement policies
in the protocol description below.

In what follows, we exemplify the execution of the
Fabric protocol by following the path of a transaction from
its initial creation until it becomes part of the blockchain.
Figure 1 depicts the corresponding message flow.

1. Transaction Proposal. To interact with the chain, e.g.,
to read from the chain or to change the state stored
in the chain, a client calls a chaincode by initiating a
transaction proposal. The proposal contains the client’s
identity, the chaincode the client wants to invoke, input
data for the chaincode call, a sequence number, and the

Endorsing Peers

txProposaltxProposal

txProposaltxProposal

txEndorsement1txEndorsement1

txEndorsementntxEndorsementn

txCommitmenttxCommitment

BlockBlock

BlockBlock

C P1 Pn OS

1

2

3

4

C P1 Pn OS

. . .

. . .

Figure 1. Example Message Flow in Fabric with Client C, (endorsing)
peers P1, . . . , Pn, and ordering service OS.

client’s signature over this data. The hash over all of this
data (excluding the signature) is used as transaction ID. A
client requests a subset of peers to execute her transaction
proposal (cf. 1 in Figure 1). The endorsement policy
of the chaincode specifies, besides other things, which
peers and/or how many peers have to execute a proposal.
After having distributed the proposal, clients wait for the
results of the executions from the peers, the so-called
endorsements.
2. Transaction Endorsement. Upon receiving a new
transaction proposal, peers first check whether the client
may actually call the chaincode from the proposal. This
access control mechanism is also specified in the endors-
ing policy. If the proposal fulfills the policy, then peers
execute the proposal, i.e., they run the chaincode with
the input provided in the proposal. The execution of a
proposal is bounded by a threshold computation time to
ensure termination of executions. At the end of a success-
ful execution, a peer generates an endorsement, which is a
confirmation of the peer that the transaction and its results
should become part of the blockchain. An endorsement
contains the identity of the peer, the original transaction
proposal,1 the data that was read from the ledger state
(as defined by the blockchain held by the peer) during
the execution of the transaction proposal (called readset),
and the changes in the state caused by the execution of the
transaction (called writeset). The endorsement is then sent
to the client that initiated the proposal (cf. 2 in Figure 1).

Note that peers do not apply the writesets to their
chain/ledger state yet, i.e., in this phase the execution of
a proposal does not change the local state of the peer.
Also note that, since the ledger state of different peers
may differ (e.g., because a peer has not received the most
recent blocks yet), the writesets computed by different
peers for the same proposal can differ as well.
3. Transaction Commitment. The client receives the

1. According to the specification of Fabric [34], an endorsement has
to contain the transaction ID of the proposal. The endorsement should
contain the transaction proposal, which is what we assume in our
model. However, all of our results also hold true if transaction proposals
themselves are not part of endorsements.
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endorsements. More specifically, she keeps collecting en-
dorsements for her transaction proposal until she has a set
of endorsements such that all of them include the same
readset and writeset and the set of endorsements meets the
endorsement policy (i.e., the set includes sufficiently many
endorsements from the expected set of peers). Then, the
client broadcasts the initial transaction proposal and the
set of endorsements as a so-called transaction commitment
to the ordering service (cf. 3 in Figure 1). A transaction
commitment where the set of endorsements does not meet
the above mentioned requirements is considered invalid.
While invalid transaction commitments sent to the order-
ing service can also be included in the chain (see the next
step below), their validity will later be checked during
block verification. Such invalid transaction commitments
are then ignored for the purpose of deriving the ledger
state from the chain. Hence, clients would typically not
submit such commitments.

4. Block Generation and Distribution. The ordering
service is supposed to create blocks from the transaction
commitments it receives. As mentioned before, for now
we consider the ordering service to be a black box, with
the most commonly used concrete instantiation based on
Apache Kafka described in Section 2.4.

When an ordering service receives a transaction com-
mitment, it stores the commitment for inclusion in an
upcoming block. A block in Fabric consists of a block
number (the ID of the block), a block body, i.e., an
ordered sequence of transaction commitments (including
all endorsements), the hash of the previous block, the
identity of the participant of the ordering service that
formed the block (recall that the ordering service is usually
a distributed system consisting of different entities), and a
signature of that participant over the full block (excluding
the signature field). The hash of the previous block is
computed over the previous block, excluding the block
creator’s identity and the signature. Blocks are created
using sequential block numbers starting at 1. When a new
block is created, the ordering service removes some of its
transaction commitments from its storage, orders them,
and then adds them to the body of a new block. The
resulting block is then sent to the peers in the channel
(cf. 4 in Figure 1).

Importantly, to increase throughput, ordering services
generally do not validate transactions. Thus invalid and
malformed transactions can be part of a block in Fabric;
these are filtered out in the next step.

5. Block Validation and Ledger State Update. Upon
receiving a new block, peers validate whether they accept
the block, i.e., whether the block has the expected format,
contains a valid signature from an orderer identity, and
the block number is as expected (i.e., it increments the
number of the previously accepted block by one). If peers
accept a block, they update their local copy of the ledger
state according to the new block. More specifically, peers
sequentially process transactions from the new block. For
each transaction, they first check validity of the trans-
action, i.e., whether it has the expected format and the
transaction commitment meets the endorsing policy. Valid
transactions are then applied to the local ledger state. In
contrast to, e.g., Ethereum, this is not done by re-executing
the transaction, but rather by using the precomputed read-

and writesets from the endorsements of the transactions.
Peers first check whether the readsets match their current
ledger state (if not, the transaction is marked as invalid
and is not applied to the state) and then apply the changes
from the writesets.
We emphasize the following fundamental differences be-
tween Fabric and other classical blockchains:

Firstly, the separation of (i) execution of transac-
tions (Step 2.), (ii) transaction ordering and block gen-
eration (Step 4.), and (iii) transaction validation (Step 5.)
is the core of the execute-order-validate paradigm. In con-
trast, typical blockchains use the order-execute paradigm
where (i) miners order the transactions into blocks and
propagate the blocks to all full-nodes and (ii) full-nodes
validate and execute transactions if they accept a new
block. The execute-order-validate paradigm enables a high
throughput in Fabric compared to other blockchains [2],
[23], [29]. Note that one of the reasons for the improved
throughput is that peers in Fabric simply trust the writesets
contained in a valid transaction commitment, instead of
recomputing the correct output on their own. Hence, the
endorsement policy should be specified in such a way that
it is reasonable to assume that the set of peers endorsing a
transaction proposal contains at least one honest peer. In
this case, malicious peers cannot manipulate the outcome
of a transaction.

Secondly, in contrast to, e.g., Bitcoin or Ethereum,
there is no longest chain rule or a similar construct that
allows for changing the current chain. Instead, chains
of peers are final in the sense that they only extend
their chains, but never remove/change previously accepted
blocks.

This completes the description of the basic Fabric
framework. Next, we first briefly describe Apache Kafka
and then how Kafka is used in Fabric.

2.3. Apache Kafka

Apache Kafka [3] is a so-called streaming platform. It
is a crash fault-tolerant distributed system optimized for
durability, high throughput, and reliable message distri-
bution. In essence, Kafka provides an (atomic) broadcast
channel: Kafka clients can send messages to the channel,
which are then arranged into a total order. The resulting
message stream can be accessed by the clients, allowing
all clients to obtain the same sequence of messages. We
give only a high-level overview of Kafka that is sufficient
to follow our paper.

Kafka consists of two main components: Kafka clients
and a Kafka cluster. Clients can publish messages in
the Kafka message stream by sending those messages
to the Kafka cluster, and clients can also retrieve the
complete ordered message stream from the Kafka cluster.
The Kafka cluster consists of several machines called
Kafka brokers. One of the brokers is the so-called Kafka
leader. The leader handles all requests from clients. That
is, upon receiving a message from a client, the leader
adds an incremental message ID (a counter), called offset,
to the message and appends the message to the message
stream. Clients can send a request to the leader to obtain
the full message stream. All non-leading brokers provide
redundancy by replicating the state of the leader. If the
leader crashes, then the remaining brokers elect a new
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Figure 2. Ordering and Block Generation with clients C1, C2, orderers
O1, . . . , Om, an Apache Kafka Cluster K, and (endorsing) peers P

leader (via Apache ZooKeeper [4], [31]) who then takes
over the duties of the former leader. In practice, the whole
Kafka cluster, including all broker machines, is usually
run as a service in a data center operated by a single
entity [56], [60].

2.4. Fabric with Kafka-based Ordering Service

In Fabric, a Kafka-based ordering service consists of
two components: multiple orderers (which act as Kafka
clients) and a Kafka cluster. Orderers are typically run
by the various organizations that take part in a Fabric
channel, while the Kafka cluster is, as mentioned, run by
a single organization in a data center. Orderers provide
the external interface of the ordering service to the clients
and peers of the Fabric channel. They receive transaction
commitments, use the Kafka cluster to establish a total
order over the incoming commitments, cut blocks from
this ordered sequence, and finally deliver the blocks to
the peers. We describe each step in more detail in what
follows; an example message flow of two clients submit-
ting commitments is given in Figure 2.

1. Forward Transaction Commitments to Kafka Clus-
ter. Upon receiving transaction commitments from clients
(cf. 1 in Figure 2), orderers forward the messages to
the Kafka cluster. Note that orderers do not perform any
checks, such as checking whether a commitment meets
the endorsement policy.
2. Distribute Ordered Sequence of Transactions. The
Kafka cluster orders the incoming transaction commit-
ments and attaches a message ID to every transaction
(cf. 2 in Figure 2). All orderers then receive an ordered
sequence of transaction commitments from the Kafka
cluster.
3. Block Generation or Cutting. All orderers “cut” the
sequence of transaction commitments into blocks via a
deterministic block cutting algorithm CUTBLOCK. This
algorithm creates new blocks depending on (i) the maxi-
mum number of transactions in a block, (ii) the maximum
size of the resulting block, and (iii) time passed since

the last block. On a technical level, to ensure consistent
block cuts for all orderers in the cases (ii) and (iii), an
orderer running into one of these cases first broadcasts
a special cutting message via the Kafka cluster. This
message contains the ID of the block that the orderer
wants to create via a cut. The Kafka cluster puts this
message into the message stream, just like other messages
(in the context of Fabric those are typically transaction
commitments). This cutting message then tells an orderer
to cut a new block up to this cutting message if the
ID in that cutting message matches their next block ID
(otherwise the cutting message is ignored). The new block
contains all transaction commitments as ordered by Kafka
since the last block. The cutting messages themselves are
not part of a block. In the improved version of Fabric
presented in Section 3, this is different: blocks will contain
more information.

Orderers then add their name to the new block and sign
the whole block. Thus, blocks from different orderers are
supposed to be equal content-wise but differ in some of the
meta-data, i.e., block creator and signature. All orderers
push the resulting blocks to peers (not necessary all peers,
see next).

In a typical Fabric setup using a Kafka-based consen-
sus algorithm, (i) every organization runs its own peers to
keep a copy of the chain, (ii) all organizations participate
in the distributed ordering service, i.e., all organizations
run at least one orderer as part of this service, (iii) orderers
usually push blocks to all peers in their own organization,
and (iv) if clients need to retrieve data from the chain,
they usually query peers within their own organization; as
explained, a state change (via a transaction) might involve
sending transaction proposals to several peers also outside
of the own organization, depending on the endorsement
policy.

3. Accountability of Fabric with Kafka

To analyze accountability of Fabric with Kafka, we
first have to state the security goals that we want to ensure
via accountability. For this purpose, we first recall security
goals of (public) blockchains from the literature, including
consistency, the most important goal. It is quite obvious
that, by construction, Fabric using Kafka does not satisfy
consistency as a strict security goal (in the sense of the
introduction). But, as we will observe in Section 3.2,
Fabric also does not guarantee individual accountability
w.r.t. consistency, i.e., while consistency might be broken,
it might not be possible to blame individual parties for
their misbehavior (only a set of parties, which is insuf-
ficient). We thus propose some slight modifications to
Fabric with Kafka to improve accountability; we denote
this modified version by Fabric*. In Section 6, we then
show that Fabric* indeed provides individual accountabil-
ity w.r.t. consistency as well as w.r.t. several other common
security goals for blockchains, including those discussed
next.

3.1. Security Goals of Blockchains

Garay et al. [26] and Pass et al. [54] established the
following security notions for public blockchains: con-
sistency, chain-quality, chain-growth, and liveness. In the
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following, we briefly recap all security goals and discuss
their applicability to Fabric.

Consistency (also called common-prefix) states that the
chains of honest participants share a common prefix. Con-
sistency is the most essential security goal for blockchains
as it is a necessary requirement for obtaining a shared
global (ledger) state.

Chain-quality states that the percentage of blocks of
a chain that were created by malicious miners is upper
bounded. This notion assumes that each block of a chain
has exactly one unique “creator” and can thus be con-
sidered as either honestly or maliciously created. This,
however, is generally not true for Fabric, e.g., when using
Kafka: all of the orderers create and sign a block for every
block ID. Hence, the goal of chain-quality is not directly
applicable to the setting of Fabric. Conceptually, chain-
quality is mainly used in public blockchains to argue that
there is no censorship of transactions and thus to prove
the security goal of liveness (see below).

Chain-growth states that, over time, a blockchain con-
tinues to grow. This is a necessary goal for blockchains
which use the longest chain rule: If the blockchain stopped
growing, it would allow for, e.g., 51%-attacks or long
range attacks [27], where an attacker tries to overwrite
some history of the chain by creating a malicious fork
that is longer than the current chain. However, since in
Fabric peers only extend their chains without changing
previous blocks (which implies so-called finality), Fabric
is not vulnerable to this class of attacks.

Liveness states that transactions cast by honest clients
will eventually be included in the blockchain. Liveness
clearly is a desirable goal of blockchains.

Other security goal. In addition to the above standard
security goals, the designers of Fabric want to achieve the
following goals [2]: (i) Hash chain integrity states, roughly
speaking, that all honest peers share the same hash chain
(according to Fabric’s block definition), (ii) No skipping
states that honest peers do not have gaps in their chain
(i.e., all blocks in the chain of a peer have sequential
IDs), and (iii) No creation states that chains of honest
peers always consist of transactions cast (and signed) by
Fabric clients.
Since consistency is the most important and fundamental
security goal of blockchains, in our presentation, we focus
on this goal. Except for chain-quality, which is not directly
applicable to Fabric using Kafka, we, however, also cover
all other mentioned goals in our work (see Appendix D).

3.2. Security Goals of Fabric

As already mentioned earlier, Fabric using Kafka triv-
ially does not provide consistency in the presence of
misbehaving participants. For example, a corrupted Kafka
cluster can distribute messages in different orders to dif-
ferent orderers. Hence, the blocks that orderers build from
those transactions will also be different and in particular
define different ledger states. Even if one were to assume
that Kafka operates honestly, there would still be other is-
sues. For example, corrupted orderers can deliver different
blocks to different peers, again violating consistency.

While this would be devastating for any anonymous
public blockchain, Fabric is a permissioned blockchain

where the real identities of participants are known. So
while consistency cannot be guaranteed in a strict sense,
we put forward the idea of (individual) accountability,
which so far has not been considered for blockchains.
That is, if consistency is violated it should be possible to
hold (individual) parties accountable for their misbehavior.
More specifically, there should be cryptographic evidence
that rightfully convinces all parties – parties who are part
of the channel, but also external observers or an auditor –
that one or more specific parties misbehaved. Such parties
would then face punishment and image loss, which should
deter them from misbehaving in the first place.

Therefore, our goal is to show (individual) account-
ability w.r.t. consistency for Fabric. This would then for-
mally guarantee that consistency either holds true or we
can blame at least one individual participant for breaking
consistency. Unfortunately, we find that Fabric with Kafka
does not achieve this goal either: there are cases where
consistency is broken but one cannot uniquely identify a
misbehaving party. For example, if there are two peers
with different chains where each chain individually is
valid (signatures verify etc.) but the two chains are in-
consistent, say both contain a block with the same block
number but the blocks contain different transactions, then
it is not clear who misbehaved. It could, as mentioned
above, be that the Kafka cluster has maliciously sent
different transaction sequences to different orderers or it
could be that a malicious orderer has not formed blocks
correctly, given the transaction sequence received from
the Kafka cluster. It is not clear who to blame, the data
center running the Kafka cluster or some of the orderers.
The orderers and the data center typically all belong to
different organizations and companies, and hence could
and would put the blame on one another. So, no individual
party could be held accountable, which is insufficient in
practice.

3.3. An Individually Accountable Fabric Protocol

In order to obtain individual accountability for Fabric
with Kafka, we have to modify the protocol. In principle,
one could add the PeerReview [30] system on top of
Fabric with Kafka: PeerReview is a generic protocol that
can be added to an arbitrary (deterministic) protocol to
make said protocol (individually) accountable. While this
would improve accountability of Fabric with Kafka to the
desired level, this approach comes with a few downsides:
(i) PeerReview assumes eventual message delivery and
loosely synchronized clocks, (ii) PeerReview runs in an
additional layer on top of the actual protocol, requires
complete message logs from all parties, and produces a
communication overhead by requiring parties to broadcast
information on their current state, and (iii) to identify
misbehaving parties, PeerReview requires “auditors” to
recalculate the full internal state of suspects. Hence, a
simpler solution tailored specifically towards Fabric with
Kafka and with less overhead is preferable. In particular, it
should be possible to identify misbehaving parties solely
based on blockchain data instead of requiring separate
message logs.

Therefore, instead of using the generic PeerReview
system, we rather propose some minor modifications to
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Fabric with Kafka; we denote this modified version by
Fabric*.

Jumping ahead, we first note that Fabric* indeed
achieves individual accountability w.r.t. consistency solely
based on blockchain data with small overhead. This result
holds true for dynamically corruptible participants in fully
asynchronous networks. In particular, we do not need
additional assumptions such as honest majorities or net-
works with eventual message delivery, which are common
assumptions in the analyses of other blockchains.
Modifications to Fabric. We obtain Fabric* from Fabric
with Kafka by two small changes.

Firstly, we essentially have the Kafka cluster sign each
message it includes in its (ordered) message stream. Recall
that the stream contains mostly transaction commitments,
but also other messages such as cutting messages from
orderers. We use Merkle trees [51] to make the signing
process more efficient. More specifically, the resulting
messages distributed by Kafka are of the following form:
(id, pid,msg,mr,mp, s) where id is the message ID (i.e.,
the counter of the enumeration), pid is the identity of the
Kafka leader that signed this message, msg is the message
payload (usually a transaction commitment), mr is the root
of the Merkle tree, mp is a Merkle proof that proves that
(id, pid,msg) is a leaf of the Merkle tree with root mr,
and s = SIGNsk(pid)(mr) is a signature of the root mr
from pid. Importantly, the signature on a message is also
over the message’s ID, which is a consecutive number that
uniquely defines the order of all messages. In Appendix A,
we provide a detailed specification of this change.

Secondly, we require that orderers cut blocks by
including a complete consecutive section of the Kafka
message stream, including all message IDs and valid
signatures, without dropping any messages. In particular,
there may be no gaps (according to the message IDs,
which must be consecutive) within one block and across
consecutive blocks. Note that this means that also mes-
sages which cannot be parsed as transactions, such as
cutting messages, are included in blocks. This removes
any ambiguity that might otherwise be present at different
orderers, e.g., due to dropped messages on the network,
and effectively changes the computation of the blocks to
be a deterministic function on the same content across
all orderers. Thus, all honest orderers generate the same
(prefix of the) “correct” chain, allowing us to identify
misbehaving orderers by comparing their outputs to this
“correct” chain. Peers are changed accordingly, i.e., they
now also check whether a new block meets the above
criteria and reject those blocks that do not pass the check.

4. Security Model of Fabric*

We now describe the formal model that we use to
analyze and show accountability of Fabric* (formal def-
initions of all machines used in our model are presented
in Figure 4 to 16 in Appendix B. Table 1 in Appendix B
summarizes the structure of important message types).
Our basic model is similar in spirit and inspired by those
of Garay et al. [26], Pass et al. [54], and the recent work
on the Ouroboros family [8], [21], [37], [38]. However, as
already mentioned and further explained below, it differs
in important aspects.

E

A PF

!C !P J !O K

RO !FsigFinit

subroutines

Figure 3. IITM Model of Fabric*: the upper layer of machines in PF
are connected via tapes to the environment E and via tapes to the lower
layer/subroutines Finit, RO, and Fsig. Furthermore, all machines in PF
are connected via tapes to A.

We first explain a few high-level points of our mod-
eling: We model Fabric* in the IITM model [39], [48],
a model for universal composability similar to the UC
model [16]. We model a fully asynchronous setting, i.e.,
with message loss and without assuming rounds or a
global clock. This is in contrast to most analyses of other
blockchains, including the above mentioned works, which
require networks with bounded message delay to show
their security results and use rounds and/or clocks to
model, e.g., limited access to computational resources.
We also model full dynamic corruption of parties without
assuming any limitations on, e.g., the number of corrupted
participants. This is again in contrast to most analyses of
other blockchains, which generally need assumptions on
the number of honest parties such as, e.g., an honest ma-
jority. Furthermore, we provide a wide range of options to
the adversary who is, for example, able to choose/change
the Kafka leader arbitrarily and initiate block cutting
messages at any point in the run. For simplicity of pre-
sentation, we model a static, but arbitrarily big number of
participants that does not change throughout a run of a
system.

Modeling the Fabric* Protocol. In the following, we
describe our model in detail. We start by giving a brief
overview of the IITM model that is sufficient to under-
stand our Fabric* model and analysis.

IITMs are probabilistic Turing machines which can
communicate via connected input and output tapes. A set
of IITMs is called a system; in such a system, IITMs
can be marked via a special so-called bang operator “ !”.
For example, M1 | !M2 is a system consisting of two
IITMs M1 and M2. In runs of a system Q, written Q(1η)
where η ∈ N is the security parameter, there can be
multiple instance of machines marked by “ !”, but only
a single instance of each of the other machines. Only one
instance is active at a time, which can send messages to
other instances via a connected tape; that instance then
becomes active. Different instances of one machine can
be addressed by unique IDs. In our Fabric* model, these
IDs are party IDs of the participants.

We model our Fabric* protocol via the following
system of IITMs

PF := !C | !P | !O | K | J | Finit | !Fsig |RO
(cf. Figure 3). Here the machine C is a client, P is
an (endorsing) peer, and O is an orderer. There can be
multiple instance of these machines/roles (indicated by
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“!”), where each instance models one participant with
a unique participant ID (PID) running in that role. The
machine K models the Kafka cluster, i.e., a single instance
subsumes all Kafka brokers (see below). Finally, J is
an IITM called judge, used for accountability, i.e., it
has to render verdicts on misbehaving participants (cf.
Section 5 and Section 6.2). All of these machines have
three subroutines that they directly connect to, namely
an ideal signature functionality Fsig (where each instance
models one key pair of a participant), a random oracle
RO, and an ideal initialization functionality Finit (which
models system parameters including the genesis block).
The protocol PF runs with a network attacker A, mod-
eling (fully asynchronous) network communication, and
an environment E that orchestrates the run. As usual, the
runtimes of the different entities are defined in such a way
that the combined system E |A |PF runs in polynomial
time in the security parameter (cf. [48]).

The initialization machine Finit is parameterized by
chaincodes, endorsement policies, and the sets of PIDs
of the participants for each role of the Fabric* channel.2
At the start of the run, E triggers Finit which then re-
trieves public signature keys of all participants from Fsig;
these keys are provided to other participants, modeling
a (certificate based) public key infrastructure. We note
that, while E is an arbitrary environment and can thus
technically also trigger other machines first, PF is defined
in such a way that nothing much would then happen.
Afterwards, roles follow their specification according to
our Fabric* protocol (cf. Section 2.2 and Section 3.3)
while using the subroutines Finit to obtain parameters,
participant lists, and public keys, using Fsig to sign and
verify messages, and using RO to compute hashes. More
specifically, transaction proposals from clients are initiated
by E , who provides the external input that is used in the
transaction. We do not explicitly model a (global) clock,
which is used in reality to decide when a block cutting
message should be sent by an orderer; we instead allow
the adversary A to issue such messages at arbitrary points
(via an arbitrary orderer). All communication between the
roles is done via an unprotected network, i.e., messages
are sent to the network attacker A who is then free to
modify, forward, or drop messages arbitrarily. Note that
we do not include secure channels; while they can be
desirable to protect privacy of the data in the blockchain,
they are not needed for our results.

The Kafka cluster requires some additional explana-
tion. We model Kafka via an IITM K which internally
emulates all Kafka brokers. In particular, K signs incom-
ing messages with the key of the current Kafka leader and
then outputs a globally unique message stream. We allow
the adversary A to choose and change the current leader of
the Kafka cluster (who is the one that signs new incoming
messages) arbitrarily at any point in the run. This safely
over-approximates real behavior, where the leader might
change, for example, due to crashes.

In addition to their regular protocol tasks, peers also
forward all accepted blocks to the judge J via a directly
connected tape. These blocks are used as evidence by the
judge J to detect and blame misbehaving participants.

2. Thus, Finit not only models externally agreed upon parameters but
also models the membership service provider of Fabric*.

In reality, this models that peers with, e.g., inconsistent
chains would provide these chains to other parties (e.g.,
other peers or external observers) who would then figure
out which participant caused the problem (cf. Section 6.2
for a more detailed explanation).

Modeling Corruption. The adversary A can dynamically
corrupt any instance of C,P,O, and K during the ex-
ecution of the protocol. Upon corruption, the adversary
obtains full control over the corrupted instance, i.e., the
instance acts as a message forwarder for the adversary.
This, for example, allows for signing messages via Fsig

in the name of the corrupted instance or reporting arbitrary
data to the judge in the name of a corrupted peer.

In the case of the roles C,P , and O, a corrupted
instance models a single corrupted/malicious participant.
In the case of K, corruption models that the entity that runs
the Kafka cluster is corrupted and hence no longer ensures
correct operation. As mentioned before, the whole cluster
is typically run by a single entity. This entity should be
accountable for any errors produced by the Kafka cluster.

The adversary may also dynamically corrupt arbitrary
instances of Fsig. If an instance of Fsig is corrupted,
this allows the adversary to forge signatures in the name
of the corrupted instance, modeling that the adversary
gained access to the signing key. Because this allows the
adversary to impersonate the participant that owns this
key, we also consider an instance of C,P, or O to be
(implicitly) corrupted if the instance of Fsig that is used
for signing is corrupted. Similarly, we consider K, which
uses multiple instances of Fsig for multiple brokers, to be
corrupted if at least one of these instances/signature keys
is corrupted, again following the intuition that in this case
the entity operating the Kafka cluster can no longer ensure
correct operation.

We do not allow corruption of Finit, RO, or the
judge J . Finit models trusted system parameters that
all participants have externally agreed upon, as well as
a trusted membership service provider; thus, Finit is a
trusted component of the system. Similarly, RO models a
secure hash function. The judge J is an abstract judging
algorithm that identifies misbehaving participants. Such
an algorithm must be run honestly to obtain meaningful
results.

5. Accountability

Our formal definition of accountability w.r.t. consis-
tency (and the other security goals mentioned in Sec-
tion 3.1), presented in Section 6, is based on the generic
accountability framework by Küsters et al. [44]. We now
recall and slightly adapt this framework, starting with
some intuition.

5.1. Intuition

In general, it is not necessary (or even possible)
to penalize every type of misbehavior of a party. For
example, a corrupted party might run different internal
computations, which, however, yield outputs that are “as
good” as outputs computed by an honest party.

Instead, one wants to capture that if certain (crucial)
security goals are violated in a protocol run, then one
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can hold some parties accountable for the violation. Such
goals can be, e.g., correctness of the output in runs of an
MPC protocol [10] or correctness of election results [44].
In this work, among others, one main goal is consistency
of blockchains, which, as mentioned, we formalize in
Section 6. Holding a party accountable is formalized via
a so-called judge, as already mentioned in the previous
section. A judge, also called a judging procedure, is a
special algorithm that, throughout the protocol run, gath-
ers data (evidence) from some or all of the participants
and renders a verdict on a group of participants once
it detects misbehavior. Intuitively, one requires that the
judge renders a verdict once a goal is violated, and never
blames a group where everyone was honestly following
the protocol (these two properties are called completeness
and fairness). In reality, such a judging algorithm can be
used by protocol participants, external auditors, or real
judges to determine misbehaving (groups of) parties.

In the general version of accountability, a judge is
allowed to blame a group of parties where it is not
clear which exact party/parties misbehaved (fairness of
the judge only guarantees that at least one person in
that group was misbehaving). As already discussed in the
introduction, this is too weak in practice, which is why we
aim for individual accountability, as mentioned before.

5.2. Formal Definition of Accountability

We now formalize the intuition given in the previous
section. While we follow the accountability framework
from [44], we slightly adapt and extend the framework to
(i) allow the judge to render a verdict at any point of a
run (instead of only at the end of a run) and to (ii) work
for dynamic corruption (instead of only static corruption).

Let Q be a system of IITMs that includes a judge IITM
J and let A be a set of participants (sometimes called
agents). Typically, participants p ∈ A are interpreted as
PIDs, and p usually correspond to exactly one instance of
a machine in a run of Q.

A verdict of J is a boolean formula ψ built from
propositions of the form dis(p) where p ∈ A. A propo-
sition dis(p) of a judge expresses that p (supposedly)
violated the protocol w.r.t. a goal. To illustrate verdicts,
consider the following examples for p1, p2 ∈ A: If a judge
renders the verdict dis(p1)∨dis(p2), then he claims at least
one of the parties p1, p2 has misbehaved; analogously, a
verdict dis(p1) ∧ dis(p2) expresses the claim that both p1

and p2 misbehaved. We denote the set of all verdicts by
V .

The correctness of a verdict at some point in a run
is defined as follows: Let ω be a run of Q and let bωc
be some point in the the run ω. We set dis(p) to true at
point bωc iff the party p exists and is corrupted at point
bωc. This is extended to verdicts (boolean formulas) in the
obvious way. We write bωc |= ψ to say that the verdict is
true at bωc; we write bωc 6|= ψ otherwise.

The “violation of a goal” of a protocol is formalized
via properties of runs. Formally, a property α of a protocol
Q is a subset of all runs of Q. Intuitively, α contains
all runs of Q where the desired property is violated; for
example, we later consider a property α that contains
all runs where consistency of Fabric* is violated. Every
property α is accompanied by a so-called accountability

constraint, which formalizes minimal verdicts that are
expected from the judge for runs in α. Such constraints
can be used to specify, e.g., that a judge should render
a verdict on at least one specific party of the protocol.
Formally, an accountability constraint C of Q is of the
form C := (α ⇒ ψ1 | · · · | ψk) where α is a property
of Q and ψ1, . . . , ψk ∈ V are one or more verdicts. Such
a constraint says that J , in a run from α, should output
a verdict ψ that (logically) implies at least one of the
verdicts ψ1, ..., ψk. Note that the judge is allowed to render
stronger verdicts or verdicts that imply multiple verdicts.
We say that J ensures C in a run ω of Q if either ω /∈ α
or at some point of the run ω the judge J states a verdict
ψ that implies one of ψ1, . . . , ψk.

For example, for Fabric* we later consider an account-
ability constraint of the form
C := (α⇒ dis(p1)| . . . |dis(pm)|dis(o1)| . . . |dis(ol)|dis(K))

for peers pi, orderers oi, and the Kafka cluster K where α
essentially contains all runs where consistency is violated.
So C requires that if consistency is violated in a run,
the judge has to blame at least one of the mentioned
parties individually in that run; by the fairness property of
accountability (see below) it is guaranteed that this party
indeed misbehaved. More technically, for example, a ver-
dict dis(o1)∧dis(K) from the judge meets the requirement
of C as it implies dis(o1) as well as dis(K), i.e., there
are two individual parties that are blamed. In contrast, a
verdict dis(o1) ∨ dis(K) would not be sufficient.

An accountability constraint C = (α⇒ ψ1 | · · · | ψk)
is said to achieve individual accountability if for every
i ∈ {1, . . . , k} there exists an identity p such that ψi
implies dis(p). In other words, each ψi, i ∈ {1, . . . , k}
determines at least one misbehaving party. Clearly, the ex-
ample constraint above achieves individual accountability.

A set Φ of accountability constraints for a system
Q is called an accountability property of Q. We write
Pr [Q(1η) 7→ ¬(J : Φ)] to denote the probability that the
judge J does not ensure C for some C ∈ Φ in a run of
Q(1η), where the probability is taken over the random
coins of the run and 1η is the security parameter given
to the IITMs. That is, intuitively, we would like to ensure
all accountability constraints in Φ. Furthermore, we denote
by Pr [Q(1η) 7→ {(J : ψ) | 6|= ψ}] the probability that the
judge J states a verdict ψ at some point bωc of a run of
Q(1η) such that bωc 6|= ψ, i.e., the judge renders a false
verdict.

Definition 1 (Accountability). Let Q be a system of IITMs
that includes a judge J and let A be a set of agents. Let
Φ be an accountability property of Q.

We say that J ensures Φ-accountability for Q (or Q
is Φ-accountable w.r.t. J) iff

1. (fairness) Pr [Q(1η) 7→ {(J : ψ) | 6|= ψ}] is negligi-
ble as a function in η,3 and

2. (completeness) Pr [Q(1η) 7→ ¬(J : Φ)] is negligi-
ble as a function in η.

3. A function f : N → [0, 1] is negligible if, for every c > 0,
there exists η0 such that f(η) ≤ 1

ηc
, for all η > η0. A function f is

overwhelming if 1− f is negligible.
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6. Security and Accountability of Fabric*

In this section, we analyze security goals of Fabric*
using the concept of accountability. We start by formally
defining consistency. We then propose the novel notion of
(individual) accountability w.r.t. consistency and show that
Fabric* meets this notion. The remaining security goals
from Section 3.1 are analyzed in Appendix D. We believe
that all of our definitions and concepts should be easy to
adapt to other (permissioned) blockchains as well.

6.1. Defining Accountability w.r.t. Consistency

Standard definitions of consistency/common prefix of
blockchains have been introduced in [26], [54]. These def-
initions essentially state that two honest participants that
hold a blockchain always share the same chains, except for
potentially the last T blocks. We will show that Fabric* is
accountable with respect to an even stronger definition of
consistency: intuitively, we define consistency to hold true
if, for every two participants, the chain of one participant
is a prefix of the chain of the other participant. This
definition is stronger in two aspects: Firstly, we do not
have to allow for a potential divergence in the last T
blocks. Secondly, our definition also includes dishonest
participants.

In the following, we refer to what we call reported
blocks to denote the blocks B = (j, prevHash, B, pid, s)
that peers send to the judge J where j is a block number,
B is a block body, pid is the ID of the orderer that gener-
ated the block, prevHash is the hash over its predecessor
block, and s is the orderer’s signature over the block.

In order to define consistency, it is convenient to
require that a chain at least follows the basic parsing
and verification rules of the blockchain protocol. We call
this goal basic correctness (see also the remark before
Definition 3), which is somewhat similar to chain-level
validity as introduced by [9]. With this, we can now define
consistency of Fabric*. We later enforce both consistency
and basic correctness via accountability.

Definition 2 (Consistency of Fabric*). Consider a run ω
of the system E|A|PF, for some environment E and some
adversary A that satisfies basic correctness. Let P be the
set of peer identities (as specified as a parameter of Finit).
Let bωc denote one point somewhere in the run ω. Let
p1, p2 ∈ P and let

Bi1 = (1, prevHashi1, B
i
1, pidi1, s

i
1), . . . ,

Biidi = (idi, prevHashiidi , B
i
idi , pidiidi , s

i
idi)

be all blocks reported by pi up to point bωc for i ∈ {1, 2}
and id1, id2 ∈ N. We say that p1 and p2 share a prefix at
point bωc if B1

j = B2
j for all j = 1, . . . ,min(id1, id2).

The IITM system E|A|PF satisfies consistency in ω iff
all pairs of peers p1, p2 ∈ P share a prefix at every point
during the run ω.

In contrast to typical definitions of consistency, our con-
sistency definition merely requires that peers agree on the
order and contents of block bodies. There are three reasons
for this difference: Firstly, agreement on block bodies is
already sufficient for all peers to obtain an identical ledger
state, so there is no reason to require agreement on other
parts. Secondly, the construction of Fabric, resp. Fabric*,

allows for the same block (ID) to be created and signed by
different orderers, so it is not possible to show agreement
on the full blocks. Thirdly, agreement of hashes (which do
not include orderer IDs and signatures and hence should
still be identical for different peers) is already covered
separately by the security goal hash chain integrity; if
desired, one could add agreement on hashes to be part
of the consistency definition – this would not change our
results.

For Fabric*, we would like to show that every run
provides either both basic correctness and consistency or
we can hold someone accountable for misbehaving. This is
captured in the notion of (individual) accountability w.r.t.
consistency, which we define via Φ-accountability. Note
that in the following definition we specify three properties,
α1, α2, and α3, that each cover a violation of one of
the requirements of basic correctness as well as a fourth
property α4 that captures a violation of consistency. In
fact, formally we define basic correctness to be satisfied
for a run if it does not belong to α1 ∪ α2 ∪ α3. Also, α4

defines exactly those runs which satisfy basic correctness
but violate consistency (see Lemma 1). We remark that all
properties α1, α2, α3, and α4 are defined to be disjoint
sets of runs. This simplifies the security proof.

Definition 3 (Accountability w.r.t. Consistency). We con-
sider runs of the IITM system E|A|PF, for some environ-
ment E and some adversary A. Let P = {p1, . . . , pm}
be the set of peers, let O = {o1, . . . , ol} be the set of
orderers, and let K be the set of Kafka brokers as specified
in the parameters of Finit. Let A = P∪O∪{K} be the set
of identities that should be held accountable, where K is
a special symbol that denotes the whole Kafka cluster. In
the following, let msgK := (idK, pidK,msg,mr,mp, sK) be
a Kafka message and B = (idB, prevHash, B, pidB, sB)
be a block. We now define the following four properties
(predicates on runs):
α1 (well-formed data): α1 includes all runs where
peers report data to the judge that violates any of the
following four requirements: (i) Reported data can be
parsed as a block B and components of the block body
B have correct data types. (ii) The block body B of a
reported block B can be parsed as a sequence of Kafka
messages msgK. (iii) The sequence of blocks that a single
peer reports is in consecutive order without gaps (i.e., if
a block with ID idB is reported, then the next reported
block has ID idB+1) and the first block has ID 1. (iv) The
sequence of blocks that a single peer reports contains,
in the block bodies, a consecutive sequence of Kafka
messages msgK without gaps such that the first message
has ID 1.4
α2 (role compliance): α2 includes all runs that are not
in α1 and where a peer reports a block B such that
(i) pidB /∈ O or (ii) the block body B includes a Kafka
message msgK where pidK /∈ K.
α3 (signature validity): α3 includes all
runs that are not in α1 ∪ α2 and where
a peer reports a block B such that
(i) VERIFYSIGpk(pidB)((idB, prevHash, B), sB) = false
or (ii) the block body B includes
a Kafka message msgK such that

4. We note that well-formed data includes the security goal of no
skipping as defined by Androulaki et al. [2].

11



VERIFYMERKLEPROOF5((idK, pid,msg), mr, mp) =
false or VERIFYSIGpk(pidK)(mr, sK) = false.
α4 (consistency): α4 contains all runs that are not in⋃3

i=1 αi and where two peers report blocks
B = (idB, prevHash, B, pidB, sB) and

B = (idB, prevHash, B, pidB, sB)

such that B 6= B.
Overall, we set α :=

⋃4
i=1 αi. We define an account-

ability constraint C for α as follows:
C := (α⇒ dis(p1)| . . . |dis(pm)|dis(o1)| . . . |dis(ol)|dis(K)).

That is, if basic correctness or consistency is violated, then
the judge must blame at least one individual from the set
A of participants. We define the accountability property
Φ := {C}.

We call PF (individually) accountable w.r.t. to consis-
tency if for all environments E and adversaries A we have
that E|A|PF achieves Φ-accountability.

In Section 6.3, we prove that PF provides (individual)
accountability w.r.t. to consistency.

Trivially, the above definition of accountability
w.r.t. consistency indeed covers the expected security
goals of basic correctness and consistency, i.e., runs where
one of the properties is violated belong to α.

Lemma 1. Let E be an environment and A adversary.
Let Ω be the set of runs of E|A|PF that satisfy basic
correctness and consistency. Let α be as defined above.

Then it holds true that α is the complement of Ω.

6.2. The Judging Procedure

Before we can prove that Fabric* achieves individual
accountability w.r.t. consistency, we have to specify the
judging procedure, i.e., by what evidence the judge blames
which parties.The formal definition of J as an IITM can
be found in Figures 13 and 14 in Appendix B. Before we
specify the judging procedure, we discuss what the judge
resembles in reality.
What the judge models in reality. Recall that, in our
model, (honest) peers report blocks that they accept to
the judge, who can then use this information to render
verdicts. In reality, this corresponds to the situation where
an error in the chain(s) of one or more peers was found,
and those chains are then given to other parties (e.g.,
other peers or independent third parties) to determine who
caused this error.

For example, if a client suspects that consistency is
violated, say, because the data received upon a request
from one peer is suspiciously inconsistent with the data
received from another peer, the client would notify the
organizations that take part in the Fabric* channel about
the inconsistency. The organizations would inspect the
chains of both peers following the judging procedure
to determine whether a party misbehaved. If one of the
peers refuses to provide the requested data he is trivially
guilty of disrupting the protocol. Note that this process
indeed requires basic correctness: a peer should not be
able to escape a verdict by providing malformed evidence.
In addition to clients suspecting problems, peers might
(be required to) exchange data from time to time to see
whether there are inconsistencies.

Once an error has been detected and the judge has
identified a misbehaving participant, organizations then
agree out of band on the “correct” chain (e.g., by drop-
ping all blocks after an inconsistency) and continue from
there. Note that individual accountability acts as a strong
deterrence and hence errors such as inconsistent chains
should generally not occur in practice.

Specification of the judging procedure. At the start of
a run, the judge J obtains basic information about the
Fabric* channel from Finit, including the sets of identities
of peers, orderers, and Kafka brokers. During the run,
(honest) peers immediately report all blocks that they
accept to J . The judge J first stores those reported blocks
as evidence for verdicts. If no verdict has been issued so
far, the judge then continues to check whether he has to
issue a verdict due to the newly received block:

1. Basic Correctness. The judge starts by checking
whether basic correctness has been violated, i.e., whether
the current run is in

⋃3
i=1 αi. Note that this is indeed

possible as all of those properties are defined over the
evidence/blocks submitted to the judge. Further note that,
according to their specification, honest peers also check
those properties of blocks accordingly and will neither
accept nor report a block that violates basic correctness
(for their own chain). Thus, if a block causes a violation,
then the judge blames the peer that reported that block.
2. Consistency. If basic correctness still holds true in the
current run, then the judge checks whether consistency has
been violated, i.e., whether the current run is in α4. As
defined, this is the case iff there are two reported blocks
B1,B2 with the same ID but differing bodies (generated
by two, not necessarily different orderers). The verdict is
then computed as follows: The judge first checks whether
there are two different Kafka messages with the same
ID (and valid signatures) in B1 and B2. If so, then this
inconsistency was caused by the Kafka cluster who is
supposed to generate unique messages per ID, and hence
the Kafka cluster is blamed. Otherwise, (at least) one
of the orderers has cut the chain at a wrong point, i.e.,
the block ends too early or too late. To find the culprit,
the judge checks whether B1 follows the rules of the
CUTBLOCK algorithm: That is, B1 must (i) contain the
maximum number of Kafka messages such that none of
those messages is a valid cut message, or (ii) contain at
most the maximum number of Kafka messages as well as
a single valid cut message that is the last of the Kafka
messages. If this check fails, the orderer who generated
B1 is blamed. Otherwise, the same checks are performed
for B2, potentially resulting in a verdict on the orderer
that generated B2.

6.3. Proving Accountability

In this section, we present our main theorem: Fabric*
achieves (individual) accountability w.r.t. consistency, i.e.,
Φ-accountability. Together with Lemma 1 this theorem
says that Fabric* achieves basic correctness and consis-
tency in the absence of a verdict of the judge J . Should
basic correctness or consistency be violated at some point,
the judge would rightly and individually blame at least one
party.
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Due to lack of space, we provide the formal analysis of
the remaining security goals from Section 3.1 for Fabric*,
namely, chain-growth, liveness, hash chain integrity, and
no creation in Appendix D.

Theorem 2 (Fabric* achieves accountability w.r.t. con-
sistency). Let PF be the Fabric* protocol with arbitrary
parameters for Finit and the judge J defined as in Sec-
tion 6.2. Then, it holds true that PF achieves individual
accountability w.r.t. consistency.

We briefly discuss the core ideas of the proof, with
the full proof given in Appendix C.

Proof Idea. We have to show two properties, fairness and
completeness.
Fairness. Firstly, we prove that the judge J does not
render a wrong verdict in a run of E |A |PF, i.e., verdicts
must evaluate to true (except for a negligible set of
runs). This mostly follows from the reasoning given in
Section 6.2 and the fact that, by the definition of Fsig, an
adversary cannot forge signatures for honest parties. Note
that here we benefit from the construction of the block
cutting algorithm CUTBLOCK, which allows for deter-
ministically recomputing a block from the Kafka message
stream contained in such a block. Thus, all blocks from
an honest orderer will be the same as the re-computation
of the judge. Hence, honest peers and orderers will not be
blamed by accident.

There is, however, one special case that requires fur-
ther attention: the Kafka cluster does not directly sign
messages, but rather builds a Merkle tree and then signs
its root. Thus, if an adversary finds a different message
body and Merkle proof with the same Merkle root or if he
can create a different Merkle proof for the same message
body and Merkle root, he can re-use a signature of an
honest Kafka cluster to create inconsistent Kafka stream
messages and thus cause an incorrect verdict. However,
one can reduce both cases to a collision in the random
oracle (see, e.g., [19]). As collisions have only negligible
probability for polynomial time systems, the judge issues
a wrong verdict with at most negligible probability.
Completeness. We have to prove that if a run of E |A |PF
belongs to α =

⋃4
i=1 αi, then the judge J renders a verdict

that blames at least one of the peers, orderers, or the Kafka
cluster. Observe that, according to the judging procedure,
all verdicts of the judge blame an individual party or the
Kafka cluster directly.

As explained in Section 6.2, if a run is in
⋃3
i=1 αi,

then the judge will notice this and blame the peer that
caused the violation. If the run is in α4, i.e., consistency is
violated while basic correctness holds true, then either the
judge blames the Kafka cluster for distributing different
messages, or we know the Kafka message stream in one
conflicting block is a (real) prefix of the Kafka message
stream of the other block. This essentially follows from
basic correctness (in particular, this is where we need that
there are no gaps in the Kafka message streams contained
in the chains) and the fact that this is the first inconsistent
block ID. Hence, the blocks are inconsistent only because
they end at different points of the Kafka message stream.
By definition of CUTBLOCK, both orderers should have
cut the stream at the same endpoint (as they agree on the
same prefix of the Kafka message stream). This implies

that the final check of the judge fails for at least one of
the orderers, who is then blamed.

All of our security results are shown for an ideal
signature functionality Fsig. In Appendix E, we show that
all results carry over if Fsig is replaced by its realization
Psig (cf. Figure 17 and [47]) where signing is done
using an EUF-CMA secure signature scheme (existential
unforgeability under chosen message attacks). While this
result uses that Psig realizes Fsig in the usual UC sense
(see e.g., [47]), the result does not follow immediately
from UC composition theorems.

7. Related Work

Most of the established literature on blockchain se-
curity (see, e.g., [8], [9], [11], [21], [26], [37], [38],
[54]) does not use accountability or the closely related
concept of covert adversaries [5], [7]. While there are
several works that mention accountability as a concept for
blockchains [12], [14], [20], [24], [25], [35], [36], [55],
none of them formalizes let alone proves accountability.
Perhaps the closest to our work is the work by Karame
et al. [36], who suggest countermeasures against double-
spending in Bitcoin by identifying misbehaving parties.
While this work uses the underlying intuition of account-
ability — namely identifying a misbehaving participant —
to show a formal statement about double-spending, they
do not use the concept of accountability itself in a formal
way.

As discussed in detail in Section 3.3, Haeberlen et
al. [30] introduce PeerReview to add accountability on
top of an arbitrary (deterministic) protocol. PeerReview
has several drawbacks that typically make solutions tai-
lored to the protocol at hand preferable (cf. Section 3.3).
Furthermore, Haeberlen et al. do not provide a formal
security proof for their system.

8. Conclusion

In this paper, we put forward the formal treatment
of accountability for (permissioned) blockchains and dis-
tributed ledgers. As an orthogonal property to strict secu-
rity notions, on the one hand, accountability can serve as
an additional security layer for blockchains and distributed
ledgers. On the other hand, as a stand-alone property in its
own right, accountability opens up alternative and interest-
ing ways of analyzing and constructing secure blockchains
and distributed ledgers with other, partly weaker assump-
tions (e.g., no eventual message delivery and no honest
majorities) and security goals that in some aspects are
stronger.

We successfully illustrated this approach by a rigor-
ous analysis of an (improved) instance of Hyperledger
Fabric, a very successful and widely used blockchain in
the industry. In addition to the formal treatment of ac-
countability, given the wide spread use of this blockchain,
the results obtained in our case study are of independent
interest. We expect this approach to also prove useful for
the analysis of a wide range of existing (permissioned)
blockchains and distributed ledgers, such as Tendermint-
based blockchains [1] and Corda [13].
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Altogether, the formal treatment of accountability is a
powerful tool that opens up new options for blockchain
(security) research. Our approach also provides a formal
foundation for formalizing and proving the informal ac-
countability claims that are commonly found in many
blockchain specifications.
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Appendix A.
Adding Signatures to Kafka

In this section, we detail our first change to Kafka for
Fabric* that was briefly discussed in Section 3.3.

Recall that, on the input side, a Kafka leader gets
requests to add messages to the stream. On the output
side, orderers and other Kafka brokers pull new messages
from the Kafka leader. Now, for efficiency reasons, instead
of having a Kafka leader sign each message it puts into
the message stream, we use Merkle trees [51] as follows.
The Kafka leader collects incoming messages until the
first request for delivering new messages arrives. For all
newly collected messages, the Kafka leader then orders
and enumerates the messages, forms a Merkle tree with
theses messages, and signs the root of the tree. More
specifically, the resulting messages are of the following
form: (id, pid,msg,mr,mp, s) where id is the message
ID (i.e., the counter of the enumeration), msg is the
message payload (usually a transaction commitment), pid
is the identity of the Kafka leader, mr is the root of
the Merkle tree, mp is a Merkle proof that proves that
(id, pid,msg) is a leaf of the Merkle tree with root mr,
and s = SIGNsk(pid)(mr) is a signature of the root mr
from pid. By this, only one signature is necessary for all
messages in one Merkle tree. These messages are put into
the message stream in the appropriate order and given
to the entity who requested new messages. For messages
that have already been ordered and delivered once before
(and hence, for which a Merkle tree has already been
formed), the leader simply reuses the messages that were
sent before (including their Merkle root, Merkle proof,
and signature).

We note that we include the Merkle proof in every
message since messages from the same Merkle tree might
be part of multiple different blocks.

Appendix B.
An IITM Model for Fabric*

Before we present full details of our Fabric* modeling
PF with formal specifications given in Figures 4 to 17, we
first have to recall some concepts and notation of the IITM
model.

B.1. The IITM Model

This section briefly recaps the general computational
model of IITMs as initially presented by Küsters [39]. We
rely on the revised version of the paper [48].

In the IITM model, inexhaustible interactive Turing
machines or short IITMs (probabilistic Turing machines)
are connected to other IITMs via tapes. There are named
input and output tapes. Every output tape connects to at
most one input tape of the same name at a different IITM.
If an IITM (instance) receives a message on an input tape,
it first runs in mode CheckAddress to decide whether
the currently active instance is the intended receiver of
the incoming message (according to some specified deter-
ministic polynomial time algorithm). If an IITM instance
accepts a message (as it is the intended receiver of the
message), that instance switches to mode Compute (see

below) and processes the message. An IITM outputs at
most one message on an output tape at the end of an
activation; that message is then delivered to the input tape
of the same name (if no such tape exists or the IITM does
not output a message at the end of its activation, then the
environment is activated with empty input).

A set of (connected) IITMs is called a system of IITMs.
In a system, an IITM can be in the scope of a bang,
i.e., marked with the bang operator “!”. In a run of a
system, there can be multiple instance of IITMs that are
in the scope of a bang but at most one instance for other
IITMs. The first IITM to be activated during a run is
called master IITM; this is generally a machine of the
environment. During a run, if an IITM M receives a
message m on some input tape, the first instance of M
(if any) is run in CheckAddress to determine whether
it accepts the message; if it does, then it processes m in
mode Compute. If the message is rejected, then the next
instance of M runs in mode CheckAddress and so on,
where instances are ordered by when they were initially
created. If no existing instance of M accepts and M is in
the scope a bang, or there is no instance of M yet, then a
fresh instance is created and run in mode CheckAddress.
If it accepts, then the fresh instance gets to process the
message in mode Compute; otherwise the fresh instance
is deleted and the master IITM (i.e., the environment) is
activated with empty input.

The runtime notions of the IITM model requires that
the overall runtime of IITM systems in mode Compute
is bounded via a polynomial in the security parameter
plus the length of the external input, but does not make
any provisions on how the runtime is internally distributed
between several instances/machines. Importantly, in both
the CheckAddress and Compute modes the runtime
of an IITM cannot be exhausted, i.e., it can always at
least read incoming messages and perform a polynomial
amount of work. Hence, the name inexhaustible interactive
Turing machines.

B.2. Notation in the IITM model

IITMs are specified in pseudo code. Most of our
pseudo code notation follows the notation as introduced
by Küsters [48].

The description in mode Compute consists of
blocks of the form recv 〈msg〉 from 〈tape〉 s.t.
〈condition〉:〈code〉 where 〈msg〉 is an input pattern, 〈tape〉
is an input tape and 〈condition〉 is a condition on the
input. 〈code〉 is the (pseudo) code of this block. It is
executed if an incoming message matches the pattern and
the condition is satisfied. More specifically, 〈msg〉 defines
the format of the message m that invokes this code block.
Messages contain local variables, state variables, strings,
and maybe special characters such as “?”. To compare a
message m to a message pattern msg, the values of all
global and local variables (if defined) are inserted into
the pattern. The resulting pattern p is then compared to
m, where uninitialized local variables match with arbitrary
parts of the message. If the message matches the pattern
p and meets 〈condition〉 of that block, then uninitialized
local variables are initialized with the part of the message
that they matched to and 〈code〉 is executed; no other
blocks are executed in this case. If m does not match p or
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〈condition〉 is not met, then m is compared with the next
block. Usually a recv from block ends with a send
to clause of form send 〈msg〉 to 〈tape〉 where msg is a
message that is send via output tape tape.

If an IITM invokes another IITM, e.g., as a subrou-
tine, IITMs may expect an immediate response. In this
case, in a recv from block, a send to statement
is directly followed by a wait for statement. We write
wait for 〈msg〉 from 〈tape〉 〈condition〉 to denote that the
IITM stays in its current state and discards all incoming
messages (in mode Compute) until it receives a message
m matching the pattern msg and fulfilling the wait for
condition. Then the IITM continues the run where it left
of, including all values of local variables.

B.3. Formatting Conventions

To clarify the presentation and distinguish different
types of variables, constants, strings, etc. we follow and
extend the naming conventions of Camenisch et al. [15]:

1. (Internal) state variables are denoted by sans-serif
fonts, e.g., a, b.

2. Local (i.e., ephemeral) variables are denoted in
italic font.

3. Keywords are written in bold font (e.g., for oper-
ations such as sending or receiving).

4. Commands, procedure, and function names are
written in SMALL CAPITALS.

5. Strings and constants are written in monospaced.

B.4. Message Formats and Functions in Fabric*

Next, we define the structure of different messages
and objects in Fabric*. Furthermore, we introduce a set of
(deterministic) algorithms that we use in the description
of the Fabric* model. Table 1 gives an overview over
important messages in the Fabric* model.

The formal specification of PF is presented in Figures
4 to 14.

B.4.1. Blockchain Related Objects. In this section we
give an intuitive as well as a formal description over the
different blockchain related objects. Let η ∈ N be the
security parameter. Our following descriptions are based
on the following parameters and inputs within a run ω of
E|A|PF. Let C ⊂ {0, 1}∗ be the set of client identities,
P ⊂ {0, 1}∗ be the set of peer identities, O ⊂ {0, 1}∗
be the set of orderer identities, and K ⊂ {0, 1}∗ be the
set of Kafka broker identities as stored in Finit in run
ω. According to the specification of PF, it holds true that
C ∩ P ∩ O ∩ K = ∅. Further, we denote the channel ID
by channel ∈ N and by chaincodes ⊂ N the set of
available chaincodes in the channel (as stored in Finit in
run ω). Instead of the ideal functionalities that we use in
the model, we describe the messages based on a crypto-
graphic hash function h : {0, 1}∗ → {0, 1}η (modeled via
a random oracle in PF) and a digital signature scheme
({0, 1}∗,GEN(1η), SIGN,VERIFYSIG) (modeled via an
ideal signature functionality Fsig in PF). All identities
are equipped with a verification/secret key pair and par-
ticipants know the verification keys of other participants
(according to the initialized data). We denote the secret

key, resp. the verification key of a party pid by sk(pid),
resp. pk(pid).

We denote by · the wildcard symbol.

Transaction Proposals. We denote a message of the form
(txid, pid, seqNum, channel, chaincodeId, txPayload, s) as
transaction proposal where txid ∈ {0, 1}η is a transaction
ID, pid ∈ C is a client identity, seqNum ∈ N is a clients
transaction counter, channel ∈ N is a Fabric* channel ID,
chaincodeId ∈ N is an ID of an chaincode that should be
invoked, txPayload ∈ {0, 1}∗ is a transaction payload that
includes a specific function call and input data for the
call, a signature s = SIGNsk(pid)(pid, seqNum, channel,
chaincodeId, txPayload) over the transaction proposal
signed by pid. A transaction proposal is well-formed if
txid = h(pid, seqNum, channel, chaincodeId, txPayload,
s), channel = channel, and chaincodeId ∈ chaincodes
is an available chaincode in the channel. The transaction
validation function wT outputs true if the above proper-
ties are fulfilled, otherwise false. Furthermore, we call a
transaction proposal correct if it is well-formed, pid ∈ C,
and s is a valid signature over the message signed by pid.

Transaction Endorsements. A transaction endorsement
is a message of the form (txide, pid, seqNum,
chaincodeIde, txProp, readset, writeset, s) where
txide, seqNum, and chaincodeIde are defined as above.
seqNum is the endorsement counter of pid. Furthermore,
pid ∈ {0, 1}∗ is the identity of an endorsing peer,
txProp ∈ {0, 1}∗ is a transaction proposal (as defined
above), readset ∈ {0, 1}∗ is a string (that represent the
input from the channel state that is used to execute the
transaction proposal), writeset ∈ {0, 1}∗ is a string (that
represents the output of the execution of a transaction
proposal), and s = SIGNsk(pid)(txide, pid, seqNum,
chaincodeIde, txProp, readset, writeset). We call an
endorsement well-formed if txProp is well-formed, txide
matches the txid in txProp, and chaincodeIde matches the
chaincodeId in txProp. We call a transaction endorsement
correct if it is well-formed, txProp is correct, pid ∈ P,
and s is a valid signature signed by pid.

Transaction Commitments. A transaction commit-
ment contains at the beginning the initial transac-
tion proposal from the client followed by a sequence
of transaction endorsements. Thus, it has the form
(txProp, txEnd1, txEnd2, . . .). It is well-formed, resp. cor-
rect if txProp and txEnd1, txEnd2, . . . are well-formed,
resp. correct. The function wTC output true if a trans-
action commitment is well-formed, otherwise false.

Message Stream. We usually call the sequence of mes-
sages K (ordered by a Kafka cluster) a message stream.
In our adapted Kafka protocol, an entry in the message
stream includes actual message and some additional infor-
mation. It is a sequence of entries of the form (n, pid,msg,
mr, mp, s) where n ∈ N denotes the offset or message
number/ID, pid ∈ {0, 1}∗ the identity of the Kafka leader
at message ID n, msg ∈ {0, 1}∗ an arbitrary message,
mr ∈ {0, 1}η the root of a Merkle tree, mp ∈ {0, 1}∗
a Merkle proof proving that (n, pid,msg) is a leaf of
the Merkle tree with root mr, and s = SIGNsk(pid)(pid,
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Name Message Structure S R Description
Proposal (PROPOSE, txid, c, nT , channel, chaincodeId, txPayload, sT ) C P Call of chaincode
Endorsement (ENDORSED, p, txid, nE , chaincodeId, tx, readset,writeset, sE) P C Vote for proposal
Commitment (COMMIT, c, txid, txProp, txEnd1, txEnd2, . . .) C O Request transaction commitment
Block Delivery (DELIVER, blockNumber, h, B, o, sB) O P Block distribution
Kafka Delivery (DELIVER, channel, startOffset, T ′) K O Stream segment distribution
Chain Evidence (EVIDENCE, blockNumber, h, B, o, sB) P J Forward accepted blocks

S denotes the intended sending IITM, R denotes the intended receiving IITM, commands are not repeated in other message types

Variables: c is a client identity, nT is a sequence number of c, txPayload specifies function call and input, tx = c, channel, chaincodeId, txPayload,
sT = SIGNsk(c)(tx), txid = H(tx, sT ), where H is a collision resistant hash function, p is a peer identity, nE is a sequence number of p,
sE = SIGNsk(p)(p, txid, nE , chaincodeId, tx, readset,writeset), txProp is a transaction proposal, txEnd1, txEnd2, . . . are endorsements, o is an orderer identity,
h is the previous block hash, B is a block body, sB = SIGNsk(o)(blockNumber, h, B) startOffset is an offset number, T ′ is a segment of a Kafka message
stream, T ′ starts at offset startOffset, and S is a state.

TABLE 1. IMPORTANT MESSAGES IN THE IITM FABRIC* MODEL

mr) the signature of the Merkle root signed by pid.8
We call a message stream K well-formed if the mes-
sage number is strictly monotonously increasing from 1
without gaps. We call K correct if it is well-formed,
for all messages (i, pidi,msgi, mri, mpi, si) occurring
in K it holds true that pidi ∈ K, the verification of
the Merkle proof outputs true for every message ID,
i.e., VERIFYMERKLEPROOF(〈i, pidi,msgi〉,mri,mpi) =
true,∀i = 1, . . . , |K|, and for all message IDs the
signature over mri is a valid signature of pidi.

Blocks. A block B in Fabric(*) is an object of the form
(blockNumber, prevHash, B, pid, s) where blockNumber ∈
N is a sequential number which denotes the posi-
tion of a block in a chain, prevHash ∈ {0, 1}η ∪
{⊥} is the hash of the previous block in a chain
or a hash over some initial state Sinit in case of
blockNumber = 1, B ∈ {0, 1}∗ is the block body con-
taining a subsequence of a message stream K, i.e., the
block body B is of the form ((n, pidn,msgn, sn), (n +
1, pidn+1,msgn+1, sn+1), . . .) (with variables as intro-
duced above, pid ∈ {0, 1}∗ denotes the identity of an
orderer, and s = SIGNsk(pid)(blockNumber, prevHash,
B, pid) is a signature over the block signed by pid. We
denote the set of blocks by B. We call a block B ∈ B
well-formed according to some predecessor block B =
(blockNumber, prevHash, B, pid, s) or initial state Sinit,
if prevHash = h(B), blockNumber = blockNumber + 1,
resp. prevHash = h(Sinit) if blockNumber = 1, and
B contains a consecutive subsequence of a well-formed
message stream K starting at the highest message ID from
B or 1 in case of blockNumber = 1. We call a block
correct if B is well-formed regarding its predecessor,
pid ∈ O and s needs to be a valid signature of pid.

Chain. A chain chain is a (consecutive) sequence of
blocks, i.e., chain = (B0,B1, . . .). We call a chain well-
formed if every block in chain is well-formed according
to its predecessor block, resp. the initial state and the
message stream in chain is a consecutive sequence of
messages starting at message ID 1. A chain is correct
if it includes solely correct blocks. We denote the set of
chains by C including ε as the symbol for an empty chain.

B.4.2. Abbreviations and Fixed Algorithms. In the de-
scription of the Fabric* model, we use several abbre-

8. For details on Merkle trees, Merkle tree and proof generation and
proof verification, we refer to [58]

viations and fixed algorithms. We explain them in this
chapter.

Applicable Transaction - APPLICABLETX. On input a
state S and a transaction commitment tx, the function
APPLICABLETX outputs true if tx is applicable to S, i.e.,
the readset from the endorsements in tx are equal and can
be extracted from S. Otherwise, APPLICABLETX outputs
false.

Block Validation - vB. On input B, where B is a block
body of a block B ∈ B, vB outputs true if B is well-
formed, false otherwise.

Extract Highest Message ID - EXTRACTMAXMSGID.
On input a chain ∈ C, it outputs the highest message
ID on the underlying message stream (extracted from all
block bodies ind chain), otherwise ⊥.

Extract Starting Message ID - EXTRACTMINMSGID.
On input a segment on a message stream K (i.e. a consec-
utive subsequence of a well-formed message stream K) or
a block body B, it outputs the smallest message ID from
K′, otherwise ⊥.

Get Public Key of party pid - pk(pid). Short form
for “look for the public key of pid in your state”. More
precisely, the public key of identity pid in the relevant
sets (C,P,O,K) and output it. We sometimes use a similar
notation for handling a secret key sk(pid) of pid. However,
in the formal model, handling of secret key is modeled via
Fsig and not done explicitly.

Append for sets and strings. Let a be some element
or a string, we write O.append(a) to denote O ← O ∪
{a} in case if O is an (ordered) set and O.append(a)
denotes O ← O||a in case that O and a are strings. If
O = (o1, . . . , on)(n ∈ N) is a sequence, O.append(a) :=
(o1, . . . , on, a).

Append verdicts. This notation is only applicable to
the variable verdicts. Let ψ be some verdict then
verdicts.append(ψ) is a abbreviation for verdicts ←
verdicts ∧ ψ.

Read from verdicts. If we write “pid ∈ verdicts” for
some pid that means we check whether an expression of
the form dis(pid) is part of the verdicts string.
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Apply Block to State - applyBlock. The deterministic
polynomial time algorithm applyBlock is a parameter for
the execution of our Fabric* model. Let S ⊂ {0, 1}∗ be a
state and B = (n, prevHash, B) ∈ B be a block. We write
S.applyBlock(B) to denote S $← applyBlock(S,B).

Extract Channel - EXTRACTCH. Outputs the channel
ID of different message types according to the messages
specifications in Table 1.

Extract Channel Message ID - EXTRACTMESSAGEID.
The algorithm EXTRACTMESSAGEID outputs the current
message ID. On input a message stream K it outputs the
highest message ID in K.

Extract Transaction Proposal - EXTRACTPROP. Out-
puts the transaction proposal txProp from transaction com-
mitment (cf. Table 1)

Extract Block Body - EXTRACTBODY. Let
B = (blockNumber, prevHash, B, pid, s) ∈ B.
EXTRACTBODY(B) outputs B.

Merkle Proof Generation - GENMERKLEPROOF. The
algorithm gets as input a sequence of messages and an
index x. It outputs Merkle proof for the message at
position x. Note that it is possible to generate a Merkle
proof in O(log(n)) where n is the length of the input
sequence. For a detailed specification, we refer to [58].

Merkle Proof Verification - VERIFYMERKLEPROOF.
The algorithm gets as input a message, a Merkle root, and
a Merkle proof. It outputs true or false. Note that it
is possible to evaluate a Merkle proof in O(n) where n is
the size of the Merkle proof. For a detailed specification,
we refer to [58].

Appendix C.
Accountability of Fabric* w.r.t. the Judge -
Proof

In this section, we present the full proof of account-
ability w.r.t. consistency for the Fabric* (cf. Theorem 2).

Proof. Let PF be the Fabric* protocol as required by the
theorem, and let E be an arbitrary environment and A be
an arbitrary adversary.9 We have to show that E |A |PF
provides Φ-accountability, where Φ is the one from Defi-
nition 3.

Let us start with some general observations. We know
that signatures of honest participants cannot be forged
by the definition of Fsig. Furthermore, if we look at the
common case occurring in runs where first a signature in
a block is checked by an (honest) peer, then this block
is reported, and finally the signatures in that block are
checked again by the judge, then we have that the signa-
ture check outputs the same for all three points in time.
This is because the validity check of Fsig is a deterministic
function over the input (which is the same message)
and the internal state of Fsig (which does not change

9. As mentioned in Section 4, runtimes are defined in such a way that
E |A |PF runs in polynomial time (see [48]).

between those three points; in particular, the adversary is
not activated in-between and cannot change the corruption
status).

We now show that E |A |PF provides Φ-accountability
by proving fairness and completeness.

Fairness. We have to show that Pr [Q(1η) 7→ ¬(J : Φ)] is
a negligible function in η, i.e., the judge’s verdicts evaluate
to false (when they are issued) in at most a negligible
amount of cases.

Observe that, by the definition of J , all verdicts are of
the form dis(p) for a participant p of the protocol. Hence,
it suffices to argue that, for every role r, the probability
that J renders the verdict dis(p) for some honest party p
of role r is negligible (we denote this property by (*) in
what follows); this then immediately implies fairness.
Clients: There is never a verdict that contains a client.
Hence, (*) trivially holds true for clients.

Peers: Let p be an honest peer (in some run). The judge
J outputs dis(p) as verdict if one of the basic correctness
properties α1, . . . , α3 is violated by a block B1 sent by
p.
Observe that peers have a direct (authenticated) connec-
tion to the judge which guarantees that no other party can
report data in the name of p. Hence, if the judge blames
p due to a block B1 that violates basic correctness, then
this block was submitted by p itself. Since p is honest,
he will only submit blocks that pass all of the following
checks: (i) The block is well-formed (α1), (ii) The block
including the Kafka messages satisfies role compliance
(α2), (iii) and contains valid orderer signatures, Kafka
broker signatures, and Merkle proofs (α3). By this, we
know that p never reports a block that violates either of
the properties α1, . . . , α3 and thus dis(p) is never part of
a verdict. This implies (*) for peers.

Orderers: Let o be an honest orderer (in some run). This
implies that signatures of o are unforgeable.
The judge can potentially issue a verdict dis(o) only
for the property α4. That is, dis(o) can only be part
of a verdict if there are two inconsistent blocks B1,B2

reported by peers such that at least one of the blocks has
a valid signature from o.
If there are such two conflicting blocks, then exactly one
of them was created by o (as signatures are unforgeable
and honest orderers create unique blocks for each block
ID). W.l.o.g., let B1 be the block created by o. Now, J
outputs the verdict dis(o) only if B1 was not created by
using CUTBLOCK, i.e., B1 should contain the maximum
number of Kafka messages that are allowed per block
and no valid cut messages before the end, or it should
end with the first (valid) cutting message contained in
that block while not exceeding the maximum number of
messages. Since o is honest, the block B1 exactly follows
those rules and hence o will not be blamed. This implies
(*) for orderers.

Kafka Cluster: Let K be an honest Kafka cluster (in some
run). In particular, this implies that the signature keys of
all Kafka Brokers in Fsig are still uncorrupted and hence
signatures in the name of any broker/the whole cluster
cannot be forged.
The judge only includes dis(K) in a verdict if he finds
two Kafka messages with the same ID, different message
bodies, valid Merkle proofs, and valid signatures on the
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Parameters:
p {polynomial bounding the runtime of the algorithms provided by the adversary

Tapes: from/to IOCE : (ioinE,C , io
out
E,C); from/to NETC : (netinA,C , net

out
A,C); from/to IOCRO: (ioinRO,C , io

out
RO,C);

from/to IOCFsig
: (ioinFsig,C

, ioout
Fsig,C

); from/to IOCFinit
: (ioinFinit,C

, iooutFinit,C
);

State: – pidC ∈ {0, 1}
∗ {Public address of the instance

– seqNum ∈ N, initially seqNum = 0 {Sequence number, replacement for the timestamp
– PC ⊆ P× {0, 1}∗

{
The set of peers including their public key pk , PC := {p | (p, ·) ∈ PC}

– OC ⊆ O× {0, 1}∗
{

The set of orderers including their pk , OC := {o | (o, ·) ∈ OC}
– txPropSet ⊂ {0, 1}∗, initially txPropSet = ∅ {The storage for transaction proposals
– endorsments ⊆ {0, 1}η × {0, 1}∗, initially endorsments = ∅ {The endorsement storage
– chaincodes ( N, channel ∈ N {The set of known chaincode ids and the current channel ID
– vepa {Algorithms check whether endorsement policies are met
– corrupted ∈ {true, false} {Indicates whether the client is corrupted

CheckAddress: accept input (pidC , x) on any tape.
Initialization: Upon receiving the first message (pidC , x) in mode Compute do:

send (pidC , INITCLIENT) to IOCFinit

wait for (pidC , 〈INITCLIENT,PC ,OC , chaincodes, channel, vep, corrupted〉) from IOCFinit

Compute: In the following, by “recv m from IOCFsig
[id]” we denote “recv (pidC , id,m) from IOCFsig

” and by “send m to IOCFsig
[id]” we denote “send

(pidC , id,m) to IOCFsig
”.

Corruption:

HANDLECORRUPTION {Corruption requests need to be handled first. Specification is moved to procedure HANDLECORRUPTION.
Transaction Proposal:

recv (pidC , channel, chaincodeId, txPayload) from IOCE s.t. chaincodeId ∈ chaincodes: {E inititates a transaction
seqNum← seqNum + 1
send (SIGN, pidC , seqNum, channel, chaincodeId, txPayload) to IOCFsig

[pidC ] {Sign transaction proposal

wait for s from IOCFsig
[pidC ]

txProp← (pidC , seqNum, channel, chaincodeId, txPayload, s)
send (pidC , txProp) to IOCRO {Generate transaction id
wait for (pidC , txid) from IOCRO
txProp← (txid, txProp)
if wT(txProp) = true: {Check well-formdness of generated transaction

msg← 〈PROPOSE, txProp〉
txPropSet.append({txProp})
msg′ ← ε
for P ∈ PC do: {For simplicity, broadcast tx proposal to all known peers

msg′ ← msg′ ||(P,msg)

send msg′ to NETC {Broadcasting of transaction proposal is a duty of the adversary

Receive a Transaction Endorsement From Peers:
recv (pidC , ENDORSED, txEnd, s) from NETC :

if txEnd = (pidP , txid, seqNumP , chaincodeId, txProp, readset,writeset) and txProp ∈ txPropSet
and pidP ∈ PC and txid, chaincodeId match txidtxProp, chaincodeIdtxProp from txProp:

send (VERIFYSIG, pk(pidP ), txEnd, s) to IOCFsig
[pidP ]

{
pk(pidP ) denotes the pubkey of pidP from PC

wait for b from IOCFsig
[pidP ]

if b: {If the signature is valid, the endorsement is recorded
endorsments.append({(txid, txEnd, s)})

Send commit request to orderer: {A inititates transaction commitment.
recv (pidC , COMMIT, pidO, txid) from NETC s.t. pidO ∈ OC and (txid, ·) ∈ txPropSet:
Ttxid ← {(txid, txProp) | (txid, txProp) ∈ txPropSet}
Ttxid.append({(t,msg) ∈ endorsments | t = txid})
if vep(Ttxid) = true {If the transaction commitment Ttxid meets endorsement policy, request the ordering service to commit the transaction :

send (pidO, 〈COMMIT, txid, Ttxid〉) to NETC

Description of IITM C continues in Figure 5.

a. Note that the endorsement verification procedure vep has two duties: vep allows clients to verify whether a planned transaction commit should
be accepted without having access to a state, vep allows peers to verify whether they accept transaction during endorsement generation and state
generation

Figure 4. The client IITM C (part 1)
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Procedures and Functions:
procedure HANDLECORRUPTION

Corruption Request:
recv (pidC , CORR?) from IOCE :

if ¬corrupted:
send CORR? to IOCFsig

[pidC ] {Check if pidC ’s instance at Fsig is corrupted

wait for b from IOCFsig
[pidC ]

send (pidC , b) to IOCE
else:

send (pidC , corrupted) to IOCE

Corrupt IITM Instance:
recv (pidC , CORR) from NETC : {A corrupts pidC

corrupted← true
send (pidC , ACK) to NETC {Acknowledge corroption

Message Forwarding in Case of Corruption from A to others:
recv (pidC , FORWARD, IOCr ,msg) from IONETC s.t. corrupted = true, r ∈ {E, RO,Fsig,Finit}:

if corrupted = true and r 6= Fsig:
send (msg) to IOCr

else if corrupted = true and r = Fsig:
if msg = (pid1, pid2, SIGN, x) and pid2 = pidC : {The adversary is only allowed to create signatures for pidC

send (msg) to IOCFsig
else if msg = (pid1, pid2, VERIFYSIG, x):

send (msg) to IOCFsig
{The adversary is allowed to verify signatures

else:
send (pidC , FORWARD,⊥) to NETC

else:
send (pidC , FORWARD,⊥) to NETC

Message Forwarding in Case of Corruption to A:
recv msg from IOCr s.t. corrupted = true, r ∈ {E, RO,Fsig,Finit}:

if msg 6= (pidC , CORR?) and r 6= E: {All messages excluding CORR? are handled by/forwarded to A
send (pidC , FORWARD,msg) to NETC

end procedure

Figure 5. The client IITM C (part 2)

Merkle roots. Since signatures are unforgeable and the
honest Kafka cluster never outputs different messages
with the same ID, the only way for this to occur is if the
adversary manages to re-use a (correctly) signed Merkle
root (either for a different message, or for a different
proof on the same message). As, e.g., Coronado [19]
showed, such a successful forgery of a Merkle proof
can be reduced to the probability of a collision in the
random oracle. Since we are using a random oracle that
outputs hashes with length η (where η is the security
parameter) and the whole system runs in polynomial
time, the probability for collisions is negligible. Hence,
dis(K) is part of a verdict only in a negligible number
of cases, which gives (*).

Completeness. For completeness, again observe that all
verdicts of a judge are of the form dis(p) (where p
is a peer, an orderer, or the Kafka cluster). Note that
those verdicts trivially imply one of the verdicts of the
accountability constraint C (which essentially states that
there is at least one individual participant/the cluster that
was at fault). Hence, to show that Pr [Q(1η) 7→ ¬(J : Φ)]
is negligible, we only have to show that the judge indeed
outputs some verdict for all runs in

⋃
i∈{1,...,4} αi (except

for potentially a negligible probability). We do so by
showing that for all i ∈ {1, . . . , 4} the probability that a
run is in αi but the judge does not output a verdict (written
Pr [Q(1η) 7→ ¬(J : αi)] in what follows) is negligible.
Completeness then directly follows.
On α, i = 1, . . . , 3: Each of the properties is defined in

a deterministic way over the evidence that the judge ob-
tains. Note in particular that, as discussed above, the va-
lidity of signatures is identical at the point of a run where
a block is reported and at the point where the judge

checks the block. By its definition, the judge checks pre-
cisely these three properties and, if one of them is met, he
always outputs a verdict that blames the peer that submit-
ted the faulty block. Thus, Pr [Q(1η) 7→ ¬(J : αi)] = 0,
i ∈ {1, . . . , 3}.

On α4: In a run of α4, there are two conflicting blocks
B1,B2 with the same ID but differing block bodies (and
arbitrary hashes, orderer IDs, and signatures) reported
by some peers. Just as for the other properties, the judge
can (and does) indeed check this property as it is defined
deterministically over the evidence reported to the judge.
However, unlike for the other properties, in this case
there is no “default” output that always blames some
party. Instead, the judge performs a series of checks and
might potentially blame the Kafka cluster or an orderer.
Thus, we have to show in what follows that at least one
of the checks results in a verdict.
Let o1 and o2 be the orderers that signed blocks B1,
resp. B2, reported by peer p1, resp. p2. The judge first
checks whether there are two different Kafka messages
with the same ID in the block bodies of B1 and B2;
if so, then the Kafka cluster is blamed. Otherwise, we
can conclude that the Kafka message stream included in
one block is a prefix of the Kafka message stream of the
other: Since α4 is disjoint from α1, . . . , α3, we know that
the inconsistent chains of p1 and p2 contain a sequential
(i.e., without gaps) message stream starting from ID 1.
Since the chains have been consistent up to the block B1

and B2, we hence know that both blocks start with the
same Kafka message ID. As the blocks B1 and B2 also
contain no gaps and agree on the contents of all Kafka
messages with the same ID, their inconsistency can only
be due to differing lengths. That is, w.l.o.g. B1 ends at
an earlier point of the Kafka message stream than B2.
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Parameters:
applyBlock {deterministic polynomial time algorithm that updates the ledger state on input a block

Tapes: from/to IOPE : (ioinE,P , io
out
E,P ); from/to NETP : (netinA,P , net

out
A,P ); from/to IOPRO: (ioinRO,P , io

out
RO,P );

from/to IOPFsig
: (ioinFsig,P

, ioout
Fsig,P

); from/to IOPFinit
: (ioinFinit,P

, iooutFinit,P
); from/to IOPJ : (ioinJ,P , io

out
J,P )

State: – pidP ∈ {0, 1}
η {Public address of the instance

– CP ⊆ C× {0, 1}∗
{

The set of clients including their pk , CP := {c | (c, ·) ∈ CP }
– PP ⊆ P× {0, 1}∗

{
The set of peers including their pk , PP := {p | (p, ·) ∈ PP }

– OP ⊆ O× {0, 1}∗
{

The set of orderers including their pk , OP := {o | (o, ·) ∈ OP }
– KP ⊆ K× {0, 1}∗

{
The set of Kafka broker (identities) including their pk , KP := {K | (K, ·) ∈ KP }

– seqNum ∈ N, initially seqNum = 0 {Sequence number, replacement for the timestamp

– chaincodes ⊂ N, channel ∈ N {The set of known chaincodes and the current channel id

– chain ∈ Ca, blockNumber ∈ N, initially chain = ⊥, blockNumber = 0 {The blockchain and the “current” block number

– prevHash ∈ {0, 1}η,S ∈ {0, 1}∗ {The previous blocks hash and the state based on the chain

– vepb, simulateTxc {Algorithms to endorsement policies and to simulate all chaincodes

– txValidity ⊆ N× {true, false}, initially txValidity = ∅ {Stores whether pidP considers transactions as valid

– corrupted ∈ {true, false} {Indicates whether the peer is corrupted

CheckAddress: accept input (pidP , x) on any tape.

Initialization: Upon receiving the first message (pidP , x) in mode Compute do:
send (pidP , INITPEER) to IOPFinit

wait for (pidP , 〈INITPEER,CP ,PP ,OP ,KP , chaincodes, channel, prevHash,S, vep, simulateTx, corrupted〉) from IOPFinit
Then, continue processing the first request in mode Compute.

Compute: In the following, by “recv m from IOPFsig
[id]” we denote “recv (pidP , id,m) from IOPFsig

” and by “send m to IOPFsig
[id]” we denote “send

(pidP , id,m) to IOPFsig
”.

Corruption:

HANDLECORRUPTION {Corruption requests need to be handled first. Specification is moved to procedure HANDLECORRUPTION.
Processing Blocks:

recv (pidP , 〈DELIVER, blockNumberB , prevHash, B, pidO, s〉) from NETP s.t. pidO ∈ O, blockNumberB = blockNumber + 1:

if vB(B) = true and EXTRACTCH(B) = channel and EXTRACTMAXMSGID(chain) = EXTRACTMINMSGID(B)−1:

{
Basic checks whether the new
block is valid and whether it
validly extends the chainsend (VERIFYSIG, pk(pidO), 〈blockNumberB , prevHash, B〉, s) to IOPFsig

[pidO]

wait for b from IOPFsig
[pidO]

if b:
((n, pidnK ,msgn,mrn,mpn, sn), . . . , (n+m, pidn+m

K ,msgn+m,mrn+m,mpn+m, sn+m))← B

{
Disassemble B into
single messages

check ← true; txValidity← ∅, S← S
for i = 0 to m do:
v ← VERIFYMERKLEPROOFd(〈n+ i, pidn+i

K ,msgn+i〉,mrn+i,mpn+i)

Check wether n+ i, pidn+i
K ,msgn+i

was part of the Merkle
tree which root was signedif v and pidn+i

K ∈ K:
send (VERIFYSIG, pk(pidn+i

K ),mrn+i, sn+i) to IOPFsig
[pidn+i

K ]

wait for b from IOPFsig
[pidn+i

K ]

check ← check ∨ b
if wTC(msgn+i):

{
Check whether msgn+i can be parsed as transaction commitment

(txid, seqNumC , pidC , channel, chaincodeId, txPayload, s)← EXTRACTPROPe(msgn+i)

{
Extract the tx proposal
from msgn+i

send (VERIFYSIG, 〈txid, pidC , seqNumC , channel, chaincodeId, txPayload〉, s) to IOPFsig
[pidC ]

wait for d from IOPFsig
[pidC ] {Check signature validity

txValidity.append(n+ i, d∧ (pidC ∈ P)∧vep(msgn+i)∧APPLICABLETX(S,msgn+i))


Mark tx as valid if signature is valid,
pidC is a client identity,
endorsing policy is fullfilled,
and the transaction fits into the current state.S.append(msgn+i)

else:
txValidity.append(n+ i, false)

else:
check ← false

if check: {The received block is considered valid
send (pidP , 〈EVIDENCE, blockNumberB , prevHash, B, pidO, s〉) to IOPJ {Forward an accepted block to the judge J
wait for (pidP , ACK) from IOPJ
chain.append(blockNumberB , prevHash, B); blockNumber← blockNumber + 1 {Apply updates to internal state
S.applyBlock(B);txValidity.append(txValidity)
send (pidP , 〈blockNumberB , prevHash, B〉) to IO

Finit
RO {PrevHash has as input the blockheader of a block

wait for h from IO
Finit
RO ; prevHash← h

Description of IITM P continues in Figure 7.

a. For a detailed definition of the set of chains C, see Section B.4.1. One can think of C as the set of sequences of (Fabric*) blocks.
b. Note that vep has two duties: vep allows clients to verify whether a planned transaction commit should be accepted without having access to

a state, vep allows peers to verify whether they accept transaction during endorsement generation and state generation.
c. simulateTx should include all chaincodes. It should output readset and writeset.
d. VERIFYMERKLEPROOF gets as input a message, a Merkle root, and Merkle proof (cf. Section B.4.1). It outputs true or false. Note that

it is possible to evaluate a Merkle proof in O(n) where n is the size of the Merkle proof. Note that the function calls RO to verify hashes.
e. According to the specification, msgn+i should be a transaction commitment (which starts with the proposal). If the first part of msgn+i does

not fit the structure of a proposal, EXTRACTPROP(msgn+i) outputs ⊥.

Figure 6. The peer IITM P (part 1)
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Compute (continuation): Transaction Proposals:
recv (pidP , 〈PROPOSE, txid, pidC , seqNumC , channel, chaincodeId, txPayload, s〉) from NETP s.t. pidC ∈ C, chaincodeId ∈ chaincodes:

send (VERIFYSIG, 〈txid, pidC , seqNumC , channel, chaincodeId, txPayload〉, s) to IOPFsig
[pidC ] {Verify signatature of proposal

wait for b from IOPFsig
[pidC ]

if b:
txProp← (txid, seqNumC , pidC , channel, chaincodeId, txPayload, s)
if vep(S, txProp) = true: {Check whether proposal matches the endorsing policy

(readset,writeset)← simulateTx(S, txProp) {“Execute” transaction proposal
txEnd← (pidP , txid, seqNumP , chaincodeId, txProp, readset,writeset) {Generate transaction endorsement
seqNumP ← seqNumP + 1
send (SIGN, txEnd) to IOPFsig

[pidP ]

wait for stxEnd from IOPFsig
[pidP ]

msg← (ENDORSED, txEnd, stxEnd) {Construct response
else:

msg← (INVALID, txid, REJECTED)

send (pidC ,msg) to NETP {Return execution result to client

Procedures and Functions:
procedure HANDLECORRUPTION

Corruption Status Request:
recv (pidP , CORR?) from IOPE : {Check if pidP ’s instance at Fsig is corrupted

if ¬corrupted:
send (CORR?) to IOPFsig

[pidP ]

wait for b from IOPFsig
[pidP ]

send (pidP , b) to IOPE
else:

send (pidP , corrupted) to IOPE

Corrupt IITM Instance:
recv (pidP , CORR) from NETP :

corrupted← true
send (pidP , ACK) to NETP {Acknowledge corroption

Message Forwarding in Case of Corruption from A to others:
recv (pidP , FORWARD, IOPr ,msg) from NETP s.t. corrupted = true, r ∈ {E, RO, J,Fsig,Finit}:

if corrupted = true and r /∈ {J,Fsig}:
send (msg) to IOPr

else if corrupted = true and r = Fsig:
if msg = (pid1, pid2, SIGN, x) and pid2 = pidP : {The adversary is only allowed to create signatures for pidP

send (msg) to IOPFsig
else if msg = (pid1, pid2, VERIFYSIG, x):

send (msg) to IOPFsig
{The adversary is allowed to verify signatures

else:
send (pidP , FORWARD,⊥) to NETP

else if corrupted = true and r = J:
send (pidP ,msg) to IOPJ {Ensure that the adversary can only report on behalf of the corrupted instance

else:
send (pidP , FORWARD,⊥) to NETP

Message Forwarding in Case of Corruption to A:
recv msg from IOPr s.t. corrupted = true, r ∈ {E, RO,Fsig,Finit}:

if msg 6= (pidP , CORR?) and r 6= E: {All messages excluding CORR? are handled by/forwarded to A
send (pidP , FORWARD,msg) to NETP

end procedure

Figure 7. The peer IITM P (part 2)

The judge now checks whether B1 was correctly cut from
the message stream contained within. If not, then o1 is
blamed. Otherwise, the cut of o1 was correct and we
have to argue that o2 will be blamed for an incorrect
cut. There are two cases:
• The block B1 of o1 was correct because the block

ends with the first (valid) cut message and does not
exceed the maximum number of messages. Since the
block B2 also contains all Kafka messages from B1

but ends at a later point, there is a cut message in the
middle of B2 that was ignored. Hence, the block B2

was cut incorrectly and thus o2 is blamed.
• The block B1 of o1 was correct because it does not

contain a (valid) cut message and it contains the
maximum number of transactions. Since the block B2

is longer than B1, it contains more than the maximum
number of transactions. Hence, the block B2 was thus
cut incorrectly and thus o2 is blamed.

We conclude that the judge always outputs a verdict

for runs in α4, i.e., Pr [Q(1η) 7→ ¬(J : α4)] = 0. This
concludes the proof.

Appendix D.
Definition and Analysis of Further Goals of
Fabric*

We have already formally shown in Section 6 that
Fabric* is accountable with respect to consistency (which
includes basic correctness and in particular no skipping).
In this section, we first summarize and briefly discuss our
results for the remaining security goals from Section 3.1
for the Fabric* protocol, namely, chain-growth, liveness,
hash chain integrity, and no creation. Then, we provide
full details on the analysis of these goals.

1. Chain-growth and Liveness. In general, one can-
not prove chain-growth and liveness in a network with
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Tapes: from/to IOOE : (ioinE,O, io
out
E,O); from/to NETO : (netinA,O, net

out
A,O); from/to IOORO: (ioinRO,O, io

out
RO,O);

from/to IOOFsig
: (ioinFsig,O

, ioout
Fsig,O

); from/to IOOFinit
: (ioinFinit,O

, iooutFinit,O
)

State: – pidO ∈ {0, 1}
η {Public address or pid of the instance

– CO ⊆ C× {0, 1}∗
{

The set of clients including their pk , CO := {c | (c, ·) ∈ CO}
– PO ⊆ P× {0, 1}∗

{
The set of peers including their pk , PO := {p | (p, ·) ∈ PO}

– KO ⊆ K× {0, 1}∗
{

The set of Kafka broker (identities) including their pk , KO := {K | (K, ·) ∈ KO}
– channel ∈ N, prevHash ∈ {0, 1}η {The previous blocks hash

– chain ∈ C, blockNumber ∈ N, initially chain = ⊥, blockNumber = 0 {The blockchain and the “current” block number

– Tx ⊂ {0, 1}∗, initially Tx = ∅ {The set of known transactions

– K ⊆ N× K× {0, 1}∗ × {0, 1}∗ ∪ {⊥} × {0, 1}∗ ∪ {⊥} × {0, 1}∗ ∪ {⊥},
{

The ordered stream of transactions of the form (message ID, leader,
message, Merkle root, path for Merkle proof, signature)

initially K = ∅
– Kl ∈ K,Prec ⊆ PO {The current Kafka leader and the set of peers connected to the orderer

– corrupted ∈ {true, false} {Indicates whether the orderer is corrupted

CheckAddress: accept input (pidO, x) on any tape.

Initialization: Upon receiving the first message (pidO, x) in mode Compute do:
send (pidO, INITORDERER) to IOOFinit

wait for (pidO, 〈INITORDERER,C,P,K, channel, prevHash,Kl,Prec, corrupted〉) from IOFinit
Then, continue processing the first request in mode Compute.

Compute: In the following, by “recv m from IOFsig
[id]” we denote “recv (pidO, id,m) from IOFsig

” and by “send m to IOFsig
[id]” we denote “send

(pidO, id,m) to IOFsig
”.

HANDLECORRUPTION {Corruption requests need to be handled first. Specification is moved to procedure HANDLECORRUPTION.
Forwarding of Commit Requests to Kafka:

recv (pidO, COMMIT, Ttxid) from NETO:
if Ttxid /∈ Tx:

Tx.append(Ttxid)
send (Kl, COMMIT, Ttxid, pidO) to NETO {Forward commit request to Kafka leader

Delivery of Messages and Block Dispatching:
recv (pidO, 〈DELIVER, channel, seqNum,K′〉) from NETO

s.t. seqNum = EXTRACTMESSAGEID(K), chkKafkaDelivery(K′, seqNum) = true: {We set EXTRACTMESSAGEID(∅) := 1

((n, pidnK ,msgn,mrn,mpn, sn), . . . , (n+m, pidn+m
K ,msgn+m,mrn+m,mpn+m, sn+m))← K′

{
Extract messages from
the message stream segment

check ← true
for i = 0 to m do:

if pidn+i
K ∈ K: {Messages need to be ordered by Kafka brokers
v ← VERIFYMERKLEPROOFa(〈n+ i, pidn+i

K ,msgn+i〉,mrn+i,mpn+i)
{

Check Merkle proof for n+ i, pidn+i
K ,msgn+i

if v:
send (VERIFYSIG, pk(pidn+i

K ),mrn+i, sn+i) to IOOFsig
[pidn+i

K ]

wait for b from IOOFsig
[pidn+i

K ]

check ← check ∨ b
else:
check ← check ∨ v

else:
check ← false

if check: {The received message stream segment is considered valid
K.append(K′) {Start generating and dispatching blocks
chain′ ← CUTBLOCK(K)
B1, . . . Bd ← EXTRACTBODY(chain); B1, . . . , Bd, Bd+1, . . . , Bd+g ← chain′

msg← ε {Generate message to “broadcast” blocks
for i = 1 to g do: {Generate block related data and dispatch block-wise

blockNumber← blockNumber + 1
chain.append(blockNumber, prevHash, Bd+i)
send (pidO, 〈blockNumber, prevHash, Bd+i〉) to IOORO {Generate hash for block
wait for h from IOORO
prevHash← h
send (SIGN, blockNumber, prevHash, Bd+i, pidO) to IOOFsig

[pidO] {Sign block

wait for s from IOOFsig
[pidO]

chain.append(blockNumber, prevHash, Bd+i)
msg← (DELIVER, blockNumber, prevHash, Bd+i, pidO, s)
for all pidP ∈ Prec do: {Send block to peers

msg.append(pidP ,msg, )
send msg to NETO {Adversary is responsible for broadcasting

Description of IITM O continues in Figure 9.

a. VERIFYMERKLEPROOF gets as input a message, a Merkle root, and Merkle proof. It outputs true or false. Note that it is possible to
evaluate a Merkle proof in O(n) where n is the size of the Merkle proof. For a detailed specification, we refer to [58].

Figure 8. The orderer IITM O (part 1)
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Compute (continuation): Set New Kafka Leader:
recv (pidO, 〈SETLEADER, channel, pidK〉) from NETO s.t. pidK ∈ K: {Adversary defines wich broker to be the leader

Kl ← pidK
send (pidO, ACK) to NETO

“Cut Block” Request:
recv (pidO, TTC) from NETO: {Cut lock message as specified in the Kafka-based ordering service

send (Kl, 〈TTC, channel, blockNumber, pidO〉) to NETO

Pull request:
recv (pidO, 〈GENBLOCK, pidK′ 〉) from NETO:

seqNum← EXTRACTMESSAGEID(T ) {Extract message ID from locally stored message stream
send (Kl, 〈PULL, pidO, channel, seqNum〉) to NETO

Definition of Block Receivers:
recv (pidO, 〈SETBLOCKREC,Prec〉) from NETO s.t. Prec ⊆ PO: {The adversary is allowed to update the list of block receivers

Prec ← Prec
send (pidO, ACK) to NETO

Procedures and Functions:
procedure HANDLECORRUPTION

Corruption Status Request:
recv (pidO, CORR?) from IOOE : {Check if pidO’s instance at Fsig is corrupted

if ¬corrupted:
send (CORR?) to IOOFsig

[pidO]

wait for b from IOOFsig
[pidO]

send (pidO, b) to IOOE
else:

send (pidO, corrupted) to IOOE

Corrupt IITM Instance:
recv (pidO, CORR) from NETO:

corrupted← true
send (pidO, ACK) to NETO {Acknowledge corroption

Message Forwarding in Case of Corruption from A to others:
recv (pidO, FORWARD, IOOr ,msg) from NETO s.t. corrupted = true, r ∈ {E, RO,Fsig,Finit}:

if corrupted = true and r = Fsig:
send (msg) to IOOr

else if corrupted = true and r = Fsig:
if msg = (pid1, pid2, SIGN, x) and pid2 = pidO: {The adversary is only allowed to create signatures for pidO

send (msg) to IOOFsig
else if msg = (pid1, pid2, VERIFYSIG, x):

send (msg) to IOPFsig
{The adversary is allowed to verify signatures

else:
send (pidO, FORWARD,⊥) to NETO

else:
send (pidO, FORWARD,⊥) to NETO

Message Forwarding in Case of Corruption to A:
recv msg from IOOr s.t. corrupted = true, r ∈ {E, RO,Fsig,Finit}:

if msg 6= (pidO, CORR?) and r 6= E: {All messages excluding CORR? are handled by/forwarded to A
send (pidO, FORWARD,msg) to NETO

end procedure

Figure 9. The orderer IITM O (part 2)

message loss for any blockchain. Hence, we adapt our
model of Fabric* to include a round-based network model
with bounded message delay, as it is commonly used
also for other blockchains. However, even when assuming
such a network model, both goals can still be broken
due to Fabric*’s centralized structure: malicious orderers
and in particular a malicious Kafka cluster can simply
drop messages instead of forwarding them. Furthermore,
culprits also cannot be held individually accountable for
breaking these goals (based on data in the blockchain).
Thus, formally one can only show that both goals hold
true if (i) all peers, (ii) all orderers, and (iii) the Kafka
cluster are honest.

We note that this formal lack of chain-growth and
liveness is not that devastating in practice, unlike in many
other common blockchains: Firstly, for chain-growth this
has already been discussed in Section 3.1. Secondly, as
shown above, neither liveness nor chain-growth are neces-
sary to guarantee consistency, unlike in, e.g., blockchains
relying on the longest chain rule. Thirdly, all participants

of Fabric, resp. Fabric* know each other. So in a real
world execution of Fabric*, if peers, orderers, or the Kafka
cluster do not receive updates from the channel, operators
will report this issue to the organizations of the channel.
The organizations can then monitor individual connections
to identify where messages are dropped and whether this
was caused by one of the participants or an unreliable
network.
2. Hash chain integrity. Intuitively, hash chain integrity
states that for all pairs of peers p1, p2, if p1 accepts a
block B with ID id and p1 has accepted a block B′ with
ID id − 1, then the predecessor hash contained in B is
the hash of B′. Analogously to consistency (which is a
necessary requirement for hash chain integrity to hold
true), we can enforce hash chain integrity for all peers,
including dishonest ones, via accountability.
3. No creation. Fabric* provides a slight variant of no
creation which we call chain soundness. This goal holds
true for all honest peers and can be enforced for malicious
peers via accountability.
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Tapes: from/to IOKE : (ioinE,K, io
out
E,K); from/to NETK: (netinA,K, net

out
A,K); from/to IOKRO: (ioinRO,K, io

out
RO,K);

from/to IOKFsig
: (ioinFsig,K

, ioout
Fsig,K

); from/to IOKFinit
: (ioinFinit,K

, iooutFinit,K
)

State: – K,O {The sets of “simulated” kafka brokers and the set of orderers

– pidK ∈ K, channel ∈ N {Current “leader”of the Kafka cluster and the channel id

– seqNum ∈ N, initially seqNum = 0 {Sequence number, resp. message counter or offset

– K ⊆ N× K× {0, 1}∗ × {0, 1}∗ ∪ {⊥} × {0, 1}∗ ∪ {⊥} × {0, 1}∗ ∪ {⊥},
{

The ordered stream of messages/transactions of the form
(offset, leader, message, Merkle root, Merkle proof, signature)

initially K = ∅
– corrupted ∈ {true, false} {Indicates whether the Kafka cluster is corrupted

CheckAddress: accept input (pid, x) on any tape.

Initialization: Upon receiving the first message (pid, x) in mode Compute do:
send (pid, INITKAFKA) to IOKFinit

wait for (pid, 〈INITKAFKA,O,K, channel,K, pidK, corrupted〉) from IOKFinit
Then, continue processing the first request in mode Compute.

Compute: In the following, by “recv m from IOFsig
[id]” we denote “recv (pidK, id,m) from IOFsig

” and by “send m to IOFsig
[id]” we denote “send

(pidK, id,m) to IOFsig
”.

Corruption:

HANDLECORRUPTION

{
Corruption requests need to be handled first.
Specification is moved to procedure HANDLECORRUPTION.

Add and Order Messages:
recv (pidK, COMMIT,msg, pidO) from NETK s.t. pidO ∈ O, EXTRACTCH(msg) = channel:

seqNum← seqNum + 1 {Messages are ordered according to their arrival at K
K← K ∪ {(seqNum, pidK,msg,⊥,⊥,⊥)} {Merkle root and proof are generated upon request

Pull Request
recv (pidK, 〈PULL, pidO, channel, r〉) from NETK s.t. pidO ∈ O, r ≤ seqNum: {Orderer request messages with ID ≥ r

K′ ← {(seq, pid,msg,mr,mp, s) | (seq, pid,msg, s) ∈ K and seq ≥ r} {Extract requested data from K
if ∃(·, ·, ·,⊥,⊥,⊥) ∈ K′: {There were no Merkle proof/valid signatures attached to these messages before
M ← ∅;N ← ∅
j ← min{i |(i, ·, ·,⊥,⊥,⊥) ∈ K′}; M ← ε; N ← ∅
for i = j to |K′| do: {Generate Merkle proofs and signatures
t← (i, pidK,msg) s.t. (i, pid,msg,⊥,⊥,⊥) ∈ K′

t← (i, pid,msg,⊥,⊥,⊥) s.t. (i, pid,msg,⊥,⊥,⊥) ∈ K′

M.append(t), N.append(t)

U ← PROCESSMSGREQ(M) {See definition of PROCESSMSGREQ in Figure 11
K← K \N ∪ U {Add Merkle proofs to storage
K′ ← K′ \N ∪ U {Add updated data in prepared answer

send (pid, 〈DELIVER, channel, r,K′〉) to NETK

Set a New Kafka Leader Identity
recv (pid, 〈SETLEADER, pidK , channel〉) from NETK s.t. pid, pidK ∈ K:

pidK ← pidK
send (pidK, ACK) to NETK {Acknowledge

Description of IITM K continues in Figure 11.

Figure 10. Model of an idealized Kafka cluster K (part 1)

D.1. Chain-growth and liveness

As already mentioned, it is well-known that one can
obtain neither chain-growth nor liveness (as, e.g., defined
by Garay et al. [26]) in a fully asynchronous network
with message loss. Unlike for consistency, one also cannot
use accountability to enforce both goals as, even if all
participants are honest, the network is still able to drop
messages.

Typically, chain-growth and liveness are shown for
blockchains by assuming a network with bounded mes-
sage delay where messages cannot be dropped. However,
even using this assumption, formally Fabric* does not
provide any of the two goals in general: A corrupted
Kafka cluster can simply drop incoming messages, thus
preventing chain-growth and violating liveness. Further-
more, formally it is still not possible to address this issue
using (individual) accountability: If a transaction is not
included in the Kafka message stream, this can be either
due to a malicious Kafka cluster dropping the message or
due to malicious orderers that did not forward the message
to the cluster in the first place. As already briefly discussed
in the main part, in reality, however, if messages keep
being dropped, one can of course investigate the problem

since all participants of Fabric* know each other.
One can only formally show that chain-growth and

liveness hold true for Fabric* in a network with bounded
message delay if orderers, peers, and the Kafka cluster
are honest. On a technical level, to show this result one
has to adapt our model from Section 4 by routing all
network communication via a round based ideal broadcast
or diffuse channel with ∆-delays F∆ (cf. [26]). In F∆, the
adversary is allowed to delay a message for at most ∆ ∈ N
rounds, but he cannot drop or change any messages.

Proposition 3 (Chain-growth and Liveness of Fabric* -
informal). Let PF be the Fabric* protocol where network
traffic is sent and received via F∆. Let E and A be
an arbitrary environment and an arbitrary adversary for
PF such that they do not corrupt any peer, orderer, or
the Kafka cluster, resp. their instances at Fsig. Then Q
achieves chain-growth and liveness.

Proof. The proof for both goals quite easily follows from
the construction of F∆ and PF as messages are eventually
delivered after ∆ rounds.

D.2. Hash Chain Integrity

Formally, we define hash chain integrity as follows:
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Procedures and Functions:
procedure HANDLECORRUPTION

Corruption Status Request:
recv (pid, CORR?) from IOKE s.t. pid ∈ K:

if ¬corrupted: {K is corrupted as soon one of its identities is corrupted
x← false

for pid ∈ K do: {Check if an instance of K, resp. K, at Fsig is corrupted
send (CORR?) to IOKFsig

[pid]

wait for b from IOKFsig
[pid] ; x← x ∨ b

{
If any instance of an identity from K is corrupted,
we consider K corrupted

send (pid, x) to IOKE
else:

send (pidO, corrupted) to IOKE

Corrupt IITM Instance:
recv (pid, CORR) from NETK s.t. pid ∈ K:

corrupted← true
send (pid, ACK) to NETK {Acknowledge corroption

Message Forwarding in Case of Corruption from A to others:
recv (pidK, FORWARD, IOKr ,msg) from IONETK s.t. corrupted = true, r ∈ {E, RO,Fsig,Finit}:

if corrupted = true and r 6= Fsig:
send (msg) to IOKr

else if corrupted = true and r = Fsig:
if msg = (pid1, pid2, SIGN, x) and pid2 ∈ K:

{
The adversary is only allowed to
create signatures for Kafka brokers

send (msg) to IOKFsig
else if msg = (pid1, pid2, VERIFYSIG, x):

send (msg) to IOKFsig
{The adversary is allowed to verify signatures

else:
send (pidK, FORWARD,⊥) to NETK

else:
send (pidK, FORWARD,⊥) to NETK

Message Forwarding in Case of Corruption to A:
recv msg from IOKr s.t. corrupted = true, r ∈ {E, RO,Fsig,Finit}:

if msg 6= (pidK, CORR?) and r 6= E:
send (pidK, FORWARD,msg) to NETK {All messages excluding CORR? are handled by/forwarded to A

end procedure
function PROCESSMSGREQ(M = (msg1,msg2, . . .),msgj ∈ {0, 1}

∗)
m← |M |
mr← GENERATEMERKLETREEROOTa(M)

send (SIGN,mr) to IOKFsig
[pidK] {Sign Merkle Root

wait for s from IOKFsig
[pidK]

for i = 1 to m do:
mpi ← GENMERKLEPROOFb(M, i)

return {(msg1,mr,mp1, s), . . . , (msgm,mr,mpm, s)}
end function

a. GENERATEMERKLETREEROOT gets as input a sequence of messages. It outputs the root of the Merkle tree over the input. Note that it is
possible to generate a Merkle root in O(log(n)) where n is the length of the input sequence. For a detailed specification, we refer to [58].

b. GENMERKLEPROOF gets as input a sequence of messages and an index x. It outputs Merkle proof for the message at position x. Note that
it is possible to generate a Merkle proof in O(log(n)) where n is the length of the input sequence. For a detailed specification, we refer to [58].

Figure 11. Model of an idealized Kafka cluster K (part 2)

Definition 4 (Hash chain integrity). Consider a run ω
of the system E|A|PF, for some environment E and some
adversary A, that satisfies basic correctness.

Let B1 = 〈id1, prevHash1, B1, pid1, s1〉 be a re-
ported block in ω. We say that B1 violates hash
chain integrity if there is a reported block B2 =
〈id2, prevHash2, B2, pid2, s2〉 in ω such that id1 = id2 +1
and prevHash1 6= H(id2, prevHash2, B2), where H is
a hash function. In addition, we also say that a block
〈1, prevHash, B, pid, s〉 violates hash chain integrity if
prevHash 6= H(Sinit) (where Sinit is the initial state
modeling the genesis block).

The IITM system E|A|PF satisfies hash chain integrity
in ω if there is no reported block that violates hash
integrity.

We can show that Fabric* provides individual account-
ability w.r.t. hash chain integrity. Formally, this notion
is defined by extending the definition of accountability
w.r.t. consistency since consistency is a necessary re-

quirement for hash chain integrity. That is, we add the
following property to Definition 3:
α5 (Hash Chain Integrity): α5 contains all runs that are
not in αi, i = 1, . . . , 4 and where a peer reports a block
that violates hash chain integrity.

Furthermore, the combined property α from Defini-
tion 3 is extended to be α :=

⋃
i∈{1,...,5} αi. The account-

ability constraint for α stays the same. These changes
give the formal definition of (individual) accountability
w.r.t. hash chain integrity.

To show accountability w.r.t. hash chain integrity, the
judge has to be modified to also render verdicts whenever
a run is in α5. Note that this is easy to check for the
judge. If the property is violated, we blame the peer that
reported the violating block. This judge is both fair and
complete: Intuitively, all new blocks of an honest peer
contain the correct hash of their respective previous block.
Since the previous block is the same for all peers (due
to consistency), an honest peer will never violate hash
integrity and thus never be blamed. In contrast, once a
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Parameters:
C,O,P,K {The set of clients, orderers, peers, and Kafka brokers such that C ∩ P ∩ O ∩ K 6= ∅
Sinit {The initial state of the blockchain

prevHash ∈ {0, 1}η , initially prevHash = ⊥ {The hash of Sinit

chaincodes ⊂ N, channel ∈ N {The set of chaincodes/chaincodeIs and current channel

OC ⊆ O,PC ⊆ P, ∀C ∈ C {The orderers, resp. peers, each client knows.

vep, simulateTx {Algorithms check whether endorsement policies are fullfilled and to simulate all chaincodes

Tapes: from/to IO
Finit
E : (ioinE,Finit

, ioout
E,Finit

); from/to NETFinit : (netinA,Finit
, netoutA,Finit

); from/to IO
Finit
RO : (ioinRO,Finit

, iooutRO,Finit
);

from/to IO
Finit
Fsig

: (ioinFsig,Finit
, ioout
Fsig,Finit

); from/to IOr : (ioinFinit,r
, iooutFinit,r

), r ∈ {C,P,K, J,K}

State: – Identities, initially Identities = ∅. {The set of identities for connecting to Fsig containing (pid, pk)

CheckAddress: Finit declines all incoming messages until it receives a INITCHANNEL message on tape IO
Finit
E . After Finit is initialized, it accepts all incoming

messages.

Initialization:
recv (INITCHANNEL) from IO

Finit
E :

for all pid ∈ C ∪ P ∪ O ∪ K do: {Initialize Fsig instance and retrive all identities pks
send (pid, pid, GETPUBKEY) to IO

Finit
Fsig

wait for (pid, pid, pk) from IO
Finit
Fsig

Identities.append(pid, pk)

send (1, 〈0,⊥,Sinit〉) to IO
Finit
RO {Generate hash of initial state instead of genesis block

wait for (1, h) from IO
Finit
RO

prevHash← h

Compute: Client Initialization:
recv (INITCLIENT, pidC) from IOC s.t. pidC ∈ C:

send (pidC , INITCLIENT) to NETFinit {Request initialization information from A
wait for (pidC , INITCLIENT, corrupted) from NETFinit s.t. corrupted ∈ {true, false}
PIC ← {(pid, pk) ∈ Identities | pid ∈ PC}
OIC ← {(pid, pk) ∈ Identities | pid ∈ OC}

{
Client gets identities he should know and
their public keys from Identities.

send (pidC , 〈INITCLIENT, PIC ,OIC , chaincodes, channel, vep, corrupted〉) to IOC

Orderer Initialization:
recv (INITORDERER, pidO) from IOO s.t. pidO ∈ O:

send (pidO, INITORDERER) to NETFinit

{
Request initialization information from A:
reported Kafka leader and corruption status

wait for (pidO, 〈INITORDERER, corrupted, pidKl
, Prec〉) from NETFinit s.t. corrupted ∈ {true, false}, pidKl

∈ K, Prec ⊂ P

CI ← {(pid, pk) ∈ Identities | pid ∈ C}
PI ← {(pid, pk) ∈ Identities | pid ∈ P}


Order gets all peer and client identities, including
their pks from Identities as input. Additionally,
an orderer gets Prec to know which peers are
directly connected to it.K I ← {(pid, pk) ∈ Identities | pid ∈ K}

send (pidO, 〈INITORDERER,CI , PI ,K I , channel, prevHash, pidKl
, Prec, corrupted〉) to IOO

Peer Initialization:
recv (INITPEER, pidP ) from IOP s.t. pidP ∈ P:

send (pidP , INITPEER) to NETFinit {Request initialization information from A
wait for (pidP , INITPEER, corrupted) from NETFinit s.t. corrupted ∈ {true, false}
PI ← {(pid, pk) ∈ Identities | pid ∈ P}
OI ← {(pid, pk) ∈ Identities | pid ∈ O}

{
Peer gets identities he should know and
their public keys from Identities.

CI ← {(pid, pk) ∈ Identities | pid ∈ C}
K I ← {(pid, pk) ∈ Identities | pid ∈ K}
send (pidP , 〈INITPEER,CI , PI ,OI ,K I , chaincodes, channel, prevHash,Sinit, vep, simulateTx, corrupted〉) to IOP

Kafka Initialization
recv (pidK, INITKAFKA) from IOK s.t. pidK ∈ K:

send (pidK, INITKAFKA) to NETFinit

{
Request initialization information from A
to get the initial Kafka leader

wait for (pidK, INITKAFKA, corrupted, pidKl
) from NETFinit s.t. corrupted ∈ {true, false}, pidKl

∈ K

OI ← {(pid, pk) ∈ Identities | pid ∈ O}
K I ← {(pid, pk) ∈ Identities | pid ∈ K}

{
Kafka cluster gets identities he should know and
their public keys from Identities.

send (pidK, 〈INITKAFKA,OI ,K I , channel,K, pidKl
, corrupted〉) to IOK

Judge Initialization:
recv (INITJUDGE) from IOJ :

CI ← {(pid, pk) ∈ Identities | pid ∈ C}
OI ← {(pid, pk) ∈ Identities | pid ∈ O} {Judge gets all identities and their public keys from Identities.
PI ← {(pid, pk) ∈ Identities | pid ∈ P}
K I ← {(pid, pk) ∈ Identities | pid ∈ K};
send (〈INITJUDGE,CI ,OI ,PI ,KI , channel,Sinit, prevHash)〉 to IOJ

Figure 12. The initialization functionality Finit
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Parameters:
applyBlock {deterministic polynomial time algorithm that updates the ledger state on input a block

Tapes: from/to IOJFsig
: (ioinFsig,J

, ioout
Fsig,J

); from/to IOJFinit
: (ioinFinit,J

, iooutFinit,J
)

from/to IOPJ : (ioinJ,P , io
out
J,P ) ; from/to IOJRO: (ioinRO,J , io

out
RO,J )

State: – CJ ⊆ C× {0, 1}∗, PJ ⊆ P× {0, 1}∗
{

The set of clients, resp. peers including their pk ,
CJ := {c | (c, ·) ∈ CJ}, PJ := {p | (p, ·) ∈ PJ}

– OJ ⊆ O× {0, 1}∗
{

The set of orderers including their pk , OJ := {o | (o, ·) ∈ OJ}
– KJ ⊆ K× {0, 1}∗

{
The set of Kafka broker (identities) including their pk , KJ := {K | (K, ·) ∈ KJ}

– channel ∈ N,Sinit ∈ {0, 1}∗, prevHash ∈ {0, 1}η {The current channel id, initial state, and its hash

– WB ⊆ P× O× N× {0, 1}η × {0, 1}∗ × {0, 1}∗, initially WB = ∅.
{

The set of evidence blocks, including reporter, creator,
block number, hash, and signature

– K ⊆ N× K× {0, 1}∗ × {0, 1}∗, initially K = ∅
{

The collected Kafka messages including:
offset, leader, msg, signature

– S ⊆ P× N× {0, 1}∗, initially S = ∅ {The reported states by peer (peer, delivery number, state)

– verdicts ∈ {0, 1}∗, initially verdicts = ε {Worktape for recording verdicts

CheckAddress: accept any input on any tape.

Initialization: Upon receiving the first message in mode Compute do:
send (INITJUDGE) to IOJFinit

wait for (INITJUDGE, 〈C,O,P,K, channel,Sinit, prevHash)〉 from IOJFinit
. Then, continue processing the first request in mode Compute.

Compute: In the following, by “recv m from IOJFsig
[id]” we denote “recv (id, id,m) from IOJFsig

” and by “send m to IOJFsig
[id]” we denote “send

(id, id,m) to IOJFsig
”.

No Further Processing in Case of a Rendered Verdict
recv (pid,msg) from IOPJ s.t. verdicts 6= ε: {If there is a verdict, J does not produce further verdicts

send (pid, ACK) to IOPJ {Construction to ensure direct execution of the next step

Process Evidence:
recv (pid, EVIDENCE, 〈msg〉) from IOPJ s.t. pid ∈ P:

if msg 6= 〈blockNumber, prevHash, B, pido, s〉, s.t. blockNumber ∈ N, prevHash ∈ {0, 1}η, EXTRACTCH(B) = channel and B, pido, s ∈ {0, 1}∗:
verdicts.append(dis(pid)) {Peers have to report well-formed evidence, α1

else:
chain← {B|(pid, ·, ·, ·, B, ·) ∈ WB} {Reported chain of pid

if vB(B) = false:
{

Orderers should produce well-formed blocks, peers
should not accept malformed block, α1verdicts.append(dis(pid))

else if EXTRACTMAXMSGID(chain) 6= EXTRACTMINMSGID(B)− 1:

{
EXTRACTMAXMSGID(∅) = 0; lowest message ID in block
body needs to be 1. Blocks, resp. the chain needs to be a
sequence of consecutive Kafka messages, α1verdicts.append(dis(pid))

else if pido /∈ O:
verdicts.append(dis(pid)) {Peers should only accept blocks from orderers, α2

else:
send (VERIFYSIG, pk(pido), 〈blockNumber, prevHash, B, pido〉, s) to IOJFsig

[pido] {Check whether signature is valid

wait for b from IOJFsig
[pido]

if ¬b: {Honest peers report valid signatures, α3

verdicts.append(dis(pid))
else:

((n, pidnK ,msgn,mrn,mpn, sn), . . . , (n+m, pidn+m
K ,msgn+m,mrn+m,mpn+m, sn+m))← B; check ← true

for i = 0 to m do: {Check whether Kafka messages are protected by a Merkle root and a signature

v ← VERIFYMERKLEPROOF(〈n+ i, pidn+i
K ,msgn+i〉,mrn+i,mpn+i)

{
Check whether n+ i, pidn+i

K ,msgn+i was
part of the Merkle tree which root was signed

if v and pidn+i
K ∈ K:

send (VERIFYSIG, pk(pidn+i
K ), 〈mrn+1〉, sn+i) to IOPFsig

[pidn+i
K ]

wait for a from IOPFsig
[pidn+i

K ]

check ← check ∧ a
if a:

K← K ∪ {(n+ i, pidn+i
K ,msgn+i, sn+i)} {Record correctly signed messages from the message stream

else:
check ← false

if @(pid, ·, blockNumber− 1, ·, ·, ·) ∈ WB and blockNumber 6= 1:
{

Honest peers/rderers report consecutive blocks starting
at 1 and do not report wrong signatures, α1

verdicts.append(dis(pid))
else if ¬check:

verdicts.append(dis(pid)) {Orderers should build blocks from well-signed message streams, α3

else:
WB.append(pid, pido, blockNumber, prevHash, B, s) {Record block that fullfills basic correctness

if ∃(pid1, pid1o, i, prevHash1, B1, s1), (pid2, pid2o, i, prevHash2, B2, s2) ∈ WB, s.t. B1 6= B2 ∧ pid1o, pid2o /∈ verdicts ∧ K /∈ verdicts:

pidr = ANALYZECONFLICTINGBLOCKS[(pid1, pid1o, i, prevHash1, B1, s1), (pid2, pid2o, i, prevHash2, B2, s2)]

verdicts.append(dis(pidr)) {See ANALYZECONFLICTINGBLOCKS specification for details

send (pid, ACK) to IOPJ {Construction to ensure direct execution of the next step

Description of IITM J continues in Figure 14.

Figure 13. The judge IITM J (part 1)
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Compute (continuation):
function ANALYZECONFLICTINGBLOCKS([(pid1, pid1o, i, prevHash1, B1

i , s1i ), (pid2, pid2o, i, prevHash2, B2
i , s2i )])

if ∃(n, p̂id
1

K , m̂sg1, m̂r1, m̂p1, ŝ1) 6= (n, p̂id
2

K , m̂sg2, m̂r2, m̂p2, ŝ2) s.t. (n, p̂id
1

K , m̂sg1, m̂r1, m̂p1, ŝ1) ∈ B1
i , (n, p̂id

2

K , m̂sg2, m̂r2, m̂p2, ŝ2) ∈ B2
i :

pid← K {K denotes the whole Kafka cluster. According to checks above: B1, B2 are well-formed and validly signed.

return pid {Kafka cluster should send unambigous messages per offset, α4

else:
{

Check whether B1 and B2 where generated honestly, MAXTX denotes the
maximum number of transactions in a block as specified in CUTBLOCK

if ∃(n, pidK ,msg,mr,mp, s) ∈ B1 s.t. msg = 〈TTC, channel, i, pido〉 ∧ (@(m, pid′K ,msg′,mr′,mp′, s′) ∈ B1 s.t. m < n∧
msg′ = 〈TTC, channel, i, pido

′〉) ∧ |B1| < MAXTX: {Cut was created based on cut block message

if ∃(n+ 1, pid∗K ,msg∗,mr∗,mp∗, s∗) ∈ B1: {Orderer did not use first cut message to create the block

return pid1o
else if |B1| > MAXTX: {MAXTX denotes the maximum number of transactions in a block as specified in CUTBLOCK

return pid1o
else if ∃(n, pidK ,msg,mr,mp, s) ∈ B2 s.t. msg = 〈TTC, channel, i, pido〉 ∧ (@(m, pid′K ,msg′,mr′,mp′, s′) ∈ B2 s.t. m < n∧
msg′ = 〈TTC, channel, i, pido

′〉) ∧ |B2| < MAXTX: {Cut was created based on cut block message

if ∃(n+ 1, pid∗K ,msg∗,mr∗,mp∗, s∗) ∈ B2: {Orderer did not use first cut message to create the block

return pid2o
else if |B2| > MAXTX: {MAXTX denotes the maximum number of transactions in a block as specified in CUTBLOCK

return pid2o
end function

Figure 14. The judge IITM J (part 2)

Parameters:
Tapes: from/to IOrRO: (ioinRO,r, io

out
RO,r), r ∈ {C,P,K, J,K, J, E}; from/to NET: (netinA, net

out
A )

State: – hashHistory ⊆ {0, 1}∗ × {0, 1}η , initially hashHistory = ∅ {The set of recorded value/hash pairs
CheckAddress: accept any input on any tape

Compute: Requests to the RO:
recv (pid, x) from any IO tape:

if ∃h ∈ {0, 1}η s.t. (x, h) ∈ hashHistory:
send (pid, h) to IO

else:
h

$← {0, 1}η
hashHistory← hashHistory ∪ {(x, h)}
send (pid, h) to IO

Figure 15. The random oracle RO (cf. [17])

Parameters: – n > 0 {number of I/O tape pairs
– p {polynomial bounding the runtime of the algorithms provided by adversary

Tapes: from/to IOr (r ≤ n): (ioinsigr , io
out
sigr

); from/to NET: (netinFsig
, netoutFsig

)

State: – name ∈ {0, 1}∗ ∪ {⊥} {public/private key pair name; initially ⊥
– sig, ver, pk, sk ∈ {0, 1}∗ ∪ {⊥} {algorithms, key pair (provided by adversary); initially ⊥
– H ⊆ {0, 1}∗ {recorded messages; initially ∅
– corr ∈ {false, true} {corruption status; initially false

CheckAddress: Accept input m from IOr iff m = (id,name,m′) for some id,name,m′and (name = ⊥ or name = name). Accept input m from NET iff
m = (name,m′) for some m′.

Initialization: Upon receiving the first message (id,name,m′) in mode Compute do:
name← name {record key pair name (used to address multiple instances of Fsig)
send (name, INIT) to NET
recv (name, corr , s, v, pk , sk) from NET s.t. corr ∈ {false, true}

{
get algorithms and
key pair from adversary,
allow corruptioncorr← corr ; sig← s; ver← v; pk← pk ; sk← sk

Then, continue processing the first request in mode Compute.
Compute: In the following, by “recv m from IOr[id]” we denote “recv (id, name,m) from IOr” and by “send m to IOr[id]” we denote “send (id, name,m)

to IOr”.
recv GETPUBKEY from IOr[id]: send pk to IOr[id] {return public key
recv (SIGN, x) from IOr[id]:
σ

$← sig(p)(sk, x); b← ver(p)(pk, x, σ) {sign x (and verify)
if σ = ⊥ ∨ (b 6= true ∧ corr = false): send ⊥ to IOr[id] {error: signing or test verification failed
add x to H; send σ to IOr[id] {record x for verification and return signature

recv (VERIFYSIG, pk , x, σ) from IOr[id]:
b← ver(p)(pk , x, σ) {verify signature
if corr = false ∧ pk = pk ∧ b = true ∧ x /∈ H: send ⊥ to IOr[id] {prevent forgery, return error
send b to IOr[id] {return verification result

recv CORR? from IOr[id]: send corr to IOr[id] {corruption status request
recv (name, CORR) from NET: corr← true; send (name, ACK) to NET {adaptive corruption

Figure 16. The ideal digital signature functionality Fsig (cf. [40], [47])
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violation is detected, then a single peer is blamed. We
therefore obtain the following result:

Proposition 4 (Fabric* achieves accountability w.r.t. hash
chain integrity). Let PF be the Fabric* protocol with
arbitrary parameters where the judge J is as above. Then
it holds true that PF achieves individual accountability
w.r.t. hash chain integrity.

Proof. Follows analogously to the proof of Theorem 2
using the intuition given above for completeness and
fairness in the case of α5.

D.3. Chain soundness of Fabric*

The authors of Fabric want to achieve the goal of
no creation. This is essentially a form of access control
which states that, if a peer accepts a block, then all
transactions in that block were sent by a client before.
Since orderers in Fabric* must include all messages from
the Kafka stream in their blocks, including transactions
with potentially invalid signatures, the goal of no creation
technically does not hold true for Fabric*. However, we
can show that Fabric* provides accountability w.r.t. chain
soundness, which is a similar goal proposed in this work
that is “as good” for the purpose of access control: If
a peer considers a transaction from a block as valid,
i.e., applies the transactions to his ledger state, then this
transaction was send by a client before (or the clients
signature key is corrupted).

Chain soundness requires additional proofs to be re-
ported to the judge, namely, lists of transactions txValidity
that are considered valid by a peer for the current reported
block. Formally, the property is then defined as follows:

Definition 5 (Chain Soundness). Consider a run ω of the
system E|A|PF, for an environment E and an adversary
A, that satisfies basic correctness.10

Let (B, txValidityB) be a block and the corresponding
list indicating the validity of each transaction in that block
that are reported at a point bωc of the run ω. Let tx
be a transaction commitment from client c in B that is
considered valid according to txValidityB. We say that tx
violates chain soundness if, at point bωc, the client c is
honest but has not sent the transaction proposal contained
in tx before.

We say Q achieves chain soundness in a run ω if there
is no transaction commitment tx in ω that violates chain
soundness.

Individual accountability w.r.t. chain soundness is
defined by modifying the definition of accountability
w.r.t. consistency (cf. Definition 3) in the following way.
Firstly, we change α1 to also check that reported evidence
include a well-formed txValidity that marks only well-
formed transactions as valid. Secondly, we change α2 to
also check correct client identities. Thirdly, we add a new
run property:
α6 (Chain Soundness): α6 contains all runs that are
not in αi, i = 1, . . . , 3 and where a peer reports

10. Basic correctness is extended to require that reported blocks B
come with a list of valid transactions txValidityB of the currently
reported block, and all transactions that are well-formed, including a
signature field, and an identity of a client c ∈ C, where C is part of the
parameters of Finit.

(B, txValidity− B) such that txValidityB marks a trans-
action commitment tx of an honest client c as valid such
that c has not send the transaction proposal contained in
tx before.

Fourthly, the run property α is changed to be α :=⋃
i∈{1,...,3,6} αi, i.e., it includes the basic correctness prop-

erties and the new property that covers chain soundness.
The accountability constraint for α remains unchanged.
These changes give the formal definition of (individual)
accountability w.r.t. chain soundness.

To show accountability w.r.t. chain soundness, the
judge J works as follows: It checks properties α1, . . . , α3

analogous to the judge given in Section 6.2. In addition,
for α1 and α2 it also checks the additional change from
above. By similar arguments as given in the proof of The-
orem 2, one can show that fairness and completeness still
hold. Finally, observe that α6 cannot directly be checked
by the judge since he has no list of past transactions of
clients. Instead, the judge checks, for each reported block,
whether there is a transaction commitment that is marked
as valid but contains a transaction proposal with an invalid
signature. If the judge finds such a transaction commit-
ment, then the peer that reported the block is blamed.
Fairness for this case follows from the fact that honest
peers will mark transactions as invalid if they have an
invalid signature. Completeness follows from the fact that,
if the client is honest, then his signatures are unforgeable.
Thus, transactions that violate chain soundness always
contain an invalid signature, which is detected by the
judge. Using this judge, we obtain the following result:

Proposition 5 (Fabric* achieves accountability w.r.t. chain
soundness). Let PF be the Fabric* protocol with arbitrary
parameters where the judge J is as above. Then it holds
true that PF achieves individual accountability w.r.t. chain
soundness.

Proof. Follows analogously to the proof of Theorem 2
using the intuition given above for completeness and
fairness.

Appendix E.
Transferring Ideal Results to Realizations

All of our security results are shown for an ideal
signature functionality Fsig. Here we show that if Fsig

is replaced by its realization Psig (cf. Figure 17) where
signing is done using an EUF-CMA secure secure signa-
ture scheme Psig (existential unforgeability under chosen
message attacks), then all results still hold true. EUF-
CMA is the standard security notion for signature schemes
(see, e.g., [28]) and it is well-known that such schemes
are (necessary and) sufficient to realize an ideal signature
functionality (see, e.g., [40], [47]).

Let PF be the Fabric* protocol and let PrF be the system
obtained from PF by replacing Fsig by Psig. Informally
speaking, the proposition below states that all our results
indeed carry over to PrF. We provide a proof sketch for
the proposition, giving the general intuition, and then
formally show this result for the property “accountability
w.r.t. consistency”; all other properties follow analogously.
We emphasize that while this result uses that Psig realizes
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Parameters: – n > 0 {number of I/O tape pairs
– Σ = (gen, sig, ver) {digital signature scheme

Tapes: from/to IOr (r ≤ n): (ioinsigr , io
out
sigr

); from/to NET: (netinPsig
, netoutPsig

)

State: – name ∈ {0, 1}∗ ∪ {⊥} {public/private key pair name; initially ⊥
– pk, sk ∈ {0, 1}∗ ∪ {⊥} {public and private key; initially ⊥
– corr ∈ {false, true} {corruption status; initially false

CheckAddress: Accept input m from IOr iff m = (id,name,m′) for some id,name,m′and (name = ⊥ or name = name). Accept input m from NET iff
m = (name,m′) for some m′.

Initialization: Upon receiving the first message (id,name,m′) in mode Compute do:
name← name {record key pair name (used to address multiple instances of Fpke)
send (name, INIT) to NET; recv (name, corr , pk , sk) from NET {ask adversary for corruption
if corr = true: corr← true; pk← pk ; sk← sk {use key pair provided by adversary

else: (pk, sk)
$← gen(1η) {generate fresh key pair

Then, continue processing the first request in mode Compute.
Compute: In the following, by “recv m from IOr[id]” we denote “recv (id, name,m) from IOr” and by “send m to IOr[id]” we denote “send (id, name,m)

to IOr”.
recv GETPUBKEY from IOr[id]: send pk to IOr[id] {return public key

recv (SIGN, x) from IOr[id]: σ $← sig(sk, x); send σ to IOr[id] {sign x with sk, return signature

recv (VERIFY, pk , x, σ) from IOr[id]: b $← ver(pk , x, σ); send b to IOr[id] {verify, return result
recv CORR? from IOr[id]: send corr to IOr[id] {corruption status request
recv (name, CORR) from NET: corr← true; send (name, pk, sk) to NET {adaptive corruption

Figure 17. The realization Psig of Fsig (cf. [40], [47]).

Fsig in the usual UC sense (see, e.g., [47]), the result does
not follow from the UC composition theorems.

Proposition 6 (Transferability of Security Properties -
informal). Let P be one of the previous security properties
that holds true for PF. If the signature scheme used by Psig

is EUF-CMA secure, then P also holds true for PrF.

Proof Sketch. The proof uses the fact that Psig with a
EUF-CMA secure signature scheme and Fsig with an
appropriate simulator S are indistinguishable for any poly-
time environment (cf. [47]). Suppose the security property
P is violated with non-negligible probability in E|A|PrF
(for some environment E and adversary A). Then, we can
build a distinguishing environment E ′ for Psig/Fsig by
internally simulating E|A|PrF except for signing requests,
which are handled using the external Psig/Fsig. Since all
security properties can be observed and checked by E ′ in
this (almost) full simulation of E|A|PrF, E ′ has a non-
negligible advantage of distinguishing between running
with Psig and running with S and Fsig, in contradiction
to the assumption that Psig realizes Fsig with S.

We now formally show the above proposition for
accountability w.r.t. consistency:

Theorem 7. Let E and A be an environment and adver-
sary such that E|A|PrF is ppt and PrF be the Fabric protocol
using a real signature scheme as defined earlier.

If the signature scheme used in Psig is EUF-CMA
secure, then E|A|PrF is also accountable w.r.t. consistency.

Proof. Let the signature scheme used by Psig be EUF-
CMA secure. Then, by the results from [40], [47], we
know that there exists a simulator S such that Psig run-
ning with a dummy adversary AD is indistinguishable
from Fsig running with the simulator S for every (ppt)
environment E . That is, for all environments E we have
E |AD | Psig ≡ E | S |Fsig.

Assume by contradiction that PrF does not provide
accountability w.r.t. consistency. Then, there exist E and A
such that E|A|PrF runs in polynomial time and the judge
violates fairness or completeness (of the accountability
property for consistency) in a non-negligible set of runs.
We define a new environment Ẽ that connects to AD | Psig

and internally simulates E |A |PrF, except for using the
external machine Psig for signing requests. The simulation
continues at most until the polynomial runtime bound
of E|A|PrF. has been reached. At the end of the simu-
lation, Ẽ checks whether the judge violated fairness or
completeness. Note that Ẽ can indeed observe a violation
since this decision depends only on information that is
available in the internal simulation and on the correctness
of signatures, which can be checked by using Psig. If
a violation is detected, then E outputs 1. Otherwise, the
environment outputs 0. Note that Ẽ is a ppt environment
as it performs at most a polynomial number of steps, no
matter which system it connects to.

Observe that E|A|PrF and Ẽ | AD | Psig behave identi-
cal except for the computation of the overall output of
the run. In particular, the runtime bound on the internal
simulation of Ẽ is never exceeded, i.e., the simulation
never aborts early. Since the probability of violation of
fairness/completeness in E|A|PrF is non-negligible, we
obtain that the system Ẽ | AD | Psig outputs 1 with non-
negligible probability. Furthermore, because Ẽ is a ppt en-
vironment and due to the indistinguishability of AD | Psig

and S |Fsig, we also have that the system Ẽ | S | Fsig

outputs 1 with non-negligible probability.
Observe that the system Ẽ | S | Fsig behaves just as

E | (A |S) |PF (where A |S is an attacker that internally
runs both A and S) except for the output, unless the
internal runtime bound of the simulation in Ẽ is exceeded.
The runtime bound is exceeded with at most negligible
probability by Lemma 8 from [48] (otherwise, one could
distinguish AD | Psig and S |Fsig). Since Ẽ | S | Fsig out-
puts 1 with non-negligible probability, this implies that the
system E | (A |S) |PF violates fairness or completeness
with non-negligible probability. We will use (*) to refer
to this observation in the following.

The runtime of E | (A |S) |PF is polynomial, except
for a negligible set of runs. This also follows from Lemma
8 from [48] and the construction of S |Fsig which runs
in polynomial time when receiving overall inputs of at
most polynomial length. Let p the polynomial that bounds
the runtime of that system. We define Ep and (A |S)p

to be an environment and an adversary that simulate E
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and A |S, respectively, for at most p(1η) steps, where
η is the security parameter. By construction, the systems
E | (A |S) |PF and Ep | (A |S)p |PF behave identical ex-
cept for a negligible set of runs where the runtime bound
p is reached. Hence, (*) implies that Ep | (A |S)p |PF also
violates fairness/completeness with non-negligible proba-
bility. We use (**) to refer to this result in what follows.

Note that the system Ep | (A |S)p |PF runs in polyno-
mial time (in particular, by definition PF runs in poly-
nomial time of its inputs received by the environment
and adversary). Thus, by the Theorem 2, the system
provides accountability w.r.t. consistency, i.e., fairness
and completeness are violated in at most a negligible
set of runs. This contradicts (**) and hence proves the
proposition.
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