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Abstract. BrowserID is a complex, real-world Single Sign-On (SSO) System for
web applications recently developed by Mozilla. It employs new HTML5 features
(such as web messaging and web storage) and cryptographic assertions to provide
decentralized login, with the intent to respect users’ privacy. It can operate in
a primary and a secondary identity provider mode. While in the primary mode
BrowserID runs with arbitrary identity providers, in the secondary mode there is
one identity provider only, namely Mozilla’s default identity provider.
We recently proposed an expressive general model for the web infrastructure and,
based on this web model, analyzed the security of the secondary identity provider
mode of BrowserID. The analysis revealed several severe vulnerabilities, which
have been fixed by Mozilla.
In this paper, we complement our prior work by analyzing the even more complex
primary identity provider mode of BrowserID. We do not only study authenti-
cation properties as before, but also privacy properties. During our analysis we
discovered new and practical attacks that do not apply to the secondary mode: an
identity injection attack, which violates a central authentication property of SSO
systems, and attacks that break the privacy promise of BrowserID and which do
not seem to be fixable without a major redesign of the system. Interestingly, some
of our attacks on privacy make use of a browser side channel that, to the best of
our knowledge, has not gained a lot of attention so far.
For the authentication bug, we propose a fix and formally prove in a slight exten-
sion of our general web model that the fixed system satisfies all the authentication
requirements we consider. This constitutes the most complex formal analysis of a
web application based on an expressive model of the web infrastructure so far.
As another contribution, we identify and prove important security properties of
generic web features in the extended web model to facilitate future analysis efforts
of web standards and web applications.

1 Introduction

Single sign-on (SSO) systems have become an important building block for authentica-
tion in the web. Over the last years, many different SSO systems have been developed,
for example, OpenID, OAuth, and proprietary solutions such as Facebook Connect.
These systems usually allow a user to identify herself to a so-called relying party (RP),
which provides some service, using an identity that is managed by an identity provider
(IdP), such as Facebook or Google.



Given their role as brokers between IdPs and RPs, the security of SSO systems is
particularly crucial: numerous attacks have shown that vulnerabilities in SSO systems
compromise the security of many services and users at once (see, e.g., [3, 7, 23–26]).

BrowserID [21] is a relatively new complex SSO system which allows users to utilize
any of their existing email addresses as an identity. BrowserID, which is also known by
its marketing name Persona, has been developed by Mozilla and provides decentralized
and federated login, with the intent to respect users’ privacy: While in other SSO systems
(such as OpenID), by design, IdPs can always see when and where their users log in,
Mozilla’s intention behind the design of BrowserID was that such tracking should not
be possible. Several web applications support BrowserID authentication. For example,
popular content management systems, such as Drupal and WordPress allow users to log
in using BrowserID. Also Mozilla uses this SSO system on critical web sites, e.g., their
bug tracker Bugzilla and their developer network MDN.

The BrowserID implementation is based solely on native web technologies. It uses
many new HTML5 web features, such as web messaging and web storage. For example,
BrowserID uses the postMessage mechanism for cross-origin inter-frame communica-
tion (i.e., communication within a browser between different windows) and the web
storage concept of modern browsers to store user data on the client side.

There are two modes for BrowserID: For the best user experience, email providers
(IdPs) can actively support BrowserID; they are then called primary IdPs. For all other
email providers that do not support BrowserID, the user can register her email address
at a default IdP, namely Mozilla’s login.persona.org, the so-called secondary IdP.

In [13], we proposed a general and expressive Dolev-Yao style model for the web
infrastructure. This web model is designed independently of a specific web application
and closely mimics published (de-facto) standards and specifications for the web, for in-
stance, the HTTP/1.1 and HTML5 standards and associated (proposed) standards (main-
ly RFCs). It is the most comprehensive web model to date. Among others, HTTP(S) re-
quests and responses, including several headers, such as cookie, location, strict transport
security (STS), and origin headers, are modeled. The model of web browsers captures
the concepts of windows, documents, and iframes, including the complex navigation
rules, as well as new technologies, such as web storage and cross-document messag-
ing (postMessages). JavaScript is modeled in an abstract way by so-called scripting
processes which can be sent around and, among others, can create iframes and initiate
XMLHTTPRequests (XHRs). Browsers may be corrupted dynamically by the adversary.

Based on this general web model, we analyzed the security of the secondary IdP
mode of BrowserID [13]. The analysis revealed several severe vulnerabilities, which
have since been fixed by Mozilla.

Contributions of this Paper. The main contributions of this paper are that we i) analyze
authentication and privacy properties for the primary mode of BrowserID, where in both
cases the analysis revealed new attacks, ii) identify generic web security properties to
ease future analysis efforts, and iii) slightly extend our web model.

As mentioned before, in [13], we studied the simpler secondary mode of BrowserID
only. The primary model studied here is much more complex than the secondary mode
(see also the remarks in Section 4.2). It involves more components (such as an arbitrary
set of IdPs, more iframes), a much more complex communication structure, and requires
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weaker trust assumptions (for example, some IdPs, and hence, the JavaScript they de-
liver, might be malicious). Also, in our previous work, we have not considered privacy
properties, but authentication properties only.

More specifically, the contributions of this paper can be summarized as follows.
Extension of the Web Model. We slightly extend our web model proposed in [13]. We
complement the modeling of the web storage concept of modern browsers by adding
sessionStorage [27], which is (besides the already modeled localStorage) heavily used
by BrowserID in its primary mode. We also extend the model to include a set of user
identities (e.g., user names or email addresses) in addition to user secrets.
Authentication Attack and Security Proof for BrowserID. The authentication properties
we analyze are central to any SSO system and correspond to those considered in our
previous work: i) the attacker should not be able to log in at an RP as an honest user
and ii) the attacker should not be able to authenticate an honest user/browser to an
RP with an ID not owned by the user (identity injection). While trying to prove these
authentication properties for the primary mode of BrowserID, we discovered a new
attack which violates property ii). Depending on the service provided by the RP, this
could allow the attacker to track the honest user or to obtain user secrets. We confirmed
the attack on the actual implementation and reported it to Mozilla, who acknowledged
the attack. We note that this attack does not apply to the secondary mode.

We propose a fix and provide a detailed formal proof based on the (extended) web
model which shows that the fixed system satisfies the mentioned authentication prop-
erties. This constitutes the most complex formal analysis of a web application based
on an expressive model of the web infrastructure, in fact, as mentioned, the most com-
prehensive one to date. We note that other web models are too limited to be applied to
BrowserID (see also Section 7).
Privacy Attacks on BrowserID. As pointed out before, BrowserID was designed by Mo-
zilla with the explicit intention to respect users’ privacy. Unlike in other SSO systems,
when using BrowserID, IdPs should not learn to which RP a user logs in. When trying
to formally prove this property, we discovered attacks that show that BrowserID cannot
live up to this claim. Our attacks allow malicious IdPs to check whether or not a user
is logged in at a specific RP with little effort. Interestingly, one variant of these attacks
exploits a browser side channel which, to our knowledge, has not received much atten-
tion in the literature so far. Just as for authentication, we have confirmed the attacks on
the actual implementation and reported them to Mozilla [10], who acknowledged the
attacks. We have been awarded a bug bounty from the Mozilla Security Bug Bounty
Program. Unfortunately, the attacks exploit a design flaw of BrowserID that does not
seem to be easily fixable without a major redesign.
Generic Web Security Properties. Our security analysis of BrowserID and the case study
in [13] show that certain security properties of the web model need to be established in
most security proofs for web standards and web applications. As another contribution,
we therefore identify and summarize central security properties of generic web features
in our extension of our model and formalize them in a general way such that they can
be used in and facilitate future analysis efforts of web standards and web applications.

Structure of this Paper. In Section 2, we outline the basic communication model
and the web model, including our extensions. We deduce general properties of this
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model, which are independent of specific web applications, in Section 3. For our security
analysis, we first, in Section 4, provide a description of the BrowserID system, focusing
on the primary mode. We then, in Section 5, present our attack and the formal analysis
of the authentication properties of the (fixed) BrowserID system in primary mode. In
Section 6, we present our attacks on privacy of BrowserID. Related work is discussed
in Section 7. We conclude in Section 8. In the appendix, we present more details on our
web model and some privacy attack variants. Full details of our models and proofs can
be found in our technical report [14].

2 The Web Model

In this section, we present a brief overview of our model of the web infrastructure
as proposed in [13], along with our extensions (sessionStorage and user identities)
mentioned in the introduction. Full details are provided in [14]. We first present the
generic Dolev-Yao style communication model which the model is based on.

2.1 Communication Model

The main entities in the communication model are atomic processes, which will be
used to model web browsers, web servers, DNS servers as well as web and network
attackers. Each atomic process has a list of addresses (representing IP addresses) it
listens to. A set of atomic processes forms what is called a system. The different atomic
processes in such a system can communicate via events, which consist of a message
as well as a receiver and a sender address. In every step of a run, one event is chosen
non-deterministically from the current “pool” of events and is delivered to an atomic
process that listens to the receiver address of that event; if different atomic processes can
listen to the same address, the atomic process to which the event is delivered is chosen
non-deterministically among the possible processes. The (chosen) atomic process can
then process the event and output new events, which are added to the pool of events, and
so on. More specifically, messages, processes, etc. are defined as follows.

Terms, Messages and Events. As usual in Dolev-Yao models (see, e.g., [1]), messages
are expressed as formal terms over a signature. The signature Σ for the terms and
messages considered in our web model contains, among others, constants (such as (IP)
addresses, ASCII strings, and nonces), sequence and projection symbols, and further
function symbols, including those for (a)symmetric encryption/decryption and digital
signatures. The equational theory associated with the signature Σ is defined as usual in
Dolev-Yao models. Message are defined to be ground terms (terms without variables)
and events are of the form (a: f :m) where a and f are receiver/sender (IP) addresses,
and m is a message.

To provide an example of a message, in our web model an HTTP request is repre-
sented as a ground term containing a nonce, a method (e.g., GET or POST), a domain
name, a path, URL parameters, request headers (such as Cookie), and a message body.
Now, for example, an HTTP GET request for the URL http://ex.com/show?p=1 is
modeled as the term r := 〈HTTPReq,n1,GET,ex.com,/show,〈〈p,1〉〉,〈〉,〈〉〉, where head-
ers and body are empty. An HTTPS request for r is of the form enca(〈r,k′〉,pub(kex.com)),
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where k′ is a fresh symmetric key (a nonce) generated by the sender of the request (typi-
cally a browser); the responder is supposed to use this key to encrypt the response.

Atomic Processes, Systems and Runs. Atomic Dolev-Yao processes, systems, and runs
of systems are defined as follows.

An atomic Dolev-Yao (DY) process is a tuple p = (Ip,Zp,Rp,sp
0) where Ip is a set

of addresses (the set of addresses the process listens to), Zp is a set of states (formally,
terms), sp

0 ∈ Zp is an initial state, and Rp is a relation that takes an event and a state as
input and (non-deterministically) returns a new state and a set of events. This relation
models a computation step of the process, which upon receiving an event in a given
state non-deterministically moves to a new state and outputs a set of messages (events).
It is required that the events and states in the output can be computed (more formally,
derived in the usual Dolev-Yao style) from the current input event and state.

The so-called attacker process is an atomic DY process which records all messages
it receives and outputs all messages it can possibly derive from its recorded messages.
Hence, an attacker process is the maximally powerful DY process. It carries out all
attacks any DY process could possibly perform and is parametrized by the set of sender
addresses it may use. Attackers may corrupt other DY processes (e.g., a browser).

A system is a (possibly infinite) set of atomic processes. Its state (i.e., the states of
all atomic processes in the system) together with a multi-set of waiting events is called
a configuration.

A run of a system for an initial set E0 of events is a sequence of configurations,
where each configuration (except for the first one, which consists of E0 and the initial
states of the atomic processes) is obtained by delivering one of the waiting events of the
preceding configuration to an atomic process p (which listens to the receiver address of
the event), and which in turn performs a computation step according to its relation Rp.

Scripting Processes. We also define scripting processes, which model client-side script-
ing technologies, such as JavaScript.

A scripting process (or simply, a script) is defined similarly to a DY process. It is
called by the browser in which it runs. The browser provides it with a (fresh, infinite)
set of nonces and state information s. The script then outputs a term s′, which represents
the new internal state and some command which is interpreted by the browser (see
Appendix A). Again, it is required that a script’s output is derivable from its input.

Similarly to an attacker process, the so-called attacker script Ratt may output every-
thing that is derivable from the input.

2.2 Web System

A web system formalizes the web infrastructure and web applications. Formally, a web
system is a tuple (W,S,script,E0) with the following components:

The first component, W , denotes a system (a set of DY processes) and contains hon-
est processes, web attacker, and network attacker processes. While a web attacker can
listen to and send messages from its own addresses only, a network attacker may listen
to and spoof all addresses. Hence, it is the maximally powerful attacker. Attackers may
corrupt other parties. In the analysis of a concrete web system, we typically have one net-
work attacker only and no web attackers (as they are subsumed by the network attacker),
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or one or more web attackers but then no network attacker. Honest processes can either
be web browsers, web servers, or DNS servers. The modeling of web servers heavily
depends on the specific application (for BrowserID see the modeling in Section 5.1). In
our security analysis of authentication properties, DNS servers will be subsumed by the
attacker, and hence, do not need to be modeled explicitly in this work. The web browser
model, which is independent of a specific web application, is presented below.

The second component, S , is a finite set of scripts, including the attacker script Ratt.
In a concrete model, such as our BrowserID model (see Section 5.1), the set S \{Ratt}
describes the set of honest scripts used in the application under consideration while
malicious scripts are modeled by the “worst-case” malicious script, Ratt.

The third component, script, is an injective mapping from a script in S to its string
representation script(s) (a constant in Σ ). Finally, E0 is a multi-set of events, containing
an infinite number of events of the form (a:a:TRIGGER) for every process a in the web
system. A run of the web system is a run of W initiated by E0.

2.3 Web Browsers

We now sketch the model of the web browser, with more details provided in Appendix A.
A web browser is modeled as a DY process (Ip,Zp,Rp,sp

0 ,N
p).

An honest browser is thought to be used by one honest user, who is modeled as
part of the browser. User actions are modeled as non-deterministic actions of the web
browser. For example, the browser itself non-deterministically follows the links in a web
page. User data (i.e., passwords and identities) is stored in the initial state of the browser
and is given to a web page when needed, similar to the AutoFill feature in browsers.

Besides the user identities and passwords, the state of a web browser (modeled as
a term) contains a tree of open windows and documents, lists of cookies, localStorage
and sessionStorage data, a DNS server address, and other data (see Appendix A). We
note that identities and sessionStorage were not considered in [13].

In the browser state, the windows subterm is the most complex one. It contains
a window subterm for any open window (which may be many at a time), and inside
each window, a list of documents opened in that window (which, again, may contain
windows, modeling iframes). A document contains a script loaded from a web server
and represents one loaded HTML page.

Scripts may, for example, navigate or create windows, send XHRs and postMessages,
submit forms, set/change cookies, localStorage, and sessionStorage data, and create
iframes. When activated, the browser provides a script with all data it has access to, such
as certain cookies as well as localStorage and sessionStorage.

Browsers can become corrupted, i.e., be taken over by web and network attackers.
We model two types of corruption: close-corruption, modeling that a browser is closed
by the user, and hence, certain data is removed (e.g., session cookies and opened win-
dows), before it is taken over by the attacker, and full corruption, where no data is not
removed in advance. Once corrupted, the browser behaves like an attacker process.

3 General Security Properties
We have identified central application independent security properties of web features in
the web model and formalized them in a general way such that they can be used in and
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facilitate future analysis efforts of web standards and web applications. In this section,
we provide a brief overview of these properties, with precise formulations and proofs
presented in [14].

The first set of properties concerns encrypted connections (HTTPS): We show that
HTTP requests that were encrypted by an honest browser for an honest receiver can-
not be read or altered by the attacker (or any other party). This, in particular, implies
correct behavior on the browser’s side, i.e., that browsers that are not fully corrupted
never leak a symmetric key used for an HTTPS connection to any other party. We also
show that honest browsers set the host header in their requests properly, i.e., the header
reflects an actual domain name of the receiver, and that only the designated receiver can
successfully respond to HTTPS requests.

The second set of properties concerns origins and origin headers. Using the prop-
erties stated above, we show that browsers cannot be fooled about the origin of an
(HTTPS) document in their state: If the origin of a document in the browser’s state is a
secure origin (HTTPS), then the document was actually sent by that origin. Moreover,
for requests which contain an origin header with a secure origin we prove that such
requests were actually initiated by a script that was sent by that origin to the browser. In
other words, in this case, the origin header works as expected.

4 The BrowserID System

BrowserID [22] is a decentralized single sign-on (SSO) system developed by Mozilla
for user authentication on web sites. It is a complex full-fledged web application de-
ployed in practice, with currently ∼47k LOC (excluding some libraries). It allows web
sites to delegate user authentication to email providers, identifying users by their email
addresses. BrowserID makes use of a broad variety of browser features, such as XHRs,
postMessage, local- and sessionStorage, cookies, various headers, etc.

We first, in Section 4.1, provide a high-level overview of the BrowserID system. A
more detailed description of the BrowserID implementation is then given in Section 4.2.
The description of the BrowserID system presented in the following as well as our
BrowserID model (see Section 5.1) is extracted mainly from the BrowserID source
code [20] and the (very high-level) official BrowserID documentation [22].

4.1 Overview

The BrowserID system knows three distinct parties: the user, who wants to authenticate
herself using a browser, the relying party (RP) to which the user wants to authenticate
(log in) with one of her email addresses (say, user@idp.com), and the identity/email
address provider, the IdP. If the IdP (idp.com) supports BrowserID directly, it is called
a primary IdP. Otherwise, a Mozilla-provided service, the so-called secondary IdP,
takes the role of the IdP. As mentioned before, here we concentrate on the primary IdP
mode as the secondary IdP mode was described in detail in [13]. However, we briefly
discuss the differences between the two modes at the end of Section 4.2.

A primary IdP provides information about its setup in a so-called support document,
which it provides at a fixed URL derivable from the email domain, e.g., https://idp.
com/.well-known/browserid.
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RP Browser IdP

A gen. key pair

B pkb, email
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G pkIdP

H verify CAP
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Fig. 1. BrowserID login: basic overview

A user who wants to log in at an RP
with an email address for some IdP has to
present two signed documents to the RP:
A user certificate (UC) and an identity as-
sertion (IA). The UC contains the user’s
email address and the user’s public key. It
is signed by the IdP. The IA contains the
origin of the RP and is signed with the
user’s private key. Both documents have a
limited validity period. A pair consisting
of a UC and a matching IA is called a cer-
tificate assertion pair (CAP) or a backed
identity assertion. Intuitively, the UC in
the CAP tells the RP that (the IdP certified
that) the owner of the email address is (or
at least claims to be) the owner of the public key. By the IA contained in the CAP
the RP is ensured that the owner of the given public key (i.e., the one who knows the
corresponding private key) wants to log in. Altogether, given a valid CAP, RP would
consider the user (identified by the email address in the CAP) to be logged in.

The BrowserID authentication process (with a primary IdP) consists of three phases
(see Figure 1): I UC provisioning, II CAP creation, and III CAP verification.

In Phase I , (the browser of) the user creates a public/private key pair A . She then
sends her public key as well as the email address she wants to use to log in at some RP
to the respective IdP B . The IdP now creates the UC C , which is then sent to the user D .
The above requires the user to be logged in at IdP.

With the user having received the UC, Phase II can start. The user wants to authen-
ticate to an RP, so she creates the IA E . The UC and the IA are concatenated to a CAP,
which is then sent to the RP F .

In Phase III , the RP checks the authenticity of the CAP. For this purpose, the
RP fetches the public key of the IdP G , which is contained in the support document.
Afterwards, the RP checks the signatures of the UC and the IA H . If this check is
successful, the RP can, as mentioned before, consider the user to be logged in with the
given email address and send her some token (e.g., a cookie with a session ID), which
we refer to as an RP service token.

4.2 Implementation Details

We now provide a more detailed description of the BrowserID implementation. Since
the system is very complex, with many HTTPS requests, XHRs, and postMessages sent
between different entities (servers as well as windows and iframes within the browser),
we here describe mainly the phases of the login process without explaining every single
message exchange done in the implementation. A more detailed step-by-step description
can be found in [14]. Note that BrowserID’s specification of IdPs fixes the interface to
BrowserID only, but otherwise does not further detail the specification of IdPs. There-
fore, in what follows, we consider a typical IdP, namely the example implementation
provided by Mozilla [20].
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5 GET session_context
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9
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15 gen. key pair

16 pkb, email
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18 create UC
19 UC
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/PIF

21 gen. IALPO

22 POST auth_with_assertion (CAPLPO)

23 GET list_emails

24 GET address_info

25 gen. IARP

26 response (CAPRP)

27 close

Browser

HTTPS messages, XHRs (over HTTPS), postMessages, browser commands

Fig. 2. Simplified BrowserID implementation overview. CIF omitted for brevity.

In addition to the parties mentioned so far, the actual BrowserID implementation uses
another party, Mozilla’s login.persona.org (LPO). Among others, LPO provides
HTML and JavaScript files that, for security and privacy reasons, cannot be delivered
by either IdP or RP. An overview of the implementation is given in Figure 2. For brevity
of presentation, several messages and components, such as the CIF (see below), are
omitted in the figure (but not in our analysis).

9



Windows and iframes in the Browser. By RP-Doc we denote the window containing
the document loaded from some RP, at which the user wants to log in with an email
address hosted by some IdP. RP-Doc typically includes JavaScript from LPO and con-
tains a button “Login with BrowserID”. The LPO JavaScript running in RP-Doc opens
an auxiliary window called the login dialog (LD). Its content is provided by LPO and
it handles the interaction with the user. During the login process, a temporary invisible
iframe called the provisioning iframe (PIF) can be created in the LD. The PIF is loaded
from IdP. It is used by LD to communicate (cross-origin) with the IdP via postMessages:
As the BrowserID implementation mainly runs under the origin of LPO, it cannot di-
rectly communicate with the IdP, thus it uses the PIF as a proxy. Temporarily, the LD
may navigate itself to a web page at IdP to allow for direct user interaction with the IdP.
We then call this window the authentication dialog (AD).

Login Process. To describe the login process, for the sake of presentation we assume for
now that the user uses a “fresh” browser, i.e., the user has not been logged in before. As
mentioned, the process starts by the user visiting a web site of some RP. After the user
has clicked on the login button in RP-Doc, the LD is opened and the interactive login
flow is started. We can divide this login flow into seven phases: In Phase i , the LD is
initialized and the user is prompted to provide her email address. Also, LD fetches the
support document (see Section 4.1) of the IdP via LPO. In Phase ii , LD creates the PIF
from the provisioning URL provided in the support document. As (by our assumption)
the user is not logged in yet, the PIF notifies LD that the user is not authenticated to
the IdP. In Phase iii , LD navigates itself away to the authentication URL which is also
provided in the support document and links to the IdP. Usually, this document will show
a login form in which the user enters her password to authenticate to the IdP. After the
user has been authenticated to IdP (which typically implies that the IdP sets a session
cookie in the browser), the window is navigated back to LPO.

Now, the login flow continues in Phase iv , which basically repeats Phase i . How-
ever, the user is not prompted for her email address (it has previously been saved in the
localStorage under the origin of LPO along with a nonce, where the nonce is stored in
the sessionStorage). In Phase v , which essentially repeats Phase ii , the PIF detects
that the user is now authenticated to the IdP and the provisioning phase is started ( I

in Figure 1): The user’s keys are created by LD and stored in the localStorage under the
origin of LPO. The PIF forwards the certification request to the IdP, which then creates
the UC and sends it back to the PIF. The PIF in turn forwards it to the LD, which stores
it in the localStorage under the origin of LPO.

In Phases vi and vii , mainly the IA is generated by LD for the origin of RP-Doc
and sent (together with the UC) to RP-Doc ( II in Figure 1). In the localStorage, LD
stores that the user’s email address is logged in at RP. Moreover, to log the user in at
LPO, LD generates an IA for the origin of LPO and sends the UC and IA to LPO.

Automatic CAP Creation. In addition to the interactive login presented above, Brow-
serID also contains an automatic, non-interactive way for RPs to obtain a freshly gener-
ated CAP: During initialization within RP-Doc, an invisible iframe called the communi-
cation iframe (CIF) is created inside RP-Doc. The CIF’s JavaScript is loaded from LPO
and behaves similar to LD, but without user interaction. The CIF automatically issues
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a fresh CAP and sends it to RP-Doc under specific conditions: among others, the email
address must be marked as logged in at RP in the localStorage. If necessary, a new key
pair is created and a corresponding new UC is requested at the IdP. For this purpose, a
PIF is created inside the CIF.

Differences to the Secondary IdP Mode. In the secondary IdP mode there are three
parties involved only: RP, Browser, and LPO, where LPO also takes the role of an
IdP; LPO is the only IdP that is present, rather than an arbitrary set of (external) IdPs.
Consequently, in the secondary IdP mode the PIF and the AD do not exist. Moreover,
in the primary mode, the behavior of the CIF and the LD is more complex than in the
secondary mode. For example, in the primary mode, just like the LD, the CIF might
contain a PIF (iframe in iframe) and interact with it via postMessages. Altogether, the
secondary IdP case requires much less communication between parties/components and
trust assumptions are simpler: in the secondary IdP mode LPO (which is the only IdP
in this mode) has to be trusted, in the primary IdP mode some external IdPs might be
malicious (and hence, also the scripts they deliver for the PIF and the AD). In [14],
Appendix I, we illustrate the differences between the two modes.

5 Analysis of BrowserID: Authentication Properties

In this section, we present the analysis of the BrowserID system with primary IdPs and
with respect to authentication properties. As already mentioned, in [13], we analyzed the
simpler case with a secondary IdP. Due to the many differences between the secondary
and primary mode as described above, the model for the primary case had to be written
from scratch in most parts, and hence, the proof is new and much more complex.

We first, in Section 5.1, describe our model of BrowserID with primary IdPs, with
two central authentication properties one would expect any SSO system to satisfy formal-
ized in Section 5.2. As mentioned in the introduction, during the analysis of BrowserID
it turned out that one of the security properties is not satisfied and that in fact there is
an attack on BrowserID. We confirmed that this attack, which was acknowledged by
Mozilla, works on the actual implementation of BrowserID. In Section 5.3, the attack
is presented along with a fix. In Section 5.4, we prove that the fixed BrowserID system
with primary IdPs satisfies both authentication properties.

5.1 Modeling of BrowserID with Primary IdPs

We model the BrowserID system with primary IdPs as a web system (in the sense of
Section 2). Note that, while in Section 4 we give only a brief overview of the BrowserID
system, our modeling and analysis considers the complete system with primary IdPs,
where we have extracted the model from the BrowserID source code [20].

We call a web system BID = (W ,S ,script,E0) a BrowserID web system if it is of
the form precisely described in [14] and briefly outlined here.

The system W consists of the (network) attacker process attacker, a finite set B of
(initially honest) web browsers, the web server for LPO, a finite set RP of web servers
for the relying parties, and a finite set IDP of web servers for the identity providers.
(DNS servers are assumed to be dishonest, and hence, are subsumed by attacker.) IdPs
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and RPs are initially honest and can become corrupted (similar to browsers, by a special
message); LPO is assumed to be honest. The definition of the processes in W follows
the description in Section 4.2. For RP, we explicitly follow the security considerations
in [22] (Cross-site Request Forgery protection, e.g., by checking origin headers and
HTTPS only with STS enabled). When RP receives a valid CAP, RP responds with a
fresh RP service token for ID i where i is the ID (email address) for which the CAP was
issued. Intuitively, a client having such a token can use the service of the RP.

The set S of BID contains six scripts, with their string representations defined by
script: the honest scripts running in RP-Doc, CIF, LD, AD, and PIF, respectively, and
the malicious script Ratt. The scripts for CIF and LD (issued by LPO) are defined in a
straightforward way following the implementation outlined in Section 4. The scripts for
RP-Doc, AD, and PIF follow the example implementation provided by Mozilla [20].

5.2 Authentication Properties of the BrowserID System

While the documentation of BrowserID does not contain explicit security goals, here we
state two fundamental authentication properties every SSO system should satisfy. These
properties are adapted from [13].

Informally, these properties can be stated as follows: (A) The attacker should not be
able to use a service of RP as an honest user. In other words, the attacker should not
get hold of (be able to derive from his current knowledge) an RP service token for an
ID of an honest user (browser), even if the browser was closed and then later used by
a malicious user (i.e., after a CLOSECORRUPT). (B) The attacker should not be able to
authenticate an honest browser to an RP with an ID that is not owned by the browser
(identity injection). We refer the reader to [14] for the formal definitions.

We call a BrowserID web system BID secure (w.r.t. authentication) if the above
conditions are satisfied in all runs of the system.

5.3 Identity Injection Attack on BrowserID with Primary IdPs

While trying to prove the above mentioned authentication properties of BrowserID with
primary IdPs in our model, we discovered a serious attack, which is sketched below and
does not apply to the case with secondary IdPs. We confirmed the attack on the actual
implementation and reported it to Mozilla [9], who acknowledged it.

During the provisioning phase v (see Figure 2), the IdP issues a UC for the user’s
identity and public key provided in 16 . This UC is sent to the LD by the PIF in 20 .

If the IdP is malicious, it can issue a UC with different data. In particular, it could
replace the email address by a different one, but keep the original public key. This
(malicious) UC is then later included in the CAP by LD. The CAP will still be valid,
because the public key is unchanged. Now, as the RP determines the user’s identity by
the UC contained in the CAP, RP issues a service token for the spoofed email address.
As a result, the honest user will use RP’s service (and typically will be logged in to RP)
under an ID that belongs to the attacker, which, for example, could allow the attacker to
track actions of the honest user or obtain user secrets. This violates Condition (B).

To fix this problem, upon receipt of the UC in 20 , LD should check whether it
contains the correct email address and public key, i.e., the one requested by LD in 16 .
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The same is true for the CIF, which behaves similarly to the LD. Our formal model of
BrowserID presented in [14] contains these fixes.

5.4 Security of the Fixed System
For the fixed BrowserID system with primary IdPs, we have proven the following theo-
rem, which says that a fixed BrowserID web system (i.e., the system where the above
described fix is applied) satisfies the security properties (A) and (B).

Theorem 1. Let BID be a fixed BrowserID web system. Then, BID is secure (w.r.t. au-
thentication).

We prove Conditions (A) and (B) separately. For both conditions, we assume that they
are not satisfied and lead this to a contradiction. In our proofs, we make use of the
general security properties of the web model presented in Section 3, which helped a lot
in making the proof for the primary IdP model more modular and concise. The complete
proof with all details is provided in [14].

6 Privacy of BrowserID

In this section, we study the privacy guarantees of the BrowserID system with primary
IdPs. Regarding privacy, Mozilla states that “. . . the BrowserID protocol never leaks
tracking information back to the Identity Provider.” [5] and “Unlike other sign-in sys-
tems, BrowserID does not leak information back to any server [. . . ] about which sites
a user visits.” [19].1 While this is not a formal definition of the level of privacy that
BrowserID is supposed to provide, these and other statements2 make it certainly clear
that, unlike for other SSO systems, IdPs should not be able to learn to which RPs their
users log in.

In the process of formalizing this intuition in our model of BrowserID and trying
to prove this property, we found severe attacks against the privacy of BrowserID which
made clear that BrowserID does not provide even a rather weak privacy property in the
presence of a malicious IdP. Intuitively, the property says that a malicious IdP (which
acts as a web attacker) should not be able to tell whether a user logs in at an honest RP r
or some other honest RP r′. In other words, a run in which the user logs in at r at some
point should be indistinguishable (from the point of view of the IdP) from the run in
which the user logs in at r′ instead. Indistinguishability means that the two sequences
of messages received by the web attacker in the two runs are statically equivalent in the
usual sense of Dolev-Yao models (see [1]), i.e., a Dolev-Yao attacker cannot distinguish
between the two sequences. Details of the privacy definition are not important here
since our attacks clearly show that privacy is broken for any reasonable definition of
privacy. Unfortunately, our attacks are not caused by a simple implementation error,

1Clearly, in the current state of BrowserID a malicious LPO server could gather information
about users’ log in history. However, an integration of the code currently delivered by LPO into
the browser, as envisioned, would avoid this issue. Currently, Mozilla’s LPO needs to be trusted.

2see, for example, https://developer.mozilla.org/en-US/Persona/Why_Persona
and http://identity.mozilla.com/post/7669886219.
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idp.com/index

relyingparty.com/login

login.persona.org/cif

idp.com/pif

a User visits her iden-
tity provider (could be in
a PIF itself, i.e., during lo-
gin at some other RP).

b PIF exists only when
BrowserID automatically
logs the user in at r (be-
cause the user was logged
in before).

c When the user is
logged in at r, the
identity provider gets
a notification via post-
Message when the PIF
iframe is loaded.

Fig. 3. The three main steps of the privacy attack. Using a specially crafted PIF document, a
malicious IdP can notify itself via postMessage when the user is logged in at some RP r.

but rather a fundamental design flaw in the BrowserID protocol. Fixes for this flaw are
conceivable, but not without major changes to the design of BrowserID as discussed
in Section 6.2. Such a redesign of BrowserID and a proof of privacy of the redesigned
system are therefore out of the scope of this paper, which focuses on the existing and
deployed version of BrowserID.

6.1 Privacy Attacks on BrowserID

For our attacks to work, it suffices that the IdP is a web attacker. They work even if all
DNS servers, RPs, and LPO are honest, and all parties use encrypted connections. In
what follows, we present two variants of the attacks on privacy with three additional
interesting variants presented in Appendix B.
PostMessage-Based Attack. The adversary is a malicious IdP that is interested to learn
whether a user is logged in at RP r. Figure 3 illustrates the main steps:
Step a . First, the victim visits her IdP. In BrowserID, email providers serve as IdPs, and
therefore it is not unlikely that a user visits this web site (e.g., for checking email). As
the IdP usually has some cookie set at the user’s browser, it learns the identity of the
victim. The IdP now creates a hidden iframe containing the login page of r.
Step b . The login page of r (now loaded as an iframe within IdP’s web site) includes
and runs the BrowserID script. As defined in the BrowserID protocol, the script creates
the communication iframe (see “Automatic CAP Creation” in Section 4.2), which in
turn checks whether the email address is marked as logged in at r in the localStorage of
the user’s browser. Only then it will try to create a new CAP, for which it needs a PIF
(the same as in Phase ii in Figure 2).
Step c . The PIF is loaded from the IdP. (From this action alone, the IdP does not learn
where the user wants to log in.) However, instead of the original (honest) PIF document,
the IdP can send a modified one that sends a postMessage to the parent of the parent of
the parent of its own window, which in this setting is the IdP document that was opened
by the user in Step a . When the IdP receives this message in the document from Step a ,
it knows that the PIF was loaded, and therefore, that the user is currently logged in at r.

Note that the IdP can repeatedly apply the above as long as the user stays on the
IdP’s web site. During this period, the IdP can see whether or not the user is logged
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in at the targeted RP. Clearly, the IdP can simultaneously run the attack for different
RPs. In particular, the IdP can distinguish whether a user is logged in at RP r or r′,
which violates the privacy property sketched above. In our formal model, the malicious
IdP would run the attacker script Ratt in idp.com/index and in idp.com/pif (see
Figure 3) in order to carry out the attack.
Variant 1: Waiting for UC requests. The IdP first acts as in Step a . Now, it could passively
wait for incoming requests for the PIF document or UC requests on its server, which tell
the IdP that a provisioning flow (probably initiated by Step a ) was started. This variant
cannot be executed in parallel and is less reliable in practice, though.

We verified (all variants of) the attacks in our model as well as in a real-world
BrowserID setup. Implementing proofs-of-concept required only a few lines of (trivial)
JavaScript. In most attack variants, we directly or indirectly use the structure of the
windows inside the web browser as a side channel. To our knowledge, this is the first
description of this side channel for breaking privacy in browsers. The attacks have been
reported to and confirmed by Mozilla [10].

6.2 Fixing the Privacy of BrowserID

Fixing the privacy of BrowserID seems to require a substantial redesign of the system.
Regarding the presented attacks, BrowserID’s main weakness is the window structure.
The most obvious mitigation, modifying the CIF such that it always creates the PIF
(even if the user has not logged in before), does not work: To open the PIF, the CIF
looks up (in the localStorage) the user’s identity at the current RP to derive the address
of the PIF. If the user has not logged in before, this information is not available.

Another approach would be to use cross-origin XHRs to replace the features of the
PIF. This solution would require a major revision in the inner workings of BrowserID
and would not protect against Variant 1.

7 Related Work

The formal treatment of the security of the web infrastructure and web applications
based on this infrastructure is a young discipline. Of the few works in this area even less
are based on a general model that incorporates essential mechanisms of the web.

Early works in formal web security analysis (see, e.g., [3,11,16,17,25]) are based on
very limited models developed specifically for the application under scrutiny. The first
work to consider a general model of the web, written in the finite-state model checker
Alloy, is the work by Akhawe et al. [2]. Inspired by this work, Bansal et al. [6, 7] built a
more expressive model, called WebSpi, in ProVerif [8], a tool for symbolic cryptographic
protocol analysis. These models have successfully been applied to web standards and
applications. Recently, Kumar [18] presented a high-level Alloy model and applied it
to SAML single sign-on. However, compared to our model in [13] and its extensions
considered here, on the one hand, all above mentioned models are formulated in the
specification languages of specific analysis tools, and hence, are tailored towards au-
tomation (while we perform manual analysis). On the other hand, the models considered
in these works are much less expressive and precise. For example, these models do not

15



incorporate a precise handling of windows, documents, or iframes; cross-document mes-
saging (postMessages) or session storage are not included at all. In fact, several general
web features and technologies that have been crucial for the analysis of BrowserID are
not supported by these models, and hence, these models cannot be applied to BrowserID.
Moreover, the complexity of BrowserID exceeds that of the systems analyzed in these
other works in terms of the use of web technologies and the complexity of the proto-
cols. For example, BrowserID in primary mode is a protocol consisting of 48 different
(network and inter-frame) messages compared to typically about 10–15 in the protocols
analyzed in other models.

The BrowserID system in the primary mode has been analyzed before using the
AuthScan tool developed by Bai et al. [4]. Their work focusses on the automated ex-
traction of a model from a protocol implementation. This tool-based analysis did not
reveal the identity injection attack, though; privacy properties have not been studied
there. Dietz and Wallach demonstrated a technique to secure BrowserID when specific
flaws in TLS are considered [12].

8 Conclusion

In this paper, we slightly extended our existing web model, resulting in the most com-
prehensive model of the web so far. It contains many security-relevant features and is
designed to closely mimic standards and specifications for the web. As such, it consti-
tutes a solid basis for the analysis of a broad range of web standards and applications.

Based on this model, we presented a detailed analysis of the BrowserID SSO system
in the primary IdP mode. During the security proof of the fundamental authentication
requirements (A) and (B), we found a flaw in BrowserID that does not apply to its
secondary mode and leads to an identity injection attack, and hence, violates property
(B). We confirmed the attack on the actual BrowserID implementation and reported it
to Mozilla, who acknowledged it. We proposed a fix and formally proved that the fixed
system fulfills both (A) and (B). Among the so far very few efforts on formally analyzing
web applications and standards in expressive web models, our analysis constitutes the
most complex formal analysis of a web application to date. It illustrates that (manual)
security analysis of complex real-world web applications in a detailed web model, while
laborious, is feasible and yields meaningful and practically relevant results.

During an attempt to formally analyze the privacy promise of the BrowserID system,
we again found practical attacks. These attacks have been reported to and confirmed by
Mozilla and, unfortunately, show that BrowserID would have to undergo a substantial
redesign in order to fulfill its privacy promise. Interestingly, for our attacks we use a
side channel that exploits information about the structure of windows in a browser. To
the best of our knowledge, such side channel attacks have not gained much attention so
far in the literature.

Finally, we have identified and proven important security properties of general ap-
plication independent web features in order to facilitate future analysis efforts of web
standards and web applications in the web model.
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A Browser Model

Here, we provide a compact overview of our browser model, with full details presented
in [14]. A web browser p is modeled as a DY process (Ip,Zp,Rp,sp

0 ,N
p) where Ip is a

finite set of (IP) addresses p may listen to and N p is an infinite set of nonces p may use.
The set of states Zp, the initial state sp

0 , and the relation Rp are sketched next.

A.1 Browser State: Zp and sp
0 .

The set Zp of states of a browser consists of terms of the form
〈windows, ids,secrets,cookies, localStorage,sessionStorage,keyMapping,

sts,DNSaddress,nonces,pendingDNS,pendingRequests, isCorrupted〉.

Windows and documents. The most important part of the state are windows and docu-
ments, both stored in the subterm windows. A browser may have several windows open
at any time (resembling the tabs and windows in a real browser), each containing a list
of documents (the history of visited web pages) of which one is “active”, namely the one
currently presented to the user in that window. A window may be navigated forward and
backward (modeling navigation buttons), deactivating one document and activating its
successor or predecessor. Intuitively, a document represents a loaded HTML page. More
formally, a document contains (the string representation of) a script, which is meant to
model both the static HTML code (e.g., links and forms) as well as JavaScript code.
When called by the browser, a script outputs a command which is then interpreted by
the browser, such as following a link or issuing an XHR (see below). Documents may
also contain iframes, which are represented as windows (subwindows) nested inside of
document terms. This creates a tree of windows and documents.

Secrets and IDs. This subterm holds the secrets and the identities of the user of the web
browser. Secrets (such as passwords) are modeled as nonces and they are indexed by
origins (where an origin is a domain name plus the information whether the connection
to this domain is via HTTP or HTTPS). Secrets are only released to documents (scripts)
with the corresponding origin, similarly to the AutoFill mechanism in browsers. Iden-
tities are arbitrary terms that model public information of the user’s identity, such as
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PROCESSING INPUT MESSAGE m
m = FULLCORRUPT: isCorrupted := FULLCORRUPT

m = CLOSECORRUPT: isCorrupted := CLOSECORRUPT

m = TRIGGER: non-deterministically choose action from {1,2}
action = 1: Call script of some active document. Outputs new state and command.

command = HREF:→ Initiate request
command = IFRAME: Create subwindow,→ Initiate request
command = FORM:→ Initiate request
command = SETSCRIPT: Change script in given document.
command = SETSCRIPTSTATE: Change state of script in given document.
command = XMLHTTPREQUEST:→ Initiate request
command = BACK or FORWARD: Navigate given window.
command = CLOSE: Close given window.
command = POSTMESSAGE: Send postMessage to specified document.

action = 2:→ Initiate request to some URL in new window
m = DNS response: send corresponding HTTP request
m = HTTP(S) response: (decrypt,) find reference.

reference to window: create document in window
reference to document: add response body to document’s script input

Fig. 4. The basic structure of the web browser relation Rp with an extract of the most important
processing steps, in the case that the browser is not already corrupted.

email addresses. Identities are released to any origin. As mentioned in the introduction,
identities were not considered in [13].

Cookies, localStorage, and sessionStorage. These subterms contain the cookies (in-
dexed by domains), localStorage data (indexed by origins), and sessionStorage data
(indexed by origins and top-level window references) stored in the browser. As men-
tioned in the introduction, sessionStorage was not modeled in [13].

KeyMapping. This term is the equivalent to a certificate authority (CA) certificate store
in the browser. Since, for simplicity, the model currently does not formalize CAs, this
term simply encodes a mapping assigning domains to their respective public keys.

STS. Domains that are listed in this term are contacted by the web browser over HTTPS
only. Connection attempts over HTTP are transparently rewritten to HTTPS. Servers
can employ the Strict-Transport-Security header to add their domain to this list.

DNSaddress. This term defines the address of the DNS server used by the browser.

Nonces, pendingDNS, and pendingRequests. These terms are used for bookkeeping
purposes, recording the nonces that have been used by the browser so far, the HTTP(S)
requests that await successful DNS resolution, and HTTP(S) requests that await a re-
sponse, respectively.

IsCorrupted. This term indicates whether the browser is corrupted ( 6=⊥) or not (=⊥).
A corrupted browser behaves like a web attacker.

Initial state sp
0 . In the browser’s initial state, keyMapping, DNSAddress, secrets, and ids

are defined as needed, isCorrupted is set to ⊥, and all other subterms are 〈〉.
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A.2 Web Browser Relation Rp.

This relation, outlined in Figure 4, specifies how the web browser processes incoming
messages. The browser may receive special messages that cause it to become corrupted
(first two lines in Figure 4), in which case it acts like the attacker process. As explained
in Section 2.3, there are two types of corruption: close-corruption and full corruption.

If the browser receives a special trigger message TRIGGER, it non-deterministically
chooses one of two actions: i) Select one of the current documents, trigger its JavaScript,
and evaluate the output of the script. Scripts can change the state of the browser (e.g.,
by setting cookies) and can trigger specific actions (e.g., following a link or creating an
iframe), which are modeled as commands issued by the script (see the list in Figure 4).
ii) Follow some URL, with the intuition that it was entered by the user.

As mentioned, some of the above actions can cause the browser to generate new
HTTP(S) requests. In this case, the browser first asks the configured DNS server for the
IP address belonging to the domain name in the HTTP(S) request. As soon as the DNS
response arrives, the browser sends the HTTP(S) request to the respective IP address.

If the HTTP(S) response arrives, its headers are evaluated and the body of the request
becomes the script of a newly created document that is then inserted at an appropriate
place in the window/document tree. However, if the HTTP(S) response is a response to
an XHR (triggered by a script in a document), the body of the response is given to the
script of that document for processing when it is called next.

B Additional Privacy Attack Variants

We here present three additional variants of the privacy attack introduced in Section 6.1.
Variant 2: PIF as Attack Source. Step a can also be launched from within a PIF itself
(i.e., the PIF also takes the role of idp.com/index above). This way, while the user
logs in at some r1, the IdP could check whether the user is logged in at r2, for any r2.
Variant 3: Scanning the Window Structure (I). Instead of using a postMessage to alert the
IdP’s outer document about the existence of the inner PIF document, the outer document
could as well repeatedly scan the window tree of the iframe containing r’s web site:
While the IdP sees almost no information about r’s document in the iframe (as it is not
same origin), it can see the list of subwindows (i.e., the CIF, and possibly other iframes).
For these frames, again, it would see the subwindows, especially the PIF, which it could
identify uniquely by checking whether it is same origin with the IdPs outer window.
Variant 4: Scanning the Window Structure (II). In Variant 2, using a same-origin check,
the malicious IdP can uniquely identify the PIF in the window structure. This same-
origin check could be skipped and it could only be checked whether a PIF is generated,
based on the window structure alone. While this is less reliable, this attack could be
launched by any third party web attacker (not only the IdP to which the user’s email
address belongs) to check whether the victim is logged in at r or not.
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