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Abstract—Web-based single sign-on (SSO) services such as
Google Sign-In and Log In with Paypal are based on the OpenID
Connect protocol. This protocol enables so-called relying parties
to delegate user authentication to so-called identity providers.
OpenID Connect is one of the newest and most widely deployed
single sign-on protocols on the web. Despite its importance, it has
not received much attention from security researchers so far, and
in particular, has not undergone any rigorous security analysis.

In this paper, we carry out the first in-depth security analysis
of OpenID Connect. To this end, we use a comprehensive generic
model of the web to develop a detailed formal model of OpenID
Connect. Based on this model, we then precisely formalize and
prove central security properties for OpenID Connect, including
authentication, authorization, and session integrity properties.

In our modeling of OpenID Connect, we employ security
measures in order to avoid attacks on OpenID Connect that
have been discovered previously and new attack variants that we
document for the first time in this paper. Based on these security
measures, we propose security guidelines for implementors of
OpenID Connect. Our formal analysis demonstrates that these
guidelines are in fact effective and sufficient.

I. INTRODUCTION

OpenID Connect is a protocol for delegated authentication
in the web: A user can log into a relying party (RP) by
authenticating herself at a so-called identity provider (IdP).
For example, a user may sign into the website tripadvisor.com
using her Google account.

Although the names might suggest otherwise, OpenID
Connect (or OIDC for short) is not based on the older OpenID
protocol. Instead, it builds upon the OAuth 2.0 framework,
which defines a protocol for delegated authorization (e.g., a
user may grant a third party website access to her resources
at Facebook). While OAuth 2.0 was not designed to provide
authentication, it has often been used for this purpose as well,
leading to several severe security flaws in the past [12], [43].

OIDC was created not only to retrofit authentication into
OAuth 2.0 by using cryptographically secured tokens and a
precisely defined method for user authentication, but also to
enable additional important features. For example, using the
Discovery extension, RPs can automatically identify the IdP
that is responsible for a given identity. With the Dynamic
Client Registration extension, RPs do not need a manual set-
up process to work with a specific IdP, but can instead register
themselves at the IdP on the fly.

Created by the OpenID Foundation and standardized only
in November 2014, OIDC is already very widely used. Among
others, it is used and supported by Google, Amazon, Paypal,

Salesforce, Oracle, Microsoft, Symantec, Verizon, Deutsche
Telekom, PingIdentity, RSA Security, VMWare, and IBM.
Many corporate and end-user single sign-on solutions are based
on OIDC, for example, well-known services such as Google
Sign-In and Log In with Paypal.

Despite its wide use, OpenID Connect has not received
much attention from security researchers so far (in contrast
to OpenID and OAuth 2.0). In particular, there have been no
formal analysis efforts for OpenID Connect until now. In fact,
the only previous works on the security of OpenID Connect are
a large-scale study of deployments of Google’s implementation
of OIDC performed by Li and Mitchell [34] and an informal
evaluation by Mainka et al. [36].

In this work, we aim to fill the gap and formally verify the
security of OpenID Connect.
Contributions of this Paper. We provide the first in-depth
formal security analysis of OpenID Connect. Based on a
comprehensive formal web model and strong attacker models,
we analyze the security of all flows available in the OIDC
standard, including many of the optional features of OIDC
and the important Discovery and Dynamic Client Registration
extensions. More specifically, our contributions are as follows.

a) Attacks on OIDC and Security Guidelines: We first
compile an overview of attacks on OIDC, common pitfalls,
and their respective mitigations. Most of these attacks were
documented before, but we point out new attack variants and
aspects.

Starting from these attacks and pitfalls, we then derive
security guidelines for implementors of OIDC. Our guidelines
are backed-up by our formal security analysis, showing that the
mitigations that we propose are in fact effective and sufficient.

b) Formal model of OIDC: Our formal analysis of OIDC
is based on the expressive Dolev-Yao style model of the web
infrastructure (FKS model) proposed by Fett, Küsters, and
Schmitz [19]. This web model is designed independently of
a specific web application and closely mimics published (de-
facto) standards and specifications for the web, for instance,
the HTTP/1.1 and HTML5 standards and associated (proposed)
standards. It is the most comprehensive web model to date.
Among others, HTTP(S) requests and responses, including
several headers, such as cookie, location, referer, authorization,
strict transport security (STS), and origin headers, are modeled.
The model of web browsers captures the concepts of windows,
documents, and iframes, including the complex navigation
rules, as well as modern technologies, such as web storage, web



messaging (via postMessage), and referrer policies. JavaScript
is modeled in an abstract way by so-called scripts which can
be sent around and, among others, can create iframes, access
other windows, and initiate XMLHttpRequests. Browsers may
be corrupted dynamically by the adversary.

The FKS model has already been used to analyze the security
of the BrowserID single sign-on system [19], [20], the security
and privacy of the SPRESSO SSO system [21], and the security
of OAuth 2.0 [22], each time uncovering new and severe
attacks that have been missed by previous analysis attempts.

Using the generic FKS model, we build a formal model of
OIDC, closely following the standard. We employ the defenses
and mitigations discussed earlier in order to create a model with
state-of-the-art security features in place. Our model includes
RPs and IdPs that (simultaneously) support all modes of OIDC
and can be dynamically corrupted by the adversary.

c) Formalization of security properties: Based on this
model of OIDC, we formalize four main security properties
of OIDC: authentication, authorization, session integrity for
authentication, and session integrity for authorization. We also
formalize further OIDC specific properties.

d) Proof of Security for OpenID Connect: Using the
model and the formalized security properties, we then show,
by a manual yet detailed proof, that OIDC in fact satisfies the
security properties. This is the first proof of security of OIDC.
Being based on an expressive and comprehensive formal model
of the web, including a strong attacker model, as well as on
a modeling of OpenID Connect which closely follows the
standard, our security analysis covers a wide range of attacks.

Structure of this Paper. We provide an informal description
of OIDC in Section II. Attacks and security guidelines are
discussed in Section III. In Section IV, we briefly recall
the FKS model. The model and analysis of OIDC are then
presented in Section V. Related work is discussed in Section VI.
We conclude in Section VII. All details of our work, including
the proofs, are provided in our technical report [23].

II. OPENID CONNECT

The OpenID Connect protocol allows users to authenticate
to RPs using their existing account at an IdP.1 (Typically, this
is an email account at the IdP.) OIDC was defined by the
OpenID Foundation in a Core document [40] and in extension
documents (e.g., [39], [41]). Supporting technologies were
standardized at the IETF, e.g., [30], [31]. (Recall that OpenID
Connect is not to be confused with the older OpenID standards,
which are very different to OpenID Connect.)

Central to OIDC is a cryptographically signed document,
the id token. It is created by the user’s IdP and serves as a
one-time proof of the user’s identity to the RP.

A high-level overview of OIDC is given in Figure 1.
First, the user requests to be logged in at some RP and
provides her email address A . RP now retrieves operational
information (e.g., some URLs) for the remaining protocol flow

1Note that the OIDC standard also uses the terms client for RP and OpenID
provider (OP) for the IdP. We here use the more common terms RP and IdP.
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/Browser /RP /IdP

A start login

B discovery

C registration

D authentication

E id token

F session cookie

Figure 1. OpenID Connect — high level overview.

(discovery, B ) and registers itself at the IdP C . The user is
then redirected to the IdP, where she authenticates herself D

(e.g., using a password). The IdP issues an id token to RP E ,
which RP can then verify to ensure itself of the user’s identity.
(The way of how the IdP sends the id token to the RP is subject
to the different modes of OIDC, which are described in detail
later in this section. In short, the id token is either relayed
via the user’s browser or it is fetched by the RP from the IdP
directly.) The id token includes an identifier for the IdP (the
issuer),2 a user identifier (unique at the respective IdP), and
is signed by the IdP. The RP uses the issuer identifier and the
user identifier to determine the user’s identity. Finally, the RP
may set a session cookie in the user’s browser which allows
the user to access the services of RP F .

Before we explain the modes of operation of OIDC, we first
present some basic concepts used in OIDC. At the end of this
section, we discuss the relationship of OIDC to OAuth 2.0.

A. Basic Concepts

We have seen above that id tokens are essential to OIDC.
Also, to allow users to use any IdP to authenticate to any
RP, the RP needs to discover some information about the IdP.
Additionally, the IdP and the RP need to establish some sort
of relationship between each other. The process to establish
such a relationship is called registration. Both, discovery and
registration, can be either a manual task or a fully automatic
process. Further, OIDC allows users to authorize an RP to
access user’s data at IdP on the user’s behalf. All of these
concepts are described in the following.

1) Authentication and ID Tokens: The goal of OIDC is to
authenticate a user to an RP, i.e., the RP gets assured of the
identity of the user interacting with the RP. This assurance is
based on id tokens. As briefly mentioned before, an id token
is a document signed by the IdP. It contains several claims,
i.e., information about the user and further meta data. More
precisely, an id token contains a user identifier (unique at
the respective IdP) and the issuer identifier of the IdP. Both
identifiers in combination serve as a global user identifier for
authentication. Also, every id token contains an identifier for
the RP at the IdP, which is assigned during registration (see
below). The id token may also contain a nonce chosen by

2The issuer identifier of an IdP is an HTTPS URL without any query or
fragment components.



the RP during the authentication flow as well as an expiration
timestamp and a timestamp of the user’s authentication at the
IdP to prevent replay attacks. Further, an id token may contain
information about the particular method of authentication and
other claims, such as data about the user and a hash of some
data sent outside of the id token.

When an RP validates an id token, it checks in particular
whether the signature of the token is correct (we will explain
below how RP obtains the public key of the IdP), the issuer
identifier is the one of the currently used IdP, the id token is
issued for this RP, the nonce is the one RP has chosen during
this login flow, and the token has not expired yet. If the id
token is valid, the RP trusts the claims contained in the id
token and is confident in the user’s identity.

2) Discovery and Registration: The OIDC protocol is
heavily based on redirection of the user’s browser: An RP
redirects the user’s browser to some IdP and vice-versa. Hence,
both parties, the RP and the IdP, need some information about
the respective URLs (so-called endpoints) pointing to each
other. Also, the RP needs a public key of the IdP to verify
the signature of id tokens. Further, an RP can contact the IdP
directly to exchange protocol information. This exchange may
include authentication of the RP at the IdP.

More specifically, an RP and an IdP need to exchange
the following information: (1) a URL where the user can
authenticate to the IdP (authorization endpoint), (2) one or
more URLs at RP where the user’s browser can be redirected
to by the IdP after authentication (redirection endpoint), (3) a
URL where the RP can contact the IdP in order to retrieve an
id token (token endpoint), (4) the issuer identifier of the IdP,
(5) the public key of the IdP to verify the id token’s signature,
(6) an identifier of the RP at IdP (client id), and optionally (7)
a secret used by RP to authenticate itself to the token endpoint
(client secret). (Recall that client is another term for RP, and
in particular does not refer to the browser.)

This information can be exchanged manually by the adminis-
trator of the RP and the administrator of the IdP, but OIDC also
allows one to completely automate the discovery of IdPs [41]
and dynamically register RPs at an IdP [39].

During the automated discovery, the RP first determines
which IdP is responsible for the email address provided by the
user who wants to log in using the WebFinger protocol [31].
As a result, the RP learns the issuer identifier of the IdP and
can retrieve the URLs of the authorization endpoint and the
token endpoint from the IdP. Furthermore, the RP receives a
URL where it can retrieve the public key to verify the signature
of the id token (JWKS URI), and a URL where the RP can
register itself at the IdP (client registration endpoint).

If the RP has not registered itself at this IdP before, it starts
the registration ad-hoc at the client registration endpoint: The
RP sends its redirection endpoint URLs to the IdP and receives
a new client id and (optionally) a client secret in return.

3) Authorization and Access Tokens: OIDC allows users to
authorize RPs to access the user’s data stored at IdPs or act on
the user’s behalf at IdPs. For example, a photo printing service
(the RP) might access or manage the user’s photos on Google

Drive (the IdP). For authorization, the RP receives a so-called
access token (besides the id token). Access tokens follow the
concept of so-called bearer tokens, i.e., they are used as the
only authentication component in requests from an RP to an
IdP. In our example, the photo printing service would have to
add the access token to each HTTP request to Google Drive.

B. Modes

OIDC defines three modes: the authorization code mode, the
implicit mode, and the hybrid mode. While in the authorization
code mode, the id token is retrieved by an RP from an IdP
in direct server-to-server communication (back channel), in
the implicit mode, the id token is relayed from an IdP to an
RP via the user’s browser (front channel). The hybrid mode
is a combination of both modes and allows id tokens to be
exchanged via the front and the back channel at the same time.

We now provide a detailed description of all three modes.
1) Authorization Code Mode: In this mode, an RP redirects

the user’s browser to an IdP. At the IdP, the user authenticates
and then the IdP issues a so-called authorization code to the
RP. The RP now uses this code to obtain an id token from the
IdP.

a) Step-by-Step Protocol Flow: The protocol flow is
depicted in Figure 2. First, the user starts the login process by
entering her email address3 in her browser (at some web page
of an RP), which sends the email address to the RP in 1 .

Now, the RP uses the OIDC discovery extension [41] to
gather information about the IdP: As the first step (in this
extension), the RP uses the WebFinger mechanism [31] to
discover information about which IdP is responsible for this
email address. For this discovery, the RP contacts the server
of the email domain in 2 (in the figure, the server of the
user’s email domain is depicted as the same party as the
IdP). The result of the WebFinger request in 3 contains the
issuer identifier of the IdP (which is also a URL). With this
information, the RP can continue the discovery by requesting
the OIDC configuration from the IdP in 4 and 5 . This
configuration contains meta data about the IdP, including all
endpoints at the IdP and a URL where the RP can retrieve
the public key of the IdP (used to later verify the id token’s
signature). If the RP does not know this public key yet, the RP
retrieves the key (Steps 6 and 7 ). This concludes the OIDC
discovery in this login flow.

Next, if the RP is not registered at the IdP yet, the RP
starts the OIDC dynamic client registration extension [39]: In
Step 8 the RP contacts the IdP and provides its redirect URIs.
In return, the IdP issues a client id and (optionally) a client
secret to the RP in Step 9 . This concludes the registration.

Now, the core part of the OIDC protocol starts: the RP
redirects the user’s browser to the IdP in 10 . This redirect
contains the information that the authorization code mode
is used. Also, this redirect contains the client id of the RP,
a redirect URI, and a state value, which serves as a Cross-
Site Request Forgery (CSRF) token when the browser is later

3Note that OIDC also allows other types of user ids, such as personal URLs.
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pubSignKey

Registration:
8 POST registrationEP

redirect_uris
9 Response
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Login:
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redirect_uri, state, (nonce)

11 GET authEP
client_id, redirect_uri, state, (nonce)

12 Response

13 POST /auth
username, password

14 Response
Redirect to RP redirect_uri with code,

state, issuer
15 GET redirect_uri

code, state, issuer
16 POST tokenEP

code, client_id, redirect_uri, (client_secret)

17 Response
id_token, access_token

18 Response
session_cookie

Figure 2. OpenID Connect authorization code mode. Note that data
depicted below the arrows is either transferred in URI parameters,
HTTP headers, or POST bodies.

redirected back to the RP. The redirect may also optionally
include a nonce, which will be included in the id token issued
later in this flow. This data is sent to the IdP by the browser 11 .
The user authenticates to the IdP 12 , 13 , and the IdP redirects
the user’s browser back to the RP in 14 and 15 (using the
redirect URI from the request in 11 ). This redirect contains an
authorization code, the state value as received in 10 , and the
issuer identifier.4 If the state value and the issuer identifier are
correct, the RP contacts the IdP in 16 at the token endpoint with
the received authorization code, its client id, its client secret
(if any), and the redirect URI used to obtain the authorization
code. If these values are correct, the IdP responds with a fresh

4The issuer identifier will be included in this message in an upcoming
revision of OIDC to mitigate the IdP Mix-Up attack, see Section III-A1.

access token and an id token to the RP in 17 . If the id token
is valid, then the RP considers the user to be logged in (under
the identifier composed from the user id in the id token and
the issuer identifier). Hence, the RP may set a session cookie
at the user’s browser in 18 .

2) Implicit Mode: The implicit mode (depicted in Figure 3
in Appendix A of our technical report [23]) is similar to
the authorization code mode, but instead of providing an
authorization code, the IdP issues an id token right away to the
RP (via the user’s browser) when the user authenticates to the
IdP. Hence, the Steps 1 – 13 of the authorization code mode
(Figure 2) are the same. After these steps, the IdP redirects the
user’s browser to the redirection endpoint at the RP, providing
an id token, (optionally) an access token, the state value, and
the issuer identifier. These values are not provided as a URL
parameter but in the URL fragment instead. Hence, the browser
does not send them to the RP at first. Instead, the RP has
to provide a JavaScript that retrieves these values from the
fragment and sends them to the RP. If the id token is valid,
the issuer is correct, and the state matches the one previously
chosen by the RP, the RP considers the user to be logged in
and issues a session cookie.

3) Hybrid Mode: The hybrid mode (depicted in Figure 4 in
Appendix A of our technical report [23]) is a combination of
the authorization code mode and the implicit mode: First, this
mode works like the implicit mode, but when IdP redirects
the browser back to RP, the IdP issues an authorization code,
and either an id token or an access token or both.5 The RP
then retrieves these values as in the implicit mode (as they are
sent in the fragment like in the implicit mode) and uses the
authorization code to obtain a (potentially second) id token
and a (potentially second) access token from IdP.

C. Relationship to OAuth 2.0

Technically, OIDC is derived from OAuth 2.0. It goes,
however, far beyond what was specified in OAuth 2.0 and
introduces many new concepts: OIDC defines a method for
authentication (while retaining the option for authorization)
using a new type of tokens, the id token. Some messages and
tokens in OIDC can be cryptographically signed or encrypted
while OAuth 2.0 does neither use signing nor encryption. The
new hybrid flow combines features of the implicit mode and the
authorization code mode. Importantly, with ad-hoc discovery
and dynamic registration, OIDC standardizes and automates a
process that is completely out of the scope of OAuth 2.0.

These new features and their interplay potentially introduce
new security flaws. It is therefore not sufficient to analyze
the security of OAuth 2.0 to derive any guarantees for OIDC.
OIDC rather requires a new security analysis. (See Section V
for a more detailed discussion. In Section III we describe
attacks that cannot be applied to OAuth 2.0.)

5The choice of the IdP to issue either an id token or an access token or both
depends on the IdP’s configuration and the first request to authEP received
by the IdP.



III. ATTACKS AND SECURITY GUIDELINES

In this section, we present a concise overview of known
attacks on OIDC and present additions that have not been
documented so far. We also summarize mitigations and im-
plementation guidelines that have to be implemented to avoid
these attacks.

The main focus of this work is to prove central security
properties of OIDC, by which these mitigations and implemen-
tation guidelines are backed up. Moreover, further (potentially
unknown types of) attacks on OIDC that can be captured by
our security analysis are ruled out as well.

The rest of the section is structured as follows: we first
present the attacks, mitigations and guidelines, then point out
differences to OAuth 2.0, and finally conclude with a brief
discussion.

A. Attacks, Mitigations, and Guidelines

(Mitigations and guidelines are presented along with every
class of attack.)

1) IdP Mix-Up Attacks: In two previously reported at-
tacks [22], [36], the aim was to confuse the RP about the
identity of the IdP. In both attacks, the user was tricked into
using an honest IdP to authenticate to an honest RP, while the
RP is made to believe that the user authenticated to the attacker.
The RP therefore, after successful user authentication, tries to
use the authorization code or access token at the attacker, which
then can impersonate the user or access the user’s data at the
IdP. We present a detailed description of an application of the
IdP Mix-Up attack to OpenID Connect in Appendix A of our
technical report [23].

The IETF OAuth Working Group drafted a proposal for a
mitigation technique [29] that is based on a proposal in [22]
and that also applies to OpenID Connect. The proposal is that
the IdP puts its identity into the response from the authorization
endpoint. (This is already included in our description of OIDC
above, see the issuer in Step 14 in Figure 2.) The RP can then
check that the user authenticated to the expected IdP.

2) Attacks on the State Parameter: The state parameter is
used in OIDC to protect against attacks on session integrity,
i.e., attacks in which an attacker forces a user to be logged in
at some RP (under the attacker’s account). Such attacks can
arise from session swapping or CSRF vulnerabilities.

OIDC recommends the use of the state parameter. It should
contain a nonce that is bound to the user’s session. Attacks
that can result from omitting or incorrectly using state were
described in the context of OAuth 2.0 in [8], [33], [35], [42].

The nonce for the state value should be chosen freshly
for each login attempt to prevent an attack described in [22]
(Section 5.1) where the same state value is used first in a user-
initiated login flow with a malicious IdP and then in a login
flow with an honest IdP (forcefully initiated by the attacker
with the attacker’s account and the user’s browser).

3) Code/Token/State Leakage: Care should be taken that
a value of state or an authorization code is not inadvertently
sent to an untrusted third party through the Referer header.
The state and the authorization code parameters are part of the

redirection endpoint URI (at the RP), the state parameter is also
part of the authorization endpoint URI (at the IdP). If, on either
of these two pages, a user clicks on a link to an external page,
or if one of these pages embeds external resources (images,
scripts, etc.), then the third party will receive the full URI of
the endpoint, including these parameters, in the Referer header
that is automatically sent by the browser.

Documents delivered at the respective endpoints should
therefore be vetted carefully for links to external pages and
resources. In modern browsers, referrer policies [18] can be
used to suppress the Referer header. As a second line of
defense, both parameters should be made single-use, i.e., state
should expire after it has been used at the redirection endpoint
and authorization code after it has been redeemed at IdP.

In a related attack, an attacker that has access to log files or
browsing histories (e.g., through malicious browser extensions)
can steal authentication codes, access tokens, id tokens, or
state values and re-use these to impersonate a user or to break
session integrity. A subset of these attacks was dubbed Cut-
and-Paste Attacks by the IETF OAuth working group [29].

There are drafts for RFCs that tackle specific aspects of
these leakage attacks, e.g., [13] which discusses binding the
state parameter to the browser instance, and [28] which
discusses binding the access token to a TLS session. Since
these mitigations are still very early IETF drafts, subject to
change, and not easy to implement in the majority of the
existing OIDC implementations, we did not model them.

In our analysis, we assume that implementations keep log
files and browsing histories (of honest browsers) secret and
employ referrer policies as described above.

4) Naïve RP Session Integrity Attack: So far, we have
assumed that after Step 10 (Figure 2), the RP remembers the
user’s choice (which IdP is used) in a session; more precisely,
the user’s choice is stored in RP’s session data. This way, in
Step 15 , the RP looks up the user’s selected IdP in the session
data. In [22], this is called explicit user intention tracking.

There is, however, an alternative to storing the IdP in the
session. As pointed out by [22], some implementations put
the identity of the IdP into the redirect_uri (cf. Step 10 ), e.g.,
by appending it as the last part of the path or in a parameter.
Then, in Step 15 , the RP can retrieve this information from
the URI. This is called naïve user intention tracking.

RPs that use naïve user intention tracking are susceptible
to the naïve RP session integrity attack described in [22]: An
attacker obtains an authorization code, id token, or access token
for his own account at an honest IdP (HIdP). He then waits
for a user that wants to log in at some RP using the attacker’s
IdP (AIdP) such that AIdP obtains a valid state for this RP.
AIdP then redirects the user to the redirection endpoint URI
of RP using the identity of HIdP plus the obtained state value
and code or (id) token. Since the RP cannot see that the user
originally wanted to log in using AIdP instead of HIdP, the
user will now be logged in under the attacker’s identity.

Therefore, an RP should always use sessions to store the
user’s chosen IdP (explicit user intention tracking), which, as
mentioned, is also what we do in our formal OIDC model.



5) 307 Redirect Attack: Although OIDC explicitly allows
for any redirection method to be used for the redirection in
Step 14 of Figure 2, IdPs should not use an HTTP 307 status
code for redirection. Otherwise, credentials entered by the user
at an IdP will be repeated by the browser in the request to RP
(Step 15 of Figure 2), and hence, malicious RPs would learn
these credentials and could impersonate the user at the IdP. This
attack was presented in [22]. In our model, we exclusively use
the 303 status code, which prevents re-sending of form data.

6) Injection Attacks: It is well known that Cross-Site
Scripting (XSS) and SQL Injection attacks on RPs or IdPs
can lead to theft of access tokens, id tokens, and authorization
codes (see, for example, [8], [26], [35], [36], [42]). XSS attacks
can, for example, give an attacker access to session ids. Besides
using proper escaping (and Content Security Policies [44] as
a second line of defense), OIDC endpoints should therefore
be put on domains separate from other, potentially more
vulnerable, web pages on IdPs and RPs.6 (See Third-Party
Resources below for another motivation for this separation.)

In OIDC implementations, data that can come from untrusted
sources (e.g., client ids, user attributes, state and nonce values,
redirection URIs) must be treated as such: For example, a
malicious IdP might try to inject user attributes containing
malicious JavaScript to the RP. If the RP displays this data
without applying proper escaping, the JavaScript is executed.

We emphasize that in a similar manner, attackers can try to
inject additional parameters into URIs by appending them to
existing parameter values, e.g., the state. Since data is often
passed around in OIDC, proper escaping of such parameters
can be overlooked easily.

As a result of such parameter injection attacks or inde-
pendently, parameter pollution attacks can be a threat for
OIDC implementations. In these attacks, an attacker introduces
duplicate parameters into URLs (see, e.g., [6]). For example, a
simple parameter pollution attack could be launched as follows:
A malicious RP could redirect a user to an honest IdP, using a
client id of some honest RP but appending two redirection URI
parameters, one pointing to the honest RP and one pointing to
the attacker’s RP. Now, if the IdP checks the first redirection
URI parameter, but afterwards redirects to the URI in the
second parameter, the attacker learns authentication data that
belongs to the honest RP and can impersonate the user.

Mitigations against all these kinds of injection attacks
are well known: implementations have to vet incoming data
carefully, and properly escape any output data. In our model,
we assume that these mitigations are implemented.

7) CSRF Attacks and Third-Party Login Initiation: Some
endpoints need protection against CSRF in addition to the
protection that the state parameter provides, e.g., by checking
the origin header. Our analysis shows that the RP only needs to
protect the URI on which the login flow is started (otherwise,
an attacker could start a login flow using his own identity in
a user’s browser) and for the IdP to protect the URI where

6Since scripts on one origin can often access documents on the same origin,
origins of the OIDC endpoints should be free from untrusted scripts.

the user submits her credentials (otherwise, an attacker could
submit his credentials instead).

In the OIDC Core standard [40], a so-called login initiation
endpoint is described which allows a third party to start a login
flow by redirecting a user to this endpoint, passing the identity
of an IdP in the request. The RP will then start a login flow
at the given IdP. Members of the OIDC foundation confirmed
to us that this endpoint is essentially an intentional CSRF
protection bypass. We therefore recommend login initiation
endpoints not to be implemented (they are not a mandatory
feature), or to require explicit confirmation by the user.

8) Server-Side Request Forgery (SSRF): SSRF attacks can
arise when an attacker can instruct a server to send HTTP(S)
requests to other hosts, causing unwanted side-effects or
revealing information [38]. For example, if an attacker can
instruct a server behind a firewall to send requests to other hosts
behind this firewall, the attacker might be able to call services
or to scan the internal network (using timing attacks). He might
also instruct the server to retrieve very large documents from
other sources, thereby creating Denial of Service attacks.

SSRF attacks on OIDC were described for the first time
in [36], in the context of the OIDC Discovery extension: An
attacker could set up a malicious discovery service that, when
queried by an RP, answers with links to arbitrary, network-
internal or external servers (in Step 5 of Figure 2).

We here, for the first time, point out that not only RPs
can be vulnerable to SSRF, but also IdPs. OIDC defines a
way to indirectly pass parameters for the authorization request
(cf. Step 11 in Figure 2). To this end, the IdP accepts a
new parameter, request_uri in the authorization request. This
parameter contains a URI from which the IdP retrieves the
additional parameters (e.g., redirect_uri). The attacker can use
this feature to easily mount an SSRF attack against the IdP
even without any OIDC extensions: He can put an arbitrary
URI in an authorization request causing the IdP to contact this
URI.

This new attack vector shows that not only RPs but also IdPs
have to protect themselves against SSRF by using appropriate
filtering and limiting mechanisms to restrict unwanted requests
that originate from a web server (cf. [38]).

SSRF attacks typically depend on an application specific
context, such as the structure of and (vulnerable) services
in an internal network. In our model, attackers can trigger
SSRF requests, but the model does not contain vulnerable
applications/services aside from OIDC. (Our analysis focuses
on the security of the OIDC standard itself, rather than on
specific applications and services.) Timing and performance
properties, while sometimes relevant for SSRF attacks, are also
outside of our analysis.

9) Third-Party Resources: RPs and IdPs that include third-
party resources, e.g., tracking or advertisement scripts, subject
their users to token theft and other attacks by these third parties.
If possible, RPs and IdPs should therefore avoid including third-
party resources on any web resources delivered from the same
origins6 as the OIDC endpoints (see also Section V-F). For
newer browsers, subresource integrity [2] can help to reduce the



risks associated with embedding third-party resources. With
subresource integrity, websites can instruct supporting web
browsers to reject third-party content if this content does not
match a specific hash. In our model, we assume that websites
do not include untrusted third-party resources.

10) Transport Layer Security: The security of OIDC de-
pends on the confidentiality and integrity of the transport layer.
In other words, RPs and IdPs should use HTTPS. Endpoint
URIs that are provided for the end user and that are communi-
cated, e.g., in the discovery phase of the protocol, should only
use the https:// scheme. HTTPS Strict Transport Security
and Public Key Pinning can be used to further strengthen the
security of the OIDC endpoints. (In our model, we assume that
users enter their passwords only over HTTPS web sites because
otherwise, any authentication could be broken trivially.)

11) Session Handling: Sessions are typically identified by
a nonce that is stored in the user’s browser as a cookie. It
is a well known best practice that cookies should make use
of the secure attribute (i.e., the cookie is only ever used over
HTTPS connections) and the HttpOnly flag (i.e., the cookie is
not accessible by JavaScript). Additionally, after the login, the
RP should replace the session id of the user by a freshly chosen
nonce in order to prevent session fixation attacks: Otherwise, a
network attacker could set a login session cookie that is bound
to a known state value into the user’s browser (see [46]), lure
the user into logging in at the corresponding RP, and then
use the session cookie to access the user’s data at the RP
(session fixation, see [37]). In our model, RPs use two kinds
of sessions: Login sessions (which are valid until just before
a user is authenticated at the RP) and service sessions (which
signify that a user is already signed in to the RP). For both
sessions, the secure and HttpOnly flags are used.

B. Relationship to OAuth 2.0

Many, but not all of the attacks described above can also
be applied to OAuth 2.0. The following attacks in particular
are only applicable to OIDC: (1) Server-side request forgery
attacks are facilitated by the ad-hoc discovery and dynamic
registration features. (2) The same features enable new ways
to carry out injection attacks. (3) The new OIDC feature third-
party login initiation enables new CSRF attacks. (4) Attacks
on the id token only apply to OIDC, since there is no such
token in OAuth 2.0.

It is interesting to note that on the other hand, some attacks
on OAuth 2.0 cannot be applied to OIDC (see [22], [35] for
further discussions on these attacks): (1) OIDC setups are less
prone to open redirector attacks since placeholders are not
allowed in redirection URIs. (2) TLS is mandatory for some
messages in OIDC, while it is optional in OAuth 2.0. (3) The
nonce value can prevent some replay attacks when the state
value is not used or leaks to an attacker.

C. Discussion

In this section, our focus was to provide a concise overview
of known attacks on OIDC and present some additions, namely
SSRF at IdPs and third-party login initiation, along with

mitigations and implementation guidelines. Our formal analysis
of OIDC, which is the main focus of our work and is
presented in the next sections, shows that the mitigations and
implementation guidelines presented above are effective and
that we can exclude other, potentially unknown types of attacks.

IV. THE FKS WEB MODEL

Our formal security analysis of OIDC is based on the FKS
model, a generic Dolev-Yao style web model proposed by Fett
et al. in [19]. Here, we only briefly recall this model following
the description in [22] (see Appendices B ff. of our technical
report [23] for a full description, and [19]–[21] for comparison
with other models and discussion of its scope and limitations).

The FKS model is designed independently of a specific web
application and closely mimics published (de-facto) standards
and specifications for the web, for example, the HTTP/1.1 and
HTML5 standards and associated (proposed) standards. The
FKS model defines a general communication model, and, based
on it, web systems consisting of web browsers, DNS servers,
and web servers as well as web and network attackers.

a) Communication Model: The main entities in the model
are (atomic) processes, which are used to model browsers,
servers, and attackers. Each process listens to one or more (IP)
addresses. Processes communicate via events, which consist of
a message as well as a receiver and a sender address. In every
step of a run, one event is chosen non-deterministically from a
“pool” of waiting events and is delivered to one of the processes
that listens to the event’s receiver address. The process can
then handle the event and output new events, which are added
to the pool of events, and so on.

As usual in Dolev-Yao models (see, e.g., [1]), messages are
expressed as formal terms over a signature Σ. The signature
contains constants (for (IP) addresses, strings, nonces) as well
as sequence, projection, and function symbols (e.g., for encryp-
tion/decryption and signatures). For example, in the web model,
an HTTP request is represented as a term r containing a nonce,
an HTTP method, a domain name, a path, URI parameters,
request headers, and a message body. For instance, an HTTP
request for the URI http://ex.com/show?p=1 is represented
as r := 〈HTTPReq,n1,GET,ex.com,/show,〈〈p,1〉〉,〈〉,〈〉〉 where
the body and the list of request headers is empty. An HTTPS
request for r is of the form enca(〈r,k′〉,pub(kex.com)), where
k′ is a fresh symmetric key (a nonce) generated by the sender
of the request (typically a browser); the responder is supposed
to use this key to encrypt the response.

The equational theory associated with Σ is defined as
usual in Dolev-Yao models. The theory induces a congru-
ence relation ≡ on terms, capturing the meaning of the
function symbols in Σ. For instance, the equation in the
equational theory which captures asymmetric decryption is
deca(enca(x,pub(y)),y) = x. With this, we have that, for
example, deca(enca(〈r,k′〉,pub(kex.com)),kex.com)≡ 〈r,k′〉 , i.e.,
these two terms are equivalent w.r.t. the equational theory.

A (Dolev-Yao) process consists of a set of addresses the
process listens to, a set of states (terms), an initial state, and



a relation that takes an event and a state as input and (non-
deterministically) returns a new state and a sequence of events.
The relation models a computation step of the process. It is
required that the output can be computed (formally, derived in
the usual Dolev-Yao style) from the input event and the state.

The so-called attacker process is a Dolev-Yao process which
records all messages it receives and outputs all events it can
possibly derive from its recorded messages. Hence, an attacker
process carries out all attacks any Dolev-Yao process could
possibly perform. Attackers can corrupt other parties.

A script models JavaScript running in a browser. Scripts
are defined similarly to Dolev-Yao processes. When triggered
by a browser, a script is provided with state information. The
script then outputs a term representing a new internal state
and a command to be interpreted by the browser (see also
the specification of browsers below). We give an annotated
example for a script in Algorithm 22 in the appendix of our
technical report [23]. Similarly to an attacker process, the so-
called attacker script outputs everything that is derivable from
the input.

A system is a set of processes. A configuration of this system
consists of the states of all processes in the system, the pool
of waiting events, and a sequence of unused nonces. Systems
induce runs, i.e., sequences of configurations, where each con-
figuration is obtained by delivering one of the waiting events of
the preceding configuration to a process, which then performs
a computation step. The transition from one configuration to
the next configuration in a run is called a processing step. We
write, for example, Q = (S,E,N)−→ (S′,E ′,N′) to denote the
transition from the configuration (S,E,N) to the configuration
(S′,E ′,N′), where S and S′ are the states of the processes in
the system, E and E ′ are pools of waiting events, and N and
N′ are sequences of unused nonces.

A web system formalizes the web infrastructure and web
applications. It contains a system consisting of honest and
attacker processes. Honest processes can be web browsers, web
servers, or DNS servers. Attackers can be either web attackers
(who can listen to and send messages from their own addresses
only) or network attackers (who may listen to and spoof all
addresses and therefore are the most powerful attackers). A
web system further contains a set of scripts (comprising honest
scripts and the attacker script).

In our analysis of OIDC, we consider either one network
attacker or a set of web attackers (see Section V). In our
OIDC model, we need to specify only the behavior of servers
and scripts. These are not defined by the FKS model since
they depend on the specific application, unless they become
corrupted, in which case they behave like attacker processes
and attacker scripts; browsers are specified by the FKS model
(see below). The modeling of OIDC servers and scripts
is outlined in Section V and with full details provided in
Appendices F and G of our technical report [23].

b) Web Browsers: An honest browser is thought to be
used by one honest user, who is modeled as part of the browser.
User actions, such as following a link, are modeled as non-
deterministic actions of the web browser. User credentials are

stored in the initial state of the browser and are given to
selected web pages when needed. Besides user credentials,
the state of a web browser contains (among others) a tree
of windows and documents, cookies, and web storage data
(localStorage and sessionStorage).

A window inside a browser contains a set of documents (one
being active at any time), modeling the history of documents
presented in this window. Each represents one loaded web
page and contains (among others) a script and a list of
subwindows (modeling iframes). The script, when triggered
by the browser, is provided with all data it has access to,
such as a (limited) view on other documents and windows,
certain cookies, and web storage data. Scripts then output a
command and a new state. This way, scripts can navigate or
create windows, send XMLHttpRequests and postMessages,
submit forms, set/change cookies and web storage data, and
create iframes. Navigation and security rules ensure that scripts
can manipulate only specific aspects of the browser’s state,
according to the relevant web standards.

A browser can output messages on the network of different
types, namely DNS and HTTP(S) (including XMLHttpRe-
quests), and it processes the responses. Several HTTP(S)
headers are modeled, including, for example, cookie, location,
strict transport security (STS), and origin headers. A browser,
at any time, can also receive a so-called trigger message upon
which the browser non-deterministically choses an action, for
instance, to trigger a script in some document. The script
now outputs a command, as described above, which is then
further processed by the browser. Browsers can also become
corrupted, i.e., be taken over by web and network attackers.
Once corrupted, a browser behaves like an attacker process.

V. ANALYSIS

We now present our security analysis of OIDC, including a
formal model of OIDC, the specifications of central security
properties, and our theorem which establishes the security of
OIDC in our model.

More precisely, our formal model of OIDC uses the FKS
model as a foundation and is derived by closely following the
OIDC standards Core, Discovery, and Dynamic Client Regis-
tration [39]–[41]. (As mentioned above, the goal in this work
is to analyze OIDC itself instead of concrete implementations.)
We then formalize the main security properties for OIDC,
namely authentication, authorization, session integrity for
authentication, and session integrity for authorization. We also
formalize secondary security properties that capture important
aspects of the security of OIDC, for example, regarding the
outcome of the dynamic client registration. We then state and
prove our main theorem. Finally, we discuss the relationship
of our work to the analysis of OAuth 2.0 presented in [22]
and conclude with a discussion of the results.

We refer the reader to Appendices F–I of our technical report
[23] for full details, including definitions, specifications, and
proofs. To provide an intuition of the abstraction level, syntax,
and concepts that we use for the modeling without reading all



details, we extensively annotated Algorithms 17, 20, and 22
in Appendix F of our technical report [23].

A. Model

Our model of OIDC includes all features that are commonly
found in real-world implementations, for example, all three
modes, a detailed model of the Discovery mechanism [41]
(including the WebFinger protocol [31]), and Dynamic Client
Registration [39] (including dynamic exchange of signing
keys). RPs, IdPs, and, as usual in the FKS model, browsers
can be corrupted by the adversary dynamically.

We do not model less used features, in particular OIDC
logout, self-issued OIDC providers (“personal, self-hosted
OPs that issue self-signed ID Tokens”, [40]), and ACR/AMR
(Authentication Class/Methods Reference) values that can be
used to indicate the level of trust in the authentication of the
user to the IdP.

Since the FKS model has no notion of time, we overapprox-
imate by never letting tokens, e.g., id tokens, expire. Moreover,
we subsume user claims (information about the user that can
be retrieved from IdPs) by user identifiers, and hence, in our
model users have identities, but no other properties.

We have two versions of our OIDC model, one with a
network attacker and one with an unbounded number of web
attackers, as explained next. The reason for having two versions
is that while the authentication and authorization properties can
be proven assuming a network attacker, such an attacker could
easily break session integrity. Hence, for session integrity we
need to assume web attackers (see the explanations for session
integrity in Section V-B).

1) OIDC Web System with a Network Attacker: We model
OIDC as a class of web systems (in the sense of Section IV)
which can contain an unbounded finite number of RPs, IdPs,
browsers, and one network attacker.

More formally, an OIDC web system with a network attacker
(OIDC n) consists of a network attacker, a finite set of web
browsers, a finite set of web servers for the RPs, and a finite
set of web servers for the IdPs. Recall that in OIDC n, since
we have a network attacker, we do not need to consider web
attackers (as the network attacker subsumes all web attackers).
All non-attacker parties are initially honest, but can become
corrupted dynamically upon receiving a special message and
then behave just like a web attacker process.

As already mentioned in Section IV, to model OIDC based
on the FKS model, we have to specify the protocol specific
behavior only, i.e., the servers for RPs and IdPs as well as the
scripts that they use. We start with a description of the servers.

a) Web Servers: Since RPs and IdPs both are web servers,
we developed a generic model for HTTPS server processes
for the FKS model. We call these processes HTTPS server
base processes. Their definition covers decrypting received
HTTPS messages and handling HTTP(S) requests to external
webservers, including DNS resolution.

RPs and IdPs are derived from this HTTPS server base
process. Their models follow the OIDC standard closely and
include the mitigations discussed in Section III.

An RP waits for users to start a login flow and then non-
deterministically decides which mode to use. If needed, it starts
the discovery and dynamic registration phase of the protocol,
and finally redirects the user to the IdP for user authentication.
Afterwards, it processes the received tokens and uses them
according to their type (e.g., with an access token, the RP
would retrieve an id token from the IdP). If an id token is
received that passes all checks, the user will be logged in. As
mentioned briefly in Section III, RPs manage two kinds of
sessions: The login sessions, which are used only during the
user login phase, and service sessions.

The IdP provides several endpoints according to its role in
the login process, including its OIDC configuration endpoint
and endpoints for receiving authentication and token requests.

b) Scripts: Three scripts (altogether 30 lines of code)
can be sent from honest IdPs and RPs to web browsers.
The script script_rp_index is sent by an RP when the user
visits the RP’s web site. It starts the login process. The script
script_rp_get_fragment is sent by an RP during an implicit or
hybrid mode flow to retrieve the data from the URI fragment.
It extracts the access token, authorization code, and state from
the fragment part of its own URI and sends this information
in the body of a POST request back to the RP. IdP sends the
script script_idp_form for user authentication at the IdP.

2) OIDC Web System with Web Attackers: We also consider
a class of web systems where the network attacker is replaced
by an unbounded finite set of web attackers and a DNS server
is introduced. We denote such a system by OIDC w and call it
an OIDC web system with web attackers. Such web systems
are used to analyze session integrity, see below.

B. Main Security Properties

Our primary security properties capture authentication, au-
thorization and session integrity for authentication and au-
thorization. We will present these security properties in the
following, with full details in Appendix H of our technical
report [23].

a) Authentication Property: The most important property
for OIDC is the authentication property. In short, it captures
that a network attacker (and therefore also web attackers)
should be unable to log in as an honest user at an honest
RP using an honest IdP.

Before we define this property in more detail, recall that
in our modeling, an RP uses two kinds of sessions: login
sessions, which are only used for the login flow, and service
sessions, which are used after a user/browser was logged in
(see Section III-A11 for details). When a login session has
finished successfully (i.e., the RP received a valid id token),
the RP uses a fresh nonce as the service session id, stores this
id in the session data of the login session, and sends the service
session id as a cookie to the browser. In the same step, the RP
also stores the issuer, say d, that was used in the login flow
and the identity (email address) of the user, say id, as a pair
〈d, id〉, referred to as a global user identifier in Section II-A.

Now, our authentication property defines that a network
attacker should be unable to get hold of a service session id



by which the attacker would be considered to be logged in at
an honest RP under an identity governed by an honest IdP for
an honest user/browser.

In order to define the authentication property formally, we
first need to define the precise notion of a service session. In
the following, as introduced in Section IV, (S,E,N) denotes a
configuration in the run ρ with its components S, a mapping
from processes to states of these processes, E, a set of events
in the network that are waiting to be delivered to some party,
and N, a set of nonces that have not been used yet. By
governor(id) we denote the IdP that is responsible for a given
user identity (email address) id, and by dom(governor(id)),
we denote the set of domains that are owned by this IdP. By
S(r).sessions[lsid] we denote a data structure in the state of
r that contains information about the login session identified
by lsid. This data structure contains, for example, the identity
for which the login session with the id lsid was started and
the service session id that was issued after the login session.

We can now define that there is a service session identified
by a nonce n for an identity id at some RP r iff there exists a
login session (identified by some nonce lsid) such that n is the
service session associated with this login session, and r has
stored that the service session is logged in for the id id using
an issuer d (which is some domain of the governor of id).

Definition 1 (Service Sessions). We say that there is a ser-
vice session identified by a nonce n for an identity id
at some RP r in a configuration (S,E,N) of a run
ρ of an OIDC web system iff there exists some lo-
gin session id lsid and a domain d ∈ dom(governor(id))
such that S(r).sessions[lsid][loggedInAs] ≡ 〈d, id〉 and
S(r).sessions[lsid][serviceSessionId]≡ n.

By d /0(S(attacker)) we denote all terms that can be com-
puted (derived in the usual Dolev-Yao style, see Section IV)
from the attacker’s knowledge in the state S. We can now
define that an OIDC web system with a network attacker is
secure w.r.t. authentication iff the attacker can never get hold
of a service session id (n) that was issued by an honest RP r
for an identity id of an honest user (browser) at some honest
IdP (governor of id).

Definition 2 (Authentication Property). Let OIDC n be an
OIDC web system with a network attacker. We say that OIDC n

is secure w.r.t. authentication iff for every run ρ of OIDC n,
every configuration (S,E,N) in ρ , every r ∈ RP that is honest
in S, every browser b that is honest in S, every identity
id ∈ ID with governor(id) being an honest IdP, every service
session identified by some nonce n for id at r, we have that
n is not derivable from the attackers knowledge in S (i.e.,
n 6∈ d /0(S(attacker))).

b) Authorization Property: Intuitively, authorization for
OIDC means that a network attacker should not be able to
obtain or use a protected resource available to some honest
RP at an IdP for some user unless certain parties involved in
the authorization process are corrupted. As the access control
for such protected resources relies only on access tokens, we

require that an attacker does not learn access tokens that would
allow him to gain unauthorized access to these resources.

To define the authorization property formally, we need to
reason about the state of an honest IdP, say i. In this state, i
creates records containing data about successful authentications
of users at i. Such records are stored in S(i).records. One
such record, say x, contains the authenticated user’s identity
in x[subject], two7 access tokens in x[access_tokens], and
the client id of the RP in x[client_id].

We can now define the authorization property. It defines
that an OIDC web system with a network attacker is secure
w.r.t. authorization iff the attacker cannot get hold of an access
token that is stored in one of i’s records for an identity of an
honest user/browser b and an honest RP r.

Definition 3 (Authorization Property). Let OIDC n be an
OIDC web system with a network attacker. We say that
OIDC n is secure w.r.t. authorization iff for every run ρ of
OIDC n, every configuration (S,E,N) in ρ , every r ∈ RP that
is honest in S, every i ∈ IdP that is honest in S, every browser
b that is honest in S, every identity id ∈ ID owned by b and
governor(id) = i, every nonce n, every term x ∈ S(i).records
with x[subject]≡ id, n ∈ x[access_tokens], and the client
id x[client_id] having been issued by i to r,8 we have that
n is not derivable from the attackers knowledge in S (i.e.,
n 6∈ d /0(S(attacker))).

c) Session Integrity for Authentication: The two session
integrity properties capture that an attacker should be unable
to forcefully log a user/browser in at some RP. This includes
attacks such as CSRF and session swapping. Note that we
define these properties over OIDC w, i.e., we consider web
attackers instead of a network attacker. The reason is that
OIDC deployments typically use cookies to track the login
sessions of users. Since a network attacker can put cookies
into browsers over unencrypted connections and these cookies
are then also used for encrypted connections, cookies have no
integrity in the presence of a network attacker (see also [46]).
In particular, a network attacker could easily break the session
integrity of typical OIDC deployments.

For session integrity for authentication we say that a
user/browser that is logged in at some RP must have expressed
her wish to be logged in to that RP in the beginning of the
login flow. Note that not even a malicious IdP should be able to
forcefully log in its users (more precisely, its user’s browsers)
at an honest RP. If the IdP is honest, then the user must
additionally have authenticated herself at the IdP with the same
user account that RP uses for her identification. This excludes,
for example, cases where (1) the user is forcefully logged in
to an RP by an attacker that plays the role of an IdP, and (2)
where an attacker can force an honest user to be logged in at
some RP under a false identity issued by an honest IdP.

In our formal definition of session integrity for authen-
tication (below), loggedInQ

ρ (b,r,u, i, lsid) denotes that in the

7In the hybrid mode, IdPs can issue two access tokens, cf. Section II-B3.
8See Definition 54 in Appendix H-B of our technical report [23].



processing step Q (see below), the browser b was authenticated
(logged in) to an RP r using the IdP i and the identity u
in an RP login session with the session id lsid. (Here, the
processing step Q corresponds to Step 18 in Figure 2.) The
user authentication in the processing step Q is characterized
by the browser b receiving the service session id cookie that
results from the login session lsid.

By startedQ′
ρ (b,r, lsid) we denote that the browser b, in the

processing step Q′ triggered the script script_rp_index to start
a login session which has the session id lsid at the RP r.
(Compare Section IV on how browsers handle scripts.) Here,
Q′ corresponds to Step 1 in Figure 2.

By authenticatedQ′′
ρ (b,r,u, i, lsid) we denote that in the

processing step Q′′, the user/browser b authenticated to the
IdP i. In this case, authentication means that the user filled out
the login form (in script_idp_form) at the IdP i and, by this,
consented to be logged in at r (as in Step 13 in Figure 2).

Using these notations, we can now define security w.r.t. ses-
sion integrity for authentication of an OIDC web system with
web attackers in a straightforward way:

Definition 4 (Session Integr. for Authentication). Let OIDC w

be an OIDC web system with web attackers. We say that
OIDC w is secure w.r.t. session integrity for authentication iff
for every run ρ of OIDC w, every processing step Q in ρ

with Q = (S,E,N) −→ (S′,E ′,N′) (for some S, S′, E, E ′, N,
N′), every browser b that is honest in S, every i ∈ IdP, every
identity u that is owned by b, every r ∈ RP that is honest
in S, every nonce lsid, with loggedInQ

ρ (b,r,u, i, lsid), we have
that (1) there exists a processing step Q′ in ρ (before Q)
such that startedQ′

ρ (b,r, lsid), and (2) if i is honest in S, then
there exists a processing step Q′′ in ρ (before Q) such that
authenticatedQ′′

ρ (b,r,u, i, lsid).

d) Session Integrity for Authorization: For session in-
tegrity for authorization we say that if an RP uses some access
token at some IdP in a session with a user, then that user
expressed her wish to authorize the RP to interact with some
IdP. Note that one cannot guarantee that the IdP with which RP
interacts is the one the user authorized the RP to interact with.
This is because the IdP might be malicious. In this case, for
example in the discovery phase, the malicious IdP might just
claim (in Step 3 in Figure 2) that some other IdP is responsible
for the authentication of the user. If, however, the IdP the user
is logged in with is honest, then it should be guaranteed that
the user authenticated to that IdP and that the IdP the RP
interacts with on behalf of the user is the one intended by the
user.

For the formal definition, we use two additional predi-
cates: usedAuthorizationQ

ρ (b,r, i, lsid) means that the RP r,
in a login session (session id lsid) with the browser b
used some access token to access services at the IdP i. By
actsOnUsersBehalfQ

ρ (b,r,u, i, lsid) we denote that the RP r not
only used some access token, but used one that is bound to
the user’s identity at the IdP i.

Again, starting from our informal definition above, we define

security w.r.t. session integrity for authorization of an OIDC
web system with web attackers in a straightforward way (and
similarly to session integrity for authentication):

Definition 5 (Session Integr. for Authorization). Let OIDC w

be an OIDC web system with web attackers. We say that
OIDC w is secure w.r.t. session integrity for authentication
iff for every run ρ of OIDC w, every processing step Q
in ρ with Q = (S,E,N) −→ (S′,E ′,N′) (for some S, S′, E,
E ′, N, N′), every browser b that is honest in S, every
i ∈ IdP, every identity u that is owned by b, every r ∈ RP
that is honest in S, every nonce lsid, we have that (1) if
usedAuthorizationQ

ρ (b,r, i, lsid), then there exists a processing
step Q′ in ρ (before Q) such that startedQ′

ρ (b,r, lsid), and (2)
if i is honest in S and actsOnUsersBehalfQ

ρ (b,r,u, i, lsid), then
there exists a processing step Q′′ in ρ (before Q) such that
authenticatedQ′′

ρ (b,r,u, i, lsid).

C. Secondary Security Properties

We define the following secondary security properties that
capture specific aspects of OIDC. We use these secondary
security properties during our proof of the above main security
properties. Nonetheless, these secondary security properties are
important and interesting in their own right.

We define and prove the following properties (see the
corresponding lemmas in Appendices I-C and I-E of our
technical report [23] for details):
Integrity of Issuer Cache: If a relying party requests the
issuer identifier from an identity provider (cf. Steps 2 – 3 in
Figure 2), then the RP will only receive an origin that belongs
to this IdP in the response. In other words, honest IdPs do not
use attacker-controlled domains as issuer identifiers, and the
attacker is unable to alter this information on the way to the
RP or in the issuer cache at the RP.
Integrity of OIDC Configuration Cache: (1) Honest IdPs
only use endpoints under their control in their OIDC config-
uration document (cf. Steps 4 – 5 in Figure 2) and (2) this
information (which is stored at the RP in the so-called OIDC
configuration cache) cannot be altered by an attacker.
Integrity of JWKS Cache: RPs receive only “correct” signing
keys from honest IdPs, i.e., keys that belong to the respective
IdP (cf. Steps 6 – 7 in Figure 2).
Integrity of Client Registration: Honest RPs register only
redirection URIs that point to themselves and that these URIs
always use HTTPS. Recall that when an RP registers at an
IdP, the IdP issues a freshly chosen client id to the RP and
then stores RP’s redirection URIs.
Third Parties Do Not Learn Passwords: Attackers can-
not learn user passwords. More precisely, we define that
secretOfID(id), which denotes the password for a given
identity id, is not known to any party except for the browser
b owning the id and the identity provider i governing the id
(as long as b and i are honest).
Attacker Does Not Learn ID Tokens: Attackers cannot learn
id tokens that were issued by honest IdPs for honest RPs and
identities of honest browsers.



Third Parties Do Not Learn State: If an honest browser
logs in at an honest RP using an honest IdP, then the attacker
cannot learn the state value used in this login flow.

D. Theorem
The following theorem states that OIDC is secure w.r.t. au-

thentication and authorization in presence of the network
attacker, and that OIDC is secure w.r.t. session integrity for
authentication and authorization in presence of web attackers.
For the proof we refer the reader to Appendix I of our technical
report [23].

Theorem 1. Let OIDC n be an OIDC web system with a
network attacker. Then, OIDC n is secure w.r.t. authentication
and authorization. Let OIDC w be an OIDC web system with
web attackers. Then, OIDC w is secure w.r.t. session integrity
for authentication and authorization.

E. Comparison to OAuth 2.0
As described in Section II-C, OIDC is based on OAuth 2.0.

Since a formal proof for the security of OAuth 2.0 was
conducted in [22], one might be tempted to think that a proof
for the security of OIDC requires little more than an extension
of the proof in [22]. The specific set of features of OIDC
introduces, however, important differences that call for new
formulations of security properties and require new proofs:
Dynamic Discovery and Registration: Due to the dynamic
discovery and registration, RPs can directly influence and
manipulate the configuration data that is stored in IdPs. In
OAuth, this configuration data is fixed and assumed to be
“correct”, greatly limiting the options of the attacker. See, for
example, the variant [36] of the IdP Mix-up attack that only
works in OIDC (mentioned in Section III-A).
Different set of modes: Compared to OAuth, OIDC introduces
the hybrid mode, but does not use the resource owner password
credentials mode and the client credentials mode.
New endpoints, messages, and parameters: With additional
endpoints (and associated HTTPS messages), the attack surface
of OIDC is, also for this reason, larger than that of OAuth.
The registration endpoints, for example, could be used in ways
that break the security of the protocol, which is not possible
in OAuth where these endpoints do not exist. In a similar vein,
new parameters like nonce, request_uri, and the id token, are
contained in several messages (some of which are also present
in the original OAuth flow) and potentially change the security
requirements for these messages.
Authentication mechanism: The authentication mechanisms
employed by OIDC and OAuth are quite different. This
shows, in particular, in the fact that OIDC uses the id token
mechanism for authentication, while OAuth uses a different,
non-standardized mechanism. Additionally, unlike in OAuth,
authentication can happen multiple times during one OIDC
flow (see the description of the hybrid mode in Section II-B).
This greatly influences (the formulation of) security properties,
and hence, also the security proofs.

In summary, taking all these differences into account, our
security proofs had to be carried out from scratch. At the

same time, our proof is more modular than the one in [22] due
to the secondary security properties we identified. Moreover,
our security properties are similar to the ones by Fett et
al. in [22] only on a high level. The underlying definitions
in many aspects differ from the ones used for OAuth.9

F. Discussion

Using our detailed formal model, we have shown that
OIDC enjoys a high level of security regarding authentication,
authorization, and session integrity. To achieve this security, it
is essential that implementors follow the security guidelines
that we stated in Section III. Clearly, in practice, this is not
always feasible—for example, many RPs want to include third-
party resources for advertisement or user tracking on their
origins. As pointed out, however, not following the security
guidelines we outline can lead to severe attacks.

We have shown the security of OIDC in the most compre-
hensive model of the web infrastructure to date. Being a model,
however, some features of the web are not included in the FKS
model, for example browser plugins. Such technologies can
under certain circumstances also undermine the security of
OIDC in a manner that is not reflected in our model. Also,
user-centric attacks such as phishing or clickjacking attacks
are also not covered in the model.

Nonetheless, our formal analysis and the guidelines (along
with the attacks when these guidelines are not followed)
provide a clear picture of the security provided by OIDC for
a large class of adversaries.

VI. RELATED WORK

As already mentioned in the introduction, the only previous
works on the security of OIDC are [34], [36]. None of these
works establish security guarantees for the OIDC standard:
In [34], the authors find implementation errors in deployments
of Google Sign-In (which, as mentioned before, is based on
OIDC). In [36], the authors describe a variant of the IdP Mix-
Up attack (see Section III), highlight the possibility of SSRF
attacks at RPs, and show some implementation-specific flaws.
In our work, however, we aim at establishing and proving
security properties for OIDC.

In general, there have been only few formal analysis efforts
for web applications, standards, and browsers so far. Most of
the existing efforts are based on formal representations of (parts
of) web browsers or very limited models of web mechanisms
and applications [3]–[5], [9]–[11], [14]–[17], [24], [25], [27],
[32], [45].

Only [7], [8] and [19]–[22] were based on a generic formal
model of the web infrastructure. In [8], Bansal, Bharga-
van, Delignat-Lavaud, and Maffeis analyze the security of

9As an example, in [22], the definitions rely on a notion of OAuth sessions
which are defined by connected HTTP(S) messages, i.e., messages that are
created by a browser or server in response to another message. In our model,
the attacker is involved in each flow of the protocol (for providing the client
id, without receiving any prior message), making it hard to apply the notion
of OAuth sessions. We instead define the properties using the existing session
identifiers. (See Definitions 54, 52, 56–60 in Appendix H of our technical
report [23] for details.)



OAuth 2.0 with the tool ProVerif in the applied pi-calculus and
the WebSpi library. They identify previously unknown attacks
on the OAuth 2.0 implementations of Facebook, Yahoo, Twitter,
and many other websites. They do not, however, establish
security guarantees for OAuth 2.0 and their model is much
less expressive than the FKS model.

The relationship of our work to [19]–[22] has been discussed
in detail throughout the paper.

VII. CONCLUSION

Despite being the foundation for many popular and critical
login services, OpenID Connect had not been subjected to a
detailed security analysis, let alone a formal analysis, before.
In this work, we filled this gap.

We developed a detailed and comprehensive formal model
of OIDC based on the FKS model, a generic and expressive
formal model of the web infrastructure. Using this model, we
stated central security properties of OIDC regarding authenti-
cation, authorization, and session integrity, and were able to
show that OIDC fulfills these properties in our model. By this,
we could, for the first time, provide solid security guarantees
for one of the most widely deployed single sign-on systems.

To avoid previously known and newly described attacks, we
analyzed OIDC with a set of practical and reasonable security
measures and best practices in place. We documented these
security measures so that they can now serve as guidelines for
secure implementations of OIDC.
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