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Abstract—Forced by regulations and industry demand, banks
worldwide are working to open their customers’ online banking
accounts to third-party services via web-based APIs. By using
these so-called Open Banking APIs, third-party companies, such
as FinTechs, are able to read information about and initiate
payments from their users’ bank accounts. Such access to
financial data and resources needs to meet particularly high
security requirements to protect customers.

One of the most promising standards in this segment is the
OpenlD Financial-grade API (FAPI), currently under develop-
ment in an open process by the OpenID Foundation and backed
by large industry partners. The FAPI is a profile of OAuth 2.0
designed for high-risk scenarios and aiming to be secure against
very strong attackers. To achieve this level of security, the FAPI
employs a range of mechanisms that have been developed to
harden OAuth 2.0, such as Code and Token Binding (including
mTLS and OAUTB), JWS Client Assertions, and Proof Key for
Code Exchange.

In this paper, we perform a rigorous, systematic formal analy-
sis of the security of the FAPI, based on an existing comprehensive
model of the web infrastructure—the Web Infrastructure Model
(WIM) proposed by Fett, Kiisters, and Schmitz. To this end, we
first develop a precise model of the FAPI in the WIM, including
different profiles for read-only and read-write access, different
flows, different types of clients, and different combinations of
security features, capturing the complex interactions in a web-
based environment. We then use our model of the FAPI to
precisely define central security properties. In an attempt to
prove these properties, we uncover partly severe attacks, breaking
authentication, authorization, and session integrity properties.
We develop mitigations against these attacks and finally are able
to formally prove the security of a fixed version of the FAPI.

Although financial applications are high-stakes environments,
this work is the first to formally analyze and, importantly, verify
an Open Banking security profile.

By itself, this analysis is an important contribution to the
development of the FAPI since it helps to define exact security
properties and attacker models, and to avoid severe security risks
before the first implementations of the standard go live.

Of independent interest, we also uncover weaknesses in the
aforementioned security mechanisms for hardening OAuth 2.0.
We illustrate that these mechanisms do not necessarily achieve
the security properties they have been designed for.

I. INTRODUCTION

Delivering financial services has long been a field exclusive
to traditional banks. This has changed with the emergence of
FinTech companies that are expected to deliver more than 20%
of all financial services in 2020 [1]. Many FinTechs provide
services that are based on access to a customers online banking
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account information or on initiating payments from a customers
bank account.

For a long time, screen scraping has been the primary
means of these service providers to access the customer’s
data at the bank. Screen scraping means that the customer
enters online banking login credentials at the service provider’s
website, which then uses this data to log into the customer’s
online banking account by emulating a web browser. The
service provider then retrieves account information (such as
the balance or recent activities) and can trigger, for example, a
cash transfer, which may require the user to enter her second-
factor authentication credential (such as a TAN) at the service
provider’s web interface.

Screen scraping is inherently insecure: first of all, the service
provider gets to know all login credentials, including the
second-factor authentication of the customer. Also, screen
scraping is prone to errors, for example, when the website
of a bank changes.

Over the last years, the terms API banking and Open
Banking have emerged to mark the introduction of standardized
interfaces to financial institutions’ data. These interfaces enable
third parties, in particular FinTech companies, to access users’
bank account information and initiate payments through well-
defined APIs. All around the world, API banking is being
promoted by law or by industry demand: In Europe, the
Payment Services Directive 2 (PSD2) regulation mandates
all banks to introduce Open Banking APIs by September
2019 [2]. The U.S. Department of the Treasury recommends
the implementation of such APIs as well [3]. In South Korea,
India, Australia, and Japan, open banking is being pushed by
large financial corporations [4].

One important open banking standard currently under de-
velopment for this scenario is the OpenID Financial-grade
API (FAPI)." The FAPI [5] is a profile (i.e., a set of concrete
protocol flows with extensions) of the OAuth 2.0 Authorization
Framework and the identity layer OpenlD Connect to provide
a secure authorization and authentication scheme for high-
risk scenarios. The FAPI is under development at the OpenlD
Foundation and supported by many large corporations, such
as Microsoft and the largest Japanese consulting firm, Nomura
Research Institute. The OpenID Foundation is also cooperating

"n its current form, the FAPI does not (despite its name) define an API
itself, but defines a security profile for the access to APIs.



with other banking standardization groups: The UK Open
Banking Implementation Entity, backed by nine major UK
banks, has adopted the FAPI security profile.

The basic idea behind the FAPI is as follows: The owner
of the bank account (resource owner, also called user in what
follows) visits some website or uses an app which provides
some financial service. The website or app is called a client
in the FAPI terminology. The client redirects the user to the
authorization server, which is typically operated by the bank.
The authorization server asks for the user’s bank account
credentials. The user is then redirected back to the client with
some token. The client uses this token to obtain bank account
information or initiate a payment at the resource server, which
is typically also operated by the bank.

The FAPI aims to be secure against much stronger attackers
than its foundations, OAuth 2.0 and OpenID Connect: the FAPI
assumes that sensitive tokens leak to an attacker through the
user’s browser or operating system, and that endpoint URLSs
can be misconfigured. On the one hand, both assumptions
are well motivated by real-world attacks and the high stakes
nature of the environment where the FAPI is to be used. On
the other hand, they directly break the security of OAuth 2.0
and OpenID Connect.

To provide security against such strong attackers, the FAPI
employs a range of OAuth 2.0 security extensions beyond those
used in plain OAuth 2.0 and OpenID Connect: the FAPI uses
the so-called Proof Key for Code Exchange (PKCE)? extension
to prevent unauthorized use of tokens. For client authentication
towards the authorization server, the FAPI employs JWS Client
Assertions or mutual TLS. Additionally, OAuth token binding3
or certificate-bound access tokens* can be used as holder-of-
key mechanisms. To introduce yet another new feature, the
FAPI is the first standard to make use of the so-called JWT
Secured Authorization Response Mode (JARM).

The FAPI consists of two main so-called parts, here also
called modes, that stipulate different security profiles for read-
only access to resource servers (e.g., to retrieve bank account
information) and read-write access (e.g., for payment initiation).
Both modes can be used by confidential clients, i.e., clients
that can store and protect secrets (such as web servers), and
by public clients that cannot securely store secrets, such
as JavaScript browser applications. Combined with the new
security features, this gives rise to many different settings and
configurations in which the FAPI can run (see also Figure 3).

This, the expected wide adoption, the exceptionally strong
attacker model, and the new security features make the FAPI
a particularly interesting, challenging, and important subject
for a detailed security analysis. While the security of (plain)
OAuth 2.0 and OpenID Connect has been studied formally
and informally many times before [6]-[21], there is no such
analysis for the FAPI—or any other open banking API—so
far. In particular, there are no results in the strong attacker

2Pronounced pixie, RFC 7636.
3https://tools.ietf.org/html/draft-ietf-oauth-token-binding- 07
“https://tools.ietf.org/html/draft-ietf-oauth-mtls- 11

model adopted for the FAPI, and there has been no formal
security analysis of the additional OAuth security mechanisms
employed by the FAPI (PKCE, JWS Client Assertions, mTLS
Client Authentication, OAuth Token Binding, Certificate-
Bound Access Tokens, JARM), which is of practical relevance
in its own right.

In this paper, we therefore study the security of the FAPI
in-depth, including the OAuth security extensions. Based on a
detailed formal model of the web, we formalize the FAPI with
its various configurations as well as its security properties. We
discover four previously unknown and severe attacks, propose
fixes, and prove the security of the fixed protocol based on
our formal model of the FAPI, again considering the various
configurations in which the FAPI can run. Importantly, this also
sheds light on new OAuth 2.0 security extensions. In detail,
our contributions are as follows:

Contributions of this Paper: We build a detailed formal
model of the FAPI based on a comprehensive formal model
of the web infrastructure proposed by Fett et al. in [22], which
we refer to as the Web Infrastructure Model (WIM). The WIM
has been successfully used to find vulnerabilities in and prove
the security of several web applications and standards [6], [7],
[22]-[24]. Tt captures a wide set of web features from DNS
to JavaScript in unrivaled detail and comprehensiveness. In
particular, it accounts for the intricate inner workings of web
browsers and their interactions with the web environment. The
WIM is ideally suited to identify logical flaws in web protocols,
detect a range of standard web vulnerabilities (like cross-site
request forgery, session fixation, misuse of certain web browser
features, etc.), and even to find new classes of web attacks.

Based on the generic descriptions of web servers in the WIM,
our models for FAPI clients and authorization servers contain
all important features currently proposed in the FAPI standards.
This includes the flows from both parts of the FAPI, as well
as the different options for client authentication, holder-of-key
mechanisms, and token binding mentioned above.

Using this model of the FAPI, we define precise security
properties for authorization, authentication, and session in-
tegrity. Roughly speaking, the authorization property requires
that an attacker is unable to access the resources of another
user at a bank, or act on that user’s behalf towards the bank.
Authentication means that an attacker is unable to log in at
a client using the identity of another user. Session integrity
means that an attacker is unable to force a user to be logged
in at a client under the attackers identity, or force a user to
access (through the client) the attacker’s resources instead of
the user’s own resources (session fixation).

During our first attempts to prove these properties, we
discovered four unknown attacks on the FAPI. With these
attacks, adversaries can gain access to the bank account of
a user, break session integrity, and, interestingly, circumvent
certain OAuth security extensions, such as PKCE and Token
Binding, employed by the FAPL

We notified the OpenID FAPI Working Group of the attacks
and vulnerabilities found by our analysis and are working
together with them to fix the standard. To this end, we first
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developed mitigations against the vulnerabilities. We then,
as another main contribution of our work and to support
design decisions during the further development of the FAPI,
implemented the fixes in our formal model and provided the
first formal proof of the security of the FAPI (with our
fixes applied) within our model of the FAPI, including all
configurations of the FAPI and the various ways in which the
new OAuth security extensions are employed in the FAPI (see
Figure 3). This makes the FAPI the only open banking API to
enjoy a thorough and detailed formal security analysis.

Our findings also show that (1) several OAuth 2.0 security
extensions do not necessarily achieve the security properties
they have been designed for and that (2) combining these
extensions in a secure way is far from trivial. These results are
relevant for all web applications and standards which employ
such extensions.

Structure of this Paper: We first, in Section II, recall
OAuth 2.0 and OpenID Connect as the foundations of the
FAPI. We also introduce the new defense mechanisms that
set the FAPI apart from “traditional” OAuth 2.0 and OpenID
Connect flows. This sets the stage for Section III where we go
into the details of the FAPI and explain its design and features.
In Section IV, we present the attacks on the FAPI (and the
new security mechanisms it uses), which are the results of our
initial proof attempts, and also present our proposed fixes. The
model of the FAPI and the analysis are outlined in Section V,
along with a high-level introduction to the Web Infrastructure
Model we use as the basis for our formal model and analysis
of the FAPL. We conclude in Section VI. Full details and
proofs are provided in the appendices.

II. OAUTH AND NEW DEFENSE MECHANISMS

The OpenID Financial-grade API builds upon the OAuth 2.0
Authorization Framework [25]. Compared to the original
OAuth 2.0 protocol, the FAPI aims at providing a much higher
degree of security. For achieving this, the FAPI security profiles
incorporate mechanisms defined in OpenID Connect [26]
(which itself builds upon OAuth 2.0), and importantly, security
extensions for OAuth 2.0 developed only recently by the IETF
and the OpenID Foundation.

In the following, we give a brief overview of both OAuth 2.0
and OpenlID Connect, and their security extensions used
(among others) within the FAPI, namely Proof Key for Code
Exchange, JWS Client Assertions, OAuth 2.0 Mutual TLS for
Client Authentication and Certificate Bound Access Tokens,
OAuth 2.0 Token Binding and the JWT Secured Authorization
Response Mode. The FAPI itself is presented in Section III.

A. Fundamentals of OAuth 2.0 and OpenlID Connect

OAuth 2.0 and OpenID Connect are widely used for various
authentication and authorization tasks. In what follows, we first
explain OAuth 2.0 and then briefly OpenID Connect, which
is based on OAuth 2.0.

1) OAuth 2.0: On a high level, OAuth 2.0 allows a resource
owner, or user, to enable a client, a website or an application,
to access her resources at some resource server. In order for
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Figure 1. Overview of the OAuth Authorization Code Flow

the user to grant the client access to her resources, the user
has to authenticate herself at an authorization server.

For example, in the context of the FAPI, resources include
the user’s account information (like balance and previous trans-
actions) at her bank or the initiation of a payment transaction
(cash transfer). The client can be a FinTech company which
wants to provide a financial service to the user via access to
the user’s bank account. More specifically, the client might
be the website of such a company (web server client) or
the company’s app on the user’s device. The resource and
authorization servers would typically be run by the user’s bank.
One client can make use of several authorization and resource
servers.

RFC 6749 [25] defines multiple modes of operation for
OAuth 2.0, so-called grant types. We here focus on the
authorization code grant since the other grant types are not
used in the FAPL

Figure 1 shows the authorization code grant, which works
as follows: The user first visits the client’s website or opens
the client’s app on her smartphone and selects to log in or to
give the client access to her resources (Step [1]). The client
then redirects the user to the so-called authorization endpoint



at the authorization server (AS) in Steps [2] and [3]. (Endpoints
are URIs used in the OAuth flow.) In this redirection, the client
passes several parameters to the AS, for example, the client
id which identifies the client at the AS, a state value that
is used for CSRF protection,’ a scope parameter (not shown
in Figure 1) that describes the permissions requested by the
client, and a redirection URI explained below. Note that if
the client’s app is used, the redirection from the app to the
AS (Step [2]) is done by opening the website of the AS in a
browser window. The AS authenticates the user (e.g., by the
user entering username and password) in Step [4] and asks for
her consent to give the client access to her resources. The
AS then creates a so-called authorization code (typically a
nonce) and redirects the user back to the so-called redirection
endpoint of the client via the user’s browser in Steps [5] and
[¢]. (If the client’s app is used, a special redirect URI scheme,
e.g., some-app://, is used which causes the operating system
to forward the URI to the client’s app.) At the AS, one or
more redirection endpoints for a client are preregistered.® In
Step [2], the client chooses one of these preregistered URIs. The
authorization response (Step [5)) is a redirection to this URI,
with the authorization code, the state value from the request,
and optionally further values appended as URI parameters.

When receiving the request resulting from the redirection in
Step [s], the client first checks that the state value is the same
as the one in the authorization request, typically by looking
it up in the user’s session with the client. If it is not the
same, then the client suspects that an attacker tried to inject an
authorization code into the client’s session (cross-site request
forgery, CSRF) and aborts the flow (see also Footnote 5).
Otherwise, the client now exchanges the code for an access
token at the so-called token endpoint of the AS in Steps [7] and
[s]. For this purpose, the client might be required to authenticate
to the AS (see below). With this access token, the client can
finally access the resources at the resource server (RS), as
shown in Steps [¢] and [10].

The RS can use different methods to check the validity
of an access token presented by a client. The access token
can, for example, be a document signed by the AS containing
all necessary information. Often, the access token is not a
structured document but a nonce. In this case, the RS uses
Token Introspection [27], i.e., it sends the access token to the
introspection endpoint of the AS and receives the information
associated with the token from the AS. An RS typically has
only one (fixed) AS, which means that when the RS receives
an access token, it sends the introspection request to this AS.

Public and Confidential Clients: Depending on whether a
client can keep long-term secrets, it is either called a public
or a confidential client. If the client is not able to maintain

S5The state value is a nonce. The client later ensures that it receives the same
nonce in the authorization response. Otherwise, an attacker could authenticate
to the AS with his own identity and use the corresponding authorization
response for logging in an honest user under the attacker’s identity with a
CSRF attack. This attack is also known as session swapping.

SWithout preregistration, a malicious client starting a login flow with the
client id of an honest client could receive a code associated with the honest
client.

secrets, as is typically the case for applications running on end-
user devices, the client is not required to authenticate itself
at the token endpoint of the AS. These kinds of clients are
called public clients. Clients able to maintain secrets, such as
web server clients, must authenticate to the token endpoint (in
Step [7] of Figure 1) and are called confidential clients.

For confidential clients, client authentication ensures that
only a legitimate client can exchange the authorization code
for an access token. OAuth 2.0 allows for several methods for
client authentication at the token endpoint, including sending
a password or proving possession of a secret [25, Section 2.3].
For public clients, other measures are available, such as PKCE
(see below), to obtain a sufficient level of security.

2) OpenlD Connect: OAuth 2.0 is built for authorization
only, i.e., the client gets access to the resources of the user
only if the user consented to this access. It does not per se
provide authentication, i.e., proving the identity of the user to
the client. This is what OpenID Connect [26] was developed
for. It adds an id token to OAuth 2.0 which is issued by the
AS and contains identity information about the end-user. ID
tokens can be issued in the response from the authorization
endpoint (Step [5] of Figure 1) and/or at the token endpoint
(Step [¢] of Figure 1). They are signed by the AS and can be
bound to other parameters of the response, such as the hash
of authorization codes or access tokens. Therefore, they can
also be used to protect responses against modification.

B. Proof Key for Code Exchange

The Proof Key for Code Exchange (PKCE) extension (RFC
7636) was initially created for OAuth public clients and
independently of the FAPL. Its goal is to protect against the use
of intercepted authorization codes. Before we explain how it
works, we introduce the attack scenario against which PKCE
should protect according to RFC 7636.

This attack starts with the leakage of the authorization
code after the browser receives it in the response from the
authorization endpoint (Step [5] of Figure 1). A multitude of
problems can lead to a leak of the code, even if TLS is used
to protect the network communication:

« On mobile operating systems, multiple apps can register
themselves onto the same custom URI scheme (e.g.,
some-app://redirection-response). When receiving the au-
thorization response, the operating system may forward
the response (and the code) to a malicious app instead of
the honest app (see [28, Section 1] and [29, Section 8.1]).

o Mix-up attacks, in which a different AS is used than the
client expects (see [6] for details), can be used to leak an
authorization code to a malicious server.

o As highlighted in [7], a Referer header can leak the code
to an adversary.

e The code can also appear in HTTP logs that can be
disclosed (accidentally) to third parties or (intentionally)
to administrators.

In a setting with a public client (i.e., without client authenti-
cation at the token endpoint), an authorization code leaked to



the attacker can be redeemed directly by the attacker at the
authorization server to obtain an access token.

RFC 7636 aims to protect against such attacks even if not
only the authorization response leaks but also the authorization
request as well. Such leaks can happen, for example, from
HTTP logs (Precondition 4b of Section 1 of RFC 7636) or
unencrypted HTTP connections.

PKCE works as follows: Before sending the authorization
request, the client creates a random value called code verifier.
The client then creates the code challenge by hashing the
verifier’ and includes the challenge in the authorization request
(Step of Figure 1). The AS associates the generated
authorization code with this challenge. Now, when the client
redeems the code in the request to the token endpoint (Step
of Figure 1), it includes the code verifier in the token request.
This message is sent directly to the AS and protected by TLS,
which means that the verifier cannot be intercepted. The idea is
that if the authorization code leaked to the attacker, the attacker
still cannot redeem the code to obtain the access token since
he does not know the code verifier.

C. Client Authentication using JWS Client Assertions

As mentioned above, the goal of client authentication is to
bind an authorization code to a certain confidential client such
that only this client can redeem the code at the AS. One method
for client authentication is the use of JWS Client Assertions
[26, Section 9], which requires proving possession of a key
instead of sending a password directly to the authorization
server, as in plain OAuth 2.0.

To this end, the client first generates a short document
containing its client identifier and the URI of the token
endpoint. Now, depending on whether the client secret is a
private (asymmetric) or a symmetric key, the client either signs
or MACs this document. It is then appended to the token
request (Step [7] of Figure 1). As the document contains the URI
of the receiver, attacks in which the attacker tricks the client
into using a wrong URI are prevented, as the attacker cannot
reuse the document for the real endpoint (cf. Section ITI-C4).
Technically, the short document is encoded as a JSON Web
Token (JWT) [30] to which its signature/MAC is attached to
create a so-called JSON Web Signature (JWS) [31].

D. OAuth 2.0 Mutual TLS

OAuth 2.0 Mutual TLS for Client Authentication and Cer-
tificate Bound Access Tokens (mTLS) [32] provides a method
for both client authentication and token binding.

OAuth 2.0 Mutual TLS Client Authentication makes use of
TLS client authentication® at the token endpoint (in Step
of Figure 1). In TLS client authentication, not only the server
authenticates to the client (as is common for TLS) but the client
also authenticates to the server. To this end, the client proves

1f it is assumed that the authorization request never leaks to the attacker,
it is sufficient and allowed by RFC 7636 to use the verifier as the challenge,
i.e., without hashing.

8 As noted in [32], Section 5.1 this extension supports all TLS versions with
certificate-based client authentication.

that it knows the private key belonging to a certificate that is
either (a) self-signed and preconfigured at the respective AS
or that is (b) issued for the respective client id by a predefined
certificate authority within a public key infrastructure (PKI).

Token binding means binding an access token to a client
such that only this client is able to use the access token at
the RS. To achieve this, the AS associates the access token
with the certificate used by the client for the TLS connection
to the token endpoint. In the TLS connection to the RS (in
Step [¢] of Figure 1), the client then authenticates using the
same certificate. The RS accepts the access token only if the
client certificate is the one associated with the access token.’

E. OAuth 2.0 Token Binding

OAuth 2.0 Token Binding (OAUTB) [33] is used to bind
access tokens and/or authorization codes to certain TLS
connections. It is based on the Token Binding protocol [34]-
[37] and can be used with all TLS versions. In the following,
we first sketch token binding in general before we explain
OAuth 2.0 Token Binding.

1) Basics: For simplicity of presentation, in the following,
we assume that a browser connects to a web server. The
protocol remains the same if the browser is replaced by another
server. (In the context of OAuth 2.0, in some settings in fact
the client takes the role of the browser as explained below.)

At its core, token binding works as follows: When a web
server indicates (during TLS connection establishment) that
it wants to use token binding, the browser making the HTTP
request over this TLS connection creates a public/private key
pair for the web server’s origin. It then sends the public key to
the server and proves possession of the private key by using
it to create a signature over a value unique to the current TLS
connection. Since the browser re-uses the same key pair for
future connections to the same origin, the web server will be
able to unambiguously recognize the browser in future visits.

Central for the security of token binding is that the private
key remains secret inside the browser. To prevent replay attacks,
the browser has to prove possession of the private key by
signing a value that is unique for each TLS session. To this
end, token binding uses the Exported Keying Material (EKM)
of the TLS connection, a value derived from data of the TLS
handshake between the two participants, as specified in [37].
As long as at least one party follows the protocol, the EKM
will be unique for each TLS connection.

We can now illustrate the usage of token binding in the
context of a simplified protocol in which a browser B requests
a token from a server S: First, B initiates a TLS connection
to S, where B and S use TLS extensions [35] to negotiate the
use of token binding and technical details thereof. Browser B
then creates a public/private key pair (kps,kp ¢) for the origin
of S, unless such a key pair exists already. The public key kp.s
(together with technical details about the key, such as its bit
length) is called Token Binding ID (for the specific origin).

9 As mentioned above, the RS can read this information either directly from
the access token if it is a signed document, or uses token introspection to
retrieve the data from the AS.



When sending the first HTTP request over the established
TLS connection, B includes in an HTTP header the so-called
Token Binding Message:

TB-Msg[k&S,sig(EKM,k%_’S)] (1)

It contains both the Token Binding ID (i.e., essentially kp s) and
the signed EKM value from the TLS connection, as specified
in [38]. The server S checks the signature using kp g as included
in this message and then creates a token and associates it with
the Token Binding ID as the unique identifier of the browser.

When B wants to redeem the token in a new TLS connection
to S, B creates a new Token Binding Message using the same
Token Binding ID, but signs the new EKM value:

TB-Msg(kp,s,sig(EKM, kg s)] )

As the EKM values are unique to each TLS connection, S
concludes that the sender of the message knows the private
key of the Token Binding ID, and as the sender used the same
Token Binding ID as before, the same party that requested the
token in the first request is using it now.

The above describes the simple situation that B wants to
redeem the token received from S again at S, i.e., from the
same origin. In this case, we call the token binding message
in (1) a provided token binding message. If B wants to redeem
the token received from S at another origin, say at C, then
instead of just sending the provided token message in (1), B
would in addition also send the so-called referred token binding
message, i.e., instead of (1) B would send

TB-prov-Msg|kp s,sig(EKM, kj ¢)],

3
TB-ref-Msglkg ¢, sig(EKM7k1,f;,c)]- ¥

Note that the EKM is the same in both messages, namely the
EKM value of the TLS connection between B and S (rather

than between B and C, which has not happened yet anyway).

Later when B wants to redeem the token at C, B would use
kp,c in its (provided) token message to C.
2) Token Binding for OAuth: In the following, we explain

how token binding is used in OAuth in the case of app clients.

The case of web server clients is discussed below.

The flow is shown in Figure 2. Note that in this case, token
binding is used between the OAuth client and the authorization
and resource servers; the browser in Figure 1 is not involved.

The client has two token binding key pairs, one for the AS
and one for the RS (if these key pairs do not already exist,
the client creates them during the flow). When sending the
authorization request (Step [2] of Figure 2), the client includes
the hash of the Token Binding ID it uses for the AS as a PKCE
challenge (cf. Section II-B). When exchanging the code for
an access token in Step [7], the client proves possession of the
private key of this Token Binding ID, and the AS only accepts
the request when the hash of the Token Binding ID is the
same as the PKCE challenge. Therefore, the code can only be
exchanged by the participant that created the authorization
request. Note that for this purpose the AS only takes the
provided token binding message sent to the AS in Step
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Browser

into account. However, the AS also checks the validity of the
referred token binding message (using the same EKM value)
and associates kc gs with the token issued by the AS in Step [s].

The token binding ID k¢ gy is used in Step [2] by the client to
redeem the token at the RS. The RS then checks if this is the
same token binding ID that is associated with the access token.
This information can be contained in the access token if it is
structured and readable by the RS or via token introspection.

Altogether, Token Binding for OAuth (in the case of app
clients) is supposed to bind both the authorization code and
the access token to the client. That is, only the client who
initiated the flow (in Step [2]) can redeem the authorization
code at the AS and the corresponding access token at the RS,
and hence, get access to the resource at the RS.

3) Binding Authorization Codes for Web Server Clients:
In the case that the client is a web server, the binding of
the authorization code to the client is already done by client
authentication, as a web server client is always confidential (cf.
Section II-A1). Therefore, the client does not include the hash



of a Token Binding ID in the authorization request (Step [2] of
Figure 2). Instead, the mechanism defined in OAUTB aims at
binding the authorization code to the browser/client pair. (The
binding of the access token to the client is done in the same
way as for an app client).

More precisely, for web server clients, the authorization code
is bound to the token binding ID that the browser uses for the
client. For this purpose, the client includes an additional HTTP
header in the first response to the browser (Step [2] of Figure 2),
which signals the browser that it should give the token binding
ID it uses for the client to the authorization server. When
sending the authorization request to the authorization server in
Step [3], the browser thus includes a provided and a referred
token binding message, where the referred message contains
the token binding ID, that the browser later uses for the
client (say, kg ). When generating the authorization code, the
authorization server associates the code with kg c.

When redirecting the code to the client in Step [¢], the
browser includes a token binding message for kpc, thereby
proving possession of the private key.

When sending the token request in Step [7], the client
includes kpc. We highlight that the client does not send a
token binding message for kg ¢ since the client does not know
the corresponding private key (only the browser does).

The authorization server checks if this key is the same
token binding ID it associated the authorization code with, and
therefore, can check if the code was redirected to the client
by the same browser that made the authorization request. In
other words, by this the authorization code is bound to the
browser/client pair.

F. JWT Secured Authorization Response Mode

The recently developed JWT Secured Authorization Re-
sponse Mode (JARM) [39] aims at protecting the OAuth
authorization response (Step [s5] of Figure 1) by having the AS
sign (and optionally encrypt) the response. The authorization
response is then encoded as a JWT (see Section II-C). The
JARM extension can be used with any OAuth 2.0 flow.

In addition to the regular parameters of the authorization
response, the JWT also contains its issuer (identifying the AS)
and its audience (client id). For example, if combined with
the Authorization Code Flow, the response JWT contains the
issuer, audience, authorization code, and state values.

By using JARM, the authorization response is integrity pro-
tected and injection of leaked authorization codes is prevented.

III. THE OPENID FINANCIAL-GRADE API

The OpenlD Financial-grade API [5] currently comprises
two implementer’s drafts. One defines a profile for read-
only access, the other one for read-write access. Building on
Section II, here we describe both profiles and the various
configurations in which these profiles can run (see Figure 3).
Furthermore, we explain the assumptions made within the FAPI
standard and the underlying OAuth 2.0 extensions.

Read-Only
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Figure 3. Overview of the FAPI. One path (terminated by a box with
rounded corners) describes one possible configuration of the FAPI.
The paths marked with PKCE use PKCE. JARM and Hybrid flows
both allow for the configurations shown.

A. Financial-grade API: Read-Only Profile

In the following, we explain the Read-Only flow as described
in [40]. The Read-Only profile aims at providing a secure way
for accessing data that needs a higher degree of protection
than regular OAuth, e.g., for read access to financial data.

The Read-Only flow is essentially an OAuth Authorization
Code flow (cf. Section II). Additionally, the client can request
an ID Token (see Section II-A2) from the token endpoint by
adding a scope parameter to the authorization request (Step
of Figure 1) with the value openid.

In contrast to regular OAuth and OpenID Connect, the client
is required to have a different set of redirection URIs for
each authorization server. This separation prevents mix-up
attacks, where the authorization response (Step [¢] in Figure 1)
comes from a different AS than the client expects (see [6] and
[41] for more details on mix-up attacks). When receiving the
authorization response, the client checks if the response was
received at the redirection URI specified in the authorization
request (Step [2] in Figure 1).

One of the main additions to the regular OAuth flow is
the use of PKCE as explained in Section II-B. The PKCE
challenge is created by hashing a nonce.

The FAPI furthermore requires confidential clients to
authenticate at the token endpoint (in Step [7] of Figure 1)
using either JWS Client Assertions (cf. Section II-C) or
Mutual TLS (cf. Section II-D). Public clients do not use client
authentication.

B. Financial-grade API: Read-Write Profile

The Read-Write profile [42] aims at being secure under
stronger assumptions than the Read-Only profile, in order to



be suitable for scenarios such as write access to financial data.
The full set of assumptions is described in Section III-C.

The flow can be either an OpenID Connect (OIDC)
Hybrid flow, which means that both the authorization response
(Step in Figure 1) and the token response (Step in
Figure 1) contain an id token (see Section II-A2), or any other
OAuth-based flow used together with JARM (see Section II-F).
When using the Hybrid flow, the FAPI profile also requires
that the hash of the state value is included in the first id token.

In addition to the parameters of the Read-Only flow, the au-
thorization request prepared by the client (Step [2] of Figure 1)
is required to contain a request JWS, which is a JWT, signed
by the client, containing all request parameters together with
the audience of the request (cf. Section II-C).

One of the main security features of the profile is the
binding of the authorization code and the access token
to the client, which is achieved by using either mTLS
(cf. Section II-D) or OAUTB (OAuth 2.0 Token Binding, see
Section II-E). A public client is required to use OAUTB, while
a confidential client can use either OAUTB or mTLS.

If the client is a confidential client using mTLS, the request
does not contain a PKCE challenge. When using OAUTB, the
client uses a variant of PKCE, depending on whether the
client is a web server client or an app client (cf. Section II-E).

In the case of a confidential client, the client authentication
at the token endpoint is done in the same way as for the
Read-Only flow, i.e., by using either JWS Client Assertions
(cf. Section II-C) or Mutual TLS (cf. Section II-D).

C. Overview of Assumptions and Mitigations

In the following, we explain the conditions under which
the FAPI profiles and the OAuth extensions aim to be secure
according to their specifications.

1) Leak of Authorization Response: As described in Sec-
tion II-B in the context of PKCE, there are several scenarios
in which the authorization response (Step [¢] of Figure 1), and
hence, the authorization code, can leak to the attacker (in clear),
in particular in the case of app clients. In our model of the
FAPI, we therefore assume that the authorization response is
given to the attacker if the client is an app. At first glance,
leakage of the authorization code is indeed mitigated by the
use of PKCE since an attacker does not know the code verifier,
and hence, cannot redeem the code at the AS. However, our
attack described in Section IV-C shows that the protection
provided by PKCE can be circumvented.

2) Leak of Authorization Request: The Read-Only profile
of the FAPI explicitly states that the PKCE challenge should
be created by hashing the verifier. The use of hashing should
protect the PKCE challenge even if the authorization request
leaks (e.g., by leaking HTTP logs, cf. Section II-B), and
therefore, we assume in our model that the authorization
request (Step [2] of Figure 1) leaks to the attacker.

3) Leak of Access Token: In the Read-Write profile, it is
assumed that the access token might leak due to phishing [42,
Section 8.3.5]. In our model, we therefore assume that the
access token might leak in Step [s] of Figure 1. This problem

is seemingly mitigated by using either mTLS or OAUTB,
which bind the access token to the legitimate client, and hence,
only the legitimate client should be able to redeem the access
token at the RS even if the access token leaked. The FAPI
specification states: “When the FAPI client uses MTLS or
OAUTB, the access token is bound to the TLS channel, it is
access token phishing resistant as the phished access tokens
cannot be used.” [42, Section 8.3.5]. However, our attack
presented in Section IV-A shows that this is not the case.

4) Misconfigured Token Endpoint: An explicit design deci-
sion by the FAPI working group was to make the Read-Write
profile secure even if the token request (Step [7] of Figure 1)
leaks. The FAPI specification describes this attack as follows:
“In this attack, the client developer is social engineered into
believing that the token endpoint has changed to the URL that
is controlled by the attacker. As the result, the client sends
the code and the client secret to the attacker, which will be
replayed subsequently.” [42, Section 8.3.2].

Therefore, we make this assumption also in our FAPI
model. Seemingly, this problem is mitigated by code binding
through client authentication or OAUTB, which means that
the attacker cannot use the stolen code at the legitimate token
endpoint. “When the FAPI client uses MTLS or OAUTB, the
authorization code is bound to the TLS channel, any phished
client credentials and authorization codes submitted to the
token endpoint cannot be used since the authorization code is
bound to a particular TLS channel.” [42, Section 8.3.2]. Note
that in the FAPI the client does not authenticate by using the
client secret as a password, but by proving possession (either
using JWS Client Assertions or mTLS), which means that the
attacker cannot reuse credentials.

However, our attack presented in Section IV-B shows that
this intuition is misleading.

IV. ATTACKS

As already mentioned in the introduction, in Section V we
present our rigorous formal analysis of the FAPI based on
the Web Infrastructure Model. Through this formal analysis of
the FAPI with the various OAuth 2.0 extensions it uses, we
not only found attacks on the FAPI but also on some of the
OAuth 2.0 extensions, showing that (1) these extensions do
not achieve the security properties they have been designed
for and (2) that combining these extensions in a secure way is
far from trivial. Along with the attacks, we also propose fixes
to the standards. Our formal analysis presented in Section V
considers the fixed versions.

We start by describing two attacks on Token Binding,
followed by an attack on PKCE, and one vulnerability hidden
in the assumptions of PKCE.

We emphasize that our attacks work even if all communica-
tion uses TLS and even if the attacker is merely a web attacker,
i.e., does not control the network but only certain parties.

As already mentioned in the introduction, we notified the
OpenID FAPI Working Group of the attacks found by our
analysis and are working together with them to fix the standard.



A. Cuckoo’s Token Attack

As explained in Section III-C3, the Read-Write profile of the
FAPI aims at providing security even if the attacker obtains an
access token, e.g., due to phishing. Intuitively, this protection
seems to be achieved by binding the access token to the client
via mTLS (see Section II-D) or OAUTB (see Section II-E).

However, these mechanisms prevent the attacker only from
directly using the access token in the same flow. As illustrated
next, in a second flow, the attacker can inject the bound access
token and let the client (to which the token is bound) use this
token, which enables the attacker to access resources belonging
to an honest identity.

This attack affects all configurations of the Read-Write
profile (see Figure 3). Also, the Read-Only profile is vulnerable
to this attack; this profile is, however, not meant to defend
against stolen access tokens.

We note that the underlying principle of the attack should
be relevant to other use-cases of token binding as well, i.e.,
whenever a token is bound to a participant, the involuntary
use of a leaked token (by the participant to which the token
is bound) should be prevented.
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Figure 4. Cuckoo’s Token Attack

Figure 4 depicts the attack for the OIDC Hybrid Flow,
i.e., when both responses of the AS contain id tokens (see
Section III-B). The attack works analogously for the code flow
in combination with JARM (see Section III-B).

As explained, we assume that the attacker already obtained
(phished) an access token issued by an honest AS to an honest
client for accessing resources of an honest user. We also
assume that the honest client supports the use of several ASs (a

common setting in practice, as already mentioned in Section II),
where in this case one of the ASs is dishonest.!?

First, the attacker starts the flow at the client and chooses his
own AS. Since he is redirected to his own AS in Step [2], he can
skip the user authentication step and return an authorization
response immediately. Apart from that, the flow continues
normally until Step [+], where the client sends the code to the
attacker AS. In Step [5], the attacker AS returns the previously
phished access token together with the second id token.

Until here, all checks done by the client pass successfully,
as the attacker AS adheres to the protocol. The only difference
to an honest authorization server is that the attacker AS returns
a phished access token. In Step [¢], the resource server receives
the (phished) access token and provides the client access to
the honest resource owner’s resources for the phished access
token,'! which implies that now the attacker has access to
these resources through the client.

To prevent the use of leaked access tokens, the client should
include, in the request to the RS, the identity of the AS the
client received the access token from. The client can take
this value from the second id token. Now, the RS would only
continue the flow if its belief is consistent with the one of
the RS. We apply an analogous fix for flows with JARM.
These fixes are included in our model and shown to work in
Section V.

B. Access Token Injection with ID Token Replay

As described in Section III-C3, the Read-Write profile aims
to be secure if an attacker acquires an access token for an
honest user. The profile also aims to be secure even if the token
endpoint URI is changed to an attacker-controlled URI (see
Section ITI-C4). Now, interestingly, these two threat scenarios
combined in this order are the base for the attack described
in the following. In this attack, the attacker returns an access
token at the misconfigured token endpoint. While the attack
looks similar to the previous attack at first glance, here the
attacker first interacts with the honest AS and later replays
an id token at the token endpoint. Both attacks necessitate
different fixes. The outcome, however, is the same, and, just
as the previous attack, this attack affects all configurations of
the Read-Write profile, even if JARM is used. We explain the
attack using the Hybrid Flow.

Figure 5 shows how the attack proceeds. The attacker
initiates the Read-Write flow at the client and follows the

10We highlight that we do not assume that the attacker controls the AS that
issued the access token (i.e., the AS at which the honest user is registered). This
means that the (honest) user uses an honest client and an honest authorization
Server.

""Which RS is used in combination with an AS depends on the configuration
of the client, which is acquired through means not defined in OAuth. Especially
in scenarios where this configuration is done dynamically, a dishonest AS
might be used in combination with an honest RS. But also if the client is
configured manually, as is often the case today, it might be misconfigured or
social engineered into using specific endpoints. Recall from Section II-A that
the access token might be a document signed by the (honest) AS containing
all information the RS needs to process the access token. Alternatively, and
more common, the RS performs token introspection, if the access token is
just a nonce. The RS typically uses only one AS (in this case, the honest AS)
to which it will send the introspection request.
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regular flow until Step [¢]. As the authorization response was
created by the honest AS, the state and all values of the id token
are correct and the client accepts the authorization response.

In Step [7], the client sends the token request to the
misconfigured token endpoint controlled by the attacker. The
value of the code and the checks regarding client authentication
and proof of possession of keys are not relevant for the attacker.

In Step [s], the attacker sends the token response containing
the phished access token. As the flow is an OIDC Hybrid Flow,
the attacker is required to return an id token. Here, he returns
the same id token that he received in Step [5], which is signed
by the honest AS. The client is required to ensure that both
id tokens have the same subject and issuer values, which in
this case holds true since they are identical.

The client sends the access token to the honest resource
server, by which the attacker gets read-write access to the
resource of the honest resource owner through the client.

As we show in our security analysis (see Section V), this
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scenario is prevented if the second id token is required to
contain the hash of the access token that is returned to the
client, as the attacker cannot create id tokens with a valid
signature of the AS. A similar fix also works for flows with
JARM. The fixes are already included in our model.

C. PKCE Chosen Challenge Attack

As detailed in Section III-C1, the FAPI uses PKCE in
order to protect against leaked authorization codes. This is
particularly important for public clients as these clients, unlike
confidential ones, do not authenticate to an AS when trying to
exchange the code for an access token.

Recall that the idea of PKCE is that a client creates a PKCE
challenge (hash of a nonce), gives it to the AS, and when
redeeming the authorization code at the AS, the client has to
present the correct PKCE verifier (the nonce). This idea works
when just considering an honest flow in which the code leaks
to the attacker, who does not know the PKCE verifier. However,
our attack shows that the protection can be circumvented by
an attacker who pretends to be an honest client.

This attack affects public clients who use the Read-Only
profile of the FAPIL It works as follows (see Figure 6): As
in RFC 7636, two apps are installed on a user’s device, an
honest app and a malicious app. The honest app is a client
of an honest AS with the client identifier hon_client_id and
the redirection URI hon_redir_uri. The malicious app is not
registered at the AS.

The Read-Only flow starts at the malicious app, which
prompts the user to log in. Now, the malicious app prepares an
authorization request containing the client id and a redirect URI
of the honest client (Step [2]). At this point, the malicious app
also creates a PKCE verifier and includes the corresponding
challenge in the authorization request.

The flow continues until the browser receives the autho-
rization response in Step [5]. As the redirection URIs are
preregistered at the AS, the redirection URI in the authorization
request was chosen from the set of redirect URIs of the honest
app, and therefore, the authorization response is redirected to
the honest client after the browser receives it.

As described in Sections II-B and III-C1, at this point, the
authorization response with the authorization code might leak
to the attacker (Step [¢]). The malicious app is now able to
exchange the code (associated with the honest client) at the
token endpoint in Steps and [&], as it knows the correct
PKCE verifier and, as the honest app is a public client, without
authenticating to the AS.

To prevent this scenario, an honest AS must ensure that
the PKCE challenge was created by the client with the id
hon_client_id. To achieve this, for public clients in the Read-
Only flow we use the same mechanism that the FAPI uses for
public clients in the Read-Write flow, namely the authorization
request should contain a signed JWT (see also Section II-C,
although JWTs are now used in a different way). This ensures
that the client stated in the request actually made the request,
and hence, no other client should know the PKCE verifier. Note
that by using signed JWTs for public clients the FAPI assumes
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that public clients can store some secrets (which might, for
example, be protected by user passwords). Our fix is already
included in the model and our analysis (Section V) shows that
it works.

D. Authorization Request Leak Attacks

As explained in Section III-C2, the PKCE challenge is
created such that PKCE is supposed to work even if the
authorization request leaks (see also Section II-B).

However, if a leak of the authorization request occurs not
only the PKCE challenge leaks to the attacker but also the
state value, since both values are contained in the authorization
request. Our attack shows that an attacker who knows the state
value can circumvent the CSRF protection the state value was
supposed to provide. As a result of the attack, the honest user
is logged in under the identity of the attacker and uses the
resources of the attacker, which breaks session integrity. The
details of this attack are presented in Appendix A.

This is a well-known class of attacks for plain OAuth
flows [43], but it is important to highlight that the protections
designed into the FAPI do not sufficiently protect most flows
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against such attacks, even though PKCE explicitly foresees the
attack vector.

To prevent this attack, one essentially has to prevent CSRF
forgery in this context. However, this is non-trivial because of
the very strong attacker model considered by the OpenID FAPI
Working Group: leaks and misconfigurations are assumed to
occur at various places. As further explained in Appendix A,
just assuming that the authorization request does not leak to
the attacker would not fix the problem in general; one at
least would have to assume that the authorization response
does not leak either. Making these assumptions, however,
of course contradicts the OpenID FAPI Working Group’s
intention, namely providing security even in the presence of
very strong attackers.

Fortunately, we can prove that regular FAPI web server
clients which use OAUTB are not vulnerable to this attack
even in the presence of the strong attackers assumed by the
OpenID FAPI Working Group and throughout this paper. More
specifically, we can prove session integrity of the FAPI for such
clients (and strong attackers), which in particular excludes the
above attack (see Section V). For all other types of clients, our
attack works, and there does not seem to be a fix which would
not massively change the flows, and hence, the standards, as
argued in Appendix A. In this sense, our results for session
integrity appear to be the best we can obtain for the FAPI.

V. FORMAL SECURITY ANALYSIS

In this section, we present our formal analysis of the FAPI.
We start by very briefly recalling the Web Infrastructure Model
(WIM), followed by a sketch of our formal model of the
FAPI, which as already mentioned uses the WIM as its basic
web infrastructure model. We then introduce central security
properties the FAPI is supposed to satisfy, along with our main
theorem stating that these properties are satisfied.

Since we cannot present the full formal details here, we pro-
vide the complete analysis in Appendices G-L. This includes
the precise formalization of clients, authorization servers, and
resource servers, as well as full detailed proofs.

A. The Web Infrastructure Model

The Web Infrastructure Model (WIM) was introduced by
Fett, Kiisters, and Schmitz in [22] (therefore also called the
FKS model) and further developed in subsequent work. The
appendix of [44] provides a detailed description of the model; a
comparison with other models and a discussion of its scope and
limitations can be found in [22]-[24]. We here only give a brief
overview of the WIM following the description in [7], with
some more details presented in Appendix B. As explained there,
we slightly extend the WIM, among others to model OAUTB.
We choose the WIM for our work because, as mentioned in
the introduction, the WIM is the most comprehensive model
of the web infrastructure to date.

The WIM is designed independently of a specific web
application and closely mimics published (de-facto) standards
and specifications for the web, for example, the HTTP/1.1 and
HTMLS standards and associated (proposed) standards. Among



others, HTTP(S) requests and responses,'? including several
headers, such as cookie, location, referer, authorization, strict
transport security (STS), and origin headers, are modeled. The
model of web browsers captures the concepts of windows,
documents, and iframes, including the complex navigation
rules, as well as modern technologies, such as web storage, web
messaging (via postMessage), and referrer policies. JavaScript
is modeled in an abstract way by so-called scripts which can
be sent around and, among others, can create iframes, access
other windows, and initiate XMLHttpRequests.

The WIM defines a general communication model, and,
based on it, web systems consisting of web browsers, DNS
servers, and web servers as well as web and network attackers.
The main entities in the model are (atomic) processes, which
are used to model browsers, servers, and attackers. Each
process listens to one or more (IP) addresses. Processes
communicate via events, which consist of a message as well
as a receiver and a sender address. In every step of a run, one
event is chosen non-deterministically from a “pool” of waiting
events and is delivered to one of the processes that listens to the
event’s receiver address. The process can then handle the event
and output new events, which are added to the pool of events,
and so on. The WIM follows the Dolev-Yao approach (see,
e.g., [45]). That is, messages are expressed as formal terms
over a signature ¥ which contains constants (for addresses,
strings, nonces) as well as sequence, projection, and function
symbols (e.g., for encryption/decryption and signatures).

A (Dolev-Yao) process consists of a set of addresses the
process listens to, a set of states (terms), an initial state, and
a relation that takes an event and a state as input and (non-
deterministically) returns a new state and a sequence of events.
The relation models a computation step of the process. It is
required that the output can be computed (formally, derived in
the usual Dolev-Yao style) from the input event and the state.

The so-called attacker process records all messages it
receives and outputs all events it can possibly derive from
its recorded messages. Hence, an attacker process carries out
all attacks any Dolev-Yao process could possibly perform.
Attackers can corrupt other parties, browsers, and servers.

A script models JavaScript running in a browser. Scripts
are defined similarly to Dolev-Yao processes, but run in and
interact with the browser. Similar to an attacker process, an
attacker script can (non-deterministically) perform every action
a script can possibly perform within a browser.

A system is a set of processes. A configuration of a system
is a tuple of the form (S,E,N) where S maps every process
of the system to its state, £ is the pool of waiting events,
and N is a sequence of unused nonces. In what follows, sg
denotes the initial state of process p. Systems induce runs,
i.e., sequences of configurations, where each configuration
is obtained by delivering one of the waiting events of the
preceding configuration to a process, which then performs a
computation step.

2We note that the WIM models TLS at a high level of abstraction such
that messages are exchanged in a secure way.
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A web system formalizes the web infrastructure and web
applications. It contains a system consisting of honest and
attacker processes. Honest processes can be web browsers, web
servers, or DNS servers. Attackers can be either web attackers
(who can listen to and send messages from their own addresses
only) or network attackers (who may listen to and spoof all
addresses and therefore are the most powerful attackers). A
web system further contains a set of scripts (comprising honest
scripts and the attacker script).

In our FAPI model, we need to specify only the behavior
of servers and scripts. These are not defined by the WIM
since they depend on the specific application, unless they
become corrupted, in which case they behave like attacker
processes and attacker scripts. We assume the presence of a
strong network attacker which also controls all DNS servers
(but we assume a working PKI).

B. Sketch of the Formal FAPI Model

A FAPI web system (with a network attacker), denoted by
FAPI, is a web system (as explained in Section V-A) and can
contain an unbounded finite number of clients, authorization
servers, resource servers, browsers, and a network attacker.
Note that a network attacker is the most powerful attacker,
which subsumes all other attackers. Except for the attacker, all
processes are initially honest and can become (dynamically)
corrupted by the attacker at any time.

In a FAPI web system, clients, authorization servers, and
resource servers act according to the specification of the FAPI
presented in Section III. (As mentioned in Section V-A, the
behavior of browsers is fixed by the standards. Their modeling
is independent of the FAPI and already contained in the
WIM.) Our models for clients and servers follow the latest
recommendations regarding the security of OAuth 2.0 [41] to
mitigate all previously known attacks. The model also contains
the fixes pointed out in Section IV, as otherwise, we would not
be able to prove the desired security properties (see below).

The primary goal of the FAPI is to provide a high degree of
security. Its flows are intended to be secure even if information
leaks to an attacker. As already outlined in Section III-C, we
model this by sending the authorization response (in the case
of an app client), the access token (in the case of a Read-
Write flow), and the authorization request to an arbitrary (non-
deterministically chosen) IP address. Furthermore, in the Read-
Write profile, the token request can be sent to an arbitrary URL

Importantly, one FAPI web system contains all possible
settings in which the FAPI can run, as depicted in Figure 3, in
particular, we consider all OAuth 2.0 extensions employed in
the FAPI. More precisely, every client in a FAPI web system
runs one of the possible configurations (i.e., it implements
on one path in Figure 3). Different clients may implement
different configurations. Every authorization and resource
server in a FAPI web system supports all configurations at
once. When interacting with a specific client, a server just
chooses the configuration the client supports. In our model,
the various endpoints (authorization, redirection, token), the
information which client supports which FAPI configuration,



client credentials, etc. are preconfigured and contained in the
initial states of the processes. How this information is acquired
is out of the scope of the FAPIL.

We emphasize that when proving security properties of the
FAPI, we prove these properties for all FAPI web systems,
where different FAPI web systems can differ in the number of
clients and servers, and their preconfigured information.

Furthermore, we note that there is no notion of time
in the WIM, hence, tokens do not expire. This is a safe
overapproximation as it gives the attacker more power.

To give a feel for our formal FAPI model, an excerpt of the
model is provided in Appendix C.

C. Security Properties and Main Theorem

In the following, we define the security properties the FAPI
should fulfill, namely authorization, authentication, and session
integrity. These properties have been central to also OAuth 2.0
and OpenID Connect [6], [7]. But as mentioned, the FAPI
has been designed to fulfill these properties under stronger
adversaries, therefore using various OAuth extensions. While
our formulations of these properties are inspired by those for
OAuth 2.0 and OpenlID Connect, they had to be adapted and
extended for the FAPI, e.g., to capture properties of resource
servers, which previously have not been modeled. We also
state our main theorem.

We give an overview of each security property. For the
authorization property, we provide an in-depth explanation,
together with the formal definition. Appendix D contains a
proof sketch for the authorization property. Full details and
proofs of all properties are given in Appendix K.

1) Authorization: Informally speaking, for authorization we
require that an attacker cannot access resources belonging to
an honest user (browser). A bit more precise, we require that
in all runs p of a FAPI web system AP if an honest resource
server receives an access token that is associated with an honest
client, an honest authorization server, and an identity of an
honest user, then access to the corresponding resource is not
provided to the attacker in any way. We highlight that this
does not only mean that the attacker cannot access the resource
directly at the resource server, but also that the attacker cannot
access the resource through a client.

In order to formalize this property, we first need to define
what it means for an access token to be associated with a client,
an AS, and a user identity (see below for an explanation of
this definition).

Definition 1 (Access Token associated with C, AS and ID).
Let ¢ be a client with client id clientld issued to c by
the authorization server as, and let id € ID%, where |ID%
denotes the set of identities governed by as. We say that
an access token t is associated with ¢, as and id in state
S of the configuration (S,E,N) of a run p of a FAPI web
system, if there is a sequence s € S(as).accessTokens such
that s = (id, clientld,t,r), s = (MTLS, id, clientld,t, key, tw) or
s = (OAUTB, id, clientld,t ,key' ,w), for some key and key'.
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Intuitively, an access token ¢ is associated with a client c,
authorization server as, and user identity id, if ¢+ was created
by the authorization server as and if the AS has created ¢ for
the client ¢ and the identity id.

More precisely, the access token is exchanged for an
authorization code (at the token endpoint of the AS), which
is issued for a specific client. This is also the client to which
the access token is associated with. The user identity with
which the access token is associated is the user identity that
authenticated at the AS (i.e., logged in at the website of the
AS). In the model, the AS associates the access token with
the client identifier and user identity by storing a sequence
containing the identity, the client identifier and the access
token (i.e., (id,clientldt,r), (MTLS,id,clientld,t key,tw) or
(OAUTB, id, clientld,t  key' ,rw)). Furthermore, the last entry of
the sequence indicates if the client is using the Read-Only or
the Read-Write flow. In addition to this, for the Read-Write
flow, the AS stores whether the access token is bound via
mTLS or OAUTB (along with the corresponding key with
which the access token is associated).

We can now define authorization formally, again the expla-
nation of this definition follows below.

Definition 2 (Authorization Property). We say that the FAPI
web system with a network attacker FAPI is secure w.r.t. au-
thorization iff for every run p of FA4PI, every configuration
(S,E,N) in p, every authorization server as € AS that is
honest in § with s§’.resource_servers being domains of
honest resource servers used by as, every identity id € ID¥
for which the corresponding browser, say b, is honest in S,
every client ¢ € C that is honest in S with client id clientld
issued to ¢ by as, every resource server rs € RS that is
honest in S such that id € s.ids (set of IDs handled by rs),
si-authServ € dom(as) (set of domains controlled by as) and
with dom, € s§’ . resource_servers (with dom,; € dom(rs)),
every access token ¢ associated with ¢, as and id and every
resource access nonce r € s .rNonce[id] U si’.wNoncelid] it
holds true that:

If r is contained in a response to a request m sent to rs with
t = m.header[Authorization], then r is not derivable from
the attackers knowledge in S.

As outlined above, the authorization property states that if
the honest resource server receives an access token associated
with a client identifier, authorization server, and user identifier,
then the corresponding resource access is not given to the
attacker. Access to resources is modeled by nonces called
resource access nonces. For each user identity, there is one set
of nonces representing read access, and another set representing
write access. In our model of the FAPI, when a resource server
receives an access token associated with a user from a client,
the resource server returns to the client one of the resource
access nonces of the user, which in turn the client forwards
to the user’s browser. The above security property requires
that the attacker does not obtain such a resource access nonce
(under the assumptions state in the property). This captures
that there should be no direct or indirect way for the attacker



to access the corresponding resource. In particular, the attacker
should not be able to use a client such that he can access the
resource through the client.

For the authorization property to be meaningful, we require
that the involved participants are honest. For example, we
require that the authorization server at which the identity is
registered is honest. If this is not the case (i.e., the attacker
controls the AS), then the attacker could trivially access
resources. The same holds true for the client for which the
access token is issued: If the user chooses a client that is
controlled by the attacker, then the attacker can trivially access
the resource (as the user authorized the attacker client to do so).
In our model of the FAPI, the client (non-deterministically)
chooses a resource server that the authorization server supports
(this can be different for each login flow). As in the Read-Only
flow, the access token would trivially leak to the attacker if the
resource server is controlled by the attacker, we require that the
resource servers that the AS supports are honest. Furthermore,
in the WIM, the behavior of the user is subsumed in the
browser model, therefore, we require that the browser that
is responsible for the user identity that is involved in the flow
should be honest. Otherwise, the attacker could trivially obtain
the credentials of the user.

2) Authentication: Informally speaking, the authentication
property states that an attacker should not be able to log in at
a client under the identity of an honest user. More precisely,
we require that in all runs p of a FAPI web system FAPI
if in p a client considers an honest user (browser) whose ID
is governed by an honest AS to be logged in (indicated by
a service token which a user can use at the client), then the
adversary cannot obtain the service token.

3) Session Integrity: There are two session integrity prop-
erties that capture that an honest user should not be logged in
under the identity of the attacker and should not use resources
of the attacker. As shown in Section IV-D, session integrity is
not given for all configurations available in the FAPI. Therefore,
we show a limited session integrity property that captures
session integrity for web server clients that use OAUTB.

Nonetheless, our session integrity property here is stronger
than those used in [6], [7] in the sense that we define (and
prove) session integrity not only in the presence of web
attackers, but also for the much stronger network attacker.
(This is enabled by using the __Secure- prefix for cookies.)

Session Integrity for Authorization for Web Server Clients
with OAUTB: Intuitively, this property states that for all runs
p of a FAPI web system FAPI, if an honest user can access
the resource of some identity u (registered at AS as) through
the honest web server client ¢, where ¢ uses OAUTB as the
holder of key mechanism, then (1) the user started the flow at
c and (2) if as is honest, the user authenticated at the as using
the identity u.

Session Integrity for Authentication for Web Server Clients
with OAUTB: Similar to the previous property, this property
states that for all runs p of a FAPI web system FA4PI, if an
honest user is logged in at the honest client ¢ under some
identity u (registered at AS as), with ¢ being a web server

client using OAUTB as the holder of key mechanism, then (1)
the user started the flow at ¢ and (2) if as is honest, the user
authenticated at the as using the identity u.

By Session Integrity for Web Server Clients with OAUTB
we denote the conjunction of both properties.

Now, our main theorem says that these properties are
satisfied for all FAPI web systems.

Theorem 1. Let FAPI be a FAPI web system with a network
attacker. Then, FAPI is secure w.r.t. authorization and authen-
tication. Furthermore, FAPI is secure w.r.t. session integrity
for web server clients with OAUTB.

We emphasize that the FAPI web systems take into account
the strong attacker the FAPI is supposed to withstand as
explained in Section III-C. Such attackers immediately break
plain OAuth 2.0 and OpenID Connect. This, together with the
various OAuth 2.0 security extensions which the FAPI uses
and combines in different ways, and which have not formally
been analyzed before, makes the proof challenging.

VI. CONCLUSION

In this paper, we performed the first formal analysis of
an Open Banking API, namely the OpenID Financial-grade
API. Based on the Web Infrastructure Model, we built a
comprehensive model comprising all protocol participants
(clients, authorization servers, and resource servers) and all
important options employed in the FAPI: clients can be app
clients or web server clients and can make use of either the
Read-Only or the Read-Write profile. We modeled all specified
methods for authenticating at the authorization server and both
mechanisms for binding tokens to the client, namely, Mutual
TLS and OAuth 2.0 Token Binding. We also modeled PKCE,
JWS Client Assertions, and the JWT Secured Authorization
Response Mode (JARM).

Based on this model, we then defined precise security
properties for the FAPI, namely authorization, authentication,
and session integrity. While trying to prove these properties for
the FAPI, we found several vulnerabilities that can enable an
attacker to access protected resources belonging to an honest
user or perform attacks on session integrity. We developed
fixes against these attacks and formally verified the security
of the (fixed) OpenID FAPI.

This is an important result since the FAPI enjoys wide
industry support and is a promising candidate for the future
lead in open banking APIs. Financial-grade applications entail
very high security requirements that make a thorough formal
security analysis, as performed in this paper, indispensable.

Our work also constitutes the very first analysis of various
OAuth security extensions, namely PKCE, OAuth mTLS,
OAUTB, JARM, and JWS Client Assertions.
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APPENDIX A
AUTHORIZATION REQUEST LEAK ATTACK — DETAILS

We here provide further details about the authorization request leak attack, which was only sketched in Section IV-D.

A concrete instantiation of this attack is shown in Figure 7, where the scenario is based on the Read-Only flow of a public
client. As explained below, similar attacks also work for all other configurations of the FAPI (except for web server clients
which use OAUTB, for which, as mentioned, we show that they are not susceptible in Section V).

In the Authorization Request Leak Attack, the client sends the authorization request to the browser in Step [2], where it
leaks to the attacker in Step [3]. From here on, the attacker behaves as the browser and logs himself in (Step [5]), hence, the
authorization code received in Step [¢] is associated with the identity of the attacker.

The state value used in the authorization request aims at preventing Cross-Site Request Forgery (CSRF) attacks. However, as
the state value leaks, this protection does not work. For showing that this is the case, we assume that a CSRF attack happens.
If, for example, the user is visiting a website that is controlled by the attacker, then the attacker can send, from the browser
of the user, a request to the AS containing the code and the state value (Step [s]). As the state received by the client is the
same that it included in the authorization request, the client continues the flow and uses the code to retrieve an access token in
Steps [2] and [10].

This access token is associated with the attacker, which means that the honest user is accessing resources belonging to the
attacker.

As a result, the honest user can be logged in under the identity of the attacker if the authorization server returns an id
token. In the case of the Read-Write flow, the honest user can modify resources of the attacker: for example, she might upload
personal documents to the account of the attacker.

As noted above, this attack might happen for all configurations, except for the Read-Write flow when the client is a web
server client using OAUTB (see Figure 3).

In all other configurations, this attack can happen as the attacker can behave exactly like the browser of the honest user, i.e.,
after receiving the authorization request, the attacker can send this request to the AS, log in under his own identity, and would
then receive a response that the client accepts. The only flow in which this is different is the Read-Write flow where the client
is a web server and uses OAUTB, as here, the browser (and therefore, also the attacker) needs to prove possession of a key
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pair (i.e., the key pair used for the client). As the attacker cannot prove possession of the private key of the key pair which
the browser uses for the client, the AS would then stop the flow. (In the other flows, the AS does not check if the response
was sent by the browser that logged in the user.)

If we say that the FAPI is not required to be secure if the authorization request leaks (i.e., if we remove the assumption that
the authorization request leaks), then the flow is still not secure, as the authorization response might still leak to the attacker
(see Section III-C1), which also contains the state value. More precisely, the authorization response might leak in the case of
app clients due to the operating system sending the response to the attacker app (for details, see Section II-B). After receiving
the authorization response, the attacker app knows the state value and can start a new flow using this value. The attacker can
then continue from Step [3] (Figure 7), and when receiving the authorization response (which is a URI containing the OAuth
parameters), he could, using his own app that runs on the device of the victim, call the legitimate client app with this URI
(i.e., with the code that is associated with the identity of the attacker and the state value with which the client started the
flow). The effect of this is that the legitimate app, at which the honest user started the flow, would continue the flow using an
authorization code associated with the attacker. Therefore, the honest user would either be logged in with the identity of the
attacker or use the resources of the attacker.

We note that even encrypting the state value contained in the authorization request does not solve the problem, as the attacker
is using the whole authorization request. (Strictly speaking, he acts as the browser of the honest user).
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APPENDIX B
THE WIM: SOME BACKGROUND

We here provide more details about the Web Infrastructure Model.

a) Signature and Messages: As mentioned, the WIM follows the Dolev-Yao approach where messages are expressed as
formal terms over a signature X. For example, in the WIM an HTTP request is represented as a term r containing a nonce,
an HTTP method, a domain name, a path, URI parameters, request headers, and a message body. For instance, an HTTP
request for the URI http://ex.com/show?p=1 is represented as r := (HTTPReq,n;,GET,ex.com, /show, {(p, 1)), (), ()) where the
body and the list of request headers is empty. An HTTPS request for r is of the form enc,({r,k"), pub(kex.com)), Where k' is a
fresh symmetric key (a nonce) generated by the sender of the request (typically a browser); the responder is supposed to use
this key to encrypt the response.

The equational theory associated with ¥ is defined as usual in Dolev-Yao models. The theory induces a congruence
relation = on terms, capturing the meaning of the function symbols in X. For instance, the equation in the equational
theory which captures asymmetric decryption is dec,(enc,(x,pub(y)),y) = x. With this, we have that, for example,
dec,(ency ({r, k'), pub(kex.com)), kex.com) = (k') , i.e., these two terms are equivalent w.r.t. the equational theory.

b) Scripts: A script models JavaScript running in a browser. Scripts are defined similarly to Dolev-Yao processes. When
triggered by a browser, a script is provided with state information. The script then outputs a term representing a new internal
state and a command to be interpreted by the browser (see also the specification of browsers below). Similarly to an attacker
process, the so-called attacker script outputs everything that is derivable from the input.

¢) Running a system: As mentioned, a run of a system is a sequence of configurations. The transition from one configuration
to the next configuration in a run is called a processing step. We write, for example, Q = (S,E,N) — (§',E',N’) to denote the
transition from the configuration (S,E,N) to the configuration (S',E’,N'), where S and S’ are the states of the processes in the
system, E and E’ are pools of waiting events, and N and N’ are sequences of unused nonces.

d) Web Browsers: An honest browser is thought to be used by one honest user, who is modeled as part of the browser.
User actions, such as following a link, are modeled as non-deterministic actions of the web browser. User credentials are stored
in the initial state of the browser and are given to selected web pages when needed. Besides user credentials, the state of
a web browser contains (among others) a tree of windows and documents, cookies, and web storage data (localStorage and
sessionStorage).

A window inside a browser contains a set of documents (one being active at any time), modeling the history of documents
presented in this window. Each represents one loaded web page and contains (among others) a script and a list of subwindows
(modeling iframes). The script, when triggered by the browser, is provided with all data it has access to, such as a (limited)
view on other documents and windows, certain cookies, and web storage data. Scripts then output a command and a new state.
This way, scripts can navigate or create windows, send XMLHttpRequests and postMessages, submit forms, set/change cookies
and web storage data, and create iframes. Navigation and security rules ensure that scripts can manipulate only specific aspects
of the browser’s state, according to the relevant web standards.

A browser can output messages on the network of different types, namely DNS and HTTP(S) (including XMLHttpRequests),
and it processes the responses. Several HTTP(S) headers are modeled, including, for example, cookie, location, strict transport
security (STS), and origin headers. A browser, at any time, can also receive a so-called trigger message upon which the browser
non-deterministically chooses an action, for instance, to trigger a script in some document. The script now outputs a command,
as described above, which is then further processed by the browser. Browsers can also become corrupted, i.e., be taken over
by web and network attackers. Once corrupted, a browser behaves like an attacker process.

As detailed in Appendix G, we extended the browser model of the WIM slightly in order to incorporate OAUTB in the
browser model. We furthermore added the behavior of the __Secure- prefix of cookies to the model, which specifies that such
cookies shall only be accepted when they are transmitted over secure channels [46]. Note that for the FAPI, mTLS is only
needed between clients and servers. Therefore, mTLS has been modeled on top of the WIM, i.e., as part of the modeling of
FAPI clients and servers. The servers we modeled for the FAPI of course also support OAUTB.
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APPENDIX C
EXCERPT OF CLIENT MODEL

In this section, we provide a brief excerpt of the client model in order to give an impression of the formal model. See
Appendix I for the full formal model of the FAPIL.

The excerpt given in Algorithm 1 shows how the client prepares and sends the token request to the authorization server, i.e.,
the part in which the client sends the authorization code in exchange for an access token (and depending on the flow, also an
id token).

This function is called by the client. The first two inputs are the session identifier of the session (i.e., the session of the
resource owner at the client) and the authorization code that the client wants to send to the AS. The value responseValue
contains information related to mTLS or OAUTB (if used for the current flow). The last input is the current state of the client.

In Lines 5 to 8, the client chooses either the token endpoint of the AS or some URL that was chosen non-deterministically.
This models the assumption shown in Section III-C4, which requires the Read-Write profile of the FAPI to be secure even if
the token endpoint is misconfigured.

Starting from Line 15, the function chooses the parameters of the request that depend on the flow and configuration (see
Figure 3).

If the client uses the Read-Only profile, the token request always contains the PKCE verifier (Line 15). For a confidential
client (which means that the client has to authenticate at the token endpoint), the client either authenticates using JWS Client
Assertions (Line 20, see also Section II-C), or with mTLS (Line 26; for details on our model of mTLS refer to Appendix E).

If the client uses the Read-Write profile, the client uses either mTLS (again Line 26) or OAUTB (Line 32; for details on
our model of OAUTB refer to Appendix F).
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Algorithm 1 Relation of a Client R° — Request to token endpoint.

1: function SEND_ TOKEN _REQUEST (sessionld, code, responseValue, s")
2:  let session := s'.sessions|[sessionld|

3:  let identity := session[identity]

4:  let issuer := s'.issuerCachelidentity]

5:  if session[misconfiguredTEp|] = T then

6: let url := session[token_ep]

7. else

8 let url := s’.0idcConfigCachelissuer][token_ep]

9:  let credentials := s'.clientCredentialsCachelissuer]
10:  let clientld := credentials[client_id]

11:  let clientType := credentials|client_type]

12:  let profile := credentials[profile]

13:  let isApp := credentials[is_app]

14:  let body := [grant_type:authorization_code,code:code,redirect_uri:session[redirect_uri|,client_id:clientld)
15:  if profile = r then
16: let body|pkce_verifier| := session[pkce_verifier]

17:  if profile = r A clientType = pub then

18: let message := (HTTPReq, V,,P0ST, url.domain, url.path,url.parameters, L, body)
19: call HTTPS_SIMPLE_SEND([responseTo:TOKEN, session:sessionld], message, ')
20: else if profile = r A clientType = conf_JWS then

21: let clientSecret := credentials|[client_secret]
22: let jwr := [iss:clientld,aud:url.domain]
23: let body|assertion] := mac(jwt, clientSecret)

24: let message := (HTTPReq, v, POST, url.domain,url.path,url.parameters, L, body)
25: call HTTPS_SIMPLE_SEND([responseTo:TOKEN, session:sessionld], message, s')
26:  else if clientType = conf_MTLS then = — both profiles

27: if responseValue[type] # MTLS then

28: stop

29: let body|[TLS_AuthN] := responseValuemtls_nonce]

30: let message := (HTTPReq, V,,POST, url.domain,url.path,url.parameters, L, body)
31: call HTTPS_SIMPLE_SEND([responseTo:TOKEN, session:sessionld], message, ')
32:  else — rw with OAUTB

33: if responseValue[type] # OAUTB then

34: stop

35: let ekm := responseValue|ekn]

36: let TB_AS := s'.TBindings[url.host] — priv. key

37: let TB_RS := s'.TBindings[session[RS]] — priv. key

38: let TB_Msg_prov := [id:pub(TB_AS),sig:sig(ekm,TB_AS)]

39: let TB_Msg_ref := [id:pub(TB_RS),sig:sig(ekm, TB_RS)]

40: let headers := [Sec-Token-Binding:[prov:TB_Msg_prov, ref:TB_Msg_ref]]

41: if clientType = conf_0OAUTB then  — client authentication
42: let clientSecret := credentials[client_secret]

43: let jwr := [iss:clientld,aud:url.domain, |

44: let body[assertion] := mac(jwt, clientSecret)

45: if isApp = 1 then — W.S. client: TBID used by browser
46: let body|pkce_verifier| := session[browserTBID]

47: let message := (HTTPReq, V,,POST, url.domain, url.path,url.parameters, headers, body)
48: call HTTPS_SIMPLE_SEND([responseTo:TOKEN, session:sessionld], message, s')
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APPENDIX D
PROOF SKETCH OF THEOREM 1, AUTHORIZATION

We here provide a proof sketch of Theorem 1 that is concerned with the authorization property. The complete formal proof
of this theorem is given in Appendix L.

For proving the authorization property, we show that when a participant provides access to a resource, i.e., by sending a
resource access nonce, this access is not provided to the attacker:

a) Resource server does not provide the attacker access to resources: We show that the resource server does not provide
the attacker access to resources of an honest user.

In case of the Read-Only flow, we show that an access token associated with an honest client, an honest authorization server,
and an honest identity does not leak to the attacker, and therefore, the attacker cannot obtain access to resources.

In case of the Read-Write flow, such an access token might leak to the attacker, but this token cannot be used by the attacker
at the resource server due to Token Binding, either via OAUTB or mTLS.

b) Web server client does not provide the attacker access to resources: App clients are only usable via the device they
are running on, i.e., they are not usable over the network (by which we mean that if, for example, the user wants to view one
of her documents with an app client, she does this directly using the device). Therefore, we only look at the case of web server
clients, as such a client can be used over the network, e.g., by the browser of the end-user or by the attacker.

In the following, we show that honest web server clients do not provide the attacker access to resources belonging to an
honest identity. We show this for all possible configurations that could trick the client into doing so, e.g., with a misconfigured
token endpoint or with an authorization server controlled by the attacker that returns a leaked access token.

The access to the resource is provided to the sender of the redirection request. To access a resource, this means that the
attacker must have sent the request to the redirection endpoint of the client.

For a Read-Only flow, the token endpoint is configured correctly. This means that the attacker must include a code in the
request such that the client can exchange it for an access token. We show that such a code (associated with an honest identity
and the client) does not leak to an attacker.

For a Read-Write flow, the token endpoint can be misconfigured such that it is controlled by the attacker, and we also assume
that access tokens leak to the attacker (see Section III-C).

We show that a leaked access token cannot be used at the client by the attacker. If only the token endpoint is controlled by
the attacker, he must include an id token (when using the OIDC Hybrid flow, see below for the Authorization Code flow with
JARM) in the token response such that it contains the hash of the access token and be signed by the honest authorization server
(the hash of the access token was not included in the original draft and was included by us as a mitigation in Section IV-B).
However, such an id token does not leak to the attacker, which prevents the use of leaked access tokens at misconfigured token
endpoints. For the Authorization Code flow with JARM, the attacker would need a response JWS. As in the case of the Hybrid
flow, we show that the response JWS needed by the client for accessing resources of an honest identity does not leak.

A leaked access token can also be used by the attacker if the client chooses an authorization server under the control of the
attacker. Here, the id tokens are created by the attacker and accepted by the client. For preventing the use of this access token,
the client includes the issuer of the second id token (or of the response JWS defined by JARM) in the request to the resource
server, as detailed in Section IV-A. As each resource server has one preconfigured authorization server, the resource server
does not provide access to a resource in this case.

The only remaining case is that the attacker includes a code associated with the honest user in the request to the redirection
endpoint of the client. For the Hybrid flow, both id tokens contained in the authorization response and in the token response
are required to have the same subject attribute and the same issuer value, which means that they are both signed by the
authorization server. However, such an id token does not leak to the attacker, which means that the client will stop the flow
when receiving the second id token contained in the token response. When using JARM, this would require the attacker to
send a response JWS signed by the authorization server that contains the code that belongs to an honest client and an honest
user identity. In the technical report, we show that such a response JWS does not leak to the attacker.
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APPENDIX E
MODELING MTLS

The WIM models TLS at a high level of abstraction. An HTTP request is encrypted with the public key of the recipient and
contains a symmetric key, which is used for encrypting the HTTP response. Furthermore, the model contains no certificates or
public key infrastructures but uses a function that maps domains to their public key.

Figure 8 shows an overview of how we modeled mTLS. The basic idea is that the server sends a nonce encrypted with
the public key of the client. The client proves possession of the private key by decrypting this message. In Step [1], the client
sends its client identifier to the authorization server. The authorization server then looks up the public key associated with the
client identifier, chooses a nonce and encrypts it with the public key. As depicted in Step [2], the server additionally includes
its public key. When the client decrypts the message, it checks if the public key belongs to the server it wants to send the
original message to. This prevents man-in-the-middle attacks, as only the honest client can decrypt the response and as the
public key of the server cannot be changed by an attacker. In Step [3], the client sends the original request with the decrypted
nonce. When the server receives this message, it knows that the nonce was decrypted by the honest client (as only the client
knows the corresponding private key) and that the client had chosen to send the nonce to the server (due to the public key
included in the response). Therefore, the server can conclude that the message was sent by the honest client.

In effect, this resembles the behavior of the TLS handshake, as the verification of the client certificate in TLS is done by
signing all handshake messages [47, Section 7.4.8], which also includes information about the server certificate, which means
that the signature cannot be reused for another server. Instead of signing a sequence that contains information about the receiver,
in our model, the client checks the sender of the nonce, and only sends the decrypted nonce to the creator of the nonce. In
other words, a nonce decrypted by an honest server that gets decrypted by the honest client is never sent to the attacker.

As explained in Section II-D, the client uses the same certificate it used for the token request when sending the access token
to the resource server. While the resource server has to check the possession of corresponding private keys, the validity of the
certificate was already checked at the authorization server and can be ignored by the resource server. Therefore, in our model
of the FAPI, the client does not send its client id to the resource server, but its public key, and the resource server encrypts
the message with this public key.

Client Authorization Server
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o
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enc, ((nonce, kas) , ketient_ia)

H

Y

request, nonce

response

Client Authorization Server

Figure 8. Overview of mTLS

<
<

All messages are sent by the generic HTTPS server model (Appendix H), which means that each request is encrypted
asymmetrically, and the responses are encrypted symmetrically with a key that was included in the request. For completeness,
Figure 9 shows the complete messages, i.e., with the encryption used for transmitting the messages.
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APPENDIX F
MORE DETAILS ON OAUTH 2.0 TOKEN BINDING

In the following, we describe more details of OAuth 2.0 Token Binding (see Section II-E) and the modeling within the Web
Infrastructure Model.

A. Exported Keying Material

The proof of possession of a private key is done by signing a so-called Exported Keying Material (EKM). This value is
created with parameters of the TLS connection such that it is unique to the connection. Therefore, it is not possible for an
attacker to reuse signed EKM values for an honest server. Before explaining how the EKM value is generated, we give a brief
explanation of the relevant mechanisms used in TLS [47]:

o Client and Server Random: The client random and server random are values chosen by the client and server and transmitted

in the TLS handshake.
o Pseudorandom Function: TLS specifies a pseudorandom function (PRF) that is used within the TLS protocol [47, Section
51

« Premaster Secret: The premaster secret is a secret shared between both participants of the TLS connection, for example,
created by a Diffie-Hellman key exchange. The length of the premaster secret varies depending on the method used for
its creation.

o Master Secret: The master secret is created by applying the pseudorandom function to the premaster secret to generate

a secret of a fixed length. It essentially has the value PRF(premaster_secret,client_random,server_random) [47, Section
8.1]; we omitted constant values).

Using these building blocks, the EKM value [37] is essentially defined as

PRF (master_secret, client_random, server_random)

As noted in Section 7.5 of the Token Binding Protocol [48], the use of the Extended Master Secret TLS extension [49] is
mandatory. This extension redefines the master secret as PRF (pre_master_secret, session_hash), where session_hash is the hash
of all TLS handshake messages of the session (again, omitting constant values). Without this extension, the Triple Handshake
Attack [50] can be applied, which eventually leads to the creation of two TLS sessions with the same master secret. The basic
idea is that if an honest client establishes a TLS connection to a malicious server (for example, when the token endpoint is
misconfigured), the attacker can relay the random values chosen by the honest client and server, hence, creating TLS connections
to both the client and server with the same master secret and therefore, with the same EKM value. By including the hash over
the TLS handshake messages, relevant information about the session, like the certificate used by the server (which is exchanged
in the handshake), influence the value of the master secret.

B. Modeling Token Binding

The main difficulty of modeling OAuth 2.0 Token Binding is the high level of abstraction of TLS within the WIM, as already
explained in Appendix E.

An overview of how we modeled OAUTB is shown in Figure 10. For compensating the absence of the TLS handshake, both
participants choose nonces, as shown in Steps [1] and [2]. When the client sends the actual request, it creates and includes a
Token Binding message, as shown in Step [3]. As explained above, the client includes not only the two nonces, but also the
public key of the authorization server in the EKM value for modeling the extended master secret.

For completeness, Figure 11 shows the entire messages, i.e., with the encryption done by the generic HTTPS server
(Appendix H).

C. Access Token issued from Authorization Endpoint

In the Read-Write profile, an access token issued from the authorization endpoint is required to be token bound. When
using OAUTB, this means that the token must be bound to the Token Binding ID which the client uses for the resource
server. However, the authorization request is sent to the authorization server by the browser, which cannot send Token Binding
messages with an ID used by the client. Therefore, our model does not include access tokens being issued from the authorization
endpoint, as this would mean that additional communication between the client and the authorization server is needed, which
is not fully specified yet.

We note that this issue is also present in the case of confidential clients using mTLS. Here, the access token cannot be
bound to the certificate of the client, as the authorization request is not sent directly by the client to the authorization server,
but by the browser. More details can be found in Section 4.5 of [32].
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APPENDIX G
ADDITIONS TO THE WEB INFRASTRUCTURE MODEL

Within the scope of this technical report, we adhere to the WIM as defined in [44], where it was used for modeling and
analyzing OpenID Connect. In the following, we describe the additions to the model for the analysis of the FAPI.

A. Functions

In addition to the function symbols defined in Appendix B of [44], we add the function symbol for hashing hash(.) to the
signature X. For computing and verifying message authentication codes, we add mac(.,.) and checkmac(.,.). Regarding the
equational theory, we additionally define mac(x,y) = hash({x,y)) and checkmac(mac(x,y),y) = T. Furthermore, we extend the
definition of extractmsg such that it also extracts messages out of mac(x,y), i.e., extractmsg(mac(x,y)) = x. As a short form
of the mapping from identities to their governor, we define gov(.) = governor(.).

B. Cookies

In Appendix C of [44], a cookie is defined as a term of the form (name, content) with name € Ty.. As the name is a term,
it may also be a sequence consisting of two part. If the name it consists of two parts, we call the first part of the sequence
(i.e., name.1) the prefix of the name.

In the following, define the Secure prefix (see [46]): When the __Secure prefix is set, the browser accepts the cookie only if
the secure attribute is set. As such cookies are only transferred over secure channels (i.e., with TLS), the cookie cannot be set
by a network attacker.

For modeling this, we require that the AddCookie function should be called with (as an additional argument) the protocol
with which the corresponding request was sent, i.e., we modify the function PROCESSRESPONSE (using the same number
for the algorithm as in [44]) :

Algorithm 8 Web Browser Model: Process an HTTP response.

. function PROCESSRESPONSE(response, reference, request, requestUrl, s")
if Set-Cookie € response.headers then
for each ¢ €{ response. headers [Set-Cookie], ¢ € Cookies do
let s'.cookies [request.host]
:= AddCookie(s'.cookies [request.host],c, requestUrl.protocol)

Eb e

The modified function AddCookie looks as follows (again using the same number as in [44]):

Definition 43. For a sequence of cookies (with pairwise different names) oldcookies and a cookie c¢, the sequence
AddCookie(oldcookies, c, protocol) is defined by the following algorithm: If ((c.name.l1 = __Secure) = (protocol = S)), then:
Let m := oldcookies. Remove any ¢’ from m that has c.name = ¢.name. Append ¢ to m and return m.

C. Browser

We use the same browser model as defined in Appendix D of [44], with small modifications. Therefore, we do not show
the full model here but limit the description to the algorithms that differ from the original browser model.

Main Differences:

o Algorithm 2: New input argument refTB. This value is saved along with the other information needed for the current DNS
request.

« Algorithm 3: Sends messages directly to a receiver, encrypted with a symmetric key. The receiver and key are given as
an input. This algorithm is used for sending the follow-up request when using OAUTB.

o Algorithm 4: If the response contains tb_nonce, the original message is sent together with the OAUTB message.
Furthermore, the actions specified when the Include-Referred-Token-Binding-ID header is set are implemented here.

o Algorithm 5: When receiving a DNS response, the browser checks if OAUTB needs to be applied. In this case, the browser
first sends a request to the OAUTB endpoint to obtain a new nonce. The original message is saved and send together with
the OAUTB message in a second request.

When sending the first OAUTB request, the nonce v, is used as a reference (in Algorithm 5).
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Algorithm 2 Web Browser Model: Prepare headers, do DNS resolution, save message.

1: function HTTP_SEND(reference, message, url, origin, referrer, referrerPolicy, s', refTB)
2: if messagehost €0 §'.sts then
3: let url.protocol := S
4: let cookies := ({(c.name,c.content.value)|c €' s'.cookies [message.host]
<+ Af(c.content.secure = (url.protocol =8))})
5:  let message headers|[Cookie] := cookies
6: if origin # | then
7: let message headers[0rigin] := origin
8: if referrerPolicy = noreferrer then
9: let referrer :== 1
10: if referrer 2 L then
11: if referrerPolicy = origin then
12: let referrer :== (URL, referrer.protocol, referrer.host,/,(), L)  — Referrer stripped down to origin.
13: let referrer.fragment := 1  — Browsers do not send fragment identifiers in the Referer header.
14: let message headers[Referer| := referrer

15: let s'.pendingDNS[vg] := (reference,message,url,refTB)

16:  stop ((s'.DNSaddress,a, (DNSResolve,message.host, Vg))), s’

Algorithm 3 Web Browser Model: Send message to IP encrypted with given sym. key.

1: function OAUTB_CONT_SEND(reference, message, url, key, f, s')

2: let s'.pendingRequests := s'.pendingRequests
— +<) (reference, message, url, key, f)
3: let message := encs(message, key)

4: stop {((f,a,message)), s'

Algorithm 4 Web Browser Model: Process an HTTP response.

1: function PROCESSRESPONSE( (response, reference, request, requestUrl, s', key, f)

2 if tb_nonce € response.body then

3 let (orig_reference,orig_message,orig_url,refTB) := s’ .tokenBindingRequests[request.nonce|
4 let ekm := hash({request.nonce, response.body[tb_nonce|,keyMapping|request.host]))
5: let tb_prov_priv := s .tokenBindings|orig_url.host|

6: let TB_Msg_provided := [id:pub(tb_prov_priv),sig:sig(ekm,tb_prov_priv)]

7 if refTB # L then

8: let tb_ref _priv := s'.tokenBindings|refTB]

9: let TB_Msg_referred = [id:pub(tb_ref _priv),sig:sig(ekm,tb_ref _priv)]

10: else

11: let TB_Msg_referred := ()

12: let orig_message.headers[Sec-Token-Binding| := [prov:TB_Msg_provided,ref:TB_Msg_referred)
13: call TB_CONT_SEND (orig_reference, orig_message, orig_url, key, f, s)

14: if Set-Cookie € response.headers then

15: for each ¢ €{ response headers [Set-Cookie], ¢ € Cookies do

16: let s'.cookies [request.host]

< := AddCookie(s'.cookies [request.host],c, requestUrl.protocol)

17: if Strict-Transport-Security € response.headers A requestUrl.protocol =S then
18: let §'.sts := 5'.sts +{ request.host

19: if Referer € request headers then
20: let referrer := request.headers[Referer]
21: else
22: let referrer := L
23: if Location € response.headers A response.status € {303,307} then
24: let url := response.headers [Location]
25: if url.fragment = | then
26: let url.fragment := requestUrl.fragment
27: if Include-Referred-Token-Binding-ID € response.headers then = — Always use TB
28: if response headers|[Include-Referred-Token-Binding-ID| = T then
29: let s'.useTB[response.host] ;== T
30: let s'.useTB|response.headers|Location]] := T
31: let method' := request.method
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32: let body' := request.body

33: if Origin € request.headers then
34: let origin := (request headers[Origin], (request.host,url.protocol))
35: else
36: let origin := L
37: if response.status = 303 A request.method ¢ {GET,HEAD} then
38: let method’ := GET
39: let body' := ()
40: if 3w € Subwindows(s’) such that s'.w.nonce = reference then — Do not redirect XHRs.
41: let req := (HTTPReq, Vg, method ,url.host,url.path, (), url.parameters,body’)
42: let referrerPolicy := response headers[ReferrerPolicy]|
43: if Include-Referred-Token-Binding-ID € response.headers then
44: if response headers[Include-Referred-Token-Binding-ID| = T then
45: let refTBID := response.host
46: else
47: let refTBID = L
48: call HTTP_SEND (reference, req, url, origin, referrer, referrerPolicy, s', refTBID )
49:  if 3w € Subwindows(s") such that s’.w.nonce = reference then — normal response
50: if response.body 4 (x,*) then
51: stop {}, s
52: let script := 7 (response.body)
53: let scriptstate := m(response.body)
54: let referrer := request.headers[Referer]
55: let d := (v;,requestUrl, response. headers, referrer, script, scriptstate, (), (), T)
56: if . W.documents = () then
57: let s’ .w.documents := (d)
58: else
59: let i < N such that s'.w.documents.i.active =T
60: let s'.w.documents.i.active := L
61: remove s'.w.documents.(i+ 1) and all following documents
< from s'.w.documents

62: let s'.w.documents := s'.w.documents +' d
63: stop {}, s’ B _
64:  else if 3w € Subwindows(s’), d such that s'.d.nonce = 7, (reference)

<+ A s'.d=s"w.activedocument then — process XHR response
65: let headers := response headers — Set-Cookie
66: let s'.d.scriptinputs := s'.d.scriptinputs +!

(XMLHTTPREQUEST, headers, response.body, T (reference))

Algorithm 5 Web Browser Model: Main Algorithm

I: let s’ :=s
2: if s.isCorrupted # L then

3: let s'.pendingRequests := (m,s.pendingRequests) — Collect incoming messages
4 letm < dy(s)

5. letd + IPs

6:  stop {(d',a,m’)), s

7. if m = TRIGGER then = — A special trigger message.

8: let switch < {script,urlbar,reload,forward,back}

9:  let w + Subwindows(s’) such that s’.w.documents # ()

< if possible; otherwise stop — Pointer to some window.
10:  let tlw < N such that s".tlw.documents # ()
— if possible; otherwise stop — Pointer to some top-level window.

11: if switch = scrigt then — Run some script.

12: let d := W+ >activedﬁocumen‘t

13: call RUNSCRIPT(w, d, )

14: else if switch =urlbar then — Create some new request.
15: let newwindow « {T,L}

16: if newwindow =T then — Create a new window.
17: let windownonce = v,

18: let w' := (windownonce, (), 1)

19: let s’ windows := s .windows +0 w/

20: else — Use existing top-level window.

21: let windownonce := s .tlw.nonce

22: let protocol < {P,S}
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23:
24
25:
26:
27:
28:
29:
30:
31:

32:
33:
34:
35:
36:
37.
38:
39:
40:
41:
42:
43:
44.
45:
46:
47:
48:
49:
50:

51:
52:
53:

54:

60:
61:

let host < Doms

let path < S

let fragment < S

let parameters < [S x S]

let url := (URL, protocol, host,path, parameters, fragment)

let req := (HTTPReq, V»,GET, host, path, (), parameters, ())

call HTTP_SEND (windownonce, req, url, 1, 1, 1, s')
else if switch = reload then — Reload some document.

let w + Subwindows(s’) such that s’.w.documents # ()

— if possible; otherwise stop

let url := s’ .w.activedocument.location

let req := (HTTPReq, V5,GET, url.host,url.path, (), url.parameters, ())

let referrer :== s'.‘w.activedocument.referrer

let s’ := CANCELNAV(s'.w.nonce,s’)

call HTTP_SEND(s'.w.nonce, req, url, L, referrer, L, s")
else if switch = forward then

NAVFORWARD(w, s')
else if switch =back then

NAVBACK(®w, s')

else if m = FULLCORRUPT then — Request to corrupt browser

let s’.isCorrupted := FULLCORRUPT
stop (), s’

else if m = CLOSECORRUPT then — Close the browser

let s'.secrets := ()
let s'.windows := ()
let s’.pendingDNS := ()
let s'.pendingRequests := ()
let s’.sessionStorage := ()
let s".cookies ! Cookies such that
<+ (c€l ¢ .cookies) <= (c €' s.cookies A c.content.session = L)
let s’.isCorrupted := CLOSECORRUPT
stop (), s’

else if 3 (reference, request,url,key, f) €' s' pendingRequests
< such that 7 (decs(m,key)) = HTTPResp then — Encrypted HTTP response

let m' := decs(m, key)
if m’ .nonce # request.nonce then
stop

remove (reference,request,url,key, f) from s'.pendingRequests
call PROCESSRESPONSE (!, reference, request, url, s')

. else if 7| (m) = HTTPResp A 3 (reference, request,url, ., f) €' s’ pendingRequests
< such that m’'.nonce = request.key then

remove (reference,request,url, |, f) from s'.pendingRequests
call PROCESSRESPONSE (m, reference, request, url, s")

62: else if m € DNSResponses then — Successful DNS response

63: if m.nonce ¢ s.pendingDNS V m.result ¢ IPsV m.domain # m,(s.pendingDNS).host then
64: stop
65: let (reference,message,url,refTB) := s.pendingDNS[m.nonce]
66:  if s’.useTB[urLhost] = T then
67: let TB_req := (HTTPReq, V,;|,GET,url.host, /OAUTB-prepare, url.parameters, (), ())
68: let s'.tokenBindingRequests := s’.tokenBindingRequestsU
> [Vn1:(reference, message, url, refTB)]

69: let s’.pendingRequests = s’.pendingRequests

— +<) (reference, TB_req, url, v3, m.result) — TB only with TLS
70: let message := enc, ((TB_req, v3),s' keyMapping[message.host])
71: else if url.protocol =S then
72: let s’.pendingRequests := s’.pendingRequests

w40 (reference, message, url, v3, m.result)
73: let message := enc, ({message, v3),s' keyMapping [message host])
74: else
75: let s'.pendingRequests := s'.pendingRequests

o 40 (reference, message, url, L, m.result)
76: let s'.pendingDNS := s'.pendingDNS — m.nonce
77 stop ((m.result,a,message)), s'
78: else — Some other message
79: call PROCESS_OTHER(m, a, f, s)
80: stop
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APPENDIX H
GENERIC HTTPS SERVER MODEL

The generic HTTPS server is used in the concrete instantiations of clients, authorization servers and resource servers. The
placeholder algorithms defined in this section are replaced by the algorithms in the corresponding processes. Here, we use the
same model as defined in Appendix E of [44].

In the following, we give the complete definition of the generic HTTPS server, as it is used in the instantiations of the FAPI
participants and also referenced within the proof.

Definition 3 (Base state for an HTTPS server.). The state of each HTTPS server that is an instantiation of this relation must
contain at least the following subterms: pendingDNS € [9\[ X ‘Z}d, pendingRequests € [9\[ X TN] (both containing arbitrary
terms), DNSaddress € |Ps (containing the IP address of a DNS server), keyMapping € [Doms X TN] (containing a mapping
from domains to public keys), tIskeys € [Doms x A(| (containing a mapping from domains to private keys) and corrupt € Ty
(either _L if the server is not corrupted, or an arbitrary term otherwise).

Table I shows a list of placeholders for nonces used in these algorithms.

[ Placeholder | Usage ]
Vo new nonce for DNS requests
Vi new symmetric key

Table I: List of placeholders used in the generic HTTPS server algorithm.

We now define the default functions of the generic web server in Algorithms 6-10, and the main relation in Algorithm 11.

Algorithm 6 Generic HTTPS Server Model: Sending a DNS message (in preparation for sending an HTTPS message).

1: function HTTPS_SIMPLE_SEND(reference, message, s')
2 let s'.pendingDNS[vy] := (reference, message)
3: stop ({s'.DNSaddress,a, (DNSResolve,message.host, Vy))), s

/

Algorithm 7 Generic HTTPS Server Model: Default HTTPS response handler.

1: function PROCESS_HTTPS_RESPONSE(m, reference, request, key, a, f, s')
2: stop

Algorithm 8 Generic HTTPS Server Model: Default trigger event handler.

1: function TRIGGER(s')
2: stop
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Algorithm 9 Generic HTTPS Server Model: Default HTTPS request handler.

1: function PROCESS_HTTPS_REQUEST(m, k, a, f, s")
2: stop

Algorithm 10 Generic HTTPS Server Model: Default handler for other messages.

1: function PROCESS_OTHER(m, a, f, s")
2: stop

Algorithm 11 Generic HTTPS Server Model: Main relation of a generic HTTPS server

Input: (a, f,m),s

1: let s’ ;= s

2: if s’.corrupt # | Vm = CORRUPT then

3: let s'.corrupt := ({a, f,m),s .corrupt)

4 letm < dy(s")

5: let a’ < IPs

6:  stop {((d',a,m')), s’

7: if Imgec, k, k', inDomain such that (mge.,k) = decy(m, k') A (inDomain, k') € s.t1skeys then
8: let n, method, path, parameters, headers, body such that

< (HTTPReq,n,method,inDomain, path, parameters, headers,body) = mge.
< if possible; otherwise stop

9: call PROCESS_HTTPS_REQUEST (mgec, k, a, f, s)

10: else if m € DNSResponses then ~ — Successful DNS response

11: if m.nonce ¢ s.pendingDNSV m.result ¢ IPsV m.domain # s.pendingDNS[m.nonce|.2.host then
12: stop
13: let (reference,request) := s.pendingDNS[m.nonce]
14: let s'.pendingRequests := s’'.pendingRequests
< 4V (reference, request, v, m.result)
15: let message := enca((request,v1),s' keyMapping [request.host])
16: let s'.pendingDNS := s’.pendingDNS — m.nonce
17: stop {(m.result,a,message)), s’

18: else if 3 (reference,request, key, f) Y s'.pendingRequests
< such that 7 (decs(m,key)) = HTTPResp then — Encrypted HTTP response
19:  let m' := decs(m,key)

20: if m'.nonce # request.nonce then

21: stop

22: remove (reference,request,key, f) from s’.pendingRequests

23: call PROCESS_HTTPS_RESPONSE(n?, reference, request, key, a, f, s')
24: stop

25: else if m = TRIGGER then = — Process was triggered
26: call PROCESS_TRIGGER(s')

27: stop
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APPENDIX I
FAPI MODEL

In the following, we will give the formal application-specific model of the participants of the FAPI, i.e., the clients,
authorization servers and resource servers. Then, building upon these models, we will give the definition of a FAPI web system
with a network attacker.

A. Clients

Similar to Section H of Appendix F of [44], a client ¢ € C is a web server modeled as an atomic DY process (I,Z¢,R¢, s)
with the addresses I¢ := addr(c).

Definition 4. A state s € Z¢ of client ¢ is a term of the form (DNSaddress, pendingDNS, pendingRequests, corrupt,
keyMapping, tlskeys, sessions, issuerCache, oidcConfigCache, jwksCache, clientCredentialsCache, oautbEKM, authReqSigKey,
tokenBindings) with DNSaddress € |Ps, pendingDNS € [9\[ X TN] , pendingRequests € [57\[ X ‘Z}d , corrupt € Ty, keyMapping €
[Doms x Ty], tlskeys € [Doms x Krs] (all former components as in Definition 3), sessions € [N x Ty, issuerCache €
[TN X TN] , oidcConfigCache € [TN X ‘Tg\d , jwksCache € [TN X Tﬁ?\[] , clientCredentialsCache € [TN X TN] , oautbEKM € TN’
authReqSigKey € N\ and tokenBindings € [Doms x A(].

An initial state s of c is a state of ¢ with s§.pendingDNS = (), s{.pendingRequests = (), s{.corrupt = L, si.keyMapping
being the same as the keymapping for browsers, s§.t1skeys = tlskeys®, s.sessions = () and s{.oautbEKM = ().

We require the initial state to contain preconfigured values for sj.issuerCache (mapping from identities to domains of
the corresponding authorization server), sg.oidcConfigCache (authorization endpoint and token endpoint for each domain of
an authorization server) and s(.jwksCache (mapping from issuers to the public key used to validate their signatures). More
precisely, we require that for all authorization servers as and all domains dom,s € dom(as) it holds true that

si.0idcConfigCache[dom,|[token_ep| = (URL,S,dom.,, /token, (), {)) “4)
s{.oidcConfigCache[dom,|[auth_ep] = (URL,S,dom.,, /auth, (), ()) Q)
$o-jwksCache[dom,s) = pub(sg’.jwk) (6)
so-issuerCache[id] € dom(as) < id € ID?, (7)

for dom|,; € dom(as). These properties hold true if OIDC Discovery [51] and Dynamic Client Registration [52] are used, as
already shown in Lemmas 1 to 4 of [44].

Furthermore, s{j.0oidcConfigCache[issuer][resource_servers| = s§j’.resource_servers shall contain the domains of all
resource servers that the authorization server issuer supports.

For signing authorization requests, we require that sj.authReqSigKey contains a key that is only known to c.

For each identity id € ID* governed by authorization server as, the credentials of the client are stored in
si.clientCredentialsCache[s{.issuerCachelid]], which shall be equal to s§’.clients|clientld], where clientld is the client
id that was issued to c¢ by as.

For OAuth 2.0 Token Binding, we require that s§.tokenBindings|d| contains a different nonce for each d € Doms.

The relation R is based on the model of generic HTTPS servers (see Section H). The algorithms that differ from or do
not exist in the generic server model are defined in Algorithms 12-20. Table II shows a list of all placeholders used in these
algorithms.

The scripts that are used by the clients are described in Algorithms 22 and 23. As in [44], the current URL of a document
is extracted by using the function GETURL(tree,docnonce), which searches for the document with the identifier docnonce in
the (cleaned) tree tree of the browser’s windows and documents. It then returns the URL u of that document. If no document
with nonce docnonce is found in the tree tree, < is returned.

Furthermore, we require that leak € IPs is an arbitrary IP address. By sending messages to this address, we model the leakage
of tokens or messages, as this address can be the address of an attacker.

Description

In the following, we will describe the basic functionality of the algorithms, focusing on the main differences to the algorithms
used in [44].

o Algorithm 12 handles incoming requests. The browser can request a nonce for OAUTB in the OAUTB-prepare path. The
redirection endpoint requires and checks the corresponding OAUTB header if the client is a web server client using OAUTB.
In case of a read-write client, the authorization response contains an id token, which the client checks in Algorithm 19
before continuing the flow.

« Algorithm 13 handles responses. If the client is a read-write client, it checks the second id token contained in the token
request before continuing the flow. Furthermore, when using mTLS or OAUTB, the client processes the initial response
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[ Placeholder | Usage |

Vi new login session id

\ new HTTP request nonce
V3 new HTTP request nonce
V4 new service session id

Vs new HTTP request nonce
Ve new state value

\% new nonce value

Vg new nonce for OAUTB
Vg new PKCE verifier

Vio new HTTP request nonce
Vi1 new HTTP request nonce

Table II: List of placeholders used in the client algorithm.

needed for the actual request that contains either the decrypted mTLS nonce or a signed EKM value. When receiving
a resource access nonce, the web server client sends the nonce to the process that sent the request to the redirection
endpoint.

Algorithm 14 starts a new login flow. The client prepares the authorization request, which is redirected by the browser.
The request differs depending on the client type and whether the client is an app client or a web server client. In all cases,
it creates a signed request JWS for preventing the attack described in Section I'V-C. Furthermore, the request leaks at this
point, modeling leaking browser logs. The resource server used at the end of the flow is chosen from the set of resource
servers provided by the authorization server.

Algorithms 15 and 16 handle the token request. If the client uses mTLS or OAUTB, it sends an initial request with
Algorithm 15. For modeling a misconfigured token endpoint, the read-write client may choose between the preconfigured
token endpoint or an arbitrary URL.

The request to the resource server is made similarly in Algorithms 17 and 18.

Algorithm 19 checks the first id token and continues the flow, whereas Algorithm 20 uses the id token for logging in the
identity.

Algorithm 12 Relation of a Client R — Processing HTTPS Requests

1:

B

function PROCESS_HTTPS_REQUEST(m, k, a, f,s’) — Process an incoming HTTPS request. Other message types are handled
in separate functions. m is the incoming message, k is the encryption key for the response, a is the receiver, f the sender of the message.
s" is the current state of the atomic DY process c.
if m.path=/ then — Serve index page.

let headers := [ReferrerPolicy:origin] — Set the Referrer Policy for the index page of the client.

let m' := encs((HTTPResp, m.nonce,200, headers, (script_client_index,())),k)

— Send script_client_index in HTTP response.

stop ((f,a,m')), s'

else if m.path = /startLogin Am.method = POST then — Serve the request to start a new login.

if m.headers|[Origin] # (m.host,S) then

stop  — Check the Origin header for CSRF protection.
let id := m.body
let sessionld := vi — Session id is a freshly chosen nonce.
let s'.sessions[sessionld] := [startRequest:[message:m, key:k,receiver:a, sender:f],

< identity:id] — Create new session record.

call START_LOGIN_FLOW(sessionld, s') ~ — Call the function that starts a login flow.

else if m.path = /0AUTB-prepare then — For OAUTB between the user-agent and the client
let headers := [ReferrerPolicy:origin]
let tbNonce = vg
let s".0autbEKM := s'.0autbEKM +{ hash((m.nonce, bNonce, keyMapping[m.host]))
let m’ := encs((HTTPResp,m.nonce,200, headers, [tbNonce:tbNoncel), k)

stop ((f.a,m')), s'
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21:
22:
23:
24
25:
26:
27:

28:
29:
30:

31:
32:
33:
34
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:

49:
50:
51:
52:
53:
54:
55:
56:
57:

58:
59:
60:
61:
62:
63:

64:

else if m.path = /redirect_epthen — User is being redirected after authentication to the AS.
let sessionld := m.headers|[Cookie][(__Secure,sessionId)|[value]
if sessionld ¢ s’ .sessions then
stop
let session := s'.sessions|sessionld] — Retrieve session data.
if (S,m.host,m.path,m.parameters, L) # session[redirectUri| then
stop — Check if response was received at the right redirect uri.

let issuer := s’ .issuerCache[session[identity]] — Mappings from identites to issuers.
let credentials := s’.clientCredentialsCachelissuer]
let responseType := session[response_type]
— Determines the flow to use, e.g., code id_token for an OIDC hybrid flow.
if responseType € {(code), (JARM_code)} then — Authorization code mode: Take data from URL parameters.
let data := m.parameters
else — Hybrid mode: Send script_client_get_ fragment to browser to retrieve data from URL fragment
if m.method = GET then
let headers := ((ReferrerPolicy,origin))
let m' := encs((HTTPResp, m.nonce,200, headers, (script_client_get_fragment, L)) k)
stop ({f,a,m"), s
else — POST request: script script_client_get_fragment is sending the data from URL fragment.
let data := m.body
if credentials|profile| = rw A credentials[client_type| = conf_0AUTB A credentials[is_app] = L then
— Check Provided TB-ID (for PKCE)
if Sec-Token-Binding ¢ m.headers then
stop
let ekminfo <+ s'.oautbEKM
let TB_Msg_provided := m.headers[Sec-Token-Binding][prov]
let TB_provided_pub := TB_Msg_provided|id]
let TB_provided_sig := TB_Msg_provided[sig]
if checksig(TB_provided_sig, TB_provided_pub) £ T
< Vextractmsg(TB_provided_sig) # ekmInfo then
stop
let s'.session[browserTBID| := TB_provided_pub
let s".cautbEKM := s'.0oautbEKM — ekmlnfo
if data[state] # session[state| then
stop — Check state value.
if data[state] = L then
stop — state value is not valid.
let s'.sessions|sessionld][state] := L  — Invalidate state
let s'.sessions|sessionld|[redirectEpRequest] :=
< [message:m,key:k,receiver:a,sender:f,data:data] — Store incoming request for sending a
resource nonce or the service session
if credentialsprofile| =r then i
call PREPARE_TOKEN_REQUEST (sessionld, data[code], s')
else if responseType = (code,id_token) then — Check id token
call CHECK_FIRST_ID_TOKEN(sessionld, data[id_token], data[code], s')
else — JARM: Check Response JWS
call CHECK_RESPONSE_JWS(sessionld, data[responseJWs], data[code], s')

stop
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Algorithm 13 Relation of a Client R — Processing HTTPS Responses
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function PROCESS HTTPS_RESPONSE(m, reference, request, key, a, f, s")

let session := s'.sessions[reference[session]]
let sessionld := reference[session]
let id := session[identity]
let issuer := s'.issuerCachelid]
let profile := s'.clientCredentialsCache[issuer|[profile]
let isApp := s'.clientCredentialsCachelissuer][is_app]
let clientld := s'.clientCredentialsCache[issuer|[client_id]
if reference[responseTo] = TOKEN then
if session[scope] = () Aprofile = r then
let useAccessTokenNow := T
else if session|[scope| = (openid) A profile = r then
let useAccessTokenNow < {T,L}
else if profile = rw A session[response_type| = (code,id_token) then — OIDC Hybrid Flow
let firstldToken := session[redirectEpRequest][datal[id_token]
if checksig(m.body[id_token|,s’.jwksCachelissuer]) Z T then
stop — Check the signature of the id token.
if extractmsg(m.body[id_token])[sub] # extractmsg(firstldToken)[sub] then
stop — Check if sub is the same as in the first id token ([OIDC], 3.3.3.6).
if extractmsg(m.body[id_token])[iss] # extractmsg(firstldToken)[iss] then
stop — Check if iss is the same as in the first id token ([OIDC], 3.3.3.6).
if extractmsg(m.body[id_token])[iss] # issuer then
stop — Check the issuer.
if extractmsg(m.body[id_token])[at_hash| # hash(m.body[access_token]|) then

stop — Check at_hash of second id token (protection against reuse of phised access token).

if extractmsg(m.body[id_token])[aud] # clientld then
stop — Check aud of second id token.

let s'.sessions|reference[session|][idt2_iss| := extractmsg(m.body[id_token])[iss]
let useAccessTokenNow «+ {T,L1}
else if profile = rw A session|response_type| = (JARM_code) then — Code flow (JARM)

let requestJWS := session[redirectEpRequest]|[datal[responseJWS]
if extractmsg(requestJWS)[at_hash] # hash(m.body[access_token]) then

stop — Check at_hash of request/IWS (protection against reuse of phised access token).
if session[scope| = () then

let useAccessTokenNow = T
else

let useAccessTokenNow <+ {T,L}

if useAccessTokenNow = T then
call PREPARE_USE_ACCESS_TOKEN(reference[session|, m.body[access_token], s)

call CHECK_ID_TOKEN(reference[session], m.body[id_token], s)
else if reference[responseTo] = MTLS_AS then
let code := s'.sessions[sessionld][code]
if Imgec, k', dom such that mge. = dec,(m.body,k’) A (dom,k') € s'.t1skeys then
let mtlsNonce, pubKey such that (mtlsNonce,pubKey) = mge. if possible; otherwise stop

if pubKey € keyMapping(request.host) then — Send nonce only to the process that created it
call SEND_TOKEN_REQUEST (sessionld, code, [type : MTLS,mt1s_nonce:milsNonce], s')
else
stop
else if reference[responseTo] = OAUTB_AS then
let code := s'.sessions|sessionld][code]
let ek := hash({m.nonce,m.body[tb_nonce|, keyMapping|request.host]))
— Include public key to model Extended Master Secret
call SEND_TOKEN_REQUEST (sessionld, code, [type : 0AUTB, ekm:ekm], 5')
else if reference[responseTo| = MTLS_RS then
let token := s'.sessions[sessionld|[token]
if Imgec, k', dom such that mge. = dec,(m.body,k’) A (dom,k') € s'.t1skeys then
let mtlsNonce, pubKey such that (mtisNonce,pubKey) = mge. if possible; otherwise stop
if pubKey € keyMapping(request.host) then — Send nonce only to the process that created it
call USE_ACCESS_TOKEN(sessionld, token, [type : MTLS,mt1s_nonce:mtlsNonce], s)
else
stop
else if reference[responseTo] = OAUTB_RS then
let token := s'.sessions[sessionld|[token]
let ekm := hash((m.nonce, m.body[tb_nonce]|,keyMapping|request.host]))
call USE_ACCESS_TOKEN(sessionld, token, [type : OAUTB, ekm:ekm], s)
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66: else if reference[responseTo] = RESOURCE_USAGE then

67: let resource := m.body[resource]

68: let s'.sessions[sessionld][resource| := resource

69: let request := session[redirectEpRequest] — Retrieve stored meta data of the request from the browser to
the redir. endpoint stored in Algorithm 12.

70: if isApp = 1 then — Send resource access nonce to browser

71: let headers = [ReferrerPolicy:origin]

72: let m' := encs((HTTPResp7request[message] nonce, 200, headers, resource), requestkey)

73: stop ((request[sender], request[receiver]|,m’)), s’

74: else — isApp=T

75: stop s’

Algorithm 14 Relation of a Client R — Starting the login flow.

1: function START_ LOGIN _FLOW(sessionld, s')

2 let session := s'.sessions[sessionld)

3 let identity := session[identity]

4:  let issuer := s'.issuerCache[identity]

5: let oidcConfig := s'.oidcConfigCachel[issuer]

6: let authEndpoint := oidcConfig[auth_ep]

7 let redirectUris := oidcConfig[redirect_uris] — Set of redirect URIs for the AS.
8 let resourceServer < oidcConfig[resource_servers] — Choose resource server

9: let s'.sessions|sessionld] := s'.sessions|sessionld) U [RS:resourceServer]
10: let credentials := s'.clientCredentialsCachelissuer]

11: let headers := [ReferrerPolicy:origin]

12: let headers[Set-Cookie] := [sessionId:(sessionld, T, T,T)]

13: let profile := credentials[profile] — either r or rw

14: let isApp := credentials[is_app] — either T or L
15: let clientType := credentialsclient_type] — pub, conf_JWS, conf MTLS or conf OAUTB
16: if profile = r then

17: let responseType := (code)

18: else

19: let responseType <+ {(code,id_token), (JARM code)}

20: let redirectUri < redirectUris ~— Auth. response must be received here.

21: let s'.sessions|sessionld] := s'.sessions[sessionld]U[redirect_uri:redirectUri

22: let scope + {(), (openid)}
23: if scope = (openid) V (profile = rw A responseType = (code,id_token)) then — Nonce for obtaining an id token.

24: let nonce := vy

25: else

26: let nonce := ()

27: if profile = r then

28: let pkceVerifier := vy

29: let pkceChallenge := hash(pkceVerifier)

30: let s'.sessions|sessionld] := s'.sessions[sessionld] U [pkce_verifier:pkceVerifier]

31: else if (clientType = pub) V (clientType = conf_0AUTBAisApp = T) then — OAUTB (app client)
32: let 7B-Id := pub(s’.tokenBindings[authEndpoint.host))

33: let pkceChallenge := hash(TB-Id)

34: else if clientType = conf_OAUTB then — web server client

35: let pkceChallenge := referred_tb

36: let headers[Include-Referred-Token-Binding-ID] := T

37: else — rw + conf MTLS

38: let pkceChallenge := ()

39: let data := [response_type:responseType,redirect_uri:redirectUri,client_id:credentials[client_id],

< scope:scope,nonce:nonce,pkce_challenge:pkceChallenge,state:Vg)
40: let request/WT := dataU [aud:authEndpoint.host]

41: let requestJWS := sig(requestJWT,s'.authReqSigKey)

42: let data[request_jws| := request/WS

43: let s'.sessions|sessionld] := s'.sessions|sessionld)Udata
44: let authEndpoint.parameters := data

45: let headers|Location| := authEndpoint

46: let request := s'.sessions[sessionld][startRequest]

47: let m’ := encs((HTTPResp, request[message].nonce, 303, headers, 1), requestkey])
48: let mjeq; := (LEAK,authEndpoint)

49: stop ({leak,request[receiver|,mj., ), (request[sender|, request[receiver]|,m’)), s’
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Algorithm 15 Relation of a Client R — Prepare request to token endpoint.

1: function PREPARE _TOKEN_REQUEST (sessionld, code, s")
2: let session := s'.sessions[sessionld)

3 let identity := session[identity]

4 let issuer := s'.issuerCachelidentity]

5: let credentials := s'.clientCredentialsCachelissuer]

6: let clientld := credentials|client_id|

7 let clientType := credentials[client_type]

8: let profile := credentials[profile]

9: if profile = rw then

10: let misconfiguredTEp < {T,L1}

11: else

12: let misconfiguredTEp = L

13: let s’.sessions[sessionId|[misconfiguredTEp| := misconfiguredTEp

14: if misconfiguredTEp =T then — Choose wrong token endpoint.

15: let host < Doms

16: let path < S

17: let parameters + [S x S]

18: let url := (URL, S, host,path, parameters, 1)

19: let s'.sessions[sessionld][token_ep| := url

20: else

21: let url := s’.oidcConfigCachelissuer|[token_ep]

22: let s’.sessions[sessionId|[code] := code

23: if profile=r then — Send token request

24: if clientType = pub V clientType = conf_JWS then

25: call SEND_TOKEN_REQUEST (sessionld, code, (), s')

26: if clientType = conf_MTLS then  — both profiles

27: let body := [client_id:clientld)

28: let message := (HTTPReq, V|0, GET,url.domain, /MTLS-prepare, url.parameters, (), body)
29: call HTTPS_SIMPLE_SEND([responseTo:MTLS_AS, session:sessionld], message, s')
30: else — OAUTB

31: let message := (HTTPReq, V10, GET,url.domain, /0AUTB-prepare, url.parameters, (), ())
32: call HTTPS_SIMPLE_SEND([responseTo:0AUTB_AS, session:sessionld], message, s')
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Algorithm 16 Relation of a Client R — Request to token endpoint.
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function SEND _ TOKEN _REQUEST (sessionld, code, responseValue, s)

let session := s'.sessions[sessionld)
let identity := session[identity]
let issuer := s'.issuerCachelidentity]
if sessionmisconfiguredTEp| = T then
let url := session[token_ep]
else
let url := s'.0oidcConfigCachelissuer|[token_ep]

let credentials := s’.clientCredentialsCachelissuer]
let clientld := credentials[client_id]
let clientType := credentials[client_type]
let profile := credentials[profile]
let isApp := credentials[is_app]
let body := [grant_type:authorization_code,code:code,
— redirect_uri:session[redirect_uri],client_id:clientld]
if profile = r then
let body|pkce_verifier]| := session[pkce_verifier]
if profile = r A clientType = pub then
let message := (HTTPReq, V»,POST, url.domain,url.path,url.parameters, L, body)
call HTTPS_SIMPLE_SEND([responseTo:TOKEN, session:sessionld|, message, s')
else if profile = r A clientType = conf_JWS then
let clientSecret := credentials|client_secret]
let jwt := [iss:clientld,aud:url.domain]
let body|assertion] := mac(jwr,clientSecret)
let message := (HTTPReq, V»,POST, url.domain,url.path,url.parameters, L, body)
call HTTPS_SIMPLE_SEND([responseTo:TOKEN, session:sessionld|, message, s')
else if clientType = conf_MTLS then — both profiles
if responseValue[type] # MTLS then
stop
let body[TLS_AuthN] := responseValue[mt1ls_nonce]
let message := (HTTPReq, V»,POST, url.domain,url.path, url.parameters, L, body)
call HTTPS_SIMPLE_SEND([responseTo:TOKEN, session:sessionld)], message, s')
else — rw with OAUTB
if responseValue[type] # 0AUTB then
stop
let ekm := responseValue[ekm]
let TB_AS := s'.tokenBindings[url.host] — private key
let TB_RS := s'.tokenBindings|session[RS]] — private key
let TB_Msg_prov := [id:pub(TB_AS), sig:sig(ekm, TB_AS)]
let TB_Msg_ref := [id:pub(TB_RS),sig:sig(ekm,TB_RS))
let headers := [Sec-Token-Binding:[prov:TB_Msg_prov,ref:TB_Msg_ref]]
if clientType = conf_0AUTB then — client authentication
let clientSecret := credentials[client_secret]
let jwr := [iss:clientld,aud:url.domain, |
let body[assertion] := mac(jwr,clientSecret)

if isApp= 1 then — web server client: send TBID used by browser
let body[pkce_verifier| := session[browserTBID]

let message := (HTTPReq, V»,POST, url.domain,url.path, url.parameters, headers,body)

call HTTPS_SIMPLE_SEND([responseTo:TOKEN, session:sessionld)], message, s')
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Algorithm 17 Relation of a Client R — Prepare for using the access token.
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function PREPARE USE_ACCESS_TOKEN(sessionld, token, s')
let session := s'.sessions[sessionld)
let identity := session[identity]
let issuer := s'.issuerCachelidentity]
let credentials := s'.clientCredentialsCachelissuer]
let clientType := credentials|client_type]
let profile := credentials[profile]
let s’.sessions[sessionId|[token] := foken
let rsHost := session[RS]
if profile = r then
call USE_ACCESS_TOKEN(sessionld, token, (), s')
else if clientType = conf_MTLS then — rw + mTLS: AT is bound to client
let message := (HTTPReq, Vi1,GET, rsHost, /MTLS-prepare, L, |, body)
call HTTPS_SIMPLE_SEND([responseTo:MTLS_RS, session:sessionld], message, s')
else — OAUTB
let message := (HTTPReq, Vi1,GET, rsHost, /0AUTB-prepare, L, |, body)
call HTTPS_SIMPLE_SEND([responseTo:0AUTB_RS, session:sessionld], message, s')

Algorithm 18 Relation of a Client R — Using the access token.
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function USE_ ACCESS _TOKEN(sessionld, token, responseValue, s')
let session := s'.sessions[sessionld)
let identity := session[identity]
let issuer := s'.issuerCachelidentity]
let credentials := s'.clientCredentialsCachelissuer]
let clientType := credentials|client_type]
let profile := credentials[profile]
let headers := [Authorization: (Bearer,token)]
let body := [|
let rsHost := session[RS]
if profile = r then
let message := (HTTPReq, v3,GET, rsHost, /resource-r, (), headers,body)
call HTTPS_SIMPLE_SEND([responseTo:RESOURCE_USAGE, session:sessionld|, message, s')
else
if session[response_type|] = (code,id_token) then ~— OIDC Hybrid Flow
let body|at_iss| := session[idt2_iss] — Send issuer of second id token
else — JARM Code Flow
let body[at_iss] := session[JARM_iss| — Send issuer request JWS
if clientType = conf_MTLS then
if responseValue[type] # MTLS then
stop
let body[MTLS_AuthN] := responseValue[mtls_nonce]
else — OAUTB
if responseValue[type] # 0AUTB then
stop
let ekm := responseValue[ekm]
let TB_RS := s'.tokenBindings|rsHost]
let TB_Msg_prov := [id:pub(TB_RS),sig:sig(ekm,TB_RS)|
let headers[Sec-Token-Binding] := [prov:TB_Msg_prov]
let message := (HTTPReq, v3,POST, rsHost, /resource-rw, (), headers, body)
call HTTPS_SIMPLE_SEND([responseTo:RESOURCE_USAGE, session:sessionld|, message, s')
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Algorithm 19 Relation of a Client R — Check first ID token (without Login).
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function CHECK _ FIRST ID_TOKEN(sessionld, id_token, code, s') ~— Check id token validity.

let session := s'.sessions[sessionld)
let identity := session[identity]
let issuer := s'.issuerCachelidentity]
let oidcConfig := s'.oidcConfigCachelissuer]
let credentials := s'.clientCredentialsCachelissuer]
let jwks := s'.jwksCachel[issuer]
let data := extractmsg(id_token)
if data[s_hash] # hash(session[state]) then
stop — Check state hash.
if data[c_hash] # hash(code) then
stop — Check code hash.
if data[iss] # issuerV data[aud] # credentials[client_id] then
stop — Check the issuer and audience.
if checksig(id_token,jwks) £ T then
stop — Check the signature of the id token.

if data[nonce| # session[nonce| then
stop — Check nonce.

call PREPARE_TOKEN_REQUEST (sessionld, code, s')

Algorithm 20 Relation of a Client R — Check ID token.
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function CHECK _ ID _TOKEN(sessionld, id_token, s'") — Check id token and create service session.

let session := s'.sessions|[sessionld)

let identity := session[identity]

let issuer := s'.issuerCachelidentity]

let oidcConfig := s'.oidcConfigCachel[issuer]

let credentials := s'.clientCredentialsCachelissuer]

let jwks := s'.jwksCachelissuer]

let data := extractmsg(id_token)

if data[iss] # issuerV data[aud] # credentials[client_id] then
stop — Check the issuer and audience.

if checksig(id_token,jwks) £ T then
stop — Check the signature of the id token.

if data[nonce| # session[nonce| then
stop — Check nonce.

— User is now logged in. Store user identity and issuer.
let s'.sessions|sessionld][LoggedInAs| := (issuer,data[sub))
if credentials[is_app] = L then — Send service session id to browser
let s'.sessions|sessionld][serviceSessionld] := v4
let request := session[redirectEpRequest] — Send to sender of request to the redirection end-
point. The request’s meta data was stored in
PROCESS_HTTPS_REQUEST (Algorithm 12).
let headers := [ReferrerPolicy:origin]
— Create a cookie containing the service session id.
let headers[Set-Cookie] := [(__Secure,serviceSessionId):(vy, T,T,T)]
— Respond to browser’s request to the redirection endpoint.
let m' := encs((HTTPResp, requestmessage|.nonce,200, headers, ok), request[key])
stop ({request[sender], request[receiver],n’)), s’
else — app client
stop s’
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Algorithm 21 Relation of a Client R® — Check Response JWS.

1: function CHECK _ RESPONSE _JWS(sessionld, responseJWS, code, s'") — Check validity of response JWS.
2: let session := s'.sessions[sessionld)

3 let identity := session[identity]

4 let issuer := s'.issuerCachelidentity]

5: let oidcConfig := s'.oidcConfigCachelissuer]

6.

7

8

let credentials := s’.clientCredentialsCachelissuer]
let jwks := s'.jwksCache[issuer]
let data := extractmsg(responseJWS)

9: if data[state| # session[state| then

10: stop — Check state hash.

11: if data[code] # code then

12: stop — Check code.

13: if data[iss] # issuerV data[aud] # credentials[client_id] then
14: stop — Check the issuer and audience.

15: if checksig(responseJWS,jwks) Z T then

16: stop — Check the signature of the JWS.

17: let s'.sessions|sessionld][JARM iss| := data[iss]

18: call PREPARE_TOKEN_REQUEST (sessionld, code, s')

Algorithm 22 Relation of script_client_index

Input: (tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secrets) ~ — Script that models the index
page of a client. Users can initiate the login flow or follow arbitrary links. The script receives various information about the current
browser state, filtered according to the access rules (same origin policy and others) in the browser.

1: let switch < {auth,link} — Non-deterministically decide whether to start a login flow or to follow

2: if switch=auth then — Start l%)ogrirllle llll(?w

3: let url := GETURL(tree,docnonce)  — Retrieve own URL.

let id < ids — Retrieve one of user’s identities.

let url’ := (URL, S,url.host, /startLogin,(),()) — Assemble URL.

let command := (FORM,url' POST,id, 1)

— Post a form including the identity to the client.

7: stop (s,cookies,localStorage, sessionStorage,command) ~ — Finish script’s run and instruct
the browser to follow the com-
mand (follow post).

AN AN

8: else — Follow link.
9: let protocol + {P,S}  — Non-deterministically select protocol (HTTP or HTTPS).

10: let hiost <~ Doms  — Non-det. select host.

11: let path < S — Non-det. select path.

12: let fragment < S — Non-det. select fragment part.

13: let parameters <— [Sx S] — Non-det. select parameters.

14: let url := (URL, protocol, host,path, parameters, fragment) ~ — Assemble URL.

15: let command := (HREF,url, L, 1) — Follow link to the selected URL.

16: stop (s, cookies,localStorage, sessionStorage,command) ~ — Finish script’s run and instruct
the browser to follow the com-
mand (follow link).

Algorithm 23 Relation of script_c_get_fragment

Input: (free, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secrets)
1: let url := GETURL(tree,docnonce)

2: let url’ ;== (URL,S,url.host, /redirect_ep, (), ())

3: let command = (FORM,url’,POST,url.fragment,J.)

4: stop (s,cookies,localStorage, sessionStorage,command)
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B. Authorization Servers

Similar to Section I of Appendix F of [44], an authorization server as € AS is a web server modeled as an atomic process
(I1%,Z2%,R*,s§’) with the addresses I’ := addr(as).

Definition 5. A state s € Z* of an authorization server as is a term of the form (DNSaddress, pendingDNS, pendingRequests,
corrupt, keyMapping, tlskeys, clients (dict from nonces to terms), records (sequence of terms), jwk (signing key (only one)),
oautbEKM (sequence of terms), accessTokens (sequence of issued access tokens) ) with DNSaddress € |Ps, pendingDNS €
[9\[ X TN]’ pendingRequests € [9\[ X TN} , corrupt € Iy, keyMapping € [Doms X TN] , tiskeys € [Doms x Kt s] (all former
components as in Definition 3), clients € [9\[ X TN] , records € ‘IN, Jwk € Kign, oautbEKM € TN and accessTokens € Tﬂ\['

An initial state s§’ of as is a state of as with s{’.pendingDNS = (), s{’.pendingRequests = (), sj’.corrupt = L,
5§’ keyMapping being the same as the keymapping for browsers, si’.tlskeys = flskeys®, s§'.records = (), s§’.juk =
signkey (as), s{.oautbEKM = () and s{’.accessTokens = ().

We require si*.clients|clientld] to be preconfigured and to contain information about the client with client id clientld
regarding the profile (r or rw, accessible via the key profile), the type of the client (pub, conf_JWS,conf MTLS or
conf_0AUTB, accessible via client_type), the client secret (if the client type is conf_JWS or conf_OAUTB, accessible
via client_secret) and whether the client is an app client or a web server client (either T or L, accessible via is_app).

For checking the signature of signed request JWTs, we require that s{’.clients|clientld][jws_key] =
pub(s§.authReqSigKey).

The resource servers that are supported by the authorization server shall be contained in s§’.resource_servers C dom(RS).
For the corresponding resource servers rs, we require that s¢’.authServ € dom(as).

The relation R* is based on the model of generic HTTPS servers (see Section H). Algorithm 24 specifies the algorithm
responsible for processing HTTPS requests. The script script_as_form is defined in Algorithm 25

Furthermore, we require that leak € IPs is an arbitrary IP address.

Table III shows a list of all placeholders used in the algorithms of the authorization server.

[ Placeholder | Usage |
Vi new authorization code
vy new access token
V3 nonce for mTLS
V4 nonce for OAUTB

Table III: List of placeholders used in the authorization server algorithm.

Differences to [44]: In the /auth2 path, the authorization server requires a signed request JWS in all cases to prevent the
attack described in Section IV-C. The authorization server also checks and handles the OAUTB message send by the browser
if the client is a confidential client using OAUTB. The authorization response always contains an authorization code. It also
contains an id token if the client is a read-write client. The leakage of the authorization response is modeled by sending the
response to an arbitrary IP address in case of an app client.

The /token path handles the token request. In case of a read-write client, the access token is bound to the client either via
mTLS or OAUTB. To model the leakage of an access token due to phishing, the authorization server sends the access token
to an arbitrary IP address in case of a read-write client.

The /MTLS-prepare and /OAUTB-prepare paths send the initial response needed for mTLS and OAUTB.

Remarks: To model mTLS, the authorization server sends an encrypted nonce to the client. The client decrypts the message
and includes the nonce in the actual request. This way, the client proves possession of the corresponding key.

As we do not model public key infrastructures, the client does not send a certificate to the authorization server (as specified
in Section 7.4.6 of [47]). In general, the model uses the function keyMapping, which maps domains to the public key that
would be contained in the certificate.

We require that the authorization server has a mapping from client ids to the corresponding public keys in
53’ .clients|clientld][mt1s_key] (only if the client type is conf_MTLS), with the value keyMapping|dom.| with dom. € dom(c).

As explained in Section F-C, we do not model access tokens being issued from the authorization endpoint.
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Algorithm 24 Relation of AS R* — Processing HTTPS Requests

function PROCESS_HTTPS_REQUEST(m, k, a, f, s')
if m.path = /auth then
if m.method = GET then
let data := m.parameters

stop ((f.a,m')), s'

else if m.path = /auth2 Am.method = POST Am.headers|[Origin| = (m.host,S) then
9: let identity := m.body[identity]

1:
2
3
4
5: let m’ := encs((HTTPResp,m.nonce,200, ((ReferrerPolicy,origin)), (script_as_form,data)),k)
6
7
8

10: let password := m.body[password]

11: if identity.domain ¢ dom(as) then

12: stop

13: if password # secretOfID (identity) then

14: stop

15: let clientld := m.body[client_id]

16: if clientld ¢ s'.clients then

17: stop

18: let clientlnfo := s'.clients|clientld)

19: let profile := clientlnfolprofile]

20: let clientType := clientlnfo[client_type]

21: let isApp := clientInfo[is_app]

22: if request_jws € m.body then = — Request must be as JWS
23: let requestJWS := m.body[request_jus]

24: if checksig(requestJWS, clientInfo[jus_key]) Z T then
25: stop — wrong signature

26: let requestData = extractmsg(requestJWS)

27: if requestDatalaud] # m.host then

28: stop — wrong audience

29: if requestData[client_id] # clientld then

30: stop — clientld not the same as in body

31: else

32 stop

33: if profile = rw A clientType = conf_0AUTB A isApp = | then  — Check both Token Binding messages
34: if Sec-Token-Binding ¢ m.headers then

35: stop

36: let ekmlInfo + s'.oautbEKM

37: let TB_Msg_provided := m.headers[Sec-Token-Binding][prov]
38: let TB_Msg_referred :== m.headers[Sec-Token-Binding][ref]
39: let TB_provided_pub := TB_Msg_provided[id]

40: let TB_provided_sig := TB_Msg_provided[sig]

41: let TB_referred_pub := TB_Msg_referred[id]

42: let TB_referred_sig := TB_Msg_referred[sig]

43: if checksig(TB_provided_sig, TB_provided_pub) £ T then
44: stop

45: if extractmsg(TB_provided_sig) # ekminfo then

46: stop

47: if checksig(TB_referred_sig, TB_referred_pub) # T then
48: stop

49: if extractmsg(TB_referred_sig) # ekminfo then

50: stop

51: let s".cautbEKM := s’'.0oautbEKM — ekmlnfo

52: let responseType = requestData|response_type]

53: let redirectUri := requestData[redirect_uri]

54: let state := requestData]state]

55: let nonce := requestData[nonce]

56: if state = () then

57: stop — state must be included

58: if redirectUri @0 clientlnfolredirect_uris| then

59: stop

60: let record := [client_id: clientld] ~— Save data in record
61: let record[redirect_uri] := redirectUri

62: let record[subject| := identity

63: let record[issuer| := m.host
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64: let record[nonce] := nonce

65: let record[scope] := requestData]scope]
66: let record[response_type| := responseType
67: let record|code] := v,
68: let record[access_token| := v, — Access token for token request
69: if profile = r V clientType = pub V (clientType = conf_0AUTB A isApp = T) then — Save PKCE challenge (unless
in rw profile with mTLS)
70: let record[pkce_challenge] := requestData[pkce_challenge]
71: else if clientType = conf_0OAUTB AisApp = L then
72: let record|pkce_challenge| := TB_referred_pub
73: let s'.records := s'.records +{ record
74: let responseData := [code:v]] — Always send code
75: if (profile = rw A responseType & {{code,id_token), (JARM_code)}) V (profile = r A responseType % {(code)) then
76: stop
77: if responseType = (JARM_code) then
78: let responseJWT := [iss : record[issuer]|,aud : record[client_id],code:record[code],
<> at_hash:hash(record[access_token)),state:stare]
79: let responseData|responseJWS| := sig(responseJWT,s'.juk)
80: if id_token € responseType then
81: let idTokenBody := [iss : record[issuer]|, sub : record[subject],

< aud: record[client_id],nonce : record[nonce],
<> c_hash:hash(record[code]),s_hash:hash(state)]

82: let responseData[id_token] := sig(idTokenBody,s'.jwk)
83: let responseData[state] := state
84: if responseType € {(code), (JARM_code)} then — Authorization code mode
85: let redirectUri.parameters := redirectUri.parameters U responseData
86: else — Hybrid Mode
87: let redirectUri.fragment := redirectUri.fragment U responseData
88: let m' := ence((HTTPResp, m.nonce,303, {(Location, redirectUri)), ()),k)
89: if clientInfo[is_app| = T then — Leakage of authorization response
90: stop {((leak,a, (LEAK, clientld, (Location, redirectUri))),(f,a,m’)), s’
91: else — is app=_
92: stop ((f,a,m’)), s’
93: else if m.path = /token A m.method = POST then
94: let clientld := m.body[client_id)]
95: let code := m.body[code]
96: let record, ptr such that record = s'.records.ptr A record|code] = code
<~ Acode # L if possible; otherwise stop
97: if record[client_id] # clientld then
98: stop
99: let clientInfo := s'.clients|clientld)
100: let profile := clientInfo[profile]
101: let clientType := clientInfo[client_type]
102: if profile = rw A (clientType = pub V clientType = conf_0AUTB) then — Check both  Token
Binding messages
103: let ekminfo < s'.oautbEKM
104: let TB_Msg_provided := m.headers[Sec-Token-Binding][prov]
105: let TB_provided_pub := TB_Msg_provided[id]
106: let TB_provided_sig := TB_Msg_provided[sig]
107: if checksig(TB_provided_sig, TB_provided_pub) # T
< Vextractmsg(TB_provided_sig) # ekminfo then
108: stop — Wrong signature or ekm value
109: let TB_Msg_referred := m.headers|[Sec-Token-Binding][ref]
110: let TB_referred_pub := TB_Msg_referred|id]
111: let TB_referred_sig := TB_Msg_referred[sig]
112: if checksig(TB_referred_sig, TB_referred_pub) = T
< Vextractmsg(TB_referred_sig) # ekminfo then
113: stop — Wrong signature or ekm value
114: let s".oautbEKM := s'.0oautbEKM — ekmlnfo
115: if clientType = conf_JWSV clientType = conf_OAUTB then = — Check JWS
116: let clientSecret := clientlnfo[client_secret]
117: if checkmac(m.body[assertion],clientSecret) Z T then
118: stop — Invalid MAC
119: let assertion := extractmsg(m.body[assertion|)
120: if assertion[aud] # m.host V assertion[iss] # clientld then
121: stop  — Invalid audience or clientld
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123:
124:
125:

126:

127:
128:
129:
130:
131:
132:
133:
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135:
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137:

138:
139:
140:
141:
142:

143:
144:

145:
146:

147:
148:
149:
150:
151:
152:
153:
154:
155:
156:

157:
158:
159:
160:

161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:

else if clientType = conf_MTLS then
let mitlsInfo < s'.mtlsRequests|clientld)
if mtlsInfo.1 # m.body[TLS_AuthN] then
stop
let s’ mt1sRequests|clientld] := s' mt1sRequests|clientld] — mtlsInfo
if profile = r then
if hash(m.body[pkce_verifier]) # record|pkce_challenge] then
stop
else if profile = rw A clientType = conf_0AUTB A isApp = L then
if m.body[pkce_verifier| # record[pkce_challenge| then — Sec. 5.2 of [OAUTB]
stop
else if profile = rw A (clientType = pub V (clientType = conf_0AUTB AisApp = T)) then
if hash(TB_provided_pub) # record[pkce_challenge] then — Sec. 5.1 of [OAUTB]
stop
if not (record[redirect_uri] = m.body[redirect_uri]V
< (|clientInfo[redirect_uris]| = 1 Aredirect_uri ¢ m.body)) then
stop  — If only one redirect URI is registered, it can be omitted.
let s’.records.ptr[code] := L  — Invalidate code
let accessToken := record[access_token)]
if profile =rw then = — Create token binding
if clientType = conf_MTLS then
let s'.accessTokens := s".accessTokens+
< (MTLS, record[subject], clientld,accessToken, mtlslnfo.2, w)
else — OAUTB
let s'.accessTokens := s".accessTokens+")
< (0OAUTB, record[subject],clientld,accessToken, TB_referred_pub,rw)

else
let s'.accessTokens := s’.accessTokens -+ (record[subject],clientld,accessToken,r)

if openid €' record[scope] V (record[response_type| = (code,id_token)) then — return id token
let idTokenBody := [iss : record[issuer]]
let idTokenBody[sub] := record[subject]
let idTokenBody[aud] := record[client_id]
let idTokenBody[nonce] := record[nonce]
let idTokenBody[at_hash] := hash(accessToken) = — Mitigate reuse of phished AT
let idToken := sig(idTokenBody,s'.jwk)
let m’ := enc((HTTPResp, m.nonce, 200, (), [access_token:accessToken,id_token:idToken)),k)
else
let m’ := enc((HTTPResp, m.nonce, 200, (), [access_token:accessToken)), k)
if profile = rw then
stop ((leak,a, (LEAK, clientld,accessToken)), (f,a,m’)), s — Leakage of access token
else — profile=r
stop ((f,a,m')), s'

else if m.path = /MTLS-prepare then

let clientld := m.body[client_id]

let mtlsNonce := vz

let clientKey := s'.clients|clientId|[mtls_key]

let s’ mt1sRequests|clientld] := s’ mt1sRequests|clientld] +) (milsNonce, clientKey)

let m’ := encs((HTTPResp,m.nonce, 200, (), enc, ((mtlsNonce, keyMapping(m.host)), clientKey)), k)

stop ((f,a,m')), s'

else if m.path = /0AUTB-prepare then

let tbNonce := vy

let '.0autbEKM := s'.0autbEKM +{ hash((m.nonce, bNonce, keyMapping[m.host]))
— Own public key is needed for modeling Extended Master Secret

let m’ := encs((HTTPResp,m.nonce, 200, (), [tb_nonce:thNoncel), k)

stop ((f,a,m"), 5
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Algorithm 25 Relation of script_as_form

Input: (free, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secrets)
1: let url := GETURL(tree,docnonce)

: let url’ := (URL,S,urlhost, /auth2, (), ())

. let formData = scriptstate

. let identity <+ ids

: let secret < secrets

. let formData[identity] := identity

. let formData|password] := secret

. let command := (FORM, url’,POST, formData, 1)

: stop (s, cookies,localStorage, sessionStorage,command)

O 00 1 O\ W BN
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C. Resource Servers

A resource server rs € RS is a web server modeled as an atomic process (I"*,Z",R™,si’) with the addresses /" := addr(rs).
The set of states Z™ and the initial state si of rs are defined in the following.

Definition 6. A state s € Z" of a resource server rs is a term of the form (DNSaddress, pendingDNS, pendingRequests, corrupt,
keyMapping, tlskeys, mtlsRequests (sequence of terms), oautbEKM (sequence of terms), rNonce (dict from ID to sequence of
nonces), wNonce (dict from ID to sequence of nonces), ids (sequence of ids), authServ (domain)) with DNSaddress € Ps,
pendingDNS € [N x Ty|, pendingRequests € [N x Ty¢|, corrupt € Ty, keyMapping € [Doms x Ty |, tlskeys € [Doms x K]
(all former components as in Definition 3), mtisRequests € Ty, oautbEKM &€ Ty, rNonce € [ID x N;], wNonce € [ID x Ny],
ids C ID and authServ € Doms.

An initial state sy of rs is a state of rs with s;.pendingDNS = (), s .pendingRequests = (), s;.corrupt =
1, s; keyMapping being the same as the keymapping for browsers, s;’.tlskeys = tiskeys”™, s; .mtlsRequests = (),
s;.0autbEKM = (), s(’.ids being the sequence of identities for which the resource server manages resources, s;’.rNonce
and s;’.wNonce being the set of nonces representing read and write access to resources, where each set contains an infinite
sequence of nonces for each id € si’.ids, s’ .authServ being the domain of the authorization server that the resource server
supports.

The relation R™ is again based on the generic HTTPS server model (see Section H), for which the algorithm used for
processing HTTP requests is defined in Algorithm 26.
Table IV shows a list of placeholders used in the resource server algorithm.

[ Placeholder | Usage |
Vi new nonce for mTLS
\%) new nonce for OAUTB

Table IV: List of placeholders used in the resource server algorithm.

Description and Remarks: A resource server has two paths for requesting access to resources, depending on the profile used
in the authorization process. To simplify the protected resource access, we use two disjunct set of nonces, where the set rNonce
represents read access to a resource, and the set wNonce represents write access.

As before, there are paths for requesting nonces required for mTLS and OAUTB, as access tokens are bound to read-write
clients.

For checking the token binding of an access token when using mTLS, the nonce chosen by the resource server is encrypted
with a public key sent by the client. In contrast to an authorization server, a resource server is not required to check the validity
of certificates (e.g., by checking the certificate chain), as this was already done by the authorization server that created the
bound access token (Section 4.2 of [32]).

Furthermore, we require that Vid € si’.ids : governor(id) = s; -authServ, i.e., the resource server contains only resources
of identities that are governed by the authorization server s;'.authServ.
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Algorithm 26 Relation of RS R'® — Processing HTTPS Requests

1: function PROCESS_HTTPS_REQUEST(m, &, a, f, s")

2 if m.path = /MTLS-prepare then

3 let mtlsNonce := v

4: let clientKey := m.body[pub_key] — Certificate is not required to be checked [32, Section 4.2]
5 let s’.mt1sRequests := s’ .mt1sRequests +0 (mtlsNonce, clientKey)

6: let m’ := encs((HTTPResp, m.nonce, 200, (), enc, ((milsNonce, keyMapping(m.host)), clientKey)), k)
7
8

stop ((f.a,m')), s'

9: else if m.path = /0AUTB-prepare then

10: let tbNonce := v,
11: let s".0autbEKM := s'.0autbEKM +{ hash((m.nonce, bNonce, keyMapping[m.host]))
12: let m’ := encs((HTTPResp, m.nonce, 200, (), [tb_nonce:thNoncel), k)
13: stop ((f,a,m’)), s’
14:
15: else if m.path = /resource-r then
16: let id € s'.ids such that check_read_AT (id,m.header|Authorization],s .authServ) = T
—  if possible; otherwise stop
17: let resource < s'.rNoncelid]
18: let m’ := encs((HTTPResp, m.nonce, 200, (), [resource:resource]), k)
19: stop ((f,a,m')), s’
20:
21: else if m.path = /resource-rw then
22: if at_iss ¢ m.body then
23: stop
24: if m.body[at_iss] # s’.authServ then
25: stop
26: if MTLS_AuthN € m.body then
27: let mtlsInfo such that milsinfo €' s’ mt1sRequests
< AmtlsInfo.l = m.body[MTLS_AuthN] if possible; otherwise stop
28: let s'.mt1sRequests := s'.mtlsRequests —mtlsinfo
29: let id € s'.ids such that check_mtls_AT (id, m.header|Authorization],
< mitlsinfo.2,s'.authServ) = T if possible; otherwise stop
30: else
31: let ekminfo < s'.oautbEKM
32: let TB_Msg_provided := m.headers[Sec-Token-Binding]|[prov]
33: let TB_provided_pub := TB_Msg_provided[id]
34: let TB_provided_sig := TB_Msg_provided[sig]
3s: if checksig(TB_provided_sig, TB_provided_pub) £ T then
36: stop
37: if extractmsg(TB_provided_sig) # ekminfo then
38: stop
39: let id € 5'.ids such that check_oautb_AT (id,m.header[Authorization],
< TB_provided_pub,s' .authServ) = T if possible; otherwise stop
40: let s".cautbEKM := s'.0oautbEKM — ekmlnfo
41: let read < {T,L}
42: if read = T then
43: let resource < s'.rNoncelid]
44: else
45: let resource < s'.wNoncelid)
46: let m’ := encs((HTTPResp, m.nonce, 200, (), [resource:resourcel), k)
47: stop ({f,a,m)), s’
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D. OpenID FAPI with Network Attacker
The formal model of the FAPI is based on web system as defined in Definition 27 of [44]. Unless otherwise specified, we
adhere to the terms as defined in [44].

A web system FAPI = (W,S,script,E°) is called a FAPI web system with a network attacker. The components of the web

system are defined in the following.

o W =HonUNet consists of a network attacker process (in Net), a finite set B of web browsers, a finite set C of web
servers for the clients, a finite set AS of web servers for the authorization servers and a finite set RS of web servers for
the resource servers, with Hon := BUCUASURS. DNS servers are subsumed by the network attacker and are therefore
not modeled explicitly.

« S contains the scripts shown in Table V, with string representations defined by the mapping script.

« EO contains only the trigger events as specified in Definition 27 of [44].

[ SES [ script(s) |
R att_script
script_c_index script_c_index
script_c_get_fragment | script_get_fragment
script_as_form script_as_form

Table V: List of scripts in § and their respective string representations.

In addition to the set of nonces defined in [44], we specify an infinite sequence of nonces N; representing read access to
some resources and an infinite sequence of nonces N, representing write access to some resources. We call these nonces

resource access nonces.
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APPENDIX J
DEFINITIONS

In the following, we will define terms used within the analysis. All other terms are used as defined in [44] unless stated
otherwise.

Definition 7 (Read Client). A client ¢ with client id clientld issued from authorization server as is called read client (w.r.t. as)
if 5§°.clients|clientld][profile] =r.

Definition 8 (Read-Write Client). A client ¢ with client id clientld issued from authorization server as is called read-write
client (w.r.t. as) if s§°.clients[clientld][profile| = rw.

Definition 9 (Web Server Client). A client ¢ with client id clientld issued from authorization server as is called web server
client (w.r.t. as) if s§’.clients|clientld][is_app] = L.

A client is an app client if it is not a web server client.

Definition 10 (Client Type). A client ¢ with client id clientld issued from authorization server as is of type ¢ (w.r.t. as) if
53’ .clients|clientld][client_type] =, for t € {pub, conf_JWS, conf_MTLS,conf_ 0AUTB}.

Definition 11 (Confidential Client). A client ¢ with client id clientld issued from authorization server as is called confidential
(w.r.t. as) if it is of type conf_JWS, conf_MTLS or conf_OAUTB.

A client is a public client if it is not a confidential client.

Remarks: As stated in Section V-B, we assume that for all authorization servers, a client is either a read client or a
read-write client. This also holds true for the client type and for being a web server client. We also note that these properties
do not change, as an honest authorization server as never changes the values of si°.clients.

Definition 12 (Token Endpoint of Authorization Server). A message is sent to the token endpoint of the authorization server
as if it is sent to the URL (URL, S, dom,;, /token, param,frag) for dom,s € dom(as) and arbitrary param and frag.

Definition 13 (Bound Access Token). An access token ¢ issued from authorization server as is bound to the client with
client id clientld in the configuration (S,E,N) of a run of a FAPI web system F4PI with a network attacker, if either
(MTLS, id, clientld, t,mtisKey,rw) € S(as).accessTokens or (0AUTB, id, clientld,t,tbKey,rw) € S(as).accessTokens, for some
values of id,mtlsKey and tbKey.

The access token is bound via mTLS or via OAUTB, depending on the first entry of the sequence.

Definition 14 (Access Token associated with Client, Authorization Server and Identity). Let ¢ be a client with client id clientld
issued to ¢ by the authorization server as, and let id € ID%. We say that an access token t is associated with ¢, as and id in
state S of the configuration (S,E,N) of a run p of a FAPI web system, if there is a sequence s € S(as).accessTokens such
that s = (id, clientld,t,T), s = (MTLS, id, clientld,t,key,tw) or s = (OAUTB, id, clientld,t,key',xw), for some key and key'.

Validity of Access Tokens

For checking the validity of an access token 7 in state S of a configuration (S,E,N) of a run, we define the following
functions, where dom,; € dom(as):

o check_read_AT (id,t,dom,s) = T < Iclientld s.t. (id,clientld,t,r) € S(as).accessTokens.

o check_mtls_AT (id,t,key,dom,g) = T < Iclientld s.t. (MTLS, id, clientld,t, key,rw) € S(as).accessTokens.

o check_oautb_AT(id,t,key,dom,s) = T < Jclientld s.t. (OAUTB, id, clientld,t, key,rw) € S(as).accessTokens.

51



APPENDIX K
SECURITY PROPERTIES

As the profiles of the FAPI are essentially regular OIDC flows secured by additional mechanisms, they follow the same
goals. Therefore, the following security definitions are similar to the definitions given in Appendix H of [44]. Notably, the
conditions under which these properties hold true are not the same as in the case of regular OIDC, as detailed in Section III-C.

We show that these properties hold true in Theorem 1.

AUTHORIZATION

Intuitively, authorization means that an attacker should not be able to get read or write access to a resource of an honest
identity.

To capture this property, we extend the definition given in [44], where the authorization property states that no access token
associated with an honest identity may leak. As we assume that in the Read-Write flow, access tokens may leak to an attacker,
our definition states that honest resource servers may not provide access to resources of honest identities to the attacker.

More precisely, we require that if an honest resource server provides access to a resource belonging to an honest user whose
identity is governed by an honest authorization server, then this access is not provided to the attacker. This includes the case
that the resource is not directly accessed by the attacker, but also that no honest client provides the attacker access to such a
resource.

Definition 15 (Authorization Property). We say that the FAPI web system with a network attacker FAPI is secure w.r.t. autho-
rization iff for every run p of FAPI, every configuration (S,E,N) in p, every authorization server as € AS that is honest in S with
53’ . resource_servers being domains of honest resource servers, every identity id € ID* with b = ownerOflD(id) being an
honest browser in S, every client ¢ € C that is honest in S with client id clientld issued to ¢ by as, every resource server rs € RS that
is honest in S such that id € s.ids, s{’.authServ € dom(as) and with dom,, € 5§’ . resource_servers (with dom,s € dom(rs)),
every access token ¢ associated with ¢, as and id and every resource access nonce r € si’.rNonce[id| Usg.wNoncelid] it holds
true that:

If r is contained in a response to a request m sent to rs with 7 = m.header[Authorization]|, then r is not derivable from
the attackers knowledge in S (i.e., r & dp(S(attacker))).

We require that the preconfigured domains of the resource servers of an authorization server are domains of honest resource
servers, as otherwise, an access token of a read client can trivially leak to the attacker.

AUTHENTICATION

Intuitively, an attacker should not be able to log in at an honest client under the identity of an honest user, where the identity
is governed by an honest authorization server. All relevant participants are required to be honest, as otherwise, the attacker
can trivially log in at a client, for example, if the attacker controls the authorization server that governs the identity.

Definition 16 (Service Sessions). We say that there is a service session identified by a nonce n for an identity id at some
client ¢ in a configuration (S,E,N) of a run p of a FAPI web system iff there exists some session id x and a domain
d € dom(governor(id)) such that S(r).sessions|x][loggedInAs| = (d,id) and S(r).sessions|x|[serviceSessionId] =n.

Definition 17 (Authentication Property). We say that the FAPI web system with a network attacker FAPI is secure
w.r.t. authentication iff for every run p of FAPI, every configuration (S,E,N) in p, every ¢ € C that is honest in S, every identity
id € ID with as = governor(id) being an honest AS and with b = ownerOflID(id) being an honest browser in S, every service
session identified by some nonce n for id at ¢, n is not derivable from the attackers knowledge in S (i.e., n & dp(S(attacker))).

SESSION INTEGRITY FOR AUTHENTICATION AND AUTHORIZATION

There are two session integrity properties that capture that an honest user should not be logged in under the identity of the
attacker and should not use resources of the attacker.

We first define notations for the processing steps that represent important events during a flow of a FAPI web system, similar
to the definitions given in [44].

Definition 18 (User is logged in). For a run p of a FAPI web system with a network attacker 74PI we say that a browser b
was authenticated to a client ¢ using an authorization server as and an identity « in a login session identified by a nonce Isid
in processing step Q in p with
0= (SanN) — (S/vE/vN/)
r—Eout

(for some S, S, E, E', N, N) and some event (y,y,m) € Eo such that m is an HTTPS response
matching an HTTPS request sent by b to ¢ and we have that in the headers of m there is a header
of the form (Set-Cookie,[(__Secure,serviceSessionId):(ssid, T,T,T)]) for some nonce ssid such that
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S(c).sessions[lsid]éserviceSessionId] = ssid and S(c).sessions[lsid][loggedInAs| = (d,u) with d € dom(as). We
then write loggeding (b, c,u,as, Isid).

Definition 19 (User started a login flow). For a run p of a FAPI web system with a network attacker F4PI we say that
the user of the browser b started a login session identified by a nonce Isid at the client ¢ in a processing step Q in p
if (1) in that processing step, the browser b was triggered, selected a document loaded from an origin of ¢, executed the
script script_client_index in that document, and in that script, executed the Line 7 of Algorithm 22, and (2) ¢ sends an
HTTPS response corresponding to the HTTPS request sent by b in Q and in that response, there is a header of the form
(Set-Cookie, [(__Secure,sessionld):(lsid, T,T,T)]). We then write startedg(bm,lsid).

Definition 20 (User authenticated at an AS). For a run p of a FAPI web system with a network attacker F4PI we say that
the user of the browser b authenticated to an authorization server as using an identity u for a login session identified by a
nonce Isid at the client c if there is a processing step Q in p with

Q= (S,E,N)— (S,E',N)

(for some S, 8, E, E’, N, N') in which the browser b was triggered, selected a document loaded from an origin of as, executed
the script script_as_form in that document, and in that script, (1) in Line 4 of Algorithm 25, selected the identity u, and
(2) we have that the scriptstate of that document, when triggered, contains a nonce s such that scriptstate[state] = s and
S(r).sessions|lsid][state] = 5. We then write authenticatedg(b,c,u,as,lsid).

Definition 21 (Resource Access). For a run p of a FAPI web system with a network attacker FAPI we say that a browser b
accesses a resource of identity u stored at resource server rs through the session of client ¢ identified by the nonce Isid in
processing step Q in p with

Q=(S,E,N)— (S ,E',N")

(for some S, S, E, E, N, N) with (1) ((_Secure,sessionid),(lsid,y,z,7)) €' S(b).cookies[d] for
d € dom(c), y,z,7 € Ty, (2) S(c).sessions|lsid|[resource] = r with r € si.rNonce[u] U si.wNonce[u] and (3)
S(c).sessions[lsid|[resource_server| € dom(rs). We then write accessesResourceg(b,r,u,c, rs,Isid).

Session Integrity Property for Authentication for Web Server Clients with OAUTB

This security property captures that, if the client is a web server client with OAUTB, then (a) a user should only be logged
in when the user actually expressed the wish to start a FAPI flow before, and (b) if a user expressed the wish to start a FAPI
flow using some honest authorization server and a specific identity, then user is not logged in under a different identity.

Definition 22 (Session Integrity for Authentication for Web Server Clients with OAUTB). Let FAPI be an FAPI web system
with a network attacker. We say that FAPI is secure w.r.t. session integrity for authentication iff for every run p of FAPI,
every processing step Q in p with

Q= (S,E,N)— (S E',N")

(for some S, §', E, E’, N, N'), every browser b that is honest in S, every as € AS, every identity u, every web server client
¢ € C of type conf_Q0AUTB that is honest in S, every nonce [sid, and Ioggedlng(b,c,u,as,lsid) we have that (1) there exists a

processing step Q' in p (before Q) such that startedg/(b,c,lsid), and (2) if as is honest in S, then there exists a processing
step Q" in p (before Q) such that authenticatedg (b,c,u,as,lsid).

Session Integrity Property for Authorization for Web Server Clients with OAUTB

This security property captures that, if the client is a web server client with OAUTB, then (a) a user should only access
resources when the user actually expressed the wish to start a FAPI flow before, and (b) if a user expressed the wish to start a
FAPI flow using some honest authorization server and a specific identity, then user is not using resources of a different identity.
We note that for this, we require that the resource server which the client uses is honest, as otherwise, the attacker can trivially
return any resource and receive any resource (for write access).

Definition 23 (Session Integrity for Authorization for Web Server Clients with OAUTB). Let FAPI be a FAPI web system with
a network attackers. We say that FAPI is secure w.r.t. session integrity for authorization iff for every run p of FAPI, every
processing step Q in p with

Q=(S,E,N)— (S ,E',N'")

(for some S, §', E, E', N, N'), every browser b that is honest in S, every as € AS, every identity u, every web server client
¢ € C of type conf_Q0AUTB that is honest in S, every rs € RS that is honest in S, every nonce r, every nonce lsid, we have that
if accessesResourceS(b, r,u,c,rs,lsid) and si.authServ € dom(as), then (1) there exists a processing step Q' in p (before Q)
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such that startedg, (b,c,lsid), and (2) if as is honest in S, then there exists a processing step Q" in p (before Q) such that
authenticatedg, (b,c,u,as,lsid).
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APPENDIX L
PROOFS

A. General Properties

Lemma 1 (Host of HTTP Request). For any run p of a FAPI web system FAPI with a network attacker, every configuration
(S,E,N) in p and every process p € CUASURS that is honest in S it holds true that if the generic HTTPS server calls
PROCESS_HTTPS_REQUEST (mgyec,k,a, f,s) in Algorithm 11, then my,...host € dom(p), for all values of k, a, f and s.

PROOF. PROCESS_HTTPS_REQUEST is called only in Line 9 of Algorithm 11. The input message m is encrypted
asymmetrically. Intuitively, such a message is only decrypted if the process knows the private TLS key, where this private key
is chosen (non-deterministically) according to the host of the decrypted message.

More formally, when PROCESS_HTTPS_REQUEST is called, the stop in Line 8 is not called. Therefore, it holds true
that

JinDomain, k' : (inDomain, k') € S(p).t1skeys Amg,..host = inDomain
= JinDomain, k' : (inDomain, k') € t1skeys” A my...host = inDomain
g inDomain, k' : (inDomain, k') € {(d,tlskey(d))|d € dom(p)} Amgec.host = inDomain
From this, it follows directly that my,..host € dom(p).
The first step holds true due to S(p).tlskeys = sg .tlskeys = tlskeys?, as this sequence is never changed by any honest
process p. |

Lemma 2 (Honest Read Client sends Token Request only to dom(as)). For any run p of a FAPI web system F4PI with a
network attacker, every configuration (S,E,N) in p, every authorization server as that is honest in S, every identity id € ID*,
every read client ¢ that is honest in S and every sid, it holds true that if Algorithm 16 (SEND_TOKEN_REQUEST) is called
with sessionld = sid and S(c).sessions|sid][identity] =id, then the messages in SEND_TOKEN_REQUEST are sent only
to d € dom(as).

PROOF. In Algorithm 16, the client sends messages either in Line 19, Line 25 or Line 31. The HTTPS_SIMPLE_SEND in
Line 48 can only be reached by a read-write client.

In all three cases, the message is sent to url.domain, which is equal to
S(c).oidcConfigCachelissuer|[token_ep|.domain (Line 8), due to sessionjmisconfiguredTEp] = L in Line 5 (for read
clients, this is always set to L in Line 12 of Algorithm 15).

Let dom and dom’ be from dom(as).

With this, it holds true that:

url.domain

= S(c).oidcConfigCache[issuer][token_ep|.domain
(Line 4 of Alg. 16)

= S(c).oidcConfigCache[S(c).issuerCache(identiry]][token_ep].domain
(Line 3 of Alg. 16)

= S(c).oidcConfigCache[S(c).issuerCache[S(c).sessions[sid|[identity]]|[token_ep|.domain
(per assumption)

= S(c).oidcConfigCache[S(c).issuerCachelid]|[token_ep|.domain
(issuerCache is never modified)

= S(c).oidcConfigCache[sf.issuerCache[id]]|[token_ep].domain
(per definition)

= S(c).oidcConfigCache[dom]|[token_ep|.domain
(oidcConfigCache is never modified)

= s5§.0idcConfigCache|dom]|[token_ep|.domain
(per definition)

= dom’

Therefore, the token request is always sent to a domain of as. |

55



Lemma 3 (Code used in Token Request was received at Redirection Endpoint). For any run p of a FAPI web system FAPI
with a network attacker, every configuration (S,E,N) in p, every client ¢ that is honest in S it holds true that if Algorithm 13
(PROCESS_HTTPS_RESPONSE) is called with reference[responseTo| = TOKEN, then

request.body[code| = S(c).sessions[reference[sessionl|[redirectEpRequest][data][code], with request being an input
parameter of PROCESS_HTTPS_RESPONSE.

PROOF. Let sid := reference[session] be the session id with which PROCESS_HTTPS_RESPONSE is called.

Due to reference[responseTo] = TOKEN, the corresponding request was sent in Algorithm 16 (SEND_TOKEN_REQUEST),
as this is the only algorithm that uses this reference when sending a message. The code included in the request is always the
input parameter of SEND_TOKEN_REQUEST (due to Line 14).

SEND_TOKEN_REQUEST is called in one of the following lines: (1) in Line 46 of Algorithm 13
(PROCESS_HTTPS_RESPONSE), (2) in Line 53 of Algorithm 13 (PROCESS_HTTPS_RESPONSE) or (3) in Line 25
of Algorithm 15 (PREPARE_TOKEN_REQUEST).

Case 1: Algorithm 13: The authorization code used for calling SEND_TOKEN_REQUEST is taken from
S(c).sessions|sid][code]. S(c).sessions|sid][code] is only set in Line 22 of Algorithm 15 (PREPARE_TOKEN_REQUEST),
where this value is taken from the input of PREPARE_TOKEN_REQUEST.

Case 2: Algorithm 15: In this case, the authorization code used for calling SEND_TOKEN_REQUEST is directly taken
from the input of PREPARE_TOKEN_REQUEST.

Algorithm 15 (PREPARE_TOKEN_REQUEST) is either directly called at the redirection endpoint (Line 59 of Algorithm 12),
called in Line 19 of Algorithm 19 (CHECK_FIRST_ID_TOKEN) or in Line 18 of Algorithm 21 (CHECK_RESPONSE_JWS).

In both functions (Algorithm 19 and Algorithm 21), code is an input argument.

As both functions are called only at the redirection endpoint (Line 61 or Line 63 of Algorithm 12), it follows that the
authorization code used as an input argument of PREPARE_TOKEN_REQUEST is in all cases the authorization code originally
contained in the request that was received at /redirect_ep. In Line 57 of Algorithm 12, the data contained in the request is
stored in the session under the key redirectEpRequest. |

Lemma 4 (Receiver of Token Request and Authorization Request for Read Clients). For any run p of a FAPI web system
FAPI with a network attacker, every configuration (S,E,N) in p, every authorization server as that is honest in S, every read
client c that is honest in S with client id clientld that has been issued to ¢ by as, every sid being a session identifier for sessions
in S(c).sessions it holds true that if a request JWS reqJWS is created in Line 41 of Algorithm 14 (called with input argument
sessionld = sid) with extractmsg(reqJWS[aud]) € dom(as), then the token request of the session send in Algorithm 16 (when
called with sessionld = sid) is sent only to a domain in dom(as).

PROOF. Let extractmsg(reqJWS[aud]) = authEndpoint.host € dom(as) (Line 40 of Algorithm 14), which means that
s5-oidcConfigCache[s].issuerCache[S(c).sessions|sid|[identity]]|[auth_ep|.host € dom(as)
(Line 2 up to 6; oidcConfigCache and issuerCache are never changed by the client). Per definition of the auth_ep key of
oidcConfigCache, it follows that si.issuerCache[S(c).sessions[sid|[identity]] € dom(as).

Per definition, issuerCache is a mapping from identities to a domain of their governor. This means that
S(c).sessions[sid|[identity] € ID¥.

As all conditions of Lemma 2 are fulfilled, the token request sent in Algorithm 16 (when called with the input parameter
sid) is sent only to a domain of as. |

Lemma 5 (EKM signed by Client does not leak). For any run p of a FAPI web system FAPI with a network attacker, every
configuration (S,E,N) in p, every process p € ASURS that is honest in S, every domain dom, € dom(p), every key k €
keyMapping[dom,,], every client ¢ that is honest in S, every domain d € Doms, every key TB_key € sg.tokenBindings[d],
every terms nj, np and every process p’ with p £ p’ # c it holds true that sig(hash({n,nz,k)), TB_key) & do(S(p")).

PROOF. Let hash((n;,ny,k)) be signed by c.
The honest client signs only in one of the following places: (1) in Line 41 of Algorithm 14 (START_LOGIN_FLOW), (2) in the
branch at Line 32 of Algorithm 16 (SEND_TOKEN_REQUEST) or (3) in Line 28 of Algorithm 18 (USE_ACCESS_TOKEN).
Case 1
In Line 41 of Algorithm 14, the client signs the request JWS, which has a different structure than the EKM value.
Case 2
If the client signs a value in the branch at Line 32 of Algorithm 16, it follows that SEND_TOKEN_REQUEST was
called in Line 53 of Algorithm 13
(PROCESS_HTTPS_RESPONSE) (due to responseValue[type] = 0AUTB, L. 33 of Alg. 16).
The client signs responseValue|ekm] (Line 35 of Algorithm 16), which is an input argument. This value is created in
Line 51 of Algorithm 13, where the key of the sequence is chosen by the client (k = keyMapping[request.host)).
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From this, it follows that request.host € dom(p). Due to the reference value OAUTB_AS (Line 49) it follows that
request was sent in Line 32 of Algorithm 15
(PREPARE_TOKEN_REQUEST), as this is the only place where this reference value is used.
As request.host € dom(p), it follows that the message in PREPARE_TOKEN_REQUEST is sent to p via
HTTPS_SIMPLE_SEND. Therefore, the signed EKM value that is sent in SEND_TOKEN_REQUEST is also send
to p via HTTPS_SIMPLE_ SEND, as the messages are sent to the same domain in both algorithms (the value of
misconfiguredTEp set in Line 9 ff. of Algorithm 15 is the same in both algorithms, and therefore, the domains to
which the messages are sent are the same).

Case 3
For an EKM value signed in Line 28 of Algorithm 18 (USE_ACCESS_TOKEN), the same reasoning as in Case 2
holds true.

The signed EKM value is sent only in the header of a request. As neither an honest authorization server nor an honest
resource server sends any message containing a header value of a received request, it follows that sig(hash((n,nz,k)), TB_key)
does not leak to any other process. |

B. Client Authentication

In the next lemmas, we prove that only the legitimate client can authenticate itself to the token endpoint. More precisely,
we show that if all checks pass at the token endpoint of an authorization server, then the legitimate confidential client send the
corresponding token request.

In case of a confidential read client using a JWS for authentication, the message authentication code of the JWS is created
with a key that only the client knows (besides the authorization server). We show that the JWS never leaks to an attacker,
which implies that if a message is received at the token endpoint containing the JWS, then the message was sent by the honest
client (as otherwise, the JWS must have leaked).

In case of a read-write client, we assume that the token endpoint might be misconfigured. In this case, it seems to be possible
that the attacker uses the message received from the client to authenticate at the token endpoint of the honest authorization
Server.

We show that this is not possible for both OAUTB and mTLS clients. In case of a confidential read-write client using
OAUTB, the audience value of the assertion has the same value as the host of the token request, which means that the attacker
cannot use a received assertion for any other audience.

Similarly, the message that is decrypted by the client for mTLS (to prove possession of the private key) contains the domain
of the process that created the message, and therefore, the decrypted nonce is sent to the same process that encrypted the
nonce.

Lemma 6 (JWS Client Assertion created by Client does not leak to Third Party). For any run p of a FAPI web system FAPI
with a network attacker, every configuration (S,E,N) in p, every authorization server as that is honest in S, every domain
d € dom(as), every client ¢ that is honest in S with client id clientld and client secret clientSecret that has been issued to ¢ by as,
every client assertion t = mac([iss:clientld, aud:d|, clientSecret) with clientSecret = S(as).clients|clientld|[client_secret]
and every process p with ¢ # p # as it holds true that 7 € dp(S(p)).

PROOF.
Let r = mac([iss:clientld,aud:d], clientSecret) be the assertion that is created by the client.

Honest read client: sends assertion only to d.
In case of read clients, the JWS client assertion is only created within the branch at Line 20 of Algorithm 16 and
send in Line 25.
As the host value of the message in Line 24 has the same value as the audience value of the assertion, it follows that
the message is sent to d.

Honest read-write client: sends assertion only to d.
A read-write client using OAUTB creates a client assertion only in Line 44 of Algorithm 16. As the client
sets jwt[aud] := d in Line 43, it follows that url.domain = d. As above, the assertion is sent to d with
HTTPS_SIMPLE_SEND.

Honest authorization server: never sends an assertion.
The authorization server receiving the assertion never sends it out, and as it never creates any assertions, we conclude
that the assertion never leaks to p due to the authorization server.

Combining both points, we conclude that p never receives an assertion which is created by an honest client and send to an
honest authorization server.
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As the client secret is unique for each client id, and also neither send out by an honest client nor by the honest authorization
server, we conclude that p is never in possession of a client assertion with a valid message authentication code. |

Lemma 7 (mTLS Nonce created by AS does not leak to Third Party). For any run p of a FAPI web system FA4PI with a
network attacker, every configuration (S,E,N) in p, every authorization server as that is honest in S, every client ¢ that is
honest in S with client id clientld issued by as, every mtlsNonce created in Line 164 of Algorithm 24 in consequence of a request
m received at the /MTLS-prepare path of the authorization server (L. 162 of Alg. 24) with m.body[client_id| = clientld
and every process p with as # p # c it holds true that mtlsNonce & dp(S(p)).

PROOF. The authorization server sends a mtlsNonce created in Line 164 of Algorithm 24 only in Line 168, where it is
asymmetrically encrypted with the public key

clientKey
= S(as).clients|clientld|[mt1ls_key] (Line 165)
=53’ .clients|clientld][mt1s_key] (value is never changed)
= keyMapping|dom] (def.)

with dom, € dom(c). The corresponding private key is tlskeys[dom,] € tiskeys®, which is only known to c. (The mtisNonce
saved in mtlsRequests is not sent in any other place).

This implies that the encrypted nonce can only be decrypted by c. Such a message is decrypted either in Line 44 or Line 57
of Algorithm 13. (The only other places where a message is decrypted asymmetrically by c is in the generic HTTPS server
(Line 8 of Algorithm 11), but this message is not decrypted there due to the requirement that the decrypted message must
begin with HTTPReq).

We also note that the encrypted message created by the authorization server containing the nonce also contains a public
TLS key of as. (This holds true due to Lemma 1).

Case 1: Line 57
In this case, it follows that reference[responseTo| = MTLS_RS (Line 54). The only place where this value is used as
a reference is in Line 14 of Algorithm 17 (PREPARE_USE_ACCESS_TOKEN). The corresponding request is sent to

message.host (L. 13 of Alg. 17)
= rsHost (L. 13)
= §'(c).sessions|[sid|[RS] (L. 9 and L. 2, for some sid)

for a previous state S’ within the run.
This value is only set in Line 9 of Algorithm 14 (START_LOGIN_FLOW), where it is chosen from the set of
preconfigured resource servers
s5.oidcConfigCache(s].issuerCachelid]|[resource_server], for some id € ID. (The values of oidcConfigCache
and isserCache are not changed by the client and are therefore the same as in the initial state).
These values are required to be from dom(rs) by definition, for rs € RS, which means that the initial request with
reference being MTLS_RS is sent to rsHost € dom(rs), rs € RS.
Therefore, the value of request.host in Line 58 of Algorithm 13 is from dom(rs), and the check in this line fails,
which means that the corresponding sfop is executed and the decrypted nonce is not sent.
Case 2: Line 44
The reference MTLS_AS is only used in Line 29 of Algorithm 15
(PREPARE_TOKEN_REQUEST). The corresponding request is sent to wurl.domain (Line 28) via
HTTPS_SIMPLE SEND. If wurl.domain ¢ dom(as) for as € AS, then the check of the public key fails as in
Case 1. Otherwise, the initial request is sent to the honest authorization server, which means that the decrypted nonce
is sent to the authorization server in SEND_TOKEN_REQUEST (as in both algorithms, the messages are sent to the
same domain).
Summing up, the client sends the nonce encrypted by the authorization server only back to the authorization server. As an
honest authorization server never sends out such a nonce received in a token request, we conclude that the nonce never leaks
to any other process. ]

Lemma 8 (Client Authentication). For any run p of a FAPI web system 7A4PI with a network attacker, every configuration

(S,E,N) in p, every authorization server as that is honest in S, every domain d € dom(as), every confidential client ¢ that is
honest in § with client id clientld issued by as, it holds true that:
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If a response is sent in Line 158 or in Line 160 of Algorithm 24 due to a request m received at the token endpoint of as
with m.body[client_id] = clientld, then m was sent by c.

PROOF. We assume that m was sent by p # ¢ and that the authorization server sends a response, which implies that all
(applicable) checks are passed. We also note that the authorization server never sends messages to itself. We distinguish the
following cases:
Case 1: S(as).clients|clientld][client_type] = conf_JWS
In this case, the client id belongs to a read client. As the response in Line 160 is sent, all relevant checks passed
successfully, in particular, the checks in Line 117 and Line 120 of Algorithm 24, which means that that p possesses
a term t = mac([iss:clientld, aud:d), clientSecret) with
clientSecret = S(as).clients|clientld][client_secret], contradicting Lemma 6. (As shown in Lemma 1, the host
of the message is a domain of the authorization server).
Case 2: S(as).clients|clientld][client_type] = conf_0AUTB
As in case 1, this is a contradiction to Lemma 6.
Case 3: S(as).clients|clientld][client_type] = conf MTLS
Here, the check in Line 124 passes, which means that p knows mtlsinfo.1, which is taken from
S(as).mt1lsRequests]clientld] (Line 123). This sequence was added to mtlsRequests in Line 166, as this is the
only place where a term is added to mt1sRequests (in the initial state, mt1sRequests is empty). This implies that
the nonce created in Line 164 due to a request m’ to /MTLS-prepare with m’.body[client_id| = clientld is known
to p, which is a contradiction to Lemma 7. |

C. PKCE Challenge

Lemma 9 (PKCE Challenge of Public Client). For any run p of a FAPI web system FA4PI with a network attacker, every
configuration (S,E,N) in p, every authorization server as that is honest in S, every client ¢ of type pub that is honest in §
with client id clientld issued to ¢ by as it holds true that:

If record € S(as).records with record[client_id] = clientld, then record|pkce_challenge| was created by c.

PROOF. Intuitively, this holds true because the authorization request is authenticated, which means that the request and therefore
the PKCE challenge were created by the client.

More formally, we note that S(as).records is empty in the initial state. New records are only added in /auth2, or more
precisely, in Line 73 of Algorithm 24.

Let m be the corresponding request to /auth2. Due to record[client_id] = clientld and Line 15, it follows that
m.body[client_id| = clientld. As the record is added to the state, all (applicable) checks in /auth2 have passed.

This means that checksig(m.body[request_jws],S(as).clients|clientld][jws_key]) = T (Line 24), which implies that the
request JWS was created by c (as the key is preconfigured and not send to any other process).

Due to record[pkce_challenge| being set from the request JWS (Line 26 and Line 70), it follows that the PKCE code
challenge was created by c. ]

D. Authorization Response

Lemma 10 (ID Token contained in Authorization Response for Web Server Client does not leak). For any run p of a FAPI
web system FAPI with a network attacker, every configuration (S,E,N) in p, every authorization server as that is honest in S,
every domain d € dom(as), every identity id € ID* with b = ownerOfID(id) being an honest browser in S, every web server
client ¢ that is honest in S with client id clientld that has been issued to ¢ by as, every term n, every term A, every id token
idt = sig([iss:d, sub:id,aud:clientld,nonce:n,s_hash:h|,k) with k = S(as).jwk and every attacker process a it holds true that:

If a request m is sent to the path /auth2 of as with m.body[client_id] = clientld and m.body[password] = secretOfID(id),
then for the corresponding response r it holds true that idf = r.body[id_token| does not leak to a, i.e. , idt & dy(S(a)).

PROOF. We first highlight that k = s§’. jwk, as this value is never changed by the authorization server. Only as knows this
value, as it is preconfigured and never transmitted.
Furthermore, we assume that an id token is sent in the response, otherwise, it trivially cannot leak.

Authorization Response does not leak.
Intuitively, the authorization response does not leak because only the honest browser knows the password of the
identity, which means that the response is sent back to the honest browser. As the redirection URIs are preregistered,
the browser redirects the response directly to the honest client.
This does not hold true in the case of app clients, as we assume that the response can be sent to a wrong app by the
operating system.
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The formal proof is analogous to the proof of Lemma 6 in [44]. We note that the changes made to the browser
algorithms do not change the results of this proof.

ID Token does not leak.
The client never sends an id token. Therefore, we conclude that an id token created at the authorization endpoint does
not leak to an attacker.

Lemma 11 (Code of Read Web Server Clients does not leak). For any run p of a FAPI web system 7A4PI with a network
attacker, every configuration (S,E,N) in p, every authorization server as that is honest in S, every domain d € dom(as), every
identity id € ID* with b = ownerOfID(id) being an honest browser in S, every read web server client ¢ that is honest in §
with client id clientld that has been issued to ¢ by as, every code code for which there is a record rec €' S(as).records with
rec[code] = code, rec[client_id| = clientld, rec[subject] = id, and every attacker process a it holds true that code does not
leak to a, i.e., code & dp(S(a)).

PROOF. The code contained in the authorization response is sent only to the client (analogous to Lemma 10).

Let m be the request received at /auth2 (Line 8 of Algorithm 24) which led to the creation of rec.

As the record was added to the state, it follows that the checks in the branch at Line 22 are fulfilled. From this, it follows
that the aud value of the request JWS is a domain in dom(as) (due to Lemma 1).

As shown in Lemma 4, the corresponding token request send by the client is sent only to as.

(This does not hold true for read-write clients, as we assume that the token endpoint might be misconfigured, which means
that the code might be sent to the attacker.)

As the authorization server does not send the code received at the token endpoint (and only sends newly generated codes at
the authorization endpoint), we conclude that code does not leak to a. |

Lemma 12 (Response JWS created for Web Server Client does not leak). For any run p of a FAPI web system FAPI with a
network attacker, every configuration (S,E,N) in p, every authorization server as that is honest in S, every domain d € dom(as),
every identity id € ID* with b = ownerOfID(id) being an honest browser in S, every web server client ¢ that is honest in
S with client id clientld that has been issued to ¢ by as, every term n for which a record rec € S(as).records exists with
rec[code] = n and rec[subject] = id, every term s, every request JWS ¢ = sig([iss:d, aud:clientld, code:n,state:s], k) with
k = S(as).jwk and every attacker process a it holds true that ¢ & dp(S(a)).

PROOF. Such a term is only created at the authorization endpoint of as (in Line 79 of Algorithm 24), where the corresponding
authorization request sent to as by b (as only b knows the secret of id). Therefore, the request JWS follows the same path as
an id token created at the authorization endpoint. Due to this, the proof of this lemma is analogous to the proof of Lemma 10.

|

E. ID Token

Lemma 13 (ID Token for Confidential Client created at the Token Endpoint). For any run p of a FAPI web system FAPI with
a network attacker, every configuration (S,E,N) in p, every authorization server as that is honest in S, every domain d € dom(as),
every identity id € ID®, every confidential client ¢ that is honest in S with client id clientld that has been issued to ¢ by as,
every term n, every term h, every id token r = sig([iss:d, sub:id,aud:clientld,nonce:n,at_hash:h|,k) with k = s§*.jwk and
every process p with ¢ # p # as it holds true that ¢ € dp(S(p)).

PROOF. Such an id token ¢ is only created in Line 153 of Algorithm 24, which is the token endpoint of the authorization
server (the only other place where an id token is created by the authorization server is in /auth2 (Line 81), but the id token
created there has different attributes, like s_hash).

The id token created at the token endpoint is sent back to the sender of the request in Line 158 or Line 160. As shown in
Lemma 8, the request was sent by ¢ (as the client is confidential; more formally, the conditions of the lemma are fulfilled as
the request contained m.body|[client_id] = clientld due to Lines 94, 97 and 150).

As an honest client never sends out an id token, it follows that ¢ does not leak to p. |

Lemma 14 (ID Token created for Web Server Clients). For any run p of a FAPI web system 7A4PI with a network attacker,
every configuration (S,E,N) in p, every authorization server as that is honest in S, every identity id € ID* with
b = ownerOfID(id) being an honest browser in S, every web server client ¢ that is honest in S with client id clientld that has been
issued to c by as, every id token # with checksig (¢, pub(si*.jwk)) = T, extractmsg(t)[aud] = clientld and extractmsg(t)[sub] = id
and every attacker process a it holds true that ¢ & dp(S(a)).
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PROOF. The private signing key used by the authorization server is preconfigured and never send to other processes. As the
signature of the id token is valid, we conclude that it was created by as and that its issuer parameter has the value dom,s, for
domgs € dom(as). More precisely, this value is equal to rec[issuer]| (L. 81 or L. 148 of Alg. 24, where rec is a record from
records.) This value is only set in Line 63 and is a domain of as, as shown in Lemma 1.

If the id token is created at the authorization endpoint (in Line 81 of Algorithm 24), then ¢ & dy(S(a)), as shown in Lemma 10.
(The conditions of the lemma are fulfilled as the audience value is clientld and taken from the request that was sent to the
authorization endpoint and as the request contained the password of id).

Otherwise, the id token was created at the token endpoint (in Line 153). As noted in Section V-B, we assume that a web
server client is a confidential client. As shown in Lemma 13, it holds true that ¢ & dp(S(a)). [ |

FE Access Token

Lemma 15 (Read Access Token does not leak to Attacker). For any run p of a FAPI web system FAPI with a network
attacker, every configuration (S,E,N) in p, every authorization server as that is honest in S, every identity id € ID* with
b = ownerOfID(id) being an honest browser in S, every read client ¢ that is honest in S with client id clientld that has been
issued to ¢ by as, every access token ¢ with (id,clientld,t,r) € S(as).accessTokens, every resource server rs that is honest
in S with dom,, € 5§’ .resource_servers (with dom,; € dom(rs)) and every attacker process a it holds true that if the request
to the resource server is sent to dom (in Line 13 of Algorithm 18), then 7 & dyp(S(a)).

PROOF. An honest resource server never sends out an access token. The client sends the access token only in Line 13 of
Algorithm 18, where it is sent to an honest resource server (per assumption).
In the following, we show that the access token associated with the read client is never sent to the attacker by the authorization
server.
Case 1: Confidential Client (Web Server Client or App)
Let ¢ be sent in Line 160 of Algorithm 24 (PROCESS_HTTPS_REQUEST) and let m be the corresponding request
made to the token endpoint of as. It holds true that m contains the client id clientld (due to Line 94 and clientld
being included in (id, clientld,t,r)).
From Lemma 8, it follows that m was sent by c. This means that the token response containing the access token is
sent back directly to c.
Case 2: Public Client (App)
Let m be the message received at the token endpoint of as with m.body[client_id] = clientld such that the access
token ¢ is sent back in Line 160 of Algorithm 24.
This implies that the sender of m knows a verifier pkceCV such that hash(pkceCV) = record[pkce_challenge| (due
to the check done in Line 128), with record[client_id| = clientld.
As shown in Lemma 9, the corresponding PKCE challenge (record[pkce_challenge]) was created by the honest client
c (as the challenge was signed by ¢ with preconfigured keys). The challenge was created in Line 29 of Algorithm 14
(START_LOGIN_FLOW) as this is the only place where a read client creates a PKCE challenge. Let reqJWS be the
corresponding request JWS that was created in Line 41.
The authorization server checks the request JWS at the authorization endpoint for each request (Line 22 to Line 30).
This check also includes the aud value of the request JWS, which is required to be from a domain in dom(as) (due
to Lemma 1).
This implies that extractmsg(reqJWS[aud|) = authEndpoint.host € dom(as) (Line 40 of Algorithm 14).
As shown in Lemma 4, the corresponding token request of the session is sent only to a domain in dom(as) (in
Algorithm 16, SEND_TOKEN_REQUEST).
The PKCE verifier is a nonce chosen by the client (in Line 28 of Algorithm 14), and send only in the token request.
Therefore, only ¢ and as know the PKCE verifier. As the authorization server never sends messages to itself, it follows
that m was sent by c. Thus, the response (containing the access token) is sent back to c. |

Lemma 16 (Access Token bound via mTLS can only be used by Honest Client). For any run p of a FAPI web system FAPI
with a network attacker, every configuration (S,E,N) in p, every authorization server as that is honest in S, every read-write
client ¢ of type conf_MTLS that is honest in S with client id clientld issued to ¢ by as, every access token ¢ bound to ¢ (via
mTLS, as defined in Appendix J), every resource server rs that is honest in S with dom,, € sj’.resource_servers (with
dom,s € dom(rs)) and every message m received at an URL (URL,S,dom,, /resource-rw, param,frag) with arbitrary param
and frag and with MTLS_AuthN € m.body and access token ¢ = m.header[Authorization] it holds true that:

If a response to m is sent in Line 47 of Algorithm 26, then the receiver is c.

PROOF. Let m be a message with MTLS_AuthN € m.body containing the access token ¢ = m.header[Authorization] such
that a response is sent in Line 47 of Algorithm 26.
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This implies that the stop in Line 27 and Line 29 are not executed, and therefore, it holds true that

m.body[MTLS_AuthN] = S(rs).mt1sRequests.ptr.1
A check_mtls_AT (id,z,S(rs).mt1sRequests.ptr.2,sj .authServ) = T

for some ptr and id, and as s .authServ is never changed. This is equivalent to

m.body[MTLS_AuthN] = S(rs).mt1sRequests.pir.1 (8)
A (MTLS, id, clientld,t,S(rs) mt1sRequests.ptr.2, rw) € S(dom ™! (s .authServ)).accessTokens )

for the client id clientld of c (as the access token is bound to ¢) and per definition of check_mtls_AT in Appendix J.

An entry as in 9 is only created in Line 142 of Algorithm 24 (PROCESS_HTTPS_REQUEST).

As shown in Lemma 8, the request m’ that led to the creation of this sequence was sent from the honest client ¢ with
client id clientld (intuitively, the client of type conf_MTLS has authenticated itself at the token endpoint; more formally, the
preconditions of the lemma are fulfilled as there is always a response sent by the authorization server after adding an entry to
accessTokens and the corresponding request contained m’.body[client_id| = cliensld).

The value milsinfo.2 in Line 142 of Algorithm 24 is retrieved from §'(as).mt1sRequests|cliensld] (in Line 123, for a state
S’ prior to S within the run). The entries of mt1sRequests are only created in Line 166 of Algorithm 24, where the entry
corresponding to the key clientKey is taken from si*.clients[clientld])[mt1s_key| (due to Line 165 and the entries of clients
not being changed by the authorization server). Per definition, this key has the value keyMapping[dom.| with dom. € dom(c).

This key is equal to S(rs).mtlsRequests.ptr.2 (due to 9). This sequence was added to S(rs).mtlsRequests in Line 5 of
Algorithm 26, where the key was taken from the corresponding request (Line 4). The nonce chosen in Line 3 is sent as
enc, ({mtlsNonce, keyMapping(m.host)), clientKey) (Line 6), where the asymmetric key is the public key of ¢ (as shown above;
the key is the same as the key that the authorization server used for encrypting a nonce for ¢). As shown in Lemma 1, m.host
is a domain of the resource server.

Analogous to Lemma 7, this nonce is only known to ¢ (and rs) and does not leak to any other process. It follows that the
request m was sent by ¢, and therefore, the response is sent back to c. |

Lemma 17 (Private OAUTB Key does not leak). For any run p of a FAPI web system FAPI with a network attacker, every
configuration (S, E,N) in p, every authorization server as that is honest in S, every read-write client ¢ of type pub or conf_0AUTB
that is honest in S with client id clientld issued to ¢ by as, every id € ID“, every access token ¢ and every process p it holds
true that:

If (OAUTB, id, clientld,t,pub(TB_ref _key),rw) € S(as).accessTokens and TB_ref_key € dyp(S(p)), then p = c.

PROOF. Let m be the token request that led to the creation of the sequence in S(as).accessTokens. It holds true that
m.body[client_id| = clientld, as this value is included in the sequence (OAUTB,id,clientld,t,pub(TB_ref_key),rw) (due to
Line 94 of Algorithm 24).

Case 1: Client of Type conf_0AUTB
After the sequence is added to S(as).accessTokens (in Line 144 of Algorithm 24), there are no further checks that
lead to a stop, which means that a response is sent in Line 158. As shown in Lemma 8, m was sent by c.
The only place where an honest client of type conf_0AUTB sends a message to the token endpoint of an authorization
server is in Line 48 of Algorithm 16. This means that m was created by c in Line 47 of Algorithm 16.
Let TB_ref _pub_key be the key stored in the sequence shown above (in S(as).accessTokens).
It holds true that

TB_ref_pub_key
= m.headers[Sec-Token-Binding]|[ref][id] (Line 109, Line 110 of Alg. 24)
= pub(s§.tokenBindings|t]) (Line 37, Line 39, Line 40 of Alg. 16)

for some term ¢ (which is the domain of a resource server, but not relevant at this point). We also note that the value
of tokenBindings of the client state is the same as in the initial state as it is not changed by the client.

Case 2: Client of Type pub
Let record be the record chosen in Line 96 of Algorithm 24 when m is received at the token endpoint and the sequence
is added to §'(as).accessTokens (for a state S’ prior to S within the run). Due to Lines 94, 97 and 144, it holds true
that record[client_id] = clientld.
As shown in Lemma 9, the PKCE challenge contained in record[pkce_challenge] was created by c¢. This happens
only in Line 33 of Algorithm 14 (START_LOGIN_FLOW).
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This implies that record[pkce_challenge] has the value hash(pub(sf.tokenBindings|t'])), for some term 7. As the
private keys in s3.tokenBindings are preconfigured and never send to any process, they are only known to c.

As m.body[client_id] is the client id of a read-write client of type pub, m is required to contain an OAUTB provided
message TB_Msg_provided = m.headers[Sec-Token-Binding|[prov] such that

checksig(TB_Msg_provided[sig|, TB_Msg_provided[id]) = T (due to Lines 105, 106 and 107).

Due to Line 134, it holds true that hash(7B_Msg_provided[id]) = record[pkce_challenge], which is equal to
hash(pub(s{.tokenBindings|t'])). Therefore, TB_Msg_provided[id] = pub(s§.tokenBindings[t']). This means that
TB_Msg_provided[sig] was signed by ¢ (as only ¢ knows the corresponding private key).

Due to Line 107, it follows that the provided Token Binding message is equal to ekminfo, which is taken from
S'(as).oautbEKM. These values are only created in Line 172 of Algorithm 24. Therefore, ekmlinfo is equal to
hash({(n,nz, keyMapping(domyy))), for some values nj, ny.

As shown in Lemma 5, the signed EKM value does not leak, and therefore, m was sent by c.

To conclude this case, we note that m was created in Algorithm 16, where the key of the referred Token Binding is
exactly the same as in Case 1.

In both cases, the private key TB_ref _key is taken from s.tokenBindings, which is preconfigured and never sent to any other
process. Consequently, only ¢ knows this value. |

Lemma 18 (Access Token bound via OAUTB can only be used by Honest Client). For any run p of a FAPI web system FAPI
with a network attacker, every configuration (S,E,N) in p, every authorization server as that is honest in S, every read-write
client ¢ of type conf_0AUTB or pub that is honest in S with client id clientld issued to c¢ by as, every access token ¢ bound to
¢ (via OAUTB, as defined in Appendix J), every resource server rs that is honest in S with dom,; € si°.resource_servers
(with dom,s € dom(rs)) and every message m received at an URL (URL,S,dom,, /resource-rw,param,frag) with arbitrary
param and frag with MTLS_AuthN ¢ m.body and access token ¢ = m.header[Authorization] it holds true that:

If a response to m is sent, then the receiver is c.

PROOF. Let m be a message with MTLS_AuthN ¢ m.body and access token f = m.header[Authorization] such that a response
to this message is sent in Line 47 of Algorithm 26.
This implies that all applicable checks until Line 47 have passed successfully. Therefore, it holds true that

checksig(TB_prov_sig, TB_prov_pub) = T (L. 35) (10)
TB_prov_msg = S(rs).oautbEKM.ptr (L. 37 and 31) (1D
check_oautb_AT (id,t, TB_prov_pub, sy .authServ) = T (L. 39) (12)

for some prr, id and with TB_prov_sig := m.headers[Sec-Token-Binding][prov][sig],
TB_prov_pub := m.headers[Sec-Token-Binding][prov][id] and
TB_prov_msg := extractmsg(TB_prov_sig). (In this case, id can be an arbitrary identity. Even if this is the identity of an
attacker, the token is still bound to the client). We also note that s¢’.authServ is never changed by the resource server.

Due to 12, it follows that
(0AUTB, id, clientld,t, TB_prov_pub,rw) € S(dom_l(s(’)s.authServ)).accessTokens (per definition of check_oautb_AT), for
the client id clientld of ¢ (as the access token is bound to c).

Combining this with 10 and Lemma 17, it follows that the provided Token Binding message was created by c (as the
signature is valid and the corresponding private key is only known to c).

We conclude the proof by showing that such a Token Binding message is directly sent from the client to the resource server,
and therefore, cannot leak to and be used by another process.

Due to 11, ¢ has signed hash({n,ny,keyMapping(dom,y))) for some values ni,n; and with dom,s; € dom(rs) (the only place
where these values are created and added to the state of the resource server is in Line 11. As shown in Lemma 1, the host of
messages returned by the HTTPS generic server is a domain of the resource server).

As shown in Lemma 35, the signed EKM value does not leak to another process. Therefore, m was sent by ¢, which means
that the response containing the resource access nonce is sent back to c. |

G. Authorization

Lemma 19 (Authorization). For every run p of a FAPI web system 74P with a network attacker, every configuration (S,E,N)
in p, every authorization server as € AS that is honest in S with s§’.resource_servers being domains of honest resource
servers, every identity id € ID® with b = ownerOfID(id) being an honest browser in S, every client ¢ € C that is honest
in § with client id clientld issued to ¢ by as, every resource server rs € RS that is honest in S such that id € sp-ids,
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si-authServ € dom(as) and with dom,, € s§’ . resource_servers (with dom,, € dom(rs)), every access token ¢ associated
with ¢, as and id and every resource access nonce r € s .rNoncel[id| U sy .wNonce[id] it holds true that:

If r is contained in a response to a request m sent to rs with # = m.header[Authorization], then r is not derivable from
the attackers knowledge in S (i.e., r & dp(S(attacker))).

PROOF. Let c, as, rs, t, r and m be given as in the description of the lemma.

Resource Server never sends Resource Access Nonce r to Attacker.
We assume that the resource server sends r to the attacker. Consequently, the attacker sent the message m with the
access token ¢ to either the /resource-r or the /resource-rw path of the resource server.
Case 1: resource-r
As the attacker receives r, we conclude that the check done in Line 16 of Algorithm 26
(PROCESS_HTTPS_REQUEST) passes successfully and the identity chosen is this line is id (as a resource
nonce associated with id is returned).
Therefore, it holds true that check_read_AT (id,t,s{’.authServ) = T (S(rs).authServ is the same as in the initial
state, as it is not modified by the resource server), and it follows that (id, clientld,t,r) € S(as).accessTokens (per
definition of check_read_AT and as ¢ is associated with c).
This sequence is only added to accessTokens by the authorization server if ¢ is a read client (L. 145 of Alg. 24).
This means that the attacker is in possession of a valid access token for the read client ¢, which is a contradiction to
Lemma 15.
Case 2: resource-rw
If MTLS_AuthN € m.body, then the check done in Line 29 passes successfully, which means that
(MTLS, id, clientld,t ,key, rw) € S(as).accessTokens, for some key. This means that the access token ¢ is bound
to ¢ via mTLS and that the client ¢ is a read-write client (due to L. 140 of Alg. 24). Therefore, Lemma 16 holds
true, which is a contradiction to the assumption that the response is sent to the attacker.
Otherwise, MTLS_AuthN ¢ m.body, and the access token ¢ is bound to ¢ via OAUTB (with the same reasoning as in
the case of mTLS shown above). Furthermore, c is a read-write client of type conf_OAUTB or pub. Now, Lemma 18
holds true, which is again a contradiction to the assumption that the response containing r is sent to the attacker.
We highlight that if ¢ is a read-write client, the resource server sends r only to ¢, which follows directly from Lemma 16
and Lemma 18.
Client never Sends Resource Access Nonce r to Attacker.
In the following, we will show that the resource nonce r received in Line 67 of Algorithm 13
(PROCESS_HTTPS_RESPONSE) is not sent to the attacker.
Case 1: c is an app client
In this case, the resource nonce is not sent at all in Algorithm 13, due to the check in Line 70. (Intuitively, the
resource is used directly by the app).
Case 2: ¢ is a web server client
We assume that the resource nonce received in Line 67 of Algorithm 13 is sent to the attacker.
The only place where the resource nonce is sent by the client is in Line 73 of Algorithm 13, as this is the
only place where the client uses the resource nonce. The nonce saved in the session in Line 68 is not used
by the client at any other place. The resource nonce is sent to request[sender|, where request is retrieved from
S(c).sessions[sid][redirectEpRequest], for some sid.
The only place where S(c).sessions[sid|[redirectEpRequest] is set by the client is in Line 57 of Algorithm 12
(at the redirection endpoint). Intuitively, this means that the resource access nonce is sent back to the sender of the
request to the redirection endpoint.
Let m’ be the corresponding request that was received at /redirect_ep (L. 21 of Alg. 12). As we assume that the
resource nonce is sent to the attacker, it follows that m’ was sent by the attacker. The values of redirectEpRequest
are set to the corresponding values of m’.
Subcase 2.1: read client
If the client is a read client, then the token endpoint is chosen correctly. More precisely, the access token ¢ that is used
by the client is associated with ¢, as and id. Per definition, it follows that (id, clientld,t,r) € S(as).accessTokens.
As shown in Lemma 15, it holds true that the access token ¢ does not leak to the attacker, and therefore, the client
sent the token request to as in order to get the access token.
The code included in the token request can only be provided at the redirection endpoint (as shown in Lemma 3),
which means that m’ contained the code that will be used by the client. This means that there is a record rec at the
authorization server that associates the code with the identity and the client id. More precisely, it holds true that
rec €' §'(as).records with rec[code] = code, rec[client_id] = clientld and rec[subject] = id (as we assume that
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the resource is owned by id and due to L. 96, L. 97 and L. 146 of Alg. 24), for a state ' prior to S. As the read
client is a web server client, all conditions of Lemma 11 are fulfilled, which means that the attacker cannot know
such a code.

Subcase 2.2: read-write client

As the resource nonce r was sent to ¢ by rs, it follows that m was sent by c.

Subcase 2.2.1: OpenID Hybrid Flow: As Line 47 of Algorithm 26 is executed, it follows that the check in Line 24
passes successfully, and therefore, m.body[at_iss| = sj.authServ € dom(as) (the value of authServ is not changed
by an honest resource server and stays the same as in the initial state).

The client sends messages to the resource-rw path of a resource server only in Line 31 of Algorithm 18
(USE_ACCESS_TOKEN), hence, m.body[at_iss] = S(c).sessions|[sid'|[idt2_iss], for some sid’ (Line 16 of
Algorithm 18).

The value of idt2_iss is only set in Line 28 of Algorithm 13 (PROCESS_HTTPS_RESPONSE), and therefore, the
id token received in the token response has an issuer value from dom(as).

Due to Line 22 of Algorithm 13, it follows that issuer € dom(as), and therefore, s§. jwksCachelissuer| = pub(s§’.jwk)
(per definition of jwksCache).

This means that the second id token contained in the token response was signed by as (Line 16), as the private key
is only known to as. Therefore, this id token was created by as.

As the id token has the correct hash value for the access token ¢ (Line 24) and as the id token was created by
as (in Line 153 of Algorithm 24), it follows that either (MTLS,id’,clientld,t key,,rw) € S(as).accessTokens or
(OAUTB, id', clientld,t,key,,tw) € S(as).accessTokens, for some values key,, key,.

As the access token ¢ is associated with ¢, as and id, it follows that id’ = id, and therefore, the subject attribute of
the second id token is equal to id (due to Line 149).

As shown in Lemma 14, such an id token does not leak to an attacker, therefore, we conclude that the token response
was sent by as.

Let id_token_authep be the id token contained in m’ (the message that is received at the redirection endpoint).

Due to Line 18 of Algorithm 13, it follows that id_token_authep|sub| = id. Furthermore, id_token_authep[iss] has
the same value as in the second id token (due to Line 20), and therefore, id_token_authep was signed by as (with
the same reasoning as above).

As the client always checks that the audience value of id tokens are equal to its own client id, again Lemma 14 holds
true, which is a contradiction to the assumption that the client sends the resource access nonce to the attacker, as
otherwise, an id token with a valid signature from as with id being its subject value and the client id of ¢ being its
audience value would have leaked to the attacker.

Subcase 2.2.2: Code Flow with JARM: As in the case of the Hybrid Flow, the check done in Line 24 of Algorithm 26
passes successfully and it holds true that m.body[at_iss] = sj.authServ € dom(as).

The client sets this value only in Line 18 of Algorithm 18, where it is set to S(c).sessions[sid’|[JARM_iss] (with
sid’ being the session identifier of the corresponding session).

This value is only set in Line 17 of Algorithm 21, where it is set to the issuer of the response JWS respJWS. As
Algorithm 21 is only called at the redirection endpoint of the client (in Line 63 of Algorithm 12), it follows that this
response JWS was sent by the attacker.

Therefore, we conclude that extractmsg(respJWS)[iss] € dom(as).

Due to the checks done in Lines 7 and 13 of Algorithm 21, it follows that jwks = 5. jwksCache|dom_as] = pub(s§’.jwk)
(with dom_as € dom(as)), which means that the response JWS is signed by as.

The request to the resource server was sent by ¢, which means that the checks done by c¢ prior to sending the request
passed successfully, i.e., the hash of the access token received in the token response was contained in the response
JWS. More precisely, it holds true

extractmsg(respJWS)[at_hash]
(Line 57 of Alg. 12)
= extractmsg(S” (c).sessions|sid'|[redirectEpRequest][datal[responseJWS])[at_hash]
(Line 31 and 32 of Alg. 13)
= extractmsg(m” .body|access_token))
for a state ' prior to S and m” being the token response. The token sent to rs in Line 31 of Algorithm 18 is
the input argument of the algorithm. In case of the Read-Write profile, Algorithm 18 is only called in Line 59 or

Line 65 of Algorithm 13. In both cases, the token is taken from $”(c).sessions[sid'][token] which is only set in
Line 8 of Algorithm 17. Here, the token is the input argument of the algorithm, which is only called in Line 39
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of Algorithm 13. This is the access token received in the token response (i.e., equal to m”.body[access_token)).
Therefore, we conclude that the response JWS contains the hash of the access token that the client sent to the resource
server.
As the resource was sent by rs due to an access token ¢ associated with ¢, as and id, it follows per definition that
either (MTLS, id, clientld,t,key,rw) € S(as).accessTokens or (OAUTB,id, clientld,t,key ,rw) € S(as).accessTokens,
for some values key and key'.
The values of the identity and client identifier are both taken from a record rec € S(as).records with
reclaccess_token] =t (Lines 97, 139, 142 and 144 of Algorithm 24).
This record is created at the authorization endpoint of the authorization server, directly before the response JWS is
created in Line 79 of Algorithm 24.
For creating access tokens, the authorization server chooses fresh nonces for each authorization request (Line 68).
Therefore, the hash of the access token included in the JWS is unique for each authorization response Consequently,
the response JWS respJWS (from above), contains the code rec[code] (the code that contained in the same record as
the access token 7). However, this record also contains the identity id. This is a contradiction to Lemma 12, as the
attacker cannot know a response JWS that contains a code associated with id, signed by as and with the client id of
c.

]

H. Authentication

Lemma 20 (Authentication). For every run p of a FAPI web system 7421 with a network attacker, every configuration (S,E,N)
in p, every client ¢ € C that is honest in S, every identity id € ID with as = governor(id) being an honest authorization server
and with b = ownerOfID(id) being an honest browser in S, every service session identified by some nonce n for id at ¢, n is
not derivable from the attackers knowledge in S (i.e., n & dy(S(attacker))).

PROOF. Let clientld be the client id that has been issued to ¢ by as.

If the client is an app client, then no service session id is sent due to the check done in Line 17 of Algorithm 20
(CHECK_ID_TOKEN). In the following, we look at the case of a web server client.

We assume that the service session id is sent to the attacker by the client. This happens only in Line 25 of Algorithm 20.

This message is sent to request[sender|, where request = S(c).sessions|sessionld|[redirectEpRequest], for
some sessionld (Line 19). This value is only set at the redirection endpoint (in Line 57 of Algorithm 12,
PROCESS_HTTPS_REQUEST) and is the sender of the message m received at the redirection endpoint of the client. In
other words, the service session id is sent back to the sender of the redirection message, and it follows that m was sent by the
attacker.

Per Definition 16 (Service Sessions), it holds true that S(c).sessions[sessionld]|[loggedInAs] = (d,id), where d €
dom(governor(id)). As the identity is governed by as, it follows that d is a domain of as, therefore, the value for issuer
used in Algorithm 20 is a domain of as (Line 16).

CHECK_ID_TOKEN is only called in Line 40 of Algorithm 13

As shown in Lemma 3, the authorization code used for the corresponding token request was included in the request to the
redirection endpoint, i.e., the attacker knows this code.

If the client is a read client, then the token request is sent to the authorization server as (as the token endpoint might
only be misconfigured in the read-write flow). More precisely, it holds true that issuer € dom(as), as shown above. Therefore,
s(-issuerCachelidentity] € dom(as) (Line 4 of Algorithm 20). Per definition of issuerCache, it follows that the identity
identity chosen in Line 3 is from ID®. In other words, it holds true that S(c).sessions|sessionld|[identity] € ID®. As shown
in Lemma 2, the corresponding token request is sent to d’ € dom(as).

This means that the attacker knows a code such that there is a record rec €V S(as).records with rec[code] = code,
rec[client_id] = clientld and rec[subject] = id. This contradicts Lemma 11.

If the client is a read-write client, then it is possible that the code leaks due to a wrongly configured token endpoint. Here,
we distinguish between the following cases:

Case 1: OpenID Connect Hybrid Flow: We first look at the case that the client uses the OIDC Hybrid flow (for the current
flow in which we assume that the client sent the attacker a service session id). Let id_token_tep be the id token the client
receives in response to the token request. Let id_token_auth be the id token received at the redirection endpoint. This implies
that the attacker knows id_token_auth. Due to the check done in Line 18 of Algorithm 13 (PROCESS_HTTPS_RESPONSE),
it holds true that extractmsg(id_roken_auth)[sub] = id. When the token request is sent in the read-write flow, the first id
token is always checked in Algorithm 19 (CHECK_FIRST_ID_TOKEN). Therefore, the audience value of id_token_auth is
clientld (L. 13 of Alg. 19). The signature of the id token is checked with the same key as in Algorithm 20, which means that
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id_token_auth is signed with the key s§°.jwk. This contradicts Lemma 14, as the attacker cannot be in possession of such an
id token.

Case 2: Code Flow with JARM: As noted above, the value of issuer in Line 16 of Algorithm 20 is a domain of as and the
id token received in the token response was signed with the key si°. jwk. As the checks done in Algorithm 20 pass successfully,
it follows that the iss value of the id token is a domain of as and the aud value is the client id of ¢ (Line 9). Furthermore,
the sub value is id (as the SSID for this identity is sent to the attacker). As shown in Lemma 14, such an id token does not
leak to the attacker, and therefore, we conclude that the token response was sent by as. This means that the token request sent
by ¢ contains a code code such that the authorization server as creates the id token with the values depicted above. The values
for the audience and subject attributes of the id token are taken from a record rec € §'(as).records (for a state S" prior to S)
with rec[code] being the code received in the token request (due to Lines 95, 96 149 and 150 of Algorithm 24). As the issuer
value chosen in Algorithm 20 is a domain of as, it follows that s{.issuerCache[session[identity]] € dom(as (Lines 3 and 4
of Algorithm 20). Therefore, the issuer value of the request JWS received in the authorization response is also a domain of
as (Lines 3, 4 of Algorithm 21) and the JWS was created and signed by as (with the same reasoning as above). We also
note that the value of the issuer stored in the session does not change, as the value of the identity is only set in Line 12 of
Algorithm 12. However, this contradict Lemma 12, as the attacker sent the message to the redirection endpoint of the client
containing a request JWS created by as and with a code that is associated with an honest identity. |

L. Session Integrity

In the following, we show that the Read-Write profile of the FAPI, when used with web server clients and OAUTB, provides
session integrity for both authentication and authorization. We highlight that this holds true under the assumption that the state
value (which is used for preventing CSRF attacks; Section 10.12 of [25]) leaks to the attacker.

Lemma 21 (Session Integrity Property for Authentication for Web Server Clients with OAUTB). For every run p of a FAPI
web system FAPI with a network attacker, every processing step Q in p with

Q= (S,E,N)— (S,E".N')

(for some S, §', E, E’, N, N'), every browser b that is honest in S, every as € AS, every identity u, every web server client
¢ € C of type conf_0AUTB that is honest in S, every nonce Isid, and Ioggedlng(b7c,u7as7lsid) we have that (1) there exists a

processing step Q' in p (before Q) such that startedgl(b,c,lsid), and (2) if as is honest in S, then there exists a processing
step Q" in p (before Q) such that authenticatedg (b,c,u,as,lsid).

PROOF.

Part (1):
This part of the proof is analogous to the proof given in Lemma 10 of [44]. For completeness, we give the full proof
for the FAPI model.
Per definition of Ioggedlng(b,c,u,as,lsid) (Definition 18), it holds true that the client ¢ sent the service session id to
the browser b. This happens only in Line 25 of Algorithm 20 (CHECK_ID_TOKEN), where the service session id is
sent to S(c).sessions[lsid][redirectEpRequest|[sender| (Lines 19 and 25 of Algorithm 20).
This value is only set in Line 57 of Algorithm 12 (at the redirection endpoint of the client), where it is set to sender
of the redirection request. In other words, the browser b sent the request to the redirection endpoint.
This request contains the nonce Isid as a session id (in a cookie; Line 22 of Algorithm 12).
As this cookie contains the secure prefix, it follows that it was set by the client (i.e., it was not set by the network
attacker e.g., over a previous HTTP connection).
This means that the client previously sent a response to b in Line 49 of Algorithm 14, as this is the only
algorithm in which the client sets a cookie containing a login session id (Line 12). This response is sent to
§"(c).sessions|lsid|[startRequest|[sender] (for a state S” prior to S within the same run) (Line 46), which
is only set in Line 12 of Algorithm 12, i.e., the browser b sent a POST request to the path /startLogin. This request
contains a origin header with an origin of the client (checked in Line 8 of Algorithm 12 and due to Lemma 1).
From the two scripts that could send such a request (script_c_get_fragment and script_client_index), only
script_client_index (Algorithm 22) sends such a request. Therefore, it holds true that startedg, (b,c,lsid) (for a
processing step Q' that happens before Q).

Part (2):
Login with ID Token from Token Response: From the definition of Ioggedlng(b,c,u,as, Isid)
(Definition 18), it follows that the client ¢ sent a response m to b containing the header
(Set-Cookie, [(__Secure,serviceSessionId):(ssid, T, T,T)]) for some nonce ssid, and it also holds true that
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S(c).sessions[lsid|[serviceSessionId] = ssid and S(c).sessions|lsid][loggedInAs] = (d,u) (with d € dom(as)).
Let my 4. be the request corresponding to the response 7.

The cookie contains the secure-prefix, which means that it was set in a connection to the client, i.e., it was set by the
client. An honest web server client sends such a response only in Line 25 of Algorithm 20 (CHECK_ID_TOKEN).
This algorithm is only called in Line 40 of Algorithm 13 (PROCESS_HTTPS_RESPONSE), and therefore, the id
token that is used in Algorithm 20 is received in a response with the reference value TOKEN. Let miz;‘;n denote this
token response.

Token Response was sent by as: Due to S(c).sessions[lsid][loggedInAs| = (d,u), it follows that the id token
received in the token response was signed by as: The value of issuer chosen in Line 4 of Algorithm 20 is d (as

this value is used in S(c).sessions|lsid][loggedInAs] in Line 16). Therefore, the public key used for checking the
L.7, Alg. 20
signature of the id token is jwks =* S(c).jwksCache[d] = sg.jwksCache[d] pub(s .jwk), and the id token

was signed with the corresponding private key (as checked in Line 11; we note that the value of jwksCache is never
changed by the client, and therefore, is the same as in the initial state). This private key is only known to as and
never sent to any other process, which means that the id token was created by as.
As shown in Lemma 13, such an id token does not leak to any process other than ¢ and as, which means that the
token response was sent by as. More precisely, all pre-conditions of the lemma are fulfilled, as the authorization
server is honest, the client is a web server client (and therefore, it is confidential), the signature of the id token is
valid and it has the client id of ¢ as its audience value (which is checked in Line 9 of Algorithm 20). Furthermore,
it contains the attribute at_hash (checked in Line 24 of Algorithm 13, when receiving the token response), which
means that it was created at the token endpoint of the authorization server.
Code included in Token Request was provided by b: As the client sends the service session id to b, it follows
that S(c).sessions|lsid][redirectEpRequest|[sender] is an IP address of b (Lines 2, 19 and 25 of Algorithm 20).
1 be the token request corresponding to the token response ;. As shown in Lemma 3, it holds true that

Lfrbgqm token ! token "
body[code] = S”(c).sessions[lsid][redirectEpRequest][datal[code] (for a state S” prior to S).

Tltl(il;er{/alue is only set at the redirection endpoint of the client (Line 57 of Algorithm 12), which means that the code
used for the token request was sent by b. (We note that as the state value is invalidated at the session of the client
(Line 56 of Algorithm 12), for each session, only one request to the redirection endpoint is accepted.)
Together with the code, b also included a TB-ID: Along with the code, the browser sent a provided Token Binding
message with the ID S(c).sessions|lsid][browserTBID| (Line 50 of Algorithm 12). Here, this value is taken from
a provided Token Binding message, which the honest browser only sets in Line 6 of Algorithm 4. The private key
used by the browser is only used for the client (i.e., for each domain, the browser uses a different key). (Here, we
again highlight that the response to the redirection endpoint was sent by the browser, which is honest).
We conclude that the values for the code and the PKCE verifier (which is the Token Binding ID used by the
browser for the client; Line 46 of Algorithm 16) included in the token request were both provided by the browser b.
More precisely, the token request mtoken (with the reference value TOKEN) is only sent in Line 48 of Algorithm 16
(SEND_TOKEN_REQUEST), as the client is a web server client of type conf_OAUTB (only read-write clients can
be of this type).
The identity u was authenticated by b: As noted above, the token response was sent by as, which means
that all checks done by as passed successfully. Therefore, it holds true that mmkcn .body[pkce_verifier] =
record[pkce_challenge] (Line 131 of Algorithm 24), with record € §"(as).records such that record|code| =
Iggen body[code] (Lines 95 and 96 of Algorithm 24) (for a state S prior to S). As noted above,
my.,. .body[pkce_verifier] = S(c).sessions|lsid|[browserTBID] (Line 46 of Algorithm 16), which is a Token
Binding ID used by b.
The value of record[pkce_challenge] is only set in Line 72 of Algorithm 24 (as the client is a web server client of
type conf_0AUTB; we note that this client id is included in the record), where it is set to the value TB_referred_pub =
m.headers[Sec-Token-Binding]|[ref][id] (Lines 38 and 41 of Algorithm 24), with /m being the message which the
AS receives at the authorization endpoint.
To sum up the previous paragraphs, it holds true that the message m contains a valid Token Bind-
ing message (i.e., with a valid signature, as this is always checked by the AS) with the Token Bind-
ing ID 7m.headers[Sec-Token-Binding|[ref|[id] = record[pkce_challenge] = m|, body[pkce_verifier| =
S(c).sessions|lsid|[browserTBID], which is a Token Binding ID of the browser b. As only b knows the corresponding
private key (and does not reveal this key to another process), we conclude that /1 was sent by b.
When sending the token response, as does not only check the PKCE verifier, but also retrieves the identity that is
then included in the id token from record (Line 149 of Algorithm 24).
The identity is added to the record in the /auth2 path and taken from s/ (Lines 9 and 62 of Algorithm 24), which
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means that the identity u was authenticated by b, i.e., b = ownerOfID(u).
The redirection request was sent from as (to b):
Case 1: OIDC Hybrid Flow: Let idt; be the id token contained in m g . (As the flow used for the session with the
session identifier Isid is the OIDC Hybrid flow, such an id token is always required to be included in the request).
When receiving the token response, the client checks if the sub and iss attributes have the same values in both id
tokens, and only continues the flow if the values are the same (Lines 18 and 20 of Algorithm 13).
As we know that the second id token (which is used for logging in the end-user) contains the subject # and an issuer
being a domain of as, it follows that idt; contains the same values. Furthermore, the id token is signed by as (with
the same reasoning as above) and contains the client identifier clientld as its audience value.
As shown in Lemma 14, such an id token does not leak to the attacker (we note that b is honest and the client is a
web server, i.e., all conditions of the lemma are fulfilled).
Analogous to the proof of Lemma 10 of [44], it follows that the request mizgir was caused by a redirection from as.
Instead of the state value, the id token idt; is a secret value that does not leak to the attacker. In short, the request
mizgir was not caused by the attacker, as the id token does not leak. The redirect was also not caused by the client c,
as ¢ does not send messages containing an id token.
As the request miz(qﬁr contains a state value (which is checked in Line 52 of Algorithm 12), it follows that the request
was not created by the scripts script_client_index or script_as_form, as these scripts do not send messages containing
a state parameter.
The script script_c_get_fragment sends only data that is contained in the fragment part of its own URI, and only
to itself. This means that the script was sent from the client to the browser, which happens only in Line 36 of
Algorithm 12, i.e., at the redirection endpoint.
Altogether, we conclude that there was a location redirect which was sent from as to b containing the id token.
Case 2: Authorization Code Flow with JARM: Let the flow used in the session with the session identifier Isid be a
Code Flow with JARM. As shown above, it holds true that b = ownerOflID(u). The code that the client uses at the
token endpoint was sent by the browser, and as an id token with the identity of u is returned by the authorization server,
it follows that there is a record that contains the code provided by the browser and the identity u (in S(as).records).
Furthermore, the code is contained in a response JWS. The issuer value of the JWS is a domain of as (as the id token
was signed by as, it follows that for this particular session, the client is using a domain of as as the expected issuer
(in issuerCache[session][identity]), to which the client also compares the issuer of the response JWS. Therefore,
its audience value is clientld. Now, all conditions of Lemma 12 are fulfilled, which means that such a response JWS
does not leak to the attacker. The remaining argumentation is the same as in the first case.

]

Lemma 22 (Session Integrity Property for Authorization for Web Server Clients with OAUTB). For every run p of a FAPI web
system FAPI with a network attacker, every processing step Q in p with

Q= (S,E,N)— (S, E',N")

(for some S, §', E, E’, N, N'), every browser b that is honest in S, every as € AS, every identity u, every web server client
¢ € C of type conf_Q0AUTB that is honest in S, every rs € RS that is honest in S, every nonce r, every nonce Isid, we have that
if accessesResourceff(b7 r,u,c,rs,lsid) and si.authServ € dom(as), then (1) there exists a processing step Q" in p (before Q)

such that startedg, (b,c,lsid), and (2) if as is honest in S, then there exists a processing step Q" in p (before Q) such that
authenticatedg (b,c,u,as,lsid).

Part (1):

Per definition of accessesResource (Definition 21), it holds true that the browser b has a cookie with the session
identifier Isid for the origin of the client c¢. As this cookie has the secure prefix set, it follows that the cookie was
set by ¢, which happens only in Line 49 of Algorithm 14. The remaining reasoning is the same as in the proof of
Lemma 21.

Part (2) (using the OIDC Hybrid Flow)

Here, we also first prove the property for the OIDC Hybrid Flow and then show the parts that differ when using the
Authorization Code Flow in conjunction with JARM.

Resource was sent from rs:

Per Definition of accessesResource, it holds true that ¢ saved the resource access nonce r in
S(c).sessions[lsid][resource]. An honest client stores a resource access nonce only in Line 68 of Algorithm 13.
Here, r was contained in response to a request Mredource With the reference value RESOURCE_USAGE (Line 66 of
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Algorithm 13). The client sends requests with this reference value only in Line 31 of Algorithm 18 (this holds true
as c is a read-write client).

Miesource 1S sent to the /resource-rw path of S(c).sessions[lsid][RS] (Lines 2, 10 and 30 of Algorithm 18).

Per Definition of accessesResource, this is a domain of rs, which means that r was sent to the client by rs. More
precisely, the response of the resource server was sent in Line 47 of Algorithm 26 (within the resource-rw path).
Second ID Token was created by as:

As the checks done in Lines 22 and 24 of Algorithm 26 passed successfully, it follows that myesource-body[at_iss] €
dom(as) (per assumption, it holds true that s{’.authServ € dom(as)).

This means that the id token contained in the token response was signed by as. More precisely,
§"(c).sessions|lsid][idt2_iss] € dom(as) (Line 16 of Algorithm 18; here, we are only considering the OIDC
Hybrid Flow), for some state S prior to S.

This value is only set in Line 28 of Algorithm 13, where it is set to extractmsg(mj,- .body[id_token])[iss], where
myb . is the token response received in Algorithm 13. Therefore, the iss value of this id token is a domain of as.
Due to Lines 16 and 22 of Algorithm 13, it follows that (with dom,s € dom(as))

- resp
checksig(m,qpe,

.body[id_token], s . jwksCache[domy]) =T

resp
token

g checksig(m,,.,.body[id_token], pub(sg’.jwk)) =T

Therefore, we conclude that the id token was signed by as. (The values of jwksCache are never changed by the
client, which means that they are the same as in the initial state).

Token Response was sent by as:

This id token contains a value for the attribute at_hash (Line 24 of Algorithm 13). As shown in Lemma 13, such
an id token does not leak to the attacker (the id token contains the client id of ¢ due to the check done in Line 26 of
Algorithm 13). Thus, we conclude that the token response mfslign was sent by as (clients do not send any messages
containing id tokens).

Access Token used by c:

The access token ¢ used by the client in the request to rs was contained in the token response. More precisely, the
message Myesource Was sent by the client in Algorithm 18 (as noted above). In Line 8 of this algorithm, the client
includes the access token in the header of the message. The access token used here is an input parameter of of the
function (USE_ACCESS_TOKEN). A read-write client calls this function either in Line 59 or Line 65 of Algorithm 13.
In both cases, the access token is taken from S.sessions[lsid|[token] (Line 55 or Line 63), for some state S. This
value is only set in Line 8 of Algorithm 17, which is only called in Line 39 of Algorithm 13, where the access token
is taken from the body of mi.," . Therefore, the access token was sent to the client by as.

Sequence in accessTokens (state of as):

We note that the token response was sent by as to ¢, which means that the corresponding token request was sent by
¢ and contains the client identifier clientld (as c is honest).

Before sending the token response in Line 158 of Algorithm 24, the authorization server adds a sequence to
§'(as).accessTokens (for some state S’ prior to S).

Let ATSeq be the sequence added to the state directly before sending the token response mmkin. As the client identifier
received in the token request belongs to a client using OAUTB, this sequence is equal to (OAUTB, ', clientld,t,k,rw),
for some identity u’ and key k. The access token ¢ is the same that is included in the token response. In the following,
we will show that the v’ = u.

We first note that for each access token, there is at most one sequence in accessTokens (in the state of the authorization
server) containing this access token. This holds true because the authorization server creates fresh authorization codes
and access tokens in the /auth?2 path (Lines 67 and 68 of Algorithm 24) for each authorization request received at
/auth2. These values are stored in a record in records. When the authorization server receives a request to the token
endpoint, it chooses the record depending on the authorization code contained in the token request and invalidates
the authorization code contained in the record before creating the sequence for accessTokens (Line 138). Therefore,
the access token can only be added once to such a sequence.

As the resource server sent a response in Line 47 of Algorithm 26 to ¢, it follows that all (applicable) checks
passed successfully. As the request mieeource Was sent by ¢, it does not contain the key MTLS_AuthN in its body
(Line 19 of Algorithm 18). Therefore, it holds true that check_oautb_AT(u,t,k,S(rs).authServ) = T (Line 39 of
Algorithm 26). (This holds true as the resource server provides access to a resource of the identity u). From the
definition of check_oautb_AT, it follows that this identity is contained in the sequence ATSeq, and therefore, v’ = u.
The identity u was authenticated by b:

res
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The browser b has a cookie with the session identifier Isid for the origin of the client ¢, which means that the request
to the redirection endpoint of the client was sent by b (as this value is only known to b) With the same reasoning as
in Lemma 21, it follows that the identity u was authenticated by b. We briefly summarize the argumentation: As the
request to the redirection endpoint of ¢ was sent by b, it follows that the code used in the token request was provided
by b. Furthermore, b proved possession of a Token Binding ID. As the token response was sent by as, it follows that
the process that authenticated the identity u proved possession of the Token Binding ID used by the browser when
sending the request to the redirection endpoint. As the private key of this Token Binding ID is only known to b, it
follows that b authenticated u.
ID Token contained in the Redirection Request :
As we are looking at the Hybrid Flow, the authorization response is required to contain an id token.
Let idt; be this id token. When receiving this id token in the redirection request, the client stores it in the session
(using the key redirectEpRequest; Line 57 of Algorithm 12).
In Lines 18 and 20 of Algorithm 13 (i.e., after receiving the token response), the client only continues the flow if
the subject and issuer values of both id tokens have the same value. As shown above, the issuer of the second id
token is a domain of as, and the signature of idt; is checked in Line 15 of Algorithm 19. With the same reasoning
as above, it can be seen that this id token is signed by as (as the issuer value is a domain of as). Furthermore, we
note that this function is called in Line 61 of Algorithm 12 (in the Hybrid flow, this function is always called when
receiving the redirection request). The client identifier contained in the id token is clientld (checked in Line 13 of
Algorithm 19, and as the issuer is a domain of as).
As showed above, the token response (containing both the id token and the access token) was sent by as. Therefore,
the id token contained in the token response contains the identity associated with the access token, which is u. This
means that idt; also has the subject u. As shown in Lemma 14, such an id token does not leak to the attacker.
Redirection Request was sent to from as (to b):
Analogous to Lemma 21, it follows that the redirection request was sent to the browser by as, as the id token contained
in the redirection request does not leak to the attacker.
Part (2) (using the Code Flow with JARM)
Here, we focus on the parts that are different from the proof for the OIDC Hybrid flow.
Resource was sent from rs: This part is the same as in the Hybrid Flow.
Response JWS was created by as:
As above, it holds true that megource-body[at_iss] € dom(as) (as this is checked at the resource server).
From this, it follows that S”(c).sessions|[lsid][JARM_iss] € dom(as), as the value of at_iss of the request to the
resource server is set from this value (Line 18 of Algorithm 18; here, we are considering the Code Flow with JARM).
This value is only set in Line 17 of Algorithm 21 (CHECK_RESPONSE_JWS), where it is set to data[iss] =
extractmsg(respJWS)[iss] (Line 8 of Alg. 21), with respJWS being the input argument of Algorithm 21.
Here, the first argument of the function (i.e., the session identifier) is Isid, as the issuer of the response JWS is saved
in the session identified by Isid (again Line 18 of Algorithm 18).
This algorithm is only called in Line 63 of Algorithm 12 (at the redirection endpoint), where the respJWS is set to
data[responseJWs]. Let m 4. .. be the request which the client received at the redirection endpoint (i.e., at the path
/redirect_ep and for the session identifier Isid, i.e., the cookie sessionId contained in the request has the value
Isid).
As we are looking at the Code Flow using JARM, the value of data is equal to mizgirea.parameters (Line 32), hence,
we conclude that the iss value of the JWS m . .parameters[responseJWs] is a domain of as.
During the checks that is done in CHECK_RESPONSE_JWS, the client also checks the signature of the JWS (Line 15
of Algorithm 21). With the same reasoning as in the case of the Hybrid Flow, it follows that the response JWS
contained in m g .. was signed by as.
Token Response was sent by as: As the client used the access token ¢ it received in the token response at the resource
server, it follows that the check of the hash of the access token done in Line 32 of Algorithm 13 passed successfully.
Furthermore, the aud value of respJWS is the client identifier clientld (checked in Line 13 of Algorithm 21).
In the following, we assume that the token response mﬁ‘é‘s‘s" was sent by the attacker.
As the hash of the access token was included in a response JWS signed by as, and as this JWS contains the client
identifier clientld, we conclude that as created this access token for ¢, i.e., there is a record rec within the state of
the AS with reclaccess_tokens] =t and rec[aud] = clientld.
As we assume that this access token was sent from the attacker, it follows that it previously leaked to the attacker. In
order to leak, the access token must first be sent from the AS.
Let Q" be the processing step in which as sent the access token ¢. As the access token is contained in a record which
also contains the client identifier clientld, and as this is the client identifier of a web server client (which means that
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the client is confidential), it follows that the corresponding code code was sent by ¢ (due to Lemma 8).
However, this means that the client received the code code at the redirection endpoint (for this particular flow in
which the access token leaks). As c is a read-write client, it only accepts signed authorization responses, i.e, the
response is either a response JWS or an id token.
We note that this response (either response JWS or id token) was signed by as: The client sent (in this particular
flow) the code (i.e., the token request) to as. The token request is required to contain the redirection uri at which
the redirection response was received (checked at the AS in Line 136 of Algorithm 24 (in the FAPI flows, this is
always contained in the token request, as the client is required to previously include this in the authorization request).
The check of as passed, which means that this URI is a redirection URI used by the client for as. The FAPI requires
these sets of URIs to be disjunct (i.e., for each AS, the client has a different set of redirection URIs). Therefore, this
URI belongs to the set of URIs the client uses for as. This means that (for this particular session), the issuer (i.e. the
authorization server) the client expects is a domain of as.
From this, we conclude that the response JWS or id token which the client received in this (previous) flow at the
redirection endpoint was signed by as (as both id tokens and response JWS always contain an issuer, which is the
same that the client stored at the corresponding session. The signature is checked with a key of this issuer).
The request to the redirection endpoint contained a response JWS, as the AS as included the access token corresponding
to the code in a response JWS. (Otherwise, it would mean that the client would have created an additional id token
with the attribute c_hash being the hash of the code (due to the check done at the client in Line 11 of Algorithm 19.
However, the AS creates either a response JWS or an id token).
The response JWS the client received (in the main flow, i.e., the one in which the client receives the resource) was
created by as and contains the authorization code code. However, the AS creates exactly one response JWS with a
particular code (as codes are nonces that are freshly chosen).
This implies that in both flows that we are looking at (i.e., the original flow in which the honest as sends out the
access token, and the flow for which we assume that the token endpoint is controlled by the attacker), the client
received the same response JWS, and in particular, the same state value (which is contained in the response JWS).
However, the state is unique to each session, as it is chosen by the client as a fresh nonce (Line 39 of Algorithm 14).
This is a contradiction to the assumption that the check done in Line Line 32 of Algorithm 13 was executed successfully,
as this would mean that the client previously accepted the check done in Line 54 of Algorithm 12 (where it is checked
if the state was already invalidated) for the response JWS received in the second flow.
Therefore, we conclude that the token endpoint is controlled by the honest as, i.e., the token response was sent by as.
Access Token used by c: As above, the access token that the client uses for the request to the resource server was
contained in the token response, i.e., the access token was sent by as.
Sequence in accessTokens (state of as): As in the case of the Hybrid flow, the state of the authorization server as
contains the sequence (0AUTB, u, clientld,t,k,rw).
The identity u was authenticated by b: As above, the identity u was authenticated by b (due to the check of the
Token Binding ID used by the browser for the client, which happens at the AS).
Response JWS contained in the Redirection Request: As the identity u is governed by an honest browser, and
due to Lemma 12, it follows that the response JWS does not leak to the attacker.
The rest of the proof is the same as above, as now, the response JWS is a value that does not leak to the attacker
(instead of an id token).

|

J. Proof of Theorem

Theorem 1 follows immediately from Lemmas 19, 20, 21, and 22.
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