
Extending CREST with multiple SMT solvers and real arithmetic

Do Quoc Huy, Truong Anh Hoang, Nguyen Ngoc Binh
University of Engineering and Technology, VNU

144 Xuan Thuy, Hanoi, Vietnam
{huydq.mcs07, hoangta, nnbinh}@vnu.edu.vn

Abstract

Generating the test inputs, that have high code cover-
age while minimizing the number of test inputs, is a practi-
cal but difficult problem. The application of symbolic exe-
cution in combination with SMT solvers gives a promising
way to solve it. Recently, there have been several tools that
help generating the test inputs for C programs, but their
abilities are still limited, depending on the particular cho-
sen SMT solver and most of them currently do not support
real arithmetic. We propose an approach to overcome the
limitation of unique solver’s ability by using multiple SMT
solvers and combining their results to get the best solution.
We also propose a method of reasoning real arithmetic for
symbolic testing. We have implemented this approach in an
open source symbolic testing tool called realCREST. Our
experimental results are very positive.

Keywords: Software Testing, Symbolic Execution, SMT

solver, Test Inputs, C Programs

1. Introduction

Testing is the primary way to validate the correctness of

software. Testing with manually generated inputs is the pre-

dominant technique in practice to ensure software quality.

It accounts for 50-80% software development cost. Manual

test inputs generation is expensive, error-prone, and rarely

exhaustive. Thus, several techniques have been proposed

to automate this task. They can be divided into two main

techniques: random testing and symbolic execution.

Random testing [4, 8, 6, 17] is a simple technique for au-

tomated testing in which test inputs are generated randomly.

A key advantage of random testing is that it scales well with

random test input generation takes negligible time. How-

ever, random testing is extremely unlikely to test all possi-

ble behaviors of a program.

To generate test inputs that can explore as many branches

of a program as possible, some techniques based on sym-

bolic execution [13] have been proposed. Such techniques

attempt to symbolically execute a program under test along

with all possible execution paths of the program, generating

and solving path constraints of program variables to fol-

low these paths to produce concrete inputs that test them.

Usually the constraints solving is delegated to some exter-

nal SMT solvers [14, 15, 18]. Section 2 will explain this

method in more detail.

In general, it is impossible to choose the most power-

ful solver because there are many of them such as Z3 [14],

CVC3 [3], Yices [10], Barcelogic [15, 9] and they are dif-

ferent in their speed, memory use, and algorithms as well

as underlying theories they support. A solver can be bet-

ter than another in solving linear integer arithmetic con-

straints but it is worse when dealing with non-linear real

arithmetic. In short, the set of problems that each solver

can solve are not the same and their union is usually strictly

larger than each of them. Test inputs generation tool usu-

ally uses only some particular SMT solvers or let users to

choose one among several options. In practice, this is not

convenient. Combining the power of these solvers allow

us to make test generation tool much more powerful and

convenient to use. This is one of the features that we imple-

mented in our testing tool.

CREST [11] (http://code.google.com/p/crest/) is a tool

used to generate test automatically for C programs. Using

CIL [13], it inserts instrumentation code into a target pro-

gram to perform symbolic execution to generate symbolic

constraints along with the concrete execution. Then, it uses

Yices to solve the generated symbolic constraints to get in-

puts that drive the test execution down to new, unexplored

program paths. However, since CREST currently reasons

symbolically only about linear, integer arithmetic, it cannot

handle C programs that use real variables. In addition, be-

cause CREST uses only Yices to solve the path constraints,

it sometimes cannot generate inputs for complex constraints

that other solvers can do.

In order to overcome this problem, in this paper, we pro-

pose an approach to enhance the quality of solving con-

straints in generating test input problem by using multiple

SMT solvers and combining their results to get the best so-

2010 Second International Conference on Knowledge and Systems Engineering

978-0-7695-4213-3/10 $25.00 © 2010 IEEE

DOI 10.1109/KSE.2010.34

183

lutions. This approach is implemented in a tool called re-

alCREST, based on CREST architecture. The limitation in

reasonable arithmetic of CREST is solved by revising in-

strumentation and symbolic execution modules to supply

the ability of reasoning on both integer and real arithmetic.

The method of using SMT solver and symbolic execution in

generating testing, and the way we combine multi solvers to

solve constraints are described in section 3. An overview of

our tool and its improvement are showed in section 4. Sec-

tion 5 presents experimental results and gives some discus-

sions. At last,in section 6, we draw to close and point to our

future works.

2 Related work

There are some tools to generate test input for C pro-

grams:

Directed Automated Random Testing (DART) [16], is

an automated testing tool that combining three techniques

to achieve high path coverage. First, it determines and sim-

ulates the “most general environment” in which a program

can run by extracting the external interface of the program.

Second, it creates a test driver which enforces again and

again the program with irregular input. The execution of

this input allows the tool to complete dynamical analysis on

the track of the execution tree of the program. Eventually,

DART can enforce the execution together with an alterna-

tive path by working out a relevant set of constraints and run

concrete execution with the solution. It applies a solver for

linear integer arithmetic. When the constraints are beyond

this theory, the systems will be back to the concrete values

of variables to go on with the execution.

By getting in group concrete execution with symbolic

analysis, DART succeeds in solving the issue of false alerts

sequences of the imprecision of the latter. Every inaccuracy

reported by the tool is sonorous, because it depends on an

actual execution of the program. The method proves to be

useful and advantageous, especially with the use of library

functions whose source code can not be analyzed. Whereas

static analysis can not get anything about their use, DART

can gain a lot of benefits from inspecting the real value back

by such a function.

CUTE [12], an acronym for the Concolic Unit Testing

Engine, is a tool built on the same work. Like DART, it also

combines concrete and symbolic execution to examine al-

ternative execution paths in order to disclose potential asser-

tion violations. Unlike DART, it does not only use lp solve

for solving linear constraints, but also introduces optimiza-

tions. To do this, it first syntactically detects a new sub-

constraint which is the negation of another, then eliminates

common sub-constraints. It solves the constraints in an

incremental way, only taking into account sub-constraints

which depend on the newly introduced one. CUTE also

deals with predicates that involve pointer variables by in-

vestigating the equivalence classes for them.

Although there are two methods in constructing input

data structures, the former only uses function calls, and

thus, suffers from the disadvantage of relying on these func-

tions. Solving the class invariant for data structures should

be the primary choice for this process. Since CUTE does

not make use of exact pointer analysis, its precision is only

subject to the predicates encountered so far in the program.

The trade-offs between performance - within the extents of

tractability- and higher path coverage could be discussed in

the context of this aspect of the tool.

KLEE [5] is a symbolic execution tool which is capable

of automatically generating tests that achieve high coverage

on a diverse set of complex and environmentally-intensive

programs. KLEE manages to get a handle on both, the

path explosion problem and the “environment problem” .

KLEE is different to other tools in optimizing the constraint

set in order to speed up constraint satisfiability tests upon

each “unsafe” access (viz., pointer dereferences, asserts,

etc). KLEE is designed as an operating system for sym-

bolic processes. Just like a “real” operating system picks

up one among several competing processes for schedul-

ing, KLEE’s scheduler selects a symbolic process amongst

many for symbolic execution. KLEE’s scheduler’s target

is to run those symbolic processes that have possibilities to

offer biggest improvements in coverage. Each symbolic-

process has a current set of constraints on the environment,

which must be met for the current path to be reached. If

KLEE detects a violation in the constraint set, it triggers

an error and generates a test case. KLEE’s approach of re-

ducing time cost of solving process is to optimize away the

large parts of the state of each symbolic-process before the

constraints are passed on to the solver.

Although each of DART, CUTE and KLEE concentrates

on different targets in symbolic testing, all of them do not

currently support symbolic floating point arithmetic. It is

the main disadvantage in applying them to practical pro-

grams.

3. Using Multiple SMT Solvers and Symbolic
Execution to Generate Test Inputs

When we perform symbolic execution for a program, we

can get execution path. This execution path can be used

to create new test inputs by using SMT solver to solve the

path constraints. The general technique of using symbolic

execution and SMT solver to generate test input are outlined

in Figure 1.

We can see in Figure 1 that SMT solver plays an impor-

tant role in generating test input. Naturally, a combination

of two or more SMT solvers will give a better result com-

pare with one SMT solver in solving constraints, because

184

Figure 1. Symbolic testing technique

some complex constraints that cannot be solved by a solver

are solved by another solver and vice versa. We introduce

a strategy for using multiple SMT solvers to solve the path

constraints. Our strategy uses two or more SMT solvers to

solve a constraint serially. Figure 2 describes our algorithm

in combining multiple SMT solvers. Firstly, we choose a

solver to solve the constraint. If it fails to solve the con-

straint, the next SMT solver will be used. This phase is

repeated util the constraint is solved successfully or there is

no unused SMT solver. If the constraint is solved success-

fully, the achieved concrete model is created.

Figure 2. Combining multiple solvers algo-
rithm

4. Test inputs generation for real numbers

As mentioned in the Introduction, CREST does not sup-

port generating test cases for real variables and since a large

part of programs in practice uses real numbers, we extend

CREST to deal with real variables in a tool called “real-

CREST” . We have made the following important improve-

ments compared to CREST:

• CREST can only perform symbolic execution with in-

tegral variables and solve only linear integer arithmetic

constraints. realCREST can perform symbolic execu-

tion with both integral variables and real variables. The

generated constraints which contain both linear integer

arithmetic and linear real arithmetic are solved to pro-

duce test inputs for both integral and real variables.

• CREST can resolve only three arithmetic operators:

addition, subtraction and multiplication. It can not re-

solve division operator. The reason is that it is able

to solve only linear integer arithmetic, while the divi-

sion operator may lead to real-type variables. In real-

CREST, the division operator can be instrumented and

performed in symbolic execution, like other operators.

• CREST uses only one SMT solver (Yices) to solve

the path constraints, realCREST uses multiple SMT

solvers so that more complex programs can be han-

dled. Currently these SMT solvers are used sequen-

tially. When a constraint cannot be solved by one SMT

solver, another SMT solver is used. In the first version

of realCREST, we use two solvers: Yices and CVC3.

Yices is used firstly, and if it cannot solve a constraint,

CVC3 will be used.

Architecture of realCREST is similar to CREST’s archi-

tecture. It has three main modules like CREST, but we have

made essential improvements in each module:

• Source code instrumentation module: This module in-

struments C source code, parsing it into conditional

paths and stores this path to searching phrase. In

this module, realCREST uses an extension file based

on CIL to instrument source code and store execution

paths into binary files. This file is an improvement of

the original file of CREST to process real-type vari-

ables and division operator.

• C++ library for performing symbolic execution. This

part includes classes that are used to run instrumented

functions, catch and store program’s state and exe-

cution path during symbolic execution process, and

solve constraints to generate input for the next exe-

cution. Two classes in CREST: SymbolicExpr and

SymbolicInterpreter are replaced by corresponding

185

classes SymbolicExprR, SymbolicInterpreterR in or-

der to handle real-type variable’s constraints and re-

solve division operator. Class YicesSolver of CREST

is replaced by class Solver and two subclasses Yices-

Solver, CVC3Solver in order to combine two solvers

in solving the constraint.

• Search strategies modules: This module supplies sev-

eral different search algorithms to search unexplored

path in execution path’s space. realCREST reuses

search strategies modules of CREST, with a small ad-

dition in class Search: one member variable (solver)

is added in order to determine which solver is used to

solve the constraint and invoke Solve method.

Operation schema of realCREST is depicted in Figure 3.

Figure 3. Overview of realCREST

5. Experiments and Discussions

We do experiments to test the extensions of realCREST

and the efficiency of using multi solvers. The testing pro-

gram is a simple C program which(used to) checks if three

real numbers are length of three edges of a triangle, and

what kind of triangle they construct. We insert some condi-

tional statements to make the testing program become more

complicated. The input variables are three float variables

and one integer variable. This program can not be executed

by CREST, because of the limitation of CREST in linear, in-

teger arithmetic. We insert an include statement (#include

“crest.h”) and four corresponding macros to indicate them.

The testing program is as below:

1 # i n c l u d e <s t d i o . h>
2 # i n c l u d e <c r e s t . h>
3 i n t main () {
4 f l o a t a , b , c ;

5 CREST floa t (a) ;

6 CREST floa t (b) ;

7 CREST floa t (c) ;

8 i n t x ;

9 CREST int (x) ;

10 i f ((a<=0) | | (b<=0) | | (c<=0))

11 p r i n t f (” i s n o t a t r i a n g l e \n ”) ;

12 e l s e i f (((a+b)<=c) | | ((a+c)<=b) | | ((b+c)<=a))

13 p r i n t f (” i s n o t a t r i a n g l e \n ”) ;

14 e l s e i f ((a==b)&&(b==c))

15 p r i n t f (” i s a e q u i l a t e r a l t r i a n g l e \n ”) ;

16 e l s e {
17 i f ((2∗ a==b)&&(c /2>15))

18 p r i n t f (” i s a s p e c i a l t r i a n g l e \n ”) ;

19 i f ((a>x)&&(x>10))

20 p r i n t f (”GOAL! ”) ;

21 i f ((a==b) | | (b==c) | | (a==c))

22 p r i n t f (” i s a i s o s c e l e s t r i a n g l e \n ”) ;

23 e l s e

24 p r i n t f (” i s a r e g u l a r t r i a n g l e \n ”) ;

25 }
26 r e t u r n 0 ;

27 }

At first, testing program is instrumented by “crestc”

batch file. The result shows that there are 30 branches, 36

nodes and 37 branches edges in testing program. Next, we

run symbolic execution with instrumented code in three op-

tions: using only one solver Yices, using only one solver

CVC3 and using multi solvers (Yices combining CVC3).

The number of iterations we use in all cases is 1000. Table

1 shows the number of branches which have been covered

when using different search strategies for each options, Fig-

ure 4 shows the time costs of each case with various search

strategies.

Table 1. Branches coverage

Strategy Yices CVC3 Two solvers
Bounded DFS 29 28 30
CFG Base Line Search 25 22 27

CFG Heuristic Search 29 28 30
Hybrid Search 29 28 29

Random Input Search 25 25 25

Random Search 29 27 29

Uniform Random Search 29 28 30

In seven search strategies, Random Input Search can be

bypassed, because it generates input randomly not based on

solving constraints. Look at Table 1; it can be easily rec-

ognized that the best results are achieved when we use both

two solvers to solve the constraints. All of branches are

covered when three following strategies are chosen: Bound

186

Figure 4. Time costs

Deep First Search, CFG Heuristic Search and Uniform Ran-

dom Search. It means that they can explore all branches of

the program. But if we use only one solver, the branches are

not covered completely. It means that there are some path

constraints which can be solved by one solver but can not

be solved by another. With other strategies (CFG Base Line

Search, Hybrid Search, Random Search), execution path

space is not explored completely, therefore the coverage re-

sults are not stable, because they depend on what branches

are reached by the search strategy. Therefore, we must re-

peat the experiment in many times and choose the highest

result for each case. But in every case, the result of multiple

solvers option is not worse than other options. The experi-

ment result proves clearly that realCREST can resolve well

linear arithmetic constraints (both integer and real) and di-

vision operator, especially the cooperating of two or more

SMT solvers will make better result than using only one

solver. Figure 4 proves that although multiple solvers bring

lager code coverage than using only one solver, the time

cost changes slightly. In most cases, the time cost of using

multiple solvers is bigger than using Yices and smaller than

using CVC3.

6 Conclusions and Future Work

We have instroduced realCREST which has several im-

portant contributions in expanding the class of solvable pro-

grams and raising the code coverage of generated test input

in comparison with CREST. Its approach that uses multiple

SMT solvers to solve the path constraints takes the full ad-

vantages of all solvers. The strategy of combining multiple

SMT solvers that has been proposed is quite simple (in se-

rial way) but the experiments give promising initial results.

In order to make realCREST become a more practical

tool, there are some improvements we can do. First, we

will make SMT solvers to execute in parallel to exploit

the power of multicore CPUs or multiple CPUs system.

Finally, we will develop realCREST to handle non-linear

arithmetic, bit vectors and arrays, with the support of some

SMT solvers that can solve these theories partially, such as

Z3, CVC3, redlog.

References

[1] http://cil.sourceforge.net/.
[2] http://code.google.com/p/crest/.
[3] C. Barrett and C. Tinelli. Cvc3. Lecture Notes in Computer

Science, 4590/2007:298–302, 2007.
[4] D. Bird and C. Munoz. Automatic generation of random

self-checking test cases. IBM Systems Journal, 22:229245,

1983.
[5] D. R. E. Cristian Cadar, Daniel Dunbar. Klee: Unassisted

and automatic generation of high-coverage tests for complex

systems programs. In 8th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2008, 2008.

[6] C. Csallner and Y. Smaragdakis. Jcrasher: an automatic ro-

bustness tester for java. Software: Practice and Experience,

34:10251050, 2004.
[7] B. Dutertre and L. de Moura. A fast linear-arithmetic solver

for dpll(t). CAV’2006, 4144:81–94, 2006.
[8] J. E. Forrester and B. P. Miller. An empirical study of the

robustness of windows nt applications using random test-

ing. Proceedings of the 4th USENIX Windows System Sym-
posium, 2000.

[9] S. R. G. Necula, S. McPeak and W. Weimer. Cil: Inter-

mediate language and tools for analysis and transformation

of c programs. In Proceedings of Conference on Compiler
Construction,, 2002.

[10] R. N. A. O. H. Ganzinger, G. Hagen and C. Tinelli.

Dpll(t): Fast decision procedures. Lect. Notes in Comp. Sci.
(CAV’04), 3114:175–188, 2004.

[11] K. S. Jacob Burnim. Heuristics for scalable dynamic test

generation. No. UCB/EECS-2008-123, 2008.
[12] D. M. K. Sen and G. Agha. Cute: A concolic unit testing

engine for c. In 5th joint meeting of the European Software.
[13] J. C. King. Symbolic execution and program testing. Com-

munications of the ACM, 19:385394, 1976.
[14] L. D. Mauro and N. Bjorn. Z3: An efficient smt solver.

Lecture Notes in Computer Science, 4963:337–340, 2008.
[15] A. O. E. R.-C. Miquel Bofill, Robert Nieuwenhuis and

A. Rubio. The barcelogic smt solver (tool paper). Lecture
Notes in Computer Science, 5123:294–298, 2008.

[16] N. K. P. Godefroid and K. Sen. Dart: Directed automated

random testing. Proc. of the ACM SIGPLAN, 2005.
[17] C. Pacheco and M. D. Ernst. Eclat: Automatic generation

and classification of test inputs. In 19th European Confer-
ence Object-Oriented Programming, 2005.

[18] A. F. A. G. Roberto Bruttomesso, Alessandro Cimatti and

R. Sebastiani. The mathsat 4 smt solver (tool paper). Lecture
Notes in Computer Science, 5123:299–303, 2008.

187

