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Abstract. Logic-based information flow analysis approaches generally
are high precision, but lack automatic ability in the sense that they
demand user interactions and user-defined specifications. To overcome
this obstacle, we propose an approach that combines the strength of
two available logic-based tools based on the KeY theorem prover: the
KEG tool that detects information flow leaks for Java programs and a
specification generation tool utilizing abstract interpretation on program
logic. As a case study, we take a simplified e-voting system and show
that our approach can lighten the user’s workload considerably, while
still keeping high precision.
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1 Introduction

Information flow analysis has played an important role in ensuring security
for software systems and has attracted many researchers for several decades.
Most approaches analysing programs for secure information flow are either logic-
based [4,26], which is precise but not automatic and difficult to apply for large
programs, or over-approximation approaches such as type-based [1,17,24,27],
dependency graph [14] or abstract interpretation [2], which are fully automatic
with high performance but lack precision.

In this paper we propose a logic-based approach based on self-composition
[3,10] and symbolic execution [19] that makes use of abstract interpretation [7]
to obtain automation while still maintaining high precision in information flow
analysis. It combines the strength of two available logic-based tools based on the
KeY theorem prover: the KEG tool [12] that detects information flow leaks and a
specification generation tool [28,30] utilizing abstract interpretation on program
logic. The basic idea is to first analyse a target program with the specification
generation tool in order to generate necessary specifications for unbounded loops
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and recursive method calls and then use the KEG tool to detect information
flow leaks w.r.t. a given information flow policy. The needed loop invariants and
method contracts are automatically generated by abstraction techniques, includ-
ing array abstraction with symbolic pivots [30], based on abstract interpretation
of partitions in an array. Loop invariants are generated without user interaction
by repeated symbolic execution of the loop body and abstraction of modified
variables or, in the case of arrays, the modified array elements. The invariant
generation provides loop invariants which are often precise enough to be used in
information leak detection.

We apply our approach in analysing two versions of a simplified e-voting
system as a case study: one implementation is correct, while the other is faulty (in
the sense that an information leak can happen). We show that with the correct
implementation of the simplified e-voting program our approach does not report
any false alarms while with the faulty implementation our approach successfully
detects the leak and generates a JUnit test as witness thereof. Along with the
high precision, our approach only requires users to supply a noninterference
policy and preconditions for input data, but does not require any other user
interactions or specifications. Our main contributions are as follows: (i) the first
logic-based approach utilizing two available tools to obtain both precision and
(almost) full automation in analysing information flow security, and (ii) a case
study on noninterference of a simplified e-voting system showing the feasibility
of our approach.

The paper is structured as follows: Sect. 2 introduces fundamental tech-
niques used in our approach, i.e. symbolic execution and abstract interpretation.
Section 3 briefly presents our logic-based leak detection approach and the imple-
mentation thereof, while the approach generating loop and method specifications
is explained in Sect. 4. The combination of both tools is illustrated in Sect. 5.
Section 6 demonstrates our case study and its remarks are pointed out in Sect. 7.
Related work is discussed in Sect. 8 and finally Sect. 9 gives our conclusions and
outlines future work.

2 Background

2.1 Symbolic Execution

Symbolic execution [19] is a powerful technique widely used in program verifi-
cation, test case generation and program analysis. The main idea of symbolic
execution is to run the program with symbolic input values instead of concrete
ones. The central result of symbolic execution is a symbolic execution tree. Each
node of the tree is annotated by its symbolic state, mapping each program loca-
tion to its symbolic representation. Each path of the tree has a unique path
condition that is the conjunction of all its branch conditions and represents the
set of concrete executions having input values satisfying the path condition. If
the program does not contain unbounded loops or recursive method calls, the
symbolic execution tree is finite and covers exactly all possible concrete execu-
tions performed by the program.
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In case of unbounded loops or unbounded recursive method calls a sym-
bolic execution tree is no longer finite. One natural solution is unfolding loops or
expanding invoked method calls up to a fixed depth value, generating a symbolic
execution tree which is an under-approximation of the real program. Another
solution is to make use of specifications as proposed in [16] to achieve a finite
representation of a symbolic execution tree. This approach uses loop invariants
and method contracts to describe the effect of loops and method calls. This
approach gives a comprehensive view of the program’s behaviour and brings
scalability while still maintaining program semantics precisely. The major draw-
back of this approach is that specifications must be supplied in advance. In
many cases this is a complex task, depending mostly on the complexity of the
specific source code. Generating loop invariants as well as method specifications
automatically has been an active research topic in program analysis literature.

2.2 Abstract Interpretation

Abstract interpretation [7] is a technique used in program analysis which provides
a framework to lose precision within the analysis for a greater automation. When
combined with symbolic execution, e.g. in [29], it allows to consider abstract
symbolic values. Abstract symbolic values do not represent an unknown yet
fixed concrete value, but rather in any given model the concrete value is within
a set of possible concrete values – the abstract element. The abstract elements
form a lattice – the abstract domain.

Given two abstract symbolic values, a1 and a2, the abstract domain allows
to join their abstract elements, and the resulting abstract element a1 � a2 is a
set which encompases at least all the possible concrete values of the two input
values. This potentially loses information, as the joined element might encompase
further concrete values. Information loss also occurs when abstracting a symbolic
value v, i.e. finding an abstract element a such that all possible concrete values
of v in a given state are within a. While information loss is inevitable, it happens
in a controlled fashion and the choice of the abstract domain allows to preserve
enough information for a given task, while making the set of possible values more
feasable. A common choice is that the abstract domain has finite height, while
the set of concrete values is infinite. This makes analysis of programs tractable
and also allows fixpoint procedures, like the one presented in Sect. 4 for loop
invariant generation. Abstract domains with infinite height require a widening
operator in order to ensure fixpoint generation will terminate.

3 Detection of Information Flow Leaks

In this section we introduce a logic-based approach to detect (and generate
exploits for) information flow leaks based on self-composition and symbolic exe-
cution that has been proposed in previous work [12] by some of the authors.
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3.1 Approach

We make use of self-composition [3,10] and symbolic execution [19] to char-
acterize and formalize information flow policies, including noninterference and
delimited information release [25] as declassification. In this paper we focus on
noninterference policies, the details of delimited release are explained in [12].

Given program p and the set V of all variables of p, assume that V is par-
titioned into two subsets H and L. Program p satisfies noninterference policy
H ��L if there is no information flow from H to L. This is conventionally repre-
sented by using two program executions: p satisfies H ��L iff it holds that any
two executions of p starting in initial states that coincide on L also terminate
in two states that coincide on L. Above definition can be formalized using self-
composition technique proposed in [10]. A self-copied program of p, denoted p′, is
created by copying p′ and replacing all variables with fresh ones, such that p and
p′ do not share any memory. Let V ′, L′,H ′ be fresh copies of V,L,H accordingly.
Then H ��L can be formalized as follows:

{L
.= L′}p(V ); p′(V ′){L

.= L′} (1)

A major drawback of the formalization is that it requires program p to be
analysed twice. It can be refined by making use of symbolic execution. Let SEp

and SE′
p be symbolic execution trees of p and p′. It is obvious that SEp and SE′

p

are identical except that all variables v ∈ V (considered as symbolic inputs) in
all path conditions and symbolic states of SEp are replaced by corresponding
fresh copies v′ ∈ V ′ in SE′

p. Thus we only need to symbolically execute p once
and represent two executions of p and p′ by two symbolic execution paths of SEp

with different symbolic inputs V and V ′.
For each symbolic execution path i of SEp, we denote pci as its path con-

dition. To make explicit that the symbolic final value of each program variable
v ∈ V depends on symbolic inputs and corresponding execution path, for each
path i and variable v, we define function fv

i mapping from symbolic inputs to
symbolic final value of v. Let Np be the number of symbolic execution paths of
SEp, we construct an SMT formula having the same meaning as (1):

∧

0≤i≤j<Np

(
(
∧

v∈L

v
.= v′) ∧ pci(V ) ∧ pcj(V ′) =⇒

∧

l∈L

f l
i (V ) .= f l

j(V
′)

)
(2)

To detect leaks w.r.t noninterference policy H ��L, we build insecurity for-
mula by negating (2) and transforming the negation into disjunctive normal
form: ∨

l∈L

∨

0≤i≤j<Np

Leak(H,L, l, i, j) (3)

where

Leak(H,L, l, i, j) ≡ (
∧

v∈L

v
.= v′) ∧ pci(V ) ∧ pcj(V ′) ∧ f l

i (V ) � .= f l
j(V

′) (4)
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Information flow leaks are detected by solving each formula Leak(H,L, l, i, j)
in (4). If it is satisfiable, there exists a forbidden information flow from some
variables of H to a variable l ∈ L and the leak can be seen by comparing two
symbolic execution paths i, j. Otherwise, p is secure w.r.t the noninterference
policy H ��L if (3) is unsatisfiable.

Formula (3) can be easily extended to support detecting leaks under user-
defined preconditions. Let Pre be a precondition assumed to hold at all ini-
tial states of p. To check whether p satisfies H ��L under the assumption that
Pre holds, we only need to add two conjunctions Pre(V ) and Pre(V ′) into
Leak(H,L, l, i, j).

If p contains unbounded loops or recursive method calls, SEp is infinite and
(3) becomes unsolvable. The approach unfolding loops and expanding methods
up to a fixed depth could be employed without any user interaction. Although
it is useful in the sense that it can help to detect some leaks, it cannot find
all possible leaks and hence cannot be used for proving secure information flow.
On the other hand, the size of symbolic execution trees might be very large,
thus the analysis might be very expensive. We overcome this obstacle by mak-
ing use of specifications to get the finite form of SEp as proposed in [16]. This
approach represents loops and method calls as corresponding single nodes of a
symbolic execution tree while keeping their semantics by using loop invariants
and method contracts to contribute to relevant path conditions and to the repre-
sentation of the symbolic state. For each variable v whose values can be changed
during the execution of a loop or method call, its symbolic value is assigned by
a fresh symbolic variable at the exit point of the loop or method call. The out-
put value function fv

i as well as path conditions spi now are represented upon
VS = V ∪ Vfresh , where Vfresh is the set of all fresh symbolic variables created
during symbolically analysing p. The approach has been implemented as a sym-
bolic execution engine based on the verification system KeY [5], which we use as
the backend for our implementation. Details and examples can be found in [12].

The precision of the information flow analysis using specifications depends
mostly on the quality of the specifications. If loop invariants and method con-
tracts are not strong enough so that they allow behaviours that are not possible
in the actual program, false alarms might be raised. In the worst case when
they are wrong in the sense that they exclude existing behaviours, actual leaks
might not be detected. Wrong specifications can be avoided by verifying them
using a program verification tool. However, refining too weak specifications is a
laborious task for even an experienced user. Combining this approach with an
automatic specification generation tool is a potential direction to enhance both
precision and automation.

3.2 Implementation

Our approach has been implemented in a prototype tool named KeY Exploit
Generation (KEG)1. KEG can automatically detect leaks in Java programs

1
www.se.tu-darmstadt.de/research/projects/albia/download/exploit-generation-tool.

www.se.tu-darmstadt.de/research/projects/albia/download/exploit-generation-tool
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w.r.t user-specified information flow policies and generate exploits in form of
JUnit tests to expose them. KEG is based on KeY [5], a state-of-the-art theo-
rem prover for Java and makes use of its symbolic execution engine [16] which
supports method and loop specifications to deal with recursive method calls and
unbounded loops. KEG supports not only primitive types but also object types
and arrays (to some extent). Comprehension expressions, such as sum, max and
min, are also supported.

Figure 1 describes KEG’s work-flow. KEG checks a Java program by
analysing all specified methods w.r.t. a given information flow specification. Non-
interference is a class level policy, while declassification (delimited information
release) is a method level policy. To analyse a method m, first m is symbolically
executed (using KeY) to achieve the symbolic execution tree. Afterwards, for
each information flow policy H ��L, KEG uses the method’s path conditions
and the final symbolic values of the program locations modified by m to com-
pose insecurity formulas Leak(H,L, l, i, j). Those formulas are passed to a model
finder (in our case the SMT Solver Z3 [11]) to find concrete models satisfying
them. If a model has been found, it is used to configure the initial states of two
runs which expose a forbidden information flow. The generated exploit then sets
up two runs corresponding to two initial states and inspects the reached final
values of low variables to detect a leak. KEG outputs the exploited program as
an executable JUnit test.

Symbolically 
execute 
method

Compose all 
insecurity 
formulas

Find models 
satisfying 
formulas

Generate JUnit 
tests from 

found models

Fig. 1. Exploit generation by KEG

4 Loop Invariant Generation

4.1 KeY and Abstract Domains

The KeY tool uses symbolic execution to verify Java programs. The underlying
JavaDL calculus uses updates [5] to encapsulate state changes of variables and
models the heap memory as a special program variable. An elementary update
has the form x := t, where x is the program variable that is updated and t is a
term which is the new value for x. Parallel updates are denoted U ‖ U ′, where U
and U ′ are elementary or parallel updates. Updates can be applied to terms (or
formulas) with the {·}· operator, resulting in new terms (or formulas). As the
name implies, all elementary updates contained in a parallel update are applied
simultaneously (with the rightmost update winning in case of multiple updates
to the same variable). Therefore, for example, {x := y ‖ y := x}(2 ∗ x + y) is
equal to (2 ∗ y+ x). Updates and update applications can also be simplified: for



Towards Fully Automatic Logic-Based IF Analysis 103

example, the sequential update applications {x := y}{y := x}φ can be simplified
first to a parallel update application {x := y ‖ y := {x := y}x}φ and then the
inner update application on xcan be resolved, resulting in {x := y ‖ y := y}φ.
Further simplification gives {x := y}φ. Updates are created during symbolic
execution whenever a field or variable changes its value, e.g., this is the rule for
executing variable assignments:

assignment
Γ ⇒ {U}{x := t}[...]ϕ,Δ

Γ ⇒ {U}[x = t; ...]ϕ,Δ

The heap variable is updated with a special store function:

assignmentarray
Γ ⇒ {U}{heap := store(heap, a, i, t)}[...]ϕ,Δ

Γ ⇒ {U}[a[i] = t; ...]ϕ,Δ

Updates allow to postpone the application of state changes until the whole
program has been executed and to analyze and manipulate pending state
changes. The approach introduced in [6] uses the analysis of updates to incorpo-
rate abstract interpretation and loop invariant generation for local variables. We
use abstract function symbols to denote abstract symbolic values, as described
in Sect. 2.2.

With abstract functions it is possible to express within an update that, for
example, an integer variable has a positive value. These abstract functions are
denoted γα,z, where α is the abstract element and z ∈ Z identifies the abstract
function. A simple abstract domain for integers is pictured in Fig. 2.

�

⊥

≤ ≥

zero< >

� = Z χ�(x) = true

≤= {i ∈ Z | i ≤ 0} χ≤(x) = x ≤ 0

≥= {i ∈ Z | i ≥ 0} χ≥(x) = x ≥ 0

<= {i ∈ Z | i < 0} χ>(x) = x > 0

>= {i ∈ Z | i > 0} χ<(x) = x < 0

zero = {0} χzero(x) = x
.
= 0

∅ = {} χ⊥(x) = false

Fig. 2. Abstract domain for integers

The lattice structure allows joining updates into abstract updates that
describe a set of possible value changes. E.g., the update x := γ>,1 ‖ y := γ>,2

sets x to some positive value and y to another, possibly different, positive value.
The additional information of the γα,z symbols can be obtained by adding the
description of α to the premiss of the sequent. The description of each α is
contained in the matching characteristic function χα.
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4.2 Generation and Implementation

In [6] abstract interpretation is used to generate loop invariants for local vari-
ables. To do this, the loop is symbolically executed once and the resulting sym-
bolic program states are joined with the initial (symbolic) program state: For
each variable, the value in the update is abstracted, i.e. the smallest abstract
element that contains all possible values is determined. Then all abstract ele-
ments are joined. This is repeated until a fixpoint is found, i.e. another iteration
does not produce a weaker update.

Example 1. Consider the sequent

⇒ {i := 1}[while(i > 0) i = i-1;](i = 0)

The initial program state is expressed in the update i := 0 and symbolic
execution of one iteration leads to the sequent

⇒ {i := 0}[while(i > 0) i = i-1;](i = 0)

Both 1 and 0 are contained in ≥ thus the updates are joined to i := γ≥,0,
which is used as the pre-state in the next iteration. Another iteration produces
the update i := γ≥,0 −1 under the premiss that γ≥,0 > 0 and leads to no weaker
update.

Fields of integer type can be handled analogously and simple domains for
boolean and object variables/fields can be used.

In [29] this approach was extended to abstraction of arrays: Arrays are
regarded as split into two parts: a (potentially) modified and an unmodified
part. If the sequence of array accesses is monotonously increasing (or decreas-
ing), then each iteration moves the splitting point further and allows to abstract
all the array elements in between. With this method it is possible to generate
invariants of the form

∀i. (initial ≤ i ∧ i < id) → χa(arr[i])

where id is the index term for the array access and initial is the value of id
before the loop.

If in the loop the sequence of array access has the form a + x ∗ b in the
xth iteration of the loop for some a, b ∈ Z, then a more precise invariant is
possible that only makes a statement about the elements actually accessed. If
the sequence is not monotonous, a very weak invariant of the form

∀i. (0 ≤ i ∧ i < arr.length) → (χa(arr[i]) ∨ arr[i] = arrold [i])

can be generated, where arrold denotes the array in the state before entering
the loop for the first time.

Additional forms of invariants can be extracted from the unrolled loops in
the invariant generation for arrays and variables. These include simple abstrac-
tion over arbitrary terms, that can be used, e.g., to establish an order between



Towards Fully Automatic Logic-Based IF Analysis 105

variables. Another extension is sum invariants that can be generated if a vari-
able is modified only by summing another value inside the loop. In this case
after symbolic execution of the fixed point iteration all open branches contain
an update of the form x := γα,z + t for the variable x in question, where γα,z

is the value of x before execution of the loop body. (Also accepted are updates
x := γα,z and x := γα,z − t.) As an additional requirement all variables in t must
have the aforementioned form a + x ∗ b in the xth iteration for some a, b ∈ Z.

As it is possible that different terms are added to the variable, the execution
tree is condensed into a tree that only contains the splitting nodes and the post-
states. The splitting conditions in the inner nodes are used as conditions in the
ternary conditional expression operator when constructing the sum formula.

Example 2. Consider the sequent

⇒ {i := 1 ‖ j := 2 ‖ k := 5}[while(k > 0){
if(b) i = i + j;
else i = i + k;
k--;

}](k = 0)

This generates the invariant update i := γ>,z ‖ j := 2 ‖ k := γ≥,z and the
condensed tree has the following form:

As k has the form 5 − x in the xth iteration, it produces the invariant

i = 1 +
it∑

n=0

b ? 5-n : 2

The invariant generation uses the generated invariant directly in order to
potentially reach other loops or the same loop in a different program state and
generate further loop invariants, but also outputs JML [22]. When the invariant
is used in a proof, by application of a loop invariant rule, it is ensured that the
invariant is correct, i.e. it holds before the first execution and holds after every
iteration if it held before.

As the invariant consists of subformulas with fixed form, each is translated
separately:

– Updates of the form x := γα,z are translated into χα(x). The χ-functions can
be rewritten to JML formulas, e.g., χ>(x) would become x > 0. If several
variables share the same γ-constant, the corresponding equalities are added.

– Array invariants use the same rewriting of χ-functions.
– Sum invariants are translated into JML with the \sum operator. E.g., the sum

invariant in Example 2 is translated to

i = 1 + \sum int n; n >= 0 && n < iter; b ? 5-n : 2

If a subformula is equal to true, e.g. χ�(i), it is omitted in the JML output.
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5 Fully Automatic Approach

The logic-based information flow analysis approach proposed in Sect. 3 requires
that specifications necessary for information flow analysis, i.e. loop invariants and
method contracts, must be supplied by the user. This is usually a tough task and
requires a considerable effort. In this section we demonstrate an approach that
reduces the workload of the user towards obtaining a fully automatic analysis of
information flow for Java programs. The fundamental idea is that we leave the
task of generating loop invariants and method contracts to the tool proposed
in Sect. 4 and use these generated specifications in the information flow analysis
by KEG.

Fig. 3. Fully automatic leak detection for java programs

Figure 3 shows the combination of two tools to automatically detect informa-
tion leaks in a Java program. The solid border rectangle boxes represent auto-
matic actions performed by our tools, while the dashed border one is for manual
action done by the user. If the Java program contains unbounded loops and/or
recursive method calls, the specification generator is activated to generate corre-
sponding specifications and insert them into the original source code. Generated
specifications are also verified by a verification tool, here we use the theorem
prover KeY. Finally, the specified program is automatically analysed w.r.t. user-
defined information flow policies and other specifications (usually preconditions)
using KEG to create JUnit tests helping to demonstrate discovered leaks as well
as serving for regression tests.

6 E-Voting Case Study

In this section we present our case study on verifying the privacy property of
an e-voting system by proving the noninterference property of a simplified, ideal
Java counterpart2.

2
www.se.tu-darmstadt.de/research/projects/albia/download/e-voting-case-study/.

www.se.tu-darmstadt.de/research/projects/albia/download/e-voting-case-study/
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6.1 From Privacy to Noninterference

Our case study is a modified, extended version of the e-voting case study intro-
duced in [20,21]. In order to prove the cryptographic privacy of the votes of
honest voters, the authors constructed a cryptographic privacy game formulated
in Java. In that game, the environment (the adversary) can provide two vectors
c0 and c1 of choices of voters such that the two vectors yield the same result
according to the counting function, otherwise the game is stopped immediately.
Afterwards, the voters vote according to cb, where b is a secret bit. The adversary
tries to distinguish whether the voters voted according to c0 or to c1. If they
succeed, the cryptographic privacy property is broken. By defining this game,
instead of proving the cryptographic privacy property of the complex e-voting
system, the authors of [21] prove the noninterference property of its ideal simpli-
fied counterpart, which states that there is no information flow from secret bit
b to the public result on the bulletin board. It states that if the voting machine
computes the result correctly, then this result is independent of whether the
voters voted according to c0 or c1.

We re-implement the simplified version of the e-voting system in [20] by a
slightly more complicated version in which the system can handle an arbitrary
number of candidates rather than only two. Figure 4 depicts the core of our case
study program that includes two classes: Result wraps the result of the election
and SimplifiedEvoting reproduces the privacy game mentioned in [21]. Class
Result has one public integer array field bulletin, where bulletin[i] stores the
number of votes for candidate i. Class SimplifiedEVoting has the following fields:
a private logic variable secret as the secret bit, an integer variable n represent-
ing the number of candidates indexed by n consecutive integer number from
0 to n − 1; two integer arrays votesX, votesY as two vectors of votes supplied
by the adversary, where each array’s element i is an integer number j (ideally
0 ≤ j ≤ n−1) which mean that voter i votes for candidate j; and finally the pub-
lic variable Result that can be observed by the adversary. Method privacyGame

of class SimplifiedEvoting mimics the process that the result is computed using
one of two vectors of votes based on the value of the secret bit. Method compute

of class SimplifiedEvoting computes the result of the election using the corre-
sponding vector of votes passed as its parameter. Line 7 is the noninterference
policy claiming that there is no information flow from secret to result. To deal
with this object-sensitive noninterference policy, we implement the approach
introduced in [4]. We experiment using our approach on two versions of compute:
one is a correct implementation, while the other is faulty.

The precondition of method privacyGame is depicted in Fig. 5, enforcing that
two vectors of votes (votesX and votesY) have the same size and produce the
same result before privacyGame is executed. It also makes sure that the number
of candidates is greater than 1 and every single vote belongs to one of those
candidates.
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Fig. 4. Simplified e-voting program

Fig. 5. Precondition as JML specification of method privacyGame

6.2 Leak Detection for Correct Implementation

We first show the result of our approach for the correct implementation of method
compute as shown in Fig. 6. To check the security of the method privacyGame, it is
first symbolically executed by the KeY tool. The input file is shown in Fig. 7.

This first step symbolically executes the loop 7 times in total, opens 105 side
proofs and needs 148 s on a i5-3210M CPU with 6 GB RAM. As our system is
not optimized for speed, we suppose that it is possible to generate the invariants
in significantly less time. The output of the symbolic execution is, besides the
proof tree, a file named SimplifiedEVoting.java.mod.0, which contains the Java
file with the annotations. In Fig. 8 the result of the loop invariant generation for
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Fig. 6. Correct implementation of method compute

Fig. 7. Inputfile input.key

the loop in method compute is depicted. The invariant is generated by calling
the method compute, not by calling the method privacyGame, because the loop
invariant generation is local, in the sense that it produces invariants valid under
a given precondition. Calling privacyGame would produce two invariants, one for
each branch, which must be combined using the splitting condition distinguishing
them. This may lose precision because the splitting condition may be not fully
known, thus the generating call should be to the method containing the loop.

In the next step, the file SimplifiedEVoting.java.mod.0 is renamed to Simpli-
fiedEVoting.java and used as input for the KEG tool. KEG finished checking the
program w.r.t noninterference policy in 41 s on the same system without finding
any information flow leak.

6.3 Leak Detection for Faulty Implementation

Now we change the implemenation of method compute slightly, such that it
ignores the first element in the vector of votes when calculating the result.
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Fig. 8. Annotated SimplifiedEVoting.java.mod.0

It is obviously an incorrect implementation, in that two vector of votes votesX,
votesY can produce two different results even if the precondition of method
privacyGame holds. The faulty implementation is given in Fig. 9.

Fig. 9. Faulty implementation of method compute

For this method, the loop invariant generation opens 86 side proofs, executes
the loop 7 times in total and needs 161 s on a i5-3210M CPU with 6 GB RAM.

The KEG tool finishes checking method privacyGame calling the faulty imple-
mentation of compute in 145 s and finds a leak. It reports that there is an implicit
information flow leak caused by two different symbolic execution paths branched
by the value of secret. Using precondition of method privacyGame as in Fig. 5,
KEG generates input values for votesX and votesY in order to demonstrate the
leak as follows:
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array element at index
0 1 2 3 4 5 6 7 8

votesX 1 2 2 1 1 0 0 1 0
votesY 2 1 1 1 1 0 0 0 2

It is easy to see that the generated values of votesX and votesY bring the
same election result by using the correct version of compute, however the results
computed by the faulty method compute differ. This helps the attacker infer the
value of bit secret and break the privacy property of the e-voting system.

7 Discussion

We chose the simplified e-voting system as case study for our approach for
the following reasons: (i) its noninterference property has been verified using
a hybrid approach [21] that is not automatic and requires the program to be
modified; (ii) it is a sequential Java program having complex features of real-life
object oriented programs such as reference types, arrays and object creation; and
(iii) the program requires complex specifications containing comprehension sum
that challenge both our specification generation tool and the KEG tool.

Comprehension expressions like sum, max and min are usually not natively
supported by SMT Solver. KEG uses the SMT Solver Z3 to solve insecurity
formulas. While Z3 is very powerful, it does not natively support comprehen-
sion expressions. KEG treats sum in a similar way to the approach proposed
in [23], where each sum is translated into a self-contained function character-
ized by its axioms. The original implementation for the translation of sum (and
other comprehension expressions such as max and min) binds each expression to
a corresponding function that has two parameters describing the interval. For
example, consider the following sum expression in JML syntax:

(\sum int i ; 0 <= i && i < votes . l ength ; votes [ i ] )

This can be translated into a function call sum_0(0, votes.length-1), where
sum_0 is characterized by the following axioms:

∀x, y ∈ {0, 1, .., votes.length − 1} :
x > y ⇒ sum 0(x, y) = 0∧
x = y ⇒ sum 0(x, y) = votes[x]∧
x < y ⇒ sum 0(x, y) = votes[x] + sum 0(x + 1, y)

This translation approach is simple but versatile and can be used for all
types of comprehension expressions. The drawback of this approach is that it
does not support quantification, i.e. if sum is nested in a universal expression (as
shown at lines 3 - 7 in Fig. 5). To solve this problem, we tailor a new translation
approach for sum if it is quantified. We extend the generated sum functions
with a parameter representing the quantified variable. For example, following
quantified clause in the precondition shown in Fig. 5:
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(\ f o r a l l int i ; 0 <= i && i < n ;
(\sum int j ; 0<=j && j<votesX . l ength ; ( votesX [ j ]== i ?1 : 0 ) )

==
(\sum int j ; 0<=j && j<votesY . l ength ; ( votesY [ j ]== i ?1 : 0 ) ) )

can be translated into following expression:

∀ i ∈ {0, 1, .., n − 1} :
sum 1(0, votesX.length − 1, i) = sum 2(0, votesY.length − 1, i)

The corresponding axioms chracterising sum_1 and sum_2 are also added into
the insecurity formula. Although this approach allows quantifying over sum
expressions (also other comprehensions), it is not suitable for all instances of
sum and brings considerable extra workload for the SMT Solver. We do believe
that there is no one-size-fits-all method translating comprehension expressions
to SMT first order formulas that exists and it is necessary to optimize the trans-
lation w.r.t. each specific case.

The ability to generate invariants containing comprehension expressions (in
this case sum) was crucial in this case study in order to generate a strong enough
functional invariant so as to be able to prove noninterference with the KEG tool.
Comprehension expressions also allow the ability to be much more precise about
the value of a variable or array index term, rather than using abstraction, which
is often only an over-approximation.

In general, sums and arrays interact with each other quite nicely, in that
(i) programs often sum values based on the elements in an array (besides the
example in this case study another simple example would be calculating the sum
of all elements), but also (ii) array index terms are often sums (sometimes also
expressible as an affine term, but for example a binary tree expressed in array
form gets from index i to its left child node by adding i + 1 to the index).

Analysis of whether a comprehension expression can be used to express an
invariant is quite simple in our tool, as we can see the program updates and
branch conditions of all sequents resulting from symbolic execution of the loop
body, thus infering sums, etc. from the actual symbolic values, rather than trying
to syntactically analyse the program code.

8 Related Work

Our e-voting case study is motivated and based on the one used in [20,21]. In
that paper, the authors propose a hybrid approach combining the strengths of
an automatic tool (Joana [14]) and a deductive verification tool (KeY [5]) for
proving noninterference property of a simple e-voting system. This approach
requires programs to be extended so that the automatic tool for proving nonin-
terference can be applied without returning any false positives. The deductive
verification tool is used to prove functional properties of the e-voting program
and its extended version. While enhancing the precision of the automatic tool
Joana, the approach still needs a lot of user interaction in establishing and prov-
ing functional properties as program invariants.
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There has been a lot of research into secure information flow. Some logic-
based approaches such as [4,26] are fully precise but not fully automatic in the
sense that they require from the user not only specifications for unbounded loops
and recursive method calls but also non-trivial interactions with the theorem
prover. On the other hand, approaches based on type systems [1,17,24,27] or
those based on dependency graphs [14] are fully automatic and able to check
real-life programs due to their high performance. However, these approaches
share common drawbacks of over-approximation on actual information flow that
lead to lack of precision and resulting false positives in many cases.

Several tools for loop invariant generation have been proposed and using
abstract interpretation is among the first approaches [9]. Such tools were devel-
oped for other theorem provers, e.g. ESC/Java2 [13,18], but concentrate on
checking bounds when dealing with arrays. Other approaches which are more
precise concerning arrays either rely on syntactic analysis and restrictions [15]
or on additional information provided together with the abstract domain [8].

9 Conclusion

We proposed a novel logic-based approach towards fully automatic information
flow analysis by combining the strength of two logic-based tools. We applied it
for a simplified version of an e-voting system as case study to check noninter-
ference policy that is the counterpart of cryptographic privacy property. By the
case study result, we showed that our approach is not only precise (it can detect
the potential leak of an insecure program while not raising false positives for a
secure program) but also automatic (it only requires user to supply expressive
information flow policy and precondition describing the constraint of the initial
program state). Although the case study revolves around a relatively small pro-
gram, it is not a simple program and it is sufficient for exposing the strengths as
well as limitations of our tools, which shows that our approach is very promising
to be used for real-life programs.

For future work, we aim to extend our tools and their combination towards
analysing real-life programs, which are usually large and complex. A potential
solution is to use method contracts instead of simply expanding method calls,
which brings compositionability, scalability and analysis re-usability. Both tools
we used are adequate for this direction, in that the specification generation tool
can already generate method contracts for recursive methods [28], while the
KEG tool can use method contracts for leak detection. However, they need to
be improved in performance as well as expanding the set of language features
they support. Optimizing the specification generation towards supporting better
information flow analysis is another promising direction.
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