
A Formal Security Analysis of the
W3C Web Payment APIs: Attacks and Verification

Quoc Huy Do∗, Pedram Hosseyni∗, Ralf Küsters∗, Guido Schmitz∗†, Nils Wenzler∗, and Tim Würtele∗
∗University of Stuttgart, Stuttgart, Germany †Royal Holloway, University of London, Egham, Surrey, UK

{quoc-huy.do, pedram.hosseyni, ralf.kuesters, guido.schmitz, tim.wuertele}@sec.uni-stuttgart.de, nils.wenzler@gmail.com

Abstract—Payment is an essential part of e-commerce. Mer-
chants usually rely on third-parties, so-called payment processors,
who take care of transferring the payment from the customer
to the merchant. How a payment processor interacts with the
customer and the merchant varies a lot. Each payment processor
typically invents its own protocol that has to be integrated into
the merchant’s application and provides the user with a new,
potentially unknown and confusing user experience.

Pushed by major companies, including Apple, Google, Master-
card, and Visa, the W3C is currently developing a new set of
standards to unify the online checkout process and “streamline
the user’s payment experience”. The main idea is to integrate
payment as a native functionality into web browsers, referred to
as the Web Payment APIs. While this new checkout process will
indeed be simple and convenient from an end-user perspective,
the technical realization requires rather significant changes to
browsers.

Many major browsers, such as Chrome, Firefox, Edge, Safari,
and Opera, already implement these new standards, and many
payment processors, such as Google Pay, Apple Pay, or Stripe,
support the use of Web Payment APIs for payments. The
ecosystem is constantly growing, meaning that the Web Payment
APIs will likely be used by millions of people worldwide.

So far, there has been no in-depth security analysis of these
new standards. In this paper, we present the first such analysis
of the Web Payment APIs standards, a rigorous formal analysis.
It is based on the Web Infrastructure Model (WIM), the most com-
prehensive model of the web infrastructure to date, which, among
others, we extend to integrate the new payment functionality into
the generic browser model.

Our analysis reveals two new critical vulnerabilities that allow
a malicious merchant to over-charge an unsuspecting customer.
We have verified our attacks using the Chrome implementation
and reported these problems to the W3C as well as the Chrome
developers, who have acknowledged these problems. Moreover,
we propose fixes to the standard, which by now have been adopted
by the W3C and Chrome, and prove that the fixed Web Payment
APIs indeed satisfy strong security properties.

I. INTRODUCTION

Today, it is impossible to imagine everyday life without e-
commerce. Consumers order goods or other services online
and make the necessary payments directly online as well. Many
different variants have emerged on the web to carry out an
order and the associated payment. Basically, every merchant
or store application performs this process slightly differently.
Merchants, instead of processing a payment by themselves
(e.g., by collecting credit card information and charging the
cardholder), often outsource the actual payment process to a
third party, a payment processor, such as Stripe, Google Pay,
or PayPal.

In such a heterogeneous environment every participant is
at risk of making mistakes: The information flow between
merchant and payment processor could be manipulated by a
malicious customer [57], payment processor schemes could be

Figure 1 Web Payment User Interface in Google Chrome

flawed [61], or users could be confused by the many different
user interfaces and be more susceptible to phishing attacks [17],
just to name a few. Also, customers are likely to abort a
checkout process when facing a bad user experience [27].

Pushed by a long list of major companies in the technol-
ogy and banking sector (e.g., Amazon, American Express,
Apple, Barclays Bank, Facebook, Google, Huawei, Klarna,
Mastercard, Netflix, Samsung, Stripe, and Visa), the W3C
is currently developing the Web Payment APIs (WPA) [50],
an approach to simplify and standardize payment and the
checkout process in the browser. To this end, the W3C extends
browsers with a new, native functionality that provides a way
to negotiate all necessary checkout information among the
customer, the merchant’s website, and an (external) payment
processor (including the selection of the payment processor).
The main idea is that the merchant, instead of providing
web pages or JavaScript by itself for checkout, hands-off this
process to the WPA in the user’s web browser. The browser
then presents the user with the new payment user interface
(see Figure 1) that is outside of the web context. In this user
interface, the user can review the order, select a (previously
stored) shipping address, a payment method, and a payment
processor (e.g., pay by credit card using Stripe). As this dialog
is always the same, regardless of what merchant or payment
processor is involved, the user experience will also be always
the same. As a result, the checkout process is unified, fast, and
more convenient.

The feature set introduced by the WPA forms a quite com-
plex protocol and requires several modifications to browsers.
For example, payment processors install a so-called payment
handler in the user’s browser that is based on the recently
introduced service worker infrastructure [47]. Also, several
new means for intra-browser communication are introduced
to facilitate the exchange of user and payment information
across the entities involved in the checkout process. The WPA

define several interfaces, each of which is crafted for the
communication with one of the entities involved in the process.

Major browsers already support the current state of the
specifications and well-known payment providers like Google
Pay [29], Apple Pay [2], and Stripe [49] are also already
supporting the standard. Hence, it is likely to see widespread
adoption by merchants in the near future, and hence, it is
important to perform rigorous analysis now before problems
are harder to fix. As the WPA are used to handle sensitive
personal and payment data and even to initiate payments, users,
merchants and payment providers have to rely on their security.
At the same time, the handling of personal and payment data
makes the protocols and APIs a lucrative attack target, making
the WPA an interesting subject for rigorous security analysis.

In this paper, we present the first in-depth formal security
analysis of the WPA. We base our analysis on the most
comprehensive formal model of the web infrastructure to date,
the Web Infrastructure Model (WIM) [21]. The WPA inherently
uses many features of the web, including scripts, the notion of
origins (and hence, the notion of schemes and domains), the
window and document structure of browsers, cross-document
messages, HTTPS, and XMLHttpRequests. Therefore, basing
the analysis of the WPA on a model that supports these features
is crucial in order to be able to model the WPA in a natural,
detailed, and faithful way.

As the WPA extend web browsers significantly, we have to
extend the WIM itself to be able to formally analyze the WPA.
These extensions make the WIM more expressive and add a
new attack surface, which can be relevant for future analyses of
web applications and standards even those unrelated to payment
as attackers can make use of the new APIs in unexpected ways,
making this extension of independent interest.

Our formal analysis of the WPA based on the extended WIM
reveals two new critical vulnerabilities which allow malicious
merchants to over-charge unsuspecting customers. We verified
these security problems with the Google Chrome browser and
reported them to the Chrome developers as well as the W3C,
who both acknowledged the flaws. We also propose fixes,
which by now have been incorporated in the standard as well
as the Chrome implementation. The Chrome developers even
released a hot-fix for their current stable version.

To show that the fixes we propose are indeed sufficient, we
use our formal model of the WPA to prove that the standard
indeed satisfies strong security properties with our fixes in
place. We note that in order for this analysis to be meaningful
it is important that this analysis is based on a detailed model
of the web infrastructure, as provided in this work with the
extended WIM: first, as mentioned, to obtain a faithful model
of the WPA in the first place, and second, to cover a large
attack surface.

Related Work. As mentioned above, the WPA are the first
proposal to standardize web payment [46]. Until now, there has
been no in-depth security analysis of the WPA, and to the best
of our knowledge, there has been no in-depth formal analysis
of any web payment protocol, the main reason probably being
the previous lack of a standard for web payment.

Besides formal treatment of crypto currencies and the

underlying blockchain protocols (see, e.g., [4, 28, 43]) or e-
cash (see, e.g., [19, 38]) there is surprisingly little literature
on formal analyses of real-world payment systems in general,
although security is paramount for such systems. Recently,
Basin et al. have formally analyzed the EMV standard (the
protocol used by bank cards to perform in-person payment
at point-of-sale terminals) using Tamarin [6]. Although the
EMV protocol had already been extensively studied before (see,
e.g., [9, 41, 44, 45]), Basin et al. discovered two new severe
attacks. Using formal methods, they also formally proved that
the protocol is secure in certain configurations. This example
also illustrates the benefit of applying formal methods.

Formal methods are also applied for analyzing APIs outside
of the context of payments, e.g., for analyzing the security of an
API for social networks [3], the API defined in PKCS#11 [16],
the W3C Web Authentication API [31], and the W3C Web
Cryptography API [58]. However, none of these analyses were
conducted within a model of the web infrastructure or using a
detailed browser model, and thus, do not account for attacks
that arise from the web infrastructure.

As mentioned above, we base our formal analysis on the
WIM. The WIM has successfully been used to analyze web
standards, so far standards for authorization and authentica-
tion, such as OAuth 2.0 [24], OpenID Connect 1.0 [25],
Mozilla’s BrowserID [21, 22], and the OpenID Financial-
Grade API1 [20]. These analyses all uncovered several severe,
previously unknown attacks and illustrate the power of the
WIM. The WIM has not been used to analyze or even specify
security properties of payment systems yet. Also, in contrast
to previous analyses, in this paper we focus our analysis on a
native web feature itself rather than protocols that run on top
of the web infrastructure.

The WIM is in fact, by far, the most comprehensive model
of the web infrastructure to date. Other models of the web
infrastructure, such as work by Pai et al. [42], by Kumar [35,
36], or Bansal et al. [5] are far more abstract and limited by
the tools upon which they are based. Other approaches, such
as [8] and [10], model only single components of the web and
do not take the overall infrastructure into account.

Contributions. In summary, our main contributions presented
in this paper are as follows:
• We conduct the first in-depth security analysis of the WPA,

and in particular, the first formal analysis. As mentioned,
the WPA is likely to be used for payments on the web by
millions of people.

• We significantly extend the WIM to support the native
web features of the WPA. This extension also includes
DOM event handling and even a framework for so-called
service workers [47], a standard independent of WPA.
These extensions are useful also beyond the analysis of
the WPA as they constitute an immanent extension of the
web attack surface.

• During our analysis, we uncovered two previously un-
known critical flaws which would allow a malicious

1A standard which extends OAuth 2.0 and is targeted at authorization
of access to protected resources in high-risk environments, but not directly
towards payment.

merchant to over-charge unsuspecting customers.
• We construct practical attacks from these findings and

verify them using the Google Chrome implementation. We
notified the respective working group at the W3C as well
as the Google Chrome developers, who acknowledged the
problems.

• We propose fixes that close the discovered vulnerabilities.
The fixes have been incorporated into the WPA standard
as well as Google Chrome.

• Using the developed extended WIM and the detailed formal
model of the WPA based on the extended WIM, we
formally prove that our fixes are indeed sufficient and that
the fixed WPA standard satisfies strong security properties.

Structure of This Paper. In Section II, we present the
WPA. Section III describes the vulnerabilities discovered in our
formal security analysis, the fixes we propose, and the reactions
to our findings from the W3C Web Payments Working Group
and the Google Chrome team. In Section IV, we briefly recall
the WIM, with our extensions as well as the model of WPA
presented in Section V. We formulate the security of the WPA
standard in Section V, with a proof sketch given in Section VII.
We conclude in Section VIII. Further details are given in
the appendix, with full details and proofs in our technical
report [18].

II. THE W3C WEB PAYMENT APIS

In the following section, we give an overview of the WPA,
describe the different entities that are involved in the checkout
process, followed by an overview of the specifications of the
WPA. We then explain a typical checkout flow and some
additional sub-flows in detail.

A. Overview of the WPA

The WPA are a set of standards [11, 12, 13, 32, 37] published
by W3C’s Web Payments Working Group. The standards define
different parts of the checkout process, centered around the
browser. On a high level, the checkout process is as follows:
The customer (which is also referred to as payer) decides to
pay, e.g., by clicking on a “checkout” button. The merchant
(payee) website then creates what is called a Payment Request,
a JavaScript object containing checkout data like a list of
items, accepted Payment Methods – e.g., credit card – and
a total amount. The Payment Request is then handed to the
Payment Request API [13], implemented by the browser. The
payment request triggers the browser to show a special user
interface, called the payment UI (which is provided by the
browser itself, not the website, see Figure 1). This payment
UI allows the user to select one of the shipping and payment
data sets stored in the browser, e.g., credit card information,
or enter new data sets. After selecting or entering the required
data sets, the user confirms the checkout in the payment UI.
Depending on the selected payment method, the browser might
ask the customer to perform additional steps to authorize
the payment before executing it, e.g., log in to the payment
provider. Payment providers (which the specifications call
Payment Method Providers) take care of the actual financial
transaction. The interaction between customer, merchant, and

payment provider is orchestrated from within the browser by
a payment handler (see Section II-B).

Compared to common practice where each merchant
presents the user a web form, which might be different at each
merchant, this approach has a number of benefits as pointed out
by, e.g., Mozilla, Microsoft, Google, and several blog posts on
the topic [30, 33, 34, 39, 40, 55]: 1) The user can easily update
her payment and shipping information for all websites as it is
stored in one central place in the browser and the data there can
be “re-used” over several websites. 2) There is no need to store
any payment or even shipping data at the merchant anymore,
lowering the impact and attackers’ incentive for data breaches
at the merchant’s end (e.g., [26, 48, 56, 59, 60] to name a
few). Note that this does not necessarily make the browser
more interesting to attack: all this data is entered through the
browser anyway and modern browsers’ autofill features for
web forms already require them to store address and payment
data. 3) As the payment UI is a part of the browser, the user
experience and checkout flow are always the same, avoiding
confusion and errors. 4) Adopting this new, easier, and faster
checkout procedure is also expected to increase conversion
rates for the merchants, especially with mobile users.

B. Components of the WPA

As mentioned, the WPA consist of a set of specifications, dif-
ferent W3C standards, which we sketch here before describing
the protocol flows defined by them.

Payment Request API [13]. The Payment Request API can
be used by the merchant to interact with the customer and the
payment method provider through the customer’s browser. It
is implemented by the browser and handles communication
between the merchant and the WPA in the browser.

Payment Handler API [32]. The W3C WPA use so-called
web service workers [47], another W3C standard which exists
independently of the WPA. In a nutshell, web service workers
are event-driven JavaScript programs that can be installed
in a browser by some website. These workers are running
outside the context of a specific window or tab, but still at
the origin that installed them. They are intended to extend
web applications with some offline functionality, but in the
WPA this is not the main intent: the Payment Handler API
specification defines how special web service workers called
payment handlers can interact with the browser to handle
payments on behalf of a customer. Similarly to the Payment
Request API, the Payment Handler API is also implemented
by the customer’s browser.

Payment Method Identifiers [11]. In general, a payment
method is identified by either a standardized string, like
basic-card (see below), or a URL (pointing to a payment
method manifest, see below). This document specifies details
of these identifiers, e.g., that a URL’s scheme must be https
to be a valid payment method identifier.

Payment Method Basic Card [12]. This specification
defines the basic-card payment method, a mechanism to
provide payment card details, such as a credit card number,
directly to the merchant. The merchant would then process
this information by itself without using any other features of
the WPA, such as payment handlers.

Payment Method Manifest [37]. This specification de-
scribes how a payment method provider, like Google Pay, can
specify a default payment handler and a set of permissible
payment handler origins for “its” payment method in a
machine-readable format. This manifest has to be accessible
under the URL identifying the payment method, so browsers
can retrieve the manifest.

C. Protocol Flow

In the following, we illustrate the core workings of the
WPA by describing the steps of a simple, successful protocol
execution, shown in Figure 2.2 Note that the specifications
define additional (sub-)flows, some of which we discuss in
the following subsection. Our formal model captures these
additional flows as well as several ways to abort a flow.

We assume that there is at least one payment handler already
installed in the customer’s browser – typically by visiting
some payment method provider’s website and agreeing to the
installation of that provider’s payment handler.

The flow starts with the creation of a payment request by
the merchant in Step 1 , typically after the customer expressed
the wish to checkout, e.g., by clicking a “Checkout” button
(the payment request is created via JavaScript code contained
in the merchant’s website). This payment request contains the
following fields:
• id: A unique identifier for the payment (chosen by the

merchant). If omitted by the merchant, the browser gener-
ates the payment id. This id is included in all messages and
events to uniquely identify this specific payment process.

• methodData: A list of payment methods accepted by the
merchant, denoted by their payment method identifiers (see
Section II-B). Each element can also have an associated
payment method data set with additional information for
the respective payment method (more on that later).

• details: Total cost, and optional details, e.g., a list of
items with their respective costs, and shipping options.

• options: Settings indicating which data the customer
has to provide. For example, whether an email address,
shipping address or phone number are required.

After creating the payment request, the merchant’s website
hands this data to the browser by means of the Payment
Request API 2 . Upon receiving a payment request PR, the
browser compares the list of payment methods mentioned in
PR.methodData (i.e., those supported by the merchant) with
its list of registered payment handlers and selects all payment
handlers registered for at least one of the payment methods
from PR.methodData 3 .3 After this initial selection, the
browser triggers each of the selected payment handlers with a
CanMakePaymentEvent 4 . This event contains some basic
information about the requested payment: The origin of the
merchant’s top level page, the origin at which the payment
request was initiated and the applicable payment method data
sets (from PR.methodData).

2All flow figures in this paper are generated with Annex: https://github.com/
danielfett/annexlang

3If no matching payment handler is installed in the browser, the checkout
is aborted. In particular, the browser does not try to install missing payment
handlers at this stage.

Browser, e.g., ¹, º, ¸, Î, »

2 PRPR

4 Can make payment?Can make payment?

7 Payment detailsPayment details

9 Handler responseHandler response

11 Payment responsePayment response

12 Retry (with reasons)Retry (with reasons)

15 Payment detailsPayment details

17 Handler responseHandler response

19 Payment responsePayment response

20 Checkout completedCheckout completed

Merchant (Website) Web Payment APIs Payment HandlersPayment HandlersPayment Handlers

1 Create PaymentCreate Payment
Request PRRequest PR

3 Select all payment handlers registered forSelect all payment handlers registered for
payment methods supported by PRpayment methods supported by PR

Payment HandlersPayment HandlersPayment Handlers

Selected Payment
Handler

5 Present payment UIPresent payment UI

6 Customer enters data,Customer enters data,
selects payment handler,selects payment handler,
and submitsand submits

8 Perform paymentPerform payment

10 Add customer information (shippingAdd customer information (shipping
address, email, ...) from 6 to responseaddress, email, ...) from 6 to response

13 Display retry reasons in UIDisplay retry reasons in UI

14 Customer changes data and submitsCustomer changes data and submits

16 Update paymentUpdate payment
(if needed)(if needed)

18 Add customer information to responseAdd customer information to response

21 Close UIClose UI

Merchant (Website) Web Payment APIs Selected Payment
Handler

Optional: Retry

Figure 2 General flow of a payment with the WPA. Note that
payment handlers are not part of the WPA implemented by the
browser. They are web service workers – typically provided by the
payment provider – which use the WPA to engage in the payment
process. They may also send requests, e.g., to the payment provider
and – with some restrictions – open windows.

Upon receiving a CanMakePaymentEvent, the payment
handler determines if it can process the payment request.
This decision process is specific to the payment method and
may depend, for example, on legal requirements. The inner
workings of this decision are outside of the scope of the
WPA. Note that a payment handler may communicate with
the payment provider to make this decision.

After receiving responses from all triggered payment han-
dlers, the browser shows a special dialog (that is not part of
a website, but of the browser itself) called the payment UI 5

(see also Figure 1). The payment UI allows the customer to
enter (or select stored) requested information like shipping

https://github.com/danielfett/annexlang
https://github.com/danielfett/annexlang

address, email address, and of course the payment details 6 .
The latter includes the selection of one of the available
payment handlers and methods.4 If the customer enters (or
selects a stored or changes) the shipping address, an additional
step is required: As this might change the shipping costs,
the merchant website is informed and receives a partially
anonymized address to recalculate shipping costs. The details
of this procedure are omitted from Figure 2 for brevity of
presentation (see Section II-D for details).

Once the customer submits her choices, the browser
assembles a PaymentRequestEvent and hands it to
the payment handler selected by the customer 7 . This
PaymentRequestEvent contains the same data as the
CanMakePaymentEvent (see above) plus the payment data
entered by the user, e.g., a credit card number, expiration date
and verification number.

When receiving the PaymentRequestEvent, the pay-
ment handler takes the necessary steps to perform or at least
facilitate a payment 8 . This can be as simple as returning some
information from the PaymentRequestEvent (e.g., credit
card data) in the handler response, but it can also be a complex
process including communication with the payment provider
or opening new windows (e.g., opening a Google Pay window
in which the customer authenticates herself and authorizes the
payment). The exact process is specific to the payment method
and thus not within the scope of the WPA specifications.

After performing these steps, the payment handler finishes
its work by creating a PaymentHandlerResponse 9 . This
response contains (once again) the payment method identifier
and a details field, whose exact contents depend on the
payment method. The contents of details can, for example,
be some signed payment confirmation by the payment provider
or be as simple as just “reflecting” credit card data.

Upon receiving the handler response, the browser creates a
payment response 10 . This response consists of the details
from the handler response, the selected payment method, and
additional data requested by the merchant in PR.options,
like a shipping address. The payment response is then handed
back to the merchant’s website 11 .

The merchant can now inspect the response (e.g., verify the
validity of the credit card data) and either finish the flow by
indicating completion of the checkout process 20 (in this case,
the browser closes the payment UI 21) or by indicating that
there is a problem 12 . In the latter case, the merchant can
provide a list of reasons for the error. These reasons are freely
chosen by the merchant and can be given as a mix of general
errors and problems tied to specific parts of the customer data,
e.g., the shipping address.

In the error case, the browser prompts the user to retry.
To this end, the browser displays the reasons given by the
merchant 13 and allows the user to revise the entered data 14 .5

Once the customer has done so and submits again, the

4A payment handler might support multiple payment methods. The sup-
ported payment methods of a payment handler are the so-called instruments
of that handler; the payment UI shows a list of available instruments.

5Not limited to the parts rejected by the merchant, e.g., the customer is also
allowed to change the payment handler. This was also modeled in our original
formal analysis of the WPA, which led to one of the attacks presented later.

Browser, e.g., ¹, º, ¸, Î, »

Payment UI is active,Payment UI is active,
customer is interactingcustomer is interacting

4 Payment request updatePayment request update
event with new shipping optionevent with new shipping option

5 (Updated) payment details(Updated) payment details

Merchant (Website) Web Payment APIs

1 Create PaymentCreate Payment
Request PRRequest PR

...

...
...
...

2 Customer selects or changesCustomer selects or changes
shipping optionshipping option

3 Lock payment UILock payment UI

6 Update PR and payment UIUpdate PR and payment UI
with new payment detailswith new payment details

7 Unlock payment UIUnlock payment UI

Merchant (Website) Web Payment APIs

Figure 3 Sub-flow to update payment details after customer data
changes (by example of a changed shipping option).

browser triggers another PaymentRequestEvent to the
then selected payment handler with the same payment id, but
possibly different payment details (e.g., a different payment
method selected by the user). The payment handler then
processes and possibly updates the payment (if necessary)
and once again answers with a handler response, triggering
the browser to create a payment response and hand it to the
merchant. At this point, the merchant can again either accept
the payment response or initiate another retry.

D. Extended Flows

As already mentioned, the general flow presented above
does not include all possible error modes and optional flows.
For example, either party can abort the flow at any point, the
browser can restrict payment handler execution time, and there
are several sub-flows that are or can be initiated during certain
steps of the general flow. The most important of these sub-
flows are described in the following. Note that our formal
model subsumes these flows as well.

1) Update Payment Details: As briefly mentioned in Sec-
tion II-C, an additional communication step may occur while
the customer enters her data into the payment UI: When
a shipping address is selected or updated, the merchant is
given the opportunity to update certain details of the payment,
e.g., the shipping costs. Analogous sub-flows are defined
for when the customer selects or changes her selection of:
shipping option, payment method, and payer details, i.e., name,
email address and phone number. All of these sub-flows are
very similar, the only difference is what data the merchant
receives. For example, when the customer selects or changes
the shipping option, the merchant only gets the ID of the new
shipping option, but not the name or phone number.

Due to these similarities, we describe only the sub-flow for
a changed shipping option which is depicted in Figure 3.

Obviously, this sub-flow can only be initiated once the
customer interacts with the payment UI (cf. Steps 6 and 14

of Figure 2). When the customer selects a shipping option 2 ,
the browser locks the payment UI 3 to prevent the customer
from submitting during the update process. In the next step, the
browser triggers an event containing a reference to the original
payment request and the new shipping option selection 4 . If
the merchant has registered an event listener for these events,
she can now reply with a new set of payment details, e.g.,
change the shipping costs (otherwise, the browser will just
assume an empty update). The browser will then update the
payment request and payment UI accordingly and unlock the
payment UI again.

In our formal model (see Section V), we subsume all update
flows by allowing the merchant to send updated payment
details at any time, but, according to the specifications, the
browser accepts updates only until the customer submits. This
is a safe over-approximation of the merchant’s capabilities that
only strengthens our security properties.

2) Customer Authentication and Authorization of Payments:
When a payment handler handles a payment, it only receives
a subset of the payment details from the WPA, e.g., the total
amount. These details however do not include information
on the customer’s identity, i.e., neither the address nor payer
details, like name or phone number. This of course raises the
question how the payment handler or at least the payment
provider gets to know the customer’s identity, i.e., how to
authenticate the customer. In some jurisdictions, it is also
necessary for certain payment providers to collect explicit
consent for each transaction.

To meet these requirements, the Payment Handler API
specification [32] defines a way for payment handlers to
open a window. Such a window could for example contain
a login form or ask for additional information like an account
number or a one-time authentication code. Following what the
specification suggests, browsers usually embed such a window
into the existing payment UI. To prevent phishing and similar
attacks, a payment handler can only open a window with the
same origin that installed the payment handler. In most cases,
this window will be a website of the payment provider.

The mechanism to open a window is explicitly modeled
in our browser and used by our generic payment handler to
authenticate the customer (see Section V-B).

III. ATTACKS AND VULNERABILITIES

During our formal analysis of the WPA (see the following
sections for details), we found two critical vulnerabilities which
we describe in the following, along with suggestions on how to
fix them. We also describe our disclosure process and discuss
the responses by the W3C Web Payments Working Group and
the Google Chrome developers. Besides being relevant on their
own, the attacks we found during our formal analysis are also
a good indication of the faithfulness and usefulness of the
(extended) WIM.

A. Double Charging with Retry

In Section II-C, we described the retry mechanism built into
the WPA. This mechanism is intended to enable merchants to

Browser, e.g., ¹, º, ¸, Î, »

Start with the same steps as in Figure 2Start with the same steps as in Figure 2

7 Payment detailsPayment details

9 Handler responseHandler response

11 Payment responsePayment response

13 Retry with (bogus)Retry with (bogus)
message “pleasemessage “please

change payment handler”change payment handler”

16 Payment detailsPayment details

18 Handler responseHandler response

Complete flow as in Figure 2Complete flow as in Figure 2

Merchant (Website) w Web Payment APIs

...

...
...
...

Payment Handler A
6 Customer enters data,Customer enters data,

selects payment han-selects payment han-
dler A, and submitsdler A, and submits

8 Perform paymentPerform payment

10 Add customer information to responseAdd customer information to response

Payment Handler A

12 Everything OK, replyEverything OK, reply
with error anywaywith error anyway

Payment Handler B

14 Display retry reason in UI: InstructDisplay retry reason in UI: Instruct
customer to change payment handlercustomer to change payment handler

15 Customer selects paymentCustomer selects payment
handler B and submits againhandler B and submits again

17 Perform paymentPerform payment

...

...
...
... Payment Handler B

Merchant (Website) w Web Payment APIs

Figure 4 Protocol flow of a retry-based double charging attack: The
merchant receives two payments while the customer thinks she only
sent a single payment (because the first one allegedly failed).

reject a payment response, but allow the customer to change
something in order to make the payment response acceptable
for the merchant. Also, recall that a payment id is used to
identify a payment request throughout the different protocol
steps. This payment id can be used by payment handlers (and/or
payment method providers) to detect duplicates, e.g., when
executing a retry. Strictly speaking, the exact workings of such
a duplicate detection are outside the scope of the specifications,
but it has to rely on the payment id as everything else might
change during a retry (including the total costs, e.g., due to a
shipping address change).

For our attack, we assume that an honest customer wants to
check out at a malicious merchant; the attack flow is depicted
in Figure 4: After the customer has initiated the checkout, the
merchant creates a (regular) payment request and hands it to
the browser, which guides the customer through steps 6 to 11

as described in Section II-C.
Upon receiving the payment response, however, the mer-

chant triggers a retry 12 . In this retry request, the merchant

includes an error message which instructs the customer to
switch to a different payment handler and provider, because
the first one allegedly did not work 13 . The browser informs
the customer by displaying the error message in its payment
UI 14 . From the customer’s perspective, this looks like some
legitimate problem with the first payment handler/provider, so
she selects a different one and submits again 15 . The browser
subsequently triggers the (new) payment handler 16 , which in
turn performs the (second) payment 17 . Note that this attack
originates from the behavior of the browser and not from
the implementation of the payment handlers, as the second
payment handler has no way of detecting that it is called in a
retry context: the second handler has not seen the payment id
of the overall transaction before. Afterward, the flow finishes
as usual (though we note that the merchant could of course
repeat this attack again).

The result is that the customer paid twice without any
indication that she did so. Furthermore, none of the involved
payment handlers and payment providers could prevent this,
as their views of the attack flow are indistinguishable from
a legitimate flow. In particular, the first payment handler and
provider are not informed that “their” response was rejected
and the second payment handler and provider have no way of
knowing that “their” transaction belongs to a retry flow.

Implementation and Verification of the Attack. To test
our attack, we implemented a dummy payment handler and
merchant. At the time when we did the analysis and implemen-
tation, Google Chrome was the only browser available to us
that already had full support for the WPA, thus we tested our
attack against the Chrome implementation, which turned out
to be vulnerable to our attack. Now that the specifications have
adopted our fix, the wide range of browsers implementing the
WPA specifications today are secured against this attack.

Uncovering the Attack. We discovered the above attack
when trying to formally prove the main security theorem (see
Section VI). In particular, to prove this theorem, we have to
show that a payment transaction is never performed twice.6

While it is easy to prove this property if the payment is handled
by a single payment provider multiple times (who can easily
detect and reject duplicated instructions), it is impossible to
prove this property if the same transaction can be carried out
by two different payment providers (who do not know which
payments have been processed by the respective other provider).
We therefore have to prove that the same payment request is
never sent to two different payment providers. The (unfixed)
WPA standard, however, does not restrict that browsers (during
a retry) hand the same payment request to different payment
handlers (and hence, possibly to multiple payment providers).
Thus, the proof fails at this point.7

Fix. There are several ways to address this vulnerability, e.g.,
one could inform a payment handler when “its” transaction is
repeated with a different handler, so it can revoke a payment

6We capture this property for the fixed model in Lemma 18 of our technical
report [18].

7For the fixed WPA model (reflecting the fix in Line 152 of Algorithm 2),
we show that a browser never hands the same payment request to two different
payment handlers, see Lemma 15 of our technical report [18].

Browser, e.g., ¹, º, ¸, Î, »

2 PRPR

4 Can make payment?Can make payment?

7 Payment detailsPayment details
(contains A and B)(contains A and B)

9 Handler responseHandler response

Complete flow as in Figure 2Complete flow as in Figure 2

Merchant (Website) w Web Payment APIs Payment HandlersPayment HandlersPayment Handlers

1 Create Payment Request PRCreate Payment Request PR
with ambiguous method datawith ambiguous method data
sets A and B (identical pay-sets A and B (identical pay-
ment method identifiers)ment method identifiers)

3 Select all payment handlers registered forSelect all payment handlers registered for
payment methods supported by PRpayment methods supported by PR

Payment HandlersPayment HandlersPayment Handlers

Selected Payment
Handler

5 Present payment UIPresent payment UI
(using payment method data A)(using payment method data A)

6 Customer enters data,Customer enters data,
selects payment handler,selects payment handler,
and submitsand submits

8 Perform paymentPerform payment
using paymentusing payment
method data Bmethod data B

Selected Payment
Handler

...

...
...
...

Merchant (Website) w Web Payment APIs

Figure 5 Attack with ambiguous payment method data: The customer
sees a payment method data set without additional fees (5) while the
payment handler “sees” one with a huge additional fee (8). In the
end, the customer is charged a processing fee she never agreed to.

and wait for successful revocation before triggering the second
payment handler. Or the payment handler could include a status
in its response, indicating whether a payment has already been
made and prevent changing the payment handler if so. During
our discussion with the W3C Web Payments Working Group,
they opted for a very simple fix by disallowing a change
of payment handler altogether, even though this might force
the customer to abort the whole flow if the payment handler
selected in the first place is actually not working.

As this is what the specifications adopted in the end, we
updated our formal model to reflect this change, with our
analysis results with this fix presented in Sections V to VII.

B. Ambiguous Payment Method Data
As mentioned in Section II-C, each payment request (PR)

contains a field called methodData, which holds a list of
accepted payment methods, along with some additional data for
each of these payment methods. This additional data is intended
for payment method specific details like a destination account
number (to send money to), but can also specify additional
fees, e.g., “if you pay with a card belonging to network X, it
incurs a US$3.00 processing fee”.

Now, for our second attack we again assume that the
merchant is malicious, while everybody else is honest. Figure 5

depicts the course of the attack: The merchant creates a
payment request PR where the list in methodData contains
(exactly) two entries for method data, both for the same pay-
ment method, i.e., with identical payment method identifiers;
this is perfectly valid according to the W3C specifications.
One might not contain fees, the other might contain very high
fees. The merchant then hands PR to the WPA (as usual).
This triggers the browser to search its list of installed payment
handlers for matches with the payment method identifiers given
in PR and query the matching handlers 4 . Afterward, the
browser shows the payment UI.

We assume that our user will always select the first
entry, which in this case contains no additional fees; she
enters the required data and submits 6 . Her browser now
assembles a PaymentRequestEvent with payment de-
tails, including the full list of methodData, i.e., both en-
tries, and hands it to the selected payment handler 7 . The
PaymentRequestEvent, however, does not include any
information on which exact entry the user has selected from
methodData. This handler now has to decide which payment
method data entry to use. As the specifications do not contain
guidance on that either, we assume that the handler always
selects the last method data entry (which in our attack incurs
a huge additional fee) and performs the payment 8 . The
remaining steps are as usual. The result is that the customer is
charged with a fee she never agreed to, without any indication.
Note that this attack does not at all rely on how exactly the
browser and payment handler break ties in case of multiple
applicable method data entries, as long as there is a possibility
that they choose different entries.

Implementation and Verification of the Attack. Using a
similar setup as for the first attack, we verified that Google
Chrome passes ambiguous method data to payment handlers.
Hence, it is up to the payment handler to guess which entry
the user selected leading to the problem as sketched above.

Uncovering the Attack. Similar to the previous attack, we
found this attack while trying to prove the main security
theorem (see Section VI) of the WPA. In particular, we have
to show that if a payment provider performs a transaction,
then there previously was a payment request event created by
the respective browser with the corresponding values, i.e., the
method data selected by the user.8 As the browser does not tell
the payment handler which method data entry the user selected,
the payment handler has to infer this information based on the
payment method identifier and the list of method data. As this
list stems from an untrusted source (a potentially malicious
merchant), there could be multiple entries for the same payment
method identifier, making this information ambiguous. Hence,
a payment handler can infer different data than the user selected
and thus, the security theorem cannot hold true.

Fix. There are two ways to mitigate this attack: the browser
could either reject ambiguous entries or propagate the user’s
choice to the payment handler. We recommended the first
option to keep the API interface stable. This fix was adopted by

8For the fixed model (Lines 94 to 97 of Algorithm 1), we capture this
property in Lemma 10 in our technical report [18].

the W3C Web Payments Working Group and we incorporated
it into our model.

Together with the fix from Section III-A, we were able to
prove the WPA secure in our model (see Sections V to VII).

C. Responsible Disclosure

We first notified the W3C Web Payments Working Group
of the first attack on Nov. 2nd, 2019 [51] and (after checking
their implementation) the Chrome developers on Nov. 25th,
2019 [14]. While the W3C Working Group at first did not
acknowledge the problem, the Chrome developers fixed this
problem on Jan. 25th, 2020 (and even released a hot-fix for
their current stable version).

When we presented our full results to the W3C Working
Group on Apr. 1st, 2020 [52, 53, 54], the W3C Working Group
acknowledged all of our findings and updated their specifica-
tion on May 11th and May 25th, 2020. The Chrome developers
disallowed ambiguous method data in their implementation
following the updated specification on May 27th, 2020 [15].

IV. THE WEB INFRASTRUCTURE MODEL

Our formal security analysis of the WPA is based on the
WIM, a generic Dolev-Yao style web model proposed by Fett
et al. in [21]. Here, we only briefly recall this model following
the description in [24] (see also [20, 21, 22, 23] for comparison
with other models and discussion of its scope). Our extension
of this model required for the analysis of the WPA, including
aspects of the service worker standard [47], is presented in
Section V-A.

The WIM is designed independently of a specific web
application and closely mimics published (de-facto) standards
and specifications for the web, for example, the HTTP/1.1 and
HTML5 standards and associated (proposed) standards. The
WIM defines a general communication model, and, based on
it, web systems consisting of web browsers, DNS servers, and
web servers as well as web and network attackers.

Communication Model. The main entities in the model
are (atomic) processes, which are used to model browsers,
servers, and attackers. Each process listens to one or more (IP)
addresses. Processes communicate via events, which consist of
a message as well as a receiver and a sender address. In every
step of a run of a system (see below), one event is chosen
non-deterministically from a “pool” of waiting events and is
delivered to one of the processes that listen to the event’s
receiver address. The process can then handle the event and
output new events, which are added to the pool of events.

As usual in Dolev-Yao models (see, e.g., [1]), messages are
expressed as formal terms over a signature Σ. The signature
contains constants (for (IP) addresses, strings, nonces) as well
as sequence, projection, and function symbols (e.g., for encryp-
tion/decryption and signatures). For example, in the web model,
an HTTP request is represented as a term r containing a nonce,
an HTTP method, a domain name, a path, URI parameters,
request headers, and a message body. For instance, an HTTP
request for the URI http://ex.com/show?p=1 is represented as
r := 〈HTTPReq, n1, GET, ex.com, /show, 〈〈p, 1〉〉, 〈〉, 〈〉〉 where
the body and the list of request headers is empty. An HTTPS

http://ex.com/show?p=1

request for r is of the form enca(〈r, k′〉, pub(kex.com)), where
k′ is a fresh symmetric key (a nonce) generated by the sender
of the request (typically a browser); the responder is supposed
to use this key to encrypt the response.

The equational theory associated with Σ is defined as
usual in Dolev-Yao models. The theory induces a congru-
ence relation ≡ on terms, capturing the meaning of the
function symbols in Σ. For instance, the equation in the
equational theory which captures asymmetric decryption is
deca(enca(x, pub(y)), y) = x. With this, we have that, for
example, deca(enca(〈r, k′〉, pub(kex.com)), kex.com) ≡ 〈r, k′〉 ,
i.e., these two terms are equivalent w.r.t. the equational theory.

A Dolev-Yao process (DY process, in short) consists of a
set of addresses the process listens to, a set of states (terms),
an initial state, and a relation that takes an event and a state
as input and (non-deterministically) returns a new state and a
sequence of events. The relation models a computation step
of the process. It is required that the output can be computed
(formally, derived in the usual Dolev-Yao style) from the input
event and the state.

The so-called attacker process is a DY process which records
all messages it receives and outputs all events it can possibly
derive from its recorded messages. Hence, an attacker process
carries out all attacks any DY process could possibly perform.
Attackers can corrupt other parties.

A script models JavaScript running in a browser. Scripts
are defined similarly to DY processes, i.e., a script is a
relation, typically specified as a non-deterministic algorithm.
When triggered by a browser, a script is provided with state
information. The script then outputs a term representing a new
internal state and a command to be interpreted by the browser
(see also the specification of browsers below). Similarly to
an attacker process, the so-called attacker script outputs
everything that is derivable from the input.

A system is a set of processes. A configuration of this system
consists of the states of all processes in the system, the pool
of waiting events, and a sequence of unused nonces. Systems
induce runs, i.e., sequences of configurations, where each con-
figuration is obtained by delivering one of the waiting events of
the preceding configuration to a process, which then performs
a computation step. The transition from one configuration to
the next configuration in a run is called a processing step. We
write, for example, Q = (S,E,N) −→ (S′,E′,N′) to denote the
transition from the configuration (S, E, N) to the configuration
(S′,E′,N′), where S and S′ are the states of the processes in
the system, E and E′ are pools of waiting events, and N and
N′ are sequences of unused nonces.

A web system formalizes the web infrastructure and web
applications, and is defined as a tuple (W,S, script, E0). W
denotes a set of DY processes and is partitioned into the sets
Hon, Net, and Web. Hon is a set of honest processes, e.g.,
web browsers, web servers, or DNS servers (they might be
corrupted by an attacker during the run of a system, though).
Web and Net are the sets of web attackers (who can listen
to and send messages from their own addresses only) and
network attackers (who may listen to and spoof all addresses
and therefore are the most powerful attackers). A web system
further contains a set of scripts S (comprising honest scripts

and the attacker script), and a mapping script from scripts
to their string representation. E0 is defined as an (infinite)
sequence of events, containing an infinite number of events
of the form 〈a, a, TRIGGER〉 for every a ∈ ∪p∈WIp, where Ip

denotes the set of addresses of the process p.

Web Browsers. An honest browser formally is modeled as a
DY process and thought to be used by one honest user, who is
modeled as part of the browser. User actions, such as following
a link, are modeled as non-deterministic actions of the web
browser. User credentials are stored in the initial state of the
browser and are given to selected web pages when needed.
Besides user credentials, the state of a web browser contains
(among others) a tree of windows and documents, cookies, and
web storage data (localStorage and sessionStorage).

A window inside a browser contains a set of documents (one
being active at any time), modeling the history of documents
presented in this window. Each represents one loaded web page
and contains (among others) a script and a list of subwindows
(modeling iframes). As sketched above, when triggered by the
browser, a script is provided with all data it has access to,
such as a (limited) view on other documents and windows,
certain cookies, and web storage data. Scripts then output a
command and a new state. This way, scripts can navigate or
create windows, send XMLHttpRequests and postMessages,
submit forms, set/change cookies and web storage data, and
create iframes. Note that scripts—besides modeling JavaScript
behavior—also model some aspects of user behavior. For
example, if a web page provides some link on which in reality
the user can click on, the script may non-deterministically
instruct the browser to navigate the window to the URL of
the link. Navigation and security rules ensure that scripts
can manipulate only specific aspects of the browser’s state,
according to the relevant web standards.

A browser interacts with the network using messages of
different types: The browser sends DNS and HTTP(S) requests
(including XMLHttpRequests), and it processes the responses.
The model includes handling of relevant HTTP(S) headers, in-
cluding, for example, cookie, location, strict transport security
(STS), and origin headers. A browser, at any time, can also
receive a so-called trigger message. This kind of message is
used to invoke actions that model browser-related user behavior
(e.g., navigate a window or entering some URL) as well as
running a script (which includes some aspects of user behavior
as well, see above). When receiving such a trigger message, the
browser non-deterministically chooses which action it takes.
For instance, if the browser decides to trigger a script, the script
is run and outputs a command as described above, which is then
further processed by the browser. Browsers can also become
corrupted, i.e., be taken over by web and network attackers.
Once corrupted, a browser behaves like an attacker process.

V. FORMAL MODEL OF THE WEB PAYMENT APIS

We formalize the WPA based on the WIM as a web
system that contains one network attacker (which is powerful
enough to subsume an arbitrary number of web attackers
and other network attackers), a finite but arbitrary number
of browsers, as well as of merchants and payment providers.

While the definition of attackers and browsers (outlined above
and extended in Section V-A below) are part of the (generic)
WIM, merchants and payment providers (modeled as web
servers) as well as scripts that exercise the feature set of the
WPA are defined specifically for the analysis of the WPA.

We highlight that, in order to create a detailed model of
the WPA, a detailed model of the web infrastructure such as
the WIM is needed. Otherwise, it is not straightforward to
even describe the WPA, as the WPA define an extension to
web browsers and a protocol that involves browsers and web
servers. So to model the WPA faithfully, many web features are
needed that, as mentioned before, the WIM already contains,
including scripts, the notion of origins (and hence, the notion
of schemes and domains), the window and document structure
of the browser, post messages, HTTPS, and XMLHttpRequests.
Besides these standard web features, the WPA require even
more web features, namely DOM events, service workers and
service workers registry, and an extension to the script API.

With the WIM extended with these features, the WPA can
be modeled in a natural and direct way, which also helps to
avoid modeling errors since one does not have to translate the
WPA into some other (more artificial) modeling context.

In addition, in order for the security proof of the fixed
WPA to be meaningful, the underlying model of the web
infrastructure and the model of WPA itself should be as detailed
as possible, because by this, we provably exclude large classes
of attacks (see also the last paragraph in Section VI-C.)

In the following, we present these generic extensions of the
WIM (see Section V-A). On top of this extended WIM, we
then model payment handlers, payment method providers, and
merchant web servers (see Section V-B).

A. Generic Extensions of the WIM
As sketched in the previous section, the WIM already

has a very detailed model of browser behavior. This has
paved the way for detailed analyses of several web-based
authentication and authorization protocols [20, 21, 22, 23, 24,
25] which make heavy use of different HTTP/HTML features
and JavaScript APIs, all of which are explicitly modeled in
the WIM. Following this approach of explicitly modeling the
relevant browser behavior—instead of using a very abstract,
and hence, less meaningful, model—we significantly extended
the WIM’s browser model to incorporate the WPA. More
specifically, our core extensions to the browser model are:
We add an extensible mechanism to trigger and process DOM
events, introduce service workers and their execution, and add
the WPA and extend script execution to incorporate these APIs.
Note that the first two extensions are largely independent of the
WPA: They model separate standards of independent interest
and are used by, but not limited to the WPA.

Extensible DOM Event Processing. The WPA make heavy
use of DOM events,9 e.g., to trigger payment handlers. Such
DOM events allow for signaling that something has occurred
to registered event listeners.

We extended the WIM’s browser with a set of pending
events and an extensible function to process such events. This

9See https://dom.spec.whatwg.org/#event for more details on DOM events.

function models the registered event listeners. Whenever the
modeled browser is triggered to process a DOM event, one of
the pending events is chosen non-deterministically, removed
from the set of pending events and handed to the processing
function. We do not restrict the format of DOM events in any
way except for the first member, which must state the type of
the event. This information is used to dispatch events to the
respective event listeners and resembles the type member of
events in the DOM standard. We provide the model of DOM
event processing in Appendix B.

Service Workers. Service workers are event-driven JavaScript
programs that run inside a browser in the background and can,
for example, be used to provide some offline functionality for
web applications. In the context of the WPA, payment handlers
are instances of service workers. Hence, we extended the
WIM’s browser with a set of registered service workers. Similar
to the event processing, a service worker can be chosen non-
deterministically whenever a browser is triggered. That service
worker is then executed similarly to a script. As a service
worker has a slightly different view on the browser’s state (e.g.,
it cannot access the window structure) and slightly different
capabilities than a script, we reflect these differences in the
input of the service worker and the possible commands it can
output to the browser. The possible commands which a service
worker can output include triggering certain events, sending
XMLHttpRequests and postMessages as well as opening new
browser windows. In addition to these general commands, we
also model the (de)registration of payment instruments, i.e.,
supported payment methods, by payment handlers.

Script API Extensions. The WPA themselves are a notable
extension to the WIM’s browser model. As mentioned, all
major browsers have implemented the WPA. As a consequence,
web applications and scripts, honest and dishonest, might (on
purpose or accidentally) interfere with one of the various parts
of the WPA, changing the properties of such applications and
scripts in a real-world execution context, thereby widening the
attack surface.

In our WIM extension, the actual API functions defined
by the WPA specifications are modeled as script commands,
i.e., a script can output a command instructing the browser to
call one of the API functions with a given list of arguments.
For example, a script on some merchant’s website can call
an API function to indicate completion of a payment. The
formal definitions of these functions closely follow the WPA
standards, which we described informally in Section II. In
the following, we describe the main parts of the script API
extension of the WIM, which is shown in Algorithm 1. We
provide the remaining parts of the script API extension of the
browser model in Appendix B, with full details in our technical
report in [18].

Algorithm 1 specifies the function RUNSCRIPT which is
part of the browser definition and is responsible for executing
a script. Roughly speaking, in the WIM, a browser can run
any script of any (active) document at any time. To this end,
the browser (from its state s) non-deterministically selects a
document (identified by a pointer d) that is the active document
of some window (identified by a pointer w) and executes

https://dom.spec.whatwg.org/#event

Algorithm 1 Web Browser Model: Execute a script.
1: function RUNSCRIPT(w , d , s′)
2: let tree := Clean(s′, s′.d)
3: let cookies := 〈{〈c.name, c.content.value〉|

↪→ c ∈〈〉 s′.cookies
[
s′.d .origin.host

]
∧

↪→ c.content.httpOnly = ⊥ ∧
↪→

(
c.content.secure =⇒

↪→ (s′.d .origin.protocol ≡ S)
)
}〉

4: let tlw ← s′.windows such that
↪→ tlw is the top-level window containing d

5: let sessionStorage :=
↪→ s′.sessionStorage

[
〈s′.d .origin, tlw .nonce〉

]
6: let localStorage := s′.localStorage

[
s′.d .origin

]
7: let secrets := s′.secrets

[
s′.d .origin

]
8: let R ← script−1(s′.d .script)
9: let in := 〈tree , s′.d .nonce, s′.d .scriptstate,

↪→ s′.d .scriptinputs, cookies,
↪→ localStorage , sessionStorage , s′.ids, secrets〉

10: let state ′ ← TN (V),
↪→ cookies ′ ← Cookiesν , localStorage ′ ← TN (V),
↪→ sessionStorage ′ ← TN (V), command ← TN (V),
↪→ out := 〈state ′, cookies ′, localStorage ′,
↪→ sessionStorage ′, command〉

↪→ such that out = outλ[ν10/λ1, ν11/λ2, . . .]
↪→ with (in, outλ) ∈ R

11: let s′.cookies
[
s′.d .origin.host

]
:=

↪→ CookieMerge(s′.cookies
[
s′.d .origin.host

]
,

↪→ cookies ′)
12: let s′.localStorage

[
s′.d .origin

]
:= localStorage ′

13: let s′.sessionStorage
[
〈s′.d .origin, tlw .nonce〉

]
:=

↪→ sessionStorage ′

14: let s′.d .scriptstate := state′

15: switch command do
→ In this excerpt, we focus on the extension for the WPA and

refer to the technical report [18] for the full model. We use the
same line numbers as in the technical report.

Extension with Payment APIs
91: case 〈PR_CREATE,methodData, details, options〉
92: if ¬(methodData ∈ MethodDatas) then stop 〈〉, s′

93: if methodData = 〈〉 then stop 〈〉, s′

94: let seenPMIs := 〈〉
95: for each 〈pmi , recv , paymentId〉 ∈ methodData do
96: if pmi ∈ seenPMIs then stop 〈〉, s′

→ Fix for second attack (ambiguous method data)
97: let seenPMIs := seenPMIs +〈〉 pmi

98: let paymentReq := 〈PAYMENTREQUEST, ν14, s′.d .nonce,
↪→ methodData, details, options, 〈〉, CR,⊥, 〈〉〉

99: let transactionId := ν18
100: let s′.paymentStorage[ν14] :=

↪→ 〈paymentReq , 〈〉, 〈〉, transactionId〉
101: let s′.d .scriptinputs

↪→ := s′.d .scriptinputs+〈〉 paymentRequest
102: stop 〈〉, s′

103: case 〈PR_SHOW,PRN , detailsUpdate〉
104: let paymentReq :=

↪→ s′.paymentStorage[PRN].paymentReq
105: if paymentReq .state 6= CR then stop 〈〉, s′

106: if s′.w .paymentRequestShowing = > then
107: let s′.paymentStorage[PRN].paymentReq

↪→ .state := CL
108: stop 〈〉, s′

109: let s′.paymentStorage[PRN].paymentReq
↪→ .state := IN

110: let s′.w .paymentRequestShowing := >
111: let handlers := 〈〉
112: for each mds := 〈pmi , receiver , paymentIdentifier〉 ∈

↪→ paymentReq .methodData do
113: let ph := GET_PAYMENT_HANDLERS(pmi, s′)
114: let handlers := handlers+〈〉 ph
115: for each handler ∈ ph do
116: let s′.events := s′.events+〈〉

↪→ 〈CANMAKEPAYMENT, handler .nonce,
↪→ tlw .origin, s′.d .origin,mds〉

117: let handler ← handlers
118: let s′.paymentStorage[PRN].handlerNonce :=

↪→ handler .nonce
119: if detailsUpdate 6= 〈〉 then
120: let s′.paymentStorage[PRN].paymentReq

↪→ .updating := >
121: let s′.events := s′.events+〈〉

↪→ 〈PR_UPDATE_DETAILS,PRN , detailsUpdate〉
122: let s′.events := s′.events+〈〉

↪→ 〈SUBMITPAYMENT,PRN , handler .nonce〉
123: stop 〈〉, s′

· · ·

the function RUNSCRIPT with this data. This function then
assembles all (state) information that a script is allowed to
access, runs that script, and finally processes the output of the
script (a command and new state information).

The first part of RUNSCRIPT (Lines 2–7) assembles the
information passed to the script depending on the position of
the script’s document in the window tree and the origin of that
document. This data includes a limited view on the window
tree (produced by the function Clean), cookies accessible to
the script, web storage (local and session storage), as well as
secrets that a user would potentially enter into that document
(recall that user behavior is modeled as part of the browser).

Next, the script is executed (Lines 8–10). Formally, the
function treats a script as a relation (identified by a string)
and non-deterministically selects one possible outcome of that
script (see Line 10, where TN (V) denotes the set of all terms
with nonces in N and variables in V). The function then
updates the browser’s state accordingly taking care of freshly
chosen nonces,10 cookies, and web storage.

Finally, RUNSCRIPT processes the so-called command
emitted by the script. The command models an API call
and can, for example, instruct the browser to open, close, or
navigate a window, start an XHR, or send a postMessage
(defined in Lines 16-91, not shown here). To model the
respective functionalities introduced by the WPA, we extend
RUNSCRIPT by adding cases for all API functions exposed
to a script (Lines 91ff.), where here we only show an excerpt
of these functions (leaving out Lines 126ff.), with some more
functions presented in Appendix B-B. We emphasize that our
analysis, of course, covers the full definition of browsers, which
is contained in our technical report in [18].

If the command created by the script is a PR_CREATE com-
mand (Lines 91ff.) with the arguments methodData , details ,

10Nonces chosen by the script are denoted by the placeholders λi and then
mapped to fresh nonces chosen by the browser relation, which are denoted
by νj (see Line 10).

and options , the browser creates a payment request with these
values (see Steps 1 – 2 in Section II-C and Section 3.1 of [13]).
In this case, the browser verifies if methodData is well-formed
(see Definition 13 in Appendix B-A) and not ambiguous (our
fix for the second attack, see Section III-B).

The browser then assembles a term paymentReq that is (1)
used to internally track this payment request in the browser’s
state (Line 100) and (2) used as a return value for the script
that issued this command (Line 101). This term contains a
fresh nonce ν14 as the payment request nonce (used as a
unique identifier of a payment request within the browser),
the browser’s internal identifier for the document in which
the script was executed (s′.d .nonce), the arguments of the
command, as well as other state information of the payment
request (see below and also Definition 5 in Appendix B-A). The
browser further chooses what we call the transaction identifier
(a fresh nonce ν18) that we use in our model to identify the
corresponding monetary transaction. We note that our model
at no place uses this value for any kind of decision and only
passes this value along with the data specified by the WPA.

If the command created by the script is a PR_SHOW com-
mand (Lines 103ff.) with a payment request nonce PRN
and a detailsUpdate entry, the browser starts the payment
process (subsumed in Step 2 in Section II-C and described in
Section 3.3 of [13]).

First, the browser looks up the information about the pay-
ment request in its state (using the payment request nonce) and
checks whether the payment request has not been processed
yet (indicated with the string CR for created). If the payment
request has already been processed or if the browser window
is currently processing another payment request, the browser
aborts and, in the latter case, changes the state of the payment
request to CL for closed (see Lines 105–108).

Next, the browser stores that it is now processing this
payment request by setting the paymentRequestShowing flag
of the current window to true and setting the state of the
payment request to IN for interactive. Then, the browser
determines a payment handler for this payment (Lines 111–
117). To this end, the browser selects the payment handlers that
support the payment method identifiers given in the payment
request using the GET_PAYMENT_HANDLERS function (see
our technical report [18] for the definition of this function).
For each of the selected handlers, the browser creates a
CanMakePaymentEvent event (see also Section II-C). In-
stead of waiting for the responses of the payment handlers,
the browser immediately non-deterministically chooses one of
the previously selected payment handlers (Line 117); a safe
over-approximation for a user choosing a payment handler that
is willing to process the payment.

Further, the merchant script can provide updates to the
payment request using the argument detailsUpdate .

Finally, the browser creates a SubmitPaymentEvent in
Line 122, indicating (within the model) that it accepts the
payment. This event will be processed in a future processing
step of the browser.

B. Instantiating Relevant Service Workers and Servers

Based on the extended WIM, we can now specify generic
payment providers and merchants as servers, and payment
handlers as service workers. We note that the exact behavior
of these parties is out of the scope of the specifications, so we
modeled them with minimal assumptions.

Payment Provider. We modeled the payment provider as an
HTTPS server with three endpoints that reflect typical inter-
actions with a payment provider: /index, /authenticate,
and /pay. When receiving a request to the /index endpoint,
the payment provider returns a script that, when executed in
the browser, sends a request with the customer’s credentials
to the /authenticate endpoint, modeling the user entering
her password in order to authenticate.

Upon receiving a request at the /authenticate endpoint,
the payment provider checks whether the request contains an
identity (i.e., user name) and a secret (i.e., password) and
compares those with known login credentials. If this check
succeeds, the payment provider creates a fresh nonce, called
token, and stores this token in its state, associated with the
identity of the authenticated user. Afterward, the payment
provider responds with a message containing the token. This
message is eventually delivered to the aforementioned script
that sent the authentication request. Once that script receives
the token message, it forwards it to the browsing context that
originally opened the /index page via postMessage – this will
usually be a payment handler.

At the /pay endpoint, the payment provider expects one of
the tokens it has issued via the /authenticate endpoint, and
information about the transaction that it should perform. In
particular, the receiver and total amount of the payment—the
sender is determined by looking up the identity associated
with the received token. In our model, the transaction is
performed by storing the payment information, i.e., sender,
receiver, amount, and the payment id assigned to the original
payment request, in the transactions map of the payment
provider’s state.

Note that during a retry, the payment provider will receive
a second request to the /pay endpoint with updated payment
information. In that case, the request’s payment identifier will
be the same as in the original /pay request and the payment
provider updates the corresponding entry in its transactions
map. This models a payment provider canceling the original
transaction and replacing it with a new one.

Payment Handler. As described in Section II, payment
handlers are service workers and we model them as such. We
implement a generic payment handler in our model. In order
to also model a simple (and probably typical) payment method
manifest (see Section II-B), we require that a payment handler
is installed under the respective payment provider’s origin. This
models a payment method manifest that only allows payment
handlers to be installed by the payment provider itself. Note
that this restriction does not limit the number of payment
methods provided by a payment handler: one payment provider
can offer multiple payment methods.

When our generic payment handler receives payment details

to initiate a payment on behalf of the customer (see 7 in
Figure 2), it opens a window with the /index page at its own,
i.e., the payment provider’s, origin.

As explained before, our generic payment provider responds
with a script that acquires a token from the payment provider
for the customer’s identity – modeling a login page at which
the customer authenticates herself – which is then forwarded
to the payment handler.

After receiving such a token, the payment handler sends
a request to the /pay endpoint of the payment provider
containing the token and the relevant payment information,
i.e., the receiver and total amount (the sender is determined
by examining the token). Finally, the payment handler creates
a payment handler response and hands it back to the WPA in
the browser (see 9 in Figure 2).

We note that our model of payment handlers does not send
responses to CanMakePaymentEvents. This is a safe over-
approximation as discussed in Section V.

Merchant. We model a generic merchant as a HTTPS server
that, upon receiving a request at its /index endpoint, serves
a script script_merchant to the browser which uses the WPA
as sketched in Section II-C.

C. The WPA Web System
In the following, we model the WPA protocol in the extended

WIM as a class WPAPI of web systems (see Section IV
for the definition of web systems). In the following sections,
we show that all web systems in that class satisfy certain
desired security properties, which implies that they hold true
for arbitrary numbers of browsers, payment providers, etc.,
running concurrently. We refer to WPAPI also as our WPA
model.
Definition 1. A web system (W,S, script, E0) belongs to

WPAPI iff the following conditions are satisfied:
• W is partitioned into the sets Hon and Net. Net includes

a network attacker process and Hon consists of a finite
set of web browsers B, a finite set of web servers for the
merchants C and a finite set of payment provider servers
PP with Hon := B ∪ C ∪ PP .
The browsers are those introduced in Section V-A. We
highlight that each browser of a WPAPI web system can
have an arbitrary number of payment handlers. Honest
payment provider servers, merchant servers, and payment
handlers behave as sketched in Section V-B, with formal
definitions given in [18]. DNS servers are subsumed by the
adversary, i.e., they are all dishonest, but we assume a PKI.
Initially, all participants (except the network attacker) are
honest, but can be dynamically corrupted by the network
attacker during the run of a web system.

• S = {script_merchant, script_payment_provider_index,
script_default_payment_handler} contains the scripts of
the model as sketched in Section V-B and formally defined
in [18].

• script is a mapping from scripts to their string representa-
tion, where
– script(script_merchant) = script_merchant
– script(script_payment_provider_index) =
script_payment_provider_index

– script(script_default_payment_handler) =
script_default_payment_handler.

We call a web system in WPAPI a WPA system.

VI. SECURITY PROPERTIES

In the following, we describe the security properties that the
WPA should fulfill. These properties reflect natural integrity
properties that one would expect from every payment system.
In a nutshell, these properties state the following: (1) Whenever
some (honest) payment provider performs a financial transac-
tion on behalf of a customer, the customer has expressed the
wish to do so. This property is called Intended Payment and
described in Section VI-A. (2) Each payment that the customer
authorizes is performed at most once, and if it is performed,
the relevant aspects of the transaction are exactly what the
customer authorized. This property is called Uniqueness of
Payments and described in Section VI-B.

In the formalization of these properties, we make use of
two important data structures, which record the user’s intent
to pay and transactions performed by the payment provider:
A browser stores (in its state) all payments for which the
browser’s user expressed intent (i.e., she selected a payment
handler and submitted the payment in the payment UI) in a
dictionary called paymentIntents . Each payment provider in
turn stores (in its state) all performed transactions in a map
called transactions . In order to be able to relate transaction
intents in a browser to transactions in a payment provider’s
state, we identify each transaction by a transactionId chosen
uniquely by the browser.

We note that there clearly cannot be a one-to-one mapping
between the payment intents stored in the browser and the
transactions stored by the payment provider as for some intents
there may not be a corresponding transaction: a network
attacker can hold back requests indefinitely.

Also, since the WPA do not specify how a merchant can
check that a financial transaction was successfully initiated
by the payment provider, we do not consider properties that
would give the merchant such guarantees.

In the following, we give formal definitions for the afore-
mentioned properties. We highlight that both properties do
not require the involved merchant to be honest, thus, hold
true even if a customer interacts with a malicious merchant.
However, the payment provider and handler involved in the
corresponding transaction need to be honest; all other parties
not directly involved in the transaction, such as other browsers,
handlers, and payment providers, may have been corrupted by
the adversary at any point in time.

A. Intended Payments

From the customer’s viewpoint, it is important that a
payment performed by the payment provider in their name
corresponds to a payment the customer authorized. In particu-
lar, this means that the sender, receiver, and total amount of
the transaction coincide with what the customer confirmed in
the payment UI of her browser. This implies that no malicious
party can initiate a payment on behalf of an (honest) customer.

For the formal definition of this Intended Payments property
we define a helper function that maps a transaction identifier

txId to the corresponding payment intent in a browser state
(stored under that transaction identifier). Note that there might
be multiple payment intents in the case of retries.
Definition 2 (Intents of a browser given a transaction identifier).

For a configuration (S, E, N) of a run ρ of a WPA
system in WPAPI , a browser b in B, and a nonce txId ,
we define intents(·, ·, ·) as follows: intents(S, b, txId) :=
S(b).paymentIntents[txId]

We can now formalize the Intended Payments property (with
the explanation following the definition); π denotes projections
on list entries.
Definition 3 (Intended Payments). A WPA system in WPAPI

fulfills Intended Payments iff for every run ρ of this
system, every configuration (S, E, N) in ρ, every pay-
ment provider server pp ∈ PP honest in S, and every
t ∈ S(pp).transactions it holds true that:
If b := ownerOfID(t.sender) ∈ B is a browser
honest in S, then ∃i ∈ N such that t.total =
πi(intents(S, b, t.txId)).details.total ∧ t.receiver =
π1(πi(intents(S, b, t.txId)).methodData).receiver.

The Intended Payments property ensures that for each trans-
action stored at an honest payment provider for some honest
sender’s account, the sender’s browser holds a corresponding
intent (identified by the transaction identifier) with the same
receiver and total. As already mentioned, the behavior of the
customer is subsumed by the browser, with the mapping from
customer to browser defined by the mapping ownerOfID.

We require that both the involved browser of the customer
as well as the payment method provider are honest—otherwise,
all is lost anyway w.r.t. Intended Payments. However, as already
mentioned above, we do not require that merchants are honest,
i.e., this property holds true even for malicious merchants
involved in the payment process.

B. Uniqueness of Payments

As mentioned, intuitively, Uniqueness of Payments ensures
that for each payment that the customer authorizes, there is at
most one transaction executed by any honest payment provider,
and that this transaction has the correct values.
Definition 4 (Uniqueness of Payments). A WPA system

in WPAPI fulfills Uniqueness of Payments iff for ev-
ery run ρ of this system, every configuration (S, E,
N) in ρ, every browser b ∈ B honest in S, every
(txId , intents) ∈ S(b).paymentIntents, and with PPh =
{pp ∈ PP : S(pp).isCorrupted = ⊥} being the set of
payment providers that are honest in S, then | ∪pp∈PPh

{t ∈ S(pp).transactions | txId = t.txId ∧ b =
ownerOfID(t.sender)}| ≤ 1. If such a t exists, there exists
a pi ∈ intents such that t.total = pi.details.total and
t.receiver = π1(pi.methodData).receiver.

This property requires that for every payment intent stored
in an honest browser (identified by txId), there is at most
one corresponding transaction with that browser’s user as the
sender (payer) in the combined state of all honest payment
providers. If such a transaction exists, then we require that the
receiver and total of the transaction correspond to the values
of one of the intents stored by the browser for txId .

C. Security Theorem

The following theorem states that the WPA protocol is
secure, i.e., fulfills both the Intended Payments property and
the Uniqueness of Payments property. We refer the reader to
our technical report [18] for the full proof of this theorem; we
provide a proof sketch in Section VII.
Theorem 1. All web systems in WPAPI fulfill the Intended

Payments and the Uniqueness of Payments properties.

We emphasize that our modeling and analysis takes into
account a powerful attacker with capabilities way beyond the
usual network attacker used in protocol analyses as the WIM
and its extension presented here is a detailed model of the
web infrastructure, in fact the most comprehensive one to
date: Our attacker not only completely controls the network
but, as mentioned, also the whole DNS system. He can also
make use of the various headers supported by the model.
Furthermore, an honest browser may visit malicious websites
with malicious scripts which run in the browser—in parallel to
(possibly multiple) WPA sessions. This, of course, also allows
the attacker to use the whole set of supported web features
in the browser, including sending postMessages to honest
browsing contexts, making requests to (honest) servers from
an honest browser (cross site request forgery attacks), trigger
arbitrary events, access data stored in the browser (complying
with access restrictions defined in the various web standards,
e.g., related to the same-origin policy), etc. This detailed view
makes it possible to exclude subtle attacks emerging from
delicate details in how different web technologies inter-operate.

We note that our analysis does not cover privacy properties,
as privacy is not a central concern of the WPA. In particular,
the WPA intentionally “leaks” privacy-related information.
For example, the user’s address is (partially) provided to the
merchant even before the user approves the final payment
(see also Section II-C). Also, payment details may be released
to the merchant, e.g., credit card details when using the
basic-card payment method (see Section II-B). Moreover,
the protocol does not intend to hide the identity of the merchant
or the kind of goods paid for from the payment provider.

VII. PROOF SKETCH

The proof of Theorem 1 is split into 14 lemmas. To give an
impression of the proof, we show the proof of the Intended Pay-
ments property (see Lemma 2 below), which in turn is proven
using two key lemmas (with one based on further lemmas). We
here give the proof of one of these key lemmas (Lemma 1) and
state the second lemma (Lemma 3) in Appendix A. To give
an impression of the proof of Uniqueness of Payments, we
provide a high-level proof sketch in Appendix C. Full proofs
of all lemmas are provided in our technical report [18].

A. Relation between Payment Request Events and Payment
Intents

The following lemma relates payment request events of a
browser to the payment intents it stores. As introduced in
Section VI, the user’s intent to submit a payment is modeled
by adding the corresponding payment request event to the
paymentIntents entry of the browser state. Additionally, the

browser model has a state entry events, where it stores events
that it may process at any time.

More precisely, Lemma 1 states that for every payment
request event stored in the events entry of the browser state
of an honest browser, there is a payment intent stored by the
browser with the same total and the same receiver (in the first
element of the methodData entry). Furthermore, the payment
intent is stored using the transaction identifier of the payment
request event as a key.
Lemma 1 (Payment Request Event Implies Payment Intent).

For every WPA system in WPAPI , for every run ρ of this
system, every configuration (S, E, N) in ρ, every browser
b ∈ B that is honest in S, every payment request event
(as defined in Definition 6) preqEvent ∈〈〉 S(b).events, it
holds true that ∃pi .

pi ∈〈〉 S(b).paymentIntents[preqEvent .txId] ∧
pi .details.total = preqEvent .total ∧
π1(pi .methodData).receiver =
π1(preqEvent .methodData).receiver.

Proof: Let preqEvent be a payment request event such that
preqEvent ∈〈〉 S(b).events, and b a browser honest in S.
Initially, the events state entry of the browser is empty
(per Definition 69 of [18]). An honest browser adds payment
requests events to its events state entry only in Line 22
of Algorithm 3. After this line is executed, the browser
will execute Line 25 of the same algorithm (as there is no
stop between these lines), in which the browser stores a
payment intent pi . The dictionary key used for storing the
intent is the transaction identifier stored in preqEvent , i.e.,
preqEvent .txId (see Line 20 and Line 25 of Algorithm 3).

Moreover, there exists a payment request paymentReq
such that pi .details.total = paymentReq .details.total
(Line 23 of Algorithm 3). The value of the total of
preqEvent is set to the value stored in paymentReq , i.e.,
preqEvent .total = paymentReq .details.total (Line 10
and Line 20 of Algorithm 3). Therefore, we conclude that
pi .details.total = preqEvent .total.

The methodData entry stored in the payment intent
pi in Line 24 is the same that is stored in the
payment request event preqEvent in Line 20 of Al-
gorithm 3, i.e., π1(preqEvent .methodData).receiver =
π1(pi .methodData).receiver.

B. Proof of Intended Payments

The proof of the Intended Payments property uses Lemma 3,
which we give in Appendix A. Informally, Lemma 3 relates
transactions stored in the state of a payment provider server
to payment request events stored at a browser. More precisely,
each transaction contains a sender, and the lemma states that
the browser that manages the identity of this sender stores a
corresponding payment request event, i.e., with the same total
and the first methodData entry of the event having the same
receiver as in the transaction.
Lemma 2 (Intended Payments). Every WPA system in WPAPI

fulfills Intended Payments (see Definition 3).

Proof: Let t be a transaction stored in the state of an honest
payment provider pp, i.e., t ∈ S(pp).transactions .

We apply Lemma 3 and conclude that, if b :=
ownerOfID(t.sender) ∈ B is a browser honest in S, then
∃ preqEvent ∈〈〉 S(b).events such that

π1(preqEvent) = PAYMENTREQUESTEVENT∧ t.txId =
preqEvent .txId ∧ t.total = preqEvent .total ∧
π1(preqEvent .methodData).receiver = t.receiver.

Next, we apply Lemma 1 and conclude that there is a payment
intent pi such that

pi ∈〈〉 S(b).paymentIntents[preqEvent .txId] ∧
pi .details.total = preqEvent .total ∧
π1(pi .methodData).receiver =
π1(preqEvent .methodData).receiver,

and, in particular,
pi ∈〈〉 S(b).paymentIntents[t.txId] ∧
pi .details.total = t.total ∧
π1(pi .methodData).receiver = t.receiver.

VIII. CONCLUSION

In this paper, we performed the first in-depth and formal
analysis of the W3C WPA. To the best of our knowledge, our
analysis is the first such analysis of any web payment system,
certainly the first in a detailed web infrastructure model.

Our analysis is based on the most comprehensive model
of the web infrastructure to date, the WIM. To enable the
analysis, we significantly extended the WIM, a contribution
of independent interest. In addition to extending the browser
model with the WPA, we added a framework for service work-
ers and an extensible mechanism to trigger and process DOM
events in the browser. Based on this model, we formulated
precise security properties that reflect the integrity of payments
performed using WPA: Intended Payments and Uniqueness of
Payments.

While trying to prove these properties, we found two critical
vulnerabilities that enable a malicious merchant to over-charge
an unsuspecting customer. We proposed fixes that prevent these
attacks and formally verified the security of the WPA with our
fixes in place. This is of direct practical relevance as the WPA
enjoy wide industry support and are expected to be adopted
by many merchants and payment providers in the near future.

We also verified these attacks in Google Chrome, at the
time of analysis one of the first browsers that implemented
the WPA. We reported our findings to the responsible working
group at the W3C as well as the Google Chrome developers,
who both acknowledged the issues. The working group adapted
the specification of the WPA according to our proposals and the
Chrome developers implemented the fixes and even released
a hotfix for the current Chrome version.

We are currently working on a mechanized model for the
WIM based on a recent verification framework called DY? [7],
a new approach for the modular symbolic security analysis of
protocol code written in the F? programming language. It is
interesting future work to carry out analyses as performed here
with such a tool.

ACKNOWLEDGMENTS

This work was partially supported by Deutsche Forschungs-
gemeinschaft (DFG) through Grant KU 1434/12-1 and Grant
KU 1434/10-2.

REFERENCES

[1] M. Abadi and C. Fournet. “Mobile Values, New Names, and Secure
Communication”. In: POPL. ACM Press, 2001, pp. 104–115.

[2] Apple. Apple Pay on the Web. URL: https : / / developer . apple . com /
documentation/apple_pay_on_the_web (Retrieved 12/03/2020).

[3] M. Backes, M. Maffei, and K. Pecina. “A Security API for Distributed
Social Networks”. In: NDSS’11. Vol. 11. 2011, pp. 35–51.

[4] C. Badertscher, U. Maurer, D. Tschudi, and V. Zikas. “Bitcoin as a
Transaction Ledger: A Composable Treatment”. In: CRYPTO. Vol. 10401.
LNCS. Springer, 2017, pp. 324–356.

[5] C. Bansal, K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis. “Discov-
ering Concrete Attacks on Website Authorization by Formal Analysis”.
In: Journal of Computer Security 22.4 (2014), pp. 601–657.

[6] D. Basin, R. Sasse, and J. Toro-Pozo. “The EMV Standard: Break, Fix,
Verify”. In: IEEE S&P. IEEE Computer Society, 2021.

[7] K. Bhargavan, A. Bichhawat, Q. H. Do, P. Hosseyni, R. Küsters,
G. Schmitz, and T. Würtele. “DY*: A Modular Symbolic Verification
Framework for Executable Cryptographic Protocol Code”. In: EuroS&P
2021. To appear. IEEE Computer Society, 2021.

[8] A. Bohannon and B. C. Pierce. “Featherweight Firefox: formalizing the
core of a web browser”. In: WebApps’10. USENIX Association, 2010,
pp. 11–11.

[9] M. Bond, O. Choudary, S. J. Murdoch, S. P. Skorobogatov, and R. J.
Anderson. “Chip and Skim: Cloning EMV Cards with the Pre-play
Attack”. In: IEEE S&P. IEEE Computer Society, 2014, pp. 49–64.

[10] E. Börger, A. Cisternino, and V. Gervasi. “Contribution to a Rigorous
Analysis of Web Application Frameworks”. In: ABZ 2012. Vol. 7321.
LNCS. Springer, 2012, pp. 1–20.

[11] M. Cáceres, D. Denicola, Z. Koch, R. McElmurry, and A. Bateman.
Payment Method Identifiers. Tech. rep. https://www.w3.org/TR/2019/CR-
payment-method-id-20190905/. W3C, Sept. 2019.

[12] M. Cáceres, D. Denicola, Z. Koch, R. McElmurry, and A. Bateman.
Payment Method: Basic Card. Tech. rep. https://www.w3.org/TR/2020/
WD-payment-method-basic-card-20200213/. W3C, Feb. 2020.

[13] M. Cáceres, D. Denicola, Z. Koch, R. McElmurry, I. Jacobs, R. Solo-
makhin, and A. Bateman. Payment Request API. Tech. rep. https://www.
w3.org/TR/2019/CR-payment-request-20191212/. W3C, Dec. 2019.

[14] Chromium Bug Tracker. Issue 1028098: Disable switching payment
method during retry. URL: https : / /bugs .chromium.org/p /chromium/
issues/detail?id=1028098.

[15] Chromium Bug Tracker. Issue 1085712: Disallow duplicate payment
method identifiers. URL: https://bugs.chromium.org/p/chromium/issues/
detail?id=1085712.

[16] S. Delaune, S. Kremer, and G. Steel. “Formal Analysis of PKCS# 11”.
In: CSF. IEEE Computer Society, 2008, pp. 331–344.

[17] R. Dhamija, J. D. Tygar, and M. A. Hearst. “Why phishing works”. In:
CHI 2006. ACM, 2006, pp. 581–590.

[18] Q. H. Do, P. Hosseyni, R. Küsters, G. Schmitz, N. Wenzler, and T.
Würtele. A Formal Security Analysis of the W3C Web Payment APIs:
Attacks and Verification. Cryptology ePrint Archive, Report 2021/1012.
https://ia.cr/2021/1012. 2021.

[19] J. Dreier, A. Kassem, and P. Lafourcade. “Formal Analysis of E-Cash
Protocols”. In: SECRYPT. SciTePress, 2015, pp. 65–75.

[20] D. Fett, P. Hosseyni, and R. Küsters. “An Extensive Formal Security
Analysis of the OpenID Financial-Grade API”. In: IEEE S&P. IEEE
Computer Society, May 2019, pp. 1054–1072.

[21] D. Fett, R. Küsters, and G. Schmitz. “An Expressive Model for the
Web Infrastructure: Definition and Application to the BrowserID SSO
System”. In: IEEE S&P. IEEE Computer Society, 2014, pp. 673–688.

[22] D. Fett, R. Küsters, and G. Schmitz. “Analyzing the BrowserID SSO
System with Primary Identity Providers Using an Expressive Model of
the Web”. In: ESORICS. Vol. 9326. LNCS. Springer, 2015, pp. 43–65.

[23] D. Fett, R. Küsters, and G. Schmitz. “SPRESSO: A Secure, Privacy-
Respecting Single Sign-On System for the Web”. In: ACM CCS. ACM,
2015, pp. 1358–1369.

[24] D. Fett, R. Küsters, and G. Schmitz. “A Comprehensive Formal Security
Analysis of OAuth 2.0”. In: ACM CCS. ACM, 2016, pp. 1204–1215.

[25] D. Fett, R. Küsters, and G. Schmitz. “The Web SSO Standard OpenID
Connect: In-Depth Formal Security Analysis and Security Guidelines”.
In: CSF. IEEE Computer Society, 2017.

[26] J. Fingas. StockX confirms it was hacked. 2019. URL: https : / / www.
engadget.com/2019-08-03-stockx-hacked.html.

[27] Forter. Why a Friction-Filled Online Checkout Process Causes Shopping
Cart Abandonment. 2019. URL: https://www.forter.com/blog/infographic-
customers-wont-tolerate-friction-filled-checkout/.

[28] J. A. Garay, A. Kiayias, and N. Leonardos. “The Bitcoin Backbone
Protocol: Analysis and Applications”. In: EUROCRYPT. Vol. 9057.
LNCS. Springer, 2015, pp. 281–310.

[29] Google. Google Pay API PaymentRequest Tutorial. URL: https : / /
developers .google .com/pay /api /web/guides /paymentrequest / tutorial
(Retrieved 12/03/2020).

[30] Google Developers. Introduction to the Payment Request API. 2019. URL:
https://developers.google.com/web/ilt/pwa/introduction-to-the-payment-
request-api.

[31] J. Hodges, J. Jones, M. B. Jones, A. Kumar, and E. Lundberg. Web
Authentication: An API for accessing Public Key Credentials. Tech. rep.
https://www.w3.org/TR/webauthn/. W3C, 2021.

[32] A. Hope-Bailie, A. Lyver, I. Jacobs, R. Solomakhin, J. Bang, T. Thorsen,
and A. Roach. Payment Handler API. Tech. rep. https://www.w3.org/
TR/2019/WD-payment-handler-20191021/. W3C, Oct. 2019.

[33] T. Jeong. Cashing in on the JavaScript Payment Request API. 2020. URL:
https://blog.logrocket.com/javascript-payment-request-api/.

[34] E. Kitamura. Integrating the Payment Request API with a payment service
provider. 2017. URL: https://medium.com/dev-channel/integrating-the-
payment-request-api-with-a-payment-service-provider-b6a23aa44bd6.

[35] A. Kumar. “Using automated model analysis for reasoning about security
of web protocols”. In: ACSAC 2012. ACM, 2012, pp. 289–298.

[36] A. Kumar. “A Lightweight Formal Approach for Analyzing Security
of Web Protocols”. In: RAID 2014. Vol. 8688. LNCS. Springer, 2014,
pp. 192–211.

[37] D. Liu, D. Denicola, and Z. Koch. Payment Method Manifest. Tech.
rep. https: / /www.w3.org/TR/2017/WD- payment- method- manifest-
20171212/. W3C, Dec. 2017.

[38] Z. Luo, X. Cai, J. Pang, and Y. Deng. “Analyzing an Electronic Cash
Protocol Using Applied Pi Calculus”. In: ACNS. Vol. 4521. LNCS.
Springer, 2007, pp. 87–103.

[39] Microsoft. Payment Request API (EdgeHTML). 2020. URL: https://docs.
microsoft.com/en-us/microsoft- edge/dev-guide/windows- integration/
payment-request-api.

[40] Mozilla MDN contributors. Payment Request API. 2019. URL: https :
//developer.mozilla.org/en-US/docs/Web/API/Payment_Request_API.

[41] S. J. Murdoch, S. Drimer, R. J. Anderson, and M. Bond. “Chip and PIN
is Broken”. In: IEEE S&P. IEEE Computer Society, 2010, pp. 433–446.

[42] S. Pai, Y. Sharma, S. Kumar, R. M. Pai, and S. Singh. “Formal
Verification of OAuth 2.0 Using Alloy Framework”. In: CSNT ’11. 2011,
pp. 655–659.

[43] R. Pass, L. Seeman, and A. Shelat. “Analysis of the Blockchain Protocol
in Asynchronous Networks”. In: EUROCRYPT. Vol. 10211. LNCS. 2017,
pp. 643–673.

[44] M. Roland and J. Langer. “Cloning Credit Cards: A Combined Pre-play
and Downgrade Attack on EMV Contactless”. In: WOOT ’13. USENIX
Association, 2013.

[45] J. de Ruiter and E. Poll. “Formal Analysis of the EMV Protocol Suite”.
In: TOSCA 2011. Vol. 6993. LNCS. Springer, 2011, pp. 113–129.

[46] A. Ruiz-Martinez. “Towards a web payment framework: State-of-the-art
and challenges”. In: Electron. Commer. Res. Appl. 14.5 (2015), pp. 345–
350.

[47] A. Russell, J. Song, J. Archibald, and M. Kruisselbrink. Service Workers
1. Tech. rep. https://www.w3.org/TR/service-workers-1/. W3C, Nov.
2019.

[48] S. Shepard. Marriott Breach: Unencrypted Passport Numbers, Payment
Cards Leaked. 2019. URL: https://securitytoday.com/articles/2019/01/
09 / marriott - breach - unencrypted - passport - numbers - payment - cards -
leaked.aspx.

[49] Stripe. Stripe: JavaScript SDK documentation & reference. URL: https:
//stripe.com/docs/js/payment_request/create (Retrieved 12/03/2020).

[50] W3C. Web Payments Working Group. URL: https : / / www. w3 . org /
Payments/WG/.

[51] W3C Web Payments Issue Tracker. Issue 882: Prevent double spending
through retry. URL: https://github.com/w3c/payment-request/issues/882.

[52] W3C Web Payments Issue Tracker. Issue 903: Discuss findings of
security analysis. URL: https://github.com/w3c/payment-request/issues/
903.

[53] W3C Web Payments Issue Tracker. Issue 904: Clarification on payment
handler selection in spec. URL: https : / / github . com / w3c / payment -
request/issues/904.

[54] W3C Web Payments Issue Tracker. Issue 905: Disallow ambiguous
methodData declarations? URL: https : / / github . com / w3c / payment -
request/issues/905.

https://developer.apple.com/documentation/apple_pay_on_the_web
https://developer.apple.com/documentation/apple_pay_on_the_web
https://www.w3.org/TR/2019/CR-payment-method-id-20190905/
https://www.w3.org/TR/2019/CR-payment-method-id-20190905/
https://www.w3.org/TR/2020/WD-payment-method-basic-card-20200213/
https://www.w3.org/TR/2020/WD-payment-method-basic-card-20200213/
https://www.w3.org/TR/2019/CR-payment-request-20191212/
https://www.w3.org/TR/2019/CR-payment-request-20191212/
https://bugs.chromium.org/p/chromium/issues/detail?id=1028098
https://bugs.chromium.org/p/chromium/issues/detail?id=1028098
https://bugs.chromium.org/p/chromium/issues/detail?id=1085712
https://bugs.chromium.org/p/chromium/issues/detail?id=1085712
https://ia.cr/2021/1012
https://www.engadget.com/2019-08-03-stockx-hacked.html
https://www.engadget.com/2019-08-03-stockx-hacked.html
https://www.forter.com/blog/infographic-customers-wont-tolerate-friction-filled-checkout/
https://www.forter.com/blog/infographic-customers-wont-tolerate-friction-filled-checkout/
https://developers.google.com/pay/api/web/guides/paymentrequest/tutorial
https://developers.google.com/pay/api/web/guides/paymentrequest/tutorial
https://developers.google.com/web/ilt/pwa/introduction-to-the-payment-request-api
https://developers.google.com/web/ilt/pwa/introduction-to-the-payment-request-api
https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/2019/WD-payment-handler-20191021/
https://www.w3.org/TR/2019/WD-payment-handler-20191021/
https://blog.logrocket.com/javascript-payment-request-api/
https://medium.com/dev-channel/integrating-the-payment-request-api-with-a-payment-service-provider-b6a23aa44bd6
https://medium.com/dev-channel/integrating-the-payment-request-api-with-a-payment-service-provider-b6a23aa44bd6
https://www.w3.org/TR/2017/WD-payment-method-manifest-20171212/
https://www.w3.org/TR/2017/WD-payment-method-manifest-20171212/
https://docs.microsoft.com/en-us/microsoft-edge/dev-guide/windows-integration/payment-request-api
https://docs.microsoft.com/en-us/microsoft-edge/dev-guide/windows-integration/payment-request-api
https://docs.microsoft.com/en-us/microsoft-edge/dev-guide/windows-integration/payment-request-api
https://developer.mozilla.org/en-US/docs/Web/API/Payment_Request_API
https://developer.mozilla.org/en-US/docs/Web/API/Payment_Request_API
https://www.w3.org/TR/service-workers-1/
https://securitytoday.com/articles/2019/01/09/marriott-breach-unencrypted-passport-numbers-payment-cards-leaked.aspx
https://securitytoday.com/articles/2019/01/09/marriott-breach-unencrypted-passport-numbers-payment-cards-leaked.aspx
https://securitytoday.com/articles/2019/01/09/marriott-breach-unencrypted-passport-numbers-payment-cards-leaked.aspx
https://stripe.com/docs/js/payment_request/create
https://stripe.com/docs/js/payment_request/create
https://www.w3.org/Payments/WG/
https://www.w3.org/Payments/WG/
https://github.com/w3c/payment-request/issues/882
https://github.com/w3c/payment-request/issues/903
https://github.com/w3c/payment-request/issues/903
https://github.com/w3c/payment-request/issues/904
https://github.com/w3c/payment-request/issues/904
https://github.com/w3c/payment-request/issues/905
https://github.com/w3c/payment-request/issues/905

[55] W3C Web Payments Working Group. w3c payment-request-info FAQ.
2018. URL: https://github.com/w3c/payment-request-info/wiki/FAQ#in-
what-way-to-the-payment-request-api-increase-security.

[56] J. Wakefield. EasyJet admits data of nine million hacked. 2020. URL:
https://www.bbc.com/news/technology-52722626.

[57] R. Wang, S. Chen, X. Wang, and S. Qadeer. “How to Shop for Free
Online - Security Analysis of Cashier-as-a-Service Based Web Stores”.
In: IEEE S&P. IEEE Computer Society, 2011, pp. 465–480.

[58] M. Watson. Web Cryptography API. Tech. rep. https://www.w3.org/TR/
WebCryptoAPI/. W3C, 2017.

[59] Z. Whittaker. DoorDash confirms data breach affected 4.9 million
customers, workers and merchants. 2019. URL: https://techcrunch.com/
2019/09/26/doordash-data-breach/.

[60] D. Winder. Town Of Salem Hacked Leaving More Than 7.6M With
Compromised Data. 2019. URL: https : / / www . forbes . com / sites /
daveywinder/2019/01/03/town-of-salem-hacked-leaving-more-than-7-
6m-with-compromised-data/.

[61] T. Yunusov. “ApplePwn - The future of cardless fraud”. In: BlackHat
USA 2017. 2017.

APPENDIX A
HELPER LEMMAS

In this section, we provide basic lemmas that are necessary
for proving the security theorem. Lemma 3 (see below) is
directly used for proving the Intended Payments property (see
Section VII-B). Lemma 4 is used for proving the Uniqueness
of Payments property (see the high-level proof sketch in
Appendix C). The remaining lemmas shown here (Lemma 5
and Lemma 6) capture basic properties needed for the proofs
of both security properties.

We highlight that this is a small selection of the lemmas
needed for the full proof and that we omit their proofs for
brevity. We provide all lemmas with their full proofs in the
technical report [18].

Transaction Values Originate from Payment Request
Event. Lemma 3 relates transactions stored at an honest
payment provider to payment request events stored at a browser.
More precisely, the lemma states that for every run of a WPA
system in WPAPI and every reachable configuration, and for
every payment provider server pp honest in S, if pp stores a
transaction t, then the browser that manages the identity of the
sender of the transaction t.sender stores a payment request
event that contains the values used for the transaction.
Lemma 3 (Transaction in payment provider’s state implies

PaymentRequestEvent in browser’s state). Given a WPA
system in WPAPI , for every run ρ of this system, every
configuration (S, E, N) in ρ, every payment provider server
pp ∈ PP honest in S, and every t ∈ S(pp).transactions
the following holds true:
If b := ownerOfID(t.sender) ∈ B is a browser honest
in S, then ∃ preqEvent ∈〈〉 S(b).events such that, with
pi = π1(preqEvent .methodData).paymentIdentifier,
it holds true that
π1(preqEvent) = PAYMENTREQUESTEVENT ∧
preqEvent .txId = t.txId ∧
preqEvent .total = t.total ∧
π1(preqEvent .methodData).receiver = t.receiver ∧
S(pp).transactions[〈pi〉] = t

and such an event has been processed by a payment handler
installed in b and provided by pp to send an HTTPS request
to pp to generate t.

Same Payment Identifier if Events have same Transaction
Identifier. Lemma 4 captures that for every run of a WPA
system in WPAPI and every reachable configuration, and for
every browser b honest in S, for every two payment request
events pre1, pre2 stored by the browser, if both events have the
same transaction identifier, then they have the same payment
identifier in the first method data element.
Lemma 4 (Same payment identifier if same transaction iden-

tifier). For every run ρ of a WPA system in WPAPI ,
every configuration (S, E, N) in ρ, every browser b ∈ B
honest in S, every payment request events pre1, pre2

∈〈〉 S(b).events with π1(pre1) = PAYMENTREQUESTEVENT

and π1(pre2) = PAYMENTREQUESTEVENT, it holds true that
(pre1.txId = pre2.txId)⇒

(π1(pre1.methodData).paymentIdentifier =
π1(pre2.methodData).paymentIdentifier).

Credentials do not leak. Lemma 5 states that for every run of
a WPA system in WPAPI and every reachable configuration,
every user identity of an honest payment provider (where the
identity is managed by an honest browser), the user credentials
of the identity (for authenticating at the payment provider) is
only derivable by the browser and the payment provider, and
by no other process, in particular, not by the network attacker.
Lemma 5 (Credentials do not leak). For every run ρ of a WPA

system in WPAPI , every configuration (S, E, N) in ρ, for
every browsers b ∈ B honest in S, every id ∈ b.ids with
pp = governor(id) and pp honest in S, it holds true that
∀p ∈ W\{b, pp} : secretOfID(id) /∈ d∅(S(p)).11

Authorization Tokens do not leak. Lemma 6 states that for
every run of a WPA system in WPAPI and every reachable
configuration, a token stored in the state of an honest payment
provider for an identity managed by an honest server cannot
be derived by any other process except for the browser and
the payment provider.
Lemma 6 (Authorization tokens do not leak). For every run
ρ of a WPA system in WPAPI , every configuration (S,
E, N) in ρ, every payment provider server pp ∈ PP
honest in S, every token ∈ S(pp).tokens with id such
that S(pp).tokens[id] = token and b ∈ B such that
b = ownerOfID(id) and b honest in S, it holds true that
∀p ∈ W\{b, pp} : token /∈ d∅(S(p)).

APPENDIX B
EXCERPT OF THE WPA MODEL

We introduce here some main features of the WPA model,
including data structures of important events and objects (B-A),
the remaining extension of the script API already presented
in Algorithm 1 (B-B), and processing events (B-C) within the
browser. The full model is provided in our technical report [18].

A. Data Structures

Payment Relevant Objects. In Definitions 5 to 8, we provide
the data structures of simple objects used within the browser
model.

11d∅(M) denotes the set of all messages that can be derived from the set
M of messages (in the usual Dolev-Yao style).

https://github.com/w3c/payment-request-info/wiki/FAQ#in-what-way-to-the-payment-request-api-increase-security
https://github.com/w3c/payment-request-info/wiki/FAQ#in-what-way-to-the-payment-request-api-increase-security
https://www.bbc.com/news/technology-52722626
https://www.w3.org/TR/WebCryptoAPI/
https://www.w3.org/TR/WebCryptoAPI/
https://techcrunch.com/2019/09/26/doordash-data-breach/
https://techcrunch.com/2019/09/26/doordash-data-breach/
https://www.forbes.com/sites/daveywinder/2019/01/03/town-of-salem-hacked-leaving-more-than-7-6m-with-compromised-data/
https://www.forbes.com/sites/daveywinder/2019/01/03/town-of-salem-hacked-leaving-more-than-7-6m-with-compromised-data/
https://www.forbes.com/sites/daveywinder/2019/01/03/town-of-salem-hacked-leaving-more-than-7-6m-with-compromised-data/

Definition 5 (Payment Request). A Payment Request is a term
of the form 〈PAYMENTREQUEST, paymentRequestNonce,
documentnonce, methodData , details , options , state,
updating〉, where paymentRequestNonce ∈ N ,
documentnonce ∈ N , methodData ∈ TN , details ∈ TN ,
options ∈ TN , state ∈ {CR, IN,CL} (corresponding
to the states: Created, Interactive and Closed), and
updating ∈ {>,⊥}.

Definition 6 (Payment Request Event). A Payment Request
Event is a term of the form 〈PAYMENTREQUESTEVENT,
preqEventNonce, paymentRequestNonce, handlerNonce,
methodData , total , modifiers , instrumentKey ,
requestBillingAddress , transactionId〉, where
preqEventNonce ∈ N , paymentRequestNonce ∈ N ,
handlerNonce ∈ N , methodData ∈ TN , total ∈ TN ,
modifiers ∈ TN , instrumentKey ∈ TN ,
requestBillingAddress ∈ {⊥,>}, and transactionId ∈ N .

Definition 7 (Payment Handler Response). A Payment
Handler Response is a term 〈PAYMENTHANDLERRESPONSE,
paymentRequestNonce, handlerNonce, methodName,
details〉, where paymentRequestNonce ∈ N ,
handlerNonce∈N , methodName∈TN , and details ∈ TN .

Definition 8 (Payment Response). A Payment Response
is a term of the form 〈PAYMENTRESPONSE,
paymentResponseNonce, paymentRequestNonce,
handlerNonce, methodName, details , shippingAddress ,
shippingOption , payerInfo, complete〉, where
paymentResponseNonce ∈ N , paymentRequestNonce ∈
N , handlerNonce ∈ N , methodName ∈ TN , details ∈
TN , shippingAddress ∈ TN , shippingOption ∈ TN ,
payerInfo ∈ TN , and complete ∈ {⊥,>}.

Payment Storage. The payment storage entry of the browser
state stores payment relevant objects that may be accessed by
scripts, service workers, and the browser.
Definition 9 (Payment Storage). A paymentStorage ∈

[N × TN] is a dictionary, where for a nonce PRN ∈ N ,
the term paymentStorage[PRN] has the following
structure: 〈paymentRequest, paymentRequestEvents,
paymentResponses, transactionId, handlerNonce〉.
paymentRequest ∈ TN is a term as defined in Defini-
tion 5. paymentRequestEvents ∈ [N × TN] is a dictionary
from nonces to payment request events (see also Defini-
tion 6). paymentResponses ∈ [N × TN] is a dictionary
from nonces to payment responses (see also Definition 8).
transactionId ∈ N and handlerNonce ∈ N are nonces.

Transactions. In our model, a payment provider server has
a state entry for storing all transactions (more precisely, a
sequence of transactions). In the following, we define the
structure of this transaction state entry.
Definition 10 (Transaction). transactions ∈ [TN ×

TN] is a dictionary, where for a term key ∈ TN ,
the transaction transactions[key] has the following
structure: 〈sender , receiver , total , transactionId〉, where
sender , receiver , total ∈ TN , and transactionId ∈ N .

Service Workers. In the following, we give the definition of
a service worker registration. We call the set of all Service
Worker Registrations ServiceWorkerRegistrations .
Definition 11 (Service Worker Registration). A Service

Worker Registration is defined through a term of the
form: 〈nonce, scope, script, scriptinputs, scriptstate,
paymentManager, trusted〉, where nonce ∈ N , scope ∈
URLs, script ∈ TN , scriptinputs ∈ TN , scriptstate ∈
TN , paymentManager ∈ PaymentManagers, and
trusted ∈ {⊥,>}.

Method Data. Next, we give the definitions for the identifier
of a payment method, followed by the definition of the method
data object.
Definition 12 (Payment Method Identifier). A Payment Method

Identifier is a URL for which it holds true that protocol = S.
PaymentMethodIdentifiers is the set of all possible Payment
Method Identifiers.

Definition 13 (Payment Method Data). A payment method data
term is a term consisting of a sequence of terms 〈x1 , x2 , . . . 〉,
where each xi is a term 〈pmi , receiver , paymentIdentifier〉
with pmi ∈ PaymentMethodIdentifiers, receiver ∈ TN ,
and paymentIdentifier ∈ S. Furthermore, we require for
all xi , xj in the sequence that xi .paymentIdentifier =
xj .paymentIdentifier. The set of all possible payment
method data terms is referenced by MethodDatas.

B. Script API Extension

Algorithm 2 continues some of the cases of the extension
of the RUNSCRIPT function that are omitted in Algorithm 1.
In particular, these cases show how the browser processes
script commands for determining whether there is a payment
handler that supports one of the payment methods of a
payment request (PR_CANMAKEPAYMENT), aborting a payment
(PR_ABORT), completing a payment (PRESS_COMPLETE), retry-
ing a payment (PRESS_RETRY), and updating payment details
(PR_UPDATE_DETAILS).

C. Event Processing

Algorithm 3 describes the PROCESSEVENT function that
processes events within the browser. The function takes the
current browser’s state, the current active window and an
event (which can be chosen from a pool of waiting events
non-deterministically), and outputs a new state of the browser,
which can contain new events. The events CanMakePayment,
PaymentRequestEvent, and PaymentResponse are simply
processed by transmitting the relevant event to the correspond-
ing payment handler. The SubmitPayment event triggers a
process to select the payment handler responsible to handle
resulting PaymentRequestEvent. For the case of the event
PaymentHandleResponse, information of corresponding pay-
ment request is integrated into a Payment Response object and
the corresponding PaymentResponse event is submitted to
the event set.

Algorithm 2 Web Browser Model: Execute a script.
1: function RUNSCRIPT(w , d , s′)
→ In this excerpt, we continue Algorithm 1, focussing on the

extension for the WPA and refer to the technical report [18] for
the full model. We use the same line numbering as in the
technical report.

15: switch command do
· · ·

124: case 〈PR_CANMAKEPAYMENT,PRN 〉
125: let paymentReq :=

↪→ s′.paymentStorage[PRN].paymentReq
126: if paymentReq .state 6= CR then stop 〈〉, s′

127: let handlers := 〈〉
128: for each 〈pmi , recv , paymentId〉 ∈

↪→ paymentReq .methodData do
129: let handlers := handlers+〈〉

↪→ GET_PAYMENT_HANDLERS(pmi, s′)
130: if handlers 6= 〈〉 then
131: let s′.d .scriptinputs := s′.d .scriptinputs

↪→ +〈〉 〈CANMAKEPAYMENTRESPONSE,PRN ,>〉
↪→ → Let script know that handler is available

132: else
133: let s′.d .scriptinputs := s′.d .scriptinputs

↪→ +〈〉 〈CANMAKEPAYMENTRESPONSE,PRN ,⊥〉
↪→ → Let script know that handler is not available

134: stop 〈〉, s′

135: case 〈PR_ABORT,PRN 〉
136: let paymentReq :=

↪→ s′.paymentStorage[PRN].paymentReq
137: if paymentReq .state 6= IN then stop 〈〉, s′

138: if s′.paymentStorage[PRN]
↪→ .paymentResponses 6= 〈〉 then stop 〈〉, s′

139: let s′.paymentStorage[PRN].paymentReq
↪→ .state := CL

140: let s′.w .paymentRequestShowing := ⊥
141: stop 〈〉, s′

142: case 〈PRES_COMPLETE,PRN , paymRespNonce〉
143: let paymentResp := (s′.paymentStorage[PRN]

↪→ .paymentResponses)[paymRespNonce]
↪→ → Retrieve payment response

144: if paymentResp.complete ≡ > then stop 〈〉, s′

145: let (s′.paymentStorage[PRN].paymentResponses)
↪→ [paymRespNonce].complete := >

146: let s′.w .paymentRequestShowing := ⊥
147: stop 〈〉, s′

148: case 〈PRES_RETRY,PRN , paymRespNonce, errFields〉
149: let paymentResp := (s′.paymentStorage[PRN]

↪→ .paymentResponses)[paymRespNonce]
↪→ → Get response from state using the two nonces

150: if paymentResp.complete ≡ > then stop 〈〉, s′

151: let s′.paymentStorage[PRN].paymentReq
↪→ .state := IN

152: let handlerNonce :=
↪→ s′.paymentStorage[PRN].handlerNonce
→ Fix: No change of payment handler during retry

153: let s′.events := s′.events+〈〉

↪→ 〈SUBMITPAYMENT,PRN , handlerNonce〉
154: stop 〈〉, s′

→ For brevity, we omit here the cases PR_GET_PREQ and
PR_GET_PRESP

164: case 〈PR_UPDATE_DETAILS,PRN , details〉 → According
to the specification, updateDetails can only occur as a reaction
to a PaymentRequestUpdateEvent. This is simplified in the
model.

165: let paymentReq :=
↪→ s′.paymentStorage[PRN].paymentReq

166: if paymentReq .state 6= IN then stop 〈〉, s′

167: let s′.paymentStorage[PRN].paymentReq
↪→ .updating := >

168: let s′.events := s′.events+〈〉

↪→ 〈PR_UPDATE_DETAILS,PRN , details〉
169: stop 〈〉, s′

170: case else stop 〈〉, s′

APPENDIX C
UNIQUENESS OF PAYMENTS

In the following, we give a high-level overview of the
proof of the Uniqueness of Payments property. We refer to
the technical report in [18] for the formal proof.

For the Uniqueness of Payments property, we need to prove
that: (1) there is at most one transaction stored in the state of
all honest payment providers of which the transaction identifier
is the same with the transaction identifier of the payment intent
sequence, and the account of the sender is managed by the
browser; and (2) if such a transaction exists, then there is one
payment intent in the sequence with such transaction identifier
having the same total value and the same receiver with the
values in that transaction.

Statement (2) is a trivial corollary of the Intended Payments
property. We will now give a proof sketch for (1).

We prove (1) by contradiction: Let b be an honest browser
and txId a transaction identifier stored in the state of b. Assume
that there exist two different transactions t, t′ stored in the state
of two honest payment providers pp, pp′ (or in one payment
provider, i.e., pp = pp′) so that both transactions have the
same transaction identifier txId and have a sender managed by
the same browser b. In the full proof in [18], we show that the
transaction identifier of t and t′ was sent from the browser b by
executing a payment handler with a PaymentRequestEvent

with the transaction identifier is txId . Therefore, there must be
two PaymentRequestEvent events with the same transaction
identifier provided to the payment handler in b.

Moreover, we show that the browser must have accepted
two payments. The browser accepts a payment by creating a
special kind of event, called SubmitPayment event, after the
merchant starts the payment flow or initiates a retry. In the
proof, by tracing back the origins of the transaction identifier
in the PaymentRequestEvent event and the payment request
nonce in the SubmitPayment event, we show that both
SubmitPayment events must have the same payment request
nonce.

The SubmitPayment event can only be generated within
the browser by processing one of two script commands,
either PR_SHOW (Line 103 of Algorithm 1) or PRESS_RETRY
(Line 148 Algorithm 2). In the proof, we show that the
second SubmitPayment event must be created by a retry,
i.e., by processing PRESS_RETRY. As both SubmitPayment

events have the same payment request nonce, and the second
SubmitPayment is a retry, we can conclude that both result-
ing PaymentRequestEvents will be processed by the same
payment handler. We highlight that this conclusion is only
possible with the fix we proposed in Section III-A.

Algorithm 3 Web Browser Model: Process an event.
1: function PROCESSEVENT(e,w , s′)
2: switch e do
3: case 〈CANMAKEPAYMENT, handlerNonce, topOrigin,

↪→ paymentRequestOrigin,methodData〉
4: call DELIVER_TO_DOC(handlerNonce, e, s′)

→ The browser non-det. chooses a payment
handler (modeling the customer’s selection),
thus, we can safely over-approximate here and
do not have to wait for the reply to our
CANMAKEPAYMENT.
User accepts the payment request algorithm

5: case 〈SUBMITPAYMENT,PRN , handlerNonce〉
6: let paymentReq :=

↪→ s.paymentStorage[PRN].paymentReq
7: if paymentReq .updating = > then stop 〈〉, s′

8: if paymentReq .state 6= IN then stop 〈〉, s′

9: let handler ← s′.serviceWorkers such that
↪→ handler .nonce ≡ handlerNonce
↪→ if possible; otherwise stop 〈〉, s′

10: let total := paymentReq .details.total
11: let modifiers := paymentReq .details.modifiers

↪→ → Abstraction: pass all modifiers
12: let requestBillingAddress :=

↪→ paymentReq .options.requestBillingAddress
13: let instrument ← handler .paymentManager such that

↪→ ∃mds ∈〈〉 paymentRequest .methodData ∧
↪→ mds.pmi = instrument .enabledMethods
↪→ if possible; otherwise stop 〈〉, s′

14: let instrumentKey := instrument .instrumentKey
15: let methodData := 〈〉
16: for each mds := 〈pmi , recv , paymentId〉 ∈

↪→ paymentReq .methodData do
17: if pmi ≡ instrument .enabledMethods then
18: let methodData := methodData +〈〉 mds
19: let transactionId :=

↪→ s′.paymentStorage[PRN].transactionId
20: let pre := 〈PAYMENTREQUESTEVENT, ν16, PRN,

↪→ handler.nonce,methodData, total ,
↪→ modifiers, instrumentKey ,
↪→ requestBillingAddress, transactionId〉

21: let (s′.paymentStorage[PRN]
↪→ .paymentRequestEvents)[ν16] := pre
↪→ → Make event available for later use

22: let s′.events := s′.events+〈〉 pre
23: let paymentIntent := paymentReq
24: let paymentIntent .methodData := methodData
25: let s′.paymentIntents[transactionId] :=

↪→ s′.paymentIntents[transactionId]+〈〉

↪→ paymentIntent
↪→ → New payment intent is added into the list of

payment intents indexed by transactionId
26: stop 〈〉, s′

Payment Handler is selected and processes request
27: case
〈PAYMENTREQUESTEVENT, paymentRequestEventNonce,

↪→ PRN, handlerNonce,methodData, total ,modifiers,
↪→ instrumentKey , requestBillingAddr , transactionId〉

28: call DELIVER_TO_DOC(handlerNonce, e, s′)

Payment handler’s response is merged with relevant data
29: case 〈PAYMENTHANDLERRESPONSE,

↪→ paymentReqEventNonce,PRN , handlerNonce,
↪→ methodName, details〉

30: let paymentReq :=
↪→ s′.paymentStorage[PRN].paymentReq

31: let paymentRequestEvent := (s′.paymentStorage
↪→ [PRN].paymentRequestEvents)
↪→ [paymentReqEventNonce]

32: if paymentRequestEvent
↪→ .methodData | 〈methodName, ∗, ∗〉 ≡ 〈〉 then

33: stop 〈〉, s′ → Method not accepted by merchant
34: if paymentReq .updating = > then stop 〈〉, s′

35: if paymentReq .state 6= IN then stop 〈〉, s′

36: let shippingAddress := 〈〉
37: let shippingOption := 〈〉
38: if paymentReq .options.requestShipping = > then
39: let shippingAddress := ν17
40: let shippingOption ←

↪→ paymentReq .details.shippingOptions

41: let payerInfo := 〈〉
42: if paymentReq .options.requestPayerInfo = > then
43: payerInfo = ν15 → Any payer specific info (phone,

name, email)
44: let responseNonce := ν16
45: let response := 〈PAYMENTRESPONSE, responseNonce,

↪→ PRN, handlerNonce,methodName, details,
↪→ shippingAddress, shippingOption, payerInfo,⊥〉

46: let (s′.paymentStorage[PRN].paymentResponses)
↪→ [responseNonce] := response

47: let s′.events := s′.events+〈〉 response
↪→ → Create PAYMENTRESPONSE Event

48: stop 〈〉, s′

Payment Response is submitted to script in user agent
49: case
〈PAYMENTRESPONSE, responseNonce,PRN , handlerNonce,

↪→ methodName, details, shippingAddr , shippingOpt ,
↪→ payerInfo, complete〉

50: let requestingWinNonce
↪→ := s′.paymentStorage[PRN]
↪→ .paymentReq.docnonce

51: call DELIVER_TO_DOC(requestingWinNonce, e, s′)

PR update details
52: case 〈PR_UPDATE_DETAILS, PRN, details〉
53: let s′.paymentStorage[PRN].paymentReq

↪→ .details := details
54: let s′.paymentStorage[PRN].paymentReq

↪→ .updating := ⊥
55: stop 〈〉, s′

Having the same payment handler also implies that the
requests that will create the transactions at some payment
providers are sent to the same payment provider, i.e., pp ≡ pp′.
Hence, t and t′ are stored in one payment provider’s state.

As mentioned above, two PaymentRequestEvents in b
must have the same transaction identifier. From Lemma 4,
we conclude that they also have the same payment identifier.
The payment handler puts the payment identifier of the
PaymentRequestEvent in the body of the request sent to
the payment provider. Later on, this value is used as the key
indexing the corresponding transaction stored in the payment
provider’s state. Thus, we have that t and t′, both stored in
the state of pp, are indexed by the same payment identifier.
This implies that t and t′ are the same transaction, which
contradicts the assumption that t and t′ are different. Therefore,
(1) is proven, completing the proof sketch for Uniqueness of
Payments.

	Introduction
	The W3C Web Payment APIs
	Overview of the WPA
	Components of the WPA
	Protocol Flow
	Extended Flows
	Update Payment Details
	Customer Authentication and Authorization of Payments

	Attacks and Vulnerabilities
	Double Charging with Retry
	Ambiguous Payment Method Data
	Responsible Disclosure

	The Web Infrastructure Model
	Formal Model of the Web Payment APIs
	Generic Extensions of the WIM
	Instantiating Relevant Service Workers and Servers
	The WPA Web System

	Security Properties
	Intended Payments
	Uniqueness of Payments
	Security Theorem

	Proof Sketch
	Relation between Payment Request Events and Payment Intents
	Proof of Intended Payments

	Conclusion
	Acknowledgments
	Appendix A: Helper Lemmas
	Appendix B: Excerpt of the WPA Model
	Data Structures
	Script API Extension
	Event Processing

	Appendix C: Uniqueness of Payments

