
Automatic detection and demonstrator
generation for information flow leaks in
object-oriented programs ☆

Quoc Huy Do *, Richard Bubel, Reiner Hähnle
TU Darmstadt, Dept. of Computer Science, Darmstadt, Germany

A R T I C L E I N F O

Article history:

Available online 13 December 2016

A B S T R A C T

We present a method to generate automatically exploits for information flow leaks in object-

oriented programs.The goal, similar to white-box test generation, is to automatically produce

executable, reusable test cases that challenge a given information flow policy with a very

high degree of guaranteed coverage. Our approach combines self-composition and sym-

bolic execution to create an insecurity formula for a given program and information flow

policy. Satisfiability of this formula signifies the presence of information leaks and permits

to use model generation for creating exploits. We support different kinds of information

flow policies like noninterference, delimited information release, and information erasure.

A prototypic tool implementation for Java programs of our approach is available. It gener-

ates exploits in the form of self-contained, executable JUnit tests. We evaluate our method

and tool based on a set of micro-benchmarks and a case-study on e-voting.
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1. Introduction

Ensuring that programs do not leak unintended information
is essential to establish confidence in the ability of an IT system
not to put the security and privacy of its users at risk. In the
past decade, much theoretical and practical work on informa-
tion flow analysis of programs was produced (for example
Askarov et al., 2015; Banerjee and Naumann, 2005; Barthe et al.,
2004, 2011; Dam et al., 2010; Darvas et al., 2005; Devriese and
Piessens, 2010; Hunt and Sands, 2006; Myers, 1999; Sabelfeld
and Myers, 2004; Scheben and Schmitt, 2012; Volpano et al.,
1996). Its focus is to ensure that an outside agent with well-
defined properties cannot infer secret inputs by observing (and
initiating) several runs of a program.

Much research on information flow analysis aims at stati-
cally proving that a program does not leak any unintended

information. One can distinguish type-based (e.g. Banerjee and
Naumann, 2005; Hunt and Sands, 2006; Myers, 1999; Sabelfeld
and Myers, 2004; Volpano et al., 1996) and logic-based (e.g.
Barthe et al., 2004; Darvas et al., 2005; Scheben and Schmitt,
2012) approaches. The former tends to be automatic, but im-
precise, while the latter tends to be precise, but requires expert
interaction.

Precision and automation at the same time can be achieved
dynamically, for a concrete program run. Security monitors (e.g.
Askarov et al., 2015; Dam et al., 2010) raise a warning as soon
as a program violates a given security policy and try to contain
the leak. Secure multi-execution ((Devriese and Piessens, 2010)
and several follow-up papers) determines whether a given con-
crete run might violate a policy.

In this paper we connect the static and dynamic view: by
static analysis we produce test cases, which we call exploits,
that are guaranteed to violate a given security policy. Such
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exploits can then be used independently for system testing,
regression testing, documentation, etc. We take a similar view
here as in functional verification: a security policy can be seen
as a requirements specification. Its violation is a software fault
witnessed by a test case, i.e. exploit.

In functional verification it is well-known that static veri-
fication is not a replacement for testing, but both techniques
complement each other (Beckert and Hähnle, 2014): static veri-
fication gives strong guarantees for the modeled part of a
system, while testing is incomplete, but validates actual
executables and can also find problems in the underlying
runtime environment or hardware platform. In our work we
intend to achieve similar goals as in white-box software test
generation frameworks (Albert et al., 2010; de Halleux and
Tillmann, 2008; Engel and Hähnle, 2007).

– Under the assumption that a sound and complete specifi-
cation is provided, no further user interaction is required
and the approach is automatic.

– Completeness is achieved only in specific cases (e.g., no loops
present or else strong loop invariants are supplied), however,
strong and precise coverage guarantees can be given.

– Like test cases, exploits can be used to validate a program
in its actual runtime environment.

– Like test cases, exploits become part of a library that is regu-
larly executed to protect against regression. They are useful
even after changes were made.

– Like test cases, exploits can serve as a documentation and
illustration of intended system behavior.

Unlike monitoring and multi-execution, no special runtime
infrastructure is required, because we generate exploits in the
form of self-contained JUnit tests.These run the program under
test multiple times with the generated input in order to produce
a security violation. In addition, the generated exploits come
with statically determined coverage guarantees.

A huge problem in software testing is the creation of oracles
(Barr et al., 2015) that tell whether a test succeeded. Among
the problems are i) missing or insufficient specifications, ii) com-
plexity of general functional specifications which might contain
quantifications over all objects and similar and iii) possible un-
intended side-effects of specification code (runtime exceptions
and similar). Even in automatic test generation, these must often
be supplied manually. But information flow policies (see
Sabelfeld and Sands (2009) for an overview) can usually be ex-
pressed in a uniform manner for any given program. Hence,
it is possible to generate test oracles automatically from them.
In fact, our approach goes one step further in being oracle-
sensitive: only such exploits that violate a given policy are
generated at all.

Like other white-box software test generation frame-
works (Albert et al., 2010; de Halleux and Tillmann, 2008; Engel
and Hähnle, 2007; King, 1976), our method is based on sym-
bolic execution of the target program. In our case, it is embedded
(Gladisch, 2008) into the program logic of the deductive veri-
fication framework KeY (Beckert et al., 2007), which is also the
basis for the acronym of our tool KEG (for KeY Exploit Gen-
erator). The relational nature of information flow (two runs of
a program must be compared) is captured by the technique of
self-composition (first introduced in Darvas et al. (2003); the

name self-composition was coined in Barthe et al. (2004)). The
result is an insecurity formula for a given information flow policy
that is satisfiable if and only if the policy is violated. Model gen-
eration with the help of SMT solvers (de Moura and Bjørner,
2008) yields the input data for the exploit. In addition to stan-
dard information flow policies like noninterference, we also
support relativized properties that tend to be used in prac-
tice, including delimited information release and information
erasure (Sabelfeld and Sands, 2009).

The paper is structured as follows. Section 2 introduces
basic notions and techniques. Section 3 explains the logic
formalization of security policies. In Section 4 we discuss the
analysis of loops and method invocations, needed to deal
with realistic programs. Section 5 presents our tool KEG and
gives a proof-of-concept with micro benchmarks. Our method
and its implementation KEG are evaluated with the help of
a larger case study (an e-voting program) in Section 6. We
compare our work with others in Section 7 and conclude
with Section 8.

This paper is an extended version of Do et al. (2015). The
main new aspects are a generalization of the encoding of non-
interference to include information erasure (Section 3.2) and
the e-voting case study in Section 6 which is completely new.
Minor additions concern micro benchmarks (Section 5.3) and
a detailed description of the structure of the generated JUnit
tests (Section 5.2).

2. Background

2.1. Information flow policies

Before we can analyze that a program does not leak confiden-
tial information, we need to define the security requirements.This
has two aspects: the security level of each program location (i.e.
program variables and fields) as well as an information flow policy
defining whether and what kind of information may flow
between program locations with a different security level. We
recall the definitions of two well-known information flow poli-
cies supported by our approach.

Noninterference. Noninterference (Cohen, 1978; Volpano et al.,
1996) is the strongest possible information flow policy. It typi-
cally involves two security levels (high/confidential vs. low/
public) and completely prohibits any information flow from
program locations containing confidential information) to pub-
licly observable program locations. The opposite direction is
allowed. In our work we consider only deterministic pro-
grams. In this case, noninterference can be formalized by
comparing two program runs:

Definition 1. (Noninterference – Informal). A program has secure
information flow with respect to noninterference, if any two ex-
ecutions of the program starting in initial states with identical values
of the low variables, also end in final states which coincide on the
values of the low variables.

In other words the final value of low variables is solely de-
termined by the initial value of low variables and does not
depend on the initial values of high variables.
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We define some basic notions required to formalize infor-
mation flow policies. Let p denote a program and Var the set
of all program variables1 of p.

Definition 2. (Program State). A program state σ maps each
program variable v ∈ Var of type T (write v : T) to a value of its con-
crete domain DT, i.e.:

σ : Var D→

with σ v T DT:( ) ∈ and D being the union of all concrete domains.
The set of all states for a given program p is denoted as Statesp.

We define coincidence of program states relative to a set
of program variables:

Definition 3. (State Coincidence). Given a set of program vari-
ables V and two states σ σ1 2, ∈Statesp, we write σ σ1 2�V if and
only if σ1 and σ2 coincide on V, i.e., σ σ1 2v v( ) = ( ) for all v ∈ V.

A concrete execution trace τ of a program p is a possibly in-
finite sequence of program states τ σ σ σ= 0 1 2 � produced by
starting p in state σ0. In this paper, we concern ourselves only
with terminating2 programs, consequently, all of our execu-
tion traces are finite. Then the big-step semantics is defined
as follows: let X be a concrete execution of a program p defined
by a trace τX. We represent X by a pair 〈 〉σ σX

out
X, , where

σ X States∈ p is the first state of τX and σ out
X States∈ p is the last.

The set of all possible concrete executions of p is denoted as
Excp. We can now formally define noninterference for two se-
curity levels low and high:

Definition 4. (Noninterference). Given a program p over vari-
ables Var and a noninterference policy NI H L= /� where
L H Var�∪ = such that L contains the low variables and H the high
variables, program p has secure information flow with respect to NI
if and only if for all concrete executions X Y Excp, ∈ it holds that if
σ σX

L
Y� then σ σout

X
L out

Y� .

Example 1. The program:

if (h >0) l=2;{ }

with high variable h and low variable l is insecure as it does
not satisfy the noninterference property for the policy
NI = { } / { }h l� . Given two initial states σ1 with σ1(h) = 5,
σ1(l) = 0 and σ2 with σ2(h) = −5, σ2(l) = 0, respectively. They
satisfy σ σ1 2� l{ } , but in the final states we have
σ σout out

1 22 0l l( ) = ≠ ( ) = .

Declassification. In practice noninterference is too restric-
tive. For instance, a program that authenticates users with their
login password leaks the information whether an entered pass-
word is correct, or take a database that may be queried for

aggregated values like the average salary, but not for the income
of an individual person.

Declassification is a class of information flow policies that
allows one to express that some precisely specified confiden-
tial information may be leaked.The paper Sabelfeld and Sands
(2009) provides an extensive survey of declassification ap-
proaches. Here we consider delimited information release as
introduced in Sabelfeld and Myers (2004). Delimited informa-
tion release is a declassification policy which allows one to specify
what kind of information may be released.To this end, so called
escape hatch expressions are specified in addition to the secu-
rity level of the program locations.For instance, the escape hatch:

salary e

Person
e Person

( )
∈∑

can be used to declassify the average of the income of all
persons in a database. The formal definition of delimited in-
formation release extends Definition 4. Both definitions coincide
for trivial escape hatches such as e = true.

Definition 5. (Delimited Information Release). Given a program
p over variables Var and a delimited information release policy
Decl L H E= ( ), , with L, H as before and E denoting a set of escape
hatch expressions, program p has secure information flow with respect
to Decl if and only if for all concrete executions X, Y ∈ Excp it holds
that if σ σX

L
Y� and for all e ∈ E: e eX Y� � � �σ σ= , then σ σout

X
L out

Y� . The
expression e� �σ denotes the semantic evaluation of e in state σ.

Example 2. Consider again the program from Example 1:

if (h >0) l=2;{ }

Given the delimited information release policy
Decl = { } { } >{ }( )l h h, , 0 where the escape hatch allows the
sign of h to be leaked, the counter example for noninterfer-
ence from Example 1 is no longer a counter example as:

h h> = ≠ = >0 0
1 2

� � � �σ σtrue false .

In fact the program is secure for the given policy, as the de-
cision whether l may be altered is only based on the guard.
The same policy for the program:

if (h >0) l= h;{ }

is insecure as can be demonstrated by the following counter
example: Given initial states σ1 with σ1(h) = 3, σ1(l) = 0 and σ2

with σ2(h) = 5, σ2(l) = 0 we observe (i) both states coincide on
the value of the low variable l; and (ii) they evaluate the escape
hatch expression to the same value h h true> = > =0 0

1 2
� � � �σ σ ,

but their final states differ on the value of l:
σ σout outl l1 23 5( ) = ≠ = ( ) .

In Section 3.2 we will further generalize the delimited in-
formation release policy to include information erasure.

2.2. Logic-based information flow analysis

Symbolic Execution. Symbolic Execution (King, 1976) is a versa-
tile technique used for various static program analyses.

1 To keep the presentation manageable, in the formal defini-
tions we mention only variables, however, our implementation
works also for fields, including reference types.

2 This is purely in the interest of scoping. Our approach is not
principally limited to terminating programs.

337c om pu t e r s & s e cu r i t y 6 7 ( 2 0 1 7 ) 3 3 5 – 3 4 9



Symbolic execution of a program means to run it with sym-
bolic input values instead of concrete ones. Such a run results
in a tree of symbolic execution traces, which cover all pos-
sible concrete executions.

Each node in a symbolic execution tree is annotated by its
symbolic state given as a tuple of symbolic expressions, each
tuple element corresponding to a program variable. In the
example shown in Fig. 1b, the root node is a branching node
whose outgoing edges are annotated by their branch condi-
tions. Here the symbolic execution splits into two branches: the
left one for the case where the symbolic value x0 is non-
negative and the right one for a negative x0. Both branches might
be taken as we do not have any further information about the
value of x0. The path condition of a path is the conjunction of
all its branch conditions and characterizes the symbolic ex-
ecution path uniquely. As long as the program does not contain
loops or method invocations, a path condition is a quantifier-
free formula in first-order logic.

From the tree in Fig. 1b we can extract that in case of a non-
negative input value for x, the program terminates in a final
state in which the final value of x remains unchanged (i.e., x0)
while the final value of y is 2(y0 − 1).

We make some notational conventions: Given path i we refer
to its path condition by pci and to the final value of a program
variable v on that path with fi

v . If we want to make explicit
that the final value of a program variable v depends on the sym-
bolic input value of a program variable we pass it as an
argument to fi

v . For instance, if the left branch is numbered
with 0, then the final value of y on that branch is

f x y yy
0 0 0 02 1,( ) = −( ) .

In case of unbounded loops or unbounded recursive method
calls a symbolic execution tree is no longer finite. We over-
come this obstacle and achieve a finite representation by
making use of specifications as proposed in Hentschel et al.
(2014). That approach uses loop invariants and method con-
tracts to describe the effect of loops and method calls.The basic
idea is that loop invariants and method contracts contribute
to path conditions and to the modification of the symbolic state.
This is realized in the symbolic execution engine of the veri-
fication system KeY (Beckert et al., 2007), which we use as
implementation basis of KEG.

Self-composition. Our exploit generation approach is derived
from a logic-based formalization of noninterference using self-
composition as introduced in Darvas et al. (2003, 2005), based
on a direct semantic encoding of noninterference in a program

logic. The Hoare triple Pre Post{ } { }p characterizes that, when-
ever the program p, started in an initial state satisfying Pre,
terminates, then Post must hold in the final state reached. Non-
interference as given in Definition 4 requires the comparison
of two program runs. In Darvas et al. (2005) this is achieved
by copying the program p and replacing all its variables with
fresh copues, such that the original and the copied version do
not share any memory. Concretely, let without loss of gener-
ality l ∈ L, h ∈ H be the only variables of p = p(l, h). Further,
let p(l′, h′) represent the copied program constructed from p

by renaming variable l to l′ and h to h′. Then:

{l l }p(l,h); p(l ,h ){l l }� �′ ′ ′ ′

is a direct formalization of noninterference. A major draw-
back of this formalization is that it requires program p to be
analyzed twice. Several refinements have been presented to
avoid the repeated execution (Barthe et al., 2011; Terauchi and
Aiken, 2005). Here we use a different approach to that problem
based on symbolic execution. The fundamental idea is to
execute the program symbolically only once and then to use
the path conditions and symbolic states to construct a single
first-order formula with that has same meaning as the Hoare
triple. To express the noninterference property, it is then suf-
ficient to copy path conditions and symbolic values, replacing
the symbolic input values with fresh copies. The technical
details are given in the following section.

3. Exploit generation for insecure programs

We describe the formalization in logic for various informa-
tion flow policies. Given a complete symbolic execution tree
for a program and an information flow policy, we construct for-
mulas that are unsatisfiable when the program is secure and
satisfiable if the policy can be violated by some inputs. This
approach permits to use an SMT solver or model finder to
search for satisfying models from which one can then read off
concrete input states for two program runs that demonstrate
a violation of the given policy, see also Fig. 2.

3.1. Logic characterization of insecurity

First we show how to construct a formula that characterizes
noninterference (Definition 4) from a complete symbolic

Fig. 1 – A program and its symbolic execution tree.
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execution tree for program p with paths i n∈ −{ }0 1, ,… . Let pci(L,
H) be the path condition that uniquely determines path i. Let
NI H L= /� be the noninterference policy with low variables L
and high variables H.

To represent two independent program runs, we create a
copy of all program variables Var v v Var′ = ′ ∈{ } with the no-
tational convention that v′ always refers to the copy of v. Now
we obtain the sets L′ and H′ as copies of L and H, i.e., ′ = ′ ∈{ }L l l L
(analogously H′). To refer to the initial (symbolic) value of a
program variable v, instead of introducing a new constant
symbol v0, we simply use the program variable v itself. Intui-
tively, the first run is performed using Var, while the second
one uses the copy Var′. Both runs are independent as they do
not share any common memory.

Then the NI-insecurity formula:

w v w
0≤ ≤ < ∈ ∈

′ ∧ ( ) ∧ ′ ′( ) ∧ ( ) / ′ ′
i j n l L

i j
l L

i
l

j
ll l pc L H pc L H f L H f L� �, , , , HH( )( ) ( )1

is satisfied if and only if there is a model (i.e., concrete state)
σ assigning values to the program variables Var, Var′ such that

– the input values of the low variables L coincide with the
values of their copies in L′,

– there are two paths i, j (i = j possible) with consistent path
conditions (i.e., both paths can actually be taken), but

– for which the final value of at least one low variable differs.

In other words, the model σ assigns concrete values to Var
and Var′ such that p produces different low level outputs for
two runs from initial states with identical low input.

Example 3. The insecurity formula (1) for the example program
from Fig. 1 and the NI policy y x{ } / { }� is:

y y x x y y

y y x x y

0 0 0 0 0 0

0 0 0 0 0

0 0 2 1 2 1

0 0 2

� �

�

′ ∧ ≥ ∧ ′ ≥ ∧ −( ) / ′ −

∨ ′ ∧ ≥ ∧ ′ < ∧ −

( )

11 2 1

0 0 2 1 2 1

0

0 0 0 0 0 0

( ) / ′ +

∨ ′ ∧ < ∧ ′ < ∧ +( ) / ′ +

�

� �

( )

( )

y

y y x x y y

It is easy to see that the first and third disjuncts are
unsatisfiable, but the second disjunct is satisfiable, e.g., for the
model x x y y0 0 0 00 1 1 1� � � �, , ,′ − ′ . □

The NI-insecurity formula (1) can be rewritten into the
equivalent formula:

w w v
l L i j n l L

i j i
l

j
ll l pc L H pc L H f L H f

∈ ≤ ≤ < ∈
′( ) ∧ ( ) ∧ ′ ′( ) ∧ ( ) / ′

0
 � �, , , LL H

Leak H L l i jNI

,

, , , ,

′( )( )
( )	 
��������������������� �����������������������

( )2

This formulation will be easier to incorporate declassifica-
tion. The intuition behind the formula Leak H L l i jNI , , , ,( ) is that

it allows us to ascribe leaks to a specific target, i.e., it is sat-
isfiable, if some information is leaked from the program
variables in H to variable l.

The copy of the low level variables is actually not needed
(as we require their equality for all models), so formulas (1) and
(2) can be made more succinct by replacing L′ with L and omit-
ting the first conjunct, which states L L� ′ . In the future we will
tacitly perform this simplification. Then the first disjunct in
Example 3 becomes x x y y0 0 0 00 0 2 1 2 1≥ ∧ ′ ≥ ∧ −( ) / −( )� .

3.2. Generalized noninterference policy

Sometimes it is not sufficient to simply ensure that no infor-
mation is leaked, but one wants also to guarantee that secret
data are not kept longer than needed, because of legal reasons
or to make data dumps (initiated by an attacker) less useful.
Information erasure is for a desired property for cryptographic
devices (secret keys must be erased after usage), online trans-
actions (credit card information must be erased after the
transaction is completed), e-voting (all data connecting voter
and ballot must be erased after the result has been pub-
lished), etc. Information erasure policies have been presented
in Del Tedesco et al. (2011) and Hunt and Sands (2008).

Example 4. Consider a simple ticket vending machine model
(adapted from Del Tedesco et al. (2011)) as shown in Listing
1.1. Assume that before executing the program the buyer’s credit
card number was read from a terminal and stored in variable
ccNumber. To complete the purchase, method buy() is called
and the card account debited. After logging the purchase, the
credit card number is erased from memory by setting ccNumber
to 0.This ensures that even a powerful attacker who can dump
the memory of the vending machine to read the location of
variable ccNumber cannot learn anything about the credit card
number of the buyer.

In more technical terms, we want to ensure that after ex-
ecution of buy() the value of ccNumber is permitted to flow
to any low location. This policy is not expressible within the
standard noninterference framework. A naive and ad hoc ex-
tension would be to classify ccNumber as high and to add a
constraint f L HccNumber ,( ) ≠ 0 to the insecurity formula. But this
does not work, for instance, if we want to erase the secret with
a random number. □

Fig. 2 – Exploit Generation by KEG.
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To provide support for some of information erasure poli-
cies (Del Tedesco et al., 2011; Hunt and Sands, 2008) we
generalize our notion of interference (cf. Definition 4).

Definition 6. (Generalized Noninterference). Given a program p

over variables Var, a generalized noninterference policy (GNI) is an
ordered pair, written as H LGNI/� , where L, H ⊆ Var are sets of low
and high variables. Program p has secure information flow with respect
to GNI if and only if for all concrete executions X, Y ∈ Excp it holds
that if σ σX

Var H
Y� \ then σ σout

X
L out

Y� .

The definition omits the requirement that L and H form a
partitioning of Var, i.e. a variable v is allowed to be a member
of both variable sets. In addition, it potentially strengthens the
condition on the output values of the low variables in the final
states. The output values of the low variables in the final states
must now be identical for any two initial states that coincide
on the variable set of Var\H. The set Var\H might not contain
all variables in L (e.g., variable v from before would not be in
H) and hence allows for more pairs of initial states to be con-
sidered. Generalized noninterference reduces to standard
noninterference when L H Var�∪ = .

Example 5. (Example 4 Continued). To ensure that the credit card
number is erased we specify the GNI policy.

H LGNI= { } { } =ccNumber ccNumber� , .ticketCost

To keep the analysis simple, assume that methods charge
(int, int) and log() do nothing. First we assume that line 4
that peforms the erasure was forgotten.The following test case
demonstrates a violation of the policy: Given initial states σ1,
σ2 with:

ccNumber ticketCost

σ1 1234 50

σ2 5678 50

Both initial states coincide on the variable set
Var H\ = { }ticketCost . To adhere to the GNI policy, the final
states σ σout out

1 2, must coincide on all low variables, i.e. on the
variables ticketCost and ccNumber. But as none of the values
is changed by the runs, they still differ in the value of ccNumber,
hence, the GNI property is not valid. Now assume line 4 is
present; then, in both executions the final value of ccNumber
is 0 and the GNI property holds.

The logic formalization of the corresponding insecurity
formula is almost identical to (2):

w w v
l L i j n v Var H

i j i
lv v pc Var pc Var f Var f

∈ ≤ ≤ < ∈
′( ) ∧ ( ) ∧ ′( ) ∧ ( ) /

0
 

\
� � jj

l

Leak H L l i j

Var

GNI

′( )( )
( ), , , ,	 
���������������������� ������������������������

( )3

3.3. Targeted conditional delimited release

We further extend the insecurity formula for generalized non-
interference (3) to delimited information release (DIR) (Sabelfeld
and Myers, 2004). In contrast to the standard version of DIR,
our policy describes not only what information can be re-

leased by escape hatches, but also allows to express under
which condition and to whom (target) the information might
be leaked.

Definition 7. (Targeted Conditional Delimited Release). Given
a program p over variables Var and a GNI H LGNI= /� . A Targeted
Conditional Delimited Release (TCD) policy D, GNI( ) is a set of
specification triples where each e C T, ,( ) ∈D consists of:

– an escape hatch expression (i.e. first-order term) e over Var,
– a declassification condition formula C over Var, and
– T ⊆ L, a set of program variables to which the specified

escape hatch is allowed to be leaked.

A program satisfies a given TCD policy D, GNI( ) if it satisfies the
GNI policy, except for the cases covered by a triple e C T, ,( ) ∈D . Here,
program is free to release the information captured by the escape hatch
expression e to a location in T, provided that condition C is satisfied
in the initial state of the execution.

Given a TCD policy D, GNI( ) and a program p. We give the
insecurity formula for the case that D = ( ){ }e C T, , consists of
a single TCD specification triple:

w w
l L i j n

GNILeak H L l i j

l T C Var C Var e Var
∈ ≤ ≤ <

( )(
∧ ∈ ∧ ( ) ∧ ′( ) → ( )
0

, , , ,

� ee Var′( )( )) ( )4

The formula coincides with the noninterference insecu-
rity formula for locations l T∉ that are not among the allowed
release targets. Otherwise, the new second conjunct adds:

C Var C Var e Var e Var( ) ∧ ′( ) → ( ) ′( )� (5)

as an additional restriction to the initial states for both runs:
if both initial states satisfy the declassification condition C then
they must also coincide on the value of the escape hatch ex-
pression.The justification is that if there are two runs such that
their initial states coincide on the low level input and on the
escape hatches and if the final value for an allowed target
differs, then more information than just the escape hatch must
have been released.

Example 6. (Example 2 Continued). Consider the program from
Example 2:

if (h >0) l=2;{ }

Let h l h l>( { }{ } { } / { }( )0, , ,true GNI� be a declassification TCD
policy. This is the insecurity formula resulting from symbolic
execution starting in (l0, h0):

( ) (( ) ( ) ( ))

(

l l h h true true h h

l

0 0 0 0 0 0

0

0 0 2 2 0 0� � �

�

′ ∧ > ∧ ′ > ∧ / ∧ ∧ → > ′ > ∨

ll h h l true true h h

l l

0 0 0 0 0 0

0 0

0 0 2 0 0′ ∧ ≤ ∧ ′ > ∧ / ∧ ∧ → > ′ > ∨� �

�

) (( ) ( ) ( ))

( ′′ ∧ ≤ ∧ ′ ≤ ∧ /= ′ ∧ ∧ → > ′ >h h l l true true h h0 0 0 0 0 00 0 0 0) (( ) ( ) ( ))�

The first and third disjuncts are trivially invalid. The second
disjunct is invalid, because the second conjunct implies h0 > 0
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if and only if h0 0′ > which contradicts the path condition in
the first conjunct. Consequently, the insecurity formula is
unsatisfiable, i.e. the program is secure for the specified policy.
Consider a slightly altered program:

if (h >=0) l=2;{ }

We analyze it with the same policy and initial state as above.
Now in the resulting insecurity formula:

( ) (( ) ( ) ( ))

(

l l h h true true h h

l

0 0 0 0 0 0

0

0 0 2 2 0 0� � �

�

′ ∧ ≥ ∧ ′ ≥ ∧ / ∧ ∧ → > ′ > ∨

ll h h l true true h h

l l

0 0 0 0 0 0

0 0

0 0 2 0 0′ ∧ ≤ ∧ ′ ≥ ∧ / ∧ ∧ → > ′ > ∨� �

�

) (( ) ( ) ( ))

( ′′ ∧ ≤ ∧ ′ ≤ ∧ ≠ ′ ∧ ∧ → > ′ >h h l l true true h h0 0 0 0 0 00 0 0 0) (( ) ( ) ( ))�

the second disjunct is satisfiable, for instance, when the initial
value of h is −1 and the initial value of h′ is 0. Consequently,
the program does not adhere to the specified policy.

4. Exploit generation using program
specifications

Code with unbounded loops or recursive method calls gives
rise to infinite symbolic execution trees. Another difficulty is
posed by calls to library methods for which no source code is
available. And in general symbolic execution trees tend to
become infeasibly large when the implementations of called
methods are simply inlined. To overcome these problems we
annotate programs with specifications in the form of loop in-
variants and method contracts. This allows to approximate a
loop by an invariant and a method call by a contract. In the
paper Hentschel et al. (2014) it is shown how to use such speci-
fications during symbolic execution and we can adapt that
solution to our setting.Thus it becomes possible to analyze and
generate exploits for programs involving unbounded loops or
recursive method calls. In our current setting specifications are
provided by the user, but in the future we intend to integrate
automated inference methods to generate specifications (for
example Hähnle et al., 2016; Kovács, 2016; Rodríguez-Carbonell
and Kapur, 2007; Wasser, 2015)) into KEG. To keep the presen-
tation readable, in this section we focus on the standard
noninterference analysis case. The extension to declassifica-
tion and erasure is straightforward.

4.1. Loop specification

To compute the path conditions and the final values of sym-
bolic execution paths we need to be able to execute unbounded
loops without unwinding them infinitely often. In program veri-
fication this is achieved by providing a loop specification. A loop
specification LS = (I, mod) consists of a loop invariant formula I
and a set of program variables mod that contains at least those
program variables the loop can possibly modify.

We need to integrate loop specifications into the NI-
insecurity formula (2). Let b be the guard of a loop and LS = (I,
mod) its specification. The basic idea in Hentschel et al. (2014)
is that the loop specification describes the state after exiting
the loop. This means, we can treat the loop as a black-box and
continue execution after the loop in a state for which the vari-

ables mod that might have been modified by the loop are set
to an unknown value. Unknown values are represented by fresh
symbolic values Vmod. The only knowledge about these values
is provided by the loop invariant and by the fact the loop guard
b must be false after exiting the loop.

Our insecurity formulas express a constraint over the initial
state.For instance, the final value fil of variable l is given in terms
of the initial symbolic values of the program variables.The same
holds for the path conditions. We make this implicit weakest
precondition computation here explicit for the loop guard and
the invariant, i.e., Iwp is the weakest precondition of I computed
in the state directly after the loop (similar for the loop guard).

For the sake of simplicity, we only show how to adapt
Leak H L l i jNI , , , ,( ) for the case that both paths i, j contain the
same loop:

Leak H L l i j v v pc V pc V

I V b

NI

v L
i S j S

wp
S

wp

, , , , ( )( ) = ′( ) ∧ ( ) ∧ ′

∧ ( ) ∧ ¬
∈
v �

VV I V

b V f V f V

S
wp

S

wp
S i

l
S j

l
S

( ) ∧ ′

∧ ¬ ′ ∧ ( ) / ′

( )

( ) ( ) ( )� 6

Here V Var VS mod= ∪ and b Vwp
S( ) are the symbolic values of

the guard after the loop expressed in terms of the initial values
of Vs. If one or both of paths i, j do not contain the loop or a
different loop, then the conjuncts corresponding to the invari-
ants and loop guards are omitted or added accordingly.

Example 7. We illustrate formula (6). Consider the loop below
with low variable l and high variable h. We want to establish
whether this code is secure with respect to the policy h l{ } / { }� .
The loop specification is l l≥ { }( )0, . This loop invariant could
easily have been inferred with automated methods.

l= h h;∗

while (l>0) l=l-1;{ }

l=l+h;

Let l lmod mod, ′ be the fresh values representing the value of l
directly after the loop. Computing the weakest precondition
of the invariant gives us lmod ≥ 0 and for the guard lmod > 0 for
the first run (analogous for the second run).The resulting formula
is (note that there is only one path and no path condition):

l l l l l

l l h l

mod mod mod

mod mod mod

0 0

0

0 0

0 0

�

�

′ ∧ ≥ ∧ ¬ >( ) ∧ ′

≥ ∧ ¬ ′ > ∧ + / ′ +( ) hh0′

The formula is satisfiable, for example, with l l0 0 10= ′ = ,
l lmod mod= ′ = 0 , h0 = 1 and h0 2′ = . Indeed, the program is inse-
cure. Removing the final statement would make it secure. In
this case the final conjunct in the insecurity formula would
change to l lmod mod/ ′� which renders it unsatisfiable. □

4.2. Method contracts

Let m be a method name. A contract Cm for m is a triple (Prem,
Postm, Modm) with precondition Prem, postcondition Postm and
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modifies (or assignable) clause Modm. The latter is the set of all
program variables whose value m can possibly change (similar
as mod in loop specifications).

A method satisfies its contract, if it ensures that when
invoked in a state for which the precondition is satisfied, then
in the final state the postcondition holds and at most the value
of program variables in the assignable clause has been modified.

Analyzing Noninterference Relative to a Precondition. Given a
method m with contract Cm. We want to analyze whether m re-
spects a noninterference policy H L/� under the condition that
m is only invoked in states satisfying its precondition Prem. Adapt-
ing the noninterference formula (2) is straightforward and
merely requires to add a restriction to the initial states that
they must satisfy the method’s precondition:

Leak H L l i j Pre Var Pre VarNI , , , ,( ) ∧ ( ) ∧ ′( )m m

Analyzing Programs with Method Contracts for Noninterference.
This problem is solved in Hentschel et al. (2014) by using method
contracts in a similar way loop specifications have been used.
Instead of a loop invariant, the pre- and postconditions become
part of the path conditions.The modifies clause again introduces
fresh values to represent the symbolic value of program variables
that might have been changed as side effect of method invocation.

Let m be the method analyzed for secure information flow
and assume it invokes method n. Let the contract of n be (Pren,
Postn, Modn). In the case that each of the paths i, j contains
exactly one method call for n we obtain:

Leak H L l i j v v pc V pc V

Pre V P

NI

v L
i S j S

wp
S

, , , , ( )( ) = ′( ) ∧ ( ) ∧ ′

∧ ( ) ∧
∈
v �

n oost V Pre V

Post V f V f V

wp
S

wp
S

wp
S i

l
S j

l
S

n n

n

( ) ∧ ′

∧ ′ ∧ ( ) / ′

( )

( ) ( ) ( )� 7

where V Var VS Mod= ∪ n (analagous for the copies) and
Pre Postwp wp

n n, are the weakest preconditions of Pre Postn n, com-
puted directly before and after method invocation, respectively.
If method n returns a value, a fresh variable representing the
return value of n is added to VS. The return value can be ref-
erenced in Postn. The general case (no method call, different
method calls, or more than one method call) is handled simi-
larly as in the loop case.

Example 8. We illustrate formula (7) with method run() shown
in Listing 1.2.We want to establish whether run() is secure with
respect to the policy h l{ } / { }� .We expect that it is insecure: the
returned value of method calc(int) depends on its parameter.
In line 3, h is passed as argument, hence, the returned value
depends on high input, but it is assigned to low variable l.

We construct the insecurity formula: method run() invokes
the recursive method calc(int). To analyze the information
flow resulting from this invocation, we have used a method
contract for calc(int), because the recursion does not have
a fixed bound.3 Let calc(int)’s contract be given as follows:

Pre truecalc:

Postcalc: x result x result x x+1≤ → ∧ > → ∗ ∗ ( )( )( )0 0 0 2� �

Modcalc: /0

where result refers to the return value and Modcalc is empty
as calc(int) does not change the state.

Let r be a program variable representing the return value
of calc(int). To apply the contract for the invocation at line
3, we need to instantiate the above contract as follows:

Pre truewp
calc:

Postwp
calc: h+2 r h+2 r h+2 h+2 +1≤ →( ) ∧ > → ∗ ( ) ∗ ( )( )( )0 0 0 2� �

The insecurity formula is then:

l l h r h r h h

h r

0 0 0 0 0 0 0 0

0 0

2 0 0 2 0 2 2 3

2 0

= ′ ∧ + ≤ → =( ) ∧ + > → = +( ) +( )( )
∧ ′ + ≤ →( ′′ = ∧ ′ + > → ′ = ′ + ′ +

∧ ≠ ′

0 2 0 2 2 30 0 0 0

0 0

) ( ( )( ))h r h h

r r

The formula is satisfiable, for example, with l l0 0 10= ′ = , h0 = 1,
h0 2′ = , r0 = 6 and r0 10′ = which means that method run() is
insecure. □

4.3. General observations and remarks

Using loop specifications or method contracts has one major
drawback, namely, that not all models of a formula give rise
to an actual information leak, or even worse, the insecurity
formula of a secure program might become satisfiable.This case
does not affect the soundness, but triggers false warnings. The
reason is that the specifications might be too weak and allow
behaviors that are not possible in the actual program. These
false warnings can be filtered out by actually running the gen-
erated exploit. If the exploit fails to demonstrate the information
leak, we know that our model was a spurious one. We can even
start a feedback loop with a conflict clause which rules out the
previously found model.

On the other hand, if loop or method specifications are not
only too weak, but wrong in the sense that they exclude pos-
sible behavior, then leaks might go undetected. As we are
concerned with bug detection and not verification, this is not
too serious as we do not claim to find all bugs. Nevertheless,

3 Strictly speaking, the Java type int and stack size are bounded,
but the bound is far too large to be feasible.
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incompleteness can be avoided by verifying the specifications
using a program verification tool such as KeY (Beckert et al., 2007).

5. Implementation and experiments

5.1. The KeY exploit generation tool and process

Our tool KeY Exploit Generation4 (KEG) implements the approach
presented in the previous sections. KEG uses the symbolic ex-
ecution engine of the verification system KeY (Beckert et al., 2007)
for the analysis of Java programs. It supports method and loop
specifications as explained in Section 4 to compute finite, yet
complete (up to the specification) symbolic execution trees.The
SMT solver Z3 (de Moura and Bjørner, 2008) is used to find models
for the computed insecurity formulas. KEG fully supports Java
reference types (objects and arrays).This makes it necessary to
test the value of variables that have a reference type for equal-
ity. For this we use the approach proposed in Beckert et al. (2014).
Comprehension expressions (max, min, Σ) are also supported and
can be used in specifications, including escape hatches, loop speci-
fications, and method contracts.

Fig. 2 outlines KEG’s workflow. The input is a Java method m

together with the information flow policy to which it has to
adhere. Possibly, m is annotated with loop specifications. Con-
tracts of methods called by m are provided if they are not to be
inlined during symbolic execution. KEG expects the informa-
tion flow policy to be present in the source code inside specifically
marked Java comments. First, method m is symbolically ex-
ecuted (using KeY) to obtain a complete symbolic execution
tree which can then be queried for the method’s path condi-
tions and the final symbolic values of the program locations
modified by m. Second, using the path conditions and sym-
bolic final values, instances of the insecurity formulas described
in Section 3 and 4 are generated. In a third step, these formu-
las are passed to a model finder (currently we use the SMT solver
Z3 (de Moura and Bjørner, 2008)). If a model for the insecurity
formula has been found, that model is used to determine the
initial states of two runs which exhibit a forbidden informa-
tion flow. KEG outputs the exploit as a self-contained JUnit test,
which can then be included into a regression test suite. The
generated exploit executes two runs (one for each initial state)
and inspects the final states to detect a leak in form of an as-
sertion. In this way the conjuncts in the insecurity formulas
that contain the inequality over symbolic final values can be
viewed as an automatically synthesized test oracle.

5.2. Exploit generation by example

We illustrate the work flow of KEG step by step with the
program in Listing 1.3. Class Simple declares three integer typed
fields l, x, y as well as a method called magic() which assigns
a value to l depending on the sign of field x.

The information flow policy of the class is x y l,{ } / { }� and
specified in a comment starting with “/*!” in Line 4. Variables
x, y are implicitly declared as high variables and l as a low
variable. This strict noninterference policy is relaxed in line 6
for method magic() by providing a targeted conditional release
specification consisting of an escape hatch x*y, the target l
and the condition x > −1.

Running KEG on the above example produces a symbolic
execution tree consisting of two paths: one for each branch
of the conditional statement. KEG generates for each unique
pair of these paths the corresponding insecurity formulas and
passes these on SMT solver. Only one of the three generated
insecurity formulas is satisfiable by the following model pro-
vided by Z3:

Insecurity formula (in SMT-LIB
syntax)

Model

(let ((a!1 (not (and (>x_1 (- 1))

(>x_2 (- 1))))))

(and (>= x_1 1) (<= x_2 0)

(or (not (=x_1 x_2)) (not (=y_1 y_2)))

(=l_1 l_2) (not (=(* y_1 x_1) 0))

(or a!1 (=(* x_1 y_1) (* x_2 y_2)))))

x_1: 1

x_2: -1

y_1: 1

y_2: -1

l_1: 0

l_2: 0

The model describes two runs: The first run, labeled with
1, starts in an initial state with x, y and l initialized with 1, 1
and 0, respectively. We identify variable v in execution X by
v_X. The second run, labeled with 2, has initial values −1, −1,
and 0. The first run enters the then-branch of the condi-
tional, the second one does not.

As the value of l is altered in the first run when executing
the then-branch but not by the second run, where it remains
0, a leak is detected (the leaked information is the sign of
field x). KEG generates exactly one exploit, which is output as
a well-structured and human readable JUnit test. The exploit
program is depicted in Listing 1.4. KEG outputs the exploit
exactly as shown, i.e. pretty printed and structured with com-
ments. We have only renamed a few fields to increase
readability further.

The two initial states for the two runs of method magic are
set up in lines 6–14 and 23–31. To ensure that the runs do not
interfere, two instances of class Simple are created (lines 6 and
23). In general, more work needs to be invested to ensure in-
dependent runs (for instance, if static members are modified
by a run). This can be achieved by running the program on two
different Java Virtual Machines and by querying those for the
required information. (This is currently not supported by KEG.)

Before invoking method magic, the initial values of all fields
and method parameters are assigned. In Listing 1.4, the initial
values of each field l, x, y of both runs are stored in the cor-
responding variables l_1, x_1, y_1 (lines 7–9) and l_2, x_2, y_2
(lines 24–26). These initial values are taken from the counter
example produced by the SMT solver. To assign values to the

4 www.se.tu-darmstadt.de/research/projects/albia/download/
exploit-generation-tool.
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fields of an object, the auxiliary method setFieldValue makes
use of Java’s reflection framework.

After each run (at line 17 and line 34), the concrete output
value of l is extracted (lines 20 and 37). Line 45 asserts that
the output values of l observed at the end of each run are equal.
The JUnit test throws an assertion failure exception, if the
output values of the two runs are different and thus an actual
leak happened. If no exception is thrown then the counter
example was spurious, for instance, due to a too weak loop
specification. Tests that do not result in an assertion failure
can then be omitted from our test suite.

5.3. Experiments

We performed experiments5 on micro benchmarks as a first
part of the evaluation of our approach. Table 1 shows the ag-
gregated results. All experiments were done on an Intel Core
i7-4702HQ processor with JVM setting -Xmx4096m.

Concerning the runtime performance: A significant amount
is spent for parsing the program, this can be reduced by parser
optimizations, for example, by using a hand-coded version
instead of a generated parser. Model finding time can be further
optimized by performing simple techniques like symmetry re-
duction, learning and caching, all of which have not yet been
implemented. Another factor is the programming language Java
whose optimizations are performed at runtime and, hence, code
that is run only few times will not be optimized at all.

A few observations concerning the benchmarks: For the ex-
amples Mul and Comp,we analyzed the effect of loop and method
specifications in case of strong, weak and wrong specifications
(filename_Strong/Weak/Wrong_LI/MC). As expected, with suffi-
ciently strong specifications, all insecure paths could be precisely
identified and only actual exploits were generated.Weak speci-
fications over-approximate the behavior, leading to false positives,
while wrong specifications can prevent to analyze all possible

5 www.se.tu-darmstadt.de/fileadmin/user_upload/Group_SE/
Tools/KEG/experiments.zip.

Table 1 – Benchmark statistics.

File name Analyzed method #L/MI Policy (NI/D) S/I TL (ms) TSE (ms) TMF (ms) TTot (ms) #GE/FW

Mul product 0/0 D I 4187 847 1188 6266 1/0
Mul_StrongLI product 1/0 D I 4275 1746 1211 7274 1/0
Mul_WeakLI product 1/0 D I 4214 1909 1293 7463 2/1
Mul_WrongLI product 1/0 D I 4397 1678 1169 7285 0/0
Comp_StrongMC doWork 0/1 NI I 4181 1491 2278 7995 3/0
Comp_WeakMC doWork 0/1 NI I 4217 1383 2417 8065 3/3
Comp_WrongMC doWork 0/1 NI I 4182 1395 2275 7887 0/0
Company calculate 1/1 NI I 4283 2496 1990 8816 3/0
ExpList magic 0/0 NI I 4178 1911 2535 8668 1/0
ExpLinkedList magic 0/4 NI I 4229 4690 6564 15526 2/0
ExpArrayList magic 0/5 NI I 4230 8975 11505 24752 3/0
ArrSearch search 1/0 D S 4199 2934 2400 9568 0/0
ArrMax findMax 1/0 NI I 4215 3584 963 8804 1/0
ArrMin findMin 1/0 D S 4746 3128 983 8925 0/0
ArrSum calcSum 1/0 D S 5481 2504 788 8846 0/0
#
(L/MI/GE/FW): nr of loops/method invocations/generated exploits/false warnings.

NI/D: Non-interference/declassification, S/I: secure/insecure.
TX: time for loading/symbolic execution/model finding/total.
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behaviors and some existing leaks were missed. The analysis
of method search in classes ArrSearch, ArrMin, ArrSum iden-
tified the method correctly as secure with respect to the specified
declassification policy and generated no exploits.

6. E-voting case study

For our case-study we adapted the electronic voting system
presented in Grahl (2015) and Scheben (2014), which is based
on sElect, a real-world electronic voting system (Küsters et al.,
2011) implemented in Java. Electronic voting systems rise a
plethora of security issues like integrity, verifiability and coercion-
resistance. We focus on the confidentiality of individual ballots,
i.e. we aim to detect all possible information flow leaks from
individual ballots to the public result.

6.1. Simplified E-voting system

Vote confidentiality in sElect is guaranteed by the use of cryp-
tography. Cryptographic algorithms and protocols are based on
advanced mathematical theories (and even unproven assump-
tions about the hardness of an underlying mathematical
problem). This makes it infeasible to verify sElect using current
information flow analysis tools.

To be able to analyze such systems, Küsters et al. (2011) pro-
posed a solution using ideal encryption. In a nutshell, their
solution removes the encryption component from the system
and enables the use of information flow analysis tools, which
can now be run on the “simpler” program. The authors prove
that information flow analysis results for the transformed
program keep their validity for the original system.

Grahl (2015) and Scheben (2014) apply the formal verifica-
tion tool KeY on an e-voting system that contains the essential
components of sElect. They focus on formal verification of vote
confidentiality and integrity. Even though their e-voting program
is not distributed and does not contain complex features, i.e.
cryptography and networking, its verification requires consid-
erable effort and user interaction.

Fig. 3 shows a UML class diagram of the e-voting system used
in our case study6, which is based on the implementation pre-
sented in Grahl (2015). We redesigned, but did not simplify, the
system slightly to be able to show the capabilities of KEG, in par-
ticular, its support for information erasure policies. It consists
of five classes: VotingServer, CountingServer, Voter, Message
and Result.The voting protocol is as follows: First, voters (class
Voter) register and obtain a unique identifier from the voting
server (class VotingServer). Then, they send their vote to the
server using a message (class Message) composed of the voter’s
identifier and vote. Voters are not allowed to change their vote
once cast, even if the voting is still ongoing. The voting server
receives the messages sent by the voters and forwards the
ballots to the counting server (class CountingServer). Once
all voters have cast their vote, the counting server computes
the election result and returns it to the voting server.The result
is then published.The counting server must not keep any ballots
after the election result has been computed.

Class VotingServer (Listing 1.5) is responsible for the overall
election process which is coordinated by method election().

6 www.se.tu-darmstadt.de/research/projects/albia/download/e-
voting-declassification-erasure.

Fig. 3 – UML class diagram of the e-voting system in the case study.
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Each voter is queried for her/his ballot, which is then passed
on to the counting server (lines 7–10). After all voters cast their
vote, the counting server starts counting all ballots (line 11)
and computes the election’s result. Finally, the voting server
publishes the computed election result (line 12).

The relevant methods of class CountingServer are shown
in Listing 1.6. Its field result keeps the bulletin, which is the
aggregated result of all ballots counted so far. Counting must
only take place, if there is at least one candidate and one ballot.
This assumption is specified in the precondition of method
countBallots() at line 9. Line 5 specifies the generalized non-
interference policy:

ballots result ballots numberOfCandidates{ } / { }�GNI , ,

which disallows any information flow from ballots to any
other field, including ballots itself. If an object or array appears
in a noninterference policy, then KEG also includes in the
policy all of its fields or elements, respectively.The election pro-
tocol described above requires the deletion of all ballots once
countBallots() finished computing the result. Hence, the GNI
policy contains the field ballots on both sides to enforce the
field’s erasure as well as the erasure of all elements of the re-
ferred array.

To be able to analyze method countBallots() with respect
to secure information flow, KEG needs to reason about the flow
of information within the (unbounded) loop iterating over all
ballots. Hence, a correct and sufficiently strong loop specification
is required. Listing 1.7 shows one possible loop invariant which
guarantees that all ballots are counted correctly. It is quite
simple and expresses (a) that the loop counter i stays within
valid bounds and (b) that all ballots up to i have been cor-
rectly counted. The assignable clause (line 6) states that the
loop may modify all elements of the array result.bulletin

and the loop counter.

6.2. Checking noninterference and declassification

To analyze class CountingServer with respect to the GNI policy
defined above we ran KEG on a Macbook Pro Retina late 2013
(2.6 GHz Intel Core i5 processor, 8 GiB RAM, Mac OS X 10.11.5).
By default, KEG analyzes all public methods of a class. After
63 seconds KEG finished its analysis and generated seven ex-
ploits showcasing different violations of the specified GNI.
Listing 1.8 shows one of the generated exploits exposing an
information leak from ballots to result in method
countBallot().

Running the generated exploits results in assertion fail-
ures for all of them which means that genuine leaks were
found. Looking closer at the generated exploit in Listing 1.8,
we see that both initial states (lines 5–13 and lines 18–25) are
identical except for the content of the ballots array whose
entries are set to 2006 in the first initial state and to 0 in the
second one. Consequently, the assertion failure in line 31 must
be the result of an information flow from ballots (or its con-
tents) to the aggregated result result.bulletin.

This is not very surprising, because the outcome of an elec-
tion depends on the votes. We have to fix our policy by allowing
some information to be leaked to the election result, namely,
the aggregated number of votes per candidate. To specify this
we use the TCD policy introduced in Section 3.3 and relax the
noninterference policy of method countBallots() by adding
an escape hatch expression:

@ escapes
@ (\seq_def int i; 0; numberOfCandidates;
@ (\num_of int j;
@ 0 < =j && j < ballots.length; i = =ballots[j]));
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The escape hatch expression uses JML’s \seq_def con-
structor to define a sequence whose i-th element is equal to
the number of votes cast for the i-th candidate. This means
that the program is allowed to leak the number of votes for
each candidate. For each candidate i, the comprehension ex-
pression \num_of returns the number j of indices between 0
(inclusive) and ballots.length (exclusive) that satisfy the
Boolean expression i = =ballots[j].

After changing the policy we rerun KEG on CountingServer.
It finds six exploits in ca. 50 seconds, one less than before.
Running the exploits results again in assertion failures for all
which means they are genuine. But inspection of the gener-
ated exploits shows that none of them indicates an information
flow from votes to the result. This is a strong hint that no
such leak exists (by proving the loop invariant and method
contracts this can even be verified). Therefore, the problem
must lie elsewhere. By similar reasoning as above, it can be
easily seen that the test cases fail, because the information
erasure policy ballots ballots/�GNI is violated by methods
countBallot(), addBallot(int, int) and getResult().
Inspecting the source code reveals that the ballots are not
erased at all.

Let us now fix these issues one method at a time. We decide
that method countBallot() is responsible to erase the indi-
vidual ballots once it computed the result. To do this, we add
the new private method clearBallots() to class
CountingServer

private void clearBallots() { ballots = new int[0]; }

and add an invocation of clearBallots() as a final state-
ment to countBallots(). Now those exploits related to
countBallots() pass without assertion failure.

We turn to method getResult(). The exploits related to it
still fail, because the method does not erase any information
about the ballots. If the method were only called after
countBallots() terminates, this would actually be fine,because
countBallots() erases all information.This shows that one has
to be extremely careful when refactoring security-critical code:
seemingly harmless rearrangements can introduce subtle leaks.

One can argue in favor of defensive programming and simply
add a call to clearBallots() to getResult(). Another strat-
egy is to weaken the security policy. We discuss this possibility
now for method addBallot(int, int).

Assume we fixed getResult(), then the remaining failing
test cases are related to method addBallot(int, int). This
method is used to collect the individual votes before the result
is computed. The solution to erase the ballots is not appli-
cable, because method countBallots() needs this information.
Instead, we decide to alter the information flow policy for this
method by adding the escape hatch expression

@ escapes ballots;

as a local method annotation. This “deactivates” the infor-
mation erasure requirement, but still enforces the
noninterference part of the policy. We run KEG now on the cor-
rected version of CountingServer. KEG finishes without
generating any exploits after 20 seconds.

6.3. Discussion

In contrast to Grahl (2015) and Scheben (2014) our main in-
terest is not to formally verify that the given program is secure,

but to detect and to demonstrate the existence of leaks. The
case study shows that information erasure can be repre-
sented as a generalized noninterference policy and be actually
checked by KEG in practice.

We showed that KEG can be applied to object-oriented
program with unbounded loops. KEG was able to generate ex-
ploits that demonstrated violations of the specified information
flow policy. The exploits assisted in identifying and fixing the
existing leaks. The fixes were validated by checking that the
generated exploits passed and that KEG was not able to gen-
erate any new ones. Except for the provision of the
specifications, the approach does not require any user inter-
action. Specifically, no expert knowledge in logic or theorem
proving is required.

KEG can be integrated with specification generation tech-
niques (Kovács, 2016; Rodríguez-Carbonell and Kapur, 2007;
Wasser, 2015) to reduce the need of user-specified loop invari-
ants and method contracts. In Do et al. (2016) we successfully
used the abstraction framework of Hähnle et al. (2016) to au-
tomatically generate suitable specifications for information flow
analysis.

Some words on scalability for real-world programs. Our ap-
proach is contract-based and thus only one (or very few
methods) needs to be considered at one time. It is also pos-
sible to restrict the analysis to critical modules and thus to
reduce the number of required additional specifications like
loop invariants. In addition, the approach is more about bug
finding than verification, so even simple contracts and loop in-
variants are useful.

7. Related work

Our approach to exploit generation is based on self-composition
(Barthe et al., 2004; Darvas et al., 2003, 2005). The paper Darvas
et al. (2005) addresses also declassification. Its authors observe
that in their formalization it is possible to express and verify
that a program is insecure. Our formalization of insecurity uses
this observation. Exploit generation (extraction of models) in
our paper follows techniques that were first explored in au-
tomatic test generation. In particular, we build on work
presented in Albert et al. (2010), de Halleux and Tillmann (2008)
Engel and Hähnle (2007), and King (1976), where symbolic ex-
ecution is used as a means to generate test cases for functional
properties.

Deductive approaches to information flow analysis (Beckert
et al., 2014; Scheben and Schmitt, 2012) are fully precise and
at the same time can flexibly express various information flow
properties beyond the policies presented in this paper.The veri-
fication process is not fully automatic, however, and non-
trivial interactions with a theorem prover are required. This
restricts usability of these approaches seriously. In Nanevski
et al. (2011) higher-order logic is used to express information
flow properties for object-oriented programs, which is highly
expressive, but imposes even higher demands on user expertise.

Pairs of symbolic execution paths to improve the effi-
ciency of self-composition have been independently introduced
in Phan (2013) to check programs for noninterference. However,
that paper focusses on checking noninterference and does not
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support declassification. Unbounded loops and recursive
methods are not handled either.

In Vaughan and Chong (2011), leaks are inferred automati-
cally and expressed in a human-readable security policy
language, helping programmers to decide whether the program
is secure, however, they cannot give concrete counter ex-
amples that could suggest further corrections. Counter examples
can be used not only to generate executable exploits as in our
approach, but also to refine declassification policies by quan-
tifying the leakage (Backes et al., 2009; Banerjee et al., 2007).
However, none of these approaches provides a solution for un-
bounded loops and recursion.

ENCoVer (Balliu et al., 2012) uses epistemic logic and makes
use of symbolic execution (concolic testing) to check nonin-
terference for Java programs. In Milushev et al. (2012), the
authors proposed a tool which checks that a C program is secure
with respect to noninterference. It transforms the original
program and makes use of dynamic symbolic execution to
analyze the program’s information flow. Both tools check loops
and recursive method invocations only up to a fixed depth.

Type-based approaches to information flow like (Hunt and
Sands, 2006; Myers, 1999; Sabelfeld and Myers, 2004; Volpano
et al., 1996) and those based on dependency graphs (Graf et al.,
2013) distinguish themselves by their high performance and
ability to check large systems. Their common drawbacks are
a lack of precision with a resulting high number of false posi-
tives and restrictions on the syntactic form of programs.

None of the logic-based and type-based approaches to non-
interference analysis mentioned above does generate exploits
from a failed proof or analysis. Our work does not intend to
replace these approaches, but is intended to be used comple-
mentary, just like testing complements formal verification.

In Do et al. (2016) KEG was combined with a specification
generation tool to reduce the necessity of providing loop in-
variants or method specifications manually. The focus was on
noninterference of a privacy game derived from sElect (Küsters
et al., 2011, 2015). The privacy game is much simpler than the
e-voting system in Section 6. In fact, using a privacy game was
in part motivated by the need to avoid declassification.

8. Conclusion

We presented a novel approach for automatic detection of in-
formation flow leaks in object-oriented programs. Exploits are
generated based on satisfying models of insecurity formulas and
output as self-contained JUnit tests so that they can easily be
integrated into regression test libraries. We demonstrated how
program specifications such as loop invariants and method con-
tracts can be used to deal with unbounded program structures
that otherwise give rise to infinite symbolic execution trees.We
built a fully automatic tool (KEG) based on our approach that
handles sequential Java programs and we applied it to a number
of case studies, including an executable e-voting program.
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