
On the Relationships Between

Notions of Simulation-Based Security?

Anupam Datta1, Ralf Küsters2, John C. Mitchell1, and Ajith Ramanathan1

1 Computer Science Department
Stanford University

Stanford CA 94305-9045, USA
{danupam,jcm,ajith}@cs.stanford.edu

2 Institut für Informatik
Christian-Albrechts-Universität zu Kiel

24098 Kiel, Germany
kuesters@ti.informatik.uni-kiel.de

Abstract. Several compositional forms of simulation-based security
have been proposed in the literature, including universal composability,
black-box simulatability, and variants thereof. These relations between
a protocol and an ideal functionality are similar enough that they can
be ordered from strongest to weakest according to the logical form of
their definitions. However, determining whether two relations are in fact
identical depends on some subtle features that have not been brought
out in previous studies. We identify the position of a “master process” in
the distributed system, and some limitations on transparent message for-
warding within computational complexity bounds, as two main factors.
Using a general computational framework, we clarify the relationships
between the simulation-based security conditions.

1 Introduction

Several current projects use ideal functionality and indistinguishability to state
and prove compositional security properties of protocols and related mechanisms.
The main projects include work by Canetti and collaborators on an approach
called universal composabiliity [8, 10–13] and work by Backes, Pfitzmann, and
Waidner on a related approach that also uses black-box simulatability [22, 7, 4,
5]. Other projects have used the notion of equivalence in process calculus [16, 18,

? This work was partially supported by the DoD University Research Initiative (URI)
program administered by the Office of Naval Research under Grant N00014-01-1-
0795, by OSD/ONR CIP/SW URI ”Trustworthy Infrastructure, Mechanisms, and
Experimentation for Diffuse Computing” through ONR Grant N00014-04-1-0725, by
NSF CCR-0121403, Computational Logic Tools for Research and Education, and by
NSF CyberTrust Grant 0430594, Collaborative research: High-fidelity methods for
security protocols. Part of this work was carried out while the second author was at
Stanford University supported by the “Deutsche Forschungsgemeinschaft (DFG)”.



19], a well-established formal model of concurrent systems. While some process-
calculus-based security studies [2, 3, 1] abstract away probability and computa-
tional complexity, at least one project [20, 17, 21, 23] has developed a probabilistic
polynomial-time process calculus for security purposes. The common theme in
each of these approaches is that the security of a real protocol is expressed by
comparison with an ideal functionality or ideal protocol. However, there are two
main differences between the various approaches: the precise relation between
protocol and functionality that is required, and the computational modeling of
the entities (protocol, adversary, simulator, and environment). All of the compu-
tational models use probabilistic polynomial-time processes, but the ways that
processes are combined to model a distributed system vary. We identify two main
ways that these computational models vary: one involving the way the next en-
tity to execute is chosen, and the other involving the capacity and computational
cost of communication. We then show exactly when the main security notions
differ or coincide.

In [8], Canetti introduced universal composability (UC), based on proba-
bilistic polynomial-time interacting Turing machines (PITMs). The UC relation
involves a real protocol and ideal functionality to be compared, a real and ideal
adversary, and an environment. The real protocol realizes the ideal functionality
if, for every attack by a real adversary on the real protocol, there exists an attack
by an ideal adversary on the ideal functionality, such that the observable behav-
ior of the real protocol under attack is the same as the observable behavior of the
ideal functionality under attack. Each set of observations is performed by the
same environment. In other words, the system consisting of the environment, the
real adversary, and the real protocol must be indistinguishable from the system
consisting of the environment, the ideal adversary, and the ideal functionality.
The scheduling of a system of processes (or ITMs) is sequential in that only
one process is active at a time, completing its computation before another is
activated. The default process to be activated, if none is designated by process
communication, is the environment. In the present work, we use the term master
process for the default process in a system that runs when no other process has
been activated by explicit communication.

In [22], Pfitzmann and Waidner use a variant of UC and a notion of black-
box simulatability (BB) based on probabilistic polynomial-time IO automata
(PIOA). In the BB relation between a protocol and ideal functionality, the UC
ideal adversary is replaced by the combination of the real adversary and a simu-
lator that must be chosen independently of the real adversary. Communication
and scheduling in the PIOA computational model are sequential as in the PITM
model. While the environment is the master process in the PITM studies, the
adversary is chosen to be the master process in the Pfitzmann-Waidner version
of UC. In the Pfitzmann-Waidner version of BB the master process is the ad-
versary or the simulator [22]. In a later version of the PIOA model (see, e.g.,
[4]), the environment is also allowed to serve as the master process, subject to
the restriction that in any given system it is not possible to designate both the
adversary/simulator and the environment as the master process. In proofs in



SS-SBB

Strong Simulatability [15]
≡

Strong Blackbox [4, 22]

(No restriction on who is master)

²²

UC-WBBsim

Universal Composability [22]
≡

Weak Blackbox

(Simulator and adversary may
be master, but not environment)

U

²²²²
UC-WBBenv

Universal Composability [8, 4]
≡

Weak Blackbox

(Environment may be master)

iff FORWARDER property holds

OOÂ
Â

Â

Â

//

WBBadv

Weak Blackbox

(Only adversary may be master)

OO

Fig. 1. Equivalences and implications between the security notions in SPPC

cryptography, another variant of BB is often considered in which the simulator
may depend on the real adversary or its complexity. We call this variant Weak
BB (WBB) and the previous one Strong BB (SBB).

In [17, 21, 23, 24], Mitchell et al. have used a form of process equivalence,
where an environment directly interacts with the real and ideal protocol. The
computational model in this work is a probabilistic polynomial-time processes
calculus (PPC) that allows concurrent (non-sequential) execution of independent
processes. The process equivalence relation gives rise to a relation between pro-
tocols and ideal functionalities by allowing a simulator to interact with the ideal
functionality, resulting in a relation that we call strong simulatability, SS [15].
The difference between SS and SBB is that in SBB, the environment and the
adversary are separated while the SS environment also serves as the adversary.

Contribution of the paper. In this paper, we clarify the relationships between
UC, SBB, WBB, SS under different placements of the master process and an
additional issue involving the ability to define a “forwarding” process that for-
wards communication from one process to another. While it seems intuitively
reasonable that such a forwarder can be placed between two processes without
changing the overall behavior of the system, this may violate complexity bounds
if a polynomial-time forwarder must be chosen before the sending or receiving
process. If the time bound of the sender, for example, exceeds the time bound
of the forwarder, then some sent messages may be lost because the time bound
of the forwarder has been exhausted. This is relevant to our study because some
equivalence proofs require the existence of forwarders that cannot be exhausted.



Our main results are summarized in Figure 1. Each of the four boxes in
this figure stands for a class of equivalent security notions. Specifically, if a real
and ideal protocol are related by one notion in this class, then they are also
related by all other notions in this class. A solid arrow from one class to another
indicates that relations in the first class imply relations in the second class.
The implication indicated by the dashed arrow is contingent on whether the
aforementioned forwarding property holds for the processes in question.

The proofs of equivalence and implication between security notions are ax-
iomatic, using a relatively small set of clearly stated equivalence principles in-
volving processes and distributed systems. This approach gives us results that
carry over to a variety of computational models. Our axiomatic system is proved
sound for a specific computational model, a sequential probabilistic polynomial-
time process calculus (SPPC), developed for the purpose of this study. SPPC
is a sequential model, allowing only one process to run at a time. When one
process completes, it sends an output indicating which process will run next.
This calculus is close to PIOA and PITM in expressiveness and spirit, while
(1) providing a syntax for writing equations between systems of communicating
machines and (2) being flexible enough to capture different variants of security
notions, including all variants of SS, SBB, WBB, and UC discussed in this paper.
Our results about these security notions formulated over SPPC are:

1. Equivalences between security notions.

(a) The different forms of Strong Simulatability and Strong Blackbox ob-
tained by varying the entity that is the master process are all equivalent.
This equivalence class, denoted SS-SBB, is depicted in the top-left box
in Figure 1 and includes placements of the master process as considered
for Strong Blackbox in [4, 22]

(b) All variants of Universal Composability and Weak Blackbox in which the
environment may be the master process are equivalent. This equivalence
class, denoted UC-WBBenv, is depicted in the bottom-left box in Figure 1
and includes placements of the master process as considered for Universal
Composability in [8, 4].

(c) All variants of Universal Composability and Weak Blackbox in which
the simulator and the adversary may be the master process, but not the
environment are equivalent. This equivalence class, denoted UC-WBBsim,
is depicted in the top-right box in Figure 1 and includes placements of
the master process as considered for Universal Composability in [22].

(d) All variants of Weak Blackbox where the adversary may be the master
process, but neither the environment nor the simulator may play this
role are equivalent. This equivalence class, denoted WBBadv, is depicted
in the bottom-right box in Figure 1.

2. Implications between the classes.

(a) SS-SBB implies UC-WBBenv. In particular, Strong Blackbox with place-
ments of the master process as considered in [4, 22] implies Universal
Composability with placements of the master process as considered in [8,
4].



(b) UC-WBBenv implies WBBadv.
(c) WBBadv implies UC-WBBsim. In particular, Strong Blackbox with place-

ments of the master process as considered in [4, 22] and Universal Com-
posability with placements of the master process as considered in [8, 4]
implies Universal Composability with placements of the master process
as considered in [22].

3. Separations between the classes.
(a) The security notions in UC-WBBenv are strictly weaker than those in

SS-SBB in any computational model where the forwarding property (ex-
pressed precisely by the FORWARDER axiom) fails. Since this property
fails in the PITM model [8] and the buffered PIOA model [4], it follows
that UC-WBBenv does not imply SS-SBB in these models. This contra-
dicts a theorem claimed in [4]. However, the forwarding property holds
in SPPC and the buffer-free PIOA model for most protocols of interest.
In these cases, UC-WBBenv implies SS-SBB.

(b) The security notions in UC-WBBsim are strictly weaker than the no-
tions in WBBadv, and hence, the notions in UC-WBBenv and SS-SBB.
In particular, the Universal Composability relation with placements of
the master process as considered in [22] does neither imply the Strong
Blackbox relations with placements of the master process as considered
in [4, 22] nor Universal Composability relations with placements of the
master process as considered in [8, 4].

These results all show that the relationship between universal composability
and black-box simulatability is more subtle than previously described. One con-
sequence is that when proving compositional security properties by a black-box
reduction, care must be taken to make sure that the computational model gives
appropriate power to the environment. In particular, the composability theorem
of Canetti [8] does not imply that blackbox simulatability is a composable se-
curity notion, over any computational model in which the forwarding property
(expressed by the FORWARDER axiom) is not satisfied.

Outline of the paper. Section 2 defines the sequential polynomial-time process
calculus SPPC, with security relations defined precisely in Section 3. The main
results are given in Section 4, with consequences for PIOA and PITM models
developed in Section 5. In Section 6, we briefly consider a less prominent security
notion, called reactive simulatability in [5] and security with respect to specialized
simulators in [9], and relate it to the other notions.

Full definitions, proofs, and further explanations are provided in a technical
report [14]. This technical report also proves a composition theorem for SPPC
that is similar to the composition theorem for ITMs established by Canetti [8].

2 Sequential Probabilistic Process Calculus

In this section, we introduce Sequential Probabilistic Process Calculus (SPPC) as
a language-based computational model for studying security notions (see [14] for



Guard

Guard

Guard

Guard

steps
overall

computation

≤ p(n)

PPT

x1 xk· · ·

in
p
u
t

ch
an

n
el

s

ou
tp

u
t

ch
an

n
el

s

Fig. 2. Probabilistic polynomial-time machines in SPPC

a detailed technical presentation and further explanation). We start by discussing
how individual probabilistic polynomial-time machines are modelled in SPPC
and then explain how to build and execute systems of interacting machines. Our
exposition parallels that of related models [8, 22, 5].

Single probabilistic polynomial-time machines. In SPPC, single machines are of
the form as depicted in Figure 2. For the time being, let us ignore the “guards”
and the variables x1, . . . , xk. Conceptually, a single machine is a black-box with
internal state that receives inputs, performs polynomially-bounded computation
and then produces outputs. Inputs are received on input channels and outputs
are written on output channels. More precisely, single machines are restricted to
receiving one input and producing at most one output at a time. While this at
first might appear to be a restriction, it is not really a problem since any machine
that sends multiple messages can be converted to a machine that stores internally
(possibly using internal buffers) the messages it wants to send, and then sends
the messages one at a time on request. In fact, this style of communication
corresponds exactly to the manner in which communication is defined in other
sequential models, notably the PIOA and PITM models [8, 22]. Also, just as in
these models, the overall runtime of a machine is bounded by a polynomial in
the security parameter and does not depend on the number or length of inputs
sent to the machine.

The channels of a single machine in SPPC correspond to ports in the PIOA
model and to tapes in the PITM model. However, while messages on channels
(and ports) are removed when read, this is not the case for tapes. Nevertheless,
tapes can be modelled by adding machines, one for each input channel, which
simulate the tapes in the obvious way. The “main machine” will then receive its
input from the “tape machines”. In the PIOA model, buffer machines serve a
similar purpose. Note that while in SPPC and the PIOA model, the number of
input and output channels/ports is not restricted, in Canetti’s PITM model only
one pair of input/output and input/output communication tapes is considered.

In SPPC, machines can preprocess their input using guards (see Figure 2)
which are deterministic polynomial-time machines that are placed on input chan-



nels. Given an input on the channel, a guard may accept or reject the input. If
rejected, the process does no computation. If accepted, the process receives the
output of the guard. This may be different from the input, e.g., a guard can elim-
inate unnecessary information or transform data. The computation performed
by the guard may depend on the current internal state of the process. Its run-
time is polynomially-bounded in the security parameter per invocation and is
not factored into the overall runtime of the process using the guard. In particu-
lar, a guard can be invoked an unbounded number of times. Since guards allow
a process to discard messages without incurring a computation cost, attempts
to “exhaust” a process by sending many useless messages to the process can
be defeated. Additionally, using guards we can simulate an unbounded number
of “virtual” channel names by prefixing each message with a session id and/or
party name and then stipulating that the guards accept only those messages
with the right header information. Such an ability is required for systems with
a polynomial number of machines, e.g., multiparty protocols, or with multiple
instances of the same protocol. While mechanisms analogous to guards are ab-
sent in other models, notably [22, 8], a newer version of PIOA [6] has a length
function that, when set to zero, prevents messages from being received by the
machine. This corresponds to a guard which rejects all inputs and so can be used
to help avoid exhaustion attacks. However, it does not help in the creation of a
mechanism analogous to virtual channels.

As mentioned above, guards can be invoked an unbounded number of times
without being exhausted and in every invocation their runtime is bounded by
a polynomial in the security parameter—the runtime could even depend on the
length of the input. Hence, the runtime of a single machine including the guards
is polynomially bounded in the security parameter and the number of invoca-
tions. However, the overall runtime of a single machine excluding the guards is
polynomially bounded in the security parameter alone, and hence, such a ma-
chine can produce at most polynomially many output messages overall in the
security parameter. Now, since guards can only be triggered by messages sent
by single machines, it follows that in a system of polynomially many machines
guards are only invoked a polynomial number of times in the security parameter.
As shown in [14], from this we can conclude that such systems can be simulated
by a probabilistic polynomial time Turing machine.

In SPPC, a machine may have auxiliary input, just like auxiliary input can
be given to the interacting Turing machines in Canetti’s model. This input is
written on specific tapes before a (system of) machines is run. If such auxiliary
input is used, it results in a non-uniform computational model. The tapes are
represented by x1, . . . , xk (see Figure 2). Just like in Canetti’s model, we only
allow the environment machine to use auxiliary input. However, whether the
environment machine is uniform or not does not affect the results presented in
this paper.

Formally, in SPPC a single machine is defined by a process expression P.
Such an expression corresponds to a description of an interacting Turing ma-
chine in the PITM model or an I/O automaton in the PIOA model. A process



expression is always parameterized by the security parameter n and possibly
so-called free variables x1, . . . , xk, which represent the tapes for the auxiliary
input mentioned above. Therefore, we sometimes write P(x1, . . . , xk) instead of
P. A process expression with value i chosen for the security parameter and val-

ues
→
a (the auxiliary inputs) substituted for its free variables

→
x yields a process

P(
→
a )n←i. A process corresponds to an interacting Turing machine where the

security parameter is written on the security parameter tape and the auxiliary
input is written on the input tape. Hence, a process can perform computations
as soon as it receives input on the input channels. As an expositional conve-
nience, we will use the terms ‘process expression’ and ‘process’ interchangeably.
A process expression is called open if it has free variables, and closed otherwise.
Hence, open process expressions correspond to non-uniform machines and closed
expressions to uniform ones.

Systems of interacting machines. In SPPC, a system of interacting machines is
simply a multiset of single machines where an output channel of one machine
connects directly to an identically-named input channel of another machine.
The manner in which these machines are wired together is uniquely determined
by the channel names since we stipulate that no two machines have the same
input and output channel names respectively. After a machine M1 has sent a
message on an output channel, the machine waits to receive input on an input
channel. The message sent on the output channel is immediately received by
the machine M2 that has an identically-named input channel. If the guards on
the input channel of this machine accepts the message, then M2 may perform
some computation and produce one output message. While M2 now waits for
new input on its input channels, the output message (if any) is processed by the
next receiving machine, and so on. If there is no receiving machine, or the guard
of the receiving machine rejects the message, or no output message is produced,
computation would halt since no machine is triggered. To avoid this, in a system
of machines, one machine is always declared to be a master machine, also called
master process, and this machine is triggered if no other machine is.

In SPPC, given process expressions P1, . . . ,Pn, each representing a single
machine, the combined system of machines is denoted by the process expression
P1 » · · · » Pn. Instead of interpreting P1 » · · · » Pn as a system of n single
machines, one can consider this system as a single machine (consisting of n sub-
machines). This corresponds to the transformation, in the PIOA model, of a
system of fixed, finite number of machines into a single machine. However, in
SPPC we can apply such transformations to systems containing a polynomial
number of machines as well.

With the bounded replication operator !q(n) P, where q(n) is some polyno-
mial in the security parameter and P is a process expression (representing a
single machine or a system of machines), systems containing a polynomial num-
ber of machines can be described. The process expression !q(n) P stands for a
q(n)-fold parallel composition P » · · · » P. Note that in such a system, different
copies of P have the same input and output channels. However, as discussed ear-
lier, guards allow us to send messages to (virtual) channels of particular copies



of a protocol. Bounded replication can be combined with parallel composition
to build bigger systems such as !q1(n) (P1 » P2 » !q3(n) P3).

We note that the details of the communication model, such as a specific
activation order of entities, the communication primitives available (such as in-
secure, authenticated, or secure channels), and specific forms of buffering, are
not explicitly modelled in SPPC. The driving philosophy behind the design of
SPPC is to move such details into the specification of the protocol rather than
explicitly encoding them into the model. This makes SPPC simple and flexible,
thereby allowing easy formulation of a variety of security notions.

As described earlier, since our execution model is sequential, computation
may not proceed if currently executing machine produces no output, or a re-
ceiving machine rejects an input. In order to ensure that computation proceeds
even in this case, we identify a master process by using a special input channel
start. In case no output is produced by a machine, a fixed value is written on
start thereby triggering the master process. The master process is also the first
machine to be activated when execution starts.

Additionally, in studying security notions, it will be useful to define the out-
put of a system. We do so by writing a bit, the output, onto an output channel
named decision. The machine containing this channel is called the decision

process. Given a process expression R(
→
x) with free variables

→
x , we denote by

Prob[R(
→
a )n←i Ã 1] the probability that R with security parameter i and sub-

stitution of values
→
a for its variables

→
x outputs a 1 on decision. Recall that

R(
→
a )n←i denotes the process obtained from the process expression R by replac-

ing the security parameter n by a value i and replacing the variables
→
x by values

→
a . Two process expressions P(

→
x) and Q(

→
x) are called equivalent or indistin-

guishable, written P(
→
x) ≡ Q(

→
x), iff for every polynomial p(n) there exists i0

such that |Prob[P(
→
a )n←i Ã 1]−Prob[Q(

→
a )n←i Ã 1]| ≤ 1/p(i) for every i ≥ i0

and every tuple
→
a of bit strings.

We call machines which are neither master nor decision processes regular. A
machine which is both master and decision is called a master decision process.
In what follows, by R, M, D, and MD we denote the set of all closed regular
processes, closed master processes, open or closed decision processes, and open
or closed master decision processes, respectively.

3 The Security Notions and Their Variants

In this section, we formulate the security notions and their variants. In order
to do so, we must first define which SPPC expressions constitute well-formed
systems of interacting machines. We will do so by specifying how machines are
connected together.

We start by defining the communication interfaces of individual processes. A
process uses directional external channels—input and output external channels—
to communicate with other machines. These channels are partitioned into two
types: network channels and IO channels. The channels start and decision are



respectively defined to be input and output IO channels. Input channels connect
to identically-named output channels of the same type.

If P represents a protocol, then an adversary A connects to the network
channels of P while an environment E connects to the IO channels of P and
A. Formally, two processes, P and Q, are compatible if they have the same set
of external channels. We say that two processes are IO-compatible if they have
the same set of IO channels and disjoint sets of network channels. A process
expression Q is connectible for P if each common external channel of P and Q
has the same type in both and complementary directions. A process expression
A is adversarially connectible for P if A is connectible for P and the set of
external channels of A is disjoint from the set of IO channels of P. Thus an
adversary can only connect on the network channels of a protocol. Similarly, E
is environmentally connectible for P if it can only connect on the IO channels of
P.

We can now define what it means for a process to be an adversary, environ-
ment, or simulator. We do so in a parametric fashion so that we can succinctly
represent the variants of a security notion. Given a set of processes C we de-
fine: a) EnvC(P) to be the set of all processes in C that are environmentally
connectible for P, b) AdvC(P) to be the set of all processes in C that are adver-
sarially connectible for P, c) SimC(P,F) to be the set of all processes S in C

that are adversarially connectible for F and such that S » F is compatible with
P, d) ConC(P) to be the set of all processes in C that are connectible for P.

Definition 1. Let A (real adversaries), I (ideal adversaries), E (environments),
and S (simulators) be sets of process expressions, and P (the real protocol) and
F (the ideal functionality/protocol) be IO-compatible process expressions.

Strong Simulatability (SS): SS(S,E)(P,F) iff ∃S ∈ SimS(P,F)∀E ∈ ConE(P) :
E » P ≡ E » S » F , i.e., there exists a simulator such that no environment
can distinguish whether it is interacting with the real protocol or the ideal
functionality-simulator combination.

Strong Blackbox Simulatability (SBB): SBB(A,S,E)(P,F) iff ∃S ∈ SimS(P,F)
∀A ∈ AdvA(P)∀E ∈ EnvE(A » P) : E » A » P ≡ E » A » S » F , i.e., there
exists a simulator such that for all adversaries, no environment can distin-
guish whether it is interacting with the real protocol-adversary combination
or the ideal functionality-simulator-adversary combination.

Weak Blackbox Simulatability (WBB): WBB(A,S,E)(P,F) iff ∀A ∈ AdvA(P)∃S ∈
SimS(P,F)∀E ∈ EnvE(A » P) : E » A » P ≡ E » A » S » F , i.e., for each
adversary there exists a simulator such that no environment can distinguish
whether it is interacting with the real protocol-adversary combination or the
ideal functionality-simulator-adversary combination.

Universal Composability (UC): UC(A,I,E)(P,F) iff ∀A∈AdvA(P) ∃I ∈SimI(A »
P,F) ∀E ∈ EnvE(A»P) : E » A » P ≡ E » I » F , i.e., for each real adver-
sary there exists an ideal adversary such that no environment can distinguish
whether it is interacting with the real protocol-real adversary combination or
the ideal functionality-ideal adversary combination.



4 Relationships Between the Security Notions

In this section, we examine the relationships between the security notions intro-
duced in the previous section. The instances of each security notion are obtained
by assigning roles (decision, master, regular) to the various entities (environment,
real and ideal adversary, simulator, real and ideal protocol). The environment is
always the decision process, and the real and ideal protocols are always regular
processes. So, the variants of each security notion differ only wrt the entity that
assumes the role of the master process. Formally, the variants are obtained by
defining the sets A, I, S, and E to be one of the sets R, M, D, and MD. For
example, the security notion considered in [8] is UC(R,R,MD)(P,F). Here, P and
F are UC with the environment as the master decision process and the real and
ideal adversary as regular processes. Another variant of UC considered in [4] is
UC(M,M,MD)(P,F). Here, the environment is the master decision process and
the real and ideal adversaries are the master processes. Notice that although
both the environment E and the real/ideal adversary A/I may play the role of
the master process, in any specific setting, according to our definitions, exactly
one of E or A/I will actually be the master process. If the real adversary is the
master process, then the ideal adversary must be master as well; furthermore,
the environment cannot be master (as it would not be environmentally valid
if it also had the start channel). Conversely, if the adversary is not the mas-
ter (i.e., does not have the start channel), then the environment may be the
master. Note that combinations without a master process or a decision process
do not make sense since no computation can take place in their absence or no
decision can be generated, i.e., no process can write on the channel decision.
Henceforth, we omit such combinations. We will consider combinations where
we require a certain entity to play the role of the master by saying that this
entity is a process expression in M \ R. In variants of these notions where the
simulator S plays the role of the master process, we allow the simulator to hand
over control to A or E via a channel start′, which replaces start in A and
E . Additionally, we also consider a variant of WBB where the simulator S only
depends on the complexity of A rather than on A in its entirety. We can easily
show that these two variants are equivalent [14], and so we will not distinguish
between them in what follows.

In the following theorems, the security notions are considered to be binary
relations over the set of regular processes R.

Theorem 1. All variants of Strong Simulatability and Strong Blackbox obtained
by varying the entity that is the master process are equivalent, i.e., the following
identities hold:

SS(R,MD) = SS(M,MD) = SBB(R,R,MD) = SBB(M,R,MD) =
SBB(M,R,D) = SBB(M\R,R,D) = SBB(M\R,R,MD) = SBB(M,M,MD) =
SBB(R,M,MD) = SBB(M,M,D).

We call this class of security notions SS-SBB. It includes placements of the master
process as considered for Strong Blackbox in [4] and [22]. In [4], the environment,



the adversary, and the simulator may play the role of the master process, and
hence, this corresponds to the notion SBB(M,M,MD). In [22], only the adversary
and the simulator may be the master process, but not the environment, and
hence, this corresponds to the notion SBB(M,M,D).

Recall that the difference between SS and SBB is that, in the latter notion,
the environment and the adversary are separate entities, while in the former they
are combined into one. Since the adversary and the environment can commu-
nicate freely, it is perhaps expected that the two notions should be equivalent.
Theorem 1 bears out this intuition, and shows that the equivalences among the
notions are independent of which entity plays the role of the master process.
Consequently, there appears to be no technical benefit from treating the adver-
sary and environment as two separate entities as in the SBB setting. We point
out that in order to prove Theorem 1, it is important that situations in which the
simulator is a master process do not differentiate between SS and SBB. This is
true because such situations yield degenerate relations; for instance, SS(M\R,MD)

is an empty relation. The reason is that the environment can exhaust a mas-
ter simulator since whenever execution defaults to the simulator, it triggers the
environment immediately. Hence the environment can repeatedly “ping” the
simulator until its time-bound is exhausted. In a model in which the runtime
of the simulator may depend on how often it is invoked by the environment,
such exhaustion attacks would not be viable. In such a model, the notions SS
and SBB may differ depending on whether or not the simulator plays the role of
the master. Since such extensions are not studied in published work, we defer a
detailed study to future work.

Theorem 2. All variants of Universal Composability and Weak Blackbox in
which the environment may be the master process are equivalent, i.e., the follow-
ing identities hold:

UC(R,R,MD) = UC(M,M,MD) = WBB(R,R,MD) =
WBB(M,R,MD) = WBB(M,M,MD) = WBB(R,M,MD).

We call this class of security notions UC-WBBenv. It includes placements of
the master process as considered for Universal Composability in [8] and [4].
While in [8] only the environment may play the role of the master process,
corresponding to the notion UC(R,R,MD), in [4] the adversary may play this role
as well, corresponding to UC(M,M,MD).

The fact that WBB implies UC follows simply by combining the simulator
and real adversary to produce an ideal adversary. To go in the reverse direction,
we consider what happens when instantiating the real adversary with a pro-
cess that simply forwards messages between the protocol and the environment.
The corresponding ideal adversary then serves as the simulator in the defini-
tion of WBB. We note that it is important that the runtime of the simulator
be allowed to depend on the complexity of the real adversary. Note that as in
the class SS-SBB, equivalence among the security notions in UC-WBBenv holds
independently of whether or not the simulator may be the master process.



Theorem 3. All variants of Universal Composability and Weak Blackbox in
which the simulator and the adversary may be the master process and the en-
vironment is not the master process are equivalent, i.e., the following identities
hold:

UC(M,M,D) = UC(M\R,M\R,D) = UC(M\R,M\R,MD) =
WBB(M,M,D) = WBB(M\R,M,D).

We call this class of security notions UC-WBBsim. It includes the placements
of the master process as considered for Universal Composability in [22], which
corresponds to the notion UC(M,M,D).

Equivalence among the notions in UC-WBBsim is established similarly to the
class UC-WBBenv. Note that UC-WBBsim does not contain a version of WBB
where the simulator is restricted to be regular. As we will see, restricting the
simulator in this way, yields a strictly stronger notion.

Theorem 4. All variants of Weak Blackbox where the adversary is the master
process and neither the environment nor the simulator is the master process are
equivalent, i.e., the following identities hold: WBB(M,R,D) = WBB(M\R,R,D).

We call this class of security notions WBBadv. We now study the relationships
between the four classes. We say that a class of equivalent security notions C
implies another class C ′ of equivalent security notions (C ⇒ C ′), if a notion in C
(and hence, every notion in C) implies a notion in C ′ (and hence, every notion
in C′).

Theorem 5. SS-SBB ⇒ UC-WBBenv ⇒ WBBadv ⇒ UC-WBBsim, but the class
UC-WBBsim does not imply the other classes, i.e., UC-WBBsim ; WBBadv, and
hence, UC-WBBsim ; UC-WBBenv and UC-WBBsim ; SS-SBB

In particular, we have that the Strong Blackbox relation with the placements of
the master process as considered in [22, 4] implies the Universal Composability
relation with the placements of the master process as considered in [8, 22, 4].
Also, the Universal Composability relation with the placement of the master
process as considered in [22] is strictly weaker than the Universal Composability
relation with the placements of the master process as considered in [8] and [4].

The argument from SS-SBB to UC-WBBenv relies on the order of quantifi-
cation over the entities. The fact that UC-WBBenv implies WBBadv relies on
the observation that making the environment the master intuitively gives the
environment more discriminatory power. The final implication follows from the
fact that the set of simulators considered in WBBadv is a subset of the set of
simulators considered in UC-WBBsim.

To show that UC-WBBsim 6⇒ WBBadv we provide a concrete example. Con-
sider a protocol P that receives a bit on an IO channel and forwards it on a
network channel. The ideal functionality F does the same but only forwards the
bit if it is 1. We can show that UC(M,M,D)(P,F) but not WBB(M,R,D)(P,F). It
is open whether WBBadv implies UC-WBBenv.

The following theorem identifies a necessary and sufficient condition—the for-
warder axiom (defined below)—for the equivalence of UC-WBBenv and SS-SBB.



As a consequence, we can see that the strongest variant of UC (where the en-
vironment is the master process) implies SBB just when the forwarder axiom
holds.

Theorem 6. Let C be a class of regular processes closed under channel-re-
naming. Then, restricting the relations to C, we obtain that

(UC-WBBenv =⇒ SS-SBB) iff (FORWARDER holds for all processes in C).

In particular, the Universal Composability relations with the placements of the
master process as considered in [8] and [4] are strictly weaker than the Strong
Blackbox relations with the placements of the master process as considered in
[4] and [22] in any computational model in which the forwarding property given
by the FORWARDER axiom does not hold. The axiom FORWARDER(C) for
a class of regular processes C is stated as follows:

FORWARDER(C) Given any process P ∈ C with network channels net, there
exists a process D with network channels net ∪ (net′ = {c′| c ∈ net}) such that
for all E whose only shared channels with P are external channels of P:

E » P ≡ E » D » [net′/net]P

where [net′/net]P denotes the process obtained from P by replacing the channels
in net by those in net′.

Intuitively, this axiom allows us to invisibly plug a communication medium D
between two entities connected over network channels.

While the forwarder property appears believable, it turns out that for arbi-
trary protocols, the forwarder property does not hold. The problem lies in the
fact that the forwarder is chosen independently of the environment E . As a re-
sult its runtime is fixed a priori and the environment can exhaust the forwarder
by sending it many useless messages. Then, the presence of the forwarder can
be easily detected by the environment. All is not lost. For a class of protocols
including those commonly studied in the literature (c.f., [22, 8, 5]) the forwarder
property holds in SPPC. We shall refer to these protocols as standard protocols.
The specific way in which the exhaustion problem is avoided for standard pro-
tocols involves using guards to reject the spurious messages. We cannot do this
for every protocol because it is important that the forwarder knows the commu-
nication structure of the protocol (see [14] for details). The following corollary
to Theorem 6 is now immediate.

Corollary 1. SS-SBB ⇔ UC-WBBenv for the class of standard protocols.

In particular, the Strong Blackbox relation with the placement of the master
process as considered in [22, 4] and the Universal Composability relation with
the placement of the master process as considered in [8, 4] are equivalent for
standard protocols in SPPC (see also Section 5.1).

Although in this extended abstract, we have only given intuitions behind
some of the proofs, we emphasize that the actual proofs are carried out using



P » Q ≡ Q » P COM
P » (Q » R) ≡ (P » Q) » R ASC
P ≡ Q,Q ≡ R =⇒ P ≡ R TRN
P ≡ Q =⇒ Q ≡ P SYM
P ≡ [d/c]P where c, d 6∈ {start, decision}, d 6∈ Channels(P) RENAME

Fig. 3. A representative fragment of SPPC’s reasoning system

an equational reasoning system for SPPC. A small representative fragment of
the axiom system is given below. These axioms capture simple structural prop-
erties like commutativity, associativity, transitivity, and symmetry of process
equivalence. It also allows structural operations such as channel-renaming.

These axioms can also serve as an abstract specification of a “reasonable”
computational model for simulation-based security.

5 Implications for Other Models

We now study the relationships of the security notions for the PIOA model [22, 5,
4] and the PITM model [8, 9]. The simplicity of SPPC’s axiom system enables us
to carry over our results to these other computational models. Furthermore, the
counter-examples used to demonstrate that certain notions are strictly stronger
than others are quite simple and easily translate into the related models.

5.1 The PIOA Model

Most of the axioms used to prove the relationships among the security notions
also hold in the different versions of the PIOA model. Therefore, the relationships
given in the previous section mostly carry over to PIOA. In particular, we obtain
that all the security notions in SS-SBB, UC-WBBsim, and WBBadv are equivalent,
respectively, and their relationships are as depicted in Figure 1.

However, an axiom used to prove that the security notions in UC-WBBenv

are equivalent does not hold in PIOA. This axiom captures a property similar to
the forwarder property discussed in Section 4. This axiom essentially states that
there exists a forwarder D that is allowed to depend on the complexity of the
protocol P and the adversary A such that E » A » P ≡ E » A′ » D » P (where A′

is A with some renamed network channels). The axiom fails in PIOA because
machines always have to communicate through buffers and buffers are triggered
by machines other than the one writing into the buffer. In fact, we show that
UC does not imply WBB in PIOA when the environment is master. This failure
of equivalence seems counterintuitive. The problem vanishes if the PIOA model
is modified so that machines always trigger their own buffers. In effect, this is
equivalent to not having buffers at all, which is why we call this fragment of the
PIOA model the buffer-free PIOA model (BFPIOA). This fragment is essentially
as expressive as PIOA and this fragment can be embedded into SPPC (see [14]).



In particular, all axioms (except the forwarder property of the previous section)
are satisfied in BFPIOA and the examples used to prove separation results can
also be expressed in BFPIOA. As mentioned in Section 2, starting from the
work [6] PIOA (and thus, BFPIOA) has a restricted form of guards. Similar
to SPPC, this mechanism suffices to satisfy the forwarder property for standard
protocols, but just as in SPPC, there are protocols expressible in BFPIOA which
do not satisfy this property. In summary, we obtain for BFPIOA exactly the same
relationships as for SPPC (see Figure 1).

In [22], the security notions UC(M,M,D)(P,F) and SBB(M,M,D)(P,F) were
introduced for the PIOA model, while in [4] the notions UC(M,M,MD)(P,F) and
SBB(M,M,MD)(P,F) were considered. Our results clarify the relationships be-
tween these security notions: while the two variants of SBB are equivalent (they
both belong to the class SS-SBB), these notions are different from the two vari-
ants of UC. Also, the two variants of UC are not equivalent. Our results con-
tradict the claim in [4] that SBB(M,M,MD)(P,F) and UC(M,M,MD)(P,F) are
equivalent.

5.2 The PITM model

The PITM model [8] is tailored towards defining UC where the environment is a
master process and the adversaries are regular processes i.e., UC(R,R,MD)(P,F).
Depending on which entities are involved, different computational models are
defined: the real model (involving the environment, the real adversary, and the
real protocol), the ideal model (involving the environment, the ideal adversary,
and the ideal functionality together with dummy parties), and the hybrid model
which is a combination of the previous two models.

Therefore, it is not immediately clear how the security notions SS, SBB, and
WBB, which involve a simulator, would be defined in PITM. Different variants
are possible, and as we have seen, differences in the definitions may affect the
relationships between the security notions. It is out of the scope of this paper,
to extend PITM in order to define SS, SBB, and WBB. However, some general
points can be made. The version of PITM in [8] does not have a mechanism,
like the guards of SPPC, that will enable the forwarder property to be satisfied.
Without this property, UC is a strictly weaker notion than SBB. In ongoing
work [9], Canetti allows PITMs to depend on the number of invocations as well
as the length of messages on the IO tapes. This mechanism could enable PITM
to satisfy the forwarder property whence UC would imply SBB. However, this
is speculative since the details of the model are still being developed.

We finally note that in [8], Canetti introduces a special case of UC where the
adversary merely forwards messages between the environment and the parties.
Canetti proves UC and this notion equivalent. This notion can easily be formu-
lated in SPPC and proved equivalent to UC along the lines of the proof which
shows that UC(R,R,MD)(P,F) implies WBB(M,R,MD)(P,F).



6 Reactive Simulatability and Extensions of SPPC

In this section, we consider another security notion, called reactive simulatability
in [5] and security with respect to specialized simulators in [9]. This notion has
not drawn as much attention as the others studied in the present work because,
to our best knowledge, a general composition theorem along the lines of [22, 4, 8,
14], has not been proved for reactive simulatability (see, however, [9]). Therefore,
in the previous sections, we have concentrated on the other security notions and
only very briefly cover reactive simulatability here. In our terminology, reactive
simulatability is defined as follows:

Reactive Simulatability : RS(A,I,E)(P,F) iff ∀A ∈ AdvA(P)∀E ∈ EnvE(A » P)
∃I ∈ AdvI(F) : E » A » P ≡ E » I » F .

The only difference between reactive simulatability and universal compos-
ability (UC) is that in the former the ideal adversary is allowed to depend on
the environment. It has been pointed out by Canetti [9] that reactive simulata-
bility is equivalent to UC if the runtime of the environment may depend on the
length of the message on its input tape.3 In such a model, the notion of indis-
tinguishability has to be slightly modified. The idea of the proof of equivalence
is that one can define a universal environment which interprets part of its in-
put as an encoding of another environment. The ideal adversary corresponding
to this environment, in effect, works for all environments. It is straightforward
to extend SPPC in a way that the runtime of open processes (recall that the
environment is modeled as an open process), may depend on the length of the
messages substituted for the free variables. Thus, the same proof also works in
SPPC. We note that the argument goes through regardless of whether the envi-
ronment may or may not play the role of the master process. In the former case,
reactive simulatability is equivalent to the notions in the class UC-WBBenv, and
in the latter case, it is equivalent to the notions in UC-WBBsim. This result also
carries over to an appropriate extension of BFPIOA.

7 Conclusion

We have carried out a thorough study of the relationships among various notions
of simulation-based security, identifying two properties of the computational
model that determine equivalence between these notions. Our main results are
that all variants of SS (strong simulatability) and SBB (strong black box simu-
latability) are equivalent, regardless of the selection of the master process, and
they imply UC (universal composability) and WBB (weak black box simulatabil-
ity). Conditions UC and WBB are equivalent as long as the role (master process
or not) of the environment is the same in both. However, the variant of UC in

3 In his new model, Canetti allows every interacting Turing machine to depend on the
number of invocations on input tapes and the length of the messages on input tapes.
However, to prove the equivalence, it suffices to require this only for the environment.



which the environment may be a master process (as in [8, 4]) is strictly stronger
than the variants in which the environment must not assume this role (as in
[22]). In addition, the weaker forms of WBB do not imply SS/SBB. Finally,
we prove a necessary and sufficient condition for UC/WBB to be equivalent to
SS/SBB, based on the ability to define forwarders. These results all show that
the relationship between universal composability and black-box simulatability
is more subtle than previously described. In particular, the composability the-
orem of Canetti [8] does not necessarily imply that blackbox simulatability is
a composable security notion over any computational model in which the for-
warding property is not satisfied. Another technical observation is that making
the environment the master process typically yields a stronger security notion.
Hence, we recommend that in subsequent developments of the various models,
the environment is always assigned the role of the master process.

Since our proofs are carried out axiomatically using the equational reasoning
system developed for SPPC, we are able to apply the same arguments to suit-
ably modified versions of the alternative computational models. We emphasize
that the our suggested modifications to the other systems are motivated by the
failure, in those systems, of simple equational principles. In particular, it seems
reasonable to adopt a buffer-free variant of PIOA.

While our study concentrates on models where the runtime of processes is
bounded by a polynomial in the security parameter, it would be interesting to
consider those models where the runtime may depend on the number of invo-
cations and the length of inputs (e.g., [9]). We believe that most of our results
carry over also to these models as they seem to satisfy the axioms that we use
in our proofs. However, the issue remains open since the details of these models
have not yet been fixed.

Acknowledgments: We thank Michael Backes, Ran Canetti, Birgit Pfitzmann,
Andre Scedrov and Vitaly Shmatikov for helpful discussions.

References

1. Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure commu-
nication. In POPL 2001, pages 104–115, 2001.

2. Mart́ın Abadi and Andrew D. Gordon. A bisimulation method for cryptographic
protocol. In Proc. ESOP 98, Lecture notes in Computer Science. Springer, 1998.

3. Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic protocols:
the spi calculus. Information and Computation, 143:1–70, 1999. Expanded version
available as SRC Research Report 149 (January 1998).

4. M. Backes, B. Pfitzmann, and M. Waidner. A General Composition Theorem for
Secure Reactive Systems. In TCC 2004, volume 2951 of LNCS, pages 336–354.
Springer, 2004.

5. M. Backes, B. Pfitzmann, and M. Waidner. Secure asynchronous reactive systems.
Technical Report 082, Eprint, 2004.

6. Michael Backes, Birgit Pfitzmann, Michael Steiner, and Michael Waidner. Polyno-
mial fairness and liveness. In CSFW-15 2002, pages 160–174, 2002.



7. Michael Backes, Birgit Pfitzmann, and Michael Waidner. Reactively secure signa-
ture schemes. In Proceedings of 6th Information Security Conference, volume 2851
of LNCS, pages 84–95. Springer, 2003.

8. Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In FOCS 2001. IEEE, 2001. Full version available at
http://eprint.iacr.org/2000/067/.

9. Ran Canetti. Personal communication, 2004.
10. Ran Canetti and Marc Fischlin. Universally composable commitments. In Proc.

CRYPTO 2001, volume 2139 of LNCS, pages 19–40, 2001. Springer.
11. Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange

and secure channels. In EUROCRYPT 2002, volume 2332 of LNCS, pages 337–351.
Springer, 2002.

12. Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of univer-
sally composable two-party computation without set-up assumptions. In EURO-

CRYPT 2003, volume 2656 of LNCS, pages 68–86. Springer, 2003.
13. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally com-

posable two-party and multi-party secure computation. In STOC 2002, pages
494–503, 2002.

14. Anupam Datta, Ralf Küsters, John C. Mitchell, and Ajith Ramanathan.
Sequential probabilisitic process calculus and simulation-based secu-
rity. 2004. An extended version is available as a technical report at
http://www.ti.informatik.uni-kiel.de/~kuesters/publications html/

DattaKuestersMitchellRamanathan-TR-SPPC-2004.ps.gz.
15. Anupam Datta, Ralf Küsters, John C. Mitchell, Ajith Ramanathan, and Vitaly

Shmatikov. Unifying equivalence-based definitions of protocol security. In ACM

SIGPLAN and IFIP WG 1.7, 4th Workshop on Issues in the Theory of Security,
2004.

16. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
17. Patrick D. Lincoln, John C. Mitchell, Mark Mitchell, and Andre Scedrov. Prob-

abilistic polynomial-time equivalence and security protocols. In Formal Methods

World Congress, vol. I, number 1708 in LNCS, pages 776–793, 1999. Springer.
18. Robin Milner. A Calculus of Communicating Systems. Springer, 1980.
19. Robin Milner. Communication and Concurrency. International Series in Computer

Science. Prentice Hall, 1989.
20. John C. Mitchell, Mark Mitchell, and Andre Scedrov. A linguistic characterization

of bounded oracle computation and probabilistic polynomial time. In FOCS 1998,
pages 725–733, 1998. IEEE.

21. John C. Mitchell, Ajith Ramanathan, Andre Scedrov, and Vanessa Teague. A
probabilistic polynomial-time calculus for the analysis of cryptographic protocols
(preliminary report). In 17th Annual Conference on the Mathematical Foundations

of Programming Semantics, 2001, volume 45. ENTCS, 2001.
22. B. Pfitzmann and M. Waidner. A Model for Asynchronous Reactive Systems and

its Application to Secure Message Transmission. In IEEE Symposium on Security

and Privacy, pages 184–200. IEEE Computer Society Press, 2001.
23. Ajith Ramanathan, John C. Mitchell, Andre Scedrov, and Vanessa Teague. Prob-

abilistic bisimulation and equivalence for security analysis of network protocols.
Unpublished, see http://www-cs-students.stanford.edu/~ajith/, 2004.

24. Ajith Ramanathan, John C. Mitchell, Andre Scedrov, and Vanessa Teague. Prob-
abilistic bisimulation and equivalence for security analysis of network protocols. In
FOSSACS 2004, 2004. Summarizes results in [23].


