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Abstract as a free operator then, as shown by L. Paulson using the
Isabelle prover [19], the protocol is secure.

We provide a method for deciding the insecurity of cryp-  Recently, several procedures have been proposed to de-
tographic protocols in presence of the standard Dolev-Yao cide insecurity of cryptographic protocols w.r.t. a finite
intruder (with a finite number of sessions) extended with number of protocol sessions [2, 4, 11, 20, 17, 13]. More-
so-called oracle rules, i.e., deduction rules that satisfy cer- over, some special cases for an unbounded number of ses-
tain conditions. As an instance of this general framework, sions have been studied [9, 10, 7, 1]. All these results as-
we obtain that protocol insecurity is in NP for an intruder sume encryption to be perfegigrfect encryption assump-
that can exploit the properties of the XOR operator. This tion): One needs a decryption key to extract the plaintext
operator is frequently used in cryptographic protocols but from the ciphertext, and also, a ciphertext can be generated
cannot be handled in most protocol models. An immedi- only with the appropriate key and message (no collision).
ate consequence of our proof is that checking whether aonly very few works on formal analysis have relaxed this
message can be derived by an intruder (using XOR) is inassumption. In [16, 12], unification algorithms are de-

P. We also apply our framework to an intruder that exploits signed for handling properties of Diffie-Hellman crypto-
properties of certain encryption modes such as cipher block graphic systems.

chaining (CBC). In this paper, we generalize the decidability result of

[20], stating that insecurity for finitely many protocol ses-

sions is in NP, to the case where messages may contain
1. Introduction the XOR operator and where the Dolev-Yao intruder is ex-
tended by the ability to compose messages with the XOR
operator. More precisely, we give a linear bound on the size
of messages exchanged in minimal attacks and present an
NP procedure for deciding insecurity with XOR. This ex-
Rension is non-trivial due to the complex interaction of the
XOR properties and the standard Dolev-Yao intruder rules.
The technical problems raised by the equational laws are
somewhat related to those encountered in semantic unifi-
cation.

To prove our result, we have extended the Dolev-Yao in-
gruder with so-called oracle rules, i.e., deduction rules that
satisfy certain conditions. In this general framework we
show that insecurity is decidable in NP. Now, the results

Cryptographic protocols have been designed for han-
dling secure electronic communications. Verification tools
based on formal methods (e.g. model checking) have bee
quite successful in discovering new flaws in well-known
security protocols [14, 18, 22, 3, 6].

While most formal analysis of security protocols ab-
stracts from low-level properties, i.e., certain algebraic
properties of encryption, such as the multiplicativity of
RSA or the properties induced by chaining methods for
block ciphers, many real attacks and protocol weaknesse
rely on these properties. A typical example was provided
by Ryan and Schneider [21] where they give a simple at- . .
tack on Bull's recursive authentication protocol: the proto- for XOR are .o.btamed by proving that the XOR rules sat-
col is used to distribute a connected chain of keys linking isfy the conditions Pn oracle rules.
all the nodes from originator to the server, but if one key ~ Our framework is general enough to also handle other
is compromised the others can be compromised too thankslgebraic properties. More specifically, we show that the

to the property oikoR. Conversely, ifxOR is considered Dolev-Yao intruder equipped with the ability to exploit pre-
fix properties of encryption algorithms based on cipher-

*This work was partially supported by PROCOPE and IST AVISPA  block-chaining (CBC) falls into our framework as well.




To the best of our knowledge, the results presented hereare marked witH. In the first sessiond talks to the in-
are the first, besides the ones by Comon and Shmatikov [8]truder I, and in the second sessidnpurporting to beA,
also presented in these proceedings, that go beyond the petalks to B. We emphasize that in this atta¢kgenerates
fect encryption assumption. We briefly compare our work new messages by applying the XOR operator and uses that
with [8]: As an immediate consequence of our proof, the XOR(N4, B, I, B) =xoRr XOR(Ny, I).
problem of checking whether a message can be derived by

an intruder in presence of the XOR operator — this prob- 1L.A—1 AN A,

lem is calledground reachabilityin [8] — is in PTIME. In L. I(4) — B: {xOR(Ny, B, 1), A}y,
[8], this problem is shown to be in NP both for the case 2. B — I(A): {Np,XOR(Na, B, I, B)}y,
of XOR and abelian groups. As for the general insecurity 2.1 —-A  :{Np,xOR(Na, B, I, B)}y
problem, we show NP-completeness based on a theorem 3.4—-1 : {NB}%I

that ensures the existence of attacks of linear size. Comon

and Shmatikov present a decision procedure with a higher3. The Protocol and Intruder Model

complexity. This procedure is based on constraint solving

techniques. However, they consider a more general classThe protocol and intruder model we describe here extend
of protocol rules. In Section 3.2, we argue that these morestandard models for the (automatic) analysis of security
general rules are rather unrealistic. Finally, we believe thatprotocols [2, 10, 20, 17] in two respects. First, messages
our framework is quite general in the sense that different can be build using the XOR operator, which is not allowed
intruders with different deduction capabilities can be cap- in most other protocol models. Second, in addition to the
tured such as those for exploiting properties of encryption standard Dolev-Yao rewrite rules, the intruder is equipped
based on block ciphers (see Section 7). with the mentioned oracle rules. In what follows, we pro-
vide a formal definition of our model by defining terms,

Structure of the paperln the following section, we pro- messages, protocols, the intruder, and attacks.

vide an example illustrating the role of XOR in attacks.
We then, in Section 3, introduce our protocol and intruder
model. In particular, this section contains the definition

of the oracle rules. The decidability result for the general _. - . ! .
. . . . . .~ First, recall that a finite multiset over a sgts a function
framework is presented in Section 4, including the descrip- L )
tion of the NP decision alaorithm. Proof sketches are pro- M from S to IN with finite domain. We use the common
\;ided in Section 5I almd 6ng|1en .in Section 7, XOR rlﬂes set notation to define multisets. For examp{e,a, a, b}
and prefix rules are intro.duced ,and it is shov(/n that thesedenOtes the multiset/ with M(a) = 3, M(b) = 1, and
b M (x) = 0 for everyz ¢ {a,b}.

rules are oracle rules, which implies the mentioned com- . ; . )
. . o Terms are defined according to the following grammar:
plexity results. The missing proofs and an application of

3.1. Terms and Messages

prefix rules can be found in [5]. term == A|V| (term, term)
| {term}{epm | {term}y | XOR(M)
2. A Motivating Example whereA is a finite set of constantafomic messaggscon-

taining principal names, nonces, keys, and the constants
We illustrate that when taking the algebraic properties of andsecret; K is a subset of4 denoting the set of public
XOR into account, new attacks can occur. As an example,and private keys) is a finite set of variables; antl is a
we use a variant of the Needham-Schroeder-Lowe Proto-non-empty finite multiset of terms. We assume that there
col [15], i.e., the public-key Needham-Schroeder Procotol is a bijection-~! on K which maps every public (private)
with Lowe’s fix, where in some place, instead of concate- keyk to its corresponding private (public) kéy . The bi-
nation XOR is used. Using common notation, the protocol nary symbok-, -) is calledpairing, the binary symbof{-}*

is given as follows: is calledsymmetric encryptigrthe binary symbol-}? is
public key encryption Note that a symmetric key can be
1.A— B: {NA,A}%B any term and that for public key encryption only atomic
2.B— A: {Np,XOR(Ng4, B)}T;(A keys (namely, public and private keys frd@) can be used.
3.A— B: {N}k, Aterm with headkor is callednon standardind otherwise

it is calledstandard Because of the algebraic properties of

If XOR is interpreted as free symbol, such as pairing, then XOR (see below), it is convenient to define ther opera-
according to [15] this protocol is secure. In particular, the tor as done above, instead of defining it as a binary opera-
intruder is not able to get hold dfz. However, if the al- tor. We abbreviat&or({t1, . ..,t,}) by XOR(t1, ..., t,).
gebraic properties of XOR are taken into account, the fol-  Variables are denoted hy, y, terms are denoted by
lowing attack is possible, which is a variant of the original ¢, «, v, and finite sets of terms are writtei, F', ..., and
attack on the Needham-Schroeder Protocol and which al-decorations thereof, respectively. We abbreviate F' by
lows the intruded to obtainNg. In this attack, two ses- E, F, theunionE U {¢} by E,t,andE \ {¢t} by E'\ t. The
sions run interleaved where the steps of the second sessiorame abbreviations are used for multisets.



For aterm and a set of term&’, V(¢) andV(E) denote
the set of variables occurring trand E, respectively.

A ground term(also calledmessaggis a term without
variables. A(ground) substitutions a mapping fromV to

the set of (ground) terms. The application of a substitution

o to atermt (a set of terms) is writtento (Eo), and is
defined as usual.

Given two termsu, v, the replacemenif u by v, de-
noted by[u < v], maps every termto the termé[u «— v]
which is obtained by replacing all occurrences:oh ¢ by

v. Note that the result of such a replacement is uniquely de-

termined. We can compose a substitutiowith a replace-
mento: the substitutionrd maps every: € V to o(z)é.

The multiset offactors of a termt, denoted byF(¢),
is recursively defined: It = xorR(M), then F(t) =
Upen F(¢'), and otherwise, it is standard,F(t) = {t},
whereU is the union of multisets. Note thaf(¢) only
contains standard terms. For example, witlh,c € A,
F(XOR(c, (XOR(a, b), ) ,c)) = {e, ¢, (XOR(a,b),c)}.

The set ofsubterm=f a term¢, denoted byS(¢), is de-
fined as follows:

o Ifte Aort eV, thenS(t) = {t}.

o If t = (u,v), {u}s, or{u}?, thenS(t) = {t}US(u)U
S(v).

e If tis non standard, thefi(t) = {t} UU,cx ) S(u).

We defineS(E) = (J,. S(t). Note thatxoR(a, b) is not
a subterm okOR(XOR(a, ), ¢).

for every termt’ £ 0, and M (0) := 0. (Recall that
F(t) is a multiset.) Now, ifM (¢') = 0 for everyt’,
then't' := 0. If M(#') # 0 for exactly onet’, then
t' = t'. Otherwise,t' := XOR(M).

The normalization function extends to sets, multisets of
terms, and substitutions in the obvious way. A teris
normalizedif 't' = ¢. In the same way normalized sets,
multisets of terms, and substitutions are defined. Two terms
t andt’ areequivalent(moduloxoRr) if '¢' = "¢". In this
case, we writé¢ =xoR t'.
One easily shows:

Lemma 1 For everyn > 0, term¢, and substitution:

1. |t < [|t|, and

2 rto_—l — FrtTO_—I — Ftrafﬂ — I_Ft—lrafl_l

We finally remark:

Remark 1 For every normalized termwith |t| < n, the
number of arguments ofOR operators occurring int is
bounded by:. Therefore, representing(as a DAG) needs
space polynomially bounded in

3.2. Protocols

The following definition is explained below.

Definition 1 A protocol ruleis of the formR = S where

We define the size of a term and a set of terms basi- R and.S are terms.

cally as the size of the representation as a DAG. That is,

the (DAG) sizelt| (| E|) of a termt (a set of termdF) is the
cardinality of the sef(¢) (S(F)). Note that - | applied to

A protocol P is a tuple({R; = S;,i € Z},<z,E)
whereF is a finite normalized set of messages With £,
theinitial intruder knowledgeZ is a finite (index) setgz

a set of terms will always denote the DAG size of the set is a partial ordering onZ, and R; = S;, for everyi € Z,

rather than its cardinality.

The XOR operator is considered to be commutative, as-

sociative, nilpotent, andis the unit element. According to

is a protocol rule such that

1. the termsR; and.S; are normalized;

these properties, the normal form of aterm is defined asthe 5 or g1 1 € V(S;), there existg <7 i such thatr €

result of thenormalization function_' : term — term.
Before providing the formal definition of this function, we
illustrate it by some examples: d&f b, ¢, d € A, then
-"XOR(XOR(a, b, d), XOR(c,d))'=X0OR(a, b, c)
-"(x0R(0, a, a, b, c), XOR(a, XOR(a, c)))'= (XOR(b, ¢), c)
-'XOR(a, (XOR(b), a) , c)'=XOR(a, (b, a) , c).
However,"X0oR({a, b) , (a,c))' # (0, XOR(b, c)).

Formally, the normalization function is recursively de-
fined as follows:

e For an atom or a variable "a' := q,
e For termsu andv, "(u,v)' = ("u',"v"), {u}s' =
{w}en, and )t = ).

e For a non-standard tertmdefineM to be the multiset
of factors oft in normalized form, i.e.,

M) = mod2

Y Fo

t”,l—t”—‘:t’

V(R;);

3. for every subterrxor(ty, ..., t,) of R;, there exists
k € {1,...,n} such thatV(¢;) C U« ;V(R;) for
everyl € {1,...,n}\ {k}. (Note that, sincer; is
normalized;, ..., t, are standard terms.)

A bijective mappingr : 7/ — {1,...,p} is calledexecu-
tion orderingfor P if Z’ C Z, p is the cardinality ofZ’ and
for all 4, j we have that if <7 7 andn(j) is defined, then
7 (i) is defined andr(i) < w(j). We define theizeof = to
bep.

Given a protocoPP, in the following we will assume thad
is the set of constants occurringfh We defineS(P) :=
EUJ;c7(R; U S;)) to be theset of subterms aP, |P| :=
|S(P)| to be the(DAG) size ofP andV := V(P) to be the
set of variables occurring iF.

Intuitively, when executing a rul®; = .S; and on re-
ceiving a (normalized) message in a protocol run, it is



first checked whethen and R; match, i.e., whether there we consider here from the standard Dolev-Yao intruder, is
exists a ground substitutiom such thatm =xor Rio. that we will equip the intruder with guess rules, which pro-
If so, "S;0 ' is returned as output. We always assume that vide him with additional capabilities of deriving messages.
the messages exchanged between principals (and the in Section 3.4, we consider classes of guess rules with cer-
truder) are normalized — therefore; is assumed to be tain properties, so-called oracle rules. As mentioned, in
normalized and the output of the above rule is fgt but Section 7 we will look at two different instances of these
S;o'. This is because principals and the intruder cannot oracle rules, namely XOR and prefix rules.
distinguish between equivalent terms, and therefore, they The intruder derives new messages from a given (finite)
may only work on normalized terms (representing the cor- set of message by applying intruder rules. iAmuder rule
responding equivalence class of terms). Finally, we note (or ¢-rule) L is of the formM — t, whereM is a finite
that since the different protocol rules may share variables, multiset of messages amds a message. Given a finite set
some of the variables iR; and S; may be bounded al- E of messages, the rule can be appliedo E if M is a
ready by substitutions obtained from applications of pre- subset ofF, in the sense that it/ (¢') # 0, thent’ € E for
vious protocol rules. We are not actually interested in a every messagg. We define thestep relation—r, induced
normal execution of a protocol but rather in attacks on a by L as a binary relation on (finite) sets of messages. For
protocol. This is the reason why the definition of a pro- every finite set of messagéswe haveE — E,t (recall
tocol contains the initial intruder knowledge. Attacks are that E, ¢ stands forE' U {t}) if L is a¢-rule andL can
formally defined in Section 3.3. be applied toE. If £ denotes a (finite or infinite) set of
Condition 1. , in the above definition is not a real re- intruder rules, then-, denotes the uniot), .. —r of
striction since due to Lemma 1, the transformation per- the step relations-, with L € £. With —7. we denote the
formed by a protocol rule and its normalized variant co- reflexive and transitive closure of .
incide. Condition 2. guarantees that when wsthan out- The set of intruder rules we consider in this paper is
put is produced, all variables if; are “bounded” already.  depicted in Table 1. In this table, b denote (arbitrary)
Otherwise, the output of a protocol rule would be arbitrary, messagesk’ is an element ofC, and E is a finite set of
since unbounded variables could be mapped to any mesmessages (considered as multiset).
sage. Condition 3. guarantees that the bounding of vari- We emphasize that the notion iftruder rule will al-
ables is deterministic. For example, if the protocol rule ways refer to the rules listed in Table 1. For now, there
XOR(z,y) = (z,y) does not have predecessors accord- may be any set of guess rules of the kind shown in Table 1,
ing to <z, and thusx andy are not bounded, then this later we will consider certain classes of guess rules, namely

rule violates Condition 3: On receivin@R(a, b, ¢), for in- oracle rules.
stance, different substitutions are possible, including— The intruder rules are denoted as shown in Table 1.
XOR(a,b),y — c}, {zx — XOR(b,d),y — XOR(a,c,d)}, With L,q4(a) and L,.(a) we denote (finite or infinite) sets

etc. In other words, a principal must guess a substitution. of guess rules. For uniformity, we therefore consider
With Condition 3. we avoid this. We pointoutthatin [8]n0 L, ((a,b)),. .., L({a};) and L.((a,b)),. .., L.({a}})
restrictions on protocol rules are put, and thus, also theseas singletons. Note that, even if there are no guess rules,

rather unrealistic rules are allowed. the number of decomposition and composition rules is al-
The protocol informally described in Sec- ways infinite since there are infinitely many messagés
tion 2 can formally be stated as follows:A = We further group the intruder rules as follows. In the

{0,a,b,na,nb, ka, kb, I, ki, ki'}; agent a plays role following, ¢ ranges over all messages.
A and agenb role B; we defineZ = {(a, 1), (a,2), (b, 1)}
and <z:= {((a,1), (a,2))}; the initial knowledge of the ® Lq(t) := Lp1(t) U Lp2(t) U Laq(t) U Lsa(t) for every

intruder isE = {0, 1, ki, ki', ka, kb}, and the protocol message. In case, for instance,;, (¢) is not defined,
rules are: i.e., the head symbol @fis not a pair, therL,; (t) =
(); analogously for the other rule sets,

(a,1): 0 = {(na,a)}%,

0,1):  {{zna,a)}e, = {(nb, XOR(Zpna, b)) }2, o Lq:=U, La(t), Le := U, Le(t),

a,?2) {{(znp, XOR(na, b))} = T M2

(@:2) {{wn (na. D)) Yke (i ® Log :=U; Loa(t), Loc := Uy Loc(1),
3.3. The Intruder Model and Attacks o Lo(t) := Loe(t) U Log(t), Lo := Loc U Log,
Our intruder model follows the Dolev-Yao intruder [9].  ® La(t) isthe setofall decompositiarrules in Table 1,
That is, the intruder has complete control over the network i.e., allt-rule in the left column of the table,

and he can derive new messages from his initial knowledge o Loi=U, La(t)
and the messages received from honest principals during 4 ¢ ~a\th

protocol runs. To derive a new message, the intruder can o £ (¢) is the set of all compositiofirules in Table 1.
compose and decompose, encrypt and decrypt messages,

in case he knows the key. What distinguishes the intruder o L. := ], L.(t).



o L:=L4UL,. A derivation D of lengthn, n > 0, is a se-
Note thatC denotes the (infinite) set of all intruder rules we 44€N¢€ of steps of the forE —yp, E,t1 —i,

consider here. The set of messages the intruder can deriv%' ~L, Bti,in \.N'th a finite set of messages
from a (finite) set?? of messages is: , messagesy,...,t,, intruder rulesl; € L, such
that E,tl,...,ti,1 —L,; E,tl,..‘,ti and ¢; ¢ E U
forge(E) := U{E’ | E—% E'}. {t1,...,t;_1}, for everyi € {1,...,n}. The ruleL; is
o ] ) o _called theith rulein D and the steg¥, ¢1,...,ti—1 —p,
From the definition of intruder rules in Table 1 it immedi- E,t1, ...t is called theith stepin D. We write L € D to
ately follows: say thatL € {Li,...,L,}. If Sis a set of intruder rules,
Lemma?2 If E is a normalized set of messages, then then we writeS ¢ D to sayS N {L1,...,L,} = 0. The
forge(E) is normalized. message, is called thegoal of D.

We also needvell formedderivations which are deriva-

The lemma says that if an intruder only sees normalized . ; .
. tions where every message generated by an intermediate
messages, then he only creates normalized messages. In

truders should be modeled in such a way that they Can_s_tep either occurs in the goal or in the initial set of mes-
not distinguish between equivalent messages since if one 29€s:
thinks of, for instance, the messager(a, a, b), which is
equivalent ta, as a bit string obtained by “XORing” the bit
stringsa, a, andb, then this bit string is simply. There-
fore, in what follows we always assume that the intruder’s
knowledge consists of a set of normalized messages, wherd”
every single normalized message in this set can be seen as ] » )
a representative of its equivalence class. We can now deflne oracle rules. Condition 1. in the fo!low-
We are now prepared to define attacks. In an attack oning definition will _al_low us to_ _bound the length of deriva-
a protocol P, the intruder (nondeterministically) chooses tons. The remaining conditions are later used to bound
some execution order faP and then tries to produce in- the size of the sub_stltutmm of an attack. T_hey allow to
put messages for the protocol rules. These input message€Place a subterm in o, composed by the intruder, by a
are derived from the intruder’s initial knowledge and the Smaller message.
output messages produced by executing the protocol rules.
The aim of the intruder is to derive the messageet. If Definition 4 LetL, = L,.U Lo be a (finite or infinite) set
different sessions of a protocol running interleaved shall of guess rules, wheré,. and L,, denote disjoint sets of
be analysed, then these sessions must be encoded into tH@mposition and decomposition guess rules, respectively.
protocol P. This is the standard approach when protocols Then,L, is aset of oracle rulegw.r.t. L. U L4 as defined
are analysed w.r.t. a bounded number of sessions, see, foabove) iff:
instance, [20].

Definition 3 LetD = E —, ... —, E’' be aderiva-
tion with goalt. Then,D is well formedif for everyL € D
and¢’ we have thatl, € £.(t) impliest’ € S(E,t), and
€ L4(t') impliest’ € S(F).

1. For every messageif t € forge(E), then there exists

Definition2 Let P = ({R; = S} | j € T}, <z,5) a well formed derivation fronf with goalt.

be a protocol. Then arattackon P is a tuple (w,0)

where 7 is an execution ordering o and ¢ is a nor- 2. fF —p o F,tandF,t —p ) F,t,a, then there

malized ground substitution of the variables occurring in exists a derivationD from F with goal a such that

P such that'R;0' € forge("So, S0, ..., Si_10") for ev- Ly(t) & D.

eryi € {1,...,k} wherek is the size ofr, R; :=

R;_l(i), and S; = S;_l(i), and such thatsecret € 3. For every non atomic messagethere exists a nor-

forge("So, S1, ..., Spo ). malized messag€(u) with |e(u)| < |"u'| such that:
For every finite sett” of messages with € F, if

Due to Lemma 1, it does not matter whether, in the F\u — .. () F,i.e.ucanbecomposed frof\ u in

above definition,s is normalized or not. Also note
that Lemma 2 implies: forge("So, Si0, ..., Si_10")' =
forge(rSO,Slo,...,Si,loj).

The decision problem we are interested in is the follow-
ing set of protocols:

one step, thed™ — () F,t implies't[u «— €(u)]' €
forge("Flu « €e(u)]") ande(u) € forge(F) for every
message.

4 Main Theorem and the NP Decision Algo-

INSECURE:= {P | there exists an attack dp}. fithm

3.4. Oracle Rules

We now state the main theorem of this paper. In Section 7,
Oracle rules are guess rules which satisfy certain condi-this theorem will allow us to show thatisECUREis in NP
tions. To define these rules, we first need some new no-in presence of an intruder that uses XOR rules and prefix
tions. rules, respectively.



Decomposition rules Composition rules
Pair | L,1({(a,b)): {a,b) —a L.({a,b)): a,b— {a,b)
Lyo({a.b)):  (a,b) — b
Asymmetric | Loa({a}y): {a}f. . K1 —a L.({a}y): a, K — {a}}
Symmetric| Lgq({a};): {a};,b—a L.({a};): a,b—{a};
Guess Log(a): E—a Lo(a): E—a
with a subterm ofE and E normalized.| with £, a normalized and such that every proper subterma of
is a subterm of2.

Table 1. Intruder Rules

Theorem 1 Let L, be a set of oracle rules. IF — ¢t €7
L, can be checked in polynomial time |iy, ¢| for every
finite setE’ of messages and messagéhenI NSECUREIS
in NP.

The NP decision procedure is given in Figure 1. Clearly,

6. Linear Bounds on Attacks

We now show that the size of an attack can be bounded as
required in step 2. in Figure 1.
In what follows, we assume thdt, is a set of oracle

the procedure is sound. To show completeness, one has téules. If¢ € forge(E), we denote byD,(E) a well formed

prove that if there exists an atta¢k, o) on P, then there
is one with the size of bounded as in step 2. of the proce-

derivation fromE with goal ¢t (chosen arbitrarily among
the possible ones). Note that there always exists such a

dure. This bound is established in Section 6, Theorem 3. Inderivation since the definition of oracle rules ensures that a
Section 5, we show that step 3. and 4. in the procedure caryvell formed derivation exists iff a derivation exists.

be carried out in polynomial time. More precisely, we show
that the following problem, henceforth calletbrivation
problem can be solved in polynomial time in the (DAG)
size of the input:

DERIVE := {(E,t) | t € forge(E)}

where E is a finite set of messages ands a message,
both given as DAGs (see Theorem 2). In the procedére,
is the set {S;o | j < i} U{So}' for somei € {1,...k}
andt is "R;c' or secret. From Corollary 1, it follows that
|E,t| < 5-]P|, and thus, the procedure depicted in Figure 1
is in fact an NP decision procedure.

5 Deciding the Derivation Problem

We show:

Theorem 2 DERIVE € PTIME given thatF — t €’ L,
can be checked in polynomial time|ifi, ¢| for every finite
setF of messages and message

To show this theorem, let,(E) be the set consisting of the
messages itX and the messages e S(E,t) that can be
derived fromFE in one step. Using that the number of terms
t' € S(E,t) is linear in|E,t| and thatE — t €° L, can

be checked in polynomial time it is easy to see Hhat)

can be computed in polynomial time i, ¢|. Now, if

t € forge(E), then Definition 4 guarantees that there exists
a well formed derivatioD = E —, E,t; — ...
E ty,..,t., with t, = t. In particular,t; € Sub(E,t)
for everyi € {1,...,k}. By definition of derivations, all
t; are different. It followsr < |t, E|. Moreover, with
d%(E) := E andd'"(E) := d,(d\(E)) we have that
t € dP'(E)iff t € forge(E). Sinced”!(E) can be
computed in polynomial time, Theorem 2 follows.

—L,

Definition 5 Let P {R; = Si,i € I},<z,5)
be a protocol. An attackr, o) is normal if |o]

Yrev(pylo(x)| is minimal.

Clearly, if there is an attack, there is a normal attack. Note,
however, normal attacks are not necessarily uniquely deter-
mined.

In Lemma 8 we prove, using Lemma 3 to 7, that normal
attacks can always be constructed by linking subterms that
are initially occurring in the problem specification. This
will allow us to bound the size of attacks as desired (Theo-
rem 3 and Corollary 1).

Let P = ({R; = S,,j5 € I},<z,S) be a proto-
col such that(w, o) is an attack onP. Let k be the size
of 7. We defineR; = R;_l(i) and S; = 5;_1(i) for
i € {1,...,k}. Recall thatS(P) is the set of subterms
of P, A C §(P), andV = V(S(P)) is the set of variables
occurring in the protocol.

Definition 6 Lett andt’ be two terms and a ground sub-
stitution. Thent is a #-matchof ¢/, denoted: Ty ¢/, if ¢
andt’ are standardy is not a variable, andtd' = ¢'.

Lemma3 If (r,0) is a normal attack, then for all €
{1,...,k}, z € V(R;), and standard subtermsof o (x),
there exists < i such thats € S("R;0") or there exists
t e S(P)witht C, s.

The proof of the following lemmais trivial.
Lemma 4 For every normalized finite séf of messages,

message, andt-rule L, if E —; FE,t then all proper
subterms of are subterms of’.



4. Checksecret € forge("{S;jo |7 <k+1}U{So}).

Input: protocolP = ({R, = S,, t € T}, <z, S0) Withn = |P|,V = Var(P).
1. Guess an execution ordefor P. Letk be the size ofr. LetR; = R/ _,; andS; = 57 _, , fori € {1,...

2. Guess a normalized ground substituttosuch thato (z)| < 4nforallz € V.

3. Check thatR;o' € forge("{S;o | j < i} U{So}") foreveryi € {1,..., k}.

5. If each check is successful, then answer “yes”, and otherwise, “no”.

K}

Figure 1. NP Decision Procedure for Insecurity

Proof. ForL € L,q U L, use the definition of decompo-
sition and composition guess rules. Hore Ly U L, the
statement is obvious. O

The next lemma states that if a termis a subterm of a
termt¢ and this term is derived from a sétbutt’ is not a
subterm ofE, thent’ can be derived fron&’ and the last
step of the derivation is a composition rule.

Lemma5 Assumethat € S(¢t)\S(E) andt € forge(E),
thent’ € forge(E) and there exists a (well formed) deriva-
tion from E with goalt’ ending with a composition rule.

Proof. LetD = Ey —p, F1--+- —, E, be aderivation
of t from Ey = E. Then, there exists a least? 0 such
thatt’ € S(E;) sincet’ is a subterm ofF,,. Assume that
L; is ans-rule for somes. Then,t’ is a subterm of. If ¢’ is
a proper subterm aof, Lemma 4 implies that is a subterm
of E;_1 in contradiction to the minimality of. Thus,t’ =
s and thereforet’ € forge(E). By the definition of oracle
rules, there exists a well formed derivatién of ¢'. If

The main lemma, which shows that a substitution of a nor-
mal attack can be build up from subterms of terms occur-
ring in P, is proved next.

Lemma 8 Given a normal attackr, o), for all variables
x and for all factorsv,, of o(x), there exist$ € S(P) such
thatt C, v,.

Proof. Assume that (*): For every, t C, v, implies

t ¢ S(P). We will lead this to a contradiction. Since
A C S§(P), we havev, ¢ A, and sincev,, is a factor of
o(x), v, is standard. By Lemma 3 and (*), there exists
j such thatv, € S("R;o"). Let N, be minimal among
the possiblej. If v, € S("S;0') for somei, (*) implies
that there existy € V(S;) with v, € S(o(y)). Then,
by Definition 1, (2) there exist®;/,:’ < 7 such thaty e
V(R;). Thus, Lemma 3 and (*) imply that there exigts

i with v, € S("R;0"). Note also thav, ¢ S(Sp) since
otherwisev, € S(P). Now, the minimality of NV, yields

i > N,. Summarizing, we havev, is not a subterm of

the last step in this derivation is a decomposition rule, then Eo = "So0, ..., Sy, —10, andv, is a subterm of Ry, o".

this impliest’ € S(F) in contradiction to the assumption.
Thus, the last step dP’ is a composition rule. O

Thus, by Lemma 5y, € forge(Fyp).

Let us define the replacemefit= [v, «— ¢(v,)] where

The subsequent lemma will allow us to replace certain sub-¢(v.) is defined as in Definition 4. Sinde, o) is an attack,
terms occurring in a substitution of an attack by smaller for all j, we have:

terms. Note that from the assumption made in this lemma

it follows that s can be derived fronE such that the last
rule is a composition rule. This allows to replacdy a
smaller term since when deriving decomposing will
not be necessary.

Lemma6 Let £ and F' be two sets of normalized mes-

sages such thal € F U F. Lett € forge(E,F) and

s € forge(E) non atomic such that ¢ S(E). Finally, let

d be the replacemerit «— ¢(s)], wheree(s) is defined as
in Definition 4. Then'ts' € forge("ES, F§').

The next lemma will be used to remove one application of

the normalization function.

Lemma 7 Let o be a normalized ground substitutiof;
a set of normalized terms;, a normalized standard non
atomic term, and the replacemenits < ¢(s)]. Leto’ =
od. If there is no standard subtertrof E such that C, s,
then"Eo’' ="Eg's".

"Rjo' € forge("Spo,...,Sj_10")
We distinguish two cases:

e Assume j < N,. Then, by minimality of
N., v, is neither a subterm ofR;o' nor a sub-
term of "Spo,...,S;_10'. Hence, with'R;c' €
forge("Soo, ..., Sj_10") it follows "R;jo's' €
forge("Soa's,...,"S; 108 ").

e Assumej > N,. Witht = '—Rja—', s = v, E =
Eo, andF = 'Sy o,...,S;_10', Lemma 6 implies
"R;o's" € forge("Spa's,..."S;_10'8).

Thus, "R;c's" € forge("Syc's,..." S;_15'3") in both
cases. Now, withEl = {Sy,...,S;_1} andE = {R;},
respectively, (*) and Lemma 7 imply for ajt

"R;o"" € forge("Soo’, ..., Sj_10"")



wheres’ = gé. Hence(w, ¢’) is an attack. But since’ is
obtained fromo by replacingu,, by a strictly smaller mes-
sage, namely(v, ), we obtain|o’| < |o|, a contradiction
to the assumption thdtr, o) is a normal attack. O

We can now use this lemma to bound the size of every
o(x):

Theorem 3 For every protocolP, if (7, o) is a normal at-
tack onP, then|{o(z) |z € V}| < 4-|P|, where|P| is the
size ofP as defined in Section 3.2.

Proof. LetF = {s|3z € V, s € F(o(x))} For everys
in the setF’ we introduce a new variable, and we define
a substitutiors’ such that’(xs) = s (and other variables
are mapped to themselves). D&t= {z;}scr. The cardi-
nality Card()’) of V' can be bounded as follows:

Claim. Card(V’) < |P|

Proof of the claim.We define a functiorf : V' — S(P)
as follows. Due to Lemma 8, for evegye V', there exists
t, € S(P) such that, ¢ V and't, o' = o’(y). We define
f(ly) := t,. The functionf is injective sincet, = tg
implies'tso' = "tyo'. Thus,Card(V’) < |S(P)| = |P|,
which concludes the proof of the claim.

Let S F U{o(x)|z € V}. Foralxz € V
let o”(z) = "XOR(zg,,...,Ts, ) With {s1,...,8,} =
F(o(x)). Note that, since the's are normalized standard
messagess(z) = o'(o”(z)). Letd be the composition of
all replacement$s — 4], s € F (replacing larger terms
before), and lety := (to”)é. Itis not hard to see that
tplo’ ="to .

We are now going to bounid|. Given a set of normal-
ized messages, let

Vz ={z € V|o(z) non standard and(x) ¢ Z},
Pz ={"ty'|t € S(P)and'tc' ¢ Z}.

We note thatZ C Z’' impliesVz C Vz; and Pz C Pz,
and thatVg = 0.

Claim. |SU Ps| < |V U Pyl.

Proof of the claim.We construct a sequence of séts=

Z1 D Zy DD Ly = 0 with Zi+1 = Zl\vl where
v; € Z; is a maximal message i#f; (w.r.t. the subterm
ordering). Note that — 1 is the cardinality ofS and for
everyt € Z;11,v; ¢ F(t). Foreveryi € {1,...,n} we

prove

|Z,' UVz, UPZi,| < ‘Zi+1 UuVy . UPy

i1 i1 |
which concludes the proof of the claim. At stegither of

two cases may arise when removing- v; € Z; from Z;:

e There existst € V with v = o(z) non standard.
Then,

|Z,UVz, U Py,|
<|Z;\vU{z} UF(o(x))UVz U Pz,
< |Zi+1 U VZ71+1 U PZ71+1|

sincex ¢ Z;, UVy,x € Vy
Zi\U:ZiJrl.

and F(o(z)) C

i+17?

e v € I and there existse S(P) such that T, v. Let
t' ="ty'. We havet’o’ = "to' = v. Then,

|Z; U Vz, U PZ@| < |Zig1 U Vg
< | Zig1UVz

U{t/}UPZi|
U Py

i+1

i+1 i+1 ’

sinceo’(y) € Z;\ v = Z; 4, for everyy € V(') and
Py = PZI U {t/}.

i+1

This proves the claim. Using the claim and

[Pyl =]'S(P)e'| <IS(P)g| < |S(P)| +|V¢|, and
Vol = Vo"| < V| + V],
we obtain

Ho(z)|z € VI <[S] < [SU Ps| < [V U Py
<2V +|S(P)|+ V| <4-|P]

From this, we obtain:

Corollary 1 For every protocol P and normal attack
(m,0) on P we have R;0, Syo,...,S;—10| <5-|P|and

|secret, Soo, ..., Sko| < 5-|P|, foreveryi € {1,...,k}

with S; and R; as defined above.

7. Extending the Dolev-Yao Intruder by Dif-
ferent Oracle Rules

We extend the ability of the standard Dolev-Yao intruder
beyond the perfect encryption hypothesis by considering
two specific sets of oracle rules. The first set are the XOR
rules which allow the intruder to make use of the XOR op-

erator. We then consider, what we call, prefix rules which
allow the intruder to exploit certain properties of encryp-

tion based on block ciphers.

7.1. XOR Rules

The XOR rules allow the intruder to sum several messages
with the XOR operator. The result of this sum is being nor-
malized.

Definition 7 We definel,, = L. U L,q4 to be the set of
XOR ruleswhere

e L, is the set of rules of the forffty,...,t,} —
'XOR(t1,...,t,)" with {t;,...,t,} a non-empty fi-
nite multiset of normalized messages such that
'XOR(t1,...,t,)' is non-standard, and

L,q is the set of rules of the forrity,...,t,} —
'XOR(t1,...,t,)" with {t1,...,t,} a non-empty fi-
nite multiset of normalized messages such that
'XOR(ty,...,t,)"is standard.

We call the intruder using the rulds, U L. U L; the XOR
intruder.



Note that the rules iil4 are in fact decomposition guess Theorem 4 INSECUREW.I.t. the XOR intruder is an NP-

rules since if'XOR(t,...,t,)" is standard, it is a fac- complete problem.
tor of some of the terms,,...,¢,. Note that we use
that ¢1,...,t, are normalized. Also, the rules if,. Together with Proposition 3, Theorem 2 implies:

are composition guess rules since proper subterms of

"XOR(t1, ..., t,) are subterms of factors of this term, and Theorem 5 For the XOR intruder, the proble®ERIVE
thus, subterms of;, . .., ¢,. Again, we use that,, ..., t, is in PTIME.

are normalized.

We also note that the intruder is not more powerful if In [8]
we allow him to derive non-normalized messages. More ’
precisely, assume thdt. is the set of rules of the form
{t1,...,tn} — swith s =xor XOR(t1,...,t,) (NOt nec- ]
essarily normalized). Leforge, (E) denote the set of mes-  /-2- Prefix Rules
sages the intruder can derive frdihwith the rulesL., Ly,
andL.. Then, it easily follows by induction on the length  As another instance of oracles rules, we consider what
of derivations: we call prefix rules. These rules allow the intruder to
exploit certain properties of block encryption algorithms,
based for example on cipher block chaining (CBC). Using
Theorem 1, again we can show thatSECUREis an NP-
complete problem. In [5] an example that illustrates the

Therefore, we can restrict the intruder to work only on nor- additional power of the intruder is provided.

malized messages and to produce only normalized mes- Throughout this section, we assume that terms do not
sages. contain thexoRr operator and that the normalization func-

Before showing that the XOR rules are oracle rules, we tion "' is the identity function. Itis easy to verify that The-
illustrate that the XOR intruder can perform the attack in- ©€m 1 also holds in this simplified setting.
formally described in Section 2.

Formally, the protocol underlying the attack is de- Definition 8 We defineL, = L,. U L,4 to be the set of
scribed as follows: The set of atoms igl = prefix ruleswhere L,; = @ and L. consists of intruder
{na,a,I,b, ka, kb, ki,ki~1,0,secret} where in Section 2 rules of the form
the secret wad/z. The initial intruder knowledge i§, =
{0, 1, ki, ki’, ka, kb}. The protocol rules are depicted at {((. . (M, M), M) ,...) , My) Y5 —r,. {M}5
the top of Figure 2. We havé = {(a,1),(a,2),(b,1)}
and<z:= {((a, 1), (a,2))}. for any normalized messagés M, My, ..., M,, (n > 1).

When using a perfect encryption model, there is no at- We call the intruder using the rulé, U L. U Ly prefix
tack on this instance of the protocol since the intruder is intruder
not able to forggsecret, XOR(nal, I)},  without the ora-

this problem is calledyround reachability problem
and is shown to be in NP.

Proposition 1 For every message termand set of mes-
sagesE (both not necessarily normalized)e forge,(E)
implies't' € forge("E").

cle rules. . _ We can prove that thegerefix rules are oracle rules that
On the other hand, when using these ruleso) with  can be checked in polynomial time and then conclude that
the execution ordet = {(a,1) — 0, (b,1) — 1,(a,2) — INSECUREfor an intruder equipped with prefix rules is NP-

2} and the substitutioa with o(z,,,) = XOR(na, b, I) and complete by Theorem 1.
o(xsecret) = secret is an attack on this protocol. In fact, itis

easy to check the steps depicted at the bottom of Figure 2'Proposition 4 The setl,, of prefix rules is a set of oracle

Proposition 2 The setl, of XOR rules is a set of oracle rules.

rules.
Obviously, F — t € L, can be decided in polynomial

Also, we can show that XOR rules can be applied in poly- time in [E, ¢|. Also, analogously to the proof in [20] one
nomial time. can show thatNSeEcUREis NP-hard. Now, by Theorem 1,
it follows:
Proposition 3 Let L, be the set of XOR rules. Then, the
problem whethe? — t € L,(t), for agiven finite normal- ~ Theorem 6 INSECUREW.L.t. the prefix intruder is an NP-
ized setly of messages and a normalized mesgagan be complete problem.
decided in polynomial time with respect|i®, ¢|.
With Theorem 2 we obtain:
As an immediate consequence of Theorem 1 we obtain that
INseEcUREwWith XOR rules is in NP. NP-hardness can be Theorem 7 For the prefix intruder, the probleERIVE
obtained as in [20]. Altogether this yields: isin PTIME.



(a,1):
(a, 2) : {<xsecreta XOR(’I’LG, I)> ia
(b7 1) : {<Jjna7 a’> }Ilib

=
=

0 = {(na,a)}y;

{-Tsecret}ii
{(secret, XOR(Inaa b)> ia

{(xoR(na,b,I),a)}, € forge(0, 1, ki, ki, ka, kb, {(na,a)}}.);

{(secret, xOR(na, 1))}V, € forge(0, I, ki, ki’ ka, kb, {(na,a)}%.,"{(secret, XOR(XOR(na, b, I), b))

o )i

secret € forge(0, I, ki, ki', ka, kb, {(na,a)}},, "{ (secret, XOR(XOR(na, b, I),b))}} ', {secret}?,).

Figure 2. An attack on the modified NSL protocol

8. Conclusion

We have shown that when extending the standard Dolev-
Yao intruder by rules for XORing messages the protocol
insecurity problem for a finite number of sessions remains

(11]

(12]

NP-complete. This is the first tight complexity bound given [13]
for the insecurity problem without the perfect encryption

assumption. Here we have only considered insecurity as

failure of secrecy. However, we believe that our result [14]
holds also for other properties that can be reduced to reach-

ability problems in our model, such as authentification. Fu-

ture work includes applying our approach to different in- [15]

truder rules and to algebraic laws such as the ones relying

on RSA and Diffie-Hellman encryption techniques.
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