
An NP Decision Procedure for Protocol Insecurity with XOR∗

Yannick Chevalier†, Ralf Küsters‡, Michäel Rusinowitch†, and Mathieu Turuani†

† LORIA-INRIA-Université Henri Poincaŕe,
54506 Vandoeuvre-les-Nancy cedex, France

email:{chevalie,rusi,turuani}@loria.fr
‡ Department of Computer Science

Stanford University, Stanford CA 94305, USA
email: kuesters@theory.stanford.edu

Abstract

We provide a method for deciding the insecurity of cryp-
tographic protocols in presence of the standard Dolev-Yao
intruder (with a finite number of sessions) extended with
so-called oracle rules, i.e., deduction rules that satisfy cer-
tain conditions. As an instance of this general framework,
we obtain that protocol insecurity is in NP for an intruder
that can exploit the properties of the XOR operator. This
operator is frequently used in cryptographic protocols but
cannot be handled in most protocol models. An immedi-
ate consequence of our proof is that checking whether a
message can be derived by an intruder (using XOR) is in
P. We also apply our framework to an intruder that exploits
properties of certain encryption modes such as cipher block
chaining (CBC).

1. Introduction

Cryptographic protocols have been designed for han-
dling secure electronic communications. Verification tools
based on formal methods (e.g. model checking) have been
quite successful in discovering new flaws in well-known
security protocols [14, 18, 22, 3, 6].

While most formal analysis of security protocols ab-
stracts from low-level properties, i.e., certain algebraic
properties of encryption, such as the multiplicativity of
RSA or the properties induced by chaining methods for
block ciphers, many real attacks and protocol weaknesses
rely on these properties. A typical example was provided
by Ryan and Schneider [21] where they give a simple at-
tack on Bull’s recursive authentication protocol: the proto-
col is used to distribute a connected chain of keys linking
all the nodes from originator to the server, but if one key
is compromised the others can be compromised too thanks
to the property ofXOR. Conversely, ifXOR is considered

∗This work was partially supported by PROCOPE and IST AVISPA

as a free operator then, as shown by L. Paulson using the
Isabelle prover [19], the protocol is secure.

Recently, several procedures have been proposed to de-
cide insecurity of cryptographic protocols w.r.t. a finite
number of protocol sessions [2, 4, 11, 20, 17, 13]. More-
over, some special cases for an unbounded number of ses-
sions have been studied [9, 10, 7, 1]. All these results as-
sume encryption to be perfect (perfect encryption assump-
tion): One needs a decryption key to extract the plaintext
from the ciphertext, and also, a ciphertext can be generated
only with the appropriate key and message (no collision).
Only very few works on formal analysis have relaxed this
assumption. In [16, 12], unification algorithms are de-
signed for handling properties of Diffie-Hellman crypto-
graphic systems.

In this paper, we generalize the decidability result of
[20], stating that insecurity for finitely many protocol ses-
sions is in NP, to the case where messages may contain
the XOR operator and where the Dolev-Yao intruder is ex-
tended by the ability to compose messages with the XOR
operator. More precisely, we give a linear bound on the size
of messages exchanged in minimal attacks and present an
NP procedure for deciding insecurity with XOR. This ex-
tension is non-trivial due to the complex interaction of the
XOR properties and the standard Dolev-Yao intruder rules.
The technical problems raised by the equational laws are
somewhat related to those encountered in semantic unifi-
cation.

To prove our result, we have extended the Dolev-Yao in-
truder with so-called oracle rules, i.e., deduction rules that
satisfy certain conditions. In this general framework we
show that insecurity is decidable in NP. Now, the results
for XOR are obtained by proving that the XOR rules sat-
isfy the conditions on oracle rules.

Our framework is general enough to also handle other
algebraic properties. More specifically, we show that the
Dolev-Yao intruder equipped with the ability to exploit pre-
fix properties of encryption algorithms based on cipher-
block-chaining (CBC) falls into our framework as well.

1

To the best of our knowledge, the results presented here
are the first, besides the ones by Comon and Shmatikov [8]
also presented in these proceedings, that go beyond the per-
fect encryption assumption. We briefly compare our work
with [8]: As an immediate consequence of our proof, the
problem of checking whether a message can be derived by
an intruder in presence of the XOR operator — this prob-
lem is calledground reachabilityin [8] — is in PTIME. In
[8], this problem is shown to be in NP both for the case
of XOR and abelian groups. As for the general insecurity
problem, we show NP-completeness based on a theorem
that ensures the existence of attacks of linear size. Comon
and Shmatikov present a decision procedure with a higher
complexity. This procedure is based on constraint solving
techniques. However, they consider a more general class
of protocol rules. In Section 3.2, we argue that these more
general rules are rather unrealistic. Finally, we believe that
our framework is quite general in the sense that different
intruders with different deduction capabilities can be cap-
tured such as those for exploiting properties of encryption
based on block ciphers (see Section 7).

Structure of the paper.In the following section, we pro-
vide an example illustrating the role of XOR in attacks.
We then, in Section 3, introduce our protocol and intruder
model. In particular, this section contains the definition
of the oracle rules. The decidability result for the general
framework is presented in Section 4, including the descrip-
tion of the NP decision algorithm. Proof sketches are pro-
vided in Section 5 and 6. Then, in Section 7, XOR rules
and prefix rules are introduced and it is shown that these
rules are oracle rules, which implies the mentioned com-
plexity results. The missing proofs and an application of
prefix rules can be found in [5].

2. A Motivating Example

We illustrate that when taking the algebraic properties of
XOR into account, new attacks can occur. As an example,
we use a variant of the Needham-Schroeder-Lowe Proto-
col [15], i.e., the public-key Needham-Schroeder Procotol
with Lowe’s fix, where in some place, instead of concate-
nation XOR is used. Using common notation, the protocol
is given as follows:

1. A→ B : {NA, A}pKB

2. B → A : {NB , XOR(NA, B)}pKA

3. A→ B : {NB}pKB

If XOR is interpreted as free symbol, such as pairing, then
according to [15] this protocol is secure. In particular, the
intruder is not able to get hold ofNB . However, if the al-
gebraic properties of XOR are taken into account, the fol-
lowing attack is possible, which is a variant of the original
attack on the Needham-Schroeder Protocol and which al-
lows the intruderI to obtainNB . In this attack, two ses-
sions run interleaved where the steps of the second session

are marked with′. In the first session,A talks to the in-
truderI, and in the second sessionI, purporting to beA,
talks toB. We emphasize that in this attackI generates
new messages by applying the XOR operator and uses that
XOR(NA, B, I, B) =XOR XOR(NA, I).

1. A→ I : {NA, A}pKI

1’. I(A)→ B : {XOR(NA, B, I), A}pKB

2’. B → I(A) : {NB , XOR(NA, B, I, B)}pKA

2. I → A : {NB , XOR(NA, B, I, B)}pKA

3. A→ I : {NB}pKI

3. The Protocol and Intruder Model

The protocol and intruder model we describe here extend
standard models for the (automatic) analysis of security
protocols [2, 10, 20, 17] in two respects. First, messages
can be build using the XOR operator, which is not allowed
in most other protocol models. Second, in addition to the
standard Dolev-Yao rewrite rules, the intruder is equipped
with the mentioned oracle rules. In what follows, we pro-
vide a formal definition of our model by defining terms,
messages, protocols, the intruder, and attacks.

3.1. Terms and Messages

First, recall that a finite multiset over a setS is a function
M from S to IN with finite domain. We use the common
set notation to define multisets. For example,{a, a, a, b}
denotes the multisetM with M(a) = 3, M(b) = 1, and
M(x) = 0 for everyx /∈ {a, b}.

Terms are defined according to the following grammar:

term ::= A |V | 〈term, term〉
| {term}sterm | {term}

p
K | XOR(M)

whereA is a finite set of constants (atomic messages), con-
taining principal names, nonces, keys, and the constants0
andsecret; K is a subset ofA denoting the set of public
and private keys;V is a finite set of variables; andM is a
non-empty finite multiset of terms. We assume that there
is a bijection·−1 onK which maps every public (private)
keyk to its corresponding private (public) keyk−1. The bi-
nary symbol〈·, ·〉 is calledpairing, the binary symbol{·}s·
is calledsymmetric encryption, the binary symbol{·}p· is
public key encryption. Note that a symmetric key can be
any term and that for public key encryption only atomic
keys (namely, public and private keys fromK) can be used.
A term with headXOR is callednon standardand otherwise
it is calledstandard. Because of the algebraic properties of
XOR (see below), it is convenient to define theXOR opera-
tor as done above, instead of defining it as a binary opera-
tor. We abbreviateXOR({t1, . . . , tn}) by XOR(t1, . . . , tn).

Variables are denoted byx, y, terms are denoted bys,
t, u, v, and finite sets of terms are writtenE,F, ..., and
decorations thereof, respectively. We abbreviateE ∪ F by
E,F , the unionE ∪{t} by E, t, andE \ {t} by E \ t. The
same abbreviations are used for multisets.

2

For a termt and a set of termsE, V(t) andV(E) denote
the set of variables occurring int andE, respectively.

A ground term(also calledmessage) is a term without
variables. A(ground) substitutionis a mapping fromV to
the set of (ground) terms. The application of a substitution
σ to a termt (a set of termsE) is written tσ (Eσ), and is
defined as usual.

Given two termsu, v, the replacementof u by v, de-
noted by[u ← v], maps every termt to the termt[u ← v]
which is obtained by replacing all occurrences ofu in t by
v. Note that the result of such a replacement is uniquely de-
termined. We can compose a substitutionσ with a replace-
mentδ: the substitutionσδ maps everyx ∈ V to σ(x)δ.

The multiset offactors of a termt, denoted byF(t),
is recursively defined: Ift = XOR(M), thenF(t) =
dt′∈MF(t′), and otherwise, ift is standard,F(t) = {t},
whered is the union of multisets. Note thatF(t) only
contains standard terms. For example, witha, b, c ∈ A,
F(XOR(c, 〈XOR(a, b), c〉 , c)) = {c, c, 〈XOR(a, b), c〉}.

The set ofsubtermsof a termt, denoted byS(t), is de-
fined as follows:

• If t ∈ A or t ∈ V, thenS(t) = {t}.

• If t = 〈u, v〉, {u}sv, or{u}pv, thenS(t) = {t}∪S(u)∪
S(v).

• If t is non standard, thenS(t) = {t} ∪
⋃

u∈F(t) S(u).

We defineS(E) =
⋃

t∈E S(t). Note thatXOR(a, b) is not
a subterm ofXOR(XOR(a, b), c).

We define the size of a term and a set of terms basi-
cally as the size of the representation as a DAG. That is,
the(DAG) size|t| (|E|) of a termt (a set of termsE) is the
cardinality of the setS(t) (S(E)). Note that| · | applied to
a set of terms will always denote the DAG size of the set
rather than its cardinality.

The XOR operator is considered to be commutative, as-
sociative, nilpotent, and0 is the unit element. According to
these properties, the normal form of a term is defined as the
result of thenormalization functionpq : term → term.
Before providing the formal definition of this function, we
illustrate it by some examples: Ifa, b, c, d ∈ A, then
-pXOR(XOR(a, b, d), XOR(c, d))q=XOR(a, b, c)
-p〈XOR(0, a, a, b, c), XOR(a, XOR(a, c))〉q=〈XOR(b, c), c〉
-pXOR(a, 〈XOR(b), a〉 , c)q=XOR(a, 〈b, a〉 , c).
However,pXOR(〈a, b〉 , 〈a, c〉)q 6= 〈0, XOR(b, c)〉.

Formally, the normalization function is recursively de-
fined as follows:

• For an atom or a variablea, paq := a,

• For termsu andv, p〈u, v〉q :=
〈
puq, pvq

〉
, p{u}svq =

{puq}spvq, andp{u}pvq = {puq}pv.

• For a non-standard termt, defineM to be the multiset
of factors oft in normalized form, i.e.,

M(t′) :=

 ∑
t′′,pt′′q=t′

F(t)(t′′)

 mod2

for every termt′ 6= 0, andM(0) := 0. (Recall that
F(t) is a multiset.) Now, ifM(t′) = 0 for everyt′,
thenptq := 0. If M(t′) 6= 0 for exactly onet′, then
ptq = t′. Otherwise,ptq := XOR(M).

The normalization function extends to sets, multisets of
terms, and substitutions in the obvious way. A termt is
normalizedif ptq = t. In the same way normalized sets,
multisets of terms, and substitutions are defined. Two terms
t andt′ areequivalent(moduloXOR) if ptq = pt′q. In this
case, we writet =XOR t′.

One easily shows:

Lemma 1 For everyn ≥ 0, termt, and substitutionσ:

1. |ptq| ≤ |t|, and

2. ptσq = pptqσq = ptpσqq = pptqpσqq.

We finally remark:

Remark 1 For every normalized termt with |t| ≤ n, the
number of arguments ofXOR operators occurring int is
bounded byn. Therefore, representingt (as a DAG) needs
space polynomially bounded inn.

3.2. Protocols

The following definition is explained below.

Definition 1 A protocol ruleis of the formR ⇒ S where
R andS are terms.

A protocolP is a tuple({Ri ⇒ Si, i ∈ I}, <I , E)
whereE is a finite normalized set of messages with0 ∈ E,
the initial intruder knowledge, I is a finite (index) set,<I
is a partial ordering onI, andRi ⇒ Si, for everyi ∈ I,
is a protocol rule such that

1. the termsRi andSi are normalized;

2. for all x ∈ V(Si), there existsj ≤I i such thatx ∈
V(Rj);

3. for every subtermXOR(t1, . . . , tn) of Ri, there exists
k ∈ {1, . . . , n} such thatV(tl) ⊆ ∪j<IiV(Rj) for
everyl ∈ {1, . . . , n} \ {k}. (Note that, sinceRi is
normalized,t1, . . . , tn are standard terms.)

A bijective mappingπ : I ′ → {1, . . . , p} is calledexecu-
tion orderingfor P if I ′ ⊆ I, p is the cardinality ofI ′ and
for all i, j we have that ifi <I j andπ(j) is defined, then
π(i) is defined andπ(i) < π(j). We define thesizeof π to
bep.

Given a protocolP , in the following we will assume thatA
is the set of constants occurring inP . We defineS(P) :=
E ∪

⋃
i∈I(Ri ∪ Si)) to be theset of subterms ofP , |P | :=

|S(P)| to be the(DAG) size ofP andV := V(P) to be the
set of variables occurring inP .

Intuitively, when executing a ruleRi ⇒ Si and on re-
ceiving a (normalized) messagem in a protocol run, it is

3

first checked whetherm andRi match, i.e., whether there
exists a ground substitutionσ such thatm =XOR Riσ.
If so, pSiσq is returned as output. We always assume that
the messages exchanged between principals (and the in-
truder) are normalized — therefore,m is assumed to be
normalized and the output of the above rule is notSiσ but
pSiσq. This is because principals and the intruder cannot
distinguish between equivalent terms, and therefore, they
may only work on normalized terms (representing the cor-
responding equivalence class of terms). Finally, we note
that since the different protocol rules may share variables,
some of the variables inRi and Si may be bounded al-
ready by substitutions obtained from applications of pre-
vious protocol rules. We are not actually interested in a
normal execution of a protocol but rather in attacks on a
protocol. This is the reason why the definition of a pro-
tocol contains the initial intruder knowledge. Attacks are
formally defined in Section 3.3.

Condition 1. , in the above definition is not a real re-
striction since due to Lemma 1, the transformation per-
formed by a protocol rule and its normalized variant co-
incide. Condition 2. guarantees that when withSi an out-
put is produced, all variables inSi are “bounded” already.
Otherwise, the output of a protocol rule would be arbitrary,
since unbounded variables could be mapped to any mes-
sage. Condition 3. guarantees that the bounding of vari-
ables is deterministic. For example, if the protocol rule
XOR(x, y) ⇒ 〈x, y〉 does not have predecessors accord-
ing to <I , and thus,x andy are not bounded, then this
rule violates Condition 3: On receivingXOR(a, b, c), for in-
stance, different substitutions are possible, including{x 7→
XOR(a, b), y 7→ c}, {x 7→ XOR(b, d), y 7→ XOR(a, c, d)},
etc. In other words, a principal must guess a substitution.
With Condition 3. we avoid this. We point out that in [8] no
restrictions on protocol rules are put, and thus, also these
rather unrealistic rules are allowed.

The protocol informally described in Sec-
tion 2 can formally be stated as follows:A =
{0, a, b, na, nb, ka, kb, I, ki, ki′}; agent a plays role
A and agentb roleB; we defineI = {(a, 1), (a, 2), (b, 1)}
and<I := {((a, 1), (a, 2))}; the initial knowledge of the
intruder isE = {0, I, ki, ki′, ka, kb}, and the protocol
rules are:

(a, 1) : 0 ⇒ {〈na, a〉}pkb

(b, 1) : {〈xna, a〉}pkb ⇒{〈nb, XOR(xna, b)〉}pka

(a, 2) :{〈xnb, XOR(na, b)〉}pka⇒ {xnb}pkb

3.3. The Intruder Model and Attacks

Our intruder model follows the Dolev-Yao intruder [9].
That is, the intruder has complete control over the network
and he can derive new messages from his initial knowledge
and the messages received from honest principals during
protocol runs. To derive a new message, the intruder can
compose and decompose, encrypt and decrypt messages,
in case he knows the key. What distinguishes the intruder

we consider here from the standard Dolev-Yao intruder, is
that we will equip the intruder with guess rules, which pro-
vide him with additional capabilities of deriving messages.
In Section 3.4, we consider classes of guess rules with cer-
tain properties, so-called oracle rules. As mentioned, in
Section 7 we will look at two different instances of these
oracle rules, namely XOR and prefix rules.

The intruder derives new messages from a given (finite)
set of message by applying intruder rules. Anintruder rule
(or t-rule) L is of the formM → t, whereM is a finite
multiset of messages andt is a message. Given a finite set
E of messages, the ruleL can be appliedto E if M is a
subset ofE, in the sense that ifM(t′) 6= 0, thent′ ∈ E for
every messaget′. We define thestep relation→L induced
by L as a binary relation on (finite) sets of messages. For
every finite set of messagesE we haveE →L E, t (recall
that E, t stands forE ∪ {t}) if L is a t-rule andL can
be applied toE. If L denotes a (finite or infinite) set of
intruder rules, then→L denotes the union

⋃
L∈L →L of

the step relations→L with L ∈ L. With→∗
L we denote the

reflexive and transitive closure of→L.
The set of intruder rules we consider in this paper is

depicted in Table 1. In this table,a, b denote (arbitrary)
messages,K is an element ofK, andE is a finite set of
messages (considered as multiset).

We emphasize that the notion ofintruder rule will al-
ways refer to the rules listed in Table 1. For now, there
may be any set of guess rules of the kind shown in Table 1,
later we will consider certain classes of guess rules, namely
oracle rules.

The intruder rules are denoted as shown in Table 1.
With Lod(a) andLoc(a) we denote (finite or infinite) sets
of guess rules. For uniformity, we therefore consider
Lp1(〈a, b〉), . . . , Lsd({a}sb) and Lc(〈a, b〉), . . . , Lc({a}sb)
as singletons. Note that, even if there are no guess rules,
the number of decomposition and composition rules is al-
ways infinite since there are infinitely many messagesa, b.

We further group the intruder rules as follows. In the
following, t ranges over all messages.

• Ld(t) := Lp1(t)∪Lp2(t)∪Lad(t)∪Lsd(t) for every
messaget. In case, for instance,Lp1(t) is not defined,
i.e., the head symbol oft is not a pair, thenLp1(t) =
∅; analogously for the other rule sets,

• Ld :=
⋃

t Ld(t), Lc :=
⋃

t Lc(t),

• Lod :=
⋃

t Lod(t), Loc :=
⋃

t Loc(t),

• Lo(t) := Loc(t) ∪ Lod(t), Lo := Loc ∪ Lod,

• Ld(t) is the set of all decompositiont-rules in Table 1,
i.e., all t-rule in the left column of the table,

• Ld :=
⋃

t Ld(t),

• Lc(t) is the set of all compositiont-rules in Table 1.

• Lc :=
⋃

t Lc(t).

4

• L := Ld ∪ Lc.

Note thatL denotes the (infinite) set of all intruder rules we
consider here. The set of messages the intruder can derive
from a (finite) setE of messages is:

forge(E) :=
⋃
{E′ | E →∗

L E′}.

From the definition of intruder rules in Table 1 it immedi-
ately follows:

Lemma 2 If E is a normalized set of messages, then
forge(E) is normalized.

The lemma says that if an intruder only sees normalized
messages, then he only creates normalized messages. In-
truders should be modeled in such a way that they can-
not distinguish between equivalent messages since if one
thinks of, for instance, the messageXOR(a, a, b), which is
equivalent tob, as a bit string obtained by “XORing” the bit
stringsa, a, andb, then this bit string is simplyb. There-
fore, in what follows we always assume that the intruder’s
knowledge consists of a set of normalized messages, where
every single normalized message in this set can be seen as
a representative of its equivalence class.

We are now prepared to define attacks. In an attack on
a protocolP , the intruder (nondeterministically) chooses
some execution order forP and then tries to produce in-
put messages for the protocol rules. These input messages
are derived from the intruder’s initial knowledge and the
output messages produced by executing the protocol rules.
The aim of the intruder is to derive the messagesecret. If
different sessions of a protocol running interleaved shall
be analysed, then these sessions must be encoded into the
protocolP . This is the standard approach when protocols
are analysed w.r.t. a bounded number of sessions, see, for
instance, [20].

Definition 2 Let P = ({R′
j ⇒ S′

j | j ∈ I}, <I , S0)
be a protocol. Then anattack on P is a tuple (π, σ)
whereπ is an execution ordering onP and σ is a nor-
malized ground substitution of the variables occurring in
P such thatpRiσq ∈ forge(pS0, S1σ, ..., Si−1σq) for ev-
ery i ∈ {1, . . . , k} where k is the size ofπ, Ri :=
R′

π−1(i), and Si := S′
π−1(i), and such thatsecret ∈

forge(pS0, S1σ, ..., Skσq).

Due to Lemma 1, it does not matter whether, in the
above definition,σ is normalized or not. Also note
that Lemma 2 implies:pforge(pS0, S1σ, ..., Si−1σq)q =
forge(pS0, S1σ, ..., Si−1σq).

The decision problem we are interested in is the follow-
ing set of protocols:

INSECURE:= {P | there exists an attack onP}.

3.4. Oracle Rules

Oracle rules are guess rules which satisfy certain condi-
tions. To define these rules, we first need some new no-
tions.

A derivation D of length n, n ≥ 0, is a se-
quence of steps of the formE →L1 E, t1 →L2

· · · →Ln E, t1, . . . , tn with a finite set of messages
E, messagest1, . . . , tn, intruder rulesLi ∈ L, such
that E, t1, . . . , ti−1 →Li

E, t1, . . . , ti and ti 6∈ E ∪
{t1, . . . , ti−1}, for everyi ∈ {1, . . . , n}. The ruleLi is
called theith rule in D and the stepE, t1, . . . , ti−1 →Li

E, t1, . . . , ti is called theith stepin D. We writeL ∈ D to
say thatL ∈ {L1, . . . , Ln}. If S is a set of intruder rules,
then we writeS /∈ D to sayS ∩ {L1, . . . , Ln} = ∅. The
messagetn is called thegoalof D.

We also needwell formedderivations which are deriva-
tions where every message generated by an intermediate
step either occurs in the goal or in the initial set of mes-
sages.

Definition 3 Let D = E →L1 . . . →Ln
E′ be a deriva-

tion with goalt. Then,D is well formedif for everyL ∈ D
and t′ we have thatL ∈ Lc(t′) impliest′ ∈ S(E, t), and
L ∈ Ld(t′) impliest′ ∈ S(E).

We can now define oracle rules. Condition 1. in the follow-
ing definition will allow us to bound the length of deriva-
tions. The remaining conditions are later used to bound
the size of the substitutionσ of an attack. They allow to
replace a subtermu in σ, composed by the intruder, by a
smaller message.

Definition 4 LetLo = Loc∪Lod be a (finite or infinite) set
of guess rules, whereLoc and Lod denote disjoint sets of
composition and decomposition guess rules, respectively.
Then,Lo is a set of oracle rules(w.r.t. Lc ∪ Ld as defined
above) iff:

1. For every messaget, if t ∈ forge(E), then there exists
a well formed derivation fromE with goalt.

2. If F →Loc(t) F, t andF, t →Ld(t) F, t, a, then there
exists a derivationD from F with goal a such that
Ld(t) 6∈ D.

3. For every non atomic messageu, there exists a nor-
malized messageε(u) with |ε(u)| < |puq| such that:
For every finite setF of messages with0 ∈ F , if
F \u→Lc(u) F , i.e.,u can be composed fromF \u in
one step, thenF →Lo(t) F, t impliespt[u← ε(u)]q ∈
forge(pF [u← ε(u)]q) andε(u) ∈ forge(F) for every
messaget.

4 Main Theorem and the NP Decision Algo-
rithm

We now state the main theorem of this paper. In Section 7,
this theorem will allow us to show that INSECUREis in NP
in presence of an intruder that uses XOR rules and prefix
rules, respectively.

5

Decomposition rules Composition rules
Pair Lp1(〈a, b〉): 〈a, b〉 → a Lc(〈a, b〉): a, b→ 〈a, b〉

Lp2(〈a, b〉): 〈a, b〉 → b
Asymmetric Lad({a}pK): {a}pK ,K−1 → a Lc({a}pK): a,K → {a}pK
Symmetric Lsd({a}sb): {a}sb, b→ a Lc({a}sb): a, b→ {a}sb

Guess Lod(a): E → a Loc(a): E → a
with a subterm ofE andE normalized. with E, a normalized and such that every proper subterm ofa

is a subterm ofE.

Table 1. Intruder Rules

Theorem 1 Let Lo be a set of oracle rules. IfE → t ∈?

Lo can be checked in polynomial time in|E, t| for every
finite setE of messages and messaget, thenINSECUREis
in NP.

The NP decision procedure is given in Figure 1. Clearly,
the procedure is sound. To show completeness, one has to
prove that if there exists an attack(π, σ) on P , then there
is one with the size ofσ bounded as in step 2. of the proce-
dure. This bound is established in Section 6, Theorem 3. In
Section 5, we show that step 3. and 4. in the procedure can
be carried out in polynomial time. More precisely, we show
that the following problem, henceforth calledderivation
problem, can be solved in polynomial time in the (DAG)
size of the input:

DERIVE := {(E, t) | t ∈ forge(E)}

whereE is a finite set of messages andt is a message,
both given as DAGs (see Theorem 2). In the procedure,E
is the setp{Sjσ | j < i} ∪ {S0}q for somei ∈ {1, . . . k}
andt is pRiσq or secret. From Corollary 1, it follows that
|E, t| ≤ 5·|P |, and thus, the procedure depicted in Figure 1
is in fact an NP decision procedure.

5 Deciding the Derivation Problem

We show:

Theorem 2 DERIVE ∈ PTIME given thatE → t ∈? Lo

can be checked in polynomial time in|E, t| for every finite
setE of messages and messaget.

To show this theorem, letdt(E) be the set consisting of the
messages inE and the messagest′ ∈ S(E, t) that can be
derived fromE in one step. Using that the number of terms
t′ ∈ S(E, t) is linear in|E, t| and thatE → t ∈? Lo can
be checked in polynomial time it is easy to see thatdt(E)
can be computed in polynomial time in|E, t|. Now, if
t ∈ forge(E), then Definition 4 guarantees that there exists
a well formed derivationD = E →L1 E, t1 → . . . →Lr

E, t1, .., tr, with tr = t. In particular,ti ∈ Sub(E, t)
for everyi ∈ {1, . . . , k}. By definition of derivations, all
ti are different. It followsr ≤ |t, E|. Moreover, with
d0

t (E) := E and dl+1
t (E) := dt(dl

t(E)) we have that
t ∈ d

|E,t|
t (E) iff t ∈ forge(E). Sinced

|E,t|
t (E) can be

computed in polynomial time, Theorem 2 follows.

6. Linear Bounds on Attacks

We now show that the size of an attack can be bounded as
required in step 2. in Figure 1.

In what follows, we assume thatLo is a set of oracle
rules. If t ∈ forge(E), we denote byDt(E) a well formed
derivation fromE with goal t (chosen arbitrarily among
the possible ones). Note that there always exists such a
derivation since the definition of oracle rules ensures that a
well formed derivation exists iff a derivation exists.

Definition 5 Let P = ({Ri ⇒ Si, i ∈ I}, <I , S0)
be a protocol. An attack(π, σ) is normal if |σ| :=
Σx∈V(P)|σ(x)| is minimal.

Clearly, if there is an attack, there is a normal attack. Note,
however, normal attacks are not necessarily uniquely deter-
mined.

In Lemma 8 we prove, using Lemma 3 to 7, that normal
attacks can always be constructed by linking subterms that
are initially occurring in the problem specification. This
will allow us to bound the size of attacks as desired (Theo-
rem 3 and Corollary 1).

Let P = ({Rj ⇒ Sj , j ∈ I}, <I , S0) be a proto-
col such that(π, σ) is an attack onP . Let k be the size
of π. We defineRi = R′

π−1(i) and Si = S′
π−1(i) for

i ∈ {1, . . . , k}. Recall thatS(P) is the set of subterms
of P ,A ⊆ S(P), andV = V(S(P)) is the set of variables
occurring in the protocol.

Definition 6 Let t andt′ be two terms andθ a ground sub-
stitution. Then,t is a θ-matchof t′, denotedt vθ t′, if t
andt′ are standard,t is not a variable, andptθq = t′.

Lemma 3 If (π, σ) is a normal attack, then for alli ∈
{1, . . . , k}, x ∈ V(Ri), and standard subtermss of σ(x),
there existsj ≤ i such thats ∈ S(pRjσq) or there exists
t ∈ S(P) with t vσ s.

The proof of the following lemma is trivial.

Lemma 4 For every normalized finite setE of messages,
messaget, and t-rule L, if E →L E, t then all proper
subterms oft are subterms ofE.

6

Input: protocolP = ({Rι ⇒ Sι, ι ∈ I}, <I , S0) with n = |P |, V = V ar(P).

1. Guess an execution orderπ for P . Letk be the size ofπ. LetRi = R′
π−1(i) andSi = S′

π−1(i) for i ∈ {1, . . . , k}

2. Guess a normalized ground substitutionσ such that|σ(x)| ≤ 4n for all x ∈ V .

3. Check thatpRiσq ∈ forge(p{Sjσ | j < i} ∪ {S0}q) for everyi ∈ {1, . . . , k}.

4. Checksecret ∈ forge(p{Sjσ | j < k + 1} ∪ {S0}q).

5. If each check is successful, then answer “yes”, and otherwise, “no”.

Figure 1. NP Decision Procedure for Insecurity

Proof. For L ∈ Lod ∪ Loc use the definition of decompo-
sition and composition guess rules. ForL ∈ Ld ∪ Lc the
statement is obvious. �

The next lemma states that if a termt′ is a subterm of a
term t and this term is derived from a setE but t′ is not a
subterm ofE, thent′ can be derived fromE and the last
step of the derivation is a composition rule.

Lemma 5 Assume thatt′ ∈ S(t)\S(E) andt ∈ forge(E),
thent′ ∈ forge(E) and there exists a (well formed) deriva-
tion fromE with goalt′ ending with a composition rule.

Proof. Let D = E0 →L1 E1 · · · →Ln En be a derivation
of t from E0 = E. Then, there exists a leasti 6= 0 such
that t′ ∈ S(Ei) sincet′ is a subterm ofEn. Assume that
Li is ans-rule for somes. Then,t′ is a subterm ofs. If t′ is
a proper subterm ofs, Lemma 4 implies thatt′ is a subterm
of Ei−1 in contradiction to the minimality ofi. Thus,t′ =
s and therefore,t′ ∈ forge(E). By the definition of oracle
rules, there exists a well formed derivationD′ of t′. If
the last step in this derivation is a decomposition rule, then
this impliest′ ∈ S(E) in contradiction to the assumption.
Thus, the last step ofD′ is a composition rule. �

The subsequent lemma will allow us to replace certain sub-
terms occurring in a substitution of an attack by smaller
terms. Note that from the assumption made in this lemma
it follows that s can be derived fromE such that the last
rule is a composition rule. This allows to replaces by a
smaller term since when derivingt, decomposings will
not be necessary.

Lemma 6 Let E and F be two sets of normalized mes-
sages such that0 ∈ E ∪ F . Let t ∈ forge(E,F) and
s ∈ forge(E) non atomic such thats /∈ S(E). Finally, let
δ be the replacement[s ← ε(s)], whereε(s) is defined as
in Definition 4. Then,ptδq ∈ forge(pEδ, Fδq).

The next lemma will be used to remove one application of
the normalization function.

Lemma 7 Let σ be a normalized ground substitution,E
a set of normalized terms,s a normalized standard non
atomic term, andδ the replacement[s ← ε(s)]. Let σ′ =
σδ. If there is no standard subtermt of E such thatt vσ s,
thenpEσ′q = ppEσqδq.

The main lemma, which shows that a substitution of a nor-
mal attack can be build up from subterms of terms occur-
ring in P , is proved next.

Lemma 8 Given a normal attack(π, σ), for all variables
x and for all factorsvx of σ(x), there existst ∈ S(P) such
that t vσ vx.

Proof. Assume that (*): For everyt, t vσ vx implies
t 6∈ S(P). We will lead this to a contradiction. Since
A ⊆ S(P), we havevx 6∈ A, and sincevx is a factor of
σ(x), vx is standard. By Lemma 3 and (*), there exists
j such thatvx ∈ S(pRjσq). Let Nx be minimal among
the possiblej. If vx ∈ S(pSiσq) for somei, (*) implies
that there existsy ∈ V(Si) with vx ∈ S(σ(y)). Then,
by Definition 1, (2) there existsRi′ , i

′ ≤ i such thaty ∈
V(Ri′). Thus, Lemma 3 and (*) imply that there existsj ≤
i with vx ∈ S(pRjσq). Note also thatvx 6∈ S(S0) since
otherwisevx ∈ S(P). Now, the minimality ofNx yields
i ≥ Nx. Summarizing, we have:vx is not a subterm of
E0 = pS0σ, . . . , SNx−1σq, andvx is a subterm ofpRNx

σq.
Thus, by Lemma 5,vx ∈ forge(E0).

Let us define the replacementδ = [vx ← ε(vx)] where
ε(vx) is defined as in Definition 4. Since(π, σ) is an attack,
for all j, we have:

pRjσq ∈ forge(pS0σ, . . . , Sj−1σq)

We distinguish two cases:

• Assume j < Nx. Then, by minimality of
Nx, vx is neither a subterm ofpRjσq nor a sub-
term of pS0σ, . . . , Sj−1σq. Hence, withpRjσq ∈
forge(pS0σ, . . . , Sj−1σq) it follows ppRjσqδq ∈
forge(ppS0σqδ, . . . , pSj−1σqδq).

• Assumej ≥ Nx. With t = pRjσq, s = vx, E =
E0, andF = pSNx

σ, . . . , Sj−1σq, Lemma 6 implies
ppRjσqδq ∈ forge(ppS0σqδ, . . . pSj−1σqδq).

Thus, ppRjσqδq ∈ forge(ppS0σqδ, . . . pSj−1σqδq) in both
cases. Now, withE = {S0, . . . , Sj−1} andE = {Rj},
respectively, (*) and Lemma 7 imply for allj:

pRjσ
′q ∈ forge(pS0σ

′, . . . , Sj−1σ
′q)

7

whereσ′ = σδ. Hence,(π, σ′) is an attack. But sinceσ′ is
obtained fromσ by replacingvx by a strictly smaller mes-
sage, namelyε(vx), we obtain|σ′| < |σ|, a contradiction
to the assumption that(π, σ) is a normal attack. �

We can now use this lemma to bound the size of every
σ(x):

Theorem 3 For every protocolP , if (π, σ) is a normal at-
tack onP , then|{σ(x) |x ∈ V}| ≤ 4 · |P |, where|P | is the
size ofP as defined in Section 3.2.

Proof. Let F = {s | ∃x ∈ V, s ∈ F(σ(x))} For everys
in the setF we introduce a new variablexs and we define
a substitutionσ′ such thatσ′(xs) = s (and other variables
are mapped to themselves). LetV ′ = {xs}s∈F . The cardi-
nality Card(V ′) of V ′ can be bounded as follows:

Claim. Card(V ′) ≤ |P |
Proof of the claim.We define a functionf : V ′ → S(P)
as follows. Due to Lemma 8, for everyy ∈ V ′, there exists
ty ∈ S(P) such thatty 6∈ V andptyσq = σ′(y). We define
f(y) := ty. The functionf is injective sincets = ts′
impliesptsσq = pts′σq. Thus,Card(V ′) ≤ |S(P)| = |P |,
which concludes the proof of the claim.

Let S = F ∪ {σ(x) |x ∈ V}. For all x ∈ V
let σ′′(x) = pXOR(xs1 , . . . , xsm

)q with {s1, . . . , sm} =
F(σ(x)). Note that, since thes’s are normalized standard
messages,σ(x) = σ′(σ′′(x)). Let δ be the composition of
all replacements[s ← xs], s ∈ F (replacing larger terms
before), and lettϕ := (tσ′′)δ. It is not hard to see that
ptϕqσ′ = ptσq.

We are now going to bound|S|. Given a set of normal-
ized messagesZ, let

VZ = {x ∈ V |σ(x) non standard andσ(x) /∈ Z},
PZ = {ptϕq | t ∈ S(P) andptσq /∈ Z}.

We note thatZ ⊆ Z ′ impliesVZ′ ⊆ VZ andPZ′ ⊆ PZ ,
and thatVS = ∅.
Claim. |S ∪ PS | ≤ |V∅ ∪ P∅|.
Proof of the claim.We construct a sequence of setsS =
Z1 ⊃ Z2 ⊃ · · · ⊃ Zn = ∅ with Zi+1 = Zi \ vi where
vi ∈ Zi is a maximal message inZi (w.r.t. the subterm
ordering). Note thatn − 1 is the cardinality ofS and for
everyt ∈ Zi+1, vi /∈ F(t). For everyi ∈ {1, . . . , n} we
prove

|Zi ∪ VZi
∪ PZi

| ≤ |Zi+1 ∪ VZi+1 ∪ PZi+1 |

which concludes the proof of the claim. At stepi, either of
two cases may arise when removingv = vi ∈ Zi from Zi:

• There existsx ∈ V with v = σ(x) non standard.
Then,

|Zi∪VZi ∪ PZi |
≤ |Zi \ v ∪ {x} ∪ F(σ(x)) ∪ VZi

∪ PZi
|

≤
∣∣Zi+1 ∪ VZi+1 ∪ PZi+1

∣∣
sincex /∈ Zi ∪ VZi , x ∈ VZi+1 , andF(σ(x)) ⊆
Zi \ v = Zi+1.

• v∈F and there existst∈S(P) such thatt vσ v. Let
t′ = ptϕq. We havet′σ′ = ptσq = v. Then,

|Zi ∪ VZi ∪ PZi | ≤
∣∣Zi+1 ∪ VZi+1 ∪ {t′} ∪ PZi

∣∣
≤

∣∣Zi+1 ∪ VZi+1 ∪ PZi+1

∣∣
sinceσ′(y)∈ Zi\ v = Zi+1 for everyy ∈ V(t′) and
PZi+1 = PZi

∪ {t′}.

This proves the claim. Using the claim and

|P∅| =
∣∣pS(P)ϕq

∣∣ ≤ |S(P)ϕ| ≤ |S(P)|+ |Vϕ| , and
|Vϕ| = |Vσ′′| ≤ |V|+ |V ′| ,

we obtain

|{σ(x) |x ∈ V}| ≤ |S| ≤ |S ∪ PS | ≤ |V∅ ∪ P∅|
≤ 2 · |V|+ |S(P)|+ |V ′| ≤ 4 · |P |

�
From this, we obtain:

Corollary 1 For every protocolP and normal attack
(π, σ) on P we have|Riσ, S0σ, . . . , Si−1σ| ≤ 5 · |P | and
|secret, S0σ, . . . , Skσ| ≤ 5 · |P |, for everyi ∈ {1, . . . , k}
with Sj andRj as defined above.

7. Extending the Dolev-Yao Intruder by Dif-
ferent Oracle Rules

We extend the ability of the standard Dolev-Yao intruder
beyond the perfect encryption hypothesis by considering
two specific sets of oracle rules. The first set are the XOR
rules which allow the intruder to make use of the XOR op-
erator. We then consider, what we call, prefix rules which
allow the intruder to exploit certain properties of encryp-
tion based on block ciphers.

7.1. XOR Rules

The XOR rules allow the intruder to sum several messages
with theXOR operator. The result of this sum is being nor-
malized.

Definition 7 We defineLo = Loc ∪ Lod to be the set of
XOR ruleswhere

• Loc is the set of rules of the form{t1, . . . , tn} →
pXOR(t1, . . . , tn)q with {t1, . . . , tn} a non-empty fi-
nite multiset of normalized messages such that
pXOR(t1, . . . , tn)q is non-standard, and

• Lod is the set of rules of the form{t1, . . . , tn} →
pXOR(t1, . . . , tn)q with {t1, . . . , tn} a non-empty fi-
nite multiset of normalized messages such that
pXOR(t1, . . . , tn)q is standard.

We call the intruder using the rulesLo ∪Lc ∪Ld theXOR
intruder.

8

Note that the rules inLod are in fact decomposition guess
rules since ifpXOR(t1, . . . , tn)q is standard, it is a fac-
tor of some of the termst1, . . . , tn. Note that we use
that t1, . . . , tn are normalized. Also, the rules inLoc

are composition guess rules since proper subterms of
pXOR(t1, . . . , tn)q are subterms of factors of this term, and
thus, subterms oft1, . . . , tn. Again, we use thatt1, . . . , tn
are normalized.

We also note that the intruder is not more powerful if
we allow him to derive non-normalized messages. More
precisely, assume thatLe is the set of rules of the form
{t1, . . . , tn} → s with s =XOR XOR(t1, . . . , tn) (not nec-
essarily normalized). Letforgee(E) denote the set of mes-
sages the intruder can derive fromE with the rulesLe, Ld,
andLc. Then, it easily follows by induction on the length
of derivations:

Proposition 1 For every message termt and set of mes-
sagesE (both not necessarily normalized),t ∈ forgee(E)
impliesptq ∈ forge(pEq).

Therefore, we can restrict the intruder to work only on nor-
malized messages and to produce only normalized mes-
sages.

Before showing that the XOR rules are oracle rules, we
illustrate that the XOR intruder can perform the attack in-
formally described in Section 2.

Formally, the protocol underlying the attack is de-
scribed as follows: The set of atoms isA =
{na, a, I, b, ka, kb, ki, ki−1, 0, secret} where in Section 2
the secret wasNB . The initial intruder knowledge isS0 =
{0, I, ki, ki′, ka, kb}. The protocol rules are depicted at
the top of Figure 2. We haveI = {(a, 1), (a, 2), (b, 1)}
and<I := {((a, 1), (a, 2))}.

When using a perfect encryption model, there is no at-
tack on this instance of the protocol since the intruder is
not able to forge{secret, XOR(na1, I)}pka without the ora-
cle rules.

On the other hand, when using these rules,(π, σ) with
the execution orderπ = {(a, 1) 7→ 0, (b, 1) 7→ 1, (a, 2) 7→
2} and the substitutionσ with σ(xna) = XOR(na, b, I) and
σ(xsecret) = secret is an attack on this protocol. In fact, it is
easy to check the steps depicted at the bottom of Figure 2.

Proposition 2 The setLo of XOR rules is a set of oracle
rules.

Also, we can show that XOR rules can be applied in poly-
nomial time.

Proposition 3 Let Lo be the set of XOR rules. Then, the
problem whetherE → t ∈ Lo(t), for a given finite normal-
ized setE of messages and a normalized messaget, can be
decided in polynomial time with respect to|E, t|.

As an immediate consequence of Theorem 1 we obtain that
INSECUREwith XOR rules is in NP. NP-hardness can be
obtained as in [20]. Altogether this yields:

Theorem 4 INSECUREw.r.t. the XOR intruder is an NP-
complete problem.

Together with Proposition 3, Theorem 2 implies:

Theorem 5 For the XOR intruder, the problemDERIVE
is in PTIME.

In [8], this problem is calledground reachability problem
and is shown to be in NP.

7.2. Prefix Rules

As another instance of oracles rules, we consider what
we call prefix rules. These rules allow the intruder to
exploit certain properties of block encryption algorithms,
based for example on cipher block chaining (CBC). Using
Theorem 1, again we can show that INSECURE is an NP-
complete problem. In [5] an example that illustrates the
additional power of the intruder is provided.

Throughout this section, we assume that terms do not
contain theXOR operator and that the normalization func-
tion p·q is the identity function. It is easy to verify that The-
orem 1 also holds in this simplified setting.

Definition 8 We defineLo = Loc ∪ Lod to be the set of
prefix ruleswhereLod = ∅ and Loc consists of intruder
rules of the form

{〈〈. . . 〈〈M,M1〉 ,M2〉 , . . .〉 ,Mn〉}sK →Loc
{M}sK

for any normalized messagesK, M, M1, . . . ,Mn, (n ≥ 1).
We call the intruder using the ruleLo ∪ Lc ∪ Ld prefix
intruder.

We can prove that theseprefix rules are oracle rules that
can be checked in polynomial time and then conclude that
INSECUREfor an intruder equipped with prefix rules is NP-
complete by Theorem 1.

Proposition 4 The setLo of prefix rules is a set of oracle
rules.

Obviously, E → t ∈ Lo can be decided in polynomial
time in |E, t|. Also, analogously to the proof in [20] one
can show that INSECUREis NP-hard. Now, by Theorem 1,
it follows:

Theorem 6 INSECUREw.r.t. the prefix intruder is an NP-
complete problem.

With Theorem 2 we obtain:

Theorem 7 For the prefix intruder, the problemDERIVE
is in PTIME.

9

(a, 1) : 0 ⇒ {〈na, a〉}pki

(a, 2) : {〈xsecret, XOR(na, I)〉}pka ⇒ {xsecret}pki

(b, 1) : {〈xna, a〉}pkb ⇒ {〈secret, XOR(xna, b)〉}pka

– {〈XOR(na, b, I), a〉}pkb ∈ forge(0, I, ki, ki′, ka, kb, {〈na, a〉}pki);

– {〈secret, XOR(na, I)〉}pka ∈ forge(0, I, ki, ki′, ka, kb, {〈na, a〉}pki, p{〈secret, XOR(XOR(na, b, I), b)〉}pka
q);

– secret ∈ forge(0, I, ki, ki′, ka, kb, {〈na, a〉}pki, p{〈secret, XOR(XOR(na, b, I), b)〉}pka
q, {secret}pki).

Figure 2. An attack on the modified NSL protocol

8. Conclusion

We have shown that when extending the standard Dolev-
Yao intruder by rules for XORing messages the protocol
insecurity problem for a finite number of sessions remains
NP-complete. This is the first tight complexity bound given
for the insecurity problem without the perfect encryption
assumption. Here we have only considered insecurity as
failure of secrecy. However, we believe that our result
holds also for other properties that can be reduced to reach-
ability problems in our model, such as authentification. Fu-
ture work includes applying our approach to different in-
truder rules and to algebraic laws such as the ones relying
on RSA and Diffie-Hellman encryption techniques.

References

[1] R. Amadio and W. Charatonik. On name generation and set-
based analysis in the Dolev-Yao model. InProc. of CON-
CUR 2002, LNCS 2421, pages 499–512. Springer-Verlag,
2002.

[2] R. Amadio and D. Lugiez. On the reachability problem in
cryptographic protocols. InProc. of CONCUR 2000, LNCS
1877. Springer-Verlag, 2000.

[3] D. Basin. Lazy infinite-state analysis of security protocols.
In Secure Networking — CQRE (Secure)’99, LNCS 1740,
pages 30–42. Springer-Verlag, 1999.

[4] M. Boreale. Symbolic trace analysis of cryptographic pro-
tocols. InProc. of ICALP 2001, LNCS 2076, pages 667–
681. Springer-Verlag, Berlin, 2001.

[5] Y. Chevalier, R. K̈usters, M. Rusinowitch, and M. Turu-
ani. An NP decision procedure for protocol insecurity with
XOR. Technical Report RR-4697, INRIA, jan 2003.

[6] Y. Chevalier and L. Vigneron. Automated Unbounded Veri-
fication of Security Protocols. InProc. of CAV’2002, LNCS
2404, pages 324–337. Springer-Verlag, 2002.

[7] H. Comon, V. Cortier, and J. Mitchell. Tree automata with
memory, set constraints and ping pong protocols. InProc.
of ICALP’01, LNCS 2076. Springer-Verlag, 2001.

[8] H. Comon and V. Shmatikov. Intruder deductions, con-
straint solving and insecurity decision in presence of ex-
clusive or. Inthese proceedings.

[9] D. Dolev and A. Yao. On the security of public key proto-
cols. InProc. of FOCS’81, pages 350–357, 1981.

[10] N. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov.
Undecidability of Bounded Security Protocols. InProc. of
the FLOC’99 Workshop on Formal Methods and Security
Protocols, 1999.

[11] M. Fiore and M. Abadi. Computing symbolic models for
verifying cryptographic protocols. InProc.14th IEEE Com-
puter Security Foundations Workshop, 2001.

[12] D. Kapur, P. Narendran, and L. Wang. Analyzing proto-
cols that use modular exponentiation: Semantic unification
techniques. InProc. of RTA’03, 2003.

[13] R. Küsters. On the decidability of cryptographic proto-
cols with open-ended data structures. InProc. of CONCUR
2002, LNCS 2421, pages 515–530. Springer-Verlag, 2002.

[14] G. Lowe. An attack on the Needham-Schroeder public-
key authentication protocol.Information Processing Let-
ters, 56(3):131–133, 1996.

[15] G. Lowe. Breaking and fixing the Needham-Schroeder
public-key protocol using FDR. InTools and Algorithms for
the Construction and Analysis of Systems (TACAS), LNCS
1055, pages 147–166. Springer-Verlag, 1996.

[16] C. Meadows and P. Narendran. A unification algorithm for
the group Diffie-Hellman protocol. InWorkshop on Issues
in the Theory of Security (in conjunction with POPL’02),
2002.

[17] J. K. Millen and V. Shmatikov. Constraint solving for
bounded-process cryptographic protocol analysis. InProc.
of ACM CCS 2001, pages 166–175, 2001.

[18] J. Mitchell, V. Shmatikov, and U. Stern. Finite-state anal-
ysis of SSL 3.0. InSeventh USENIX Security Symposium,
pages 201–216, 1998.

[19] L. C. Paulson. Mechanized proofs for a recursive authenti-
cation protocol. In10th Computer Security Foundations
Workshop, pages 84–95. IEEE Computer Society Press,
1997.

[20] M. Rusinowitch and M. Turuani. Protocol insecurity with
finite number of sessions is NP-complete. InProc. of 14th
IEEE Computer Security Foundations Workshop.

[21] P. Ryan and S. Schneider. An attack on a recursive authen-
tication protocol.Information Processing Letters 65, 1998.

[22] D. Song. Athena: A new efficient automatic checker for se-
curity protocol analysis. InProc. of The 12th Computer
Security Foundations Workshop. IEEE Computer Society
Press, 1999.

10

