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L’insécurité des protocoles cryptographiques avec XOR est
NP-complet

Résumé : Nous présentons une méthode pour rechercher les attaques sur les protocoles cryptographiques
(avec un nombre fini de sessions) en présence d’un intrus suivant le modèle de Dolev-Yao étendu par des règles
d’oracle, c.à.d des règles de déduction vérifiant certaines conditions. En particulier, cette méthode générale assure
que la recherche d’une attaque en présence d’un intrus capable d’utiliser les propriétées de l’opérateur XOR est
NP-complet. Cet opérateur est fréquemment utilisé dans les protocoles cryptographiques, mais peu d’analyses
peuvent le prendre en compte. Nous utilisons également cette méthode générale avec un intrus capable d’exploiter
certaines propriétés de certains modes d’encryption comme le chiffrement avec chainage des blocs (CBC).

Mots-clés : Vérification, Réécriture, Analyse de Sécurité, Attaque, Protocole, Preuve Automatique, Logique
et Complexité
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1 Introduction

Cryptographic protocols have been designed for handling secure electronic communications. Verification tools
based on formal methods (e.g. model checking) have been quite successful in discovering new flaws in well-known
security protocols [13, 17, 23, 3, 6].
While most formal analysis of security protocols abstracts from low-level properties, i.e., certain algebraic

properties of encryption, such as the multiplicativity of RSA or the properties induced by chaining methods
for block ciphers, many real attacks and protocol weaknesses rely on these properties. A typical example was
provided by Ryan and Schneider [22] where they give a simple attack on Bull’s recursive authentication protocol:
the protocol is used to distribute a connected chain of keys linking all the nodes from originator to the server,
but if one key is compromise the others can be comprised too thanks to the property of xor. Conversely, if xor
is considered as a free operator then, as shown by L. Paulson using the Isabelle prover [19], the key distribution
is secure.
Recently, several procedures have been proposed to decide insecurity of cryptographic protocols w.r.t. a finite

number of protocol sessions [2, 5, 11, 21, 16, 12]. Also some special cases for an unbounded number of sessions have
been studied [9, 4, 10, 8, 1]. All these results assume encryption to be perfect (perfect encryption assumption):
One needs a decryption key to extract the plaintext from the ciphertext, and also, a ciphertext can be generated
only with the appropriate key and message (no collision). Only very few works on formal analysis have relaxed this
assumption. In [15], a unification algorithm is designed for handling properties of Diffie-Hellman cryptographic
systems.
In this paper, we generalize the decidability result of [21], stating that insecurity for finitely many protocol

sessions is in NP, to the case where messages may contain the XOR operator and where the Dolev-Yao intruder is
extended by the ability to compose messages with the XOR operator. More precisely, we give a linear bound on
the size of messages exchanged in minimal attacks and present an NP procedure for deciding insecurity with XOR.
This extension is non-trivial due to the complex interaction of the XOR properties and the standard Dolev Yao
intruder rules. The technical problems raised by the equational laws are somewhat related to those encountered
in semantic unification.
To prove our result, we have extended the Dolev Yao intruder with so-called oracle rules, i.e., deduction rules

that satisfy certain conditions. In this general framework we show that insecurity is decidable in NP. Now, the
results for XOR are obtained by proving that the XOR rules satisfy the conditions on oracle rules.
Our framework is general enough to also handle other algebraic properties. More specifically, we show that

the Dolev Yao intruder equipped with the ability to exploit prefix properties of encryption algorithms based on
cipher-block-chaining (CBC), falls into our framework as well.
To our knowledge, the decidability results presented here are the first in formal analysis of security protocols

that go beyond the perfect encryption hypothesis.1

Structure of the paper. In the following section, we provide an example illustrating the role of XOR in attacks. We
then, in Section 3, introduce our protocol and intruder model. In particular, this section contains the definition
of the oracle rules. The decidability result for the general framework is presented in Section 4, including the
description of the NP decision algorithm. In Section 5, we show how to bound the size of minimal attacks. Then,
in Section 6 XOR rules and prefix rules are introduced and it is shown that these rules are oracle rules, which
implies the mentioned complexity results. In the appendix, the use of prefix rules is illustrated. Also, the proofs
omitted in the paper are provided.

2 A Motivating Example

We illustrate that when taking the algebraic properties of XOR into account, new attacks can occur. As an
example, we use a variant of the Needham-Schroeder-Lowe Protocol [14], i.e., the public-key Needham-Schroeder

1Recently, H. Comon and V. Shmatikov have announced related results.
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4 Chevalier & Küsters & Rusinowitch & Turuani

Procotol with Lowe’s fix, where in some place, instead of concatenation XOR is used. Using common notation,
the protocol is given as follows:

1. A→ B : {NA, A}pKB

2. B → A : {NB,xor(NA, B)}pKA

3. A→ B : {NB}pKB

If XOR is interpreted as free symbol, such as pairing, then according to [14] this protocol is secure. In particular,
the intruder is not able to get hold of NB. However, if the algebraic properties of XOR are taken into account,
the following attack is possible, which is a variant of the original attack on the Needham-Schroeder Protocol and
which allows the intruder I to obtain NB. In this attack, two sessions run interleaved where the steps of the
second session are marked with ′. In the first session, A talks to the intruder I, and in the second session I,
purporting to be A, talks to B. We emphasize that in this attack I generates new messages by applying the XOR
operator and uses that xor(NA, B, I, B) =xor xor(NA, I).

1. A→ I : {NA, A}pKI

1’. I(A)→ B : {xor(NA, B, I), A}pKB

2’. B → I(A) : {NB,xor(NA, B, I, B)}pKA

2. I → A : {NB,xor(NA, B, I, B)}pKA

3. A→ I : {NB}pKI

3 The Protocol and Intruder Model

The protocol and intruder model we describe here extend standard models for the (automatic) analysis of security
protocols [2, 10, 21, 16] in two respects. First, messages can be build using the XOR operator, which is not
allowed in most other protocol models. Second, in addition to the standard Dolev Yao rewrite rules, the intruder
is equipped with the mentioned oracle rules. In what follows, we provide a formal definition of our model by
defining terms, messages, protocols, the intruder, and attacks.

3.1 Terms and Messages

First, recall that a finite multiset over a set S is a functionM from S to IN with finite domain. We use the common
set notation to define multisets. For example, {a, a, a, b} denotes the multiset M with M(a) = 3, M(b) = 1, and
M(x) = 0 for every x /∈ {a, b}.
Terms are defined according to the following grammar:

term ::= Atoms |V ar | 〈term, term〉 | {term}sterm | {term}
p
Keys |xor(M)

where Atoms is a finite set of constants (atomic messages), containing principal names, nonces, keys, and the
constants 0 and Secret; Keys is a subset of Atoms denoting the set of public and private keys; V ar is a finite
set of variables; and M is a non-empty finite multiset of terms. We assume that there is a bijection ·−1 on Keys
which maps every public (private) key k to its corresponding private (public) key k−1. The binary symbol 〈·, ·〉
is called pairing, the binary symbol {·}s· is called symmetric encryption, the binary symbol {·}

p
· is public key

encryption. Note that a symmetric key can be any term and that for public key encryption only atomic keys
(namely, public and private keys from Keys) can be used. A term with head xor is called non standard and
otherwise it is called standard. Because of the algebraic properties of xor (see below), it is convenient to define
the xor operator as done above, instead of defining it as a binary operator. We abbreviate xor({t1, . . . , tn}) by
xor(t1, . . . , tn).
Variables are denoted by x, y, terms are denoted by s, t, u, v, and finite sets of terms are written E, F, ...,

and decorations thereof, respectively. We abbreviate E ∪ F by E, F , the union E ∪ {t} by E, t, and E \ {t} by
E \ t. The same abbreviations are used for multisets.

INRIA



An NP Decision Procedure for Protocol Insecurity with XOR 5

For a term t and a set of terms E, V ar(t) and V ar(E) denote the set of variables occurring in t and E,
respectively.
A ground term (also called message) is a term without variables. A (ground) substitution is a mapping from

V ar to the set of (ground) terms. The application of a substitution σ to a term t (a set of terms E) is written tσ
(Eσ), and is defined as usual.
Given two terms u, v, the replacement of u by v, denoted by [u← v], maps every term t to the term t[u← v]

which is obtained by replacing all occurrences of u in t by v. Note that the result of such a replacement is uniquely
determined. We can compose a substitution σ with a replacement δ: the substitution σδ maps every x ∈ V ar to
σ(x)δ.
The multiset of factors of a term t, denoted by Factor(t), is recursively defined: If t = xor(M), then

Factor(t) = dt′∈MFactor(t′), and otherwise, if t is standard, Factor(t) = {t}, where d is the union of multisets.
Note that Factor(t) only contains standard terms. For example, with a, b, c ∈ Atoms, {c, c, 〈xor(a, b), c〉} =
Factor(xor(c, 〈xor(a, b), c〉 , c)).
The set of subterms of a term t, denoted by Sub(t), is defined as follows:

� If t ∈ Atoms or t ∈ V ar, then Sub(t) = {t}.

� If t = 〈u, v〉, {u}sv, or {u}pv, then Sub(t) = {t} ∪ Sub(u) ∪ Sub(v).

� If t is non standard, then Sub(t) = {t} ∪
⋃

u∈T Sub(u) with T the multiset of factors of t.
We define Sub(E) =

⋃
t∈E Sub(t). Note that xor(a, b) is not a subterm of xor(xor(a, b), c).

The subterm ordering ≤ is defined as usual: t ≤ t′ if t ∈ Sub(t′) \ t′.
We define the size of a term and a set of terms basically as the size of the representation as a dag. That is,

the size |t| (|E|) of a term t (a set of terms E) is |Sub(t) \ {0}| (|Sub(E) \ {0}|). Note that 0 has size 0. In what
follows, if | · | is applied to sets of terms, it will always denote the size of the set as just defined rather than the
cardinality of the set, unless otherwise stated.
The xor operator is considered to be commutative, associative, nilpotent, and 0 is the unit element. According

to these properties, the normal form of a term is defined as the result of the normalization function p_q : term→
term defined recursively by:

� For an atom or a variable a, paq := a,

� For terms u and v, p〈u, v〉q :=
〈puq, pvq

〉
, p{u}svq = {puq}spvq, and

p{u}pvq = {puq}pv.

� For a non-standard term t, define M to be the multiset of factors of t in normalized form, i.e.,

M(t′) :=
∑

t′′,pt′′q=t′

Factor(t)(t′′)

for every term t′. (Recall that Factor(t) is a multiset.) Now, let M ′(t′) := M(t′) mod 2 for every term t′

withM(t′) 6= 0, i.e., M ′ contains a term if and only if this term occurs in M and the number of occurrences
inM is odd. Now, if M ′(t′) = 0 for every t′ 6= 0, then ptq := 0. Otherwise, define M ′′(t′) := M ′(t′) for every
t 6= 0, and M ′′(0) := 0. If M ′′(t′) 6= 0 for exactly one t′, then ptq = t′. Otherwise, ptq := xor(M ′′).

The normalization function extends to sets, multisets of terms, and substitutions in the obvious way. A term t
is normalized if ptq = t. In the same way normalized sets, multisets of terms, and subsitutions are defined. Two
terms t and t′ are equivalent (modulo xor) if ptq = pt′q. In this case, we write t =xor t′.
To illustrate the normalization function, we provide some examples: If a, b, c, d ∈ Atoms, then

pxor(xor(a, b, d),xor(c, d))q = xor(a, b, c)
p〈xor(0, a, a, b, c),xor(a,xor(a, c))〉q = 〈xor(b, c), c〉

pxor(a, 〈xor(b), a〉 , c)q = xor(a, 〈b, a〉 , c)
However, pxor(〈a, b〉 , 〈a, c〉)q 6= 〈0,xor(b, c)〉 .

One easily shows:

RR n° 4697



6 Chevalier & Küsters & Rusinowitch & Turuani

Lemma 1 For every n ≥ 0, term t, and substitution σ:

1. |ptq| ≤ |t|, and

2. ptσq = pptqσq = ptpσqq = pptqpσqq.

We finally remark:

Remark 1 For every normalized term t with |t| ≤ n, the number of arguments of xor operators occurring in t
is bounded by n. Therefore, representing t (as a DAG) needs space polynomially bounded in n.

3.2 Protocols

The following definition is explained below.

Definition 1 A protocol rule is of the form R⇒ S where R and S are terms.
A protocol P is a tuple ({Rι ⇒ Sι, ι ∈ I}, <I ,S) where S is a finite normalized set of messages with 0 ∈ S,

the initial intruder knowledge, I is a finite (index) set, <I is a partial ordering on I, and Rι ⇒ Sι, for every
ι ∈ I, is a protocol rule such that

1. the terms Rι and Sι are normalized;

2. for all x ∈ V ar(Sι), there exists ι′ ≤ ι such that x ∈ V ar(Rι′ );

3. for any subterm xor(t1, . . . , tn) of Rι, there exists j ∈ {1, . . . , n} such that V ar(ti) ⊆ ∪ι′<IιV ar(Rι′) for
every i ∈ {1, . . . , n} \ {j}. (Note that since Rι is normalized, the ti’s are standard terms.)

A bijective mapping π : I ′ → {1, . . . , |I ′|}, is called execution order for P if I′ ⊆ I, for all i, j: i <I j and π(j)
is defined implies that π(i) is defined, and for all i, j: i <I j implies π(i) < π(j). We define the size of π as |I′|.

Given a protocol P , in the following we will assume that Atoms is the set of constants occurring in P . We define
|P | := |Sub(S ∪

⋃
ι∈I(Rι ∪Sι))| to be the size of P . We define V ar = V ar(P ) to be the set of variables occurring

in P .
Intuitively, when executing a rule Rι ⇒ Sι and on receiving a (normalized) message m in a protocol run, it is

first checked whether m and Rι match, i.e., whether there exists a ground substitution σ such that m =xor Rισ.
If so, pSισq is returned as output. We always assume that the messages exchanged between principals (and the
intruder) are normalized — therefore, m is assumed to be normalized and the output of the above rule is not Sισ
but pSισq. This is because principals and the intruder cannot distinguish between equivalent terms, and therefore,
they may only work on normalized terms (representing the corresponding equivalence class of terms). Finally,
we note that since the different protocol rules may share variables, some of the variables in Rι and Sι may be
bounded already by substitutions obtained from applications of previous protocol rules. We are not actually
interested in a normal execution of a protocol but rather in attacks on a protocol. This is the reason why the
definition of a protocol contains the initial intruder knowledge. Attacks are formally defined in Section 3.3.
Condition 1. , in the above definition is not a real restriction since due to Lemma 1, the transformation

performed by a protocol rule and its normalized variant coincide. Condition 2. guarantees that when with Sι

an output is produced, all variables in Sι are “bounded” already. Otherwise, the output of a protocol rule
would be arbitrary, since unbounded variables could be mapped to any message. Condition 3. guarantees that
the bounding of variables is deterministic. For example, if the protocol rule xor(x, y) ⇒ 〈x, y〉 does not have
predecessors according to <I , and thus, x and y are not bounded, then this rule violates Condition 3: On
receiving xor(a, b, c), for instance, different substitutions are possible, including {x 7→ xor(a, b), y 7→ c}, {x 7→
xor(b, d), y 7→ xor(a, c, d)}, etc. In other words, a principal must guess a substitution. With Condition 3. we
avoid this.

INRIA



An NP Decision Procedure for Protocol Insecurity with XOR 7

The protocol informally described in Section 2 can formally be stated as follows: agent a plays role A and agent
b role B; Atoms = {0, a, b, na, nb, ka, kb, I, ki, ki′}; we define I = {(a, 1), (a, 2), (b, 1)} and <I := {((a, 1), (a, 2))};
the initial knowledge of the intruder is S = {0, I, ki, ki′, ka, kb}, and the protocol rules are:

(a, 1) : 0 ⇒ {〈na, a〉}pkb

(b, 1) : {〈xna, a〉}pkb ⇒{〈nb,xor(xna, b)〉}pka

(a, 2) :{〈xnb,xor(na, b)〉}pka⇒ {xnb}pkb

3.3 The Intruder Model and Attacks

Our intruder model follows the Dolev-Yao intruder [9]. That is, the intruder has complete control over the network
and he can derive new messages from his initial knowledge and the messages received from honest principals
during protocol runs. To derive a new message, the intruder can compose and decompose, encrypt and decrypt
messages, in case he knows the key. What distinguishes the intruder we consider here from the standard Dolev-
Yao intruder, is that we will equip the intruder with guess rules, which provide him with additional capabilities
of deriving messages. In Section 3.4, we consider classes of guess rules with certain properties, so-called oracle
rules. As mentioned, in Section 6 we will look at two different instances of these oracle rules, namely XOR and
prefix rules.
The intruder derives new messages from a given (finite) set of message by applying intruder rules. An intruder

rule (or t-rule) L is of the form M → t, where M is a finite multiset of messages and t is a message. Given a
finite set E of messages, the rule L can be applied to E if M is a subset of E, in the sense that if M(t′) 6= 0, then
t′ ∈ E for every message t′. We define the step relation →L induced by L as a binary relation on (finite) sets of
messages. For every finite set of messages E: E →L E, t (recall that E, t stands E ∪ {t}) if L is a t-rule and L
can be applied to E. If L denotes a (finite or infinite) set of intruder rules, then→L denotes the union

⋃
L∈L →L

of the step relations →L with L ∈ L. With →∗
L we denote the reflexive and transitive closure of →L.

The set of intruder rules we consider in this paper is listed in Table 1. In this table, a, b denote (arbitrary)
messages, K is an element of Keys, and E is a finite set of messages (considered as multiset).
We emphasize that the notion intruder rule will always refer to the rules listed in Table 1. For now, there

may be any set of guess rules of the kind shown in Table 1, later we will consider certain classes of guess rules,
namely oracle rules.
The intruder rules are denoted as shown in Table 1. With Lod(a) and Loc(a) we denote (finite or infinite)

sets of guess rules. For uniformity, we therefore consider Lp1(〈a, b〉), . . . , Lsd({a}sb) and Lc(〈a, b〉), . . . , Lc({a}sb)
as singletons. Note that, even if there are no guess rules, the number of decomposition and composition rules is
always infinite since there are infinitely many messages a, b.
We further group the intruder rules as follows. In the following unions, a ranges over all messages.

� Ld(t) := Lp1(t) ∪ Lp2(t) ∪ Lad(t) ∪ Lsd(t) for every message t. In case, for instance, Lp1(t) is not defined,
i.e., the head symbol of t is not a pair, then Lp1(t) = ∅; analogously for the other rule sets,

� Ld :=
⋃

a Ld(a), Lc :=
⋃

a Lc(a), Lod :=
⋃

a Lod(a), Loc :=
⋃

a Loc(a),

� Lo(t) := Loc(t) ∪ Lod(t), Lo := Loc ∪ Lod,

� Ld(t) is the set of all decomposition t-rules in Table 1, i.e., all t-rule in the left column of the table,

� Lc(t) is the set of all composition t-rules in Table 1.

� Ld :=
⋃

a Ld(a), Lc :=
⋃

a Lc(a), and L := Ld ∪ Lc.

Note that L denotes the (infinite) set of all intruder rules we consider here. The set of messages the intruder can
derive from a (finite) set E of messages is:

forge(E) :=
⋃
{E′ | E →∗

L E′}.

From the definition of intruder rules in Table 1 it immediately follows:

RR n° 4697



8 Chevalier & Küsters & Rusinowitch & Turuani

Decomposition rules Composition rules
Pair Lp1(〈a, b〉): 〈a, b〉 → a Lc(〈a, b〉): a, b→ 〈a, b〉

Lp2(〈a, b〉): 〈a, b〉 → b
Asymmetric Lad({a}pK): {a}pK , K−1 → a Lc({a}pK): a, K → {a}pK
Symmetric Lsd({a}sb): {a}sb, b→ a Lc({a}sb): a, b→ {a}sb

Guess Lod(a): E → a Loc(a): E → a
with a subterm of E and E normalized. with E, a normalized.

Table 1: Intruder Rules

Lemma 2 If E is a normalized set of messages, then forge(E) is normalized.

The lemma says that if an intruder only sees normalized messages, then he only creates normalized messages.
Intruders should be modeled in such a way that they cannot distinguish between equivalent messages since if one
thinks of, for instance, the message xor(a, a, b), which is equivalent to b, as a bit string obtained by “XORing”
the bit strings a, a, and b, then this bit string is simply b. Therefore, in what follows we always assume that the
intruder’s knowledge consists of a set of normalized messages, where every single normalized message in this set
can be seen as a representative of its equivalence class.
We are now prepared to define attacks. In an attack on a protocol P , the intruder (nondeterministically)

chooses some execution order for P and then tries to produce input messages for the protocol rules. These input
messages are derived from the intruder’s initial knowledge and the output messages produced by executing the
protocol rules. The aim of the intruder is to derive the message Secret. If different sessions of a protocol running
interleaved shall be analysed, then these sessions must be encoded into the protocol P . This is the standard
approach when protocols are analysed w.r.t. a bounded number of sessions, see, for instance, [21].

Definition 2 Let P = ({R′
ι ⇒ S′

ι | ι ∈ I}, <I , S0) be a protocol. Then an attack on P is a tuple (π, σ) where
π is an execution order on P and σ is a normalized ground substitution of the variables occurring in P such
that pRiσq ∈ forge(pS0, S1σ, ..., Si−1σq) for every i ∈ {1, . . . , k} where k is the size of π, Ri := R′

π−1(i), and
Si := S′

π−1(i) and such that Secret ∈ forge(pS0, S1σ, ..., Skσq).

Due to Lemma 1, it does not matter whether, in the above definition, σ is normalized or not. Also note that
Lemma 2 implies: pforge(pS0, S1σ, ..., Si−1σq)q = forge(pS0, S1σ, ..., Si−1σq).
The decision problem we are interested in is the following set of protocols:

Insecure := {P | there exists an attack on P}.

3.4 Oracle Rules

Oracle rules are guess rules which satisfy certain conditions. To define these rules, we first need some new notions.
A derivation D of length n, n ≥ 0, is a sequence of steps of the form E →L1 E, t1 →L2 · · · →Ln E, t1, . . . , tn

with a finite set of messagesE, messages t1, . . . , tn, intruder rules Li ∈ L, such that E, t1, . . . , ti−1 →Li E, t1, . . . , ti
and ti 6∈ E ∪ {t1, . . . , ti−1}, for every i ∈ {1, . . . , n}. The rule Li is called the ith rule in D and the step
E, t1, . . . , ti−1 →Li E, t1, . . . , ti is called the ith step in D. We write L ∈ D to say that L ∈ {L1, . . . , Ln}. If S is
a set of intruder rules, then we write S /∈ D, to say S ∩{L1, . . . , Ln} = ∅. The message tn is called the goal of D.
We also need well formed derivations which are derivations where every message generated by an intermediate

step in the derivation either occurs in the goal or in the initial set of messages.

Definition 3 Let D = E →L1 . . . →Ln E′ be a derivation with goal t. Then, D is well formed if for every
L ∈ D and any t′: L ∈ Lc(t′) implies t′ ∈ Sub(E, t), and L ∈ Ld(t′) implies t′ ∈ Sub(E).

INRIA



An NP Decision Procedure for Protocol Insecurity with XOR 9

We can now define oracle rules. Condition 1. in the following definition will allow us to bound the length
of derivations. The remaining conditions are later used to bound the size of the substitution σ of an attack:
Condition 3. restricts the kind of output an Loc rule can produce. Condition 2. and 4. will allow us to replace a
subterm u in σ, composed by the intruder, by a smaller message.

Definition 4 Let Lo = Loc ∪ Lod be a (finite or infinite) set of guess rules, where Loc and Lod denote disjoint
sets of composition and decomposition guess rules, respectively. Then, Lo is a set of oracle rules (w.r.t. Lc ∪ Ld

as defined above) iff:

1. For every message t, if t ∈ forge(E), then there exists a well formed derivation from E with goal t.

2. If F →Loc(t) F, t and F, t →Ld(t) F, t, a, then there exists a derivation D from F with goal a such that
Ld(t) 6∈ D.

3. For every rule F → s ∈ Loc(s), every proper subterm of s is a subterm of F .

4. For every non atomic message u, there exists a normalized message ε(u) with |ε(u)| < |puq| such that: For
every finite set F of messages with 0 ∈ F , if F \u→Lc(u) F , i.e., u can be composed from F \u in one step,
then F →Lo(t) F, t implies pt[u← ε(u)]q ∈ forge(pF [u← ε(u)]q) and ε(u) ∈ forge(F ) for every message t.

4 Main Theorem and the NP Decision Algorithm

We now state the main theorem of this paper. In Section 6, this theorem will allow us to show that Insecure is
in NP in presence of an intruder that uses XOR rules and prefix rules, respectively.

Theorem 1 Let Lo be a set of oracle rules. If E →Lo E, t can be checked in polynomial time in |E, t| for every
finite set E of messages and message t, then Insecure is in NP.

The NP decision procedure is given in Figure 1. We use the following notation and terminology. If Σ is a finite
alphabet, then Σ∗ shall denote the set of finite words over Σ. Let S denote a set of sets of intruder rules and
w ∈ S∗ with w = L1 · · · Ln, Li ∈ S. Then, →w is the composition →L1 ◦ · · · ◦ →Ln ; if w is the empty word, →w

is the identity relation. For some binary relation → on finite sets of messages, we say that → generates t from E
if there exists an E′ such that E → E′ and t ∈ E′.
In (1) and (2) of the procedure, an attack (π, σ) is guessed of size linearly bounded in n. Then, it is checked

whether this is in fact an attack. To this purpose, according to Definition 2, one has to check that pRiσq ∈
forge(pS0, S1σ, ..., Si−1σq) for every i ∈ {1, . . . , k} and Secret ∈ forge(pS0, S1σ, ..., Skσq). This is done by guessing
words li of length ≤ 5n over the alphabet {Lo(t), Ld(t), Lc(t) | t normalized and |t| ≤ 5n}. Note that every
element Lo(t), Ld(t), and Lc(t) in this alphabet can be represented in size linearly bounded in the size of P .
Given the li’s, one has to check that according to li the desired messages can actually be generated. This can
be done in polynomial time, since, by assumption, E →Lo E, t can be tested in polynomial time in |E, t| and for
E →Ld

E, t and E →Lc E, t this is obvious. Thus, the procedure depicted in Figure 1 is in fact an NP procedure,
and clearly, it is sound.
Now, to show that this procedure is also complete it obviously suffices to prove the following:

1. For every normalized finite set E of messages and normalized message t with t ∈ forge(E), there exists a
derivation D from E with goal t of length bounded by |E, t| such that for every rule L ∈ D if L is a t′-rule
than |t′| ≤ |E, t|.

2. If there exists an attack on P , then there exists an attack (π, σ) such that
∣∣pRiσ, S0σ, . . . , Si−1σq

∣∣ ≤ 5 · |P |
and

∣∣pSecret, S0σ, . . . , Skσq
∣∣ ≤ 5 · |P | for every i ∈ {1, . . . , k} (see Corollary 1).

The proof of the first statement is obvious: If t ∈ forge(E), then Definition 4 implies that there exists a well
formed derivation D = E →L1 E, t1 → . . . →Lr E, t1, .., tr, with tr = t. In particular, ti ∈ Sub(E, t) for every
i ∈ {1, . . . , k}. By definition of derivations, all ti are different. It follows r ≤ |t, E|.
A proof sketch of the second statement is given in the following section.
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10 Chevalier & Küsters & Rusinowitch & Turuani

Input: protocol P = ({Rι ⇒ Sι, ι ∈ I}, <I , S0) with n = |P |, V = V ar(P ).

1. Guess an execution order π for P . Let k be the size of π. Let Ri = R′
π−1(i) and Si = S′

π−1(i) for
i ∈ {1, . . . , k}

2. Guess a normalized ground substitution σ such that |σ(x)| ≤ 4n for all x ∈ V .

3. For all i ∈ {1, . . . , k+1} guess a word li ∈ {Lo(t), Ld(t), Lc(t) | t normalized and |t| ≤ 5n}∗ of length
≤ 5n.

4. For all i ∈ {1, . . . , k}, check whether →li generates pRiσq from p{Sjσ | j < i} ∪ {S0}q.

5. Check that →lk+1 generates Secret from p{Sjσ | j < k + 1} ∪ {S0}q.

6. If each check is successful, then answer “yes”, and otherwise, “no”.

Figure 1: NP Decision Procedure for Insecurity

5 Linear Bounds on Attacks

To show Point 2. at the end of Section 4, we consider an attack of minimal size, a so-called normal attack, and
show that this attack has the desired property.
In what follows, we assume that Lo is a set of oracle rules. If t ∈ forge(E), we denote by Derivt(E) a well

formed derivation from E with goal t (chosen arbitrarily among the possible ones). Note that there always exists
such a derivation since the definition of oracle rules ensures that a well formed derivation exists iff a derivation
exists.
To define normal attacks, we need an ordering on multisets: We compare finite multisets on IN by extending

the usual ordering on IN as follows: For finite multisets M and N on IN define M >> N iff i) M 6= N and ii) for
every x ∈ IN , whenever N(x) > M(x), thenM(y) > N(y) for some y > x. For instance, {3, 1, 1, 1} >> {2, 2, 2, 1}.

Definition 5 Let P = ({Rι ⇒ Sι, ι ∈ I}, <I , S0) be a protocol. An attack (π, σ) is normal if the multiset of
nonnegative integers |σ| := {|σ(x)| | x ∈ V ar(P )} is minimal w.r.t. >>.

Clearly, if there is an attack, there is a normal attack since >> is a well-founded ordering on finite multisets of
nonnegative integers. Note also that a normal attack is not necessarily unique.
In Lemma 7 we prove, using Lemma 3 to 6, that normal attacks can always be constructed by linking subterms

that are initially occurring in the problem specification. This will allow us to bound the size of attacks as desired
(Theorem 2 and Corollary 1).
Let P = ({Rι ⇒ Sι, ι ∈ I}, <I , S0) be a protocol such that (π, σ) is an attack on P . Let k be the size of π. We

define Ri = R′
π−1(i) and Si = S′

π−1(i) for i ∈ {1, . . . , k}, and SP = Sub({Rj|j ∈ {1, . . . , k}}∪{Sj|j ∈ {0, . . . , k}}).
We recall that Atoms ⊆ SP . Let V ar = V ar(SP ), the set of variables occurring in the protocol.

Definition 6 Let t and t′ be two terms and θ a ground substitution. Then, t is a θ-match of t′, denoted t vθ t′,
if t and t′ are standard, t is not a variable, and ptθq = t′.

The proof of the following lemma can be found in Appendix 8.1.

Lemma 3 If (π, σ) is a normal attack, then for all i ∈ {1, . . . , k}, x ∈ V ar(Ri), and standard subterms s of
σ(x), there exists j ≤ i such that s ∈ Sub(pRjσq) or there exists t ∈ SP with t vσ s.

The proof of the following lemma is trivial.
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An NP Decision Procedure for Protocol Insecurity with XOR 11

Lemma 4 For every normalized finite set E of messages, message t, and t-rule L, if E →L E, t then all proper
subterms of t are subterms of E.

Proof. For L ∈ Lod use the definition of decomposition guess rules, for L ∈ Loc use Definition 4, (3), and for
L ∈ Ld ∪ Lc the statement is obvious. �
The subsequent lemma will allow us to replace certain subterms occurring in a substitution of an attack by smaller
terms (see Appendix 8.1 for the proof).

Lemma 5 Let E and F be two sets of normalized messages such that 0 ∈ E ∪ F . Let t ∈ forge(E, F ) and
s ∈ forge(E) non atomic such that s /∈ Sub(E) and there exists a derivation Ds from E with goal s ending with
an application of a rule in Lc. Finally, let δ be the replacement [s← ε(s)], where ε(s) is defined as in Definition 4.
Then, ptδq ∈ forge(pEδ, Fδq).

The next lemma will be used to remove one application of the normalization function.

Lemma 6 Let σ be a normalized ground substitution, E a set of normalized terms, s a normalized standard non
atomic term, and δ the replacement [s ← ε(s)]. Let σ′ = σδ. If there is no standard subterm t of E such that
t vσ s, then pEσ′q = ppEσqδq.

The main lemma, which shows that a substitution of a normal attack can be build up from subterms of terms
occurring in P , is proved next.

Lemma 7 Given a normal attack (π, σ), for all variables x and for all factors vx of σ(x), there exists t ∈ SP
such that t vσ vx.

Proof. Assume that (*): For every t, t vσ vx implies t 6∈ SP . We will lead this to a contradiction. Since
Atoms ⊆ SP , we have vx 6∈ Atoms, and since vx is a factor of σ(x), vx is standard. By Lemma 3 and (*), there
exists j such that vx ∈ Sub(pRjσq). Let Nx be minimal among the possible j. If vx ∈ Sub(pSiσq) for some i, (*)
implies that there exists y ∈ V ar(Si) with vx ∈ Sub(σ(y)). Then, by Definition 1, (2) there exists Ri′ , i

′ ≤ i such
that y ∈ V ar(Ri′ ). Thus, Lemma 3 and (*) imply that there exists j ≤ i with vx ∈ Sub(pRjσq). Note also that
vx 6∈ Sub(S0) since otherwise vx ∈ SP . Now, the minimality of Nx yields i ≥ Nx. Summarizing, we have: vx is
not a subterm of E0 = pS0σ, . . . , SNx−1σq, and vx is a subterm of pRNxσq. Let us show now the following claim:

Claim. vx ∈ forge(E0).
Proof of the claim. Let DerivpRNxσq(E0) be E0 →L1 E1... →Ln En. There exists a smallest i 6= 0 such that

vx ∈ Sub(Ei) since vx is subterm of pRNxσq ∈ En. If vx is a proper subterm of some s ∈ Ei, Lemma 4 implies
vx ∈ Sub(Ei−1), a contradiction to the minimality of i. We conclude that vx ∈ Ei, and therefore, vx ∈ forge(E0).
This finishes the proof of the claim.

Let us define the replacement δ = [vx ← ε(vx)] where ε(vx) is defined as in Definition 4. Since (π, σ) is an attack,
for all j, we have:

pRjσq ∈ forge(pS0σ, . . . , Sj−1σq)
We distinguish two cases:

� Assume j < Nx. By minimality of Nx, vx is neither a subterm of pRjσq nor a subterm of pS0σ, . . . , Sj−1σq.
Hence, with pRjσq ∈ forge(pS0σ, . . . , Sj−1σq) it follows ppRjσqδq ∈ forge(ppS0σqδ, . . . , pSj−1σqδq).

� Assume j ≥ Nx. The last rule in Derivvx(pS0σ, . . . , SNx−1σq) is in Lc since otherwise vx is a subterm
of pS0σ, . . . , SNx−1σq. Now, with E = E0 and F = pSNxσ, . . . , Sj−1σq, Lemma 5 implies ppRjσqδq ∈
forge(ppS0σqδ, . . . pSj−1σqδq).

RR n° 4697



12 Chevalier & Küsters & Rusinowitch & Turuani

Thus, ppRjσqδq ∈ forge(ppS0σqδ, . . . pSj−1σqδq) in both cases. Now, with E = {S0, . . . , Sj−1} and E = {Rj},
respectively, (*) and Lemma 6 imply for all j:

pRjσ
′q ∈ forge(pS0σ

′, . . . , Sj−1σ
′q)

where σ′ = σδ. Hence, (π, σ′) is an attack. But since σ′ is obtained from σ by replacing vx by a strictly smaller
message, namely ε(vx), we obtain |σ′| << |σ|, a contradiction to the assumption that (π, σ) is a normal attack. �
We can now use this lemma to bound the size of every σ(x):

Theorem 2 For every protocol P , if (π, σ) is a normal attack on P , then |{σ(x) |x ∈ V ar}| ≤ 4 · |P |, where |P |
is the size of P as defined in Section 3.2.

Proof. Let F = {s | ∃x ∈ V ar, s ∈ Factor(σ(x))} For every s in the set F we introduce a new variable xs and we
define a substitution σ′ such that σ′(xs) = s (and other variables are mapped to themselves). Let V ar′ = {xs}s∈F .
The cardinality of V ar′ can be bounded as follows:

Claim. |V ar′| ≤ |P |
Proof of the claim. We define a function f : V ar′ → SP as follows. Due to Lemma 7, for every y ∈ V ar′, there
exists ty ∈ SP such that ty 6∈ V ar and ptyσq = σ′(y). We define f(y) := ty. The function f is injective since
ts = ts′ implies ptsσq = pts′σq. Thus, |V ar′| ≤ |SP | = |P |, which concludes the proof of the claim.
Let S = F ∪{σ(x) |x ∈ V ar}. For all x ∈ V ar let σ′′(x) = pxor(xs1 , . . . , xsm)q with {s1, . . . , sm} = Factor(σ(x)).
Note that, since the s’s are normalized standard messages, σ(x) = σ′(σ′′(x)). Let δ be the composition of all
replacements [s← xs], s ∈ F (replacing larger terms before), and let tϕ := (tσ′′)δ. It is not hard to see that that
ptϕqσ′ = ptσq.
We are now going to bound |S|. Given a set of normalized messages Z, let

VZ = {x ∈ V ar |σ(x) non standard and σ(x) /∈ Z},
PZ = {ptϕq | t ∈ SP and ptσq /∈ Z}.

We note that Z ⊆ Z ′ implies VZ′ ⊆ VZ and PZ′ ⊆ PZ , and that VS = ∅.
Claim. |S ∪ PS | ≤ |V∅ ∪ P∅|.
Proof of the claim. We construct a sequence of sets S = Z1 ⊃ Z2 ⊃ · · · ⊃ Zn = ∅ with Zi+1 = Zi \ vi where
vi ∈ Zi is a maximal message in Zi (w.r.t. the subterm ordering). Note that n− 1 is the cardinality of S and for
every t ∈ Zi+1, vi /∈ Factor(t). For every i ∈ {1, . . . , n} we prove

|Zi ∪ VZi ∪ PZi | ≤ |Zi+1 ∪ VZi+1 ∪ PZi+1 |

which concludes the proof of the claim. At step i, either of two cases may arise when removing v = vi ∈ Zi from
Zi:

� There exists x ∈ V ar with v = σ(x) non standard. Then,

|Zi∪VZi ∪ PZi |
≤ |Zi \ v ∪ {x} ∪ Factor(σ(x)) ∪ VZi ∪ PZi |
≤

∣∣Zi+1 ∪ VZi+1 ∪ PZi+1

∣∣

since x /∈ Zi ∪ VZi , x ∈ VZi+1 , and Factor(σ(x)) ⊆ Zi \ v = Zi+1.

� v∈F and there exists t∈SP such that t vσ v. Let t′ = ptϕq. We have t′σ′ = ptσq = v. Then,

|Zi ∪ VZi ∪ PZi | ≤
∣∣Zi+1 ∪ VZi+1 ∪ {t′} ∪ PZi

∣∣
≤

∣∣Zi+1 ∪ VZi+1 ∪ PZi+1

∣∣

since σ′(y)∈ Zi\ v = Zi+1 for every y ∈ V ar(t′) and PZi+1 = PZi ∪ {t′}.
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This proves the claim. Using the claim and

|P∅| =
∣∣pSPϕq

∣∣ ≤ |SPϕ| ≤ |SP |+ |V arϕ| , and
|V arϕ| = |V arσ′′| ≤ |V ar|+ |V ar′| ,

we obtain
|{σ(x) |x ∈ V ar}| ≤ |S| ≤ |S ∪ PS | ≤ |V∅ ∪ P∅|

≤ 2 · |V ar| + |SP |+ |V ar′| ≤ 4 · |P |
�

From this, statement 2. at the end of Section 4 easily follows:

Corollary 1 For every protocol P and normal attack (π, σ) on P , and for every i ∈ {1, . . . , k} with Sj and Rj

as defined above :
|Riσ, S0σ, . . . , Si−1σ| ≤ 5 · |P | and |Secret, S0σ, . . . , Skσ| ≤ 5 · |P |

6 Extending the Dolev-Yao Intruder by Different Oracle Rules

We extend the ability of the standard Dolev-Yao intruder beyond the perfect encryption hypothesis by considering
two specific sets of oracle rules. The first set are the XOR rules which allow the intruder to make use of the XOR
operator. We then consider, what we call, prefix rules which allow the intruder to exploit certain properties of
encryption based on block ciphers.

6.1 XOR Rules

The XOR rules allow the intruder to sum several messages with the xor operator. The result of this sum is being
normalized.

Definition 7 We define Lo = Loc ∪ Lod to be the set of XOR rules where

� Loc is the set of rules of the form {t1, . . . , tn} → pxor(t1, . . . , tn)q with {t1, . . . , tn} a non-empty finite
multiset of normalized messages such that pxor(t1, . . . , tn)q is non-standard, and

� Lod is the set of rules of the form {t1, . . . , tn} → pxor(t1, . . . , tn)q with {t1, . . . , tn} a non-empty finite
multiset of normalized messages such that pxor(t1, . . . , tn)q is standard.

We call the intruder using the rules Lo ∪ Lc ∪ Ld the XOR intruder.

Note that the rules in Lod are in fact decomposition guess rules since if pxor(t1, . . . , tn)q is standard, it is a
subterm of t1, . . . , tn.
We also note that the intruder is not more powerful if we allow him to derive non-normalized messages. More

precisely, assume that Le is the set of rules of the form {t1, . . . , tn} → s with s =XOR xor(t1, . . . , tn) (not
necessarily normalized). Let forgee(E) denote the set of messages the intruder can derive from E with the rules
Le, Ld, and Lc. Then, it easily follows by induction on the length of derivations:

Proposition 1 For every message term t and set of messages E (both not necessarily normalized), t ∈ forge′(E)
implies ptq ∈ forge(pEq).

Therefore, we can restrict the intruder to work only on normalized messages and to produce only normalized
messages.
Before showing that the XOR rules are oracle rules, we illustrate that the XOR intruder can perform the

attack informally described in Section 2.
Formally, the protocol underlying the attack is described as follows: The initial intruder knowledge is S0 =

{0, I, ki, ki′, ka, kb}, with Atoms = {na, a, I, b, ka, kb, ki, ki−1, 0, secret} the set of atoms (in Section 2 the secret
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14 Chevalier & Küsters & Rusinowitch & Turuani

(a, 1) : 0 ⇒ {〈na, a〉}pki

(a, 2) : {〈xsecret,xor(na, I)〉}pka ⇒ {xsecret}pki

(b, 1) : {〈xna, a〉}pkb ⇒ {〈secret,xor(xna, b)〉}pka

– {〈xor(na, b, I), a〉}pkb ∈ forge(0, I, ki, ki′, ka, kb, {〈na, a〉}pki);

– {〈secret,xor(na, I)〉}pka ∈ forge(0, I, ki, ki′, ka, kb, {〈na, a〉}pki, p{〈secret,xor(xor(na, b, I), b)〉}pka
q);

– secret ∈ forge(0, I, ki, ki′, ka, kb, {〈na, a〉}pki, p{〈secret,xor(xor(na, b, I), b)〉}pka
q, {secret}pki).

Figure 2: An attack on the modified NSL protocol

was NB). The protocol rules are depicted at the top of Figure 2. We have I = {(a, 1), (a, 2), (b, 1)} and
<I := {((a, 1), (a, 2))}.
When using a perfect encryption model, there is no attack on this instance of the protocol since the intruder

is not able to forge {secret,xor(na1, I)}pka without the oracle rules.
On the other hand, when using these rules, (π, σ) with the execution order π = {(a, 1) 7→ 0, (b, 1) 7→ 1, (a, 2) 7→

2} and the substitution σ with σ(xna) = xor(na, b, I) and σ(xsecret) = secret is an attack on this protocol. In
fact, it is easy to check the steps depicted at the bottom of Figure 2.
We can show (see details in Appendix 8.2):

Proposition 2 The set Lo of XOR rules is a set of oracle rules.

Also, we can show that XOR rules can be applied in polynomial time.

Proposition 3 Let Lo be the set of XOR rules. Then, the problem whether E →Lo(t) E, t, for a given finite
normalized set E of messages and a normalized message t, can be decided in polynomial time with respect to
|E, t|.

As an immediate consequence of Theorem 1 we obtain that Insecure with XOR rules is in NP. NP-hardness can
be obtained as in [21]. Altogether this yields:

Theorem 3 Insecure w.r.t. the XOR intruder is an NP-complete problem.

6.2 Prefix Rules

As another instance of oracles rules, we consider what we call prefix rules. These rules allow the intruder to
exploit certain properties of block encryption algorithms, based for example on cipher block chaining (CBC).
Using Theorem 1, again we can show that Insecure is an NP-complete problem. In Appendix 8.3 an example
that illustrates the additional power of the intruder is provided.
Throughout this section, we assume that terms do not contain the xor operator and that the normalization

function p·q is the identity function. It is easy to verify that Theorem 1 also holds in this simplified setting.

Definition 8 We define Lo = Loc ∪ Lod to be the set of prefix rules where Lod = ∅ and Loc consists of intruder
rules of the form

{〈〈. . . 〈〈M, M1〉 , M2〉 , . . .〉 , Mn〉}sK →Loc {M}
s
K

for any normalized messages K, M, M1, . . . , Mn, (n ≥ 1). We call the intruder using the rule Lo ∪Lc ∪Ld prefix
intruder.

We can prove that these prefix rules are oracle rules that can be checked in polynomial time and then conclude
that Insecure for an intruder equipped with prefix rules is NP-complete by Theorem 1.
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Proposition 4 The set Lo of prefix rules is a set of oracle rules.

Obviously, E →Lc E, t can be decided in polynomial time in |E, t|. Also, analogously to the proof in [21] one can
show that Insecure is NP-hard. Now, by Theorem 1, it follows:

Theorem 4 Insecure w.r.t. the prefix intruder is an NP-complete problem.

7 Conclusion

We have shown that when extending the standard Dolev Yao intruder by rules for XORing messages the protocol
insecurity problem remains NP-complete for finite sessions. To our knowledge there is no published result on
deciding insecurity without the perfect encryption hypothesis. Here we have only considered insecurity as failure
of secrecy. However, we believe that our result holds also for other properties (e.g. authentification) that can be
reduced to reachability problems in our model. Future work includes applying our approach to different intruder
rules and to algebraic laws such as the ones relying on RSA and Diffie-Hellman encryption techniques.
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8 Appendix

8.1 Bounds on Attacks

We give the remaining proofs for the lemmas needed in order to derive polynomial bounds on normal attacks

Lemma 3 Given a normal attack (π, σ) on P , for all i ∈ {1, . . . , k}, x ∈ V ar(Ri), and s standard subterm of
σ(x), either there exists j ≤ i such that s ∈ Sub(pRjσq) or there exists t ∈ SP with t vσ s.

Proof. Assume that there exists i ∈ {1, . . . , k}, x ∈ V ar(Ri), and s standard subterm of σ(x) such that for all
j ≤ i: s /∈ Sub(pRjσq). Define

j = min{i′ | y ∈ V ar(Ri′ ) and s subterm of σ(y)}

and let y be a variable of Rj such that s is a subterm of σ(y). Note that j ≤ i, and thus, s /∈ Sub(pRjσq). Let
Sy,s be the set of subterms t of Rj such that y ∈ V ar(t) and s is a subterm of ptσq. This subset contains y, and
thus, is not empty. Let t ∈ Sy,s be maximal in Sy,s w.r.t. the subterm ordering. We know that t 6= Rj . Let
r ∈ Sub(Rj) with t ∈ Sub(r) and there exists no r′ ∈ Sub(r) with t ∈ Sub(r′). Then, since s /∈ Sub(prσq), r
must be of the form xor(t, t1, . . . , tn) with t, t1, . . . , tn standard (since Rj is normalized) and n ≥ 1 such that
there exists i ∈ {1, . . . , n}, say i = 1, with ptσq = pt1σq (s has been eliminated by normalization). In particular,
s ∈ Sub(pt1σq).
Let Ms,t1 be the set of subterms t′ of t1 such that s ∈ Sub(pt′σq), and let ts be minimal in Ms,t1 w.r.t. the

subterm ordering. By Definition 1, (3), and since y first appears in Rj , we have that for all z ∈ V ar(t1), there
exists jz < j with z ∈ V ar(Rjz ). Hence, by minimality of j, s is not a subterm of {σ(z)|z ∈ V ar(t1))}, and thus,
ts /∈ V ar. Thus, by minimality of ts, ptsσq = s. Moreover, ts is standard by minimality (otherwise, since s is
standard, there would be a factor t′s of ts such that s ∈ Sub(pt′sσq)). Together, this implies ts vσ s. �

Lemma 4 For every normalized finite set E of messages, message t, and t-rule L, if E →L E, t then all proper
subterms of t are subterms of E.

Proof. For L ∈ Lod use the definition of decomposition guess rules, for L ∈ Loc use Definition 4, (3), and for
L ∈ Ld ∪ Lc this is obvious. �
This Lemma 4 will be used to prove Lemma 5. Roughly speaking, the following Lemma 8, to be also used in

the proof of Lemma 5, states that if a term γ can be forged from a set of messages E by composing with Lc, say
composing two messages γ1 and γ2 both derived from E, then it is always possible to avoid decomposing γ with
Ld in a derivation from E with goal t for some t since such a decomposition would generate a message γ1 or γ2

that can be derived from E in another way.
First, we need some notation: If D1 = E1 → . . .→ F1 and D2 = E2 → . . .→ F2 are two derivations such that

E2 ⊆ F1, then D = D1.D2 is defined as the concatenation of the steps of D1 and the ones in D2. In addition, to
obtain a derivation, we delete in D the steps from D2 that generate terms already present in F1.

Lemma 8 Let t ∈ forge(E) and γ ∈ forge(E) be given with a derivation Dγ from E ending with an application
of a rule in Lc. Then, there is a derivation D′ from E with goal t satisfying Ld(γ) 6∈ D′.

Proof. By definition of a derivation, Ld(γ) 6∈ Dγ . Let D be Dγ without its last rule, i.e., Dγ is D followed by
some L ∈ Lc. Define D′′ = D.Derivt(E) = D.D′′′ — D′′′ is obtained from Derivet(E) by removing redundant
steps. Note that D′′ is a derivation with goal t. We distinguish two cases:

� Assume L = Lc(γ). Then Ld(γ) /∈ D′′ since the (two) direct subterms of γ are created in D, and thus,
Ld(γ) /∈ D′′. In other words, D′ = D′′ is the derivation we are looking for.

� Assume L = Loc(γ). Then, if Ld(γ) /∈ D′′ setting D′ = D′′ we are done. Otherwise, let F1 be the final set of
messages of D. Now, Definition 4, (2) implies that every step in D′′′ of the form F1, F2, γ →Ld(γ) F1, F2, γ, β
can be replaced by a derivation from F1, F2 with goal β that does not contain rules from Ld(γ). Replacing
steps in this way and then removing redundant steps yields the derivation D′ we are looking for.
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�

Lemma 5 Let E and F be two sets of normalized messages such that 0 ∈ E ∪ F . Let t ∈ forge(E, F ) and
s ∈ forge(E) non atomic such that s /∈ Sub(E) and there exists a derivation Ds from E with goal s ending with
an application of a rule in Lc. Finally, let δ be the replacement [s← ε(s)], where ε(s) is defined as in Definition 4.
Then, ptδq ∈ forge(pEδ, Fδq).

Proof. Let Ds = E →L1 E, t1 →L2 . . . →Lp E, t1, .., tp →Lc(s) E, t1, .., tp, s. By induction on i and using
Lemma 4, it follows that all proper subterms of ti are subterms of E, t1, .., ti−1. Using s /∈ Sub(E) and s 6= ti,
this implies s /∈ Sub(ti), and thus, ptiδq = ti (note that ti is normalized) and ptiδq ∈ forge(pEδq), for every
i ∈ {1, . . . , p}. Thanks to Lemma 8, there exists a derivation D = E, F, t1, .., tp →Lp+1 E, F, t1, .., tp+1 → . . .→Ln

E, F, t1, .., tn with tn = t and Li /∈ Ld(s), for every i ∈ {p + 1, . . . , n}. We know ptiδq ∈ forge(pEδq), for every
i ∈ {1, . . . , p}. We show by induction on i, p ≤ i ≤ n, that ptiδq ∈ forge(pEδ, Fδq). For i = p this is by
Definition 4, (4). Assume that i > p and the property is true for all j < i. Then we have three cases:

� If Li = Lc(〈a, b〉), then either ti = s, and thus, using the definition of ε(s), ptiδq = ε(s) ∈ forge(pEδ, Fδq),
or ptiδq =

〈paδq, pbδq
〉
∈ forge(pEδ, Fδq) since {a, b} ⊆ E ∪F ∪ {t1, .., ti−1}. Analogously for {a}sb and {a}

p
K .

� If Li = Lp1(〈ti, a〉), then s 6= 〈ti, a〉 since Li /∈ Ld(s). Therefore, ptiδq ∈ forge(p〈ti, a〉 δq) ⊆ forge(pEδ, Fδq)
since 〈ti, a〉 ∈ E ∪ F ∪ {t1, .., ti−1}. Analogously for Lp2, Lsd, and Lad.

� If Li ∈ Loc ∪ Lod, then thanks to Definition 4, (4), we have: ptiδq ∈ forge(pEδ, Fδ, t1δ, .., ti−1δq)
and thus: ptiδq ∈ forge(pEδ, Fδq).

For i = n, this gives us ptδq ∈ forge(pEδ, Fδq). �

Lemma 6 Let σ be a normalized ground substitution, E a set of normalized terms, s a normalized standard non
atomic term, and δ the replacement [s ← ε(s)]. Let σ′ = σδ. If there is no standard subterm t of E such that
t vσ s, then pEσ′q = ppEσqδq.

Proof. Since there is no standard subterm t′ of E such that t′ vσ s, we have (Eσ)δ = E(σδ) and therefore
pEσ′q = p(Eσ)δq. Let us prove, by induction on the structure of terms, that for all t ∈ Sub(E), we have
ptσ′q = pptσqδq. This will conclude the proof of the lemma.

� If t ∈ Atoms, then t 6= s by assumption. Thus, pptσqδq = t = ptσ′q.

� If t ∈ V ar, then ptσq = tσ, and therefore, ptσ′q = p(tσ)δq = pptσqδq.

� If t = 〈v, w〉, we have s 6=
〈pvσq, pwσq

〉
since otherwise t vσ s, and ptσ′q =

〈pvσ′q, pwσ′q〉
. By induction,

this gives ptσ′q =
〈ppvσqδq, ppwσqδq

〉
, and therefore, ptσ′q = pp〈vσ, wσ〉qδq = pptσqδq since s 6= ptσq. The cases

t = {u}sv and t = {u}pK are similar.

� If t = xor(T ), where T is a multiset of standard terms, we have:

ptσ′q = pxor({t′σ′ | t′ ∈ T })q
= pxor({pt′σ′q | t′ ∈ T })q
= pxor({ppt′σqδq | t′ ∈ T })q (by induction)
= pxor({pt′σqδ | t′ ∈ T })q
= pxor({pt′σq | t′ ∈ T })δq
= pptσqδq

�
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8.2 XOR rules

We now prove that the XOR rules form a set of oracle rules. We start to show Definition 4, (1). To do so, we
first prove a sufficient condition for a derivation to be well formed.

Lemma 9 Let D = E0 →L1 . . . En−1 →Ln En be a derivation with goal g such that:

1. For every j with Ej−1 →Lj Ej−1, t the jth step in D and Lj ∈ Ld(t), there exists t′ ∈ Ej−1 such that t is a
subterm of t′ and either t′ ∈ E0 or there exists i with i < j and Li ∈ Ld(t′).

2. For every i < n and t with Li ∈ Lc(t), there exists j with i < j such that Lj is a t′-rule and t ∈ Sub({t′}∪E).

Then, D is a well formed derivation with goal g.

Proof. From (1) it immediately follows by induction on i ∈ {1, . . . , n} that Li ∈ Ld(t) implies t ∈ Sub(E0) for
every message t.
Using (2), we prove by induction on n − i that for all i ∈ {1, . . . , n}, Li ∈ Lc(t) implies t ∈ Sub(E0, g). If

n − i = 0, then t = g and therefore t ∈ Sub(E0, g). For the induction step, (2) implies that there exists j > i
such that Lj is a t′-rule and t ∈ Sub(E0, t

′). If Lj ∈ Ld(t′), then t′ ∈ Sub(E0) (see above). If Lj ∈ Lc(t′), then
by induction t′ ∈ Sub(E0, g), and hence, t ∈ Sub(E0, g). �
Now, we can prove that XOR rules admit well formed derivations.

Proposition 5 For every finite normalized set E of messages and normalized message g, g ∈ forge(E) implies
that there exists a well formed derivation from E with goal g.

Proof. Let E0 = E and D = E0 →L1 . . .→Ln En be a derivation of goal g of minimal length. We prove that D
satisfies (1) and (2) in Lemma 9. We first show:

Claim. If F →Lo(t) F, t→Lo(u) F, t, u, then F →Lo(u) F, u.
Proof of the claim. By definition of xor rules, u is a normalized xor sum of elements in F, t and t is a normalized
xor sum of elements in F . Thus, u is an xor sum of elements in F . Thus, F →Lo(u) F, u. This concludes the
proof of the claim.

By the claim w.l.o.g. we may assume that in D the terms used on the left hand-side of an XOR rules are
not generated by XOR rules. Formally (*): For every i with Li ∈ Lo(t) and Li = F → t, there does not exist
j ∈ {1, . . . , n} such that Lj ∈ Lo(t′) for some t′ ∈ F .
Now, we prove (1) and (2) of Lemma 9:

1. If Lj ∈ Ld(s) ∩ Ld(t), then Li /∈ Loc(s), for all i < j, since rules in Loc do not create standard terms, and
Li /∈ Lc(s), for all i < j, by the definition of derivation (since otherwise t would be in the left-hand side of
Li). Therefore, either s ∈ E or there exists i < j with Li ∈ Ld(s).

If Lj ∈ Lod(t), then t is standard and, by (*) and the definition of Lod, there exists a non standard term
t′ in Ej−1 with t subterm of t′ and such that Loc(t′) /∈ D. If t′ ∈ E, we are done. Otherwise, there exists
i < j such that Li is a t′-rule. Since t′ is non standard, Lj /∈ Lc∪Lod, and by (*), Lj 6∈ Loc. Thus, Lj ∈ Ld.

2. If Li ∈ Lc(t) and i < n, then t is standard, and by minimality of D, there exists j > i such that t belongs
to the left-hand side of Lj . By definition of a derivation, Lj /∈ Ld(t). If Lj ∈ Lc(t′), then t ∈ Sub(t′), and if
Lj ∈ Lo(t′), then since t is standard, either t is a factor of t′, and thus, t ∈ Sub(t′), or there exists t′′ ∈ Ej−1

non standard with t ∈ Sub(t′′) (t is used to simplify t′′). By (*), t′′ was not generated by some rule in Lo.
Since t′′ is non standard it cannot be generated by some rule in Lc. Thus, either t′′ was generated by Ld or
t′′ ∈ E0. In the latter case, we are done. In the former case, 1. implies t′′ ∈ E0 as well.

If Li ∈ Loc(t) and i < n, then (*) implies that t = g or there exists j > i such that Li ∈ Lc(t′) and
t ∈ Sub(t′).

RR n° 4697



20 Chevalier & Küsters & Rusinowitch & Turuani

�
With this we can show:

Proposition 2 The set Lo of XOR rules is a set of oracle rules.

Proof. We check each condition in Definition 4:

1. The first point is a consequence of Proposition 5.

2. No term created with Loc can be decomposed with Ld.

3. For F → s ∈ Loc(s), every proper subterm of s is a subterm of F by the definition of Loc.

4. For every non-atomic message u define ε(u) = 0. Let u be a non-atomic message, F be a set of messages
with 0 ∈ F and t be a message such that F \ u →Lc(u) F and F →Lo(t) F, t. Obviously, ε(u) ∈ forge(F ).
Let δ := [u← 0]. There are three cases:

(a) Either u = t. Then, tδ = 0 ∈ forge(Fδ).

(b) Or u 6= t and u is a pair or an encryption. Then, by the definition of XOR rules one easily verifies

pFδq→Lo(tδ) pFδ, tδ.q

(c) Or u 6= t and u is non standard. In particular, F \ u →Loc(u) F and u = xor(t1, . . . , tn) with
t1, . . . , tn ∈ F \ u. Thus, F \ u →Lo(t) (F \ u), t since if u is needed in the construction of t, then the
terms t1, . . . , tn can be used. Now, it easily follows that pFδq→Lo(tδ) pFδ, tδq.

�
It remains to show that XOR rules can be applied in polynomial time:

Proposition 3 Let Lo be the set of XOR rules. Then, the problem whether E →Lo(t) E, t, for a given finite
normalized set E of messages and a normalized message t, can be decided in polynomial time with respect to
|E, t|.

Proof. Let B be the set of factors of terms in E and S be the factors of t. B and S can be obtained in polynomial
time, and it can be decided in polynomial time whether S ⊆ B.

� If S 6⊆ B, then t cannot be build from E using an XOR rule.

� Otherwise, S ⊆ B. We can represent t by Factor(t) ⊆ B. And this set can be represented as a vector
of length |B| with entries 0 and 1 where an entry indicates whether a message in B belongs to Factor(t)
or not. This vector can be interpreted as an element of the vector space of dimension |B| over the field
with two elements. In the same way the terms in E can be represented. Now, deciding E →Lo(t) E, t is
equivalent to deciding whether the vector representing t can be represented as a linear combination of the
vectors representing the messages in E. This can be done in polynomial time by gaussian elimination.

�

8.3 Prefix rules

8.3.1 Motivation. As an example, we use the Needham-Schroeder symmetric key authentication protocol [18],
which is given as follows:
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1. A→ S : A, B, NA

2. S → A : {NA, B, KAB, {KAB, A}sKBS
}sKAS

3. A→ B : {KAB, A}sKBS

4. B → A : {NB}sKAB

5. A→ B : {NB − 1}sKAB

6. B → A : {Secret}KAB

This protocol is considered to be safe in [7] whereas in [20], a careful analysis of this protocol reveals a flaw
in case encryption is carried out by cipher-block-chaining and all atoms are of the size of a block. Our aim is
automate such analysis by using deduction rules of the shape:

{〈M, M ′〉}K → {M}K .

In this example, and using such deduction rules, the intruder can forge {NA, B}sKAS
from the second message,

i.e.,
{〈〈〈NA, B〉, KAB〉, {KAB, A}sKBS

〉}sKAS
.

Then, the intruder can send this message to A in another session where B is the initiator of the protocol. In this
second session (denoted by ·′ below), the key NA accepted by A is also known by the intruder, who can continue
the communication with A and derive the secret. More precisely, the attack looks like this:

1. A→ S : A, B, NA

2. S → A : {NA, B, KAB, {KAB, A}sKBS
}sKAS

3’. I(B)→ A : {NA, B}sKAS

4’. A→ I(B) : {N ′
A}sNA

5’. I(B)→ A : {N ′
A}sNA

6’. A→ I(B) : {Secret}sNA

8.3.2 Prefix rules are oracle rules. We first show that prefix rules allow well formed derivations and then
verify the remaining oracle conditions.

Proposition 6 For all t ∈ forge(E), there exists a well formed derivation from E with goal g.

Proof. Let E0 = E and D = E0 →L1 . . . →Ln En be a derivation of goal g. Let D′ be a derivation obtained
from D with the following deduction system where the deduction rules are applied with priority order decreasing
from 1 to 4.

1. If i < j such that Lj ∈ Loc({M}sK) and Li ∈ Lc({
〈
.. 〈M, M ′

1〉 . . . , M ′
p

〉
}sK), then replace Lj by a sequence

of Ld rules decomposing
〈
.. 〈M, M ′

1〉 . . . , M ′
p

〉
to M followed by Lc({M}sK). Note that the number of Loc

rules strictly decreases.

2. If i < j such that Li = {M ′′}sK → {M ′}sK ∈ Loc and Lj = {M ′}sK → {M}sK ∈ Loc, then replace Lj by
the rule {M ′′}sK → {M}sK. Note that the latter rule belongs to Loc. The number of Loc rules does not
change but the size of the Loc rule argument strictly increases. (It is bounded by the biggest term in the
derivation)

3. If i < j such that Li = {M ′}sK → {M}sK ∈ Loc and Lj ∈ Ld({M}sK), replace Lj by Ld({M ′}sK) followed by
a sequence of Ld rules decomposing M ′ to M . The Loc rules do not change but the number of rules Ld(t)
such that there exists L ∈ D with L ∈ Loc(t) strictly decreases since, due to (2), there exists no Loc({M ′}sK)
rule in D.

4. If there exists i < n such that Li is a t-rule but, for all j > i, Lj does not use t, then remove Li. (This is
removing useless rules)
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Clearly, this deduction system terminates: This can easily be shown by defining a (well founded) lexicographical
ordering with the different components defined according to the remarks added to the deduction rules above.
Then, it is easy to observe that with every application of a deduction rule, the order of a derivation decreases
w.r.t. the lexicographical ordering.
It is also clear that the derivation D′ derived from D by exhaustively applying the deduction rules and

eliminating redundant rules is in fact a derivation from E with goal g. We show that D′ = E′
0 →L′

1
. . .→L′

m
E′

m

is well formed.
For any rule L′

i ∈ Ld(s) in D′, s is neither obtained with Lc (L′
i would be useless) nor with Loc due to

deduction rule (3). Therefore, we have s ∈ E or there exists L′
i<j ∈ Ld(s) in D′. By iteration on i, it follows that

s is a subterm of E.
For Lc rules, we will reason by induction on m − i. Assume that L′

i ∈ Lc(t). If m − i = 0, then t = g, and
therefore, t ∈ Sub(E, g). For the induction step, there exists a rule L′

j , j > i, in D′ using t, by the deduction
rule (4). If L′

i ∈ Lc(t), it follows from the definition of derivations that L′
j 6∈ Ld(t). If L′

i ∈ Loc(t), we also obtain
L′

j 6∈ Ld(t), by deduction rule (3). Thus, in any case, L′
j 6∈ Ld(t). By the deduction rules (1) and (2), we conclude

L′
j 6∈ Loc. Thus, L′

j ∈ Lc(t′), and t is a subterm of t′. By induction, t′ ∈ Sub(g, E), and thus, t ∈ Sub(g, E). �
We can now prove, as announced, that these rules are oracle rules:

Proposition 4 The set Lo of prefix rules is a set of oracle rules.

Proof. We check each point of the definition:

1. If t ∈ forge(E), then there exists a well formed derivation from E with goal t, thanks to the Proposition 6.

2. If we have F →Loc({M}s
K) F, {M}sK using {M ′}sK and F, {M}sK →Ld({M}s

K) F, {M}sK , M , then as in deduc-
tion rule (3) in the proof of Proposition 6 one obtains a derivation from F with goal M without a rule in
Ld({M}K).

3. For any relation F →Loc({M}s
K) F, {M}sK the proper subterms of {M}sK are the subterms of M and K,

which are also subterms of F .

4. Let u be any non-atomic term. We choose ε(〈a, b〉) = a and ε(u) = 0 otherwise. Let F be a set of
terms, 0 ∈ F , and {M}sK a term such that F \ {u} →L F, u, with L ∈ Lc(u), and F →L′ F, {M}sK , with
L′ ∈ Loc({M}sK). Let θ = [u← ε(u)]. We distinguish four cases:

(a) If u = {M}sK , then {M}sKθ = 0 ∈ forge(Fθ).

(b) Assume that L′ uses u = {〈..〈M, M ′
1〉 . . . , M ′

p〉}sK . If L ∈ Lc(u), it follows that M, K ∈ F \ u, and
thus, {M}sKθ ∈ forge(Fθ). If L ∈ Loc(u), then {〈..〈M, M ′

1〉 . . . , M ′
q〉}sK ∈ F \ u for some q > p and

messages M ′
p+1, . . . , M

′
q. Thus, {M}sKθ ∈ forge(Fθ).

(c) If L′ uses {..〈M, M ′
1〉 . . . , M ′

p}sK , 1 ≤ q ≤ p and u = 〈..〈M, M ′
1〉 . . . , M ′

q〉, then {M}sKθ = {M}K ∈
forge({t}sK) ⊆ forge(Fθ) with t = 〈..〈M, M ′

1〉 . . .〉, M ′
q−1〉, M ′

q+1〉 . . . , M ′
p〉.

(d) Otherwise, if L′ uses {t}sK , then {M}sKθ ∈ forge({t}sKθ).

�
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