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Abstract. In universal composability frameworks, adversaries (or environments) and protocols/ideal
functionalities often have to exchange meta-information on the network interface, such as algorithms,
keys, signatures, ciphertexts, signaling information, and corruption-related messages. For these purely
modeling-related messages, which do not reflect actual network communication, it would often be very
reasonable and natural for adversaries/environments to provide the requested information immediately
or give control back to the protocol/functionality immediately after having received some information.
However, in none of the existing models for universal composability is this guaranteed. We call this the
non-responsiveness problem. As we will discuss in the paper, while formally non-responsiveness does not
invalidate any of the universal composability models, it has many disadvantages, such as unnecessarily
complex specifications and less expressivity. Also, this problem has often been ignored in the literature,
leading to ill-defined and flawed specifications. Protocol designers really should not have to care about
this problem at all, but currently they have to: giving the adversary/environment the option to not
respond immediately to modeling-related requests does not translate to any real attack scenario.
This paper solves the non-responsiveness problem and its negative consequences completely, by avoiding
this artificial modeling problem altogether. We propose the new concepts of responsive environments
and adversaries. Such environments and adversaries must provide a valid response to modeling-related
requests before any other protocol/functionality is activated. Hence, protocol designers do no longer have
to worry about artifacts resulting from such requests not being answered promptly. Our concepts apply
to all existing models for universal composability, as exemplified for the UC, GNUC, and IITM models,
with full definitions and proofs (simulation relations, transitivity, equivalence of various simulation
notions, and composition theorems) provided for the IITM model.

Keywords: universal composability; protocol design; cryptographic security proofs; responsive environ-
ments

∗ This project was in part funded by the European Commission through grant agreements n◦s 321310 (PERCY) and
644962 (PRISMACLOUD), and by the Deutsche Forschungsgemeinschaft (DFG) through Grant KU 1434/9-1.



Table of Contents

Universal Composition with Responsive Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Jan Camenisch, Robert R. Enderlein, Stephan Krenn, Ralf Küsters, Daniel Rausch
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1 Introduction

One of the most demanding tasks when designing a cryptographic protocol is to define its intended security
guarantees, and to then prove that it indeed satisfies them. In the best case, these proofs should guarantee
the security of the protocol in arbitrary contexts, i.e., also when composed with other, potentially insecure,
protocols. This would allow one to split complex protocols into smaller components, which can then be
separately analyzed one by one and once and for all, thus allowing a modular security analysis. Over the past
two decades, many models to achieve this goal have been proposed [3,7–9,18,21,23,26–28], with Canetti’s
UC model being one of the first and most prominent ones.

All these models have in common that the designer first needs to specify an ideal functionality F defining
the intended security and functional properties of the protocol. Informally, a real protocol realizes F if no
efficient distinguisher (the environment) can decide whether it is interacting with the ideal functionality and
a simulator, or with the real world protocol and an adversary.

Urgent requests/messages. In the specifications of such real protocols and ideal functionalities, it is
often required for the adversary (and the environment) to provide some meta-information via the network
interface to the protocol or the functionality, such as cryptographic algorithms, cryptographic values of
signatures, ciphertexts, and keys, or corruption-related messages. Conversely, protocols/functionalities often
have to provide the adversary with meta-information, for example, signaling information (e.g., the existence
of machines) or again corruption-related messages. Such meta-information does not correspond to any real
network messages, but is merely used for modeling purposes. Typically, giving the adversary/environment
the option to not respond immediately to such modeling-specific messages does not translate to any real
attack scenario. Hence, often it is natural for protocol designers to expect that the adversary/environment
(answers and) returns control back to the protocol/functionality immediately when the adversary is requested
to provide meta-information or when the adversary receives meta-information from the protocol/functionality.
In the following, we call such messages from protocols/ideal functionalities on the network interface urgent
messages or urgent requests.

Urgent requests occur in many functionalities and protocols from the literature, see, e.g., [1,4,5,7,10–12,14,
15,20,24,25,30]. This is not surprising as the exchange of meta-information between the adversary/environment
and the protocols/functionalities is an important mechanism for protocol designs in any UC-like model.
For example, one can specify the behaviour of cryptographic values or algorithms by an ideal functionality
in a natural manner without having to worry about how these values are generated or the parameters for
the algorithms are set up, e.g., using a CRS. Also, protocols should be able to provide the adversary with
meta-information in situations where it is not intended to give control to the adversary, such as certain
information leaks (e.g, honest-but-curious corruption) or signaling messages. In general, it seems impossible
to dispense with urgent requests altogether, and certainly, such requests are very convenient and widely used
in the literature (see also §3).

The non-responsiveness problem. In the existing universal composability models, it currently is not
guaranteed that urgent requests are answered immediately by the adversary: when receiving an urgent request
on the network interface, adversaries and environments can freely activate protocols and ideal functionalities
in between, on network and I/O interfaces, without answering the request. In what follows, we refer to this
problem as the problem of non-responsive adversaries/environments or the non-responsiveness problem.

This problem formally does not invalidate any of the UC-style models. It, however, often makes the
specification of protocols and functionalities much harder and the models less expressive (see below). Most
disturbingly, as mentioned, the non-responsiveness problem is really an artificial problem: urgent requests do
not correspond to any real messages, and the adversary not responding promptly to such requests does not
reflect any real attack scenario. Hence, non-responsiveness forces protocol designers to take care of artificial
adversarial behavior that was unintended in the first place and is merely a modeling artifact.

In particular, protocol designers currently have to deal with various delicate problems: i) While waiting for
a response to an urgent request, a protocol/ideal functionality might receive other requests, and hence, protocol
designers have to take care of interleaving and dangling requests. ii) While a protocol/ideal functionality is
waiting for an answer from the adversary to an urgent request, other parties and parts of the protocol/ideal
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functionality can be activated in the meantime (via the network or the I/O interface), which might change
their state, even their corruption status, and which in turn might lead to race conditions (see §3 for examples
from the literature).

This, as further discussed in the paper, makes it difficult to deal with the non-responsiveness problem and
results in unnecessarily complex and artificial specifications of protocols and ideal functionalities, which, in
addition, are then hard to re-use. In some cases, one might not even be able to express certain desired properties.
As explained in §3, there is no generic and generally applicable way to deal with the non-responsiveness
problem, and hence, one has to resort to solutions specifically tailored to the protocols at hand.

Importantly, the non-responsiveness problem propagates to higher-level protocols as they might not get
responses from their subprotocols as expected. The security proofs also become more complex because one,
again, has to deal with runs having various dangling and interleaving requests as well as unexpected and
unintuitive state changes, which do not translate into anything in the real world, but are just an artifact of
the modeling.

Clearly, in the context of actual network messages, one has to deal with many of the above problems
in the specifications of protocols and ideal functionalities too. But, in contrast to the non-responsiveness
problem, dealing with the asynchronous nature of networks has a real counterpart, and these two types of
interactions with the adversary should not be confused.

In the literature, urgent requests and the non-responsiveness problem occur in many protocols and
functionalities. Nevertheless, protocol designers frequently ignore this problem (see, e.g., [1, 4, 5, 12,13, 17,20,
24,25,29,30]), i.e., they seem to implicitly assume that urgent request are answered immediately, probably,
at least as far as ideal functionalities are concerned, because their simulators promptly respond to these
kinds of requests. As a result, protocols and ideal functionalities are underspecified and/or expose unexpected
behavior, and thus, are not usable in other (hybrid) protocols, or security proofs of hybrid protocols are
flawed (see §3).

Our contribution. In this paper, we propose a universal composability framework with the new concept of
responsive environments and adversaries, which should be applicable to all existing UC-style models (see
below). This framework completely avoids and, by this, solves the non-responsiveness problem as it guarantees
that urgent requests are answered immediately. This really is the most obvious and most natural solution to
the problem: there is no reason that protocol designers should have to take care of the non-responsiveness
problem and its many negative consequences.

More specifically, the main idea behind our framework is as follows. When a protocol/ideal functionality
sends what we call a restricting message to the adversary/environment on the network interface, then the
adversary/environment is forced to be responsive, i.e., to reply with a valid response before sending any other
message to the protocol. This requires careful definitions and non-trivial proofs to ensure that all properties
and features that are expected in models for universal composition are lifted to the setting with responsive
environments and adversaries.

By using our framework and concepts, protocols and ideal functionalities can be modeled in a very natural
way: protocol designers can simply declare urgent requests to be restricting messages, which hence have to be
answered immediately. This elegantly and completely solves the non-responsiveness problem. In particular,
protocol designers no longer have to worry about this problem, and specifications of protocols and ideal
functionalities are greatly simplified, as one can dispense with artificial solutions. In fact, as illustrated in §6,
with our concepts we can easily fix existing specifications from the literature in which the non-responsiveness
problem has not been dealt with properly or has simply been ignored as protocol designers often implicitly
assumed responsiveness for urgent messages. In some cases, we can now even express certain functionalities in
a natural and elegant way that could not be expressed before (see §3.2.2 and §6). Of course, with simplified
and more natural functionalities and protocols, also security proofs become easier because the protocol
designer does not have to consider irrelevant and unrealistic adversarial behavior and execution orders.

We emphasize that protocol designers must exercise discretion when using restricting messages: such
messages should be employed for meta-information used for modeling purposes only, and not for real network
traffic, where immediate answers cannot be guaranteed in reality.
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We illustrate that our framework and concepts apply to existing models for universal composability. This
is exemplified for three prominent models: UC [7], GNUC [18], and IITM [21,23]. In the appendix, we provide
full proofs for the IITM model. In particular, we define all common notions of simulatability, including UC,
dummy UC, strong simulatability, and blackbox simulatability with respect to responsive environments and
adversaries, and show that all of these notions are equivalent. This result can be seen as a sanity check of our
concepts, as it has been a challenge in previous models (see, e.g., the discussions in [19,23]). We also prove in
detail that all composition theorems from the original IITM model carry over to the IITM model with our
concepts.

Related work. The concept of responsive adversary and environments is new and has not been considered
before.

In [2], composition for restricted classes of environments is studied, motivated by impossibility results in UC
frameworks and to weaken the requirements on realizations of ideal functionalities. In this setting, environments
are restricted in that they may send only certain sequences of messages to the I/O interfaces of protocols and
functionalities. These restrictions cannot express that urgent requests are answered immediately and also
do not restrict adversaries in any way. Hence, this approach cannot be used to solve the non-responsiveness
problem, which anyway was not the intention of the work in [2].

In the first version of his seminal work [7], Canetti introduced immediate functionalities. According to
the definition (cf. page 35 of the 2001 version), an immediate functionality uses an immediate adversary to
guarantee that messages are delivered immediately between the functionality and its dummy. To be more
precise, an immediate functionality may force an immediate adversary to deliver a message to a specific
dummy party within a single activation. This construct was necessary as in the initial version of Canetti’s
model, the ideal functionality could not directly pass an output to its dummy but had to rely on the adversary
instead. In current versions of UC, the problem addressed by immediate adversaries has vanished completely
because ideal functionalities can directly communicate with their dummies. Clearly, immediate adversaries do
not address, let alone solve, the non/responsiveness problem, which is about immediate answers for certain
request to the adversary on the network interface rather than between a functionality and its dummies.

Outline. In §2, we briefly recall basic terminology and notation. We observe in §3 that the non-responsiveness
problem affects many protocols from the literature, with many papers ignoring the problem altogether, resulting
in underspecified and ill-specified protocols and functionalities, that are thus hard to re-use. Furthermore, that
section shows that properly taking this problem into consideration is quite difficult and does not have a simple
and generally applicable solution. Our universal composability framework with responsive environments
and adversaries is then presented in §4. This section is kept quite model independent to highlight the main
new concepts and the fact that these concepts are not restricted to specific models. §5 then illustrates how
our concepts can be implemented in the UC, GNUC, and IITM models. §6 shows how the problems with
non-responsive environment and adversaries discussed in §3 can be avoided elegantly with our restricting
messages and responsive environments/adversaries. We conclude in §7. Further details can be found in the
appendix. In particular, as mentioned before, we provide full details for the IITM model with responsive
environments and adversaries in the appendix.

2 Preliminaries

In this section, we briefly recap the basic concepts of universal composability and fix some notation and
terminology. The description is independent of the model being used and can easily be mapped to any concrete
model, such as UC, GNUC, or IITM. For now, we ignore runtime issues as they are handled differently in the
models and only implicitly assume that all systems run in polynomial time in the security parameter and the
length of the external input (if any). Runtime issues are discussed in detail in §5.

Universal composability models use machines to model programs. Each machine may have I/O and
network tapes/interfaces. These machines are then used as blueprints to create instances which execute the
machine code while having their own local state. Machines can be combined into a system S. In a run of
S, multiple instances of machines may be generated and different instances can communicate by sending
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messages via I/O or network interfaces. Given two systems R and Q, we define the system {R,Q} which
contains all machines from R and Q.

There are three different kinds of entities, which can themselves be considered as systems and which
can be combined to one system: protocols, adversaries, and environments. One distinguishes real and ideal
protocols, where ideal protocols are often called ideal functionalities. An ideal protocol can be thought of as the
specification of a task, whereas a real protocol models an actual protocol that is supposed to realize the ideal
protocol (cf. Definition 2.1). These protocols have an I/O interface to communicate with the environment and
a network interface to communicate with the adversary. An adversary controls the network communication of
protocols and can also interact with the environment. Environments connect to the I/O interface of protocols
and may communicate with the adversary, cf. Figure 1 for an illustration of how environments, adversaries,
and protocols are connected.

≈

E

AD FP

E

S∃S : ∀E :

Fig. 1: A real protocol P realizing an ideal functionality F ; AD denotes the dummy adversary which just
forwards messages to and from the environment E .

Environments try to distinguish whether they run with a real protocol and an adversary or an ideal
protocol and an adversary (then often called a simulator or ideal adversary). An environment may get some
external input to start a run. It is expected to end the run by outputting a single bit.

Given an environment E , an adversary A, and a protocol P, we denote both the combined system and
the output distribution of the environment by {E ,A,P}. We use the binary operator ≡ to denote two output
distributions that are negligibly close in the security parameter η (and the external input, if any).

Now, in models for universal composability, the realization of an ideal protocol by a real protocol is defined
as follows.

Definition 2.1 (Realization Relation). Let P and F be protocols, the real and ideal protocol, respectively.
Then, P realizes F (P ≤ F) if for every adversary A, there exists an ideal adversary S such that {E ,A,P} ≡
{E ,S,F} for every environment E.

We note that, in the definition above and in all reasonable models, instead of quantifying over all adversaries,
it suffices to consider only the dummy adversary AD which forwards all network messages between P and E .
Intuitively, this is true because A can be subsumed by E . Hence, we have that P ≤ F iff there exists an ideal
adversary S such that {E ,AD,P} ≡ {E ,S,F} for every environment E .

The main result in any universal composability model is a composition theorem. Informally, once a
protocol P has been proven to realize an ideal protocol F , one can securely replace (all instances of) F by P
in arbitrary higher-level systems without affecting the security of the higher-level system.

3 The Non-Responsiveness Problem and its Consequences: Examples from
the Literature

We have already introduced and discussed the non-responsiveness problem and sketched its consequences in
§1. In this section, we illustrate this problem and its consequences by examples from the literature. We also
point to concrete cases in which this problem has been ignored (i.e., immediate answers to urgent requests
were assumed implicitly) and where this has led to ill-defined protocols and functionalities as well as invalid
proofs and statements.
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3.1 Underspecified and Ill-Defined Protocols and Functionalities

In many papers, the non-responsiveness problem is ignored in the specifications of both ideal functionalities
and (higher-level) protocols (see, e.g., [1,4,5,12,13,17,20,24,25,29,30]). We discuss a number of typical cases
in the following.

Ideal functionalities. An example of a statement that one often finds in specifications of ideal functionalities
is one like the following (see, e.g., [1, 4, 12,17,20,24,25]):

“send <some message> to the adversary;
upon receiving <some answer> from the adversary do <something>”, (1)

where the message sent to the adversary, in our terminology, is an urgent request, i.e., as explained in §1,
some meta-information provided to the adversary or a request for some meta-information the adversary is
supposed to provide. For example, ideal functionalities might ask for cryptographic material (cryptographic
algorithms and keys, ciphertexts, or signatures), ask whether the adversary wants to corrupt a party, or
simply signal their existence.

In specifications containing formulations as in (1) it is not specified what happens if the adversary does
not respond immediately, but, for example, other requests on the I/O interface are received; intermediate
state changes in other parts might also occur, which might require different actions. There does not seem to
exist a generic solution to handle such problems (see §3.2.1 and §3.2.3). It rather seems to be necessary to
find solutions tailored to the specific protocol and ideal functionality at hand, making it even more important
to precisely specify the behavior in case the adversary does not respond immediately to urgent requests.

Many research papers on universal composability focus on proposing new functionalities and realizations
thereof, including proofs that a realization actually realizes a functionality; to a lesser extent the functionalities
are then used in higher-level protocols. In realization proofs, one might not notice that formulations as that
in (1) are problematic because for such proofs an ideal functionality F runs alongside a (friendly) simulator
and this simulator might provide answers to urgent requests immediately (see also Figure 1). However, if used
in a hybrid protocol (see Figure 2), an ideal functionality F runs alongside a (hostile) adversary/environment.
In this case, it is important that specifications capture the case that urgent requests are not answered
immediately. If this is ignored or not handled correctly, it yields i) underspecified protocols, with the problem
that they cannot be re-used in hybrid protocols, which in turn defeats the purpose of universal composability
frameworks, and ii) possibly false statements.

≈

E

AD

F

P ′

E

S′ F ′
∃S′ : ∀E :

Fig. 2: An F-hybrid protocol P ′ realizing some ideal functionality F ′.

To illustrate these points by a concrete example, we consider the “signature of knowledge” functionality
Fsok(L) proposed by Chase and Lysyanskaya [13]. This functionality contains a Setup instruction (reproduced
in Figure 3), where the adversary provides the keys and algorithms, and signing and verification instructions
that then use those keys and algorithms without requiring interaction with the adversary - a very common
mechanism in the literature (see, e.g., [1, 5, 11, 14, 15, 29]). This functionality is explicitly intended to be used
in a hybrid setting to realize delegatable credentials.

If the adversary does not respond to the first (Setup, sid) request, all subsequent requests (e.g., a Setup
request by a different party) will cause the functionality to use or output the undefined Sign and Verify
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Upon receiving a value (Setup, sid) from any party P , verify that sid = (ML, sid ′) for some sid ′. If not, then
ignore the request. Else, if this is the first time that (Setup, sid) was received, hand (Setup, sid) to the adversary;
upon receiving (Algorithms, sid,Verify, Sign, Simsign,Extract) from the adversary, where Sign, Simsign, Extract
are descriptions of PPT TMs, and Verify is a description of a deterministic polytime TM, store these algorithms.
Output the stored (Algorithms, sid, Sign,Verify) to P .

Fig. 3: The Setup instruction of Fsok(L) from [13].

algorithms, which is a problem: Chase and Lysyanskaya provide a protocol in the Fsok(L)-hybrid model that
can be used for realizing delegated credentials, i.e., an ideal functionality for signatures on a signature. They
then prove that this protocol realizes the functionality. They, however, missed the fact that Fsok(L) may
interact with a non-responsive adversary in the hybrid world. Such an adversary can force Fsok(L) to use
undefined algorithms, and their simulator does not handle that situation in the ideal world. It is thus easy to
distinguish the real from the ideal world. Hence, their proof is flawed, and in fact it seems that the statement
cannot be proven.

(Higher-level) protocols. As already mentioned in the introduction, real protocols often also send urgent
requests to the adversary (e.g., signaling their existence or asking whether the adversary wants to corrupt).
In addition, one often finds protocol specifications containing formulations of the following form to make
requests to subprotocols (see, e.g., [5, 13,29,30]):

“send <some message> to F ;
upon receiving <some answer> from F do <something>.” (2)

Intuitively, F might indeed model some non-interactive functionality, such as signature functionalities.
However, because of the use of urgent requests in such functionalities, even when completely uncorrupted, F
might not return answers right away. So, again, formulations as the one in (2) are greatly underspecified.
What happens if other requests are received at the network or I/O interface? Should they be ignored? Or may
they be queued somehow? Also, the state and status (such as corruption) of other parts of the protocol or
subprotocols might change while waiting for answers from F . Again, as illustrated in the following subsections,
dealing with this is not easy and often requires solutions tailored to the specific protocol and functionality at
hand, making a full specification of the behavior particularly important.

3.2 Problems Resulting from Non-Responsiveness

We now discuss challenges resulting from the non-responsiveness problem (when actually taken into account,
rather than ignored) and illustrate them by examples from the literature.

3.2.1 Unintended State Changes and Race Conditions As mentioned before, a general problem
one has to take care of when dealing with the non-responsiveness problem is that while a protocol is
waiting for answers to urgent requests, the adversary might cause changes in the state of other parts of the
protocol/functionality and of subprotocols, which in turn influences the behavior of the protocol. Keeping
track of the actual current overall state might be tricky, and race conditions are possible.

The following is a simple example which illustrates that the problem can occur already locally within
a single functionality. It can often become even trickier in higher-level protocols which use urgent requests
themselves and where possibly several subroutines use urgent requests.

We consider the dual-authentication certification functionality FD-Cert [30]. In this functionality, the
adversary needs to be contacted when verifying a signature (a common mechanism to verify cryptographic
values that is also used in many other functionalities [6, 12,20] ). Such requests are urgent as this is supposed
to model local computations. However, the adversary may not answer immediately.

More specifically, Figure 4 shows the Verify instruction of FD-Cert. Assume now that S′ has received a
message m and a signature σ for this message, which supposedly was created by an honest party P with SID
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Upon receiving a value (Verify, sid,m, σ) from some party S′, hand (Verify, sid,m, σ) to the adversary. Upon
receiving (Verified, sid,m, φ) from the adversary, do:

1. If (m,σ, 1) is recorded then set f = 1.
2. Else, if the signer is not corrupted, and no entry (m,σ′, 1) for any σ′ is recorded, then set f = 0 and record the

entry (m,σ, 0).
3. Else, if there is an entry (m,σ, f ′) recorded, then set f = f ′.
4. Else, set f = φ, and record the entry (m,σ, φ).

Output (Verified, sid,m, f) to S′.

Fig. 4: The Verify instruction of FD-Cert from [30].

sid. Now, if the signature actually was not created by P , the verification should fail as P is not corrupted.
However, as the adversary gets activated during this allegedly local task, it could corrupt the signer during
the verification process, return φ = 1, and therefore let the functionality accept σ. This behavior is certainly
unexpected and counterintuitive.

Such a functionality also considerably complicates the security analysis of any higher-level application that
uses FD-Cert as a subroutine, as one has to also consider the possiblity of a party getting corrupted during the
invocation of a subroutine modeling a local task, which, even worse, in that case returns unexpected answers.

3.2.2 Problems Expressing the Desired Properties The following is an example where the authors
struggled with the non-responsiveness problem in that it finally led to a functionality that, as the authors
acknowledge, is not completely satisfying. This functionality, denoted FNIKE, is supposed to model a non-
interactive key exchange and was proposed by Freire et al. [16]. Figure 5 shows a central part of this
functionality, namely, the actual key exchange. A party Pi may ask for the key that is shared between the
parties Pi and Pj . If this session of Pi and Pj is considered corrupted, namely, because one of the parties is
corrupted, and no key has been recorded for this session yet, the adversary is allowed to freely choose the key
that is shared between the two parties. The functionality uses an urgent request to model this, i.e., it directly
sends a message to the adversary if she is allowed to choose a key.

Upon input (init, Pi, Pj) from Pi, if Pj 6∈ Λref, return (Pi, Pj ,⊥) to Pi. If Pj ∈ Λreg, we consider two cases:

– Corrupted session mode: if there exists an entry ({Pi, Pj},Ki,j) in Λkeys, set key = Ki,j . Else, send (init, Pi, Pj) to
the adversary. After receiving ({Pi, Pj},Ki,j) from the adversary, set key = Ki,j and add ({Pi, Pj},Ki,j)
to Λkeys.

– Honest session mode: if there exists an entry ({Pi, Pj},Ki,j) in Λkeys, set key = Ki,j , else choose key ← {0, 1}k

and add ({Pi, Pj},Ki,j) to Λkeys.

Return (Pi, Pj , key) to Pi.

Fig. 5: The init instruction of FNIKE from [16].

As the authors state, they would have liked to also model “immediateness” of the functionality, i.e., a
higher-level protocol that requests a key should be able to expect an answer without the adversary being able
to interfere with the protocol in the meantime. This indeed would be expected and natural because FNIKE
models a non-interactive key exchange. However, this is in conflict with allowing the adversary to choose the
key of a corrupted session. The authors suggest that one option to also model immediateness might be to let
the adversary choose an algorithm upon setup, which is then used to compute the keys for corrupt parties.
Nevertheless, they chose the non-immediate modeling because the other solution would lead to “technical
complications”; it would also limit the adaptiveness of the adversary and might add other problems. Indeed,
code upload constructs (see also §3.2.3), in general, do not solve the non-responsiveness problem.
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As a consequence of the formulation chosen in FNIKE, the adversary can now, e.g., block requests, which
again also needs to be considered in any higher-level protocol using FNIKE as a subroutine, even though in the
real world the honest party would always obtain some key because of the non-interactivity of the primitive.

More generally, ideal functionalities that use urgent messages (which in current models are not answered
immediately) might have weaker security guarantees than their realizations, in particular when the functionality
is supposed to model a non-interactive task, because the realization might not give control to the adversary.
So for hybrid protocols one might not be able to prove certain properties when using an ideal functionality,
whereas the same protocol using the realization of the ideal functionality instead might enjoy such properties.

This is in contrast to one of the goals of universal composability models, namely, reducing the complexity
of security analyses by enabling the use of conceptually simpler ideal functionalities as subroutines.

3.2.3 The Reentrance Problem As already mentioned in §1, a protocol designer has to specify the
behavior of protocols and ideal functionalities upon receiving another input (on the I/O interface) while
they are waiting for a response to an urgent request on the network. In other words, protocols and ideal
functionalities have to be reentrant. Note that, as pointed out, a protocol has to be reentrant not only when
it uses urgent requests itself, but also if a subroutine uses such messages.

As explained next, dealing with the reentrance problem can be difficult. Approaches to solve this problem
complicate the specifications of protocols and ideal functionalities, and none of them is sufficiently general to
be applicable in every case.

We now illustrate this by an example ideal functionality. However, similar issues occur in specifications for
real and hybrid protocols. Let F be any ideal functionality which sends an urgent request to the adversary
upon its first creation, say, to retrieve some modeling-related information. This is a common situation. For
example, ideal functionalities often require some cryptographic material such as keys and algorithms from the
adversary before they can continue their execution (e.g., functionalities for digital signatures or public-key
encryption). We also assume that F is meant to be realized by a real protocol consisting of two independent
parties/roles A and B (e.g., signer and verifier). We further assume that both of these parties also send an
urgent request to the adversary upon their first activation and expect an answer before they can continue
with their computation. Again, this is a common situation as, for example, real protocols often ask for their
corruption status or notify the adversary of their creation.5 While the above is only one illustrative example,
it already describes a large and common class of real and ideal protocols often encountered in the literature.

We now present several approaches to make F reentrant in the above sense, i.e., to deal with I/O requests
while waiting for a response to an urgent request on the network. We show that the obvious approaches in
general cannot be used. In particular, with most of these approaches F cannot even be realized by A and B
in the setting outlined above. This in turn shows that solutions that are tailored to the specific functionality
at hand and even the envisioned realization are required, which is very unsatisfactory, as this leads to more
complex and yet less general functionalities and protocols.

Ignore requests. After sending an urgent request to the adversary, the most straightforward approach would
be to ignore all incoming messages until a response from the adversary is received.6 This, however, is not
only an unexpected behavior in many cases – for example, why should a request silently fail if the ideal
functionality models a local computation? – but the ideal functionality in fact might no longer be realizable
by some real protocols:

If F , in our example functionality, would simply ignore incoming messages, an environment can distinguish
F (with a simulator) from the realization A and B (with the dummy adversary). It first sends a message
to A which, as we assume, then in turn sends an urgent request to the dummy adversary and hence to the
environment. Now the environment, which does not have to respond to urgent requests immediately, sends a
5 The latter is, for example, required by the definition of “subroutine respecting protocols” in the 2013 version of

UC [7]. While prompt responses by the adversary are formally not required, they would be very convenient for all
of the reasons discussed in §3.2.

6 Alternatively, one could send error messages as response to intermediate requests. However, the exact same problems
discussed for the approach of ignoring requests occur.
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message to B which in turn also sends an urgent request to the adversary and hence to the environment.
Consider the behavior of the ideal world in this case: After receiving the message for A, F will send an
urgent request to the simulator. The simulator, however, cannot answer this urgent request because it has to
simulate A by sending an urgent request to the environment. (This might be the case because the simulator
first has to consult the environment before answering the urgent request by F or because F does not return
control to the simulator after receiving an answer to the urgent request.) The environment then sends the
second message (for B) to F , which is ignored because F still waits for an answer to its urgent request. This
behavior is different from the real world, and thus, the environment can distinguish the real world from the
ideal one.

This illustrates that an ideal functionality that simply blocks all requests while waiting for a response to
an urgent request can in general not be realized by two or more independent parties that also send urgent
requests to the adversary. Instead one needs to adjust the blocking approach to the specific protocols at hand.
For example, often it might be possible to block messages that would be processed by a single party in the
real protocol, while messages for other parties are still processed. But this does not work if, for instance, F
cannot process messages for any party before receiving a response to its urgent requests, e.g., because F first
needs to receive cryptographic material (algorithms, keys, etc.). Thus, in this case yet another workaround is
required.

Queuing of intermediate requests. Another potential general approach to deal with the reentrance problem is
to store all incoming messages to process them later on. The simplest implementation of this approach would
be the following: Upon receiving another input while still waiting for a response to an urgent request, the
ideal functionality stores the input in a queue and then ends its activation. After receiving a response from
the adversary, the ideal functionality processes the messages stored in the queue.

This approach is vulnerable to the same attack as the previous approaches: if the environment executes
this attack in the real world, it will eventually receive an urgent request from B. This, however, cannot be
simulated in the ideal world. The simulator does not get control when B is activated as the ideal functionality
simply ends its activation after queuing the input for B.

Another problem with this approach is that in all current universal composability models, a machine is
allowed to send only one message per activation. Hence, the ideal functionality will never be able to catch up
with the inputs that have been stored. Every time it is activated by another input, it will have to process
both the new input and several older inputs that are still stored in the queue. But it can only answer one of
these messages at a time. This observation leads to another approach based on the queuing of unanswered
requests which we discuss in Appendix A. This approach, which does not seem to have been used in the
literature so far, is, however, very complex and weakens the security of the ideal functionality to an extent
that for some tasks is unacceptable: it allows the adversary to determine the order in which requests are
processed by an ideal functionality.

Further approaches. In Appendix B, we discuss several alternative approaches, namely, default answers
and code uploads, which, however, can merely help reduce the use of urgent requests, but do not solve the
reentrance problem, let alone the general non-responsiveness problem.

3.2.4 Unnatural Specifications of Higher-Level Protocols Higher-level protocols have to deal with
the non-responsiveness problem for two reasons. First, they might use urgent requests themselves. Second,
subprotocols might use urgent requests, and hence, if requests are sent to subprotocols (even for those
that intuitively should model non-interactive primitives), the adversary might get control. In both cases,
higher-level protocols have to deal with the problem that while waiting for answers, the state of other parts
of them and of any of their subprotocols might change and new requests (from the network or I/O interface)
might have to be processed. This can lead to unnecessarily complex and often unnatural specifications, if the
non-responsiveness problem is actually taken into account rather than being ignored (which in turn would
result in underspecified, and hence, unusable protocols).

We illustrate this by a joint state realization, which represents one form of a higher-level protocol: Consider
a digital signature functionality Fsig. Let us assume that Fsig is specified in such a way that at the beginning
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it asks the adversary for signing and verification algorithms and keys before it answers other requests; as
already mentioned, this is a very common design pattern. Because the adversary might not answer requests
for the cryptographic material right away (non-responsiveness), Fsig might receive further requests while
waiting for the answer. Let us assume that Fsig ignores/drops all such requests (this seems to be the option
mainly used in the literature, see, e.g., [4, 22]).7

≈

E

AD

F

Pjs

E

Sjs
F∃Sjs : ∀E :

Fig. 6: Joint state realization.

In a joint state realization of Fsig, one instance of Fsig (per party) is used to realize all sessions of Fsig (for
one party) in the ideal world (see also Figure 6). The idea behind the joint state realization is that if in session
sid a message m is to be signed/verified, then one would instead sign/verify the message (sid,m). In this way,
messages of different sessions cannot interfere. In the realization proof, a simulator would provide an instance
Fsig in session sid with a signing and verification algorithm that exactly mimics the behavior of Fsig in
session sid (i.e., signing/verifying prefix messages with sid). Unfortunately, because of the non-responsiveness
problem, the joint state realization is more complex than that, even if, for the purpose of the discussion,
we ignore the handling of corruption. To see this, assume that the environment sends a signing request for
some message m in session sid. The joint state realization would now invoke Fsig with (sid,m). Before Fsig
can answer, Fsig asks the adversary for the cryptographic material. Hence, the adversary/environment gets
activated again, and the environment can send a new, say, signing request for message m′ in session sid ′. As
Fsig is still waiting for the adversary to provide the cryptographic material, this later request will be ignored
by Fsig and hence will never be answered. To mimic this behavior in the ideal world, the simulator should
not provide the cryptographic material to the instance of Fsig in session sid ′ (otherwise, Fsig in session sid ′
would return a signature for m′). But then, this instance of Fsig is blocked completely. Hence, in turn, the
joint state realization also has to block all further requests for session sid ′. That is, it has to store all SIDs
for which it received requests while waiting for Fsig to respond, and all future requests for all such SIDs have
to be dropped.

This is very unnatural and certainly would not correspond to anything one would do in actual implemen-
tations: there one would simply prefix messages with SIDs, but one would never block requests for certain
SIDs. This is just an artifact of the non-responsiveness problem, i.e., the fact that, in current models, urgent
requests (in this case the request for cryptographic material by Fsig) might not be answered immediately.

4 Universal Composability with Responsive Environments

The non-responsiveness problem and the resulting complications shown in §3 are artificial problems. As
urgent requests exist only for modeling purposes but do not model any real network traffic, a real adversary
would not be able to use them to carry out attacks. Still, in all current universal composability models, the
non-responsiveness of adversaries enables attacks that do not correspond to anything in reality. If we could
force the adversary to answer urgent requests immediately, which, as already mentioned before, would be the
7 As explained in §3.2.3, this approach, just as all other approaches discussed in §3.2.3, does not work in general, e.g.,

when the signer and verifier are independent and send urgent requests to the adversary upon first activation. It
really depends on the details of Fsig and its realization.

12



natural and expected behavior, there would not be any need for coming up with workarounds that try to
solve the non-responsiveness problem in the specifications of protocols and functionalities and one would not
have to consider such artificial attacks in security proofs.

In this section, we present our framework which extends universal composability models by allowing
protocol designers to specify messages that have to be answered immediately by (responsive) environments
and adversaries. We first give a brief overview of our approach, then define in more detail responsive
environments, responsive adversaries and the realization relation in this setting, and finally prove that the
composition theorems still hold for our extension. As our framework and concepts can be used by any universal
composability model and to highlight the new concepts, we keep this section independent of specific models.
In particular, we mostly ignore runtime considerations. In §5, we then discuss in detail how our framework
can be adapted to specific models.

4.1 Overview

To avoid the non-responsiveness problem altogether, we introduce the concept of responsive environments and
responsive adversaries. In a nutshell, when these environments and adversaries receive specific messages from
the network (we call these messages restricting) then they have to respond to these messages immediately,
i.e., without activating other parts of the protocol before sending an answer. Furthermore, depending
on the restricting message, they may send an answer from a specific set of messages only. Restricting
messages and the possible answers can be specified by the protocol designer; they are not hardwired into
the framework. More specifically, restricting messages and the possible responses are specified by a binary
relation R ⊆ {0, 1}+ × {0, 1}+ over non-empty messages, called a restriction. If (m,m′) ∈ R, then m is a
restricting message and m′ a possible answer to m. That is, if an environment/adversary receives m on its
network interface, then it has to answer immediately with some m′ such that (m,m′) ∈ R.

This allows a protocol designer to specify all urgent requests as restricting messages by defining a restriction
R appropriately; such requests are then answered not only immediately but also with an expected answer.
Therefore the adversary can no longer interfere with the protocol run in an unintended way by activating
other parts of the protocol or sending unexpected inputs before answering an urgent request.

Note that this concept is very powerful and needs to be handled with care: While, as motivated above, it
does not weaken security results if one models urgent requests as restricting messages, one must not use such
messages when modeling real network traffic, as real network messages are not guaranteed to be answered
immediately in reality.

4.2 Defining Responsiveness

To define responsive environments and responsive adversaries, we first precisely define the notion of a
restriction. As mentioned, restrictions are used to define both restricting messages, which have to be answered
immediately by the environment/adversary, and possible answers to each restricting message.

Definition 4.1. A restriction R is a set of pairs of non-empty messages, i.e., R ⊆ {0, 1}+ × {0, 1}+, such
that, given a pair of messages (m,m′), it is efficiently decidable whether R allows m′ as an answer to m. We
define R[0] := {m|∃m′ : (m,m′) ∈ R}. A message m ∈ R[0] is called a restricting message.

The idea is that if an environment/adversary receives m on the network interface, there are two cases: If
m is not a restricting message, i.e., m 6∈ R[0], then the environment/adversary is not restricted in any way.
Otherwise, if m ∈ R[0], then the first message (if any) sent back to the protocol (both on the network and
I/O interface of the protocol) has to be some message m′ with (m,m′) ∈ R. This message has to be sent on
the network interface of the same machine that issued the request m, without any other message being sent
to another machine of the protocol (see also Definition 4.2).

By requiring efficient decidability we ensure that environments are able to check whether some answer is
allowed by the restriction; this is necessary, e.g., for Lemma 4.4. We refer to §5 for the exact definitions of
“efficiently decidable”, which depend on the runtime definitions of the underlying models.
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As mentioned in §4.1, only urgent requests should be defined as restricting messages via a restriction. For
example, upon creation of a new instance by receiving a message m, instances of protocols are often expected
to first ask the adversary whether they are corrupted before they process the message m. An adversary can
be forced to answer such a request immediately by the following restriction:

R := {(m,m′)|m = AmICorrupted?,m′ = (Corruption, b), b ∈ {false, true}}.
We now formalize the responsiveness property of environments and adversaries.

Definition 4.2 (Responsive Environments). An environment E is called responsive for a system of
machines Q with respect to a restriction R if in an overwhelming set of runs of {E ,Q} every restricting
message from Q on the network is answered correctly, i.e., for any restricting message m ∈ R[0] sent by Q
on the network, the first message m′ that Q receives afterwards (be it on the network interface or the I/O
interface of Q), if any, is sent by E on the network interface of Q to the same machine of Q that sent m and
m′ satisfies (m,m′) ∈ R. By EnvR(Q) we denote the set of responsive environments for Q.

In the above definition, “same machine” typically means the same instance of a machine. So if an instance of
a machine of Q sent a restricting message m on the network interface to the environment, the first message
m′ received by any instance of Q (on the network or I/O interface), including all currently running instances
of Q and an instance that might be created as a result of m′, has to be sent back on the network interface
to the same instance of Q which sent m, and m′ has to satisfy (m,m′) ∈ R. The exact definition of “same
machine” depends on the model under consideration (see §5).

The system Q usually is either {AD,P}, where P is a real protocol and AD is the dummy adversary, or
{S,F}, where S is an ideal adversary and F is an ideal protocol.

Responsive adversaries have to provide the same guarantees as responsive environments; however, they
have to do so only when running in combination with a responsive environment. In other words, they can use
the responsiveness property of the environment to ensure their own responsiveness property.

Definition 4.3 (Responsive Adversaries). Let Q be a system and let A be an adversary that controls
the network interface of Q. Then, A is called a responsive adversary if, for all E ∈ EnvR({A,Q}), in an
overwhelming set of runs of {E ,A,Q} every restricting message from Q on the network is immediately
answered (in the sense of Definition 4.2). We denote the set of all such adversaries for a protocol Q by
AdvR(Q).

We note that the dummy adversary AD is responsive.
Also note that the definitions of both responsive environments and responsive adversaries depend on a

specific system, i.e., an environment which is responsive for a system Q is not necessarily responsive for a
system Q′. If we required environments to be responsive for every system, we would also have to require this
from simulators (ideal adversaries). This in turn would needlessly complicate security proofs. Let us elaborate
on this. Many theorems and lemmas in UC-like models, such as transitivity of the realization relation (cf.
Lemma 4.7) and the composition theorems (cf. Theorem 4.8 and Theorem 4.9), are proven by simulating
(some instances of) adversaries/simulators and protocols within the environment. In such proofs, we need
to make sure that if an environment is responsive, then it is still responsive if we move a simulator (ideal
adversary) into the environment, i.e., run the simulator within the environment. Now, if we require strong
responsiveness (i.e., responsiveness for all systems), then moving a simulator into a responsive environment
might result in an environment that is no longer responsive (in the strong sense), unless we require from
the simulator that it is responsive in the strong sense as well. However, imposing such a strong requirement
on simulators seems unreasonable. Simulators are constructed in security proofs to work with exactly one
protocol. So a protocol designer should only have to care about runs with this specific protocol, not with
arbitrary systems that might try to actively violate the responsiveness property of the simulator. This is why
we require responsiveness for specific systems only and this indeed is sufficient.

In fact, for security proofs, there are two important properties that should be fulfilled and for which we now
show that they are. The first says that if an environment is responsive for one system, then it is also responsive
for any system indistinguishable from that system. The second property says that a responsive environment
can internally simulate a responsive adversary/simulator without losing its responsiveness property. In other
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words, we can move a responsive adversary/simulator into a responsive environment without losing the
responsiveness property of the environment. As mentioned before, this is necessary, for example, for the
transitivity of the realization relation and the composition theorems.

Lemma 4.4. Let R be a restriction. Let Q and Q′ be two systems of machines such that {E ,Q} ≡ {E ,Q′}
for all E ∈ EnvR(Q). Then, EnvR(Q) = EnvR(Q′).

Proof. We argue that EnvR(Q) ⊆ EnvR(Q′); the other inclusion follows analogously. Let E ∈ EnvR(Q) and
suppose that E 6∈ EnvR(Q′). In other words, unlike the system {E ,Q′}, there is only a negligible set of runs of
{E ,Q} in which restricting messages on the network from Q are answered incorrectly (i.e., not immediately
or with an unexpected answer). We can use this to construct a responsive environment E ′ that distinguishes
Q from Q′, in contradiction to the assumption.

The environment E ′ internally simulates E , but, as soon as E wants to send a message to Q/Q′, checks
whether this message violates the responsiveness property. If it does, E ′ aborts with output 1 instead of
sending the message; if the run is ended by E without violating the responsiveness property, E ′ outputs 0.
This check is possible because restrictions require this problem to be efficiently decidable. Clearly, we have
that {E ′,Q} 6≡ {E ′,Q′} and that E ′ is responsive for Q, as E ′ always aborts before sending an incorrect
answer. This contradicts the assumption that Q and Q′ are indistinguishable for all responsive environments
for Q. ut

Lemma 4.5. Let R be a restriction. Let Q be a system, A ∈ AdvR(Q) be a responsive adversary, and
E ∈ EnvR({A,Q}) be a responsive environment. Let E ′ denote the environment that internally simulates the
system {E ,A}. Then, E ′ ∈ EnvR(Q).

Proof. Observe that the systems {E ,A,Q} and {E ′,Q} behave exactly the same. Let us assume that
E ′ /∈ EnvR(Q). Then, there is a non-negligible set of runs of {E ′,Q} in which a restricting message from Q on
the network is answered incorrectly. As these messages are handled by the internally simulated adversary A
in E ′, there must also be a non-negligible set of runs of {E ,A,Q} in which a restricting message from Q on
the network to A is answered incorrectly. However, this is a contradiction to the responsiveness property of
A. This implies that E ′ ∈ EnvR(Q). ut

4.3 Realization Relation for Responsive Environments

We can now define the realization relation for responsive environments. The definition is analogous to the one
for general environments and adversaries (see Definition 2.1), but restricts these entities to being responsive.

Definition 4.6 (Realizing Protocols with Responsive Environments). Let P and F be protocols, the
real and ideal protocol, respectively, and R be a restriction. Then, P realizes F with respect to responsive
environments (P ≤R F) if for every responsive adversary A ∈ AdvR(P), there exists an (ideal) responsive
adversary S ∈ AdvR(F) such that {E ,A,P} ≡ {E ,S,F} for every environment E ∈ EnvR({A,P}).

Just as in the case of Definition 2.1, we have that instead of quantifying over all responsive adversaries, it
suffices to consider only the dummy adversary AD, which forwards all network messages between P and E
(cf. Theorem D.28). As already mentioned, AD is always responsive. This means that in security proofs, one
has to construct only one responsive simulator S for AD.

As mentioned before Lemma 4.5, the responsiveness of S is necessary for the transitivity of ≤R. While
the responsiveness of S is a property a protocol designer has to ensure, this property is easy to check and
guarantee: upon receiving a restricting message from the protocol, it either answers immediately and correctly
or sends only restricting messages to the environment until it can provide a correct answer to the original
restricting message from the protocol. In such a situation, the simulator should not send a non-restricting
message to the environment because, if it does so, it cannot make sure that it gets back an answer immediately
from the environment and that the environment does not invoke the protocol in between. In Appendix D.4,
we specify and provide a formal proof of this intuition.
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We also note that Definition 4.6 is a generalization of Definition 2.1: with R := ∅, we obtain Definition 2.1.
We now prove that the realization relation with responsive environments is reflexive and transitive. This

is crucial for the modular and step-wise design of protocols: once we have proven P ≤R P ′ and P ′ ≤R P ′′, we
want to conclude immediately that P ≤R P ′′.

Lemma 4.7. The ≤R relation is reflexive and transitive.

Proof. In what follows, we take the (equivalent) formulation of ≤R with the dummy adversary AD.
Now, to prove reflexivity, we define S := AD. This trivially implies {E ,AD,P} ≡ {E ,S,P}. As already

mentioned, AD is responsive because it merely forwards messages between E and P , and E itself is responsive
for {AD,P}. This shows reflexivity.

To prove transitivity, let us assume that P ≤R P ′ and P ′ ≤R P ′′. We have to prove that P ≤R P ′′. Let
S ∈ AdvR(P ′) and S ′ ∈ AdvR(P ′′) be the simulators that yield P ≤R P ′ and P ′ ≤R P ′′, respectively. To
prove P ≤R P ′′, we build a new simulator {S,S ′} as the combination of S and S ′, where the communication
is as follows: S ′ handles the network communication with P ′′, the network communication of S ′ at its interface
to the environment is handled by S at its network interface to P ′, and the network communication of S
with the environment is in fact with the environment. Let E ∈ EnvR({AD,P}). We have to prove that i)
{E ,AD,P} ≡ {E ,S,S ′,P ′′} and ii) {S,S ′} is responsive for P ′′.

i) By assumption, we have that {E ,AD,P} ≡ {E ,S,P ′}. In the second system, we can plug AD between S
and P ′ without changing the overall behavior of the system because AD merely forwards messages between S
and P ′. Hence, we have that {E ,S,P ′} ≡ {E ,S,AD,P ′}. Now suppose that {E ,S,AD,P ′} 6≡ {E ,S,S ′,P ′′}
(otherwise, there is nothing to show). Then, the environment E ′, which internally simply simulates {E ,S},
obviously distinguishes {AD,P ′} from {S ′,P ′′}. Moreover, this environment is responsive for {AD,P ′}:
First observe that E ∈ EnvR({S,AD,P ′}) by Lemma 4.4. Also observe that S ∈ AdvR({AD,P ′}) because
S ∈ AdvR(P ′) and AD merely forwards messages. Moreover, by applying Lemma 4.5 for Q := {AD,P ′}, we
directly obtain that E ′ ∈ EnvR({AD,P ′}). This contradicts the assumption that {AD,P ′} and {S ′,P ′′} are
indistinguishable by every environment in EnvR({AD,P ′}). Hence, {E ,S,AD,P ′} ≡ {E ,S,S ′,P ′′} and, by
transitivity of the ≡ relation, {E ,AD,P} ≡ {E ,S,S ′,P ′′}.

ii) Now let E ∈ EnvR({S,S ′,P ′′}) and define the environment E ′, which internally simulates {E ,S}, just
as in i). We now argue that E ′ ∈ EnvR({S ′,P ′′}). As EnvR({S,S ′,P ′′}) = EnvR({AD,P}) by Lemma 4.4 and
hence E ∈ EnvR({AD,P}), we can reuse the results for E ′ from above, i.e., E ′ ∈ EnvR({AD,P ′}). Furthermore,
because we have P ′ ≤R P ′′ by assumption and by the definition of S ′, we can use Lemma 4.4 to obtain
EnvR({AD,P ′}) = EnvR({S ′,P ′′}). This gives E ′ ∈ EnvR({S ′,P ′′}). Now observe that, because S ′ is a
responsive adversary and E ′ a responsive environment, there can only be a negligible set of runs of {E ′,S ′,P ′′}
in which a restricting message of P ′′ on the network is answered incorrectly. As the systems {E ′,S ′,P ′′} and
{E ,S,S ′,P ′′} behave exactly the same, this implies that {S,S ′} is a responsive adversary for P ′′. ut

4.4 Composition Theorems

The core of every universal composability model is the composition theorems. We now present a first
composition theorem that handles concurrent composition of any (fixed) number of potentially different
protocols.

Theorem 4.8. Let R be a restriction. Let k ≥ 1, Q be a protocol, and P1, . . . ,Pk, F1, . . . ,Fk be protocols
such that for all j ≤ k it holds true that Pj ≤R Fj.
Then, {Q,P1, . . .,Pk} ≤R {Q,F1, . . .,Fk}.

Proof. In what follows, we take the (equivalent) formulation of ≤R with the dummy adversary AD.
It suffices to prove the theorem for the case k = 1. The argument can then be iterated to obtain the

theorem for k > 1 using transitivity of the ≤R relation. Let S ∈ AdvR(F1) be the simulator from the
definition of P1 ≤R F1. Define the simulator S ′ to forward messages between the environment and Q, while
internally simulating S for messages between the environment and F1. Now let E ∈ EnvR({AD,Q,P1}). For
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convenience, in what follows, we split AD into AQD and AP1
D where AQD forwards all communication betweeen

E and Q and AP1
D forwards all communication betweeen E and P1.

We first prove that {E ,AD,Q,P1} ≡ {E ,S ′,Q,F1}. Suppose that this is not the case. Then we can define
a new environment E ′ that distinguishes {AP1

D ,P1} from {S,F1}. The environment E ′ internally simulates
{E ,AQD,Q}, and hence, distinguishes with the same probability as E . Now observe that E ′ is responsive
for {AP1

D ,P1}: All network messages from {AP1
D ,P1} in {E ,AD,Q,P1} are handled by E only, not by Q.

Moreover, as E is responsive for {AD,Q,P1}, we have that these messages are answered correctly (in the
sense of Definition 4.2), implying the responsiveness of E ′ for {AP1

D ,P1}. This contradicts the assumption
that P1 ≤R F1, and hence {E ,AD,Q,P1} ≡ {E ,S ′,Q,F1} must be true.

We still have to show the responsiveness property of S ′, that is, S ′ ∈ AdvR({Q,F1}). Let E ∈
EnvR({S ′,Q,F1}). We have to show that all restricting network messages from Q and F1 to E and S ′
are answered correctly (in the sense of Definition 4.2). Suppose that there is a non-negligible set of runs
of {E ,S ′,Q,F1} in which a restricting network message from {Q,F1} is not answered correctly. As S ′ only
forwards network messages from Q to the environment and the environment is responsive for {S ′,Q,F1},
we have that with overwhelming probability these messages are answered correctly. Hence, there must be a
non-negligible set of runs in which network messages from F1 are not answered correctly. Now consider E ′
from above. Then there also is a non-negligible set of runs of {E ′,S,F1} in which restricting messages on the
network from F1 are answered incorrectly because, by construction of E ′, the behavior of the system {E ′,S,F1}
coincides with {E ,S ′,Q,F1}. We already know that E ′ ∈ EnvR({AP1

D ,P1}) from above. Also, by assumption,
we have that {E ′′,AP1

D ,P1} ≡ {E ′′,S,F1} for all E ′′ ∈ EnvR({AP1
D ,P1}). Now, by Lemma 4.4, it follows

that EnvR({AD,P1}) = EnvR({S,F1}), and hence E ′ ∈ EnvR({S,F1}). This contradicts the responsiveness
property of S. ut

The following composition theorem guarantees the secure composition of an unbounded number of instances
of the same protocol system. To state this theorem, we consider single-session (responsive) environments, i.e.,
environments that invoke a single session of a protocol only. In universal composability models, instances
of protocol machines have IDs that consist of party IDs and session IDs. Instances with the same session
ID form a session. Instances from different sessions may not directly interact with each other. A single-
session environment may invoke machines with the same session ID only. We denote the set of single-session
environments for a system Q by EnvR,single(Q). We say that P single-session realizes F (P ≤R,single F) if there
exists a simulator S ∈ AdvR(F) such that {E ,AD,P} ≡ {E ,S,F} for all E ∈ EnvR,single({AD,P}). Now, the
composition theorem states that if a single session of a real protocol P realizes a single session of an ideal
protocol F , then multiple sessions of P realize multiple sessions of F .

Theorem 4.9. Let R be a restriction, and let P and F be protocols. Then, P ≤R,single F implies P ≤R F .

Proof. Let S be the simulator for P ≤R,single F . A new simulator S ′ for arbitrary responsive environments
can be constructed just as in the original (non-responsive) composition theorem, i.e., S ′ internally keeps one
copy of S per session and uses these copies to answer messages from/to the corresponding sessions.

The proof has two main steps: The first step shows indistinguishability of {AD,P} and {S ′,F} for every
responsive environment E ∈ EnvR({AD,P}). The second step shows the responsiveness property of the
simulator.

The first part uses a hybrid argument in which one builds a series of single-session environments Ei, i ≥ 1,
which internally simulate E such that all messages to the first i− 1 sessions are sent to internally simulated
instances of {S,F}, messages to the i-th session are sent to the (external) system {AD,P} or {S,F},
respectively, and the remaining messages are sent to internally simulated instances of {AD,P}. As different
sessions of a protocol do not directly interact with each other, it is easy to see that {E1,AD,P} behaves just
as {E ,AD,P} (*), and {En,S,F} behaves just as {E ,S ′,F}, where n ∈ N is an upper bound of the number
of sessions created by E (note that n is a polynomial in the security parameter and the length of the external
input given to the environment, if any). Hence, the distinguishing advantage of E is bounded by the sum
of the advantages of E1, . . . , En, i.e., it is sufficient to show that the advantages of E1, . . . , En are bounded
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by the same negligible function8 to show that E cannot distinguish {AD,P} from {S ′,F}. In what follows,
to show the existence of a single negligible function, we consider environments with external input because
the argument is simpler in that case. Nevertheless, using sampling of runs, the argument also works without
external input, i.e., in the uniform case, as discussed in Appendix D.7.

To show that such a bound exists, it is first necessary to prove that there is a (single) negligible function
f that, for every i ≤ n, bounds the probability of Ei of violating the responsiveness property in runs of
{AD,P} or {S,F}, respectively. Let Ĉ {AD,P}i be the event that in runs of {Ei,AD,P} the environment E ,
which is internally simulated by Ei, answers a restricting message of the external system {AD,P} or one of
the internally simulated instances of {AD,P} and {S,F} incorrectly; Ĉ {S,F}i is defined analogously. Because
E ∈ EnvR({AD,P}) and because of (*), we have that Ĉ {AD,P}1 is negligible. It also holds true that (**) there
exists a single negligible function that bounds |Pr

[
Ĉ
{AD,P}
i

]
− Pr

[
Ĉ
{S,F}
i

]
| for all i ≥ 1. This is because

one can define a single-session responsive environment E ′ that gets i as external input and then simulates Ei;
E ′ aborts and outputs 1 as soon as a restricting message is about to be answered incorrectly, and 0 otherwise.
Note that because the restriction R can be decided efficiently, E ′ can perform the task described. Also, by
construction, E ′ is a single-session environment (it invokes a single external session only) and it is responsive
(it stops the execution before the responsiveness requirement would be violated). As E ′ distinguishes {AD,P}
and {S,F} only based on the events Ĉ {AD,P}i and Ĉ {S,F}i , and both systems are indistinguishable for every
single session responsive environment, statement (**) holds true. Finally, observe that, for all i ≥ 2, the
systems {Ei−1,S,F} and {Ei,AD,P} behave exactly the same, and hence Pr

[
Ĉ
{AD,P}
i

]
= Pr

[
Ĉ
{S,F}
i−1

]
.

This implies that there is a single negligible function that bounds Pr
[
Ĉ
{AD,P}
i

]
for all 1 ≤ i ≤ n (here we

need that n is polynomially bounded).9 In particular, we have that the probability that Ei is not responsive
for the system {AD,P} is bounded by a single negligible function independently of i ≤ n.

We can now conclude the indistinguishability argument by showing that the advantages of Ei, 1 ≤ i ≤ n,
in distinguishing {AD,P} from {S,F} are bounded by the same negligible function. For this, we construct
another single-session responsive environment E ′′ analogously to E ′. The system E ′′ expects 1 ≤ i ≤ n
as external input (and otherwise stops) and then exactly simulates Ei. Importantly, E ′′ is responsive for
{AD,P} because we have shown that every Ei violates responsiveness with at most the same negligible
probability, i.e., the same bound also holds for E ′′ for every input. As E ′′ is a single-session responsive
environment, its distinguishing advantage for the systems {AD,P} or {S,F} is negligible for every possible
input. Moreover, with external input i, its distinguishing advantage is the same as that for Ei. Hence, the same
negligible function that bounds the advantage of E ′′ also bounds all advantages of Ei, i ≤ n. As mentioned
at the beginning of the proof, this implies indistinguishability of {AD,P} and {S ′,F} for every responsive
environment E ∈ EnvR({AD,P}).

Having proved indistinguishability, it remains to show that S ′ is responsive, i.e., S ′ ∈ AdvR(F). Let
E ∈ EnvR({S ′,F}). We have to show that the probability that all restricted messages from F in runs of
{E ,S ′,F} are answered correctly (in the sense of Definition 4.2) is overwhelming. For this, consider the
following single-session environment E ′ that is meant to run with {S,F}: The system E ′ first flips r ≤ n,
with n as above, and then internally simulates E and several sessions of {S,F} such that messages from E to
the r-th session are sent to the external session, whereas all other messages are processed by the internally
simulated sessions. Note that {E ′,S,F} behaves just as {E ,S ′,F}, and hence, because E ∈ EnvR({S ′,F}),
by Lemma 4.4 we have that E ′ is responsive for {S,F}. Because S is a responsive adversary, this implies that
there is only a negligible set of runs of {E ′,S,F} in which a restricting message of F is answered incorrectly
(by E ′ or S). Hence, the probability for this to happen is bounded by some negligible function f . From this

8 It is not sufficient to show that the advantage of every environment Ei is bounded by a negligible function fi, which
is actually rather easy to show. The negligible functions fi might be different and then their sum f1 + · · · + fn

might not be negligible.
9 Note that it also follows that Pr

[
Ĉ
{S,F}
i

]
is bounded for all 1 ≤ i ≤ n. However, we do not need this result in the

following.
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and the fact that there are only polynomially many sessions, it follows that the probability that a restricting
message from some session of F is answered incorrectly is negligible. Hence, S ′ is a responsive adversary. ut

We note that Theorems 4.8 and 4.9 can be combined to obtain increasingly complex protocols. For
example, one can first show that a single session of a real protocol P realizes a single session of an ideal
protocol F . Using the two theorems, it then follows, for example, that a protocol Q using multiple sessions of
P realizes Q using multiple sessions of F .

To conclude this section, we note that all of our lemmas and theorems have been proven using a single
restriction R. Hence, formally, a protocol designer would have to use the same restriction in all of her security
proofs in order to be able to use our results. However, as we show in Appendix C, this is actually not the case
because it is very easy to extend and combine different restrictions while still retaining all security results.
Also, as discussed in §6, there is in fact one generic restriction that would suffice for all purposes.

5 Responsive Environments in Concrete Models

In the preceding section, we have presented our universal composability framework with responsive environ-
ments in a rather model-independent way. In this section, we outline how to implement this framework in
the prominent UC, GNUC, and IITM models to exemplify that our framework and concepts are sufficiently
general to be applicable to any universal composability model. While these three models follow the same
general idea, they differ in several details which affect the concrete implementation of our concepts in these
models (see, e.g., [18,23] for a discussion of these differences). The main differences and details to be considered
concern runtime definitions and the mechanism for addressing (instances of) machines.

To instantiate our universal composability framework with responsive environments for the models
mentioned, we mainly have to concretize the definitions in §4.2 for these models, that is, the definitions of
restrictions as well as of the responsive environments and adversaries. For some models we also have to adjust
their runtime notions slightly. Before presenting the details for the specific models, let us briefly explain the
central points to be taken care of:

Runtime. In the GNUC and IITM models, the runtime of systems/protocols is required to be polynomially
bounded only for a certain class of environments. As we now want to consider responsive environments,
we should restrict the class of environments considered in the GNUC and IITM models to those that are
responsive. This also has some technical advantages. To see this, letR andR′ be two systems/protocols. For
example, R and R′ could be the systems {E ,AD,Q,P} and {E ,S,Q, I} as considered in the composition
theorem (Theorem 4.8) when we want to prove that {Q,P} realizes {Q, I}. We often face the situation
that we know that, say, R satisfies the model’s runtime bound for all environments in a certain class and
that R and R′ are indistinguishable for every responsive environment E (in this class). This implies that
R′ also has to satisfy the runtime notion, but only for all responsive environments of the class. Hence,
one cannot necessarily use R′, with any environment, in another system as it does not satisfy the model’s
runtime notion (for non-responsive environments E , the runtime of R′ might not be polynomial). Hence,
also from a technical point of view, it makes sense to relax the runtime notions in these models in that
the runtime of systems/protocols should only be required to be polynomially bounded for responsive
environments.

Definition of restrictions. According to Definition 4.1, we require that restrictions are “efficiently decidable”.
As mentioned, the exact definition depends on the model at hand. The important property this definition
should satisfy is the following: An environment E ′ which internally simulates another environment E
should be able to decide whether the output E produces is a correct answer (according to the restriction)
when receiving some message as input. That is, E ′ must be able to check whether the input message was
restricting at all, and if it was, E ′ must be able to check whether the response was valid. We often use
such simulations in proofs. Depending on the model under consideration, we might not yet (at this point
of the proof) have guarantees about the length of the restricting message sent to E . A model-dependent
definition of an efficiently decidable restriction should take this into account.

19



Definition of responsive environments. In the definition of responsive environments (Definition 4.2), we
require that an answer to a restricting message be sent back to the same machine and we already
explained that “same machine” typically means the same instance from which the restricting message has
been received. This has to be specified for the different models.

Definition of responsive adversaries. Depending on the restriction R considered, in some models, in particular
UC and GNUC, Definition 4.3 can be too restrictive, and, for example, the dummy adversary in these
models might not satisfy the definition. The dummy adversary in these models is required to perform
multiplexing. When it receives a message from an instance of the protocol and forwards this message
to the environment, it has to prefix the message with the ID of that instance to tell the environment
where the message came from. This alters the message, and the resulting message might no longer be
restricting, depending on the definition of the restriction R. Hence, the environment would no longer be
obliged to answer directly, and thus the (dummy) adversary would not be responsive. One way to fix
this is to require a certain closure property of restrictions, namely that adding IDs at the beginning of
restricting messages still yields restricting messages and that these message permit the same answers. But
this is quite cumbersome. For example, by recursively applying this constraint one would have to require
that R be closed under arbitrarily long prefixes of sequences of IDs. A more elegant solution that would
still allow simple and natural restrictions would redefine what it means for a message from an adversary
to the environment to be restricting. This is what we suggest for the UC and GNUC models (see below).

In what follows, we sketch how to adjust and concretize the runtime notions and the definitions for the UC,
GNUC, and IITM models. As mentioned in the introduction, we have carried out the implementation of
responsive environments in this model in full detail for the IITM model.

5.1 UC

For the UC model, we do not have to change the runtime definition because the runtime of a protocol is not
defined w.r.t. a class of environments, but simply bounded by a fixed polynomial (see also below).

Definition of restrictions. For UC we require both R and R[0] to be decidable in polynomial time in the
length of the input. Because of UC’s strict runtime definition, this is sufficient to satisfy the requirement
mentioned above, namely, that an environment E ′ simulating another environment E can check whether a
restricting message received by E is answered correctly by E . To see this, recall that every machine in UC is
required to be parameterized with a polynomial. At every point in the run, the runtime of every instance of a
machine is bounded by this polynomial, where the polynomial is in n := nI − nO, with nI being the number
of bits received so far on the I/O interface from higher-level machines and nO being the number of bits sent
on the I/O interface to lower level machines. Environment machines have to satisfy this condition as well,
where nI is the number of bits of the external input (which contains the security parameter η). Hence, as
protocols will receive only a polynomial number of input bits from the environment, they can send messages
of polynomial length in the length of the external input plus η only. Therefore, given some message m that
was received by an environment and a response m′ to this message, the message pair (m,m′) has at most
polynomial length in the external input plus η, and an environment is able to decide within its runtime bound
whether m′ is a correct answer to m if we use the above definition of effectively decidable restrictions.

Definition of responsive environments. We require that a response to a restricting message be sent back to
the instance of the machine that sent the restricting message. This is possible because every instance in UC
is assigned a globally unique ID, which is then used to specify the sender and the recipient of a message.

Definition of responsive adversaries. As explained above, messages from the adversary to the environment
and vice versa may contain a prefix (typically an ID). For reasons explained above, we say in UC that
such a prefix is ignored for the sake of checking whether a message is restricting and whether the answer is
correct. To be more specific, a message m = (pre, m̄) from the adversary to the environment is restricting iff
m̄ ∈ R[0]. Also, if m is restricting (in this sense), an answer m′ = (pre′, m̄′) from the environment is allowed
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if (m̄, m̄′) ∈ R and pre′ = pre. Using this definition, it is easy to see that the dummy adversary in UC, which
adds some prefix to messages from a protocol to the environment and strips off a prefix from messages from
the environment to a protocol, is responsive.

5.2 GNUC

The changes necessary for the GNUC model are similar to those for the UC model. However, the runtime
notion has to be modified:.

Runtime. Let us first recall the relevant parts of the runtime definition of GNUC.10 In this model, the runtime
definition depends on the entity considered. For an environment E , there has to exist a polynomial p that
bounds the runtime of the environment in runs with every system where p gets as input the number of bits
of all messages that have been received by the environment during the run, including the external input, plus
the security parameter η. For a protocol P, there has to exist a polynomial q such that the runtime of P is
bounded by q in runs with any environment and the dummy adversary where q gets as input the number of
bits that are output by the environment (to both the adversary and the protocol). This definition has to be
changed such that the runtime of a protocol needs to be bounded only for all environments (in the sense of
GNUC) that in addition are responsive.

Definition of restrictions. Analogously to UC, we require R and R[0] to be decidable in polynomial time in
the length of the input. This is sufficient to satisfy the described requirement (E ′ simulating E) as the runtime
of environments in GNUC depends on the number of bits received from a protocol. Hence, an environment
is always able to read a potentially restricting message m entirely, whereas the length of an answer m′ is
bounded by the runtime bound of the environment.

Definition of responsive environments. Just as for UC, we require that responses to restricting messages be
sent to the same instance of a machine. This is possible in GNUC because, again, all machines have globally
unique IDs to address instances.

Definition of responsive adversaries. Just as for UC, the adversary in GNUC might (have to) add IDs as
prefixes or remove such prefixes, therefore these prefixes are ignored in the definition of responsive adversaries.

5.3 IITM

Just as for the other models, we now outline how to adjust and concretize the runtime notion and the
definitions from §4 for the IITM model. As mentioned, in Appendix D, we provide full details for the
IITM model with responsive environments, with a brief summary of the results presented at the end of this
subsection.

Runtime. In the IITM model, the runtime depends on the type of entity. For an environment E , it is required
that there exists a polynomial p (in the length of the external input, if any, plus the security parameter) such
that for every system running with E the runtime of E with this system is bounded by p. For a protocol P , it
is merely required that it be environmentally bounded, i.e., for every environment E there is a polynomial q
(again, in the length of the external input plus the security parameter) that bounds the overall runtime of
runs of {E ,P} (except for at most a negligible set of runs).11 Given a protocol P , for an adversary A for P it
is required only that {A,P} be environmentally bounded. (Clearly, the dummy adversary is environmentally
bounded.) To adjust the runtime notions for the setting with responsive environments, instead of quantifying
over all environments in the definition of environmentally bounded protocols/adversaries, one should now
quantify over responsive environments only, as motivated at the beginning of §5.
10 Note that there are several additional requirements, such as bounds on the number of bits that are sent by the

environment as well as so-called invited messages. These details, however, are not relevant here.
11 Here E may directly connect to P’s network interface. Equivalently one could have E communicate with P on the

network interface via a dummy adversary.
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Definition of restrictions. We require that a restriction R is efficiently decidable in the second component, i.e.,
there is an algorithm A which expects pairs (m,m′) of messages as input and which runs in polynomial time
in |m′| in order to decide whether m′ is a correct answer to m according to R (cf. Definition D.13). This
stronger definition is necessary to obtain the property described, namely, that an environment E ′ internally
simulating another environment E can check that answers of E to restricting messages are correct. Owing
to the very liberal runtime notion for protocols used in the IITM model, in proofs (e.g., of the composition
theorem) we sometimes have to establish that a system is environmentally bounded. Therefore, we do not
know a priori that the length of the message m is polynomially bounded. Hence, the environment might not
be able to read m completely. Conversely, the length of m′ is guaranteed to be polynomially bounded as
it is output by the environment E , which, by definition, is polynomially bounded. With R being efficiently
decidable in the second component, E ′ can then efficiently decide whether m′ is a correct answer to m.
Compared with the definition of restrictions for the UC and GNUC models presented above, this formally is
more restricted. It is, however, sufficient for all practical purposed, as discussed in §6, as one has to consider
one generic restriction only and this restriction is efficiently decidable in the second component.

Definition of responsive environments. Unlike the UC and GNUC models, the IITM model does not hardwire
a specific addressing mechanism for instances of machines and specific IDs for such instances into the model.
Instead, it supports a flexible addressing mechanism which allows a protocol designer to specify how machine
instances are addressed and what they consider to be their ID. More specifically, the IITM model allows
a protocol designer to specify an algorithm run by machine instances that decides whether the message
received is accepted by the instance or not. Therefore, in the IITM model, we can require only that responses
to restricting messages be sent to the same machine, but not necessarily the same machine instance. This,
however, is indeed sufficient. A protocol designer, can specify that a (protocol) machine accepts a message iff
it is prefixed by a certain ID (the one seen in the first activation of the instance) as typically done in the
IITM model. This ID can then be considered to be the ID of this machine instance, and messages output by
this machine would also be prefixed by this ID. Now, a protocol designer can use restrictions to manually
enforce that the same instance receives a response. Such a restriction would contain message pairs of the
form ((id,m), (id,m′)). By this, it is guaranteed that if a restricting message has been sent by a protocol
machine instance with ID id, then the response is returned to this instance, as the response is prefixed with
id. Appendix D.2 shows an example of such a restriction.

Definition of responsive adversaries. For the IITM model, we do not have to change the definition of responsive
adversaries. Adversaries in the IITM model do not have to add prefixes to messages, and hence, do not have
to modify restricting messages. In particular, the dummy adversary simply forwards messages between the
environment and the protocol without changing messages (see also the definition of dummy adversaries in
Appendix D.5).

Detailed Results for the IITM Model. In Appendix D we provide full details of the IITM model with responsive
environments. That is, we adjust the runtime notion of the IITM model accordingly, and provide full definitions
of restrictions, responsive environments and adversaries. Based on these definitions we define the various
security notions for realization relations considered in the literature (now with responsive environments),
namely, (dummy) UC, black-box simulatability, strong simulatability, and reactive simulatability. These new
and adjusted notions have been carefully developed in order to be general and to preserve central properties.
In particular, we show that all the notions mentioned for realization relations are equivalent (for reactive
simulatability, this requires environments with external input). We also prove that these relations are reflexive
and transitive. We finally prove the composition theorems for responsive environments. As should be clear
from the proof sketches in §4, the proofs are more involved than those without responsive environments
because one always has to ensure that the constructed environments and simulators are responsive. The full
proofs in Appendix D are even more intricate and non-trivial because they take all model-specific details,
such as the liberal runtime notions, into account. We note, however, that this is a once and for all effort.
Protocol designers no longer have to perform such proofs. They can simply use the results. That is, responsive
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environments do not put any burden on the protocol designer. On the contrary, as explained, they greatly
simplify the specification and analysis of protocols.

6 Applying Our Concepts to the Literature

Our new concepts of restricting messages and responsive environments and adversaries allow protocol designers
to avoid the non-responsiveness problem elegantly and completely. As mentioned, urgent requests can simply
be declared to be restricting messages, causing the adversary/environment to reply with a valid response
before sending any other message to the protocol. This indeed seems to be the most reasonable and natural
solution to the non-responsiveness problem. We now show that our approach indeed easily solves all the
problems mentioned in §1 and §3.

The frequently encountered formulations of the form (1) mentioned in §3.1 can now actually be used
without causing confusion and flawed specifications, if the message sent to the adversary is declared to be
restricting: there will now in fact be an immediate answer to this message. Similarly, ideal functionalities
which are intended to be non-interactive can now be made non-interactive (at least if uncorrupted; but, if
desired and realistic, also in the corrupted case) just like their realizations, which solves the problems discussed
in §3.2.2 (lack of expressivity), and also makes it possible to use the, again, often encountered specifications
of the form (2): if such ideal functionalities have to send urgent requests to the adversary, such requests can
be made restricting, and hence, prompt replies are guaranteed, i.e., if the (responsive) adversary/environment
contacts the protocol at all again, it first has to answer the request. Clearly, the other problems caused by
urgent requests not being answered immediately discussed in §3.2, namely, unintended state changes and race
conditions, the reentrance problem, and unnatural specifications of higher-level protocols, vanish also; again,
because urgent request now are answered immediately.

Two ways of defining restrictions. We note that there are two approaches to define restrictions R.

Tailored restrictions. One approach is to define restrictions tailored to specific protocols and functionalities.
For example, for FD-Cert the restriction could be defined as follows:{(

(Verify, sid,m, σ), (Verified, sid,m, φ)
)

: sid,m, σ ∈ {0, 1}∗, φ ∈ {0, 1}
}

Now, whenever the adversary is asked to verify some σ, the next message sent to the ideal functionality is
guaranteed to be the expected response. This directly resolves the issues discussed in §3.2.1. Similarly, one
could, for example, define restrictions for FNIKE and Fsok.12

We note that the above approach of defining a separate restriction for each protocol is general in the
sense that it can be used independently of the underlying model for universal composition, and is thus
applicable, e.g., to the UC, GNUC, and IITM models. Furthermore, this solution allows one to fix many ideal
functionalities and their realizations found in the literature without any modifications to the specifications,
including all examples mentioned in this document. However, since the composition theorems and the
transitivity property assume one restriction, different restrictions have to be combined into a single one. This
is always possible as shown in Appendix C. Nevertheless, the following solution seems preferable.

Generic Restriction. Alternatively to employing tailored restrictions, one can use the following generic
restriction:

RG := {(m,m′) | m = (Respond,m′′),m′,m′′ ∈ {0, 1}∗}.

This means that messages prefixed with Respond are considered to be restricting, and hence protocol designers
can declare a message to be restricting by simply prefixing it by Respond. According to the definition of
12 Note that to show that the respective real protocols realize their ideal functionalities, according to Definition 4.6, one

needs to prove that there exists a responsive simulator. However, it is easy to verify that the simulators constructed
in [13, 16, 30] for the functionalities mentioned already are responsive, and thus these realizations can be used
unalteredly also in a responsive setting.
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RG, the adversary/environment can respond with any message to these messages, but protocols or ideal
functionalities can be defined in such a way that they repeat their requests until they receive the expected
answer: for instance, in the case of Fsok, it can repeatedly send m′′ = (Setup, sid) to the adversary until
it receives the expected algorithms. In this way, the adversary is forced to eventually provide an expected
answer (if she wants the protocol to proceed).

Using this fixed multi-purpose restriction has the advantage that, in contrast to the former approach,
there is no need to combine different restrictions. Also, in protocol specifications, the prefixing immediately
makes clear which messages are considered to be restricting.

The main reasons we did not hardwire the generic restriction into our framework are twofold. First, this
is not required to prove our results, but makes our framework only more general, and the flexibility might
become useful in some situations. Second, as protocols and ideal functionalities have to send several requests
until they get the expected answer, depending on the runtime notions used, they might run out of resources.
In the IITM model, however, this is not an issue, and hence the generic restriction can be used (see also
Appendix D.2).

7 Conclusion

In this paper, we highlighted the non-responsiveness problem, the fact that it has often been ignored in the
literature, and its many negative consequences.

We have proposed a framework that completely avoids this problem. It enables protocol designers to
declare urgent requests to be restricting messages, causing such requests to be answered immediately by
(responsive) environments/adversaries. This, in particular, allows protocols and ideal functionalities to be
defined in the expected and natural way. It also avoids unnecessarily complex and artificial specifications,
unintended state changes and race conditions while waiting for responses to urgent requests, the reentrance
problem, the lack of expressivity when modeling non-interactive tasks, and the propagation of such problems
to higher-level protocols and proofs. We discussed how our concepts can be adopted by existing models for
universal composition, as exemplified in this work for the UC, GNUC, and IITM models. For the IITM model,
we provided full details, showing that our concepts can seamlessly be integrated into the existing model
without losing any of the properties of the setting without responsive environments: all security notions for
the realization relations are formulated, shown to (still) be equivalent, and enjoy reflexivity and transitivity;
the composition theorems also carry over to the setting with responsive environments.
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A Queuing of Intermediate Requests with Notifications to the Adversary

In the situation described in §3.2.3 and in particular for the queuing approach described there, instead of
simply ending the activation of the ideal functionality after queuing an input, one could also choose to send
a notification to the adversary for each message that is stored in this way. The adversary would then be
expected to send responses to each notification such that the ideal functionality is activated sufficiently often
to process every message. To illustrate the complexity and see the disadvantages of this approach, let us
first be more precise about the exact implementation. If the ideal functionality, upon receiving some input,
wants to send an urgent request, the input is first stored (in some set). Then the ideal functionality not
only sends the urgent request itself, but also a notification consisting of the ID of the sender of the original
input message and a token associated with this message. Now, every time the ideal functionality receives
another input before receiving a response to its urgent request, it will again store this input and send another
notification (ID and token) to the adversary. As soon as the ideal functionality receives a response to its
urgent request, it stores the data from this response and returns control to the adversary. Now, the adversary
is allowed to send responses to the notifications she received, which can be uniquely identified by the token in
the notification. As soon as the ideal functionality receives such a response, it will process and then delete
the input message associated with the token in the response. Note that it should now be possible to process
these inputs because the ideal functionality received the answer to its urgent request before. However, while
processing one of these stored messages, the ideal functionality might have to send a second urgent request,
leading to yet another set of queued input messages, and so on.

Observe that this gives a lot of additional power to the adversary by allowing her to see the original
sender of an input, blocking certain requests by never responding to a notification, and being able to change
the order in which messages are processed. These abilities are necessary to prevent the same kind of artificial
distinguishing attack presented for the other approaches mentioned in §3.2.3. In fact, to prevent the specific
attack in our running example, the simulator must know whether it has to simulate an instance of A or B
upon input (which is why we have to include the ID), and it has to be able to tell the ideal functionality
whether it should first process the stored message for A or the stored message for B. If the ideal functionality
does not allow the latter and instead processes the messages in the order they arrived, an environment can
still distinguish the real and the ideal world: if in the above attack the environment first answers the urgent
request of B, then the simulator must be able to tell F to process this request first, although A sent the first
request.

Although this approach prevents the simple distinguishing attack mentioned above, it still has three severe
drawbacks: First, it is very complex and not very intuitive, especially if ideal functionalities send more than
one urgent request. Second, it prevents some artificial distinguishing attacks by giving a lot of additional
power to the adversary. This weakens the overall security guarantees provided by an ideal functionality. The
adversary gains more information and is now able to use new attacks to potentially distinguish the real and
ideal worlds. Third, it is still not generally applicable to any ideal functionality. This is the case, for example,
if the ideal functionality has to preserve the order of execution to model its intended task.

The complexity and the weakened security guarantees are probably the reasons this approach does not
seem to have been followed in the literature so far.

B Solutions for Providing Data for Ideal Functionalities

We now discuss approaches, namely, default answers and code uploads, which can help to reduce the use of
urgent requests to some extent, but not fully and only for certain urgent requests, namely, those that try to
retrieve some meta information from the adversary (ignoring, for example, urgent requests in real/hybrid
protocols and cases where protocols/functionalities want to provide the adversary with information). But
they do not solve the reentrance problem, let alone the general non-responsiveness problem. Altogether, this
emphasizes the difficulty of solving the non-responsiveness problem in a satisfying way in the existing models,
i.e. in those without responsive environments and adversaries.
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Using a default. To solve the non-responsiveness of the adversary when an ideal functionality asks for some
algorithms, one might be tempted to add a default to the functionality such that this default will be used if
the next message received is not from the adversary or does not contain the expected information.

While this definition seems straightforward at first, it actually is much more complex as soon as one tries
to implement it. Note that after the ideal functionality has sent its urgent request, the next activation may
be due to some input on the I/O interface. The ideal functionality would then have to process two requests
at the same time (while using the default), which is not possible in current UC-like models. Dropping one of
the two requests generally is not an option, as this leads to exactly the same problems as described for the
ignoring requests approach. Hence, a queuing approach is necessary in which messages are processed one after
another. As discussed in §3.2.3, the simplest form of a queue does in general not work either, whereas a much
more complex form (cf. Appendix A) severly weakens the security guarantees of ideal functionalities and
hence is usually unacceptable.

Besides the problems mentioned above, there are further issues with this approach. First, it might not
always be possible to find a sensible default. Second, in some settings, the environment can force the uss of
the default algorithm and thus distinguish the real and the ideal world. To see this, consider the running
example of §3.2.3 and the example attack presented in the ignoring requests paragraph. In that setting, F
would be forced to use the default; the simulator has no way to first provide other values because it has to
simulate the network traffic of A before F produces output on the I/O interface (which happens as soon as
the simulator provides the algorithms). Hence, any simulation that depends on the simulator being able to
choose the information that is used by F will fail.

Not asking for information at all (code upload constructs). One could try to eliminate urgent requests from
the ideal functionality (at least those that ask for some information from the adversary) by requiring that
the adversary actively send the required information before it is needed. Let us be more precise: Such an
ideal functionality accepts a special message containing some data from the adversary at any point in time.
Then, as soon as the ideal functionality has to process a request from the I/O interface, it uses the data it
has previously received. If it has not received any data prior to the request, it resorts to a default (and stays
with this default even if the adversary later provides different data). One extreme form of this variant is code
upload constructs, in which the adversary first provides some code, which is then internally simulated by the
ideal functionality to generate answers to any (urgent) request the functionality might have sent otherwise.

However, this approach, which tries to eliminate one type of urgent requests altogether, also cannot be
used in general. In particular, an environment might again be able to force the use of the default to be able to
distinguish between the real and the ideal world. To see this, consider an ideal functionality F that requires
some information at the beginning (e.g., signing and verification algorithms in the case of Fsig) and otherwise
does not contact the adversary/simulator at all because it models a local computation. Let P be a realization
of F that uses a specific algorithm. To simulate P , the simulator has to provide the same algorithm (or a
variant of it) to F . As F may not send an urgent request to the simulator, the simulator now has to somehow
figure out when and to which instance of F to send the required algorithm. The simulator should send this
information before (the instance of) F is used for the first time. Even if it is guaranteed that the simulator is
activated before F (such as in the UC model, where the adversary/simulator is always activated directly
after the environment), the simulator would still have to know which session of F is going to be used by the
environment. However, the environment is not forced to tell the simulator which session ID it is going to use
for the challenge session, and thus a simulator can only guess at this point (note that the simulator will be
wrong most of the time because it can only guess a polynomial number of sessions, whereas the environment
is free to choose from an exponential number). It is also not possible to provide the algorithm later on because
in this approach F does not contact the simulator at all. Hence, as soon as the environment regains control,
it can access F directly for some random session ID, and thus force (the instance of) F to use the default
algorithm (with overwhelming probability).

Even if the simulator somehow gets to know the ID of the challenge session, the same issue as above
occurs as soon as one tries to find a joint state realization of F . A distinguishing environment for the joint
state realization is not bound to only use a single session but may access an arbitrary number of different
sessions, so a simulator has again no means to provide algorithms “in time” for all possible sessions of F .

27



A variant of this approach defines a special instance with a fixed ID which gets all data from the
adversary/simulator. This instance is then used as a subroutine by all ideal functionalities that need to
access this data. While this fixes the above issue by defining a single, known ID for the instance to which
the simulator has to send its data, it comes at a hefty price: It is no longer possible to use the composition
theorem for multiple sessions. In this setting, all sessions access the same subroutine instance, and hence
sessions are no longer disjoint, as required by the composition theorem.

All of the above approaches also have an additional disadvantage. As mentioned at the beginning, they only
seek to address the issue of urgent requests in which the ideal functionality wants to retrieve information
from the adversary, but not urgent requests that are meant to provide information to the adversary. Also,
urgent requests for real/hybrid protocols are not addressed either. So even if one of the above approaches can
be applied, which depends on the concrete functionalities and realizations, it only fixes part of the problem,
and this partial solution leads to artificially complex ideal functionalities.

C Retaining Security Results for Different Restrictions

As already mentioned at the end of §4, all of our lemmas and theorems, including transitivity of the ≤R
relation and the composition theorems, have been proven using only a single restriction R. In other words, to
be able to actually use these lemmas and theorems, a designer has to reuse the same restriction in every
analysis. However, sometimes it is desirable to extend a restriction, for example, because one wants to
introduce a new type of restricting message that is necessary to model a specific protocol, or combine the
results of two different security analyses that used different restrictions. This section first shows that extending
restrictions is in principle possible, and then shows in particular how results of two different security analyses
can be combined, even if they used different restrictions.

The following lemma allows us to extend restrictions while still retaining security results. The general
idea is as follows: Observe that there are two major constraints in the security notion (cf. Definition 4.6),
namely, indistinguishability for all responsive environments and responsiveness of the simulator. To be able
to use a restriction R′ instead of R while still retaining security results, we have to preserve both constraints.
The first can be preserved if R′ only restricts responsive environments and adversaries further, hence yielding
a subset of responsive environments and adversaries for R. The second can be preserved if the ideal protocol
simply never sends one of the new restricting messages that were added by R′, as then there are no runs
where the simulator answers one of these new messages incorrectly.

Lemma C.1. Let R be a restriction and let P and F be protocols such that P ≤R F . Let R′ be a restriction
that extends R, i.e., R ⊆ R′. Then we have that P ≤R′ F if the following holds true:

– {(m,m′)|m ∈ R[0], (m,m′) ∈ R′\R} = ∅, that is, R′ does not add new allowed answers to any restricting
message of R[0], and

– for all systems Q, the protocol F in runs of {Q,F} never outputs a message m ∈ R′[0]\R[0] on the
network interface.

Proof. Let S be the simulator that yields P ≤R F . We have to show that (1) {E ,AD,P} ≡ {E ,S,F} for
every environment E ∈ EnvR′({AD,P}) and (2) that S ∈ AdvR′(F).

For (1), observe that by assumption we have R[0] ⊆ R′[0], i.e., R′ only adds additional restricting
messages. Furthermore, also by assumption, R′ does not add new possible answers to any restricting
message already defined in R[0]. Therefore the restriction R′ actually restricts responsive environments and
adversaries more than R, i.e., any environment in EnvR′({AD,P}) is also in EnvR({AD,P}). Because we
have {E ,AD,P} ≡ {E ,S,F} for every environment E ∈ EnvR({AD,P}) by the definition of P ≤R F , (1)
directly follows.

For (2), let E ∈ EnvR′({S,F}). Observe that E ∈ EnvR({S,F}) by the same reasoning as in the
above paragraph. Now first suppose there was a non-negligible set of runs of {E ,S,F} where S answers a
restricting message m ∈ R[0] incorrectly by the definition of R′ (note that this does not consider messages
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m ∈ R′[0]\R[0]). Because R ⊆ R′, these answers would also be incorrect by the definition of R. This
contradicts the responsiveness of S (for R) because E ∈ EnvR({S,F}).

Finally observe that F will never send a restricting message m ∈ R′[0]\R[0] in runs of {E ,S,F} by
assumption. Therefore S will also never answer such a message incorrectly. Combined with the results from
the previous paragraph, this implies S ∈ AdvR′(F). ut

Using Lemma C.1, we directly obtain that security results carry over if one extends a restriction R by
adding some new restricting message that is not used by F with arbitrary sets of allowed answers. This allows
a protocol designer to simply add new messages each time she analyzes a different protocol, without having
to re-prove all previous results. Should F use some restricting messages one wants to add, then one could
slightly redefine F (e.g., by prefixing some messages) to avoid overlap.

We now explain how Lemma C.1 even allows us to combine security results for two different restrictions
R1 and R2, where one is not necessarily an extension of the other as required by the lemma.

To combine two (or more) security results for different restrictions, one has to define a new restriction R
that combines all restrictions. As a running example illustrating the exact procedure, assume two protocols
P1,P2 that realize ideal functionalities F1,F2 for restrictions R1, R2, i.e., P1 ≤R1 F1 and P ≤R2 F2. To
combine both results, e.g., via a composition theorem (cf. Theorem 4.8), we need a restriction R such that
P1 ≤R F1 and P2 ≤R F2. Generally speaking, to construct such a restriction, one syntactically changes both
the protocols and the restrictions such that protocols using different restrictions only send the same restricting
message if both restrictions agree on the allowed answers. It is then simple to combine the two restrictions.

To be more precise, first define R1∩2 to be the binary set that contains all pairs (m,m′) ∈ R1 such that
m ∈ R1[0]∩R2[0] and both R1 and R2 define the same allowed answers for m. In other words, R1∩2 contains
those message pairs on which both restrictions coincide. Now, syntactically change R1 and R2 in the following
way such that there is no restricting message with m ∈ R1[0] ∩R2[0] but m /∈ R1∩2[0]. In other words, for
every restricting message from the resulting restrictions, say R′1 and R′2, they either agree in the allowed
answers or the restricting message is only defined in one of these restrictions. This can easily be established,
e.g., by prefixing every restricting message in which the restrictions do not agree with different strings.

Now observe that we can modify the protocols (and simulators) to adjust them to the new restrictions by
simply renaming messages in the same way. This yields new protocols P ′1,P ′2,F ′1,F ′2 such that P ′1 ≤R′1 F

′
1

and P ′2 ≤R′2 F
′
2. Note that these protocols are “as good as” the original protocols for a security analysis, as

their behavior is still exactly the same.
Now define R := R′1 ∪R′2.13 By construction, we can use Lemma C.1 to obtain P ′1 ≤R F ′1 and P ′2 ≤R F ′2.

This yields realizations for the same restriction, and thus it is now possible to apply all lemmas and theorems
of our framework.

D The IITM Model with Responsive Environments

In this section, we provide detailed definitions and proofs of our responsive environments framework in
the IITM model. In particular, we now precisely define the terms restriction, responsive environment, and
responsive adversary from §4.2 in the IITM model. Furthermore, we define the different security notions
(unlike in §4.3, we not only define UC and dummy UC, but also strong simulatability, black-box simulatability,
and reactive simulatability) w.r.t. responsive environments and prove that, just as in the original IITM model
with general (i.e., non-responsive) environments, they are still equivalent. We now also prove the composition
theorems (cf. §4.4) in the IITM model with responsive environments.

D.1 Recalling Notions from the IITM Model

Before we can extend the IITM model to work with responsive environments, we first have to recall parts of
the original IITM model from [23]. Note that in the following we will introduce and use the original notiation
13 Formally, one still has to ensure that R actually is a restriction, i.e., fulfills Definition 4.1. This, however, should be

the case for natural definitions of R1 and R2.
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of the IITM model instead of using the model-independent notation from §2. The general structure of this
section is as follows: First, we recall the definitions of IITMs (the machines in the IITM model) and systems
of IITMs. We also explain how to run a system with some input and security parameter. Then we introduce
several terms that describe specific properties of I/O and network interfaces of machines, such as, e.g., two
machines being able to be connected to each other (in a system) via those interfaces. Finally, we recall the
original runtime definitions of the IITM model in detail and formally specify environments, adversaries, and
protocols.

Before we start, we have to recall the formal definition of negligible functions with external input,
cf. Canetti [7]:

Definition D.1. A function f : N× {0, 1}∗ → R≥0 is called negligible if for all c, d ∈ N there exists η0 ∈ N
such that for all η > η0 and all a ∈ {0, 1}≤ηd : f(η, a) < η−c. A function f : N × {0, 1}∗ → [0, 1] is called
overwhelming if 1− f is negligible.

D.1.1 Systems of IITMs We start by recalling the formal definition of inexhaustible interactive Turing
machines. They are used to model programs in the IITM model.

Definition D.2 (Inexhaustible Interactive Turing machine (IITM)). An (inexhaustible) interactive
Turing machine (IITM) M is a probabilistic Turing machine with a polynomial q associated with it, where q
bounds the runtime of M in mode CheckAddress, and the following tapes: a read-only tape on which the
mode the IITM M is supposed to run is written (the mode tape) — the possible modes are CheckAddress
and Compute — , a read-only tape on which the random coins are written (the random tape), a read-only
tape on which the security parameter is written (the security parameter tape), a write-only tape (the address
decision tape, where the output of mode CheckAddress is written), zero or more input and output tapes,
and work tapes. The input and output tapes have names, and we require that different tapes of M have
different names. We also require that only input tapes may be named start and only output tapes may be
named decision.

The CheckAddress mode is used as a generic mechanism for addressing instances (also called copies)
of IITMs in a system of IITMs, as explained further below. In this mode, an IITM may perform, in every
activation, a deterministic polynomial time computation in the length of the security parameter plus the
length of the current input plus the length of its current configuration, where the polynomial is the one
associated with the IITM. The IITM is supposed to output “accept” or “reject” at the end of the computation
in this mode, indicating whether the received message is processed further or ignored. The actual processing
of the message, if accepted, is then done in mode Compute. In mode Compute, a machine may only output
at most one message on an output tape, which then ends its activation (see below).

Input and output tapes, identified by their names, are classified as either I/O or network tapes. These
tapes are used to model secure direct connections between (sub-)programs or unsecure network connections
that are controlled by an adversary. For brevity, we define NET to be the set of names of all network tapes.

Several machines can connect to each other via their input and output tapes to form a system of machines,
where instances of these machines can send messages to each other via those tapes. Two machines in a system
are connected via a tape if one of them has an input tape named n and the other has an output tape named
n. In a system, there are at most two tapes with the same name and if there are exactly two, they have
opposite directions. This uniquely defines how machines connect to each other. More formally:

Definition D.3 (Systems of IITMs). A system of IITMs is a set of IITMs. An input/output tape with
name n of one of the IITMs in the system is called internal if there is another machine in the same system
with a tape named n of opposite direction. Input and output tapes that are not internal are called external.
Using this terminology, a system is defined recursively as follows:

– Every single IITM M also is a system of IITMs.
– If Q is a system, then !Q is also a system.
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– For two systems of IITMs Q and R, the composition Q |R, where all internal tapes of Q and R are
renamed such that they only connect via external tapes, is a system iff there is no external tape in both Q
and R with the same name and direction.

In the above definition, for !Q, we say that Q is in the scope of a bang. This means that every IITM that is
contained in Q will be allowed to have more than one instance in a run of the system Q; in contrast to this,
IITMs which are not (in systems that are) in the scope of a bang will only have at most one instance in every
run (see below). We note that the bang operator ! binds more strongly than the composition operator | , i.e.,
the systems (!Q) |R and !Q |R are equivalent, whereas ! (Q |R) is a different system. Also note that, by
definition of the behavior of the bang operator, we have that ! (Q |R) is the same as !Q | !R and that ! (!Q)
is the same as !Q.

D.1.2 Running a System In a run of a system Q, several instances of each IITM in Q may be spawned,
where the CheckAddress mode is used to determined which instance gets to process a message. The actual
processing is then done in mode Compute. More specifically, in a run of a system Q(1η, a) with security
parameter η and external input a, only one IITM instance (ITI ) is active at any time and all other ITIs
wait for new input. The first machine to be activated is the IITM in Q with an input tape named start, also
called master IITM, by writing the external input a on start (if no external input is considered, then the
empty message is written on start instead); if no master IITM exists, the run of Q terminates immediately. If
a message m is written by some ITI on one of its output tapes, say on t (initially, as mentioned, the external
input is written on start), and there is a machine, say M , in Q, with an input tape named t, then which
instance of M gets to process m is decided as follows. All existing instances of M are run in CheckAddress
mode in the order of their creation, until one instance accepts m. This instance (if any) then runs in Compute
mode with input m written on its input tape t. If no instance accepted m and M is in the scope of a bang, or
if there is no instance of M yet, a fresh instance of M is spawned and run in mode CheckAddress and if it
accepts m, it gets to process m on its input tape t. Otherwise, the freshly created instance is deleted again,
m is dropped, and the empty message is written on start in order to trigger the master IITM (of which there
might also be several instances, where again their CheckAddress mode is used to decide which one gets to
process the message). After running an ITI in mode CheckAddress, the configuration is set back to the
state before it was run in CheckAddress; thus this mode does not and cannot change the configuration of a
machine.

When an instance of M processes a message in mode Compute, it may write at most one non-empty
message, say m, on one of its output tapes, say t, and then stop. If there is an IITM with an input tape
named t in the system, the message m is delivered to one instance of that IITM on tape t as described above.
If the instance of M stops without producing output (sometimes also called empty output as all output tapes
contain the empty message, i.e., m = ε) or there is no IITM with an input tape t, then (an instance of) the
master IITM is activated by writing the empty message on start. A run stops as soon as a message is written
on decision, no master ITI accepted the incoming message, or, in mode Compute, a master ITI did not
produce output.

The overall output of a finite run is defined to be the message that is output on decision. If no message
was written to decision, the overall output is the empty message. If a run does not terminate, the overall
output is undefined. In slight abuse of notation, by writing Q(1η, a) we denote both the run of the system Q
and its overall output distribution.

If two systems output 1 with the same probability (except for a negligible difference), these systems are
called indistinguishable. The notion of indistinguishability is fundamental in universal composability models;
in particular, it is used in the definition of the realization relation (cf. D.19) which states that two systems,
one containing a real protocol and one an ideal protocol, must be indistinguishable. More formally:

Definition D.4 (Equivalence/Indistinguishability of Systems). Two systems Q and R are called
equivalent or indistinguishable (Q ≡ R) if and only if there exists a negligible function f : N×{0, 1}∗ → R≥0
such that for every security parameter η and external input a ∈ {0, 1}∗ the following holds true:

|Pr [Q(1η, a) = 1]− Pr [R(1η, a) = 1]| ≤ f(η, a)
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D.1.3 Interfaces and Connectivity of Systems For lemmas and theorems we often have to require
specific properties of the external interfaces of some systems Q and R. This section recalls several terms that
describe these properties.

We start by introducing a term which describes systems Q and R that can be connected to each other,
i.e., the system Q |R is well defined. However, merely considering the case of two systems is not sufficient:
Observe that by Definition D.3 the composition and hence the runtime behavior of three or more systems
can depend on the order of the systems. This is the case, e.g., for systems A and C that have an external
input tape named n and a system B that has an external output tape named n. The systems (A |B) | C and
A | (B | C) are well defined, but not identical. As this is undesirable, the following terminology also deals with
the case of multiple systems:

Definition D.5. Two systems of IITMs Q and R are connectable iff each common external tape of Q and R
has complementary directions (i.e., in one system the tape is an input tape, while in the other it is an output
tape). We also say that Q can be connected to R (and vice-versa). The systems Q1, . . . ,Qn are connectable
iff they are pairwise connectable.

Note that, if the systems Q1, . . . ,Qn are connectable, then the system Q1 | . . . | Qn is uniquely defined.
In particular, for connectable systems, the composition operator | is associative and commutative. In the
following we will only use | in this context, i.e., we will always require that the composition is uniquely
defined. Sometimes we want to stress that two connectable systems connect only via their external I/O-tapes,
but not via their external network tapes. We will use the term I/O-connectable to describe such systems.

Besides the term “connectable”, we also recall a term that describes systems with identical (external)
tape interfaces. This property is usually needed when replacing one system Q with another system R, as this
operation should not change the machines to which Q and R, respectively, can connect.

Definition D.6. Two systems of IITMs Q and R are compatible iff the set of (names of) external input
tapes of Q is the same as the set of (names of) external input tapes of R, and the set of (names of) external
ouput tapes of Q is the same as the set of (names of) external ouput tapes of R.

D.1.4 Runtime Definitions As already mentioned in §2, the IITM model, just like other universal
composability models, ensures that systems run in polynomial time in the security parameter η and the
length of the external input. This section formalizes this intuition by recalling the runtime definitions of the
IITM model.

The IITM model ensures this with the three runtime notions of of almost bounded, universally bounded,
and environmentally bounded systems. These definitions differ in the setting they consider: A system Q is
almost bounded if its runtime is bounded by a polynomial, it is universally bounded if its runtime is still
bounded by a polynomial even when running with an arbitrary system R, and it is environmentally bounded
if the combined runtime of Q and any universally bounded system R is still bounded by a polynomial. Note
that all of these notions consider runtime in mode Compute only; the CheckAddress mode is already
bounded by the polynomial associated with the IITM. More formally:

Definition D.7. A system Q is called almost bounded if there exists a polynomial p such that

f(η, a) = Pr [Time(Q(1η, a)) > p(η, |a|)] for all η ∈ N and a ∈ {0, 1}∗

is negligible, where Time(Q(1η, a)) is the random variable which denotes the combined runtime of all instances
of Q (in a run of Q(1η, a)) in mode Compute.
A system Q is called strictly bounded if it is almost bounded for f(η, a) = 0.

Definition D.8. A system E is called universally bounded if there exists a polynomial p such that for every
security paramater η ∈ N, external input a ∈ {0, 1}∗, and any system Q that can be connected to E it holds
true that the combined runtime in mode Compute of all instances of E in every run of (E |Q)(1η, a) is at
most p(η, |a|).
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Definition D.9. A system P is called environmentally bounded if for every universally bounded E that can
be connected to P the system E | P is almost bounded. A system P is called environmentally strictly bounded
if for every universally bounded E that can be connected to P the system E | P is strictly bounded.

D.1.5 Environments, Adversaries, Protocols Recall from §2 that there are three types of special
entities, namely, environments, adversaries, and protocols, which can be modelled via systems of machines.
This section precisely defines the properties of a system modelling one of these entities. This includes both
runtime and connectivity requirements: Environments are required to be universally bounded, i.e., they will
not exceed a polynomial runtime no matter in which system they are used. Protocols and adversaries only
have to be polynomial when running with an (universally bounded) environment and hence when receiving
inputs of at most polynomial length. Furthermore, these entities are not allowed to start or end a run because
environments are expected to do this.

Definition D.10. A system E is called environmental system or just environment if it is universally bounded.
For some system Q, we denote by Env(Q) the set of all environments E that can be connected to Q.

Definition D.11. A system P is called protocol system if (i) no tape in P is named start or decision, (ii)
P is environmentally bounded and (iii) for every IITM M occuring in P such that M is not in the scope of a
bang, we require that M accepts every incoming message in mode CheckAddress.

Definition D.12. A system A is called adversarial system if no tape of A is named start or decision.14

D.2 Restricting Messages

We now formally define the term restriction from §4.2 in the IITM model. Recall that a restriction is a set
of pairs of messages. The first component of a pair is a message that, when sent on a network tape by a
protocol, has to be answered “immediately”, i.e., an answer should be received on the corresponding network
tape before any other machine of the protocol is activated on a different tape. The second component of a
pair describes one possible answer. Additionally, we require that it is possible to efficiently decide whether an
environment violates the restriction. More formally:

Definition D.13 (Restriction). Let R ⊆ {0, 1}+×{0, 1}+ be a set of tuples of non-empty messages. Recall
that R[0] := {m|∃m′ : (m,m′) ∈ R}.

The set R is called a restriction if and only if the following holds true: There exists an algorithm A which
for all inputs of the form (m,m′) runs in at most polynomial time in the length of m′ and outputs 1 iff
m ∈ R[0] and (m,m′) 6∈ R, outputs 2 iff (m,m′) ∈ R, and outputs 0 otherwise. A message m ∈ R[0] is called
a restricting message.

In the following, we will say that R is decidable in polynomial time in the second component or efficiently
decidable in the second component when we refer to the property defined in the above definition. Note that
this is different from the usual meaning of decidable in polynomial time: First, the algorithm A does not
decide whether (m,m′) ∈ R, but it decides whether, given some initial message m, a response m′ is allowed
by the restriction: If A outputs 0, the answer is allowed because m 6∈ R[0]; if it outputs 1, the answer is not
allowed, and if it outputs 2, the answer is allowed iff it is sent on the correct tape. Second, A does not run in
polynomial time in the length of (m,m′), but only in the length of m′. This property is needed in the proof
of Lemma D.15. Technically, in Lemma D.15, we can guarantee only that the length of the second component
m′ is polynomially bounded in the security parameter η and the external input a (if considered) as it is
produced by the (universally bounded) environment; the first component m might not be as it is generated
14 Note that, similarly to environmental systems and protocol systems, there are also runtime conditions imposed

on adversarial systems. However, these conditions depend on the system that is connected to A and thus will be
presented in later definitions. Informally, if A is connected to another system Q, then A |Q will be required to be
environmentally bounded.
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by the protocol, which in Lemma D.15 we do not require to be bounded in any way. Still the environment
needs to be able to decide in polynomial time in η and a whether m ∈ R[0] and whether (m,m′) ∈ R. This
property does not seem to be a strong requirement for practical purposes, as can be seen by the following
example restriction:

R := {(m,m′)|m = (id, AmICorrupted?),
m′ = (id, Corruption, b),
id ∈ {0, 1}∗, b ∈ {false, true}}

∪ {(m,m′)|m = (id, Info,m′′),
m′ = (id, OK),
id,m′′ ∈ {0, 1}∗}

∪ {(m,m′)|m = (id, Respond,m′′),
m′ = (id,m′′′),
id,m′′,m′′′ ∈ {0, 1}∗},

This restriction consists of three types of restricting messages, each identified by a fixed bitstring. Each of the
three types of restricting messages is prefixed with some identifier id, which has to be repeated in the answer.
This can be used to ensure that the same instance which sent a message will also receive the answer, e.g.,
by defining mode CheckAddress such that every instance only accepts messages that are prefixed with its
own (unique) ID. In fact, one of the main reasons we did not simply hardwire a specific restriction into our
framework is that one can adjust restrictions to different definitions of the CheckAddress mode. In the
above example, the first type of restricting messages can be used to ask the adversary for the corruption
state of a fresh instance upon its first activation; the adversary then has to provide a bit b immediately. The
second type can be used to provide the adversary with some information such that the adversary has to give
back control immediately by sending an acknowledgement. The third type is meant to exchange arbitrary
data between the protocol and the adversary, i.e., it could be used to ask the adversary for some initialization,
such as keys and algorithms (the string m′′ can be used to distinguish different requests), while the adversary
can provide an arbitrary answer m′′′ but has to do so immediately. Note that this type is a variant of the
generic restriction introduced in §6 and hence is actually sufficient to model all cases in which restricting
messages are needed. In particular, one can omit the first two types and only use the third type instead.
We expect that restrictions will usually be variants of the generic restriction that have been adapted to the
definition of the CheckAddress mode such that responses will be received by the correct instance.

This relation is in fact a restriction as defined in Definition D.13 for an appropriate encoding.15 Given some
initial message m and an answer m′, it is possible to decide in polynomial time (in the length of m′) whether
m′ is an incorrect response to a restricting message. The algorithm A first checks whether m is a restricting
message by checking the number of components in tuples and reading components with a fixed length. Note
that this is possible in constant time, as we assumed an appropriate encoding. If m 6∈ R[0], then A outputs 0.
Otherwise, A reads m′ and checks whether m′ is a possible answer to m, i.e., whether (m,m′) ∈ R. Depending
on the result, A outputs either 1 or 2. It is easy to see that A can do this in polynomial time in the length of
m′.

In the following, we assume that every IITM has a corresponding output tape for every input tape and vice
versa (except for tapes named start and decision), i.e., we actually consider pairs of tapes. For an input/output
tape t 6∈ {start, decision} of a machine, we denote by t−1 the corresponding output/input tape of the same
machine such that (t, t−1) is a pair of tapes. We require that two machines connect via tape pairs only. That
is, if (t, t−1) is a tape pair of a machine M , with t being an input tape and t−1 the corresponding output
tape, and M connects to other machines, then if M connects to an output (input) tape of another machine
M ′ with t (t−1), then M also connects to the corresponding input (output) tape of M ′ with t−1 (t). The
intuition behind this is that machines, after having received some input from a machine M , usually send a
response back to M at some point, so they need a corresponding output tape. In particular, there has to be a
15 In particular, we need an encoding such that it is possible to check the number of components in a tuple and read

single components without having to read the full string. Such an encoding can easily be established, so we will
keep it implicit for simplicity of presentation.
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corresponding output tape for every input tape of the environment such that the environment is able to send
responses to restricting messages to the correct machine.

Note that this is only a formal requirement, as every system Q that does not fulfill this requirement can
easily be adjusted by adding additional tapes. The behavior of Q does not change as these new tapes will
never be used.

D.3 Strong Simulatability for Responsive Environments

We now define responsive environments, protocols for responsive environments, and responsive simulators from
§4.2 in the IITM model. We also define the security notion strong simulatability for responsive environments
in the IITM model with responsive environments.

Definition D.14 (Responsive environments). Let R be a restriction. Let P be a system of IITMs, and
let E ∈ Env(P) be an environment. We define the event E to be the set of all runs of E | P where the following
holds true: If P sends a restricting message m ∈ R[0] on an external tape t ∈ NET and if there exists a
message m′ such that m′ is the first message received on an external tape t′ (not necessarily in NET) of P
after m was sent, then t′ = t−1 and (m,m′) ∈ R.

The environment E is called a responsive environment for P (with respect to R) if and only if Pr [E] is
overwhelming. We denote the set of all responsive environments for an IITM system P by EnvR(P).

Note that if a responsive environment receives a restricting message, it may still perform arbitrary
computations and even send messages on tapes that are not connected to P (e.g., decision or any internal
tape). Note also that this definition does not imply that E is actually connected to the tape t on which P
sends a restricting message; it is entirely possible that a restricting message activates a master IITM with
an empty string on tape start. Nevertheless, the definition guarantees that the next message to P will be
on the corresponding answer tape and will be of a form that satisfies R (except with negligible probability).
Typically, however, E will be connected to all external tapes of P, where P could be a real protocol or a
simulator connected to an ideal protocol.

In our proofs, we will often say that “in a run of the system E | P, restricting messages from P are
answered correctly” to say that such a run belongs to the event E specified in Definition D.14, i.e., after P
sends a restricting message there is either no answer or the answer is of an expected form on the correct tape.
Analogously we say that “in a run of the system E | P, a restricting message from P is answered incorrectly”
to say that such a run does not belong to E, i.e., at least one restricting message was answered with an
unexpected answer or on the wrong tape.

While responsive environments are defined with respect to a specific system P , the following lemma shows
that responsive environments are also responsive for systems that are indistinguishable from P.

Lemma D.15. Let R be a restriction. Let P and P ′ be two systems of IITMs such that neither of them has
a start or decision tape, both systems have the same external interface, and E | P ≡ E |P ′ for all E ∈ EnvR(P).
Then, EnvR(P) = EnvR(P ′).16

Proof. Let E ∈ EnvR(P). We can assume that start is a tape of E ; otherwise there would be no master IITM
and every run would directly terminate with empty output, which implies E ∈ EnvR(P ′). If E 6∈ EnvR(P ′),
then there must be a non-negligible set of runs of E | P ′ in which a restricting message of P ′ is not answered
correctly. Let E ′ ∈ Env(P) be the single IITM that accepts all messages in mode CheckAddress and then
simulates E . Note that this is possible by Lemma 6 from [23], which states that we can simulate every system
with a single IITM that has the same external interface and accepts all messages in mode CheckAddress.
Furthermore, we add additional tapes c to E ′ for each external network tape of P that does not connect to E .
16 Note that this lemma does not impose any runtime requirements on the systems P and P ′. We need such a general

version of this lemma as often there are cases where we have constructed a new system P ′ from a system P and
still have to prove that the runtime of P ′ is bounded when running with a responsive environment. To prove this,
we first need the results of this lemma.
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The system E ′ also has a decision tape even if E does not have one. Note that these additional tapes do not
interfere with the simulation: If P in a run of E|P sends a message on an external network tape that is not
connected to E , the master IITM (which is part of E) will be activated with empty input. The system E ′ can
easily simulate this as soon as a message on one of these new tapes is received.

Every time a message m′ is about to be sent by E to P (or P ′), E ′ checks whether the condition of
responsive environments is about to be violated by this message and, if that is the case, outputs 1 on decision
instead. Note that this is easy to check: First, E ′ connects to all external network tapes of P , i.e. E ′ “sees” all
restricting messages m from P. Second, because R is decidable in polynomial time in the second component,
E ′ can use algorithm A (see Definition D.13) to decide in polynomial time in |m′| whether m′ is an allowed
answer: If A outputs 0, m′ is allowed because m 6∈ R[0]. If A outputs 1, m′ is an incorrect answer since
m ∈ R[0] ∧ (m,m′) 6∈ R. If A outputs 2, m′ is an allowed answer iff it is sent on the correct tape, because
m ∈ R[0] ∧ (m,m′) ∈ R. Because m′ was outputed by the simulated E and E is universally bounded, |m′| is
bounded by a polynomial in the security parameter η and the length of the external input a (if any). So,
overall A runs in polynomial time in η and |a|. If E wants to output something on decision or the master IITM
of E stops with empty output, E ′ outputs 0 on decision instead. Now it is easy to see that E ′ is universally
bounded as E ′ only simulates the universally bounded system E and additionally performs some checks which
can be carried out in polynomial time. In particular, as E ′ uses algorithm A to decide whether it must ouput
1, it does not have to read the entire messages m that are sent by P but only polynomial many bits (as many
as required by the polynomial time algorithm A and the universally bounded system E).

Clearly, we have that E ′ ∈ EnvR(P) because E ′ ends the run before a restricting message from P is
answered incorrectly. Furthermore, as every restricting message from P (or P ′) will activate the simulated E
(either on a connected tape or on tape start), it is easy to see that E ′ will output 1 if and only if a restricting
message from P or P ′ in the simulated run of E | P or E | P ′, respectively, is answered incorrectly. In other
words, E ′ is able to “see” all incorrect answers because E must have been the system that sent the incorrect
answer. Overall, because E ∈ EnvR(P) and E 6∈ EnvR(P ′), we have that E ′ | P 6≡ E ′ | P ′, in contradiction to
the assumption that E | P ≡ E |P ′ for all E ∈ EnvR(P) and the fact that E ′ ∈ EnvR(P). The other inclusion
follows analogously. ut

As we will consider only responsive environments in this work, it is not necessary (and generally not
even possible) to make any runtime guarantees for a system P if combined with an arbitrary environment
(i.e., any universally bounded system that can be connected to P). This is why we need a weaker notion of
environmentally bounded systems.

Definition D.16 (R-environmentally bounded systems). Let P be a system of IITMs. Then P is
called environmentally bounded for responsive environments or simply R-environmentally bounded if and
only if E | P is almost bounded for all E ∈ EnvR(P).
The system P is called environmentally strictly bounded for responsive environments or simply R-environmentally
strictly bounded if and only if E | P is strictly bounded for all E ∈ EnvR(P).

Definition D.17 (Protocol systems for responsive environments). Let R be a restriction. Let P be
a system of IITMs. Then P is called a protocol system for responsive environments if and only if P has no
tapes named start or decision, P is R-environmentally bounded, and every IITM in P that is not in the scope
of a bang accepts all messages in mode CheckAddress.

The only difference between protocol systems and protocol systems for responsive environments is that the
runtime condition of the latter is relaxed, i.e., the set of all protocol systems for responsive environments is a
superset of the set of all protocol systems. From now on, we will use environmentally bounded protocol system
to denote a protocol system in the original sense and we will simply suse protocol system to denote a protocol
system for responsive environments as the latter systems will be the default from now on.

Definition D.18 (Responsive simulators). Let R be a restriction. Let P,F be protocol systems. Let S
be an adversarial system such that S can be connected to F , the set of external tapes of S is disjoint from the
set of I/O-tapes of F , S |F and P have the same external interface, and S |F is R-environmentally bounded.
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Let E ∈ EnvR(P) be a responsive environment. We define the event E to be the set of all runs of E | S | F
in which the following holds true: If F sends a restricting message m ∈ R[0] on an external tape t ∈ NET and
if there exists a message m′ such that m′ is the first message received on an external tape t′ of F after m was
sent, then t′ = t−1 and (m,m′) ∈ R.

The simulator S is called a responsive simulator (with respect to R) if and only if Pr [E] is overwhelming
for all responsive environments E ∈ EnvR(P). We denote the set of all responsive simulators for protocol
systems P and F by SimPR(F).

This definition ensures that restricting messages from F are answered without activating another machine
of F (and with an expected response), even if F is connected to a simulator (on its network interface).
Analogously to responsive environments, the terms restricting messages are answered correctly and a restricting
message is answered incorrectly can also be defined for responsive simulators.

Note that the definition of event E uses E ∈ EnvR(P) instead of E ∈ EnvR(S |F). This is motivated by
the fact that S should be responsive for all responsive environments of P, which is supposed to realize F .
The simulator S should not restrict this set. In fact, good simulators do not restrict this set: We will use
responsive simulators for settings in which we have/require E | P ≡ E | S |F for every E ∈ EnvR(P). Thus,
by Lemma D.15, in these settings it holds true that EnvR(P) = EnvR(S |F). This also motivates why we
could use E ∈ EnvR(S |F) instead of E ∈ EnvR(P) for simulators in Definition 4.6 in the main text. As both
sets are the same in this setting, it was simpler to reuse the definition of responsive adversaries instead of
separately defining responsive simulators.

Now we can define strong simulatability for responsive environments.

Definition D.19 (Strong simulatability with responsive environments). Let R be a restriction. Let
P and F be protocol systems, the real and ideal protocol, respectively. Then, P realizes F with respect to
responsive environments (P ≤R F) if and only if there exists a responsive simulator S ∈ SimPR(F) such that
E | P ≡ E | S |F for every responsive environment E ∈ EnvR(P).

As shown in Section D.4, being responsive is typically a property that is easy to see/prove for simulators.
First, we will prove two fundamental properties of ≤R, namely, reflexivity and transitivity. For this purpose,
we first have to recall two lemmas that were originally shown in [23]. As in [23] the lemmas were not defined
with respect to responsive environments, we adjust them and indicate where the original proofs have to be
changed. We also prove two new lemmas that are based on those other lemmas.

In the following lemma, for a system R|Q, where R contains a master IITM, we consider an IITM,
denoted by [R]Q, which simulates R up to the runtime bound of R|Q and then, if the runtime bound is
exceeded, terminates the run with empty output.

Lemma D.20 (Lemma 7 of [23]). Let R and Q be connectable systems such that R|Q is almost bounded
and start is a tape of R (i.e. R contains a master IITM, and hence, Q does not). Then there exists an IITM
[R]Q such that the following conditions are satisfied:

1. [R]Q and R are compatible.
2. [R]Q accepts every message in mode CheckAddress.
3. [R]Q is universally bounded
4. [R]Q | Q is almost bounded
5. [R]Q | Q ≡ R |Q

Lemma D.21 in combination with Lemma D.23 says that E | S is a responsive environment for F . We
require simulators to be responsive to get this property. Without requiring simulators to be responsive, one
could not move a simulator into the environment and still hope to obtain a responsive environment, a property
which is important in many places, such as the transitivity of ≤R and the composition theorems.

Lemma D.21. Let R be a restriction. Let P,F be protocol systems with P ≤R F . Let S ∈ SimPR(F) be the
responsive simulator that is used in the definition of P ≤R F . Let E ∈ EnvR(P) be a responsive environment
such that start is a tape of E. Then [E | S]F ∈ EnvR(F).
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Proof. Let P,F ,S, E be systems as required by the lemma. First, we observe that Lemma D.20 can be
applied to E | S | F : As S |F is R-environmentally bounded and E ∈ EnvR(S |F) by Lemma D.15, we have
that E | S | F is almost bounded and E | S contains a master IITM.
By Lemma D.20, we know that [E | S]F is universally bounded, and hence [E | S]F ∈ Env(F). Suppose there
was a non-negligible set of runs of [E | S]F | F where a restricting message of F is not answered correctly.
As [E | S]F | F and E | S | F are the same except for a negligible set of runs (in which a certain runtime is
reached), it follows that there must also be a non-negligible set of runs of E | S | F in which a restricting
message from F is not answered correctly. However, this is a contradiction to S ∈ SimPR(F). This implies
that restricting messages from F are answered correctly in an overwhelming set of runs of [E | S]F | F , i.e.,
[E | S]F ∈ EnvR(F). ut

Note that Lemma D.21 is a special case of the following more general lemma.

Lemma D.22. Let R be a restriction and let R,Q be connectable systems of IITMs such that R|Q is almost
bounded and start is a tape of R, then [R]Q ∈ EnvR(Q) if restricting messages from Q are answered correctly
in an overwhelming set of runs of R|Q.

Proof. The proof is analogous to the proof of Lemma D.21. ut

The following lemma corresponds to Lemma 8 in [23].

Lemma D.23. Let R be a restriction. Let R and Q be connectable systems such that R|Q is almost bounded,
start is a tape of R (i.e., R contains a master IITM, and hence Q does not), and decision is not a tape of Q.
Furthermore, let Q′ be a system that is compatible with Q and satisfies the following condition: E |Q ≡ E |Q′
for every E ∈ EnvR(Q) such that E |Q is almost bounded. If [R]Q ∈ EnvR(Q), then

[R]Q | Q′ ≡ R |Q′ .

Moreover, if [R]Q ∈ EnvR(Q) and [R]Q | Q′ is almost bounded, then also R|Q′ is almost bounded.

Proof. We may assume that R is a single IITM that accepts every message in mode CheckAddress (by
Lemma 6 from [23]). Now, recall that by definition, [R]Q exactly simulates all transitions of R up to a certain
polynomial bound and that when running [R]Q|Q, this bound is exceeded with negligible probability only. If
[R]Q ∈ EnvR(Q), then the probability that this bound is exceeded when running the system [R]Q|Q′ is also
negligible. Otherwise, one could easily construct a system E such that E ∈ EnvR(Q), E|Q is almost bounded,
and E|Q 6≡ E|Q′, in contradiction to the assumption: The system E is defined to simulate [R]Q and output 1
on decision if and only if the bound is exceeded (note that this is only possible because decision is not a tape
of Q or Q′). As we assume [R]Q ∈ EnvR(Q), we directly obtain that E ∈ EnvR(Q). Furthermore, because
[R]Q|Q is almost bounded, it is easy to see that E|Q is also almost bounded. Observe that 1 is output on
decision in runs of E|Q or E|Q′ if and only if the bound is exceeded.

It follows that with overwhelming probability [R]Q exactly simulates R in the system [R]Q|Q′. Thus, we
obtain [R]Q|Q′ ≡ R|Q′. Similarly, it is easy to see that if [R]Q|Q′ is almost bounded (and [R]Q ∈ EnvR(Q)),
then also R|Q′ is almost bounded.

ut

We can now proof reflexivity and transitivity of ≤R.

Lemma D.24. ≤R is reflexive and transitive.

Proof. Reflexivity: Let P be a protocol system. Let S be a single IITM without external tapes that does
nothing. This directly implies that S fulfills the conditions of responsive simulators regarding the interfaces
and runtime. Let E ∈ EnvR(P) be a responsive environment. We have E | P ≡ E | S | P because S cannot
interact with the other machines, i.e., S does not influence a run in any way. Moreover, as E ∈ EnvR(P) and
S is not involved in the interaction between E and P , we have that restricting messages sent from P to E are
answered correctly by E . Hence, we obtain S ∈ SimPR(P). Overall, we have that P ≤R P.
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Transitivity: Let P,P ′,P ′′ be protocol systems with P ≤R P ′ and P ′ ≤R P ′′. Without loss of generality, we can
assume that P,P ′ and P ′′ have pairwise disjoint sets of (external) network tapes. This is possible because, if a
simulator exists for two systems that share some network tape names, we can rename the tapes of one system
and define a new simulator that behaves just as the original one but in addition forwards messages between
the renamed tapes and the original tapes. Let S ∈ SimPR(P ′) and S ′ ∈ SimP

′

R (P ′′) be the simulators that are
used in the definition of P ≤R P ′ and P ′ ≤R P ′′, respectively. Let E ∈ EnvR(P) be a responsive environment.
We may assume that E has a start tape; otherwise there would be no master IITM and the run would always
directly terminate with empty output, in which case transitivity is trivially fulfilled. As E contains a master
IITM, we can use Lemma D.20 to get E | S | P ′ ≡ [E | S]P′ | P ′. By Lemma D.21, we have [E | S]P′ ∈ EnvR(P ′)
and thus [E | S]P′ | P ′ ≡ [E | S]P′ | S ′ | P ′′. Lemma D.23 implies [E | S]P′ | S ′ | P ′′ ≡ E | S | S ′ | P ′′. Note that
E | S | S ′ | P ′′ is well defined, i.e., all systems are actually connectable by the initial assumption that the sets
of external network tapes of P,P ′, and P ′′ are pairwise disjoint. Overall, we have that E | P ≡ E | S | S ′ | P ′′.

It remains to show that S | S ′ ∈ SimPR(P ′′). It is easy to see that the conditions regarding interfaces of
responsive simulators are fulfilled. As [E | S]P′ ∈ EnvR(S ′ | P ′′) by Lemma D.15, we have that [E | S]P′ | S ′ | P ′′
is almost bounded, and thus, by Lemma D.23 E | S | S ′ | P ′′ is also almost bounded. This holds for every
E ∈ EnvR(P) and thus for every E ∈ EnvR(S | S ′ | P ′′) by Lemma D.15, so S | S ′ | P ′′ is R-environmentally
bounded. Let the event E be the set of all runs of E | S | S ′ | P ′′ in which a restricting message from P ′′ is
answered on the wrong tape or with an unexpected response. If Pr [E] is non-negligible, then there must
also be a non-negligible set of runs of [E | S]P′ | S ′ | P ′′ in which a restricting message from P is not answered
correctly.17 However, this is a contradiction to S ′ being a responsive simulator, because [E | S]P′ is a responsive
environment of P ′. Altogether, this implies S | S ′ ∈ SimPR(P ′′), and thus, P ≤R P ′′. ut

D.4 Proving Responsiveness of Simulators

According to the definition of strong simulatability (Definition D.19), for P ≤R F to hold one has to prove
that there exists a simulator S that fulfills i) certain restrictions concerning connectivity and interfaces, ii)
certain runtime conditions, iii) the responsiveness condition (i.e., restricting messages from F are answered
correctly by S), and most importantly iv) the equivalence E | P ≡ E | S |F for all E ∈ EnvR(P). Conditions i)
and ii) are easy to check. The following lemma shows that iii) can be checked easily as well. According to the
definition, one has to show that if S receives a restricting message from F , then S has to make sure that this
message is answered correctly according to the restriction R. So if S sends out a message on an external tape,
then there are two options: i) this message is sent to F , and in this case, it has to be the correct response
according to R, or ii) this message is sent to E , but then this message has to be a restricting message for E
to ensure that E answers directly (to S). If S sent a non-restricting message to E , then E would be free to
send a message to F , which would violate the responsiveness property that S has to fulfill. Whether or not S
always sends such restricting messages (either to F or to E) should be easy to check given the specification of
S. Therefore, condition iii) should be easy to check. This is specified in the following lemma.

Lemma D.25. Let R be a restriction. Let P,F be protocol systems. Let S be an adversarial system such
that S can be connected to F , the set of external tapes of S is disjoint from the set of I/O-tapes of F , S |F
and P have the same external interface, and S |F is R-environmentally bounded.

Let E ∈ EnvR(P) be a responsive environment. We define the event EE to be the set of all runs of
E | S | F in which the following holds true: The system S accepts all restricting messages from F in mode
CheckAddress. If S receives a restricting message from F , it does not produce empty output until it has
sent a message to F . Furthermore, if S sends a message on an external tape after having received a restricting
message m on tape t from F and before having sent an answer to F , the message is of one of two types: either
a restricting message n on an external tape of S |F (i.e. to the environment) where all possible answers n′ with
(n, n′) ∈ R will be accepted by S in mode CheckAddress, or a message m′ on tape t−1 with (m,m′) ∈ R.
17 Per construction of [E | S]P′ , it works just like E | S except for cases where a certain runtime is reached. However,

this runtime is only reached by E | S | S ′ | P ′′ in a negligible set of runs (see the proof of Lemma D.23). As both
systems only differ in a negligible set of runs, the statement follows.
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Then, S ∈ SimPR(F) and P ≤R F if, for all E ∈ EnvR(P), we have that (I) E | P ≡ E | S |F and (II) the
event EE is overwhelming.

Proof. Let E ∈ EnvR(P) be a responsive environment and let S be given as above such that (I) and (II)
are satisfied. To show P ≤R F , we have to prove only that S ∈ SimPR(F). For this, it remains to show
that S fulfills the responsiveness condition, i.e., restricting messages from F are answered correctly in an
overwhelming set of runs of E | S | F . First, by Lemma D.15 we have E ∈ EnvR(S |F). Let E′ be the set of
all runs of E | S | F in which a restricting message from F is answered incorrectly, let E′′ be the subset of
E′ in which the first restricting message from F that is not answered correctly is sent on a network tape
that is not connected to S, and let E′′′ be the subset of E′ where the first restricting message from F that is
not answered correctly is sent on a network tape that is connected to S. Obviously, E′′ and E′′′ are disjoint,
E′ = E′′ ∪ E′′′, and hence, Pr [E′] = Pr [E′′] + Pr [E′′′].

The event E′′ is a subset of all runs of E | S | F in which a restricting message from S |F is answered
incorrectly. As E ∈ EnvR(S |F), this set of runs is negligible, and thus, Pr [E′′] must also be negligible.

The event E′′′ can be devided into two (distinct) subsets E′′′0 and E′′′1 , where we define E′′′0 to contain
only those runs of E′′′ that belong to EE (as defined in the lemma) and E′′′1 to contain the remaining runs of
E′′′. As, by assumption, EE is overwhelming, we have that E′′′1 is negligible. Now, we further divide E′′′0 into
two (distinct) subsets E′′′0a and E′′′0b, where we define E′′′0a to contain only those runs of E′′′0 in which restricting
messages from S on an external tape of S |F are answered correctly and E′′′0b to contain the remaining runs
of E′′′0 . Again, we directly obtain that E′′′0b is negligible because E ∈ EnvR(S |F).

We now show that E′′′0a is the empty set, and hence, Pr [E′′′0a] = 0. Assume that E′′′0a contains a run.
Consider the first restricting message from F sent to S that is answered incorrectly. Such a message exists as
E′′′0a ⊆ E′′′. As E′′′0a ⊆ EE , S accepts this message in mode CheckAddress and thus gets activated. As S
may not produce empty output, it can only end its activation by sending one of two kinds of messages. If it
sends a restricting message to E , the next message to S |F will be on a tape of S (otherwise the run would
be in E′′′0b). As S must accept this message in mode CheckAddress (by definition of EE), the system S will
get activated and, again, it may only end this activation by sending one of two kinds of messages. If S sends
a message to F , it will be of such a form that the answer to the restricting message is correct; otherwise this
run would be in E′′′1 . Hence, the restricting message from F is actually answered correctly, a contradiction.
This implies that E′′′0a = ∅.

Altogether, we have that Pr [E′] = Pr [E′′] + Pr [E′′′1 ] + Pr [E′′′0a] + Pr [E′′′0b], where all probabilities on the
right-hand side of the equation are negligible. Hence, the claim follows. ut

We note that S might send several restricting messages to E before it sends an answer to F .

D.5 Notions of Universal Composability

In the literature, besides strong simulatability, often the security notions UC, dummy UC, and black-box
simulatability are used. In [23], it was shown that these notions are equivalent to strong simulatability, which
justifies the use of the conceptually simpler notion of strong simulatability. Furthermore, in [23], equivalence
to reactive simulatability, a notion which is not used in the literature, was shown as well; however, this
equivalence holds true only with respect to non-uniform environments. In this section, we show that these
notions are still equivalent with respect to responsive environments. Hence, again, it suffices to consider
strong simulatability only. First, we have to define the other security notions. For this purpose, we have to
introduce responsive adversaries and the (responsive) dummy adversary.

Definition D.26 (Responsive adversaries). Let R be a restriction. Let P be a protocol system. Let A be
an adversarial system such that A can be connected to P, the set of external tapes of A is disjoint from the
set of I/O-tapes of P, A connects to all external network tapes of P, and A|P is R-environmentally bounded.

Let E ∈ EnvR(A|P) be a responsive environment. Define the event E to be the set of all runs of E|A|P in
which the following holds true: If P sends a restricting message m ∈ R[0] on an external tape t ∈ NET and if
there exists a message m′ such that m′ is the first message received on an external tape t′ of P after m was
sent, then t′ = t−1 and (m,m′) ∈ R.
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The adversarial system A is called a responsive adversary (with respect to R) if and only if Pr [E] is
overwhelming for all responsive environments E ∈ EnvR(A|P). We denote the set of all responsive adversaries
for a protocol system P by AdvR(P).

Note that responsive adversaries are quite similar to responsive simulators as the two definitions only differ
in the requirements for the external interface of A|P and S|F , respectively. The idea behind this definition
is that an adversary should also answer restricting messages from P correctly, i.e., she should not be more
powerful than a responsive environment.

In the following, we will also need a special responsive adversary: Given a protocol system P, by DP
we denote the dummy adversary for P that connects to all network tapes of P and has one corresponding
network tape per network tape of P. The dummy adversary simply forwards all messages between a tape of
P and the corresponding tape. Note that the connectivity conditions of responsive adversaries are fulfilled
and that DP |P is R-environmentally bounded because P is R-environmentally bounded. Furthermore, it is
easy to see that restricting messages of P are answered correctly in an overwhelming set of runs, because
the dummy adversary forwards the same restricting message to a responsive environment on a network tape.
Thus, we have DP ∈ AdvR(P).

Definition D.27. Let R be a restriction. Let P and F be protocol systems, the real and ideal protocol.18

1. Strong Simulatability with responsive environments (SSR):
P ≤SSR F iff ∃ S ∈ SimPR(F) ∀ E ∈ EnvR(A|P):

E|P ≡ E|S|F .

2. Universal Simulatability/Composability with responsive environments (UCR):
P ≤UCR F iff ∀ A ∈ AdvR(P) ∃ I ∈ SimA|PR (F) ∀ E ∈ EnvR(A|P):

E|A|P ≡ E|I|F .

3. Dummy Version of UC with responsive environments (dummyUCR):
P ≤dumUCR F iff ∃ I ∈ SimDP |P

R (F) ∀ E ∈ EnvR(DP |P):

E|DP |P ≡ E|I|F .

4. Black-box Simulatability with responsive environments (BBR):
P ≤BBR F iff ∃ S ∈ SimPR(F) ∀ A ∈ AdvR(P) ∀ E ∈ EnvR(A|P):

E|A|P ≡ E|A|S|F .

5. Reactive Simulatability with responsive environments (RSR):
P ≤RSR F iff ∀ A ∈ AdvR(P) ∀ E ∈ EnvR(A|P) ∃ I ∈ SimA|PR (F):

E|A|P ≡ E|I|F .

For strong and black-box simulatability, if P and F do not have disjoint network tapes, there might not exist
a simulator such that P and S |F are indistinguishable because S cannot connect to all network tapes of F in
this case. In what follows, we therefore always (implicitly) assume that the network tapes of F are renamed
first, so that the set of network tapes of P and F are disjoint. Note that this is only a formal requirement. It
does not influence the behavior of P and F in any way.

We will now prove that strong simulatability with responsive environments is equivalent to the other notions
of Definition D.27. We note that, except for the equivalence of strong simulatability and reactive simulatability,
this theorem holds true also for uniform environments, i.e., environments that do not obtain external input.
As mentioned before, an analogous result was originally proven in [23] for arbitrary environments.
18 Strong simulatability has already been defined in Definition D.19. We here list strong simulatability again to have a

complete list of the security notions we consider.
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Theorem D.28. Let R be a restriction. Let P and F be protocol systems. Then:

P ≤SSR F iff P ≤UCR F iff P ≤dumUCR F iff P ≤BBR F iff P ≤RSR F .

Proof. Let P and F be protocol systems.

P ≤SSR F iff P ≤UCR F iff P ≤dumUCR F : We will first show the equivalence of SSR, UCR, and dummyUCR.
As UCR trivially implies dummyUCR, we only have to show that SSR implies UCR and that dummyUCR

implies SSR.
Let P ≤SSR F . Then there exists a responsive simulator S ∈ SimPR(F) such that E|P ≡ E|S|F for

all E ∈ EnvR(P). Let A ∈ AdvR(P) be a responsive adversary and let E ∈ EnvR(A|P) be a responsive
environment. We define I := A|S. We may assume that start is a tape of E ; if this was not the case, then
there would be no master IITM in E|A|P and E|I|F , i.e. every run directly terminates with empty output,
which trivially fulfills the following statements. As A|P is R-environmentally bounded we have that E|A|P is
almost bounded. Furthermore, by the definition of responsive adversaries, we know that restricting messages
of P are answered correctly in an overwhelming set of runs of E|A|P. This gives the following equation:

E|A|P ≡ [E|A]P |P (Lemma D.20)
≡ [E|A]P |S|F (Lemma D.22 and P ≤SSR F)
≡ E|A|S|F (Lemma D.23)
= E|I|F

We also obtain that E|I|F is almost bounded by Lemma D.23. As this holds for all E ∈ EnvR(I|F) by Lemma
D.15, we have that I|F is R-environmentally bounded.

Now observe that there is only a negligible set of runs of [E|A]P |S|F in which a restricting message from
F is answered incorrectly because S is a responsive simulator. Because [E|A]P |S|F and E|A|S|F are the
same except for a negligible set of runs (see the proof of Lemma D.23), the set of runs of E|I|F in which a
restricting message from F is answered incorrectly must also be negligible. Overall, we have I ∈ SimA|PR (F),
which shows that P ≤UCR F .

For the other implication, let P ≤dumUCR F . Then there exists a responsive simulator I ∈ SimDP |P
R (F)

such that E|DP |P ≡ E|I|F for all E ∈ EnvR(DP |P). Let E ∈ EnvR(P). We can construct a new responsive
environment E ′ ∈ EnvR(DP |P) that works exactly as E , but for all network tapes c that connect between E
and P , E ′ has instead a network tape c′ that connects to the tape of DP that corresponds to c. Note that E|P
and E ′|DP |P work in exactly the same way because we can rename tapes and insert the dummy adversary
without changing the behavior of the system by Lemma 4 and 5 from [23]. This implies E ′ ∈ EnvR(DP |P) as
restricting messages from P are answered correctly in an overwhelming set of runs of E|P and thus restricting
messages of DP |P must also be answered correctly in an overwhelming set of runs of E ′|DP |P.

Similarly, we can construct S ∈ SimPR(F), which works just as I but for every external network tape c′
that does not connect to F , S has instead a network tape c that corresponds to c′.19 Now we have:

E|P ≡ E ′|DP |P (Lemma 4 and 5 from [23])
≡ E ′|I|F (P ≤dumUCR F)
≡ E|S|F (Lemma 4 from [23])

It also holds true that S ∈ SimFR(P): The conditions regarding external interfaces are obviously fulfilled. As
E ′|I|F and E|S|F are the same and E ′|I|F is almost bounded, we have that E|S|F is almost bounded. This
holds for all E ∈ EnvR(S|F) by Lemma D.15, and thus, S|F is R-environmentally bounded. Finally, observe
that restricting messages from F are answered correctly in an overwhelming set of runs of E ′|I|F because I
19 With corresponds we mean that P has a network tape c, which is mapped to a network tape c′ by the dummy

adversary.
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is a responsive simulator. This implies that restricting messages from F are also answered correctly in an
overwhelming set of runs of E|S|F , which shows S ∈ SimFR(P), and thus, P ≤SSR F .

P ≤SSR F iff P ≤BBR F : We first show SSR ⇒ BBR. Let P ≤SSR F . Then there exists S ∈ SimPR(F) with
E|P ≡ E|S|F for all E ∈ EnvR(P). Let A ∈ AdvR(P) and E ∈ EnvR(A|P). Analogously to the proof of
“SSR ⇒ UCR” we obtain that E|A|P ≡ E|A|S|F ,which directly implies P ≤BBR F because S ∈ SimPR(F).

For the other implication let P ≤BBR F . Then there exists S ∈ SimPR(F) with E|A|P ≡ E|A|S|F for
all A ∈ AdvR(P) and E ∈ EnvR(A|P). In the following let E ∈ EnvR(P). Analogous to the proof of
“dummyUCR ⇒ SSR”, we can construct a new environment E ′ ∈ EnvR(DP |P) by renaming some tapes of E
such that E ′ connects to the dummy adversary DP instead of the network tapes of P . We obtain the following
equation:

E|P ≡ E ′|DP |P (Lemma 4 and 5 from [23])
≡ E ′|DP |S|F (DP ∈ AdvR(P) and P ≤BBR F)
≡ E|S|F (Lemma 4 and 5 from [23])

As S ∈ SimPR(F), we directly obtain P ≤SSR F .

P ≤SSR F iff P ≤RSR F : Because dummyUCR, UCR and SSR are equivalent and UCR trivially implies RSR,
we have to show only that RSR implies dummyUCR. The main argument is similar to the one presented
in [7].

Let P ≤RSR F , then for all A ∈ AdvR(P) and all E ∈ EnvR(A|P) there exists I ∈ SimA|PR (F) such that

E|A|P ≡ E|I|F .

We choose A = DP to be the dummy adversary for P. We also choose E ∈ EnvR(DP |P) to be a “universal”
Turing machine (more precisely, a universal IITM) which takes as external input (i.e., input on start) a tuple
of the form (a, e, 1t), where e is an encoding of some IITM (representing an environmental system E ′), a is
interpreted to be external input to E ′, and t is interpreted to be the runtime (by Lemma 6 from [23], we may
assume that e encodes a single IITM which accepts every message in mode CheckAddress). The universal
IITM E simulates E ′ with external input a up to t steps. During this simulation, E always checks whether E ′
is about to send an incorrect answer to a restricting message of DP |P and, if that is the case, stops the run
with empty output instead. This check is possible in polynomial time, because R is decidable in polynomial
time in the second component (see the proof of Lemma D.15 for a more detailed discussion). Clearly, E
is universally bounded because its runtime is polynomial in the security parameter plus the length of the
external input. Furthermore, E is responsive (for DP |P) as it never answers a restricting message incorrectly.
This implies that there exists IE ∈ SimDP |P

R (F) such that E|DP |P ≡ E|IE |F .
We observe that, given a security parameter η, external input a, and an environmental system E ′, there

exists a tuple (a, e, 1t) of length polynomial in η + |a| (it suffices to choose t polynomial in η + |a| because E ′
is universally bounded) such that E with external input (a, e, 1t) precisely simulates E ′ except for runs in
which a restricting message is answered incorrectly by E ′. We will refer to this observation by (*).

Now let E ′ ∈ EnvR(DP |P) be a responsive environment with representation e. We first show that
E ′ ∈ EnvR(IE |F). For this, let E ′′ ∈ EnvR(DP |P) be the universally bounded IITM that simulates E ′, checks
whether a restricting message is about to be answered incorrectly, and outputs 1 if this is about to happen. In
all other cases 0 is output (again, see the proof of Lemma D.15 which includes a more detailed construction
of such an IITM). Let e′ be the representation of E ′′. As E ′′ never answers a responsive message incorrectly,
we can use (*) to obtain that for all η ∈ N and a ∈ {0, 1}∗ there exists a tuple (a, e′, 1t) such that E ′′ is
perfectly simulated by E with external input (a, e′, 1t). As E|DP |P ≡ E|IE |F , i.e. both systems differ only
with negligible probability, the length of (a, e′, 1t) is polynomial in η and |a|, and E ′′ outputs 1 with negligible
probability in runs of E ′′|DP |P, we obtain that E ′′ also outputs 1 with negligible probability in runs of
E ′′|IE |F . This implies that E ′ ∈ EnvR(IE |F).
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In the following, let g be the negligible function that bounds the probability of an incorrectly answered
message of DP |P in runs of E ′|DP |P and let g′ be the negligible function that bounds the probability of
an incorrectly answered message of IE |F in runs of E ′|IE |F . For all η ∈ N and a ∈ {0, 1}∗, let (a, e, 1t) be
the tuple from (*) such that E simulates E ′ perfectly in runs in which all restricting messages are answered
correctly. We obtain the following equation, where f is a negligible function:

|Pr [E ′|DP |P(1η, a) = 1]− Pr [E ′|IE |F(1η, a) = 1] |
≤ |Pr

[
E|DP |P(1η, (a, e, 1t)) = 1

]
− Pr

[
E|IE |F(1η, (a, e, 1t)) = 1

]
|+ g(η, a) + g′(η, a)

≤ f(η, (a, e, 1t)) + g(η, a) + g′(η, a)

As the length of (a, e, 1t) is polynomial in η + |a|, with e being a fixed bit string and t being a polynomial
in η and a, we have that f ′(η, a) := f(η, (a, e, 1t)) is a negligible function. Now, because the sum of
three negligible functions is still negligible, we have that there is a negligible function (in η and a) that
bounds |Pr [E ′|DP |P(1η, a) = 1] − Pr [E ′|IE |F(1η, a) = 1] |. Hence, we have that E ′|DP |P ≡ E ′|IE |F for all
E ′ ∈ EnvR(DP |P), which together with IE ∈ SimDP |P

R (F) implies P ≤dumUCR F .
ut

D.6 Composition of a Constant Number of Protocol Systems

In this section, we formally define and prove Theorem 4.8 in the IITM model. Analogously to [23], to prove a
theorem for composing a constant number of protocol systems, we first prove a theorem that talks about
computational indistinguishability. This theorem corresponds to Theorem 4 in [23], which we adjust to the
case of responsive environments.

Theorem D.29. Let R be a restriction. Let k ≥ 1, Q,P1, . . . ,Pk,R1, . . . ,Rk be systems of IITMs without
start and decision tapes such that the following conditions are satisfied:

1. For all j ≤ k: Pj and Rj are R-environmentally bounded, Pj and Rj have the same (external) interface,
and E | Pj ≡ E |Rj for all E ∈ EnvR(Pj).

2. Q,P1, . . . ,Pk are I/O-connectable (hence, Q,R1, . . . ,Rk are I/O-connectable), and Q |P1 | . . . | Pk is
R-environmentally bounded.

Then, E |Q |P1 | . . . | Pk ≡ E |Q |R1 | . . . |Rk for all E ∈ EnvR(Q |P1 | . . . | Pk), and Q |R1 | . . . |Rk is
R-environmentally bounded.

Proof. The proof follows essentially the same argument as the original proof in [23], but uses responsive
environments instead of general environments.

Let Q,P1, . . . ,Pk,R1, . . . ,Rk be systems of IITMs such that the requirements of the theorem are fulfilled.
We will first prove the theorem for k = 1:

Let E ∈ EnvR(Q |P1) be a responsive environment. We can assume that start is a tape of E ; otherwise
there is no master IITM in E |Q |P, thus every run terminates directly with empty output, in which case
the theorem holds true. If P1 sends a restricting message m on an external network tape t, then t is also an
external network tape of Q |P1 as Q and P1 only connect via I/O tapes. Because E is a responsive environment
for Q |P1, we have that the next message m′ that is sent to Q |P1 will be on tape t−1 with (m,m′) ∈ R
(except for a negligible set of runs). Using Lemma D.20 and Lemma D.22, we obtain E |Q |P1 ≡ [E |Q]P1 | P1,
with [E |Q]P1 ∈ EnvR(P1). Then E | P1 ≡ E |R1 for all E ∈ EnvR(P1) implies [E |Q]P1 | P1 ≡ [E |Q]P1 |R1.
Using Lemma D.23, we obtain [E |Q]P1 |R1 ≡ E |Q |R1. This implies that E |Q |P1 ≡ E |Q |R1.

We still have to prove that Q |R1 is R-environmentally bounded: By Lemma D.15 we know that
[E |Q]P1 ∈ EnvR(R1), and thus, because R1 is R-environmentally bounded, we know that [E |Q]P1 |R1
is almost bounded. By Lemma D.23, we conclude that E |Q |R1 is almost bounded. As this holds true
for all E ∈ EnvR(Q |P1) and thus, by Lemma D.15, for all E ∈ EnvR(Q |R1), we have that Q |R1 is
R-environmentally bounded.
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We now prove the theorem for k > 1. For every r ≤ k, we define the r-th hybrid system:

Hr := Q |R1 | · · · |Rr−1 | Pr+1 | · · · | Pk

which can be connected to Pr or Rr. Let E ∈ EnvR(Q |P1 | . . . | Pk) be a responsive environment. By applying
the case “k = 1” k times, we obtain that:

E |Q |P1 | · · · | Pk
= E |H1 | P1 (syntactic reordering of systems)
≡ E |H1 |R1 (case k = 1 with H1 playing the role of Q)
= E |H2 | P2 (syntactic reordering of systems)
≡ E |H2 |R2 (Lemma D.15 and case k = 1 with H2 playing the role of Q)

...
= E |Hk | Pk (syntactic reordering of systems)
≡ E |Hk |Rk (Lemma D.15 and case k = 1 with Hk playing the role of Q)
= E |Q |R1 | . . . |Rk

In the above argument, we need that Hr | Pr is R-environmentally bounded. This is the case: Q |P1 | · · · | Pk =
H1 | P1 is R-environmentally bounded by assumption. But then H1 |R1 is also R-environmentally bounded
because the theorem holds true for “k = 1”. Iterating this argument proves the claim; in particular this shows
that Q |R1 | . . . |Rk is R-environmentally bounded, which is the second part of the theorem. ut

Using the above theorem, we can now prove the composition theorem for a constant number of protocol
systems.

Theorem D.30 (Composition Theorem for a Constant Number of Protocol Systems). Let R be
a restriction. Let k ≥ 1, Q be a system of IITMs without start and decision tape, and P1, . . . ,Pk,F1, . . . ,Fk be
protocol systems such that all systems have pairwise disjoint sets of network tapes and the following conditions
are satisfied:

1. For all j ≤ k: Pj ≤R Fj
2. Q,P1, . . . ,Pk are I/O-connectable, and Q |P1 | . . . | Pk is R-environmentally bounded.

Then, Q |P1 | . . . | Pk ≤R Q |F1 | . . . | Fk

Proof. Let Q,P1, . . . ,Pk,F1, . . . ,Fk be as assumed in the theorem. For all j ≤ k, let Sj ∈ SimPjR (Fj) be a
responsive simulator such that E | Pj ≡ E | Sj | Fj for all responsive environments E ∈ EnvR(Pj). Note that,
because Q,P1, · · · ,Pk,F1, · · · ,Fk have disjoint sets of network tapes, the systems Q,S1,F1, · · · ,Sk,Fk are
connectable.

By applying Theorem D.29 (with Rj := Sj | Fj for j ≤ k), we directly obtain that E |Q |P1 | . . . | Pk ≡
E |Q | S1 | F1 | . . . | Sk | Fk for all E ∈ EnvR(Q |P1 | . . . | Pk). We also obtain that Q |S1 | F1 | . . . | Sk | Fk is
R-environmentally bounded.

We still have to show that S1 | . . . | Sk ∈ SimQ |P1 | ... | Pk
R (Q |F1 | . . . | Fk). It is easy to see that all

conditions regarding interfaces of responsive simulators are fulfilled. We have also just proven the runtime
condition for S1 | . . . | Sk. So we only have to show that restricting messages from Q |F1 | . . . | Fk are answered
correctly in an overwhelming set of runs. Let E ∈ EnvR(Q |P1 | . . . | Pk) be a responsive environment. By
Lemma D.15, we know that E ∈ EnvR(Q |S1 | F1 | . . . | Sk | Fk). We may assume that start is a tape of E ;
otherwise there is no master IITM in E |Q | S1 | F1 | . . . | Sk | Fk and every run directly terminates with empty
output. As in such a run, no messages are sent, there also is no restricting message that is answered incorrectly
and the claim follows.

Let the event E be the set of all runs of E |Q | S1 | F1 | . . . | Sk | Fk in which a restricting message
from Q |F1 | . . . | Fk is answered incorrectly, let E′ be the set of all runs of E |Q | S1 | F1 | . . . | Sk | Fk in
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which a restricting message from Q is answered incorrectly, and let Ej for j ≤ k be the set of all runs of
E |Q | S1 | F1 | . . . | Sk | Fk where a restricting message from Fj is answered incorrectly. Note thatQ,F1, . . . ,Fk
have disjoint network tapes, so if one of those systems sends a restricting message on a network tape, then this
message is sent on an external network tape of Q |F1 | . . . | Fk. In particular, we have that E = E′ ∪

⋃
j≤k Ej ,

and thus Pr [E] ≤ Pr [E′] +
∑
j≤k Pr [Ej ].

As every incorrectly answered restricting message from Q is sent on an external network tape of
Q |S1 | F1 | . . . | Sk | Fk (recall that network tapes of Q, Pj and Fj are disjoint for all j ≤ k) and as
E ∈ EnvR(Q |S1 | F1 | . . . | Sk | Fk), we directly obtain that E′ is negligible.

Now, let us consider the event Ej for some j ≤ k. For brevity of presentation, we define the system H :=
E |Q | S1 | F1 | . . . | Sj−1 | Fj−1 | Sj+1 | Fj+1 | . . . | Sk | Fk, i.e., H does not contain Sj and Fj . We will construct
a responsive environment for Sj | Fj : First we observe that if the system Sj | Fj sends a restricting message on
an external network tape (in a run of E |Q | S1 | F1 | . . . | Sk | Fk), the restricting message is sent on an external
network tape of Q |S1 | F1 | . . . | Sk | Fk because the systems Q,S1 | F1, . . . ,Sk | Fk have disjoint network tapes.
Because of E ∈ EnvR(Q |S1 | F1 | . . . | Sk | Fk), those messages are answered correctly in an overwhelming set of
runs; we will refer to this observation by (*) in what follows. As the system E |Q | S1 | F1 | . . . | Sk | Fk is almost
bounded and E contains a master IITM, we can use Lemma D.20, and because of (*), we can also use Lemma
D.22 to obtain E |Q | S1 | F1 | . . . | Sk | Fk = H |Sj | Fj ≡ [H]Sj | Fj | Sj | Fj , with [H]Sj | Fj ∈ EnvR(Si | Fi).
Furthermore, by Lemma D.15, we also have that [H]Sj | Fj ∈ EnvR(Pj).

Because the system Sj is a responsive simulator, we know that restricting messages from Fj must be
answered correctly in an overwhelming set of runs of [H]Sj | Fj | Sj | Fj . But then restricting messages from
F in H |Sj | Fj must also be answered correctly in an overwhelming set of runs because H |Sj | Fj and
[H]Sj | Fj | Sj | Fj are identical in an overwhelming set of runs. This implies that the event Ej is negligible.

Overall, we have that Pr [E] ≤ Pr [E′] +
∑
j≤k Pr [Ej ], where the right side is a sum of k + 1 negligible

functions, and hence Pr [E] is negligible. ut

D.7 Unbounded Self-Composition

We now prove Theorem 4.9 in the IITM model. Recall that this composition theorem says that it suffices to
prove that a single session of a real protocol P realizes a single session of an ideal protocol F in order to
conclude that multiple sessions of the real protocol realize multiple sessions of the ideal protocol.

For this purpose, we first recall and adapt the definitions of the session identifier (SID) functions and
σ-session versions from [23]. An SID function assigns an SID (or ⊥) to every message sent or received
on a tape of an IITM. An IITM M is called a σ-session version if it does not accept messages (in mode
CheckAddress) for which σ outputs ⊥. Also, if M accepted a message on some tape at some point for
which σ returned the SID sid 6= ⊥, then M may later only accept messages with the same SID sid, i.e., for
which σ returns sid. Also, M may output only messages with this sid. A system is called a σ-session version
if all IITMs in that system are σ-session versions.

Next, we recall and adapt the definitions of σ-single session environments and simulators from [23].
Such environments may output messages which all have the same SID (according to σ), and hence, these
environments can create only a single protocol session in every run. The (restricted) simulators have to work
only for those environments.

Finally, we state a version of the composition theorem for unbounded self-composition from [23] (see
Theorem 10 in that work). We adapt this theorem for responsive environments.

As mentioned, we start with the definition of SID functions and σ-session versions.

Definition D.31 (Session Identifier (SID) Function). A function σ : {0, 1}∗ × T → {0, 1}∗ ∪ {⊥}
(where T is a set of tapes names) is called a session identifier (SID) function if it is computable in polynomial
time (in the length of its input).

Definition D.32 (σ-Session Versions). Let σ be an SID function and let M be an IITM such that σ is
defined for all (names of) tapes of M . Then, M is a σ-session machine (also called a σ-session version) if for
every system Q such that Q and M are connectable the following conditions are satisfied for every η, a, and
every run ρ of (Q|M)(1η, a):
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1. Whenever M is activated in ρ in mode CheckAddress with an input message m on tape c, M rejects
m if σ(m, c) = ⊥.

2. If the first input message that M accepted in ρ in mode CheckAddress is m0 on tape c0 and (later)
M is activated in mode CheckAddress in ρ with an input message m on tape c, then M rejects m if
σ(m, c) 6= σ(m0, c0).

3. Whenever M outputs a non-empty message m on tape c in ρ in mode Compute, then σ(m, c) = σ(m0, c0)
(where the first accepted message was m0 on tape c0, see above).

A system R is called a σ-session system/version if every IITM occurring in R is a σ-session version.

We will also use a stronger variant of σ-session versions. An IITM M is called σ-complete if it fulfills the
conditions stated in Definition D.32, but with Condition 2 replaced by the following stronger condition: If the
first input message that M accepted in ρ in mode CheckAddress is m0 on tape c0 and (later) M is activated
in mode CheckAddress in ρ with an input message m on tape c, then M accepts m iff σ(m, c) = σ(m0, c0).
In other words, σ exactly determines those messages accepted by M in mode CheckAddress.

Definition D.33 (σ-Single Session Responsive Environment). Let R be a restriction. Let σ be an SID
function, let P be a system of IITMs, and let E ∈ EnvR(P) be a responsive environment for P. The system E
is called a σ-single session responsive environment if for every system Q such that E and Q are connectable
the following holds true for every η, a and in every run ρ of (E |Q)(1η, a):

Let m0 6= ε (where ε is the empty bit string) be the first message output by E on some external tape
c0 6= decision in ρ. Then σ(m0, c0) 6= ⊥, and every message m 6= ε output by E on an external tape c 6= decision
in ρ satisfies σ(m, c) = σ(m0, c0).

We denote the set of all σ-single session responsive environments for a system P by EnvR,σ-single(P).

Definition D.34 (σ-Single Session Responsive Simulator). Let R be a restriction. Let σ be an SID
function, and let P,F be protocol systems. Let S be an adversarial system such that S can be connected to F ,
the set of external tapes of S is disjoint from the set of I/O-tapes of F , S |F and P have the same external
interface, and E | S | F is almost bounded for all E in EnvR,σ-single(P).

Let E ∈ EnvR,σ-single(P) be a σ-single session responsive environment. Define the event E to be the set
of all runs of E | S | F in which the following holds true: If F sends a restricting message m ∈ R[0] on an
external tape t ∈ NET and if there exists a message m′ such that m′ is the first message received on an
external tape t′ of F after sending m, then t′ = t−1 and (m,m′) ∈ R.

The simulator S is called a σ-single session responsive simulator (with respect to σ and R) if and only if
Pr [E] is overwhelming for all σ-single session responsive environments E ∈ EnvR,σ-single(P). We denote the
set of all σ-single session responsive simulators for protocol systems P and F by SimPR,σ-single(F).

Note that every responsive simulator also is a σ-single session responsive simulator, because the definition of
the latter is a relaxed version of the former (i.e. the runtime condition and the event E are only defined for a
subset of all responsive environments).

Definition D.35 (σ-Single Session Realization). Let R be a restriction. Let σ be an SID function, and let
P and F be protocol systems, the real and ideal protocol, respectively, such that P and F are σ-session versions.
Then, P single-session realizes F w.r.t. σ and R (P ≤R,σ-single F) if and only if there exists S ∈ SimPR,σ-single(F)
such that E | P ≡ E | S |F for every σ-single session responsive environment E ∈ EnvR,σ-single(P).

Now, the following theorem says that if a single session of P realizes a single session of F , i.e., if P realizes
F for all σ-single session (responsive) environments, then multiple session of P realize multiple sessions of F ,
i.e., P realizes F for all (responsive) environments.

Theorem D.36 (Composition Theorem for Unbounded Self-Composition of SID-Dependent
Protocols). Let R be a restriction. Let σ be an SID function, and let P and F be protocol systems such that
P and F are σ-session versions and P ≤R,σ-single F . Then, P ≤R F .
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Before we can prove this theorem, we have to show some additional lemmas and another theorem.
In what follows, we will often use the (informal) term copy of a system to denote the set of all instances

of a σ-session version (in some run) that accept messages with the same SID. Note that this term is justified,
because σ-session versions will never accept two messages with different SIDs, and thus we can group instances
according to the SID of the first message they accepted.

Lemma D.37 (Variant of Lemma D.15 for σ-single session environments). Let R be a restriction.
Let P and P ′ be two systems of IITMs such that neither of them has a start or decision tape, both systems
have the same external interface, and E|P ≡ E|P ′ for all E ∈ EnvR,σ-single(P). Then, EnvR,σ-single(P) =
EnvR,σ-single(P ′).

Proof. The original proof can easily be adjusted: First, one assumes E ∈ EnvR,σ-single(P). Then it is obvious
that E ′ ∈ EnvR,σ-single(P) by construction. The remainder of the proof stays exactly the same. ut

Lemma D.38 (Variant of Lemma D.23 for σ-single session environments). Let R be a restriction.
Let R and Q be connectable systems such that R|Q is almost bounded, start is a tape of R (i.e. R contains
a master IITM), and decision is not a tape of Q. Furthermore, let Q′ be a system which is compatible with
Q and satisfies the following condition: E|Q ≡ E|Q′ for every E ∈ EnvR,σ-single(Q) such that E|Q is almost
bounded. If [R]Q ∈ EnvR,σ-single(Q), then

[R]Q|Q′ ≡ R|Q′ .

Moreover, if [R]Q ∈ EnvR,σ-single(Q) and [R]Q|Q′ is almost bounded, then also R|Q′ is almost bounded.

Proof. The proof is analogous to the proof of Lemma D.23. ut

The following theorem says that unbounded self-composition holds true for the computational indistin-
guishability relation. From this theorem, we will easily obtain Theorem D.36, i.e., unbounded self-composition
for strong simulatability.

Theorem D.39. Let R be a restriction. Let σ be an SID function, and let P be a protocol system such that
P is a σ-session version. Let Q be a system of IITMs compatible with P such that Q is a σ-session version,
every machine in Q that is not in the scope of a bang accepts all messages in mode CheckAddress, and
E|Q is almost bounded for all E ∈ EnvR,σ-single(Q).20

If E|P ≡ E|Q for all E ∈ EnvR,σ-single(P), then E|P ≡ E|Q for all E ∈ EnvR(P), and Q is R-environmentally
bounded.

Proof. Let P,Q be systems of IITMs as required by the theorem such that E|P ≡ E|Q for all E ∈
EnvR,σ-single(P). Let E ∈ EnvR(P). In the following, by a hybrid argument in which we replace the copies of
P by copies of Q with the same SID, we show that E|P ≡ E|Q. Then, we use this result to show that Q is
R-environmentally bounded.

By Lemma 6 from [23], we may assume that E is a single IITM which, in mode CheckAddress, accepts
all messages. We may also assume that start is an external tape of E (otherwise there would be no master
IITM in E|P and E|Q, i.e., every run immediately ends with empty output. Thus, E|P ≡ E|Q trivially holds
true in this case). In addition, we may assume that the only external tapes of E | P (and hence of E |Q) are
start and decision. Moreover, we may assume, without loss of generality, that E is such that every message m
that E outputs on tape c (except if m is output on tape decision) has some SID, i.e. σ(m, c) 6= ⊥: Because
E will interact only with σ-session versions, messages without an SID would be rejected by these σ-session
versions anyway. As E is universally bounded, it follows that there exists a polynomial pε such that the
number of different sessions (i.e., messages with distinct SIDs output by E) is bounded from above by pε(η, |a|)
(where η is the security parameter and a is the external input given to E).

In what follows, let Q′ be the variant of Q obtained from Q by renaming every tape c occurring in Q
to c′. Analogously, let P ′′ be obtained from P by renaming every tape c occurring in P to c′′. By this, we
20 Note that Q is essentially a protocol system with a relaxed runtime bound.
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have that P, Q′, and P ′′ have pairwise disjoint sets of external tapes, and hence, these systems are pairwise
connectable.

We now define an IITM Er (for every r ∈ N), which essentially simulates E and which will run in the
system Er|P ′′|Q′|P or Er|P ′′|Q′|Q, respectively. The IITM Er randomly shuffles the copies of the systems
P and Q, respectively, invoked by E by choosing a random permutation on {1, . . . , pε(η, |a|)}. Intuitively,
this permutation is needed because E must not “know” whether the copy invoked in the system P ′′|Q′|P
(P ′′|Q′|Q) is a copy of P ′′, Q′, or P (P ′′, Q′, or Q). This is needed in the proof of Lemma D.44. The first
r − 1 copies (after shuffling) of the protocol invoked by E will be copies of Q′, the r-th copy will be the
external system P or Q, respectively, and the remaining copies will be copies of P ′′.

Formally, Er is obtained from E as follows (recall that we assume that E is a single IITM which accepts
every message in mode CheckAddress). The IITM Er will also always accept every message in mode
CheckAddress. The behavior of Er in mode Compute is specified next.

First, we need to make sure that Er has the appropriate tapes to connect to the different entities. The
IITM E already has tapes to connect to the external tapes of P and Q. For each such tape c, we add a tape
c′ and c′′ to Er to connect to the external tapes of Q′ and P ′′, respectively.

Next, we need to specify how Er redirects protocol invocations of E in the way sketched above: Er keeps a
list L of SIDs, which initially is empty, and the length l of the list, which initially is 0. By definition of pε, it
will always hold that l ≤ pε(η, |a|). Furthermore, in the first activation with security parameter η ∈ N and
external input a ∈ {0, 1}∗, Er chooses a permutation π of {1, . . . , pε(η, |a|)} uniformly at random. From now
on, Er simulates E with security parameter η and external input a. In particular, if E produces output, then
so does Er, and if Er receives input, then E is simulated with this input. However, as explained next, the
behavior of Er deviates from that of E in terms of sending and receiving messages to the different copies of
protocols.

1. If E produces output m on some external tape c of P (and hence, Q) with s := σ(m, c), then Er checks
whether s occurs in L. If s does not occur in L, s is first appended at the end of L and l is increased by 1.
Let j ∈ {1, . . . , l} be the position at which s occurs in L.
a) If π(j) < r, then Er writes m on tape c′.
b) If π(j) = r, then Er writes m on c.
c) If π(j) > r, then Er writes m on tape c′′.

2. If Er receives input on tape c′′ (where c′′ is an external tape of P ′′ corresponding to an external tape c of
P), then Er behaves as E would if input was received on tape c.

3. If Er receives input on tape c′ (where c′ is an external tape of Q′ corresponding to an external tape c of
Q), then Er behaves as E would if input was received on tape c.

4. If Er receives input on tape c (where c is an external tape of P or Q, respectively), then Er behaves as E
would if input was received on tape c.

It is easy to see that Er is universally bounded for every r ∈ N because E is universally bounded. We define
the following hybrid systems, for every r ∈ N:

Hr := Er|P ′′|Q′ ,

which can be connected to P (and hence Q).
By Epε and Hpε we denote the systems which first set r = pε(η, |a|) and then behave exactly as Er and Hr,

respectively. By construction, for every r ∈ N, the systems E|P and H1|P, the systems Hr|Q and Hr+1|P,
and the systems E|Q and Hpε |Q, respectively, behave exactly the same (see below). In particular, for all
r ∈ N, we have that

E|P ≡ H1|P , (3)
Hr|Q ≡ Hr+1|P , and (4)
E|Q ≡ Hpε |Q . (5)

For (3), we need that P is a protocol system and a σ-session version:
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The second property is necessary because it guarantees that two instances of machines in P with different
SIDs will never send messages to each other (as they only send messages with their own SID or produce
empty output, which activates the environment), i.e., it is no problem that the systems P ′′ and P in H1|P
do not have a connection to each other.

Furthermore, for machines M of P that are in the scope of a bang, it is easy to see that every instance of
such a machine in a run of E|P corresponds to one instance of this machine (either in P ′′ or P , depending on
the SID of the instance) in a run of H1|P.

If there is a machine M in P that is not in the scope of a bang, the following problem can occur: In a run
of E|P , there can only be at most one instance of such a machine, wheras in a run of H1|P there may be two
instances (one in P ′′ and one in P) , i.e., one of those instances would not have a corresponding instance of
M in E|P. This is where we need that P is a protocol system, i.e., that such a machine M must accept all
messages m on all tapes c in mode CheckAddress. As M is a σ-session version, it accepts only messages
with the same SID, and thus we obtain σ(m, c) = s for some fixed value s 6= ⊥, m ∈ {0, 1}∗ and all input
tapes c of M . (If σ(m, c) were ⊥ for some m ∈ {0, 1}∗ and some input tape c of M , then M would accept
m, in contradiction to the assumption that M is a σ-session version. Similarly, if there existed (m, c) and
(m′, c′) with σ(m, c) 6= σ(m′, c′), then M would accept both (m, c) and (m′, c′), again in contradiction to the
assumption that M is a σ-session version.) As E1 never sends messages with the same SID to both P and P ′′,
there will be at most one copy of either P or P ′′ with SID s. But then there is also only one instance of M in
a run of H1|P, which corresponds to the single instance of M in a run of E|P.

A similar argument is used for (4) and (5).
As E|P is almost bounded by assumption (i.e., P is a protocol system and thus R-environmentally

bounded), it is easy to see that also H1|P is almost bounded. Moreover, it is easy to see that E|Q is almost
bounded if and only if Hpε |Q is almost bounded.

We proceed by showing the following claim.

Claim I. Hpε |Q is almost bounded.

This is a crucial step of the proof. For this, we first have to define some events that describe the runtime of
systems and the probability of answering a restricting message incorrectly.

For different systems, we define the event (i.e. a set of runs or equivalently a set of random coins) that the
j-th copy of the system takes more than q(η, |a|) steps. More specifically, for every polynomial q, natural
numbers r, i, j, η ∈ N, and a ∈ {0, 1}∗, we define:

1. Bq,jHr|P = Bq,jHr|P(1η, a) is the following set of runs of (Hr|P)(1η, a). A run ρ belongs to Bq,jHr|P iff one of
the following conditions is satisfied:
a) π(j) < r and the instances of machines in Q′ with SID L[j] took more than q(η, |a|) steps in ρ, where

only the steps in mode Compute are counted; in other words, only the computation steps carried
out by Q′ (and hence, Q) are counted.

b) π(j) = r and the machines in P (with SID L[j]) took more than q(η, |a|) steps in ρ, with the steps
counted as above.

c) π(j) > r and the instances of machines in P ′′ with SID L[j] took more than q(η, |a|) steps in ρ, with
the steps counted as above.

2. BqHr|P :=
⋃
i∈NB

q,i
Hr|P .

3. Bq,6=jHr|P :=
⋃
i∈N\{j}B

q,i
Hr|P .

4. A run ρ belongs to Bq,π
−1(i)

Hr|P iff for the permutation, say π′, chosen in ρ, it holds that ρ ∈ Bq,jHr|P with

j = π′−1(i). The event Bq,6=π
−1(i)

Hr|P is defined analogously.
5. Analogously to the above events, we define the following events in which the external system P is replaced

by Q: Bq,jHr|Q, BqHr|Q, Bq,6=jHr|Q, Bq,π
−1(i)

Hr|Q , Bq,6=π
−1(i)

Hr|Q .

We note that for all r, the system Hr|P (resp., Hr|Q) is almost bounded if and only if there exists a negligible
function f and a polynomial q such that Pr

[
BqHr|P(1η, a)

]
≤ f(η, a) (resp., Pr

[
BqHr|Q(1η, a)

]
≤ f(η, a)) for
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all η ∈ N and a ∈ {0, 1}∗. The direction from left to right is trivial. For the other direction, first recall that
(the simulated) E is universally bounded, and hence, only a polynomial number of copies of the protocol is
created (the length l of the list L in Hr is bounded by pε(η, |a|)). Now, because by assumption the number of
steps taken by every copy of the protocol is polynomially bounded (except with negligible probability) and
the number of steps taken by (the simulated) E is polynomially bounded, the number of steps taken by Hr|P
(resp., Hr|Q) is polynomially bounded.

Furthermore, for a system S with tape start and a polynomial q we define the single IITM [S]q to be the
IITM that simulates S but simulates at most q(η, |a|) many steps of S in mode Compute. That is, [S]q
works just like the definition of [S]R (for some system R such that S|R is almost bounded) from Lemma
D.20, but uses a fixed polynomial q instead of the runtime bound of S|R.

Finally, we also need to define some events that include runs in which a restricting message from some
part of a system is answered incorrectly. More specifically:

1. For all systems S,R the event C RS = C RS (1η, a) is defined to be the set of all runs of S|R in which a
restricting message of R is answered incorrectly.

2. For all r ∈ N and polynomials q, the event Ĉ Pr,q = Ĉ Pr,q(1η, a) is defined to be the set of all runs of
[Hr]q|P = [Er|P ′′|Q′]q|P in which a restricting message of P, P ′′, or Q′ is answered incorrectly (by Er).

3. Analogous to Ĉ Pr,q, we define Ĉ Qr,q by replacing all occurrences of P with Q.

After having fixed some definitions, we can now start proving Claim I. First, we present a lemma which
shows that, for all r ∈ N, there exists a polynomial qr such that the event BqrHr|Q occurs with negligible
probability. As argued above, this is equivalent to Hr|Q being almost bounded. This, however, does not
suffice to prove that Hpε |Q is almost bounded, i.e., we need a uniform bound that is independent of r (as will
be established in Lemma D.44). This is in fact one of the main difficulties in proving Claim I and the only
reason the permutation π is required. Additionally, the next lemma also shows some properties of the system
Er which are required by the following lemmas.

Lemma D.40. For all r ∈ N the following holds true:

1. There exists a polynomial qr and a negligible function fr such that for all η ∈ N and a ∈ {0, 1}∗:

Pr
[
BqrHr|Q(1η, a)

]
≤ fr(η, a) .

2. Er ∈ EnvR(P ′′|Q′|P) and Er ∈ EnvR(P ′′|Q′|Q).

Proof. The case r = 0 is simple: By construction the system E0 in a run of E0|P ′′|Q′|P sends all messages
to P ′′, i.e., Q′ and P will never be activated by E0 and, as they do not contain a master IITM, they are
also not actived via start. Thus, we can drop Q′ and P and only look at E0|P ′′, which behaves just as
E|P. As E ∈ EnvR(P) and E|P is almost bounded (because P is R-environmentally bounded), we have that
E0 ∈ EnvR(P ′′|Q′|P) and E0|P ′′|Q′|P is almost bounded. We can also easily define a bijection between runs
of E0|P ′′|Q′|P and E0|P ′′|Q′|Q, as P and Q, respectively, are never activated in any run. By this, we obtain
that E0 ∈ EnvR(P ′′|Q′|Q) and E0|P ′′|Q′|Q is almost bounded (the latter implies that qr and fr for r = 0
exist, as argued above).

Now, let r > 0 and suppose that the lemma holds for r − 1, i.e., Hr−1|Q is almost bounded, Er−1 ∈
EnvR(P ′′|Q′|P), and Er−1 ∈ EnvR(P ′′|Q′|Q). Because Hr−1|Q and Hr|P behave exactly the same (see
Equation (4)), Er−1 ∈ EnvR(P ′′|Q′|Q) implies Er ∈ EnvR(P ′′|Q′|P), and Hr−1|Q being almost bounded
implies that Hr|P is almost bounded. We also know that restricting messages from P are answered correctly
in an overwhelming set of runs of Hr|P , because all external tapes of P are external tapes of P ′′|Q′|P and Er
is a responsive environment for P ′′|Q′|P. Now Lemma D.20 and Lemma D.22 imply Hr|P ≡ [Hr]P |P with
[Hr]P ∈ EnvR(P). Note that [Hr]P is a σ-single session restricted environment, i.e., [Hr]P ∈ EnvR,σ-single(P),
as the only external tapes (except for start and decision) of [Hr]P are those that connect Er and P/Q and by
construction, Er sends only messages with the same SID on those tapes. By Lemma D.37, we obtain that
[Hr]P ∈ EnvR,σ-single(Q), and in particular, that [Hr]P |Q is almost bounded. Finally, by Lemma D.38, we
also obtain [Hr]P |Q ≡ Hr|Q and that Hr|Q is almost bounded, which implies the existence of qr and fr.
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We still have to show that Er ∈ EnvR(P ′′|Q′|Q). Suppose this was not the case, i.e., a restricting message
from P ′′|Q′|Q is answered incorrectly in a non-negligible set of runs. Then there must be a non-negligible
set of runs of [Hr]P |Q in which a restricting message from Q or P ′′|Q′ (which are simulated by [Hr]P) is
answered incorrectly. This is because [Hr]P |Q behaves just like Hr|Q except for a negligible set of runs in
which a runtime bound is reached. Furthermore, because Er ∈ EnvR(P ′′|Q′|P) and every restricting message
of P or P ′′|Q′ is a restricting message of P ′′|Q′|P, we obtain with a similar argument that there must be
a negligible set of runs of [Hr]P |P in which a restricting message from P or P ′′|Q′ is answered incorrectly.
Now one can construct a new environment E ′ ∈ EnvR,σ-single(P) that distinguishes P and Q. The system E ′
simulates [Hr]P (the system [Hr]P is universally bounded and thus can be simulated by an environment),
but connects to all tapes of P and Q, respectively, and produces different output on tape decision: It outputs
1 if and only if a restricting message from P ′′|Q′ or P and Q, respectively, was answered incorrectly during
the run. Note that E ′ can easily check this as it sees all messages on all tapes except for internal tapes of P
and Q, respectively, and R is decidable in polynomial time in the second component (see also the proof of
Lemma D.15, which includes a more detailed discussion on why this can be done by a universally bounded
system). It is also obvious that E ′ ∈ EnvR,σ-single(P) as [Hr]P ∈ EnvR,σ-single(P). Because this contradicts the
assumption that P and Q are indistinguishable for all σ-single session responsive environments, it must hold
true that Er ∈ EnvR(P ′′|Q′|Q)

This concludes the proof of Lemma D.40. ut

In the next steps of the proof of Claim I, we will define several systems that get r as input and then
simulate [Hr]q for some polynomial q. We need that such a system is a responsive environment, i.e., correctly
answers restricting messages from P in an overwhelming set of runs. For this it is not sufficient to know
that [Hr]q ∈ EnvR,σ-single(P), i.e., that for every r there exists a negligible function that bounds Pr

[
C P[Hr]q

]
.

Instead we need a universal function that bounds Pr
[
C P[Hr]q

]
for all values of r (in some range). The next

two lemmas show that such a function exists.

Lemma D.41. Let q be a polynomial. Then there exists a negligible function g1,q such that for all η ∈ N,
a ∈ {0, 1}∗, and 1 ≤ r ≤ pε(η, |a|):∣∣∣Pr

[
Ĉ Pr,q(1η, a)

]
− Pr

[
Ĉ Qr,q(1η, a)

]∣∣∣ ≤ g1,q(η, a) .

Proof. We prove this lemma for the case of non-uniform environments, that is, environments that obtain
external input. Using the same technique as in [23] (see Appendix B), namely sampling of runs, one easily
obtains a proof for uniform environments, i.e., those that do not obtain external input, as well.

We define an IITM D ∈ EnvR(P) which expects to receive (r, a) as external input and then simulates
[Hr]q with external input a and outputs 1 if and only if [Hr]q is about to send an incorrect answer to a
restricting message of P ′′, Q′, or P and Q, respectively.

More formally, D is defined as follows. The IITM D has the same (external) tapes as Hr. In mode
CheckAddress, D accepts every message. In mode Compute, D behaves as follows: First, D parses the
external input on start as (r, a), with r ∈ {1, . . . , pε(η, |a|)} and a ∈ {0, 1}∗. If the external input is not of this
form, D outputs 0 on decision. Otherwise, D simulates the system [Hr]q = [Er|P ′′|Q′]q with external input
a, i.e., it first activates Er with input a on start and then simulates all the machines in [Hr]q. If D receives
input on a tape, D forwards this input to the simulated [Hr]q. If [Hr]q produces output, then D first checks
whether the output is an incorrect response to a restricting message of P ′′, Q′, and P and Q, respectively.
Note that this is easy to check because D sees all restricting messages from those systems (recall that we
assume that E and hence Er, Hr, and D connect to all tapes of P and Q, respectively) and R is decidable
in polynomial time in the second component (again, see the proof of Lemma D.15, which includes a more
detailed discussion on why this can be done by a universally bounded system). If the answer is an incorrect
response, D outputs 1 on decision instead of sending the message. If the run terminates (i.e., [Hr]q outputs
something on decision or [Hr]q produces empty output, which terminates the run because [Hr]q is a master
IITM), then D halts with output 0 on decision.

52



It is easy to see that D is universally bounded (i.e. D ∈ Env(P)) and that it is a responsive environment
for P and Q because it will never incorrectly answer a restricting message from P and Q, respectively. It is
also obvious that D is a σ-single session environment, as it simulates [Hr]q (for some r) and Hr only sends
messages with a single SID to P and Q, respectively. We have for all η ∈ N, a ∈ {0, 1}∗, and 1 ≤ r ≤ pε(η):

Pr [(D|P)(1η, (r, a)) = 1] = Pr
[
Ĉ Pr,q(1η, a)

]
and

Pr [(D|Q)(1η, (r, a)) = 1] = Pr
[
Ĉ Qr,q(1η, a)

]
.

(6)

As E ′|P ≡ E ′|Q for all E ′ ∈ EnvR,σ-single(P) and D ∈ EnvR,σ-single(P), we have that D|P ≡ D|Q. In particular,
there exists a negligible function g′1,q such that for all η ∈ N, a ∈ {0, 1}∗, and 1 ≤ r ≤ pε(η):

g′1,q(η, (r, a)) ≥ |Pr [(D|P)(1η, (r, a)) = 1]− Pr [(D|Q)(1η, (r, a)) = 1]|
(6)=
∣∣∣Pr
[
Ĉ Pr,q(1η, a)

]
− Pr

[
Ĉ Qr,q(1η, a)

]∣∣∣ .
Let g1,q(η, a) := maxr≤pε(η,|a|) g′1,q(η, (r, a)). It is easy to see that g1,q is a negligible function. Now, clearly
we have that ∣∣∣Pr

[
Ĉ Pr,q(1η, a)

]
− Pr

[
Ĉ Qr,q(1η, a)

]∣∣∣ ≤ g1,q(η, a)

for all η ∈ N, a ∈ {0, 1}∗, and r ≤ pε(η, |a|). Note that g1,q does not depend on r (only on q). This concludes
the proof of Lemma D.41. ut

We can now use Lemma D.41 to prove that, for every polynomial q, the probability of C P[Hr]q is bounded
by a negligible function g2,q that is independent of r (for 1 ≤ r ≤ pε(η, |a|)). Note that this also implies
[Hr]q ∈ EnvR,σ-single(P) because [Hr]q is universally bounded and the only external tapes (except for start
and decision) of [Hr]q are those that connect Er and P/Q and by construction, Er sends only messages with
the same SID on those tapes.

Lemma D.42. Let q be a polynomial. There exists a negligible function g2,q such that for all η ∈ N,
a ∈ {0, 1}∗, and 1 ≤ r ≤ pε(η, |a|):

Pr
[
C P[Hr]q (1

η, a)
]
≤ g2,q(η, a) .

Proof. We will show the following stronger statement instead: Let q be a polynomial. There exists a
negligible function g2,q such that for all η ∈ N, a ∈ {0, 1}∗, and 1 ≤ r ≤ pε(η, |a|) it holds true that
Pr
[
Ĉ Pr,q(1η, a)

]
≤ g2,q(η, a). As C P[Hr]q ⊆ Ĉ

P
r,q , the lemma trivially follows by using the same g2,q.

First, let r = 1. Observe that Pr
[
Ĉ P1,q(1η, a)

]
is bounded by a negligible function g(η, a) because

E1 ∈ EnvR(P ′′|Q′|P) by Lemma D.40.
Now let r > 1. We have that

Pr
[
Ĉ Pr,q(1η, a)

] (4)= Pr
[
Ĉ Qr−1,q(1η, a)

]
Lemma D.41
≤ Pr

[
Ĉ Pr−1,q(1η, a)

]
+ g1,q(η, a).

By induction on r, we obtain that

Pr
[
Ĉ Pr,q(1η, a)

]
≤ (r − 1) · g1,q(η, a) + Pr

[
Ĉ P1,q(1η, a)

]
≤ (r − 1) · g1,q(η, a) + g(η, a).
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We define

g2,q(η, a) := pε(η, a) · g1,q(η, a) + g(η, a)

and obtain

Pr
[
Ĉ Pr,q(1η, a)

]
≤ g2,q(η, a)

for all 1 ≤ r ≤ pε(η, |a|). Note that g2,q is negligible and does not depend on r (only on q). This concludes
the proof of Lemma D.42. ut

We can now continue to prove that Hpε |Q is almost bounded. First, we will show in the next lemma that
for all r ≤ pε(η, |a|) the difference of the probabilities that the events Bq1,6=π−1(r)

Hr|P and B
q1,6=π−1(r)
Hr|Q occur

is negligible (where q1 is the polynomial from Lemma D.40). Note that this statement does not consider
the number of steps taken by the external protocol copy P or Q, respectively, because this copy, which
corresponds to π−1(r), is excluded in these events.

Lemma D.43. There exists a negligible function f ′ such that for all η ∈ N, a ∈ {0, 1}∗, and 1 ≤ r ≤ pε(η, |a|):∣∣∣Pr
[
B
q1,6=π−1(r)
Hr|P (1η, a)

]
− Pr

[
B
q1, 6=π−1(r)
Hr|Q (1η, a)

]∣∣∣ ≤ f ′(η, a) .

Proof. Just as in Lemma D.41, we prove this lemma for the case of non-uniform environments. Again, using
the same technique as in [23] (see Appendix B), one easily obtains a proof for uniform environments.

We define an IITM D ∈ EnvR,σ-single(P) which expects to receive (r, a) as external input and then simulates
Hr with external input a until the runtime bound q1(η, |a|) is exceeded by any of the internally simulated
sessions. If the runtime bound is exceeded, D outputs 1 on decision. If the run stops and the runtime bound
has not been exceeded, D outputs 0 on decision.

More formally, D is defined as follows. In mode CheckAddress, D accepts every message. In mode
Compute,D behaves as follows: First,D parses the external input on start as (r, a), with r ∈ {1, . . . , pε(η, |a|)}
and a ∈ {0, 1}∗. If the external input is not of this form, D outputs 0 on decision. Otherwise, D simulates the
system Hr = Er|P ′′|Q′ with external input a, i.e., it first activates Er with input a on start and then simulates
all the machines in Hr. If Hr produces output, then so does D and if D receives input, then D forwards
this input to the simulated Hr. Additionally, D counts the number of transitions taken by all the simulated
machines and checks if the conditions of the event Bq1,6=π−1(r)

Hr|P (1η, a) and Bq1,6=π−1(r)
Hr|Q (1η, a), respectively, are

satisfied (note that D can do this even though it cannot inspect the number of transitions in the external
systems, P and Q, respectively). If such a condition is satisfied (i.e., some internal session takes more than
q1(η, |a|) steps), then D halts with output 1 on decision. If the run terminates (i.e., Er outputs something
on decision or Er produces empty output, which terminates the run because Er is a master IITM) but the
conditions are not satisfied, then D halts with output 0 on decision.

It is easy to see that D is universally bounded (i.e., D ∈ Env(P)) and that it is σ-single session. We now
show that D ∈ EnvR(P): If the input of the system D|P is not of the expected form, D will never send a
message to P and thus never violate the condition of responsive environments. So we only have to find a
bound for those cases where the input is of the correct form, i.e., the input a′ is of the form (r, a), with
r ∈ {1, . . . , pε(η, |a|)}.

As D is universally bounded, there exists a polynomial q such that the runtime of the simulated Hr in mode
Compute is bounded by q in every run. Now, observe that (D|P)(1η, (r, a)) and ([Hr]q|P)(1η, a) behave in the
same way, except that (D|P)(1η, (r, a)) might terminate earlier than ([Hr]q|P)(1η, a), namely, if in a session
simulated by D the runtime bound q1 is reached. Hence, we have that Pr

[
C PD(1η, (r, a))

]
≤ Pr

[
C P[Hr]q (1

η, a)
]
.

This is because Pr
[
C PD(1η, a)

]
= Pr

[
C P[Hr]q (1

η, a) ∩ Runtimeq1

]
, where Runtimeq1 is the event that a

restricting message of P is answered incorrectly before any session of P ′′ and Q′ in [Hr]q exceeds the runtime
bound q1. Now, by Lemma D.42, this implies Pr

[
C PD(1η, (r, a))

]
≤ g2,q(η, a) (note that this bound is the

same for every valid r, i.e., it is independent of r).
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We define g(η, a′) := maxa∈{0,1}≤|a′| g2,q(η, a). It is easy to see that g is negligible. As g2,q(η, a) bounds
Pr
[
C PD(1η, (r, a))

]
for all 1 ≤ r ≤ pε(η, |a|) and, by the definition of D, Pr

[
C PD(1η, a′)

]
= 0 for all a′ such

that a′ cannot be parsed as (r, a) for some r with 1 ≤ r ≤ pε(η, |a|), we have that Pr
[
C PD(1η, a′)

]
≤ g(η, a′)

for all η ∈ N, a′ ∈ {0, 1}∗. This implies that D ∈ EnvR(P), and thus D ∈ EnvR,σ-single(P).

By this definition of D, we have for all η ∈ N, a ∈ {0, 1}∗, and 1 ≤ r ≤ pε(η, |a|):

Pr [(D|P)(1η, (r, a)) = 1] = Pr
[
B
q1,6=π−1(r)
Hr|P (1η, a)

]
and

Pr [(D|Q)(1η, (r, a)) = 1] = Pr
[
B
q1,6=π−1(r)
Hr|Q (1η, a)

]
.

(7)

Because E ′|P ≡ E ′|Q for all E ′ ∈ EnvR,σ-single(P) and D ∈ EnvR,σ-single(P), we have that D|P ≡ D|Q. In
particular, there exists a negligible function f such that for all η ∈ N, a ∈ {0, 1}∗, and 1 ≤ r ≤ pε(η, |a|):

f(η, (r, a)) ≥ |Pr [(D|P)(1η, (r, a)) = 1]− Pr [(D|Q)(1η, (r, a)) = 1]|
(7)=
∣∣∣Pr
[
B
q1,6=π−1(r)
Hr|P (1η, a)

]
− Pr

[
B
q1,6=π−1(r)
Hr|Q (1η, a)

]∣∣∣ .
Let f ′(η, a) := maxr≤pε(η,|a|) f(η, (r, a)). It is easy to see that f ′ is a negligible function. Now, obviously we
have that ∣∣∣Pr

[
B
q1,6=π−1(r)
Hr|P (1η, a)

]
− Pr

[
B
q1,6=π−1(r)
Hr|Q (1η, a)

]∣∣∣ ≤ f ′(η, a)

for all η ∈ N, a ∈ {0, 1}∗, and 1 ≤ r ≤ pε(η, |a|). This concludes the proof of Lemma D.43. ut

In the next step, we can finally prove that there is a polynomial q′ such that there is a universal bound,
i.e., one that is independent of r, for the probability of Bq

′

Hr|Q. This directly implies that Hpε |Q is almost
bounded, and hence, Claim I.

Lemma D.44. There exists a polynomial q′ and a negligible function f ′′ such that for all η ∈ N, a ∈ {0, 1}∗,
and 0 ≤ r ≤ pε(η, |a|):

Pr
[
Bq
′

Hr|Q(1η, a)
]
≤ f ′′(η, a) .

Proof. We will first prove a weaker version of the lemma which holds true only for 1 ≤ r ≤ pε(η, |a|). For this
we use the polynomial q1 from Lemma D.40 and construct a negligible function g. Afterwards we use this
result to show the lemma for 0 ≤ r ≤ pε(η, |a|).

Let η ∈ N, and a ∈ {0, 1}∗. For all 1 ≤ r ≤ pε(η, |a|), we define

tr := tr(1η, a) := Pr
[
Bq1
Hr|Q(1η, a)

]
.

We need to show that there exists a negligible function that bounds tr from above for every 1 ≤ r ≤ pε(η, |a|).
Let 1 ≤ r ≤ pε(η, |a|). If r = 1, then tr = t1 ≤ f1(η, a) by Lemma D.40. Next, we consider the case r > 1.

Because the permutation π is chosen uniformly at random, for all j ≤ r, we obtain the following equality:

Pr
[
B
q1,π

−1(r)
Hr|Q (1η, a) \Bq1,6=π−1(r)

Hr|Q (1η, a)
]

= Pr
[
B
q1,π

−1(j)
Hr|Q (1η, a) \Bq1,6=π−1(j)

Hr|Q (1η, a)
]
. (8)

Intuitively, the event B1 := B
q1,π

−1(r)
Hr|Q (1η, a) \Bq1,6=π−1(r)

Hr|Q (1η, a) says that the number of steps taken in the
external protocol system Q exceeded q1, but not the number of steps in the internal systems. The event
B2 := B

q1,π
−1(j)

Hr|Q (1η, a) \ Bq1,6=π−1(j)
Hr|Q (1η, a) says that the number of steps taken in the j-th copy of the

internally simulated protocol system Q exceeded q1, but not the number of steps taken in the other protocol
systems, i.e., in the other internal copies and the external system. As π is chosen uniformly at random, it
does not make a difference whether q1 is exceeded by the external system or one of the internal copies of Q.
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Formally, equality (8) can easily be established by defining a bijection between the runs in B1 and those
in B2: a run ρ ∈ B1 in which the permutation π was chosen is mapped to the corresponding run in B2
where a permutation π′ is chosen which coincides with π except that π−1(r) and π−1(j) are swapped, i.e.,
π′−1(r) = π−1(j) and π′−1(j) = π−1(r).

Now, by (8), we have that

Pr
[
B
q1, 6=π−1(r)
Hr|Q (1η, a)

]
≥ Pr

[r−1⋃
j=1

B
q1,π

−1(j)
Hr|Q (1η, a)

]

≥ Pr
[r−1⋃
j=1

B
q1,π

−1(j)
Hr|Q (1η, a) \Bq1,6=π−1(j)

Hr|Q (1η, a)
]

=
r−1∑
j=1

Pr
[
B
q1,π

−1(j)
Hr|Q (1η, a) \Bq1,6=π−1(j)

Hr|Q (1η, a)
]

(8)= (r − 1) · Pr
[
B
q1,π

−1(r)
Hr|Q (1η, a) \Bq1,6=π−1(r)

Hr|Q (1η, a)
]
.

(9)

We conclude that

tr = Pr
[
Bq1
Hr|Q(1η, a)

]
= Pr

[
B
q1,6=π−1(r)
Hr|Q (1η, a)

]
+ Pr

[
B
q1,π

−1(r)
Hr|Q (1η, a) \Bq1,6=π−1(r)

Hr|Q (1η, a)
]

≤ r

r − 1 · Pr
[
B
q1, 6=π−1(r)
Hr|Q (1η, a)

]
because of (9)

≤ r

r − 1 ·
(

Pr
[
B
q1,6=π−1(r)
Hr|P (1η, a)

]
+ f ′(η, a)

)
because of Lemma D.43

≤ r

r − 1 ·
(

Pr
[
Bq1
Hr|P(1η, a)

]
+ f ′(η, a)

)
.

As the systems Hr|P and Hr−1|Q behave exactly the same, we have that

Pr
[
Bq1
Hr|P(1η, a)

]
= Pr

[
Bq1
Hr−1|Q(1η, a)

]
= tr−1

and obtain the following simple recurrence relation:

tr ≤
r

r − 1 · (tr−1 + f ′(η, a)) .

By induction on r, it can be shown that

tr ≤

r−1∏
j=1

j + 1
j

 · t1 +

r−1∑
j=1

r−1∏
i=j

i+ 1
i

 · f ′(η, a) . (10)

From this, we obtain for 1 ≤ r ≤ pε(η, |a|):

tr ≤

r−1∏
j=1

j + 1
j

 · t1 +

r−1∑
j=1

r−1∏
i=j

i+ 1
i

 · f ′(η, a) because of (10)

= r · t1 +

r−1∑
j=1

r

j

 · f ′(η, a)

≤ r · t1 + (r − 1) · r · f ′(η, a)
≤ pε(η, |a|) · f1(η, a) + p2

ε(η, |a|) · f ′(η, a) because of Lemma D.40.
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Hence, with
g(η, a) := pε(η, |a|) · f1(η, a) + p2

ε(η, |a|) · f ′(η, a) ,

we obtain that
Pr
[
Bq1
Hr|Q(1η, a)

]
= tr ≤ g(η, a) ,

for all 1 ≤ r ≤ pε(η, |a|). Note that g is negligible and does not depend on r.

Now we still have to look at the case r = 0. By Lemma D.40, we already know that Pr
[
Bq0
H0|Q(1η, a)

]
≤

f0(η, a). We define the polynomial q′(η, |a|) := q0(η, |a|) + q1(η, |a|). Observe that both results for r = 0 and
1 ≤ r ≤ pε(η) also hold for the polynomial q′ as every run of Hr|Q(1η, a) that exceeds the runtime bound
q′(η, |a|) also exceeds both runtime bounds q0(η, |a|) and q1(η, |a|) (note that q0 and q1 cannot be negative).
Furthermore we define the negligible function f ′′(η, a) = f0(η, a) + g(η, a). Now the following holds true for
all 0 ≤ r ≤ pε(η, |a|) by construction:

Pr
[
Bq
′

Hr|Q(1η, a)
]
≤ f ′′(η, a) .

Note that f ′′ does not depend on the value of r. This concludes the proof of Lemma D.44. ut

Lemma D.44 immediately implies that Pr
[
Bq
′

Hpε |Q
(1η, a)

]
≤ f ′′(η, a) for all η ∈ N and a ∈ {0, 1}∗. In

particular, it follows that Hpε |Q is almost bounded, and hence, Claim I. By (5), this immediately implies
that E|Q is almost bounded (for all E ∈ EnvR(P)).

Furthermore, Lemma D.44 also implies that Pr
[
Bq
′

Hr|P(1η, a)
]
≤ f ′′(η, a) for all 1 ≤ r ≤ pε(η, |a|) as

Hr|Q and Hr+1|P behave exactly the same (see Equation (4)). In fact, the only reason to include the case
r = 0 in Lemma D.44 is to obtain this result.

Having bounded the probability for exceeding a certain runtime, we will now proceed in the proof of
Theorem D.39 by showing that P and Q are indistinguishable by any E ∈ EnvR(P), i.e., E|P ≡ E|Q. For
this we need just one more result: It is necessary to show that, for every polynomial q, all σ-single session
responsive environments [Hr]q (for 1 ≤ r ≤ pε(η, |a|)) can distinguish P and Q with only roughly the same
probability. Note that this is stronger than what we have already shown (i.e. [Hr]q ∈ EnvR,σ-single(P)) because
we have to find a single negligible function that holds for all possible values of r.

Lemma D.45. Let q be a polynomial. There exists a negligible function g3,q such that the following holds
true for all η ∈ N, a ∈ {0, 1}∗, and 1 ≤ r ≤ pε(η, |a|):

|Pr [[Hr]q|P(1η, a) = 1]− Pr [[Hr]q|Q(1η, a) = 1]| ≤ g3,q(η, a).

Proof. Just as in Lemmas D.41 and D.43, we prove this lemma for the case of non-uniform environments. Again,
using the same technique as in [23] (see Appendix B), one easily obtains a proof for uniform environments.

This proof follows essentially the same idea as the proofs of Lemma D.41 and Lemma D.43. We define an
IITM D ∈ EnvR,σ-single(P) which expects to receive (r, a) as external input and then simulates [Hr]q with
external input a. The IITM D outputs 1 on tape decision if and only if the simulated [Hr]q wants to output 1
on tape decision.

More formally, D is defined as follows. In mode CheckAddress, D accepts every message. In mode
Compute,D behaves as follows: First,D parses the external input on start as (r, a), with r ∈ {1, . . . , pε(η, |a|)}
and a ∈ {0, 1}∗. If the external input is not of this form, D outputs 0 on decision. Otherwise, D simulates the
system [Hr]q with external input a. If [Hr]q produces output, then so does D and if D receives input, then D
forwards this input to the simulated [Hr]q. If the run terminates (i.e., [Hr]q outputs something on decision or
[Hr]q produces empty output, which terminates the run because [Hr]q is a master IITM), then D terminates
its run in the same way (i.e., it either outputs the same message on tape decision or produces empty output).
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It is easy to see that D is universally bounded (i.e. D ∈ Env(P)) and that it is σ-single session. By
Lemma D.42, we also know that Pr

[
C P[Hr]q (1

η, a)
]
≤ g2,q(η, a) for all 1 ≤ r ≤ pε(η, |a|). By this, we have

that Pr
[
C PD(1η, a′)

]
≤ maxa∈{0,1}≤|a′| g2,q(η, a), which is negligible, and thus D ∈ EnvR(P). Overall, this

implies that D ∈ EnvR,σ-single(P).

We have for all η ∈ N, a ∈ {0, 1}∗, and 1 ≤ r ≤ pε(η, |a|):
Pr [(D|P)(1η, (r, a)) = 1] = Pr [[Hr]q|P(1η, a) = 1] and
Pr [(D|Q)(1η, (r, a)) = 1] = Pr [[Hr]q|Q(1η, a) = 1] .

(11)

As E ′|P ≡ E ′|Q for all E ′ ∈ EnvR,σ-single(P) and D ∈ EnvR,σ-single(P), we have that D|P ≡ D|Q. In particular,
there exists a negligible function g′3,q such that for all η ∈ N, a ∈ {0, 1}∗, and 1 ≤ r ≤ pε(η, |a|):

g′3,q(η, (r, a)) ≥ |Pr [(D|P)(1η, (r, a)) = 1]− Pr [(D|Q)(1η, (r, a)) = 1]|
(11)= |Pr [[Hr]q|P(1η, a) = 1]− Pr [[Hr]q|Q(1η, a) = 1]| .

Let g3,q(η, a) := maxr≤pε(η,|a|) g′3,q(η, (r, a)). It is easy to see that g3,q is a negligible function. Now, obviously
we have that

|Pr [[Hr]q|P(1η, a) = 1]− Pr [[Hr]q|Q(1η, a) = 1]| ≤ g3,q(η, a)
for all η ∈ N, a ∈ {0, 1}∗, and 1 ≤ r ≤ pε(η, |a|). This concludes the proof of Lemma D.45. ut
We can now conclude the proof of Theorem D.39. First we observe that there exists a single polynomial q
that bounds the runtime of Er (in every run) for all 1 ≤ r ≤ pε(η, |a|). This is because every Er just simulates
E , which is universally bounded, and because r ≤ pε(η, |a|).

We define the polynomial q′′(η, |a|) := q(η, |a|) + pε(η, |a|) · q′(η, |a|), where q is the polynomial from the
last paragraph and q′ is the polynomial from Lemma D.44. Now we have that, for all η ∈ N, a ∈ {0, 1}∗, and
1 ≤ r ≤ pε(η, |a|), the system Hr in a run of Hr|P(1η, a) will exceed the runtime q′′(η, |a|) in mode Compute
only if at least one copy of P ′′ or Q′ exceeds the runtime q′(η, |a|). That is, every run of Hr|P(1η, a) in which
Hr needs more than q′′(η, |a|) steps is in Bq

′

Hr|P(1η, a). Analogously, we have that runs of Hr|Q(1η, a) in
which Hr exceeds the runtime q′′(η, |a|) must be in Bq

′

Hr|Q(1η, a).

As Pr
[
Bq
′

Hr|P(1η, a)
]
≤ f ′′(η, a) and Pr

[
Bq
′

Hr|Q(1η, a)
]
≤ f ′′(η, a) for all 1 ≤ r ≤ pε(η, |a|) (by Lemma

D.44 and the remark following this lemma), we can conclude that the systems Hr|P and [Hr]q′′ |P and
Hr|Q and [Hr]q′′ |Q only differ in a negligible set of runs. More formally, for all η ∈ N, a ∈ {0, 1}∗, and
1 ≤ r ≤ pε(η, |a|), we have

|Pr [Hr|P(1η, a) = 1]− Pr [[Hr]q′′ |P(1η, a) = 1]| ≤ f ′′(η, a) and
|Pr [Hr|Q(1η, a) = 1]− Pr [[Hr]q′′ |Q(1η, a) = 1]| ≤ f ′′(η, a) .

(12)

By this, we obtain the following inequalities, which hold true for all η ∈ N and a ∈ {0, 1}∗:

|Pr [E|P(1η, a) = 1]− Pr [E|Q(1η, a) = 1]|
(3),(5)= |Pr [H1|P(1η, a) = 1]− Pr [Hpε |Q(1η, a) = 1]|

≤
pε(η,|a|)∑
r=1

|Pr [Hr|P(1η, a) = 1]− Pr [Hr|Q(1η, a) = 1]|

≤
pε(η,|a|)∑
r=1

|Pr [Hr|P(1η, a) = 1]− Pr [[Hr]q′′ |P(1η, a) = 1]|

+
pε(η,|a|)∑
r=1

|Pr [[Hr]q′′ |P(1η, a) = 1]− Pr [[Hr]q′′ |Q(1η, a) = 1]|

+
pε(η,|a|)∑
r=1

|Pr [[Hr]q′′ |Q(1η, a) = 1]− Pr [Hr|Q(1η, a) = 1]|
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(12), Lemma D.45
≤

pε(η,|a|)∑
r=1

(f ′′(η, a) + g3,q′′(η, a) + f ′′(η, a))

= pε(η, |a|) · (f ′′(η, a) + g3,q′′(η, a) + f ′′(η, a))

We define f ′′′(η, a) := pε(η, |a|) · (f ′′(η, a) + g3,q′′(η, a) + f ′′(η, a)). It is easy to see that f ′′′ is negligible and
that the following holds true:

|Pr [E|P(1η, a) = 1]− Pr [E|Q(1η, a) = 1]| ≤ f ′′′(η, a) .

This implies E|P ≡ E|Q for all E ∈ EnvR(P).
To conclude the proof of Theorem D.39, it remains to show that Q is R-environmentally bounded. As P

and Q are indistinguishable for all E ∈ EnvR(P), we can apply Lemma D.15 to obtain EnvR(P) = EnvR(Q).
We have already shown that E|Q is almost bounded for all E ∈ EnvR(P) by Lemma D.44 (see the comment
following the lemma) and thus E|Q is almost bounded for all E ∈ EnvR(Q), i.e., Q is R-environmentally
bounded.

This concludes the proof of Theorem D.39.
ut

The following lemma corresponds to Lemma 14 in [23], but has been adapted to the case of responsive
environments. With this lemma, we can then prove Theorem D.36.

Lemma D.46. Let σ be an SID function and let P and F be protocol systems such that P and F are
σ-session versions and P ≤R,σ-single F . Then, there exists S ∈ SimPR,σ-single(F) such that E|P ≡ E|S|F for all
E ∈ EnvR,σ-single(P) and S is a single IITM which is σ-complete.

Proof. The original proof uses that a simulator S ∈ SimPσ-single(F) exists such that E|P ≡ E|S|F for all
E ∈ Envσ-single(P). Then one can construct a new simulator S ′ that is defined to be σ-complete and essentially
simulates S and some copies of F which only interact with S (except for a negligible set of runs). It is then
shown that, by definition, S ′ is a σ-single session simulator and E|P ≡ E|S ′|F for all E ∈ Envσ-single(P).

Now, if one uses a simulator S ∈ SimPR,σ-single(F) with E|P ≡ E|S|F for all E ∈ EnvR,σ-single(P), then it
follows with the same construction that E|P ≡ E|S ′|F for all E ∈ EnvR(P) and that S ′ fulfills the conditions
of σ-single session responsive simulators regarding interfaces and runtime. Furthermore, as E|S|F and E|S ′|F
essentially behave the same for all E ∈ EnvR,σ-single(P) (except for a negligible set of runs), there must only
be a negligible set of runs of E|S ′|F in which a restricting message of F is answered incorrectly (if this were
not the case, then there would also be a non-negligible set of runs of E|S|F in which a restricting message is
answered incorrectly, which contradicts S ∈ SimPR,σ-single(F)). This implies S ′ ∈ SimPR,σ-single(F).

ut

We can now prove Theorem D.36:

Proof (Theorem D.36). By Lemma D.46, there exists S ∈ SimPR,σ-single(F) such that S is a σ-complete IITM
and E|P ≡ E|S|F for all E ∈ EnvR,σ-single(P). As S is σ-complete, we can conclude that E|P ≡ E|!S|F for all
E ∈ EnvR,σ-single(P):21 Because the environment E invokes only a single session, i.e. sends only messages to S
and F with the same SID (w.r.t. σ), and F is a σ-session version, S receives only messages with the same
SID (w.r.t. σ) from F and E . So, even with !S only one instance of S will be invoked in every run of E|!S|F ,
which implies E|P ≡ E|S|F ≡ E|!S|F .

Next, we observe that E|!S|F is almost bounded for all E ∈ EnvR,σ-single(!S|F): As E|S|F ≡ E|P ≡ E|!S|F
for all E ∈ EnvR,σ-single(P), we can use Lemma D.37 twice to obtain EnvR,σ-single(S|F) = EnvR,σ-single(P) =
EnvR,σ-single(!S|F). Because S is a σ-single session responsive simulator, the system E|S|F is almost bounded
for all E ∈ EnvR,σ-single(S|F) = EnvR,σ-single(!S|F). As argued above we can easily define a bijection between
runs of E|S|F and runs of E|!S|F for all σ-single session environments, and thus E|!S|F must also be almost
bounded for all E ∈ EnvR,σ-single(!S|F).
21 Note that ‘!’ binds more strongly than ‘ | ’, and hence, the system E|!S|F is the same as E|(!S)|F .
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Finally, we note that, by construction, !S|F is a σ-session version in which every machine that does not
occur in the scope of a bang accepts all messages in mode CheckAddress. Thus, we can use Theorem D.39
(with Q := !S|F) to obtain E|P ≡ E|!S|F for all E ∈ EnvR(P) and that !S|F is R-environmentally bounded.

Let E ∈ EnvR(P) (and thus, by Lemma D.15, E ∈ EnvR(!S|F)). The remainder of the proof shows that
the set of all runs of E|!S|F in which a restricting message from F is answered incorrectly is negligible; this
implies !S ∈ SimPR(F) and thus P ≤R F . We will first show that there exists a single negligible function which
bounds the probability of an incorrectly answered restricting message of a copy of F for all possible copies.
As there are only polynomially many copies in any run, we can then construct another negligible function
which bounds the probability that any copy of F receives an incorrect answer to a restricting message.

By Lemma 6 from [23], we may assume that E is a single IITM which, in mode CheckAddress, accepts
all messages. We may also assume that start is a tape of E (otherwise there would be no master IITM
in E | !S |F , i.e., every run immediately ends with empty output. Thus, the claim holds true trivially). In
addition, we may assume that the only external tapes of E | !S |F are start and decision. Moreover, we may
assume, again without loss of generality, that E is such that every message m that E outputs on tape c
(except if m is output on tape decision) has some SID, i.e. σ(m, c) 6= ⊥: As E will only interact with σ-session
versions, messages without an SID would be rejected by these σ-session versions anyway. As E is universally
bounded, it follows that there exists a polynomial pε such that the number of different sessions (i.e., messages
with distinct SIDs output by E) is bounded from above by pε(η, |a|) (where η is the security parameter and a
is the external input).

In what follows, let S ′ be the variant of S obtained from S by renaming every tape c occurring in S to
c′. Analogously, let F ′ be obtained from F by renaming every tape c occurring in F to c′. By this, we have
that !S|F and !S ′|F ′ have pairwise disjoint sets of external tapes, and hence, these systems are pairwise
connectable.

We now define an IITM Er (for every r ∈ N) which basically simulates E and which will run in the system
Er|!S ′|F ′|!S|F . The r-th copy of the protocol invoked by (the simulated) E will be a copy of !S|F , and the
remaining copies will be copies of !S ′|F ′.

Formally, Er is obtained from E as described below (recall that we assume that E is a single IITM which
accepts every message in mode CheckAddress). The IITM Er will also always accept every message in
mode CheckAddress. The behavior of Er in mode Compute is specified next.

First, we need to make sure that Er has the appropriate tapes to connect to the different entities. The
IITM E already has tapes to connect to the external tapes of !S|F . For each such tape c, we add a tape c′ to
Er to connect to the external tapes of !S ′|F ′.

Next, we need to specify how Er redirects protocol invocations of E in the way sketched above: Er keeps
a list L of SIDs, which initially is empty, and the length l of the list, which initially is 0. By definition of
pε, it will always hold that l ≤ pε(η, |a|). After the first activation, Er simulates E with security parameter η
and external input a. In particular, if E produces output, then so does Er, and if Er receives input, then E
is simulated with this input. However, as explained next, the behavior of Er deviates from that of E when
sending and receiving messages to the different copies of protocols.

1. If E produces output m on some external tape c of !S|F with s := σ(m, c), then Er checks whether s
occurs in L. If s does not occur in L, s is first appended at the end of L and l is increased by 1. Let
j ∈ {1, . . . , l} be the position at which s occurs in L.
a) If j = r, then Er writes m on tape c.
b) If j 6= r, then Er writes m on tape c′.

2. If Er receives input on tape c′ (where c′ is an external tape of !S ′|F ′ corresponding to an external tape c
of !S|F), then Er behaves as E does when input is received on tape c.

3. If Er receives input on tape c (where c is an external tape of !S|F), then Er behaves as E does when
input is received on tape c.

It is easy to see that Er is universally bounded for every r ∈ N because E is universally bounded.
We now define a system E$ which first chooses some r ∈ {1, . . . , pε(η, |a|)} uniformly at random and then

behaves exactly as Er. It is easy to see that E$ is universally bounded as E$ simulates the universally bounded
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system Er and r is bounded by a polynomial. Furthermore, we define the system H$ = E$|!S ′|F ′ for brevity
of presentation.

By construction, the systems E|!S|F and H$|!S|F behave exactly the same (see below). That is, there
exists a mapping which maps a run ρ of E|!S|F to a set of corresponding runs of H$|!S|F such that the
probability of ρ equals the probability of the corresponding set of runs of H$|!S|F , where the runs in that
set differ only in the choice of r. In particular, we have that

E|!S|F ≡ H$|!S|F , (13)

For (13), we need that !S|F is a protocol system and a σ-session version. The second property is necessary
as it guarantees that two instances of machines in !S|F with different SIDs will never send messages to each
other (as they only send messages with their own SID), i.e., it is no problem that the systems !S ′|F ′ and
!S|F in H$|!S|F do not have a connection to each other. Furthermore, for machines M of !S|F that are in
the scope of a bang, it is easy to see that every instance of such a machine in a run of E|!S|F corresponds to
one instance of this machine (either in !S ′|F ′ or !S|F , depending on the SID of the instance) in a run of
H$|!S|F .

If there is a machine M in !S|F that is not in the scope of a bang, the following problem can occur:
In a run of E|!S|F , there can only be at most one instance of such a machine, whereas there may be two
instances (one in !S ′|F ′ and one in !S|F) in a run of H$|!S|F , i.e., one of those instances would not have a
corresponding instance of M in E|!S|F . This is where we need that !S|F is a protocol system, i.e., such a
machine M must accept all messages m on all tapes c in mode CheckAddress. As M is a σ-session version,
i.e., accepts only messages with the same SID, we obtain σ(m, c) = s for some fixed value s 6= ⊥, m ∈ {0, 1}∗,
and all (input-)tapes c of M . Because Er and thus E$ never send messages with the same SID to both !S ′|F ′
and !S|F , there will be at most one copy of either !S ′|F ′ or !S|F with SID s. But then there is also at most
one instance of M in a run of H$|!S|F , which corresponds to the single instance of M in a run of E|!S|F .

Remember that we have to show that restricting messages of F are answered correctly in an overwhelming
set of runs of E|!S|F . For this, we need the following events: Recall from the proof of Lemma D.39 that,
for all systems Q and R, we define the event C RQ = C RQ (1η, a) to be the set of all runs of Q|R in which a
restricting message of R is answered incorrectly. With C RQ we denote the complementary event.

In the following, we will first prove that Pr
[
C FH$|!S

]
is negligible, which can then be used to conclude

that Pr
[
C FE|!S

]
is negligible. For this result, we need that H$|!S|F is almost bounded: Observe that E|!S|F

is almost bounded, because E ∈ EnvR(!S|F) and !S|F is R-environmentally bounded. Because H$|!S|F and
E|!S|F behave exactly the same (see (13) and the explanation above that equation), it is easy to see that
also H$|!S|F is almost bounded.

It also holds true that E$ ∈ EnvR(!S ′|F ′|!S|F): As the systems H$|!S|F and E|!S|F behave exactly
the same, we have that in a run ρ of E|!S|F a restricting message of !S|F is not answered correctly iff
in every run in the set of runs of H$|!S|F corresponding to ρ this restricting message, which comes from
!S|F or !S ′|F ′, is also not answered correctly. As Pr

[
C

!S|F
E

]
is overwhelming, this directly implies that

Pr
[
C

!S′|F ′|!S|F
E$

]
is also overwhelming.

Now observe that every restricting message (on an external network tape) of !S|F in the system H$|!S|F
is also a restricting message of !S ′|F ′|!S|F (note that !S|F and !S ′|F ′ have disjoint tapes). Thus we have
Pr
[
C

!S|F
H$

]
= Pr

[
C

!S|F
E$|!S′|F ′

]
≤ Pr

[
C

!S′|F ′|!S|F
E$

]
, i.e., Pr

[
C

!S|F
H$

]
must also be negligible.

By the previous observations, we can use Lemma D.20 and Lemma D.22 to obtain that [H$]!S|F ∈
EnvR(!S|F). Furthermore, [H$]!S|F is also a σ-single session environment, as the only external tapes (except for
start and decision) of [H$]!S|F are those between (the simulated) Er and !S|F , and Er only sends messages with
the same SID on those tapes. Overall, we have that [H$]!S|F ∈ EnvR,σ-single(!S|F), and thus, by Lemma D.37,
[H$]!S|F ∈ EnvR,σ-single(P). As S ∈ SimPR,σ-single(F), this implies that Pr

[
C F[H$]!S|F |S

]
= Pr

[
C F[H$]!S|F |!S

]
is negligible. (Recall that [H$]!S|F is a σ-single session environment and that S is σ-complete. Hence, the
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systems [H$]!S|F |S and [H$]!S|F |!S behave in exactly the same way.) Finally, because [H$]!S|F |!S|F and
H$|!S|F behave exactly the same except for a negligible set of runs (i.e., when the runtime bound of [H$]!S|F
is reached), we can conclude that Pr

[
C FH$|!S

]
is negligible.

We can now show that Pr
[
C FE|!S

]
is negligible. First we observe that, for every run ρ in C FE|!S(1η, a),

there is a unique run ρ′ in C FH$|!S(1η, a) with Pr [ρ′] = 1
pε(η,|a|) · Pr [ρ].

More formally, we can define an injective function f that maps runs ρ from C FE|!S to runs ρ′ of C FH$|!S
in the following way: Let ρ be such a run. Then there exists at least one restricting message of F that is
answered incorrectly. Let s be the SID of the instance of F (in the run ρ) which is the first instance that
receives an incorrect answer. Let r′ be such that s is the r′-th (unique) SID that is used by E . We define ρ′
to be the run of H$|!S|F , where H$ chooses r = r′ (which happens with probability pε(η, |a|)−1) and the
run then continues just as ρ, i.e., all instances in ρ′, after r has been chosen, use the same random coins as
those in ρ. Then ρ′ is in C FH$|!S by construction. Furthermore, it is easy to see that f is injective and that
Pr [ρ′] = 1

pε(η,|a|) · Pr [ρ]. Now, we obtain:

Pr
[
C FE|!S

]
=

∑
ρ∈C FE|!S

Pr [ρ]

=
∑

ρ∈C FE|!S

pε(η, |a|) · Pr [f(ρ)]

f injective
≤

∑
ρ′ ∈C FH$|!S

pε(η, |a|) · Pr [ρ′]

= pε(η, |a|) · Pr
[
C FH$|!S

]
.

As Pr
[
C FH$|!S

]
is negligible, it follows that also Pr

[
C FE|!S

]
is bounded by a negligible function. This implies

!S ∈ SimPR(F), and thus, concludes the proof of Theorem D.36. ut
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