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Abstract. Recently, Xia et al. proposed a variant of Prêt à Voter which
enjoys several attractive properties. Their protocol is among the few
verifiable and receipt-free paper-based voting protocols resistant against
randomization attacks. Trust is distributed among several authorities
and the voter interface is relatively simple. Also, approval and ranked
elections are supported.
In this paper, we improve and simplify the protocol by Xia et al. Among
others, we propose a simpler way of producing ballots, which only in-
volves the encryption and re-encryption of candidate names; homomor-
phic encryption and proxy re-encryption are not needed. Also, no ma-
chine involved in the production of ballots needs to store a secret key.
Moreover, unlike the protocol by Xia et al., in our protocol all authorities
can be held accountable in case they misbehave in an observable way.

1 Introduction

In the last few years many paper-based voting protocols have been proposed
that are designed to achieve (various forms of) verifiability [10] and receipt-
freeness/coercion resistance [4], with protocols by Chaum [7], Neff [18], and Prêt
à Voter [22, 9, 24, 23, 16] being the first such protocols; other protocols include
Scratch&Vote [3], PunchScan [6, 19], ThreeBallot, VAV, and Twin [21], Split
Ballot [17], BingoVoting [5], a protocol by Riva and Ta-Shma [20], and Scant-
egrity II [8]. Intuitively, verifiability means that the voter is assured that her vote
is actually counted as cast. A voting protocol is coercion resistant if it prevents
voter coercion and vote buying. In other words, a coercer should not be able to
influence the behavior of a voter.

However, only very few of the paper-based protocols proposed so far are resis-
tant against a specific kind of coercion, namely so-called randomization attacks
[13] (see, e.g., [21, 8, 26]). In such an attack the adversary forces the voter to
vote in a random way. For example, the voter could be forced to always mark
the ballot at a specific position and the coercer may be able to check whether
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the voter marked the ballot as instructed by looking at the voter’s receipt. The
candidate corresponding to such a mark may change from ballot to ballot. So,
the vote may be “random”. But this is still a serious manipulation of the election
as this attack could be carried out on a large scale and the coercer can check
after the election whether or not voters followed his instructions.

The recently proposed protocol by Xia et al. [26], which is a variant of Prêt
à Voter that resists randomization attacks, is particularly interesting as it dis-
tributes trust among several authorities while at the same time allows for a
relatively simple voter interface and supports several electoral systems.

Contribution of this Paper. In this paper, we improve and simplify the
protocol by Xia et al. In a nutshell, our protocol works as follows. Ballots are
produced by a sequence of printers. This process merely involves the encryption
and re-encryption of candidate names under the joint public key of tallying
tellers. Ciphertexts printed on the ballot have to be covered by scratch strips.
The final ballot has only one covered ciphertext per candidate, plus the printed
name of the candidate. The voter interface is very simple. To vote, a voter enters
a voting booth, chooses one or more candidates and marks or ranks them, by
putting crosses or numbers next to the candidate names, and separates the left
and the right-hand sides of the ballots. This does not involve a machine. Scanning
of ballots and printing receipts can then be done outside of the voting booth in
public, with the assistance of the clerks, if necessary. Tallying the ballots is done
by the tallying tellers using a mixnet and distributed decryption. The main
features of our protocol are the following:

1. Distributed trust. In all stages of the election, trust is distributed among
several authorities.

2. Simple production of ballots. The production of ballots involves only basic
cryptographic tasks, namely public key encryption and re-encryption. The
machines (printers) involved in this process are rather simple and do not
have to store secret keys. This reduces failures and security leaks.

3. Simple voter interface. The voter interface does not involve any complex task.
Tasks such as uncovering scratch strips, scanning ballots, and printing re-
ceipts are done, under the assistance of clerks, using quite simple machines.
This, again, increases the reliability and usability of the protocol. Just as the
protocol by Xia et al., our scheme is best suited for elections with a small
number of candidates.

4. Supporting several electoral systems. Several electoral systems, including ap-
proval and ranked elections, are supported.

5. Coercion resistance. Coercion resistance, including resistance against random-
ization attacks, kleptographic attacks, and chain voting, is guaranteed under
weak assumptions: We only require one honest member in every group of
authorities. The voting terminals for scanning ballots/printing receipts and
posting them on the bulletin board may be dishonest. Dishonest parties may
cooperate with the coercer. In fact, we identify them with the coercer. Also,
the voter may freely communicate with the coercer during the whole voting
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process, even in the voting booth. We only assume that the voter may lie
about what she sees and does. (So, no pictures or videos may be taken by
the voter. But talking on the phone would not be a problem.)

6. Verifiability. Verifiability can be ensured (with high probability), by the proofs
authorities have to provide and the audits that are performed by voters,
clerks, and auditors.

7. Accountability. Our protocol guarantees accountability of authorities, i.e.,
single authorities can be held accountable for their misbehavior.

The protocol by Xia et al. enjoys some of the above features. However, there are
crucial differences. First, the production of ballots in the protocol by Xia et al. is
much more complex, and hence, less reliable and harder to implement: Besides
performing re-encryptions, it also needs homomorphic encryption and proxy re-
encryption. Moreover, machines are required to decrypt ciphertexts obtained by
proxy re-encryption. In particular, these machines need to store secret keys.

In the work by Xia et al., accountability has not been considered. However,
it is clear that their protocol does not achieve the same level of accountability
as ours. For example, if in their protocol the audit in the production of ballots
reveals that the re-encryption has not been performed correctly, then this cannot
be traced back to specific participants, only to a group of participants. For this
reason, some participants may have a higher tendency to misbehave, and hence,
spoil the outcome of the election.

Unlike in this paper, Xia et al. do not provide a security analysis of their
protocol. It seems that arguments for verifiability and coercion resistant similar
to the ones presented here carry over to the protocol by Xia et al. However, the
exact security guarantees are not clear. For example, while our protocol has an
explicit mechanism to prevent chain voting attacks, this is not the case in the
protocol by Xia et al., although, presumably, such a mechanism could be added.

2 Our Protocol

In this section, we describe our protocol. It consists of four stages: initialization,
preparation of ballots, voting phase, and tallying phase. For simplicity of pre-
sentation, we first assume that a voter votes for exactly one candidate. Choosing
more or no candidate would result in an invalid ballot. We will see in Section 2.8
that this assumption is not necessary. In fact, as already mentioned in the in-
troduction, our protocol supports a wide range of electoral systems.

Before going into the details of the protocol, we provide a brief description
of how the election looks like from the voter’s point of view.

2.1 Voting from the Voter’s Point of View

When a voter enters the polling place, clerks provide her with what we call a
multi-ballot. A multi-ballot contains exactly one simple ballot for each of the
possible candidates. An example of a multi-ballot for an election with two can-
didates is depicted in Figure 1.
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Alice

11372

Bob

11372

Fig. 1. A multi-ballot consisting of two simple ballots for a two candidate election.

A simple ballot consists of two parts which can be easily separated. On the
left-hand side of a simple ballot a candidate name is printed. This side does not
contain any other information. On the right-hand side a serial number and a box
is printed, which the voter can mark. There is also a scratch strip which covers
some information, namely the encryption of the candidate name, as explained
later. Every simple ballot in one multi-ballot has printed on it the same serial
number.

Once the voter is provided with a multi-ballot, she enters the voting booth.
She marks the box on exactly one of the simple ballots and for every simple
ballot, including the ones not marked, she separates the left-hand side from the
right-hand side and discards the left-hand sides. Note that up to this point, the
voter does not have to use any device or machine, which makes this process less
error-prone and relatively easy to perform. This is a big advantage in practice.

At this point the voter steps out of the voting booth with the right-hand
sides of all simple ballots in her hand. The rest of the process is done in public,
under the eyes of and possibly with the help of the clerks. Basically, the scratch
strip is removed (by hand or using a machine) and all (right-hand sides of the)
simple ballots are scanned and posted on the bulletin board. The voter gets a
copy of all of these ballots as her receipt.

2.2 Cryptographic Primitives

We start the detailed description of our protocol with a brief introduction of the
cryptographic primitives that we use.

We will use an encryption scheme that allows for random re-encryption and
distributed decryption (see, e.g., [11, 25, 1]). In such a scheme, a group of agents
can collectively generate a public key K which can be used to encrypt messages.
To decrypt a ciphertext, the participation of all parties involved in generating
K is necessary and the parties are required to provide proofs of compliance.

We will also use a universally verifiable re-encryption mixnet. A re-encryption
mixnet consists of a set of mix servers T1, . . . , Tm, where T1 gets as input an
ordered set {c1, . . . , cr} of messages encrypted under the public key K and then
successively each of T1, . . . , Tm in turn applies a random re-encryption to every
ciphertext ci. These re-encryptions are then forwarded in a random order to the
next mix server. The output of the mixnet is the output of Tm. This output is a
permutation of re-encryptions of c1, . . . , cr, if every mix server behaved correctly.
As long as the mixnet contains at least one honest server, it should be infeasible
to trace a message from the input to the output. In a universally verifiable
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mixnet the mix servers publish additional information so that for any observer
it is possible to ensure that the servers behaved correctly (see, e.g., [12, 2]).

2.3 Participants

Beside the voters, the following principals/machines participate in the protocol.
Their tasks will be explained in more detail later on.

1. Bulletin board BB: This is a kind of write-only, publicly accessible memory.
We assume that every message posted by a principal on the bulletin board
is signed by that principal.

2. Auditors A1, . . . , Ama
: They perform several kinds of audits.

3. Printers P1, . . . , Pmp
: These machines print the ballots. They may be run by

different institutions at different locations.

4. Bundlers B1, . . . , Bmb
: They perform the final step in compiling multi-ballots.

5. Clerks C1, . . . , Cmc
: They conduct the voting process, including issuing multi-

ballots to voters and ensuring the correctness of the procedure.

6. Voting terminals VT: These machines scan ballots cast by the voters, make
copies (receipts) for the voters, and, after the voting phase is finished, post
the scanned ballots on the bulletin board.

7. Tellers T1, . . . , Tmt
: They tally the ballots in a way specified later.

2.4 Initialization

In the initialization phase, all participants generate their private and public keys,
as far as necessary, and put their public keys on the bulletin board, possibly along
with a proof that they know the corresponding private key and signatures by
some certification authority.

As mentioned in Section 2.2, the tellers T1, . . . , Tmt
will perform distributed

decryption in the tallying phase. Their joint public key, which we denote by K,
can be computed publicly from the public keys every teller put on the bulletin
board.

Finally, the set of allowed serial numbers is posted on the bulletin board as
well as the list of candidates. This can be done by some election supervisors,
which we do not specify in detail here.

2.5 Preparation of Ballots

We now describe how multi-ballots are produced. This is done in two steps. First,
ballots are printed by the printers P1, . . . , Pmp

. Then, bundlers B1, . . . , Bmb
do

the final compilation. The whole process is audited by the auditors A1, . . . , Ama
.
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Printing of Multi-Ballots. As already mentioned in Section 2.1, a multi-
ballot consists of a set of simple ballots, one simple ballot per candidate. Each
multi-ballot has a unique serial number. This number is printed on every simple
ballot within a multi-ballot.

Initially, the sheets of paper on which simple ballots are printed are a bit
larger than in the final ballots in order to accommodate additional information
needed for the production of the ballots. However, the additional parts of the
(extended) simple ballots are cut off in the last step of the ballot preparation.

Each multi-ballot is prepared by the printers P1, . . . , Pmp
, which iteratively

process the multi-ballots. Typically different printers would belong to different
institutions in different locations in order to distribute trust. Let us look at the
production of one multi-ballot with the serial number sid.

First, P1 prints, for each candidate name name, an (extended) simple ballot
which contains the serial number sid, the candidate name name, and an encryp-
tion s1 of the candidate name name under the joint public key K of the tellers,
as depicted in Figure 2, (a); the randomness used for the encryption is chosen
freshly for every encryption. Then, P1 covers the candidate name with a scratch
strip (see Fig. 2, (b)).

In this way, P1 prepares an (extended) simple ballot for each candidate.
Together they form a multi-ballot. Before giving this multi-ballot to the next
printer P2, P1 shuffles the simple ballots within the multi-ballots. In praxis, P1

would of course not only send one but the set of all multi-ballots prepared by
P1 to P2.

Now, when P2 receives a multi-ballot from P1, P2 computes re-encryptions
of the ciphertexts printed on the simple ballots contained in the multi-ballots,
everytime using fresh randomness. For each simple ballot, the corresponding re-
encryption is then printed next to the previous ciphertext. In addition, the old
ciphertext is covered by a scratch strip. Figure 2, (c) shows a simple ballot after
the re-encryption has been printed, where s1 is the old ciphertext and s2 is its
re-encryption. Figure 2, (d) shows this simple ballot after the old ciphertext s1

has been covered.

As in the case of P1, P2 shuffles the simple ballots of a multi-ballot before
giving the multi-ballot to the next printer P3. Then, P3 processes the multi-ballot
in the same way, and so on.

The last printer Pmp
obtains multi-ballots containing simple ballots of the

form depicted in Figure 2, (e). It re-encrypts smp−1, obtaining smp
, prints smp

next to smp−1 (see Fig. 2, (f)), and then covers both smp−1 and smp
, resulting

in a simple ballot as depicted in Figure 2, (g).

We assume that independent auditors A1, . . . , Ama
make sure that in the

process of printing ballots, scratch strips on ballots are never removed. They also
make sure that ballots do not get lost or are replaced. However, the auditors do
not get to see how exactly the ballots are shuffled. Of course, printers also keep
the randomness they use for the encryption (in case of P1) and re-encryption (in
case of P2, . . . , Pmp

) secret.
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(a)

name s1

sid

(b)

s1

sid

(c)

s2 s1

sid

(d)

s2

sid

(e)

smp−1 · · ·

sid

(f)

smp
smp−1 · · ·

sid

(g)

· · ·

sid

(h)

name

sid

Fig. 2. Preparing ballots.

In case a simple ballot in a multi-ballot is tampered with, this ballot is
destroyed and the serial number of this ballot is marked invalid. This fact would
then be reported by the auditors on the bulletin board. Potentially, a printer
accountable for this tampering could be excluded from the group of printers.

Auditing of Printed Ballots. Beside this “physical auditing” of the print-
ing process, auditors A1, . . . , Ama

(or a group of auditors different to the group
mentioned above), check, after the printing process is finished, whether the in-
formation printed on the ballots is as specified.
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For this purpose, A1, . . . , Ama
jointly and randomly (every auditor contributes

her own randomness) pick a fraction of multi-ballots from the set of all printed
multi-ballots.

The auditors remove all scratch strips on these ballots and ask the printers
to reveal the randomness that they have used to perform the encryption (in case
of P1) and the re-encryption (in case of P2, . . . , Pmp

) in the production of these
ballots.

The auditors can then check (in public) whether these ballots have been
produced as specified. Of course, they cannot see whether the randomness that
the printers used is really random. However, as we will see in Section 3, as long as
one printer is honest, and hence, uses real randomness, this is no problem. What
the auditor can see, though, is whether the first encryption s1 in Figure 2 in fact
encrypts the candidate name on the left-hand side of the ballot and whether the
rest of the ciphertexts is a re-encryption of s1, and hence, smp

is an encryption
of the correct candidate name.

All ballots audited by the auditors are destroyed and their serial numbers
are marked invalid on the bulletin board.

Final Preparation of Multi-Ballots. The remaining multi-ballots are then
shuffled, in turns, by all the bundlers B1, . . . , Bmb

. Then the right-hand sides
of the ballots containing the covered ciphertexts sm−1, . . . , s1 are cut off, say
by Bmb

. This bundler also removes the scratch strip from the left-hand sides of
the ballots, uncovering candidate names. The resulting ballots are depicted in
Figure 2, (h). Each multi-ballot is then put into an envelope. The parts cut off
from the ballots are destroyed.

Auditors make sure, by physical inspection, that all steps are performed
correctly. No multi-ballot should get lost or be replaced and all scratch strips,
including those on the eventually destroyed right-hand sides of the ballots should
not have been tampered with.

2.6 Voting Phase

The voting phase, which takes place in polling places, consists of the following
steps, which are carried out by the voters, the clerks, and the voting terminals,
in conjunction with the bulletin board.

V1. Register and obtain multi-ballot. The voter first registers at the polling place.
The clerks then provide the voter with a multi-ballot, making sure that the
serial number is valid. The voter and the clerks also check whether the multi-
ballot has not been tampered with and that there is exactly one simple ballot
for every candidate. Otherwise, the voter gets a new multi-ballot and the
old one is destroyed and marked invalid on the bulletin board. (The incident
is reported and investigated.)
Clerks also record the serial number of the multi-ballot issued to a voter.
(Later they make sure that the voter casts a ballot with the same serial
number.)
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(a)

Alice

11372

Bob ×
11372

(b)

×
11372 11372

(c)

× 5987345

11372

6789233

11372

Fig. 3. An example of a multi ballot consisting of two simple ballots for a two candidate
election: (a) after step V2, (b) after step V3, (c) after step V5. Note that a copy of (c) is
given to the voter as a receipt. The number “5987345” is supposed to be a randomized
encryption of “Bob”.

V2. Entering the voting booth and choosing a candidate. The voter enters a voting
booth and marks the box of exactly one candidate. All other boxes are left
blank. In an election with two candidates, the multi-ballot would now look
like the one depicted in Figure 3, (a).

V3. Separating left-hand and right-hand sides. The voter then separates the two
parts of every simple ballot, not just the one that she marked (this can
be done manually or using a simple cutter). She keeps only the right-hand
sides. The left-hand sides can be thrown away. The right-hand sides should
be shuffled. The result of this step is depicted in Figure 3, (b).

Now, the voter leaves the voting booth. We emphasize that up to this point
the voter did not have to use any machine or device. All steps performed
by the voter thus far were relatively basic and simple, and hence, less error-
prone and less susceptible to manipulation.

The rest of the voting process takes place in public.

V4. Auditing by clerks. The clerks check that the voter in fact has separated the
left- and the right-hand sides of all simple ballots and that the scratch strips
are untouched. The clerks also make sure that the ballots are separated in
such a way that there are no visible signs that would allow an observer to
match corresponding right- and left-hand sides. Otherwise, the ballots are
destroyed, the serial number is marked invalid, and the voter may start the
voting process all over again (beginning with step V1) or leave the polling
place without voting.

V5. Removing scratch strips. The voter, possibly with the assistance of the clerks
or some machine, may now remove the scratch strips from all (right-hand
sides) of the simple ballots in her multi-ballot, resulting in a multi-ballot
(with only right-hand sides) of the form depicted in Figure 3, (c).

V6. Casting the ballot and obtaining a receipt. The voter, in presence of the clerks,
now casts her ballots, i.e. she inserts all the (right-hand sides of) the simple
ballots into the voting terminal VT. The clerks make sure that the serial
number of these ballots is the same as the one recorded in step V1.

9



The terminal scans the ballots and checks whether the markings made by
the voter are correct, i.e. comply with the election system. If the markings
are correct, the terminal provides the voter with a copy of the ballots.
Otherwise, the voter is informed that the marking was invalid, without
being given a receipt.
As mentioned at the beginning of Section 2, for now we assume that a voter
marks exactly one simple ballot. So the terminal would only accept the
multi-ballots with exactly one marked box. In this particular case, a voter
could cast only the marked simple ballot.

2.7 Tallying Phase

After the voting phase is finished, the voting terminals VT post all the scanned
multi-ballots with valid markings on the bulletin board. At this point or later,
a voter can check, whether all her ballots (i.e. all the ballots she has receipts
of) appear on the bulletin board. Also, at each pooling place, the clerks check
whether the ballots posted on the bulletin board correspond to the actual (phys-
ical) ballots kept by the voting terminals and those issued to the voters. This
could be done manually or with the help of another, independent machine.

Then, the tellers T1, . . . , Tmt
shuffle and decrypt the set of published ballots,

as described below. Recall that each of the published ballots contains a serial
number, a ciphertext, and possibly a marking, where the markings of multi-
ballots comply with the electoral system used.

Mixing. From the published ballots, the serial numbers are discarded. The
ballots are then grouped according to their markings. In our simple setting, we
have two groups, one group of ballots with markings and one without. If the
marks were numbers, the ballots would be grouped according to these numbers.
Every group of ballots is now put through a universally verifiable re-encryption
mixnet (see Section 2.2), where the tellers T1, . . . , Tm serve as mix servers. (In
our simple setting, ballots without marks can be discarded. They do not need
to be shuffled or decrypted.) The result of the whole mixing procedure is a list
of shuffled and re-encrypted ballots posted by the last teller, one list for each
group.

Decrypting. Finally, the tellers collectively decrypt the shuffled and re-encrypt-
ed ballots within each group of ballots. The results as well as proofs of compliance
of the decryption are posted on the bulletin board.

2.8 Supporting Other Electoral Systems

Up to now, we have assumed, for simplicity of presentation, that every voter
marks exactly one of the simple ballots within a multi-ballot. However, it is
straightforward to support many other electoral systems, where voters may vote
for many candidates or even rank candidates by assigning numbers.
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We only need to assume that the pattern of marks (crosses or numbers)
chosen by a voter does not reveal any information, e.g., to the clerks in the
voting phase, about how a voter voted. If, for example, voters may make either
one or two marks, then a clerk can see how many marks a voter made. Therefore,
for our protocol to be coercion resistant, we assume that the electoral system is
such that only one pattern of markings is allowed.

In case the electoral system allows for different marking patterns one can
simply add to a multi-ballot enough of what we call dummy simple ballots, which
do not belong to any candidate. For example, if the electoral system allows to
vote for zero, one, or two candidates, a multi-ballot could contain two dummy
simple ballots and every voter is required to mark exactly two simple ballots. To
vote for one candidate, for example, a voter would mark her candidate and one
dummy simple ballot.

We assume also that for tallying simple ballots the context of the multi-
ballot it belonged to is not relevant. For some electoral systems that might not
be true. In this case, the mixing and decryption of ballots should keep simple
ballots grouped in multi-ballots. This could for example be done by leaving the
serial numbers on the ballots, but encrypting and re-encrypting them in the
mixing phase. However, we omit the details.

3 Security Analysis

In this section, we argue that our protocols enjoys verifiability, accountability,
and coercion resistance.

3.1 Accountability

We say that a protocol is accountable if the following is true: If there is an
observable deviation from the protocol (i.e., a participant does not send messages
as expected, proofs of compliance are invalid, or an audit step fails), then this
deviation can be traced back to every single party who misbehaved, not just
an anonymous group of parties. This property is important. Without it there
would be a higher tendency to misbehave, and hence, a higher probability for
the result of the election to be spoiled. Accountability justifies the assumption
that authorities, even if dishonest, do not misbehave in an observable way, if this
is likely to be noticed by (honest) auditors/clerks or external observers who can
check proofs of compliance of authorities.

To argue about accountability we assume the following:

A1. The bulletin board is honest and there is at least one honest participant in
the group of auditors and clerks, respectively.

Accountability of auditors and clerks follows from the assumption that they
watch each other and that there is at least an honest member in every group. Mis-
behavior of bundlers and voting terminals is observed by the checks that clerks
and auditors do. Individual tellers can be held accountable due to the proof of
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compliance each teller has to provide. Misbehavior of printers is detected by
auditors. For example, auditors make sure, at least for a fraction of the ballots,
that printers can provide the randomness they have used for the encryption or
re-encryption of candidate names. Since the encryption and re-encryption per-
formed by every printer is recorded on the (extended) simple ballot, misbehavior
can be traced back to every single printer. We note that in the protocol by Xia
et al. [26], this is not the case.

3.2 Verifiability

We now show that our scheme is verifiable in the following sense. First, a voter,
under some weak assumptions (see below), can make sure that her vote is in-
cluded in the final tally as intended (individual verifiability). Second, under
slightly stronger assumptions, it can be made sure that the outcome of the
election corresponds to the intended votes of all legitimate voters; we call this
property complete verifiability. Complete verifiability involves that (1) only le-
gitimate voters can cast ballots, (2) these ballots are tallied as expected by the
tellers, and (3) no other ballots are tallied.

The assumption we need to obtain individual verifiability is the following:

S1. The multi-ballots checked by the auditors in the ballot production phase are
chosen randomly and ballots are not altered or replaced before being issued
to the voters.

Let us emphasize that this assumption is rather weak. It is, for example, implied
by the assumption that there is one honest member in the group of auditors and
clerks, respectively.

By assumption S1, the voter can be almost sure, that her ballot is formed
correctly. (If t ballots are not formed correctly and 10% of the ballots are audited,
then the probability that none of the ill-formed ballots is detected is ≤ 0.9t.)
Now, universal verifiability of the mixnet plus the proofs provided by the tellers
in the decryption phase guarantee that all ballots on the bulletin board are
decrypted correctly. So, with the voter’s receipts, individual verifiability follows.

To avoid the above assumptions, one could change the protocol in such a
way that the voters themselves check whether multi-ballots are formed correctly:
They are given two multi-ballots, say, possibly with still extended simple ballots,
and randomly choose one of the two multi-ballots to be audited in a publicly
verifiable way.

To obtain complete verifiability of our protocol, we, in addition to S1, assume:

S2. There is at least one honest clerk at each polling place.

From this assumption, (1) and (3) from above follow easily by the task that
clerks have to perform. Condition (2) follows with S1 as before.
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3.3 Coercion Resistance

Intuitively, a voting protocol is coercion-resistant if it prevents voter coercion
and vote buying. In other words, a coercer should not be able to influence the
behavior of a voter. Below we present a more accurate, but still informal defini-
tion of coercion resistance, inspired by the (formal) definition given in [15].

This definition has two parameters. The first one is the goal γ of the coerced
voter. This goal is what the voter would try to achieve in absence of coercion.
Typically the goal is to vote for some particular candidate (or some particular
ranking of candidates). The second parameter of the definition is a set of runs α,
which contains almost all runs of the system, except for those that are unlikely
to happen and would reveal to the coercer whether or not the coerced voter
followed his instructions. For instance, if a particular candidate did not obtain
any vote, it is clear that the coerced voter did not vote for this candidate, even
though the coercer might have instructed the coerced voter to do so. Therefore,
such (unlikely) runs are excluded from the set α.

In the definition of coercion resistance we imagine that the coercer provides
the coerced voter with a coercion strategy or instructions v which the coercer
wants the coerced voter to carry out. We do not restrict the set of possible coer-
cion strategies in any way. The coercion strategy may, for instance, simply require
the voter to follow the instructions given by the coercer over some communica-
tion channel, e.g., a phone. However, the setup is such that the coercer does not
get direct access to the interface of the voter in the voting booth. Hence, the
voter can lie about what she sees and does in the booth. Now, coercion resistance
is defined as follows.

Definition 1 (informal). A voting protocol is coercion resistant in α with
respect to γ, if for each coercion strategy v that can be carried out by the
coerced voter there exists a counter strategy v′ that the coerced voter can carry
out instead such that

(i) the coerced voter, carrying out v′, achieves his own goal γ (with high prob-
ability) regardless of the actions of the remaining participants,

(ii) the coercer cannot distinguish (or only with negligible probability) whether
the coerced voter carries out v or v′, for runs in α.

To prove coercion resistance for our protocol, we make the following assump-
tions:

C1. The bulletin board is honest and there is at least one honest participant in
each of the following groups: auditors, clerks, printers, bundlers, and tellers.
We do not assume the voting terminals to be honest. Dishonest participants
may cooperate with the coercer.

C2. A voter can freely communicate with the coercer, even in the voting booth.
But, in the voting booth, she can lie about what she sees and does.
For example, our protocol is still coercion resistant if a voter talks on the
phone with the coercer, even in the voting booth. But a voter should not be
able to take pictures or make videos in the voting booth (unless she could
manipulate them on the fly, which, however, is unrealistic).
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Assumption C2 is justified if electronic devices are forbidden in the voting
booth. The use of such devices may even be detectable from outside the voting
booth. However, some kind of communication or non-interactice procedure, e.g.,
by means of scratch cards [14], can still be possible. Our security analysis shows
that this kind of communication does not undermine the coercion resistance of
our protocol as it is captured by the free communication between the voter and
the coercer we allow even in the voting booth. For example, the coercer can just
tell the coerced voter what she would see on the scratch card.

Now, we will define γ and α for our protocol and show that for these param-
eters Definition 1 is satisfied. While we consider only one coerced voter, from
theorems shown in [15], the results easily carry over to the case where multiple
voters are coerced.

To define γ, we first observe that our protocol, as basically any other paper-
based protocol, is prone to forced abstention attack: The coercer may instruct the
coerced voter not to vote. To enforce this, the coercer could, for instance, observe
the polling place or cooperate with dishonest clerks. Hence, it would be too strong
to formulate the goal γ of a voter simply as “the voter successfully votes for a
candidate of her choice”. The protocol can at most guarantee that if the coerced
voter casts a valid multi-ballot, she votes for a (ranking of) candidate(s) of her
choice, even though the coercer might have instructed her to vote for a different
candidate.

However, this is still too strong. If a teller would misbehave in an observable
way, i.e., is not able to provide information that shows the compliance of the
teller, then voters cannot hope for their votes to be counted correctly. The same
is true if a voting terminal misbehaves in an observable way, i.e., if clerks or
voters discover that not all scanned ballots have been posted on the bulletin
board.

These observations lead to the following specification of γ. For a valid choice
(ranking) of candidates z, we say that γz is achieved in a given run, if this run
satisfies the following condition: If the coerced voter, having cast her multi-ballot,
obtains a receipt (which implies that the marking on her multi-ballot is correct)
and if the tellers and voting terminals do not misbehave in an observable way as
explained above, then she successfully votes for z (i.e. her ballots are published
and, when decrypted, show the choice z).

The set α consists of all the runs such that for each valid choice z there exists
an honest voter who casts a multi-ballot according to z.

Now, we can prove the following theorem.

Theorem 1. The protocol proposed in this paper is coercion resistant in α with
respect to γz, for any valid choice z.

This theorem implies, for example, that if the coercer wants the coerced voter
to vote for some candidate c, then the coerced voter, by performing the counter
strategy, can nevertheless vote for her candidate z without being caught by the
coercer, given that the run belonged to α. Conversely, the voter cannot prove to
the coercer that she voted as intended by the coercer (resistance to vote buy-
ing). The theorem also implies that the protocol is not prone to randomization,
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chain voting, and kleptographic attacks. If these attacks were possible, the co-
erced voter could not vote for her choice without being detected by the coercer,
contradicting the definition of coercion resistance.

Proof sketch of Theorem 1. Let v be a coercion strategy. We construct a counter
strategy v′ such that the conditions (i) and (ii) of Definition 1 hold for v and
v′. The counter strategy v′ works as follows: When in the voting booth, the
coerced voter follows v in her head. If following v would result in an invalid
ballot (e.g., the marking is invalid or the coerced voter is instructed to leave the
booth without separating the two parts of the ballots), then the coerced voter
performs v. Otherwise, the coerced voter fills in the multi-ballot according to
her own choice z. (We assume that this can be done quickly.)

Condition (i) of Definition 1. To prove this condition, let us consider a run in
which the coerced voter carries out v′. If the coerced voter does not obtain a
receipt or if a teller or a voting terminal misbehaves in an observable way, then
the goal γz is clearly achieved. Otherwise, according to the definition of v′, the
coerced voter prepares a (valid) multi-ballot according to her own choice z. This
multi-ballot must be the one obtained from the clerks, since otherwise the serial
number would be wrong (with high probability). Moreover, since by assumption
C1 there is at least one honest member in the group of auditors and clerks,
respectively, it follows, from the results shown in Section 3.2, that this multi-
ballot is formed correctly (with high probability), i.e., candidate names printed
in clear and encrypted on simple ballots coincide. Since the voting terminal and
the tellers do not misbehave in an observable way, the multi-ballot cast by the
coerced voter appears on the bulletin board and is counted correctly.

Condition (ii) of Definition 1. We argue that the information available to the
coercer does not allow him to distinguish whether the coerced voter carries out
v or v′. First, note that the information available to the coercer, including the
information available from dishonest parties, before the coerced voter enters the
voting booth is the same in both cases, as up to this point, the coerced voter
follows the instructions of the coercer. The same is true for the information the
coercer (including dishonest clerks) has right after the coerced voter leaves the
booth: If the multi-ballot is not prepared correctly, v′ is the same as v, and hence,
the information the coercer has is the same independently of whether v or v′ is
performed. Clearly also all remaining steps will be identical in this case. So, we
may from now on assume that the ballot is prepared correctly. Then, right after
leaving the voting booth, there is no visible difference between the two cases,
because, as we have assumed, all valid markings have the same pattern and
all ciphertexts are still covered. Moreover, the serial number has to be the one
issued to the coerced voter by the clerks at the beginning of the voting phase,
as otherwise the multi-ballot would be invalid.

Now, consider the information available to the coercer (including dishon-
est clerks and the voting terminal) after the scratch strips are removed from the
(valid) multi-ballot of the coerced voter. Due to the auditing in the ballot prepa-
ration phase, by (honest) auditors, and the voting phase, by (honest) clerks, the
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multi-ballot issued to the coerced voter was not manufactured by the coercer
and the coercer did not get a chance to uncover scratch strips. Moreover, the
honest printer, together with the way candidate names and ciphertexts are cov-
ered, make sure that the coercer looses the connection between a candidate name
and the ciphertext printed on a simple ballot. Also note that the coercer cannot
simply decrypt ciphertexts, as this requires the participation of the honest teller,
which we assume in C1.

In the tallying phase, the coercer looses the connections between the cipher-
texts on the simple ballots cast by the coerced voter (and printed on the receipts)
and the decrypted candidate names, again due to the honest teller.

It is easy to see that information obtained in audits also does not help the
coercer to distinguish between carrying out v and v′.

Finally, consider the information sent directly to the coercer by the coerced
voter. By the construction of the counter strategy v′, this information corre-
sponds to the one provided when carrying out v. Here we use that the coerced
voter can lie about what she is actually doing in the voting booth (Assumption
C2).
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