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Abstract—ProVerif is one of the most successful tools for
cryptographic protocol analysis. However, dealing with alge-
braic properties of operators such as the exclusive OR (XOR)
and Diffie-Hellman exponentiation has been problematic. Re-
cently, we have developed an approach which enables ProVerif,
and related tools, to analyze a large class of protocols that
employ the XOR operator. In this work, we adapt this approach
to the case of Diffie-Hellman exponentiation.

The core of our approach is to reduce the derivation
problem for Horn theories modulo algebraic properties of
Diffie-Hellman exponentiation to a purely syntactical derivation
problem for Horn theories. The latter problem can then be
solved by tools such as ProVerif. Our reduction works for a
large class of Horn theories, allowing to model a wide range
of intruder capabilities and protocols. We implemented our
reduction and, in combination with ProVerif, applied it in the
automatic analysis of several state-of-the-art protocols that use
Diffie-Hellman exponentiation.

While the general idea of our approach follows the one for
XOR in our previous work, the reduction itself and the proof
of soundness and completeness of our reduction are entirely
different from the XOR case. Surprisingly, the reduction for
Diffie-Hellman exponentiation is more efficient than the one
for XOR.

I. INTRODUCTION

ProVerif [5] is one of the most successful tools for the
analysis of cryptographic protocols. It relies on the Horn
theory based approach, in which protocols and intruders
are modeled as Horn theories. Protocol analysis is w.r.t. an
unbounded number of protocol sessions that may run concur-
rently and without putting a bound on the size of messages
an intruder can generate. Verifying security properties, such
as secrecy, boils down to solving the derivation problem for
Horn theories. However, dealing with algebraic properties
of operators such as the exclusive OR (XOR) and Diffie-
Hellman exponentiation (DH) has been problematic (see the
related work).

Recently, we have proposed a method for dealing with
XOR in the Horn theory based approach [21]. The idea was
to reduce the derivation problem modulo XOR to a purely
syntactical derivation problem. The latter problem could then
be solved by tools such as ProVerif, which otherwise cannot
deal with XOR. The reduction works for a large class of
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Horn theories with XOR, allowing to model a wide range
of protocols and intruder capabilities.

The goal of this work is to adapt this approach to DH, and
by this, obtain a practical method for the automatic analysis
of protocols that use DH, where the analysis is w.r.t. an
unbounded number of sessions, without putting a bound on
the message size, and taking a relatively rich set of algebraic
properties for DH into account, including commutativity of
exponents and inverses. More precisely, the contribution of
our work is as follows.

Contribution of this Work. We introduce an expressive
class of (unary) Horn theories, called exponent-ground Horn
theories. A Horn theory is exponent-ground, if for every
Horn clause in this theory the terms occurring in the
clause are exponent-ground. A term ¢ is exponent-ground
if, roughly speaking, all subterms occurring in exponents are
ground, i.e., do not contain variables. However, we allow for
(non-exponent-ground) clauses which enable the intruder to
perform exponentiation and compute inverses for arbitrary
messages.

Our approach will allow us to deal with all cryptographic
protocols and intruder capabilities that can be modeled as
exponent-ground Horn theories. Note that clauses which
do not contain the exponentiation or inverse symbol are
exponent-ground by definition. The algebraic properties
that we consider for DH are more accurate than those in
other works for cryptographic protocol analysis w.r.t. an
unbounded number of sessions. In these works, inverses are
not considered (see the related work). We do not explicitly
consider a product operator in exponents, unlike works on
protocol analysis w.r.t. a bounded number of sessions. How-
ever, we show that our way of modeling DH corresponds to
the one where products may only occur in exponents (see,
e.g., [10]). This relationship appears to be of independent
interest.

Our main technical result is that the derivation problem for
exponent-ground Horn theories can be reduced to a purely
syntactical derivation problem, i.e., a derivation problem
where the algebraic properties of DH do not have to be
considered anymore. Now, the syntactical derivation problem
can be solved by highly efficient tools, such as ProVerif, for
which dealing with DH is otherwise problematic or impos-
sible. Surprisingly, unlike the case of XOR, our reduction is
efficient.



We implemented our reduction, and using ProVerif, ap-
plied our two step approach—first reduce the problem, then
run ProVerif on the result of the reduction—to the anal-
ysis of several state-of-the-art cryptographic protocols that
employ DH. The experimental results demonstrate that our
approach is practical and rather robust. The implementation
is available at [20].

Just as in case of XOR, we note that a potential alterna-
tive to our approach is to perform unification modulo DH
instead of syntactical unification in a resolution algorithm
for solving the derivation problem. Whether or not this
approach is practical is an open problem. The main difficulty
is that unification modulo DH is much more inefficient than
syntactical unification; it is NP-complete rather than linear
and, in general, there does not exist a (single) most general
unifier.

Related Work. As mentioned, in previous work [21],
we have successfully applied the approach of reducing
the derivation problem modulo an equational theory to the
syntactical derivation problem in case of XOR. However,
the reduction for DH and also the proof of soundness and
completeness of this reduction are entirely different from the
one for XOR. While the reduction for XOR suffers from an
exponential blow up, the one for DH is efficient.

ProVerif has been used before to analyze protocols that
employ DH (see, e.g., [7], [6], [1]). However, the only
algebraic property of DH considered was commutativity of
exponents, without taking inverses into account. Also, a
fixed basis for exponentiation was assumed. Hence, attacks
which exploit a richer set of algebraic properties, such as
the one considered in our setting, are not captured. Also,
protocols that explicitly use the inverse operator cannot be
modeled in the works by Blanchet et al.

Meadows et al. [23], [22], [14] used their tool, the
(Maude-)NRL Analyzer, for the analysis of protocols with
DH. They too only considered the commutativity property
of exponentiation, leaving out inverses.

In [15], Goubault-Larrecq et al. study decidability of a
certain class of Horn theories with DH. However, inverses
are not considered. They present an automatic analysis of
one protocol w.r.t. a bounded number of sessions. Decid-
ability results for classes of Horn theories modulo Abelian
Groups were obtained by Verma et al. (see, e.g., [31]).

Automatic analysis w.r.t. a bounded number of sessions
for protocols with DH is studied in [10], [9], [25], [29], [11].
An implementation based on [10] is presented in [30].

Unification modulo equational theories related to DH is
examined, for example, in [24], [17].

Manual analysis based on the Protocol Composition Logic
for protocols that use DH was carried out by Roy et al. (see,
e.g., [28]).

Structure of this Work. In the following section, we recall
the Horn Theory based approach. Exponent-ground Horn

theories are introduced in Section III. In that section, we
also establish an important property of these theories. The
reduction, along with a proof of soundness and complete-
ness, is presented in Section IV. Our implementation [20]
and the experimental results are discussed in Section V. We
conclude in Section VI, with further details provided in the
appendix.

II. THE HORN THEORY BASED APPROACH

In this section, we introduce Horn theories modulo the
Diffie-Hellman exponentiation operator and illustrate, by
means of a running example, how these theories can be
used to model cryptographic protocols. We also relate our
algebraic theory for Diffie-Hellman exponentiation to those
previously proposed in the literature.

A. Horn Theories

Let X be a finite signature and V be a set of variables.
The set of terms over X and V is defined as usual. By var(7)
we denote the set of variables that occur in the term ¢.

To model cryptographic protocols, X typically con-
tains constants (atomic messages, such as principal names,
nonces, keys, or pre-agreed group generators for Diffie-
Hellman exponentiation), unary function symbols, such as
hash(-) (hashing) and pub(-) (public key), and binary func-
tion symbols, such as (-,-) (pairing), mac.(-) MAC), {-}.
(symmetric encryption), {-}. (public key encryption), and
sig.(-) (digital signature). The signature ¥ may also contain
any other free function symbols.

We assume X to contain the binary function symbol 1
(Diffie-Hellman exponentiation) and the unary symbol -~!
(inverse). Instead of 1(z,s), we use the infix notation #1s,
which intuitively means that ¢ is taken to the s-th power. We
often write 7o 1#;1--- 11, instead of (---(to1¢1)1---) 11y, i€,
our convention is that 1 is left-associative.

For a given term, we define the set of its subterms in the
usual way. For example, xTb is a subterm of t = (x1b)1c,
but x1¢ is not a subterm of ¢.

Ground terms, i.e. terms without variables, are called
messages. A substitution is a finite set of pairs of the
form o = {#/x1,...,t,/xn}, Where t1,...,t, are terms and
Xi,...,X, are variables. The set dom(o) = {xi,...,x,} is
called the domain of o. The application so of o to a
term/atom/set of terms s is defined as usual.

We model algebraic properties for Diffie-Hellman expo-
nentiation (DH) by the congruence relation ~ on terms
induced by the following equational theory:

(xty)tz=(x12)1y (DH1)

(xTy)Tyil =x (DH2)

' =x (DH3)

For example, let ¢ = atbic ' 1b~'1(d )", ¥ =

atc l1d,and t£* =a1d1c~'. Then, we have that £ ~ 5* ~
5.
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We say that a term is reduced if, modulo (DHI), the
equations (DH2) and (DH3), when interpreted as reductions
from left to right, cannot be applied. Clearly, every term
can be turned into a reduced form and this form is uniquely
determined modulo (DH1). Moreover, we have that t ~ s if
and only if the reduced forms of ¢ and s are equal modulo
(DH1). We write ¢ =, if ¢ and s are equal modulo (DH1).
For example, we obtain 5* and #5* by reducing #{*. It holds
that 75% = #5*.

A term is standard, if its head symbol is neither 1 nor
.~1: otherwise it is non-standard. A term is pure, if 1 and
=1 do not occur in it.

We write ¢1 s(">, for n > 0, as an abbreviation for
t1s1---1s, where s is repeated n times. Similarly, 151
stands for #1s7'1--- 157!, where s~! is repeated n times.
We stress that the expressions 715 and 71s(—) are merely
abbreviations; our formal syntax does not contain integers.

For a unary predicate ¢ and a (ground) term #, we call g(¢)
a (ground) atom. A Horn theory T is a finite set of Horn
clauses, each of the form ay,...,a, — ag, where ay,...,a,
are atoms. If n =0, i.e., the left-hand side of the clause is
always true, we call the Horn clause ag a fact. We write
gty ~q({)if g=¢q and 1 ~1.

Given a Horn theory T and a ground atom a, we say that
a can be derived from T syntactically (written T I a) if there
exists a syntactical derivation of a from T, i.e., there exists

a sequence m = by,...,b; of ground atoms such that b; =a
and for every i € {1,...,l} there exists a substitution o and
a Horn clause ay,...,a, — ag in T such that ago = b; and

for every j € {1,...,n} there exists k € {1,...,i— 1} with
ajo = br. In what follows, we refer to b; by 7(i) and to
by,...,bi_1 by m;. The length [ of a derivation 7 is referred
to by |r|. We say that 7 is a (syntactical) derivation for
TFa.

Similarly, we write T by a if there exists a derivation
of a from T modulo DH, i.e., there exists a sequence

by,...,b; of ground atoms such that b; ~ a and for every
i€{l,...,1} there exists a substitution o and a Horn clause
at,...,ap, — ag in T such that apo ~ b; and for every

j€{l,...,n} there exists k € {1,...,i— 1} with ajo ~ by.
We define 7(i), m<;, and |m| as above. Also, as above, we
say that 7 is a derivation (modulo DH) for T tpy a.

Given T and a, we call the problem of deciding whether
T Fa (or T bpy a) is true, the deduction problem (modulo
DH).

B. Modeling Protocols by Horn theories

Following [5], we now illustrate how Horn theories can
be used to analyze cryptographic protocols (with DH). The
Horn theory based approach allows to analyze protocols,
w.r.t. an unbounded number of sessions running concurrently
and without putting a bound on the message size, in a
fully automatic and sound way. However, the method may
produce false attacks and analysis tools may not terminate.

1(x),1(y) = I({x,)) I((x,)) — 1(x)

I(x) — I(hash(x)) I((x,y)) = 1(y)

I(x),1(y) — I({x},), I({x}y),1(y) — 1(x)
1(x),1(pub(y)) = I({xb pub(y)): T pub(y)) 1) — 1(x)
1(x),1(y) — I(macx(y)) [(macx(y)) = 1(y)

1(x), 1(y) — I(sigy(y)) I(sig,(y)) = 1(v)

Figure 1. Intruder rules for standard cryptographic primitives.

A Horn theory for modeling protocols and the (Dolev-
Yao) intruder typically uses only the predicate 1. The fact
I(r) means that the intruder may be able to obtain the
term 7. The fundamental property is that if I(z) cannot be
derived from the set of clauses, then the protocol preserves
the secrecy of t. The Horn theory consists of three sets of
Horn clauses: the initial intruder facts, the intruder rules,
and the protocol rules. The set of initial intruder facts
represents the initial intruder knowledge and may contain,
for instance, names of principals, public keys, and a pre-
agreed group generator for DH. The clauses in this set
are facts, e.g., I(a) (the intruder knows the name a) and
I(pub(sk,)) (the intruder knows the public key of a, with
sk, being the corresponding private key). The set of intruder
rules represents the intruders ability to derive new messages.
For the cryptographic primitives mentioned in Section II-A,
the set of intruder rules contains the clauses depicted in
Figure 1. Additionally, to model the intruder’s ability to
perform Diffie-Hellman exponentiation and to compute the
inverse operation on arbitrary messages, the set of intruder
rules also contains the two rules given in Figure 2. The
theory containing these two rules is called Tpy.

We stress that the rules presented in Figure 1 are only
examples; this theory can be extended to capture other cryp-
tographic primitives. As long as these rules are exponent-
ground, which, for example, is the case if the operators 1
and -~! do not occur in these rules (see the next section for
the definition of exponent-ground), our results apply.

The set of protocol rules represents the actions performed
in the actual protocol. The i-th protocol step of a principal
is described by a clause of the form I(ry),...,1(r;) — I(s;)
where the terms r;, for j € {1,...,i}, describe the (patterns
of) messages the principal has received in the previous (i—1)
steps plus the (pattern of the) message in the i-th step. The

I(x),1(y) — I(xTy) 1)
I(x) = I(x~") )

Figure 2. Theory Tpy — intruder rules for exponentiation and inverse.



term I(s;) is the (pattern of) the i-th output message of the
principal.

Given a protocol P, we denote by 7p the Horn theory that
comprises all three sets of clauses, mentioned above, except
for the clauses of Tpy. We will call Tp the theory of P.

Now, given a protocol P and a message m, the fact that
Tp UTpy tpy I(m) does not hold means that an intruder can-
not get hold of m even when interacting with an unbounded
number of sessions of the protocol and employing algebraic
properties of DH. In other words, Tp U Tpg ty; 1(m) means
that P guarantees the secrecy of the message m (in the
symbolic model considered).

C. Running Example

We use the SIGMA-BASIC protocol proposed by Kraw-
czyk [19] as our running example. SIGMA is a family of key
exchange protocols that serve as the basis for the signature-
based modes of the IKE protocol (version 1 and 2). The
intended run of SIGMA-BASIC is as follows:

P1) A—B: gIN
(P2) B—A: gIM, B, sig,((g'N,g1M)), macg(B)
(P3) A—B: A, sig,((g1M,g1N)), macg(A)

where A and B are agent names, g is a group generator,
N and M are nonces generated by A and B, respectively,
ks and kp are private keys of A and B, respectively, and
K = hash(gtN1M) is a key derived from N and M. One
of the main security properties this protocol is supposed to
achieve is that the value g1 N1 M is secret, i.e., if A and B
are honest participants, the intruder should not be able to
derive gTN1M, as this value is used to derive the session
key shared between A and B.

To illustrate how this protocol can be modeled in terms of
Horn theories, let P be a set of participant names and H C P
be a set of names of honest participants. Following [12], it
is easy to see that as far as secrecy properties are concerned,
it suffices to consider the case P = {a,b} and H = {a}. (If
no attack is found with these sets of participants, then there
is no attack even if bigger sets of (honest and dishonest)
participants are taken into account.) In the following, k,,
for a € P, denotes the private key of a, n,, denotes the
nonce generated by a € P and sent to b € P in message
(P1), and my, denotes the nonce generated by b and sent to
a in message (P2).

The initial intruder knowledge is given by the following
set of facts.

{I(g)}u{l(a) |acPju
{I(pub(k,)) |a € P}U{I(k,) |a € P\ H}

The intruder rules are those depicted in Figure 1 (the intruder
rules in Figure 2 are taken into account separately; see

below). The first step of the protocol performed by an honest
principal is modeled by the facts

1(g1nap) 3)

for all a € H and b € P. Note that it is not necessary to model
messages sent by dishonest principals, since these are taken
care of by the actions performed by the intruder.

The second step of the protocol performed by an honest
principal is modeled by the clauses

I(x) = 1((g1mpa; b,
Sigkb(<x’ ngbd)))v machash(meha)(b)» “4)

for all » € H and a € P. The third step of the protocol
performed by an honest principal is modeled by the clauses

I(<y7 b, Sigkb(<ngab7y>)> machash(yTnab)(b)» -
I(<a7 Sigka(<y7ngab>)7 machash(yTnab)<a)>) &)

for all @« € H and b € P. The set of Horn clauses defined
above is denoted by Tsp.

The protocol is supposed to guarantee secrecy of
gl ngy1my,, for all a,b € H. Formally, this means that
TsgUTpp bou 1(g 1ngp 1myp, ) should not hold for any a,b € H.
We note that even though in this running example, the
inverse operator is not explicitly used in the specification of
the protocol, the intruder still can make use of this operator
and its algebraic properties as introduced in Section II-A,
potentially leading to successful attacks which otherwise
would have been overlooked.

D. Remark on Algebraic Properties of DH

In other works on the automatic analysis of cryptographic
protocols with DH (see, e.g., [8], [10], [29], [25]), different
representations of terms were chosen and in some cases
(apparently) more complex algebraic properties for DH were
considered. Even among these existing works there are
differences and the settings cannot be compared directly. In
section we show that there is a strong relationship between
our way of modeling DH and those models proposed for
protocol analysis w.r.t. a bounded number of sessions where
products of terms are considered and these products are
restricted to appear in exponents only. For the sake of con-
creteness, we compare our work with the one by Chevalier et
al. [10]. Nevertheless, our comparison also sheds some light
on the relationship of our work with the other mentioned
works.

In [10], terms representing exponentiation are of the form
exp(to, 1y X --- X 1Z), where 1y, . .., t, are terms, zi,...,2, are
integers, and X is a product operator. The equational theory



for such terms proposed in [10] is the following one:

(tlxtz):(tzxtl) (tlxtz)xtgztlx(tzxt3)

£xtd =t tx1=t
=1 exp(t,1) =1
*=1 exp(exp(z,t'),") = exp(z,t' x1")
1°=1

where z and 7’ are integers and ‘+’ is addition of integers.
We denote the congruence relation on terms induced by this
apparently more complex equational theory by =.

The intruder rule for DH considered in [10] is

I(x0),...,X(xs) — I(exp(xp,xj' X - xxi)) 6)

for variables xo,...,x, and integers zi,...,Z,.

To compare this way of modeling DH with our modeling
of DH, in what follows we assume that our signature X
contains the (free) constant 1. We call our terms K7-terms
and those in [10] CKRT-terms.

We turn a CKRT-term ¢ into a KT-term KT(z) as fol-
lows: First ¢ is normalized as defined in [10], i.e., the
equations given above are applied exhaustively from left to
right modulo commutativity and associativity of ‘x’. Let
t' denote the resulting term, which is uniquely determined
modulo commutativity and associativity of ‘x’. Now, KT(¢)
is obtained from ¢’ by replacing every term of the form
exp(fo, 1" X -+ x %) by g TZEZ‘)T gl (Recall that £ 1 s(")
is an abbreviation defined in Section II-A).

It is easy to see that (the KT-term) KT(¢) is a CKRT-term
if all occurrences of -1 are replaced by exp(-,-). (Note that
KT(¢) does not contain subterms of the form (s‘l)_1 and
subterms of the form s~! only occur in a context of the form
s’ 157 1) Hence, by abuse of notation, we can interpret KT(t)
as a CKRT-term. Now, clearly we have:

Lemma 1. Let t be a CKRT-term. Then, KT (1) =1.

We can also prove the following lemma (see the appendix
for the proof):

Lemma 2. Let t and t' be CKRT-terms. Then, t =1t if and
only if KT(t) ~ KT(¢).

Let T be a Horn theory over CKRT-terms. We write T =
a, if there exists a derivation of a from 7 modulo =. This
is defined analogously to 7 tpy a. Given a Horn theory T
over CKRT-terms, we translate it into a Horn theory KT(T')
over KT-terms as follows: (a) Horn clauses of the form (6)
are removed, (b) for each of the remaining Horn clauses of
the form sy,...,8, — so in 7T, the theory KT(T) contains
KT(s1),...,KT(s,) — KT(so), where for an atom p(t), we
define KT(p(?)) to be the atom p(KT(¢)), and (c) the clauses
in Tpy (see Figure 2) are added to KT(T).

The following theorem shows that our modeling of DH
is at least as accurate as the one in [10]. The proof of this
theorem is given in the appendix.

Theorem 1. Let T be a Horn theory of CKRT-terms and let
a be a CKRT-atom. Then, T t= a implies KT(T) by KT (a).

III. EXPONENT-GROUND THEORIES

In Section IV, we show how to reduce the deduction
problem modulo DH to the one without DH, the latter
problem can then be solved using tools such as ProVerif. The
reduction works for a large class of Horn theories, namely
exponent-ground theories. In this section, exponent-ground
theories are introduced and a theorem that is the key to the
reduction presented in Section IV is shown.

A term ¢ is well-formed if every suberm of ¢ of the form
s~ only occurs in a context of the form s'1s~! for some
s'. For example, if a,b,c are constants, then alandal1b
are not well-formed, but ({(c1h~!,c1b),ctatb™!) is.

A term is exponent-ground if it is well-formed and for
each of its subterms of the form #1s it is true that s is of
the form ¢ or ¢!, where ¢ is a pure, ground term. A Horn
clause pi(1),...,pn(ta) — po(ty) is called exponent-ground
if the terms 1y, ...,#, are. A Horn theory is exponent-ground
if each clause in this theory is exponent-ground. Also, a
derivation pi(t;),...,pu(ty) is exponent-ground if each term
H,...ty 1S,

We also need a more fine-grained notion: C-exponent-
ground. Let C be a finite set of pure, ground terms. By
C~! we denote the set {c~':c € C} and by C* we denote
the set CUC™!. A term is C-exponent-ground if it is well-
formed and for each of its subterms of the form #1s we have
that s € C*. This notion is extended to Horn clauses, Horn
theories, and derivations in the obvious way. Obviously, we
have:

Lemma 3. If a term, a Horn clause, a Horn theory or
a derivation S is exponent-ground, then S is C-exponent-
ground for some finite set C of pure, ground terms.

Example 1. Let g, b, and ¢ be constants and x, y, and z be
variables. Then the term ax is not exponent-ground, while
the term (xThash(a), y1b~!1¢) is exponent-ground. The lat-
ter term is C-exponent-ground for the set C = {hash(a),b,c}.

Example 2. Tsp, the Horn theory defined in Section II-C for
modeling the SIGMA-BASIC protocol, is exponent-ground.
This theory is C-exponent-ground for the set

C={nwp:acHbePtU{my: :acH,becP}.

Example 3. The Horn theory Tpy (see Figure 2) is not
exponent-ground. In fact, clause (1) is not exponent-ground,
because it contains a variable y as an exponent. Clause (2)
is not well-formed, and by this, is also not exponent-ground.
(In our approach, these clauses are dealt with separately.)

Now, we state and prove the main result of this section. It
says that when a C-exponent-ground atom a can be derived
modulo DH from a C-exponent-ground theory 7' and using
the theory Tpy (formally T U Tpy Fpy @), then there exists a



for each c € C @)
for each c € C ®)

Figure 3. Theory TZS:H — a variant of intruder rules for exponentiation.

C-exponent-ground derivation of a. However, to obtain such
a C-exponent-ground derivation we need to replace Tpy by
TDCH, where TDCH is defined in Figure 3.

Theorem 2. Let T be a C-exponent-ground Horn theory
and a be a C-exponent-ground atom. If T UTpy bpy a, then
there exists a C-exponent-ground derivation for T U TDCH For
a. Moreover, the substitutions applied in this derivation are
C-exponent-ground too.

The rest of this section is devoted to the proof of
Theorem 2. The idea of the proof is the following. We
define a function dc which turns terms into C-exponent-
ground terms. Then, we show that by applying ¢ to a (not
necessarily C-exponent-ground) derivation for 7UTpy Fpy a,
we obtain a C-exponent-ground derivation for T U7} oy a.

In what follows, we first define the function §c. Then,
before proving the theorem, several lemmas are stated and
proved.

The function d¢ from terms to terms is simple. It is defined
inductively as follows:

oc(x)=x for a variable x
dc(t1s)=dc(t)1s ifseC”
6C(tT):§() ifs¢ C*

dc(1™!) =dc(1)
Sc(f(trse-stn)) = f(Oc(nr),- .., 0c(ta)) for f& {1, ).

For instance, let C = {a,b}. Then, dc(x"'1a"'1y1b) =
xta 11b. (Recall that the symbol 1 is left-associative, i.e.,
x '1a~t1y1b stands for ((x~'1a"1)1y)1b.)

The function dc is extended to atoms, sets of terms,
Horn clauses, Horn theories, and derivations in the obvious
way. When C is fixed and known from the context, we
simply write § instead of dc. The following lemma, which
summarizes some basic properties of dc, is easy to prove.

Lemma 4. For any set C of pure, ground terms and for
every term t we have:

1) 6c(6c(t)) = oc(t).
2) 6c(t) is C-exponent-ground.
3) 6c(t) =t iff t is C-exponent-ground.

We say that a term ¢ is exponent-reduced if every subterm
s of ¢+ which occurs as an exponent, i.e., in a context of the
form s'1s, is reduced. For example, if a,b,c are constants,
then (a1h)1b~! is exponent-reduced, but ai((bic)ic™!)
is not. Note that every reduced term is exponent-reduced.

The following lemma states that § preserves the equivalence
relation ~ on exponent-reduced terms. The proof is given
in the appendix.

Lemma 5. For all exponent-reduced terms t and s, if t ~ s,
then 6(t) ~ §(s).

For the proof of Theorem 2, we also need the following
lemma (see the appendix for the proof).

Lemma 6. Let C be a set of pure, ground terms. Let t be
a C-exponent-ground term, and 0 be a substitution. Then,

0(t0) =14(0).

We are now ready to prove Theorem 2. Assume that m =
by,...,b; is a derivation for T UTpgy Fpy a; in particular, by ~
a. Without loss of generality, we can assume that the atom a
and all b; are reduced, i.e., the terms in a and b; are reduced.
We will show that 6(7) is a derivation for T U TSy boy a.
This then completes the proof, because d(7) is C-exponent-
ground by Lemma 4.

Because b; ~ a and both b; and a are reduced, by
Lemma 5, we know that §(b;) ~ §(a). We also know, by
Lemma 4, that §(a) = a as a is C-exponent-ground. Thus, we
have 6(b;) ~ a. Hence, to prove that §(7) is a derivation for
T UTSy Fou a, we only need to show for every i € {1,...,I}
that 6(b;) can be obtained from {d(b;),...,0(bi—1)} by
applying one of the Horn clauses in T UTf,. So, let
i€{l,...,l1}. We will consider three cases, depending on
whether b;, in the derivation 7, is obtained using a (C-
exponent-ground) clause of T or a clause of Tpy. It is easy
to check that in all three cases the substitution applied to
the Horn clause in T UTS,; is C-exponent-ground.

Case 1: b; is obtained by applying some C-exponent-
ground clause: It follows that there exists a clause
ai,...,a, — ag in T such that ag,...,a, are C-exponent-
ground, and that there exists a substitution § such that agf ~
b; and for every j € {l,...,n} there exists k; € {1,...,i—1}
with a;0 ~ bkj. We define kg =i. It is easy to check that,
since a; is C-exponent-ground and ¢ is reduced, the atom
a;0 is exponent-reduced. Hence, by Lemma 5, it is true
that 6(a;0) ~ 0(by;), for all j € {0,...,n}. With Lemma 6,
we obtain that a;0(6) ~ §(by;). So, we can apply the same
clause ay,...,a, — ap in T with the substitution §(6) to
d(bk,);---,0(by,) and obtain §(by,) = 5(b;).

Case 2: b; is obtained by applying (2): In this case
b; is of the form I(r) and, for some j < i, the atom b; is
of the form I(s) with # ~ s~!. Since # and s are reduced
and thus both ¢ and s~ ! are exponent-reduced, we can use
Lemma 5 to obtain §(t) ~ §(s~!) = &(s). Hence, §(b;) =
1(6(1)) ~ 1(5(s)) = 6(b).

Case 3: b; is obtained by applying (1): In this case, b;
is of the form I(7) and there are atoms I(s) and I(r) amongst
by,...,bi—1 such that t ~ s7r. We want to show that 1(4(7))
can be obtained from I(d(s)) and I(5(r)).



Since s and r are reduced, we can observe that sTr is
exponent-reduced. So, by Lemma 5, we have §(¢) ~ d(s1r)
and so it is enough to show that I(§(s1r)) can be obtained
from 1(6(s)) and I(6(r)). Let us consider three subcases:
(a) If r ¢ C*, then d(s1r) = d(s), so it is nothing to prove.
(b) If r € C, then §(r) = r and therefore o(s1r) =d(s)1r=
d(s)10(r). Hence, I(d(s1r)) can be obtained from Igé(s))
and 1(6(r)) using (7). (c) If r € C7!, then r =6(r)”" and
therefore 0(s1r) = &(s)1r=38(s)18(r)"". Hence, 1(6(s1r))
can be obtained from I(4(s)) and 1(5(r)) using (8). (Note
that §(r) € C.)

IV. THE REDUCTION

In this section, we show how to construct from a C-
exponent-ground theory 7', a theory 7¢ such that for every
C-exponent-ground atom b we have T UTpy bpy b if and only
if Tc = b', where b’ is an encoding of b. In other words, we
reduce the derivation problem modulo DH to a completely
syntactical derivation problem. This syntactical derivation
problem can then be dealt with by tools such as ProVerif.
In this way, cryptographic protocols that employ DH can
be analyzed w.r.t. an unbounded number of sessions and
without a bound on the message size by tools that a priori
cannot deal with DH.

In what follows, we first introduce a representation for C-
exponent-ground terms that we will use in our reduction. The
reduction itself is then presented in Section IV-B, along with
the main theorem stating soundness and completeness of our
reduction. We prove the main theorem in Section IV-C.

A. Encoding of C-exponent-ground Terms

Let ¥ be a signature with 1,-!. Let C= {cy,...,cn} be
a set of pure, ground terms, for some m. From Section III
we know that we only need to consider C-exponent-ground
terms in derivations. We now introduce a representation for
such terms, which will be used in our reduction.

The encoding of C-exponent-ground terms will be over the
signature 2 = (X\ {1,-71})U{0,succ, prev,exp}, where 0
is a constant, succ and prev are unary function symbols, and
exp is a function symbol of arity m+ 1.

The symbols 0, succ, and prev will be used to encode
integers: succ”(0) = succ(succ(---succ(0)---)), with succ
repeated n-times, will represent n, and analogously, prev”(0)
will represent —n. Terms of one of these forms are called
integer terms. For an integer term ¢, we will denote by #2i(t)
the integer represented by r. Conversely, for an integer n, we
will denote by i2¢(n) the integer term representing n. Note
that 12i(i2¢(n)) = n.

By definition of C-exponent-ground terms, we know
that a C-exponent-ground term ¢ with head symbol 1 is
equivalent (~) to a term of the form sTc(I"I)T oo telm) for
some integers ni,...,n,. The idea is to represent ¢ as the
term exp(s,i2t(ny),...,i2t(ny)) over P, ie., the (i+1)-
st argument of exp encodes the number of occurrences of

cl-/cfl. Before we define the encoding of C-exponent-ground
terms formally, we need to introduce some notation.

For an integer term ¢, let incr(¢) = ¢, if ¢ = prev(t'),
and incr(f) = succ(t), otherwise. Similarly, decr(r) = ¢/, if
t = succ(t’), and decr(¢) = prev(t), otherwise. Obviously, we
have incr(¢) = i2¢(¢2i(¢) + 1) and decr(¢) = i2¢(£2i(¢) — 1).

For i€ {l1,...,m}, we define incr;(exp(to,...,tn)) as fo, if
ti =prev(0) and t; = 0, for all j # i. Otherwise, we define:

incr;(exp(10,. .. ,tm)) = exp(fo, . .. ti—1,INCT(f;), tit 1y« < ybm).

In other words, applying incr; corresponds to exponentiation
with ¢;.

Similarly, we define decr;(exp(fo,...,tn)) as to, if #; =
succ(0) and ¢; =0, for all j # i. Otherwise, we define:

decr;(exp(to, .- ,tm)) = exp(to,. .., ti—1,decr(t;), tiy1,- - tm)-

Furthermore, if 7 is not of the form exp(fo,f1,...,t4,), then
we define incr;(¢) = incr;(exp(z,0,...,0)) and decr;(t) =
decr;(exp(t,0,...,0)).

Now, for a C-exponent-ground term ¢ over X, we define
its encoding "¢, which is a term over X¥®P, recursively as
follows:

x'=x for a variable x,

Cf(ty,.. 1) = (07, T8, ) for f# 1 and f# -]
Tt1¢;" =iner(Tt7),

Tr1e; 1 = decr; (7).

Note that "-7 does not need to be defined for the case
T+~17, since we only consider C-exponent-ground terms. For
instance, for C = {c1,c3,¢3}, we have

Tf(xteates ) tertes ™ = exp(f(x),succ(0),0, prev(0)).

For an atom a = p(t), we define "a'= p("17).

From the definition of "7 it easily follows that C-
exponent-ground terms that are equivalent modulo DH have
the same representation (see the appendix for the proof).

Lemma 7. For C-exponent-ground terms t and s, if t ~ s,
then "t 7 ="Ts"\

B. Computing Tc

Let T be a C-exponent-ground Horn theory and C be
defined as in Section IV-A. We now show how to construct
Tc from T and state our main result. The theory T¢ is
depicted in Figure 4. An explanation of the clauses of T¢
follows.

The clauses (9)—(11) allow to derive any integer term.
The clauses (12)—(13) allow to switch between ¢ and
exp(t,0,...,0).

The clauses (14) are meant to simulate the clauses
of TSy, for C-exponent-ground terms. If the intruder
knows c¢;, then he is allowed to exponentiate the term



1(0) )

I(x) — I(succ(x)) (10)

I(x) — I(prev(x)) (11)

I(x) — I(exp(x,0,...,0)) 12)

I(exp(x,0,...,0)) — I(x) (13)

I(c;), I(y), I(exp(xo,X1,...,Xm)) — L(exp(x0,...,Xi—1,¥,Xi+1,---,%n)) foreach ¢; € C (14)
E(¢, ¢;, incr;(1)) for each ¢; € C and 1 € A} (15)

E(z, ¢;, decr;(1)) for each ¢; € C"! and t € A, (16)

where E is a new predicate not occurring in 7, and Ai+ and A; are defined as follows:

A+ {x,exp(x0,%1,-..,%m),exp(xo,. ..
A = {)c7exp()c0,)c1,...,xm),exp(xo,...7
E(I—a(ti)—ladlayl)w'wE(I—e([]Q)—ladkayk)a ra(rl)—lv

where t; =1 1dj,...

s Xi—1, preV(.X[),X[+1 P

Xi—1,SUCC(X;), Xig1y-- -

()"

= t,/{ 1dy are all the non-ground, non-standard subterms of ry, ...

xm),rxchl"'},

JXm), xTei '}

— T0(rp)", for each clause ry,...,r, —rpin T 17

,rn, and 6 replaces

every t; by a fresh variable y;. Applied to a term ¢, 6 replaced the terms ¢; by y; in a top-down manner, i.e.,

bigger terms #; are replaced first. Note that, since T is C-exponent-ground, it holds that d, ...

,dkeCUC*‘.

Figure 4. The theory T¢.

with cl(”) for some integer n. For example, if the in-

truder knows exp(z,prev(0),succ(0),0,...), which repre-
sents f1c; '1cy, and the term ¢; € C, then the in-
truder can, for instance, use (14) with y = succ(succ(0))
to derive exp(f,succ(succ(0)),succ(0),0,...), which repre-
sents 71¢,” Tc (the clauses (9)—(11) are used to derive
succ(succ(0)). Two remarks are in order: First, our reduction
also works if the clauses in (14) modeled exponentiation
with ¢; and ¢;~! only, rather than multiple exponentiations
with ¢;/c;~!. However, (14) works better in combination with
ProVerif. Second, the clauses (14) can be applied even if y
is substituted by a non-integer term. However, as we will
show, this neither spoils soundness nor completeness of our
reduction.

The set of facts in (15) and (16) define the (new) predicate
E, which expresses exponentiation for C-exponent-ground
terms, as stated in the following lemma (which is easy to
prove):

Lemma 8. Let t be a ground term, ¢ € C, and assume that t
is C-exponent-ground. Then, E("t",c,"t1c™) is an instance
of (15) and E("t7,c™',"t1¢7'7) is an instance of (16).

Let us consider the following example of how E looks
like for a given set C.

Example 4. For C = {a,b}, the clauses given by (16) are:

E(x, a”', exp(x,prev(0),0)),

E(x, b', exp(x,0,prev(0))),
E(exp(x0,x1,x2), a !, exp(xo, prev(xy),x2)),
E(exp(xo,x1,%2), b, exp(xo,x1,prev(xz))),
E(exp(xo,succ(x1),x2), a ,exp(xo,xl,xz)),
E(exp(xo,x1,succ(xz)), b, exp(xo,x1,x2)),

E(erplrsuec0).0) a~, ),

E(exp(x,0,succ(0)), b~ 1, x).

Now, for t = ¢1b, the fact

E("t7,67 1,7t 1b7 1) = E(exp(c,0,succ(0)), 57!, ¢)

is an instance of the last of these clauses.

Now, let us consider the clauses given by (17) for some
clause A = (ry,...,r, — rp) in T. Let us denote the clause
in T¢ resulting from A by A*. First, we can observe, that if
A does not contain the exponentiation symbol, then A* = A.
But if A contains some term of the form #1d with a non-
ground term ¢, then this term is replaced by a fresh variable
y and the relation between ¢, d, and y is captured by adding
E(¢,d,y) to the clause. Similar steps are applied recursively
to the remaining non-ground, non-standard subterms of A,
including subterms of ¢. All terms are encoded using ™™
to obtain terms over X*P. The clauses (17) are further
illustrated by the following examples.



Example 5. Suppose that the theory T contains a clause
A = (I(x) — I(hash(x1a))). The clause obtained from (17)
for clause A is

E(x,a,y1), I(x) — I(hash(y;)).

Because A contains only one non-ground, non-standard term
t1 =t} 1d; with { =x and d = a, the substitution 6 replaces
t1 = x1a by y;. Now, suppose that T contains a clause

B=(I(x) = I((xta "1b, c1b))).

There are two non-ground, non-standard subterms in this
clause: #j =x1a~! and t, = (x1a~") 1b. Hence, @ replaces t|
by y; and 7, by y,. Note also that #{ = x and #, = ;. Thus, we
have 0(t}) = yi. According to (17) we obtain the following
clause for B:

E(x,a_l,yl), E(y1,b0,y2), 1(x) — I({y2, exp(c,0,succ(0)))).

Example 6. Recall that the theory Tsp for modeling the
SIGMA-BASIC protocol is exponent-ground, and so the
reduction described here can be applied to it. As an example,
let us consider clause (4) of this theory, that is:

I(x) = I({g Tmpa; b,
Sigk/,(<xa ngba>))a machash(meha)(b»)'

According to (17) we obtain the following clause for (4),
where u ="g1myp, "

E(xumbaayl)ﬂ I()C) -
I(<ua b, Sigkb(<x’ u>))a machash(yl)(b)>) (13)

From the above, we immediately obtain:

Proposition 1. Given a C-exponent-ground Horn theory T,
the theory Tc can be constructed efficiently. In particular,
the size of Tc is polynomial in the size of T.

Now, we state soundness and completeness of our re-
duction, the main technical result of this paper. To obtain
soundness, we need to assume that 7T is non-trivial, i.e.,
there exists a ground term u such that T'U Tpy Fpy I(u).
Obviously, this condition is satisfied for every reasonable
theory.

Theorem 3. Let T be a non-trivial, C-exponent-ground
theory over ¥ and b = p(t) be a C-exponent-ground atom
over X, with p being a predicate occurring in T. Then,
T UTpy tpu b if and only if Tc ="b"

Note that Tc - "b7 is a purely syntactical derivation
problem that can be solved by tools such as ProVerif or
with the help of theorem provers.

C. Proof of Theorem 3

We begin the proof of Theorem 3 with a lemma that,
together with Theorem 2, immediately establishes complete-
ness of our reduction, i.e., T UTpy by b implies Tc =07

Lemma 9. If there is a C-exponent-ground derivation for
TU TgH Fou b obtained using C-exponent-ground substitu-
tions, then Tc+-"b"\.

Proof: Let m = by,...,b; be a C-exponent-ground
derivation for 7 U TlgH Fox b obtained using C-exponent-
ground substitutions. The proof proceeds by induction on
the length of m. For / = 0, nothing is to show. Now, let
Ty =by,...,bj_1. We know that b (~ b;) can be derived
modulo ~ form 7.; by applying a clause from TUTgH,
using a C-exponent-ground substitution ¢. To complete the
proof, it is enough to show that "5 can syntactically be
derived from "7, using Tc. We consider two cases:

Case 1: b is obtained using a clause of Tfy: So, b =
I(z), for some C-exponent-ground term ¢ such that the set
7« contains atoms I(r), for some C-exponent-ground r, and
I(c;), for ¢; € C, such that t ~ ri¢; or t ~ ric;~!. The atom
I("t7) can be obtained from I("r") and I("¢; ) =1(c;) using
the clauses (9)—(14): If the reduced form of r is standard,
then first clause (12) is used. Then, clause (14) is used with
an appropriate integer term y, derived by (9)—(11). Finally, if
the reduced form of ¢ is standard, then clause (13) is applied.

Case 2: b is obtained using some (C-exponent-ground)
clause ry,...,r, — ro of T: In this case, there exists some
C-exponent-ground substitution ¢ such that b ~ o (ry) and all
o(r1),...,o(ry) belong to m; (modulo ~). We will obtain
Tb7 using the clause (17) for ry,...,r, — ro. Let us denote
this clause by R — S. Let £, tf, d;, yi, and 6 be defined as
in (17).

We define a substitution o*, which will be applied to
R — S to obtain b7, as follows: o*(x) = "o(x)7, for

x € var(rg,...,ry), and o*(y;) = "o(t;)7. It is easy to show
by induction on the size of terms that, for each subterm
u of ry,...,r, which is not of the form w~!, we have

o*("0(u)™) ="o(u)™: If u is standard, then the claim imme-
diately follows by the induction hypothesis. If u is a ground,
non-standard term, then both o*("0(u)") and "o (u)” are
equal to "« . Finally, if u is a non-ground and non-standard,
ie.ue{t,...1x}, then 8(u) =y; for some i. Now, the claim
follows immediately from the definition of o*.

As a result, we obtain o*("6(r;)7) = "o (r;)7, for i €
{0,...,n}; in particular, o*("0(r;)7) € "7, for every i €
{1,...,n} and we obtain o*("0(rp)") ="o(ro)? ="b" by
applying R — S with ¢*, where the latter equality follows
from Lemma 7. It remains to prove that o*(E("0(z/)",d;,yi))
can be derived from T¢.

We have o* (E("0(1/) . v1)) = E(* ("0(1!) ), i, " (1),
which by the above, is equal to E("o(¢/)",d;,"o(t;)") and
therefore to E("o(¢/) ™, d;,"o(t]) 1d; ™). By Lemma 8, this fact



is an instance of (15) or (16), depending on whether d;
belongs to C or to C~!. Hence, o*(E("0(t)7,d;,y:)) can
be derived from T¢. [ |

We now turn to the soundness of our reduction, i.e., we
prove that Tc - "b" implies T U Tpy tpy b. Here we use
the non-triviality of T, i.e., there exists a ground term u
such that T'UTpy bpy 1(u). For the proof of soundness we
need to introduce some notation. The proof also uses several
lemmas.

In Section IV-A, we defined the function 2i(-) on integer
terms. Now, we extend the domain of #2i(-) to all terms as
follows:

12i(0) =0,
2i(succ(t)) =12i(t) + 1,
2i(prev(t)) =12i(tr) — 1
12i(t) =0, for ¢ not of the form 0, succ(¢'),

or prev(t’)
We also define a mapping -1 from terms over X to

terms over X:

Lxa=x, for a variable x
I_O_l =Uu

Lsucc(t)u=u

Lprev(t)s=u
Lexp(t,S1,. .-y Sm)a = LI Tc{zl(‘“))T Tcﬁf,zj(sm))
Lf(tl,...,t,,)_: (l_tl_l, ,Ltn_l),

where f is neither O, succ, prev, nor exp, and u is defined
as above, i.e., we have T UTpgy Fpy I(x). For an atom p(r),
we define Lp(7)1 as p(Lta).

The relationship between "' and -1 is captured by the
following lemma (see the appendix for the proof).

Lemma 10. Let t be a C-exponent-ground term over X.
Then, t ~ "t 7.

The following lemma states a basic property of the
predicate E, which occurs in T¢. Recall that this predicate
is defined by a set of facts in T¢, and thus E(¢,d,s) can be
derived from T¢ if and only if E(¢,d,s) is an instance of
some fact E(¢',d’,s) in Tc.

Lemma 11. Let ¢, d, and s be ground terms over L¥P.
If E(t,d,s) can be derived from Tc, then d € CUC™! and
Lsa~Ltald.

The proof of this lemma can easily be carried out by
case distinction, which we do not present here. We only
illustrate the lemma by one concrete example: In Example 4,
E(exp(x0,x1,x2), a~!, exp(xo,prev(x;),xz)) is a fact of
Tc. Consider the substitution o = {g/xo,g/x1,0/x2}, for a
constant g. Then, E(exp(g,g,0), a~', exp(g,prev(g),0)) is
an instance of Tc. We indeed have Lexp(g,prev(g),0)1 ~

gla~ ' ~ Lexp(g,g,0)a1a”!. (In this case, we even have
syntactical equality.)
The following lemma is the main lemma for proving

soundness of our reduction.

Lemma 12. Let a = p(t) be an atom, such that p occurs in
T. Then, Tc - a implies T U Tpy tpy La_.

Proof: Let m=ay,...,a; be a (syntactic) derivation for
Tc = a. The proof proceeds by induction on the length of
7. For [ =0, nothing is to show. For the induction step we
show that La;s can be derived from L7 ;1, where mo; =
ai,...,a;—1 and Lmw; is the sequence of atoms obtained
from 7w; by removing all atoms of the form E(...) and by
replacing all the remaining atoms a; by va; .
By assumption, a, and hence, q;, is not of the form
E(...), as E is a predicate symbol that does not occur in
T. Therefore, it suffices to consider the following cases:

Case 1. a; is obtained using (9)—(11): So, a; is of the
form I(0), I(succ(z)), or I(prev(r)). Therefore, La;u = I(u).
By definition of u, we have T U Tpy bpy 1(u).

Case 2. a; is obtained using (12) or (13): It is enough to
note that L7, = Lexp(¢,0,...,0). So, if the left-/right-hand
side can be derived from L 7.;, then so can the right-/left-
hand side.

Case 3. a; is obtained using (14): Therefore, the atom
ay is of the form I(exp(so,...,Si—1,5},Sit1-..,5,)) such that
I(exp(s0,--.,5m)), L(ci), and I(s}) occur in m.;. We set
b=1(exp(s0,...,5u)). Thus, Lba=T1(Lexp(so,...,8m)1), and
LI(ci)a=1(c;) are elements of L7;.

If 12i(s}) > 12i(s;), then, to derive La; from Lb_ and I(c;),
the clause I(x),I(y) — I(x1y) is applied a number of times,
namely 12i(s}) — 12i(s;) times. If £2i(s}) < r2i(s;), then first
the clause I(x) — I(x~!) is applied to I(c;) and then the
clause I(x),I(y) — I(xty) is applied a number of times,
namely 72i(s;) —12i(s}) times. Otherwise, if 72i(s}) = 12i(s;),
then La;. is simply a repetition of Lb_.

Case 4. aj is obtained using (17): Let ry,...,r, — ro,
ti, tl.’, d;, yi, and 6 be as in (17). Assume that to obtain
a;, (17) was instantiated with a substitution o. Hence,
a; = o("0(rp)™). Furthermore, all the o("60(r;)™), for i €
{1,...,n}, and E(o("0(s])7),di,0(yi)), for i€ {1,...,k}, are
in 7. Therefore, Lo("6(r;)")o, for i € {1,...,n}, are in
LT<;2 and, by Lemma 11, I_O'(yi>J ~ LO’('—Q(IZ)—‘)JTCZ,‘.

Let 0*(x) = Lo (x) .. For each subterm ¢ of ry,...,r, such
that ¢ is not of the form w~!, we show, by induction on
the size of ¢, that o*(¢) ~ Lo("0(z)7)1. We consider the
following cases:

(a) r =x is a variable: Then, "6(x)" =x, and thus o*(x) =

Lo(T0(x)™), by the definition of o*.
(b) 1= f(t1,...,1,), for f # 1: The claim easily follows by
induction.



(c) t=1"1d and t is ground: Then Lo ("6(¢)7)=."¢", and
o*(t) =t. We know that "t ~ ¢, by Lemma 10.

(d) t =t = t/1d;: Then, we have o*(1;) = o*(¢/)1d; ~
Lo(T0(t))")a1d;, by the inductive hypothesis. As we
have noticed, Lo("0(t/)")u1d; ~ Lo(yi)o. Therefore,
o*(t;) ~vo(yi)o=Lo(T0(t;)™) o, by the definition of ¢
and "7

By the above, we have, in particular, that o*(r;) ~

Lo ("6(r;)7)a. (Note that r; is not of the form w™!, since

it is C-exponent-ground). Recall that Lo ("60(r;)")y, for

i €{l,...,n}, are in L7, which means that we can
apply the clause ry,...,r, — ro with o* to obtain o*(rg) ~
\_0’('_0(}’0)—‘>_: =LajJ. |

With the above, soundness of our reduction follows easily:
Suppose that Tc + "b™. By assumption, b = p(t) where p
occurs in 7. Thus, Lemma 12 implies 7' U Tpy bpy L7 b 7.
By Lemma 10, b ~ L"b ., and therefore, T U Tpy Fpy b.

V. IMPLEMENTATION AND EXPERIMENTS

We have implemented our reduction, and together with
ProVerif, tested it on a set of protocols which employ Diffie-
Hellman exponentiation. As mentioned in the introduction,
our implementation, along with the Horn theory models of
the protocols discussed in this section, is available at [20].

In this section, we briefly discuss our implementation,
which closely follows the reduction presented in Section IV,
and our experimental results.

A. Implementation

We have implemented our reduction in SWI-Prolog (ver-
sion 5.6.14). Our implementation essentially takes a Horn
theory as input, modeling the protocol and the intruder, as
described in Section II. More precisely, the input consists
of (1) a declaration of all the functor symbols used in the
protocol and by the intruder, (2) the initial intruder facts as
well as the protocol and intruder rules, except for the DH-
rules (DH1) to (DH3), which are assumed implicitly, (3) a
statement which defines a secrecy goal. Moreover, options,
which are handed over to ProVerif, may be added.

Our implementation then first checks whether the given
Horn theory, say T, (part (2) of the input) is exponent-
ground. If it is not, an error message is returned. If it
is, a set C is computed such that the Horn theory is C-
exponent-ground. Recall that such a set always exists if the
Horn theory is exponent-ground. Also it is straightforward
to compute C for an exponent-ground theory: all one has to
do is to collect all the ground exponents occurring in the
terms of 7. Once C is computed, the reduction as described
in Section IV is applied to T, i.e., Tc is computed. Now,
Tc together with the rest of the original input is passed
on to ProVerif. This tool then does the rest of the work,
i.e., it checks the goals for 7¢. This is possible since the
resulting theory 7¢ is meant to be interpreted in a free

protocol correct  reduction time  ProVerif time
BADTH no 0.02s 0.02s
STS yes 0.02s 0.02s
STS-CA no 0.02s 0.03s
ISO-KE yes 0.02s 0.02s
SIGMA-BASIC yes 0.02s 0.05s
SIGMA-I yes 0.02s 0.04s
SIGMA-R yes 0.02s 0.03s
JFKi yes 0.03s 0.06s
JFKr yes 0.03s 0.06s
KERBEROS no 0.02s 0.09s
KERBEROS-fix  yes 0.02s 0.07s
SSH yes 0.03s 0.05s
IKEv2-DS no 0.04s 0.14s
IKEv2-DS-fix yes 0.03s 0.07s
IKEv2-MAC yes 0.03s 0.04s
IKEv2-Child yes 0.03s 0.06s
A-GDH.2-1S yes 0.03s 4.44s
A-GDH.2-2S no 0.03s 7.65s
Figure 5. Experimental Results.

algebra, i.e., no algebraic properties are associated with the
function symbols.

B. Experiments

We tested our implementation on a set of exponent-
ground protocols. The results, obtained by running our
implementation on a 2,4 Ghz Intel CoreTM 2 Duo E6700
processor with 2GB RAM, are depicted in Figure 5, where
we list both the time of the reduction and the time ProVerif
needed for the analysis of the output of the reduction. In
the ‘correct’ column, we indicate, whether the tool proves
the secrecy properties we have specified. As can be seen
from Figure 5, many of the protocols that we analyzed
are important practical protocols. Along the lines of the
specification of our running example, the analysis of these
protocols is performed w.r.t. a bounded number of parties
(from two to five) and an unbounded number of sessions
(except for A-GDH.2). As mentioned in Section II-C, for
checking secrecy-like properties, bounding the number of
parties is a safe simplification in the sense that no attacks
are excluded.

The performance of our tool (including running ProVerif
on the result of our reduction) is very good: In fact, in almost
all the cases (except for the protocol A-GDH.2) the total run-
ning time—reduction time plus the time ProVerif needed—
is far less than one second. These experiments demonstrate
that our reduction applied together with ProVerif constitutes
a quite efficient and robust automatic analysis method for
protocols that employ Diffie-Hellman exponentiation.



Let us now briefly discuss the protocols and security
properties that we analyzed in more detail.

BADTH is a key exchange protocol discussed in [19],
which uses digital signatures for authenticated Diffie-Hell-
man key exchange. While this protocol guarantees secrecy of
session keys, it allows for an attack resulting in the following
situation: Honest A successfully completes a protocol run
and thinks to have established the session key s with honest
B. However, B thinks to have established the same session
key s with dishonest C (although C does not necessarily
know s). This failure of the so-called consistency require-
ment, which constitutes a specific authentication property,
was first shown in [13].

We model consistency requirements as follows: We in-
troduce new atoms of the form completedl(a,b,S) and
completedR(b,a,S). The former means that the initiator a
believes to have completed a session with the responder
b and to have established secret S with b. The atom
completedR (b, a,S) is the same from the point of view of the
responder b. Given these atoms, consistency requirements
are expressed by clauses of the form:

completedl(a,b,S), completedR(b,¢,S) — Sec,

where Sec is a constant that should be kept secret, i.e., not
derivable. As expected, our tool, when applied to BADTH
detects the failure of the consistency requirement sketched
above.

STS stands for STS-Basic, a protocol designed by Diffie
et al. [13]. This protocol is meant to fix the problem ex-
plained for BADTH above. In addition to signatures, it uses
encryption with the key derived from the Diffie-Hellman
key exchange in order to prove knowledge of this key. Our
tool proved this protocol secure w.r.t. secrecy properties and
consistency requirements.

In [19] it is shown that STS is vulnerable to a consistency
attack, if parties can register public keys without proving
knowledge of the corresponding private key (which, as
pointed in [19], is quite common). We model this improper
key registration in STS-CA and reproduce the known attack
with our tool.

ISO-KE is a protocol introduced in [16]. It is similar
to STS. Our tool proved this protocol secure w.r.t. secrecy
of session keys and consistency requirements as explained
above. Again we model improper key registration.

SIGMA [19] is a family of protocols for authenticated
key-exchange. This family serves as the basis for the
signature-based modes of the IKE protocol (version 1 and
2). We have analyzed three variants of SIGMA: SIGMA-
BASIC, SIGMA-I, and SIGMA-R. We used SIGMA-BASIC
as our running example (see Section II-C). SIGMA-I and
SIGMA-R extend SIGMA-BASIC in that they aim to pro-
vide identity protection of the initiator and the responder,
respectively. Our tool proved these protocols secure w.r.t. the
secrecy of session keys and consistency requirements, again

allowing for improper key registration. However, checking
identity protection is beyond the kind of security properties
we can analyze with our tool.

JFK is a well-known key exchange protocol proposed in
[2]. Here JFKi and JFKr stand for two versions of this
protocol aiming to achieve initiator and responder identity
protection, respectively. We proved these protocols secure
w.r.t. security properties similar to those studied for the
SIGMA protocols.

KERBEROS stands for the Kerberos 5 protocol (intra-
real) with DHINIT [26], [27], [33]. Our modeling of this
protocol follows the one of [28]. Our tool reproduces a
known attack on this protocol reported in [28]. In this
attack certain authentication requirements, which in this
case can be modeled as reachability properties, are violated.
However, our tool was able to establish other authentica-
tion and secrecy properties, where again the authentication
properties that we considered were modeled as reachability
properties. KERBEROS-fix is a version of Kerberos with a
fix proposed in [28], which prevents the attack mentioned
above. Our tool proves this protocol secure w.r.t. the security
properties also analyzed for KERBEROS.

SSH refers to the SSH Transport Layer Protocol [32]. We
have modeled this protocol along the lines of the AVISPA
library [3], [4], of course w.r.t. an unbounded number of ses-
sions. Our tool establishes secrecy and weak authentication
properties for this protocol.

Finally, IKEv2-Child, IKEv2-DS, and IKEv2-MAC are
sub-protocols of the IKEv2 protocol [18]. Our tool repro-
duces a known attack on IKEv2-DS. A fix of this protocol
and the other two protocols are shown to be secure by
our tool w.r.t. secrecy properties and weak authentication
properties. The modeling of these sub-protocols of IKE
follow the one of the AVISPA library.

We finally note that we also tried to analyze the A-GDH.2
protocol, a group protocol based on Diffie-Hellman key
exchange. While we could apply our reduction easily (the
protocol is exponent-ground), ProVerif, when running on the
result of this reduction, did not terminate. This appears to be
due to clauses of the form I(x), ... — I(x7c¢), ..., where
xTc does not occur in the context of a more complex term.
However, we were able to analyze A-GDH.2 w.r.t. a model
that (safely) approximates a bounded number of protocol
sessions. In this modeling of A-GDH.2 we used a technique
inspired by the one sometimes used in the process calculus
mode of ProVerif when encoding phases. We proved secrecy
properties for A-GDH.2 in case of one session with four
honest participants (A-GDH.2-1S) and discovered an attack
that occurs if A-GDH.2 is run in a setting with two sessions
(A-GDH.2-2S); A-GDH.2 is known to be flawed in this
setting.



VI. CONCLUSION AND FUTURE WORK

We presented a method for reducing the derivation prob-
lem modulo DH for Horn theories to a purely syntactical
derivation problem. The reduction works for a large class
of Horn theories, namely exponent-ground Horn theories,
and hence, can be applied in the analysis of all protocols
and intruder capabilities that can be modeled as exponent-
ground Horn theories. We implemented our reduction and,
in combination with ProVerif, successfully applied it in the
automatic analysis of several state-of-the-art protocols that
use Diffie-Hellman Exponentiation. This presents the first
practical method for automatic protocol analysis w.r.t. an
unbounded number of sessions that achieves this level of
accuracy in terms of the algebraic properties covered for
DH. In particular, our method yields more precise analysis
results and covers a wider range of protocols than previous
approaches.

A natural direction for future work is the following.
ProVerif can deal with two kinds of protocol specifica-
tions: (i) specifications expressed as Horn theories and (ii)
specifications expressed in process calculus (which are then
automatically translated into Horn theories by ProVerif).
While so far we only make use of the first specification
method, it would be desirable to also support the second.

In this work, we concentrated on secrecy properties,
although we also analyzed simple authentication properties.
It would be interesting to extend our approach to other
security properties, such a stronger authentication properties
and observational equivalence. We note that the translation
of processes to Horn theories, as done by ProVerif for these
properties, often leads to non-exponent-ground theories. It
seems difficult to avoid this effect.
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APPENDIX
A. Proof of Lemma 2

By Lemma 1, it suffices to show: KT(¢) = KT(¢') iff
KT(t) ~ KT(¢'). Note that to obtain KT(¢), the term ¢
is first normalized. Therefore, it is easy to see that both
KT(r) = KT(¢#) and KT(r) ~ KT(¢') mean that KT(¢) and
KT(t') coincide up to (DH1). Now, the lemma easily follows.

B. Proof of Theorem 1

To prove Theorem 1, let us assume that 7 is a derivation
of a from T modulo =. We will show, by induction on the
length of 7, that there exists a derivation 7 from KT(T)
modulo ~ such that whenever b is an element of 7w (modulo
=), then KT(b) is an element of 7 (modulo ~). In particular,
this will imply KT(T) by KT(a).

For |7| = 0, nothing is to show. So, suppose that |7r| > 0.
Let ¢ be the last element of 7, i.e. m = 7’c. By the inductive
hypothesis, there exists a derivation 7’ from KT(T) modulo
~ such that for every b in 7’ we have that KT(b) is in 7.

Now, if ¢ is obtained using one of the Horn clauses in (6),
ie., ¢ is of the form I(fo 17" x --- x £Zn), for some integers
Z1,...,2; and some terms fo,...,#, such that I(s),...,1(z,)
occur in 7' (modulo =), then I(KT(z;)) are in @’ and one can
apply the rules of Tpy (possible a number of times) to obtain
KT(c) ~ I(KT(to) 1 KT(£;)@) 1 --- 1 KT(z,))). Therefore,
we can extend #' by a sequence 7" of atoms such that
7 =7#"KT(c) is a derivation.

If ¢ is obtained using some other Horn clause in T of
the form sy,...,s, — so with a substitution o, then one can
use the clause KT(s;),...,KT(s,) — KT(sp) in KT(T) with
the substitution KT(o), where KT (o) (x) = KT (o (x)) for all
x € dom(o), to obtain KT(c): If b is an element of 7’ such
that b = s;0, for i € {1,...,n}, then KT(b) is in 7' by the
induction hypothesis. By Lemma 1, we obtain s; = KT(s;),



and o(x) = KT(o(x)). Since = is a congruence relation,
it follows that s;c = KT(s;) KT (o). Now, since b = s;0,
Lemma 2 implies that KT(s;) KT (o) ~ KT(b). Analogously,
it follows that KT(so) KT(o) ~ KT(c). Hence, by applying
KT(s1),...,KT(s,) — KT(so) with KT(0) we can derive
KT(c). Therefore, we can define # = 7' KT(c).

C. Proof of Lemma 5

It is easy to see that it suffices to prove the lemma for the
special case when s is a reduced form of ¢, because then we
obtain the following: Let r be a reduced form of ¢. Since
t ~ s, we know that r is also a reduced form of s. Hence,
by the above, §(¢) ~ §(r) and 6(r) ~ d(s). By transitivity of
~, this yields 6(¢) ~ d(s).

So, let us assume that ¢ is an exponent-reduced term and
s is a reduced form of ¢. In the following, u |, w means that
w is a reduced form of u. We proceed by induction on the
size of ¢ and consider the following cases:

1) The head symbol of ¢ is neither -~! nor 1: Then the
head symbol of s is the same as the one of ¢. If ¢ is
a constant or a variable (and so is s), then 6(r) =t =
s=0(s). If ¢ is of the form f(z,...,t,), then s must
also be of the form f(sy,...,s,) with #; |, s;. By the
induction hypothesis, we know that §(#;) ~ d(s;). Hence,
5(t) = £(0(tr),-.,6(ta)) ~ f(8(s1),--.,0(sn)) = 6(s).

2) The head symbol of ¢ is - 7!, i.e. t = u~': If u is of the
form r~!, then r |, 5. Hence, by the definition of § and
the induction hypothesis, §(¢) = §(r) ~ d(s). If u is not
of the form r~!, then s must be of the form w~! with
u |, w. By the induction hypothesis, d(u) ~ d(w) and,
since 6(r) = §(u) and &(s) = 6(w), we have §(¢) ~ d(s).

3) The head symbol of ¢ is 1: Then we can write ¢ as
foTt1--- 1t,, where the head symbol of 7y is not 1. Let
us consider two subcases:

Case (a). There are i,j € {1,...,n} such that t; th_l.
For simplicity of the presentation, we assume that
i=n—1 and j=n (it is easy to drop this assumption).
Then, for t' =t 1t;1--- 1t,_», we also have ¢’ |, s.
Because ¢ is exponent-reduced it follows that #; = tj’l
or ;1= tj. We can conclude that #; € C* if and only
if #; € C*. Now, it is easy to see that 6(¢) ~ 6(¢'). By
the induction hypothesis, we have 6(¢') ~ d(s), which
implies §(¢) ~ d(s).

Case (b). There are no i,j € {1,...,n} such that
t; ~ t;~!: Then, modulo (DH1), s must be of the
form sp1s17---1s,, where the head symbol of sy is

not T, #y |, so, and t; =s; for every i € {l,...,n}.
The latter holds since by the definition of exponent-
reduced, all #;, for i € {1,...,n}, are reduced. Now,
o(t) = o0(ro) 1, 1 --- 1t;,, where ¢;,...,t; are exactly
these elements of ¢y, ...,t, which are in C*. Similarly to
Case (a), we have that r; € C* if and only if s; € C* for
every i € {1,...,n}. Hence, (s) = 6(so) 1s;, 1+ 15j.
By the induction hypothesis, we know that 0(zp) ~
0(so). It follows that §(¢) ~ d(s).

D. Proof of Lemma 6

The proof is by induction on the structure of t. If ¢ is
a standard term, the statement easily follows by induction.
We do not need to consider the case t = s—!, since ¢ is
assumed to be C-exponent-ground. Let us assume that ¢ =
s1s'. Since t is C-exponent-ground, it follows that s’ € C* and
s is C-exponent-ground. Hence, §(t0) = (s 1s") = d(s0) 15'.
By the induction hypothesis, we have §(s6) = s6(6). Thus,
0(s0) 15" =s586(0)15 =15(0).

E. Proof of Lemma 7

Assume that t ~ s. It follows that there exists a term
r which is a reduced form of both 7 and s. Hence, we
can obtain r from ¢ (and from s) by applying to ¢ (to s)
equations (DH2) and (DH3) from left to right and equation
(DH1) from left to right and from right to left, a number of
times. More precisely, it is easy to see that (DH3) cannot be
applied, since ¢ and s are C-exponent-ground and because the
above transformations with (DH2) and (DH1) preserve C-
exponent-groundness. Moreover, it is not hard to verify that
every such transformation with (DH2) and (DH1) preserves
™7, ie., if «’ is obtained by one such transformation from a
C-exponent-ground term u, then "u’'7 = "u". Now, it is easy
to conclude that "t '="r"1="gs"\

FE. Proof of Lemma 10

The proof is by structural induction on ¢. In case ¢ is
standard, the statement follows immediately by the induction
hypothesis. So, assume that ¢ is non-standard. Let ¢’ be a
reduced form of ¢. Then, ¢’ =1y1 c(lk‘)T . c,(,lf’"), for some
integers ki,...,k;y, and a C-exponent-ground term fy. It is
easy to see that "' = exp(T1y ", i2t(ky), ..., i2t(ky)).

By definition of -, and the fact that 72i(i2t(k)) = k,
we obtain L7 7= Ty ek Tcﬁ,’f’"). The induction
hypothesis yields that _"#y"1 ~ ty, and therefore, L™t ~
torctk)y ... Tcgf’”). Hence, "¢ J~1¢. Since t ~ ¢, Lemma 7
implies that "7 ="¢" and so L™= L"¢' 7. Consequently,
we obtain t ~ ¢ ~ LTt 7.



