
A Comprehensive Formal Security Analysis of OAuth 2.0

Daniel Fett
University of Trier, Germany

fett@uni-trier.de

Ralf Küsters
University of Trier, Germany
kuesters@uni-trier.de

Guido Schmitz
University of Trier, Germany
schmitzg@uni-trier.de

ABSTRACT
The OAuth 2.0 protocol is one of the most widely deployed au-
thorization/single sign-on (SSO) protocols and also serves as the
foundation for the new SSO standard OpenID Connect. Despite the
popularity of OAuth, so far analysis efforts were mostly targeted at
finding bugs in specific implementations and were based on formal
models which abstract from many web features or did not provide
a formal treatment at all.

In this paper, we carry out the first extensive formal analysis of
the OAuth 2.0 standard in an expressive web model. Our analy-
sis aims at establishing strong authorization, authentication, and
session integrity guarantees, for which we provide formal defini-
tions. In our formal analysis, all four OAuth grant types (autho-
rization code grant, implicit grant, resource owner password cre-
dentials grant, and the client credentials grant) are covered. They
may even run simultaneously in the same and different relying par-
ties and identity providers, where malicious relying parties, identity
providers, and browsers are considered as well. Our modeling and
analysis of the OAuth 2.0 standard assumes that security recommen-
dations and best practices are followed in order to avoid obvious
and known attacks.

When proving the security of OAuth in our model, we discovered
four attacks which break the security of OAuth. The vulnerabilities
can be exploited in practice and are present also in OpenID Connect.

We propose fixes for the identified vulnerabilities, and then, for
the first time, actually prove the security of OAuth in an expressive
web model. In particular, we show that the fixed version of OAuth
(with security recommendations and best practices in place) pro-
vides the authorization, authentication, and session integrity proper-
ties we specify.

1. INTRODUCTION
The OAuth 2.0 authorization framework [20] defines a web-based

protocol that allows a user to grant web sites access to her resources
(data or services) at other web sites (authorization). The former
web sites are called relying parties (RP) and the latter are called

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS’16, October 24 – 28, 2016, Vienna, Austria
c© 2016 ACM. ISBN 978-1-4503-4139-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976749.2978385

identity providers (IdP).1 In practice, OAuth 2.0 is often used for
authentication as well. That is, a user can log in at an RP using her
identity managed by an IdP (single sign-on, SSO).

Authorization and SSO solutions have found widespread adop-
tion in the web over the last years, with OAuth 2.0 being one of the
most popular frameworks. OAuth 2.0, in the following often sim-
ply called OAuth,2 is used by identity providers such as Amazon,
Facebook, Google, Microsoft, Yahoo, GitHub, LinkedIn, StackEx-
change, and Dropbox. This enables billions of users to log in at
millions of RPs or share their data with these [35], making OAuth
one of the most used single sign-on systems on the web.

OAuth is also the foundation for the new single sign-on protocol
OpenID Connect, which is already in use and actively supported
by PayPal (“Log In with PayPal”), Google, and Microsoft, among
others. Considering the broad industry support for OpenID Connect,
a widespread adoption of OpenID Connect in the next years seems
likely. OpenID Connect builds upon OAuth and provides clearly
defined interfaces for user authentication and additional (optional)
features, such as dynamic identity provider discovery and relying
party registration, signing and encryption of messages, and logout.

In OAuth, the interactions between the user and her browser,
the RP, and the IdP can be performed in four different flows, or
grant types: authorization code grant, implicit grant, resource owner
password credentials grant, and the client credentials grant (we refer
to these as modes in the following). In addition, all of these modes
provide further options.

The goal of this work is to provide an in-depth security analysis
of OAuth. Analyzing the security of OAuth is a challenging task,
on the one hand due to the various modes and options that OAuth
provides, and on the other hand due to the inherent complexity of
the web.

So far, most analysis efforts regarding the security of OAuth were
targeted towards finding errors in specific implementations [6, 10,
25, 33, 34, 36, 38], rather than the comprehensive analysis of the
standard itself. Probably the most detailed formal analysis carried
out on OAuth so far is the one in [6]. However, none of the existing
analysis efforts of OAuth account for all modes of OAuth running
simultaneously, which may potentially introduce new security risks.
In fact, many existing approaches analyze only the authorization
code mode and the implicit mode of OAuth. Also, importantly,
there are no analysis efforts that are based on a comprehensive
formal web model (see below), which, however, is essential to rule

1Following the OAuth 2.0 terminology, IdPs are called autho-
rization servers and resource servers, RPs are called clients, and
users are called resource owners. Here, however, we stick to the
more common terms mentioned above.

2Note that in this document, we consider only OAuth 2.0, which
is very different to its predecessor, OAuth 1.0(a).

http://dx.doi.org/10.1145/2976749.2978385

out security risks that arise when running the protocol in the context
of common web technologies (see Section 6 for a more detailed
discussion of related work).

Contributions of this Paper. We perform the first extensive formal
analysis of the OAuth 2.0 standard for all four modes, which can
even run simultaneously within the same and different RPs and IdPs,
based on a comprehensive web model which covers large parts of
how browsers and servers interact in real-world setups. Our analysis
also covers the case of malicious IdPs, RPs, and browsers/users.

Formal model of OAuth. Our formal analysis of OAuth uses an
expressive Dolev-Yao style model of the web infrastructure [14]
proposed by Fett, Küsters, and Schmitz (FKS). The FKS model has
already been used to analyze the security of the BrowserID single
sign-on system [14, 15] as well as the security and privacy of the
SPRESSO single sign-on system [16]. This web model is designed
independently of a specific web application and closely mimics
published (de-facto) standards and specifications for the web, for
instance, the HTTP/1.1 and HTML5 standards and associated (pro-
posed) standards. It is the most comprehensive web model to date.
Among others, HTTP(S) requests and responses, including several
headers, such as cookie, location, strict transport security (STS),
and origin headers, are modeled. The model of web browsers cap-
tures the concepts of windows, documents, and iframes, including
the complex navigation rules, as well as new technologies, such as
web storage and web messaging (via postMessage). JavaScript is
modeled in an abstract way by so-called scripts which can be sent
around and, among others, can create iframes and initiate XML-
HTTPRequests (XHRs). Browsers may be corrupted dynamically
by the adversary.

Using the generic FKS model, we build a formal model of OAuth,
closely following the OAuth 2.0 standard (RFC6749 [20]). Since
this RFC does not fix all aspects of the protocol and in order to
avoid known implementation attacks, we use the OAuth 2.0 security
recommendations (RFC6819 [26]), additional RFCs and OAuth
Working Group drafts (e.g., RFC7662 [30], [8]) and current web
best practices (e.g., regarding session handling) to obtain a model of
OAuth with state-of-the-art security features in place, while making
as few assumptions as possible. Moreover, as mentioned above, our
model includes RPs and IdPs that (simultaneously) support all four
modes and can be dynamically corrupted by the adversary. Also,
we model all configuration options of OAuth (see Section 2).

Formalization of security properties. Based on this model of OAuth,
we provide three central security properties of OAuth: authorization,
authentication, and session integrity, where session integrity in turn
is concerned with both authorization and authentication.

Attacks on OAuth 2.0 and fixes. While trying to prove these proper-
ties, we discovered four attacks on OAuth. In the first attack, which
breaks the authorization and authentication properties, IdPs inad-
vertently forward user credentials (i.e., username and password) to
the RP or the attacker. In the second attack (IdP mix-up), a network
attacker playing the role of an IdP can impersonate any victim. This
severe attack, which again breaks the authorization and authentica-
tion properties, is caused by a logical flaw in the OAuth 2.0 protocol.
Two further attacks allow an attacker to force a browser to be logged
in under the attacker’s name at an RP or force an RP to use a re-
source of the attacker instead of a resource of the user, breaking the
session integrity property. We have verified all four attacks on actual
implementations of OAuth and OpenID Connect. We present our
attacks on OAuth in detail in Section 3. In our technical report [17],
we show how the attacks can be exploited in OpenID Connect. We
also show how the attacks can be fixed by changes that are easy to

implement in new and existing deployments of OAuth and OpenID
Connect.

We notified the respective working groups, who confirmed the at-
tacks and that changes to the standards/recommendations are needed.
The IdP mix-up attack already resulted in a draft of a new RFC [22].
Formal analysis of OAuth 2.0. Using our model of OAuth with
the fixes in place, we then were able to prove that OAuth satisfies
the mentioned security properties. This is the first proof which
establishes central security properties of OAuth in a comprehensive
and expressive web model (see also Section 6).

We emphasize that, as mentioned before, we model OAuth with
security recommendations and best practices in place. As discussed
in Section 5, implementations not following these recommendations
and best practices may be vulnerable to attacks. In fact, many such
attacks on specific implementations have been pointed out in the
literature (e.g., [6, 10, 20, 25, 26, 36, 37]). Hence, our results also
provide guidelines for secure OAuth implementations.

We moreover note that, while these results provide strong security
guarantees for OAuth, they do not directly imply security of OpenID
Connect because OpenID Connect adds specific details on top of
OAuth. We leave a formal analysis of OpenID Connect to future
work. The results obtained here can serve as a good foundation for
such an analysis.

Structure of this Paper. In Section 2, we provide a detailed de-
scription of OAuth 2.0 using the authorization code mode as an
example. In Section 3, we present the attacks that we found during
our analysis. An overview of the FKS model we build upon in our
analysis is provided in Section 4, with the formal analysis of OAuth
presented in Section 5. Related work is discussed in Section 6. We
conclude in Section 7. Full details, including how the attacks can be
applied to OpenID Connect, further details on our model of OAuth,
and our security proof, can be found in our technical report [17].

2. OAUTH 2.0
In this section, we provide a description of the OAuth authoriza-

tion code mode, with the other three modes explained only briefly.
In our technical report [17], we provide a detailed description of the
remaining three modes (grant types).

OAuth was first intended for authorization, i.e., users authorize
RPs to access user data (called protected resources) at IdPs. For
example, a user can use OAuth to authorize services such as IFTTT3

to access her (private) timeline on Facebook. In this case, IFTTT is
the RP and Facebook the IdP.

Roughly speaking, in the most common modes, OAuth works
as follows: If a user wants to authorize an RP to access some of
the user’s data at an IdP, the RP redirects the user (i.e., the user’s
browser) to the IdP, where the user authenticates and agrees to grant
the RP access to some of her user data at the IdP. Then, along with
some token (an authorization code or an access token) issued by the
IdP, the user is redirected back to the RP. The RP can then use the
token as a credential at the IdP to access the user’s data at the IdP.

OAuth is also commonly used for authentication, although it was
not designed with authentication in mind. A user can, for example,
use her Facebook account, with Facebook being the IdP, to log in at
the social network Pinterest (the RP). Typically, in order to log in,
the user authorizes the RP to access a unique user identifier at the
IdP. The RP then retrieves this identifier and considers this user to
be logged in.

3IFTTT (If This Then That) is a web service which can be used
to automate actions: IFTTT is triggered by user-defined events (e.g.,
Twitter messages) and carries out user-defined tasks (e.g., posting
on the user’s Facebook wall).

Browser RP IdP

/Browser /RP /IdP

1 POST /start
idp

2 Response
Redirect to IdP /authEP with client_id,

redirect_uri, state
3 GET /authEP

client_id, redirect_uri, state
4 Response

5 POST /authEP
username, password

6 Response
Redirect to RP redirect_uri with code,

state
7 GET redirect_uri

code, state
8 POST /tokenEP

code, client_id, redirect_uri, client_secret

9 Response
access_token

Authorization:
10 GET /resource

access_token
11 Response

protected resource

Authentication:
12 GET /introspectionEP

access_token
13 Response

user_id, client_id
14 Response

session_cookie

Figure 1: OAuth 2.0 authorization code mode. Note that data
depicted below the arrows is either transferred in URI parame-
ters, HTTP headers, or POST bodies.

Before an RP can interact with an IdP, the RP needs to be regis-
tered at the IdP. The details of the registration process are out of the
scope of the OAuth protocol. In practice, this process is usually a
manual task. During the registration process, the IdP assigns cre-
dentials to the RP: a public OAuth client id and (optionally) a client
secret. (Recall that in the terminology of the OAuth standard the
term “client” stands for RP.) The RP may later use the client secret
(if issued) to authenticate to the IdP.

Also, an RP registers one or more redirection endpoint URIs
(located at the RP) at an IdP. As we will see below, in some OAuth
modes, the IdP redirects the user’s browser to one of these URIs.
Note that (depending on the implementation of an IdP) an RP may
also register a pattern as a redirect URI and then specify the exact
redirect URI during the OAuth run.

In all modes, OAuth provides several options, such as those men-
tioned above. For brevity of presentation (and in contrast to our
analysis), in the following descriptions, we consider only a specific
set of options. For example, we assume that an RP always provides
a redirect URI and shares an OAuth client secret with the IdP.

Authorization Code Mode. When the user tries to authorize an
RP to access her data at an IdP or to log in at an RP, the RP first
redirects the user’s browser to the IdP. The user then authenticates
to the IdP, e.g., by providing her user name and password, and
finally is redirected back to the RP along with an authorization
code generated by the IdP. The RP can now contact the IdP with
this authorization code (along with the client id and client secret)

and receive an access token, which the RP in turn can use as a
credential to access the user’s protected resources at the IdP.

Step-by-Step Protocol Flow. In what follows, we describe the pro-
tocol flow of the authorization code mode step-by-step (see also
Figure 1). First, the user starts the OAuth flow, e.g., by clicking
on a button to select an IdP, resulting in request 1 being sent to the
RP. The RP selects one of its redirection endpoint URIs redirect_uri
(which will be used later in 7) and a value state (which will serve as
a token to prevent CSRF attacks). The RP then redirects the browser
to the so-called authorization endpoint URI at the IdP in 2 and 3

with its client_id, redirect_uri, and state appended as parameters to
the URI. The IdP then prompts the user to provide her username
and password in 4 . The user’s browser sends this information to
the IdP in 5 . If the credentials are correct, the IdP creates a nonce
code (the authorization code) and redirects the user’s browser to
RP’s redirection endpoint URI redirect_uri in 6 and 7 with code
and state appended as parameters to the URI. If state is the same
as above, the RP contacts the IdP in 8 and provides code, client_id,
client_secret, and redirect_uri. Then the IdP checks whether this
information is correct, i.e., it checks that code was issued for the RP
identified by client_id, that client_secret is the secret for client_id,
that redirect_uri coincides with the one in Step 2 , and that code
has not been redeemed before. If these checks are successful, the
IdP issues an access token access_token in 9 . Now, the RP can
use access_token to access the user’s protected resources at the IdP
(authorization) or log in the user (authentication), as described next.

When OAuth is used for authorization, the RP uses the access
token to view or manipulate the protected resource at the IdP (illus-
trated in Steps 10 and 11).

For authentication, the RP fetches a user id (which uniquely
identifies the user at the IdP) using the access token, Steps 12 and 13 .
The RP then issues a session cookie to the user’s browser as shown
in 14 .4

Tracking User Intention. Note that in order for an RP which sup-
ports multiple IdPs to process Step 7 , the RP must know which
IdP a user wanted to use for authorization. There are two different
approaches to this used in practice: First, the RP can use different
redirection URIs to distinguish different IdPs. We call this naïve
user intention tracking. Second, the RP can store the user intention
in a session after Step 1 and use this information later. We call this
explicit user intention tracking. The same applies to the implicit
mode of OAuth presented below.

Implicit Mode. This mode is similar to the authorization code
mode, but instead of providing an authorization code, the IdP di-
rectly delivers an access token to the RP via the user’s browser.

More specifically, in the implicit mode, Steps 1 – 5 (see Figure 1)
are the same as in the authorization code mode. Instead of creating
an authorization code, the IdP issues an access token right away and
redirects the user’s browser to RP’s redirection endpoint with the
access token contained in the fragment of the URI. (Recall that a
fragment is a special part of a URI indicated by the ‘#’ symbol.)

As fragments are not sent in HTTP requests, the access token
is not immediately transferred when the browser contacts the RP.
Instead, the RP needs to use a JavaScript to retrieve the contents of
the fragment. Typically, such a JavaScript is sent in RP’s answer at
the redirection endpoint. Just as in the authorization code mode, the

4Authentication is not part of RFC6749, but this method for
authentication is commonly used in practice, for example by Ama-
zon, Facebook, LinkedIn, and StackExchange, and is also defined
in OpenID Connect [31].

RP can now use the access token for authorization or authentication
(analogously to Steps 10 – 14 of Figure 1).5

Resource Owner Password Credentials Mode. In this mode, the
user gives her credentials for an IdP directly to an RP. The RP can
then authenticate to the IdP on the user’s behalf and retrieve an ac-
cess token. This mode is intended for highly-trusted RPs, such as
the operating system of the user’s device or highly-privileged appli-
cations, or if the previous two modes are not possible to perform
(e.g., for applications without a web browser).

Client Credentials Mode. In contrast to the modes shown above,
this mode works without the user’s interaction. Instead, it is started
by an RP in order to fetch an access token to access the resources
of RP at an IdP. For example, Facebook allows RPs to use the client
credentials mode to obtain an access token to access reports of their
advertisements’ performance.

3. ATTACKS
As mentioned in the introduction, while trying to prove the secu-

rity of OAuth based on the FKS web model and our OAuth model,
we found four attacks on OAuth, which we call 307 redirect attack,
IdP mix-up attack, state leak attack, and naïve RP session integrity
attack, respectively. In this section, we provide detailed descriptions
of these attacks along with easily implementable fixes. Our formal
analysis of OAuth (see Section 5) then shows that these fixes are
indeed sufficient to establish the security of OAuth. The attacks also
apply to OpenID Connect (see Section 3.5). Figure 2 provides an
overview of where the attacks apply. We have verified our attacks
on actual implementations of OAuth and OpenID Connect and re-
ported the attacks to the respective working groups who confirmed
the attacks (see Section 3.6).

3.1 307 Redirect Attack
In this attack, which breaks our authorization and authentication

properties (see Section 5.2), the attacker (running a malicious RP)
learns the user’s credentials when the user logs in at an IdP that uses
the wrong HTTP redirection status code. While the attack itself is
based on a simple error, to the best of our knowledge, this is the
first description of an attack of this kind.

Assumptions. The main assumptions are that (1) the IdP that is
used for the login chooses the 307 HTTP status code when redi-
recting the user’s browser back to the RP (Step 6 in Figure 1), and
(2) the IdP redirects the user immediately after the user entered her
credentials (i.e., in the response to the HTTP POST request that
contains the form data sent by the user’s browser).

Assumption (1). This assumption is reasonable because neither the
OAuth standard [20] nor the OAuth security considerations [26]
(nor the OpenID Connect standard [31]) specify the exact method
of how to redirect. The OAuth standard rather explicitly permits
any HTTP redirect:

While the examples in this specification show the use
of the HTTP 302 status code, any other method avail-
able via the user-agent to accomplish this redirection
is allowed and is considered to be an implementation
detail.

5The response from the IdP in Step 13 includes the RP’s OAuth
client id, which is checked by the RP when authenticating a user
(cf. RFC7662 [30]). This check prevents re-use of access tokens
across RPs in the OAuth implicit mode, as explained in [37]. This
check is not needed for authorization.

Assumption (2). This assumption is reasonable as many examples
for redirects immediately after entering the user credentials can
be found in practice, for example at github.com (where, however,
assumption (1) is not satisfied.)

Attack. When a user uses the authorization code or implicit mode
of OAuth to log in at a malicious RP, then she is redirected to the
IdP and prompted to enter her credentials. The IdP then receives
these credentials from the user’s browser in a POST request. It
checks the credentials and redirects the user’s browser to the RP’s
redirection endpoint in the response to the POST request. Since
the 307 status code is used for this redirection, the user’s browser
will send a POST request to RP that contains all form data from the
previous request, including the user credentials. Since the RP is run
by the attacker, he can use these credentials to impersonate the user.

Fix. Contrary to the current wording in the OAuth standard, the
exact method of the redirect is not an implementation detail but
essential for the security of OAuth. In the HTTP standard [18],
only the 303 redirect is defined unambiguously to drop the body
of an HTTP POST request. Therefore, the OAuth standard should
require 303 redirects for the steps mentioned above in order to fix
this problem.

3.2 IdP Mix-Up Attack
In this attack, which breaks our authorization and authentica-

tion properties (see Section 5.2), the attacker confuses an RP about
which IdP the user chose at the beginning of the login/authorization
process in order to acquire an authentication code or access token
which can be used to impersonate the user or access user data.

This attack applies to the authorization code mode and the im-
plicit mode of OAuth when explicit user intention tracking6 is used
by the RP. To launch the attack, the attacker manipulates the first
request of the user such that the RP thinks that the user wants to use
an identity managed by an IdP of the attacker (AIdP) while the user
instead wishes to use her identity managed by an honest IdP (HIdP).
As a result, the RP sends the authorization code or the access token
issued by HIdP to the attacker. The attacker then can use this in-
formation to login at the RP under the user’s identity (managed by
HIdP) or access the user’s protected resources at HIdP.

We here present the attack in the authorization code mode. In
the implicit mode, the attack is very similar and is shown in detail
in [17].

Assumptions. For the IdP mix-up attack to work, we need three
assumptions that we further discuss below: (1) the presence of a
network attacker who can manipulate the request in which the user
sends her identity to the RP as well as the corresponding response
to this request (see Steps 1 and 2 in Figure 1), (2) an RP which
allows users to log in with identities provided by (some) HIdP and
identities provided by AIdP, and (3) an RP that uses explicit user
intention tracking and issues the same redirection URI to all IdPs.7

We emphasize that we do not assume that the user sends any secret
(such as passwords) over an unencrypted channel.

Assumption (1). It would be unrealistic to assume that a network
attacker can never manipulate Steps 1 and 2 in Figure 1.

First, these messages are sent between the user and the RP, i.e.,
the attacker does not need to intercept server-to-server communica-
tion. He could, e.g., use ARP spoofing in a wifi network to mount
the attack.

6Recall the meaning of “user intention tracking” from Section 2.
7Alternatively, the attack would work if the RP issues different

redirection URIs to different IdPs, but treats them as the same URI.

attack on OAuth applicable to OpenID Connect
auth code mode implicit mode auth code mode implicit mode hybrid mode

307 Redirect Attack az + an az + an az + an az + an az + an
IdP Mix-Up Attack az* + an az + an az* + an – az + an**
State Leak Attack si si si si si
Naïve RP Session Integrity Attack si si si si si

az: breaks authorization. an: breaks authentication. si: breaks session integrity. –: not applicable. * if client secrets are not used.
** restriction: if client secrets are used, either authorization or authentication is broken, depending on implementation details.

Figure 2: Overview of attacks on OAuth 2.0 and OpenID Connect.

Browser RP Attacker (AIdP) HIdP

/Browser /RP /Attacker (AIdP) /HIdP

1 POST /start
idp

2 POST /start
attacker

3 Response
Redirect to Attacker /authEP with

client_id′, redirect_uri, state
4 Response

Redirect to HIdP /authEP with client_id,
redirect_uri, state

5 GET /authEP
client_id, redirect_uri, state

6 Response

7 POST /authEP
username, password

8 Response
Redirect to RP redirect_uri with code,

state
9 GET redirect_uri

code, state
10 POST /tokenEP

code, client_id′, redirect_uri,
client_secret′

Continued attack to break authorization:
11 POST /tokenEP

code, client_id, redirect_uri
12 Response
access_token

13 GET /resource
access_token
14 Response

protected resource

Figure 3: Attack on OAuth 2.0 authorization code mode

Second, the need for HTTPS for these steps is not obvious to
users or RPs, and the use of HTTPS is not suggested by the OAuth
security recommendations, since the user only selects an IdP at this
point; credentials are not transferred.

Third, even if an RP intends to use HTTPS also for the first re-
quest (as in our model), it has to protect itself against TLS stripping
by adding the RP domain to a browser preloaded Strict Transport
Security (STS) list [11]. Other mitigations, such as the STS header,
can be circumvented (see [32]), and do not work on the very first
connection between the user’s browser and RP. For example, when
a user enters the address of an RP into her browser, browsers by
default try unencrypted connections. It is therefore unrealistic to
assume that all RPs are always protected against TLS stripping.

Our formal analysis presented in Section 5 shows that OAuth can
be operated securely even if no HTTPS is used for the initial request
(given that our fix, presented below, is applied).

Assumption (2). RPs may use different IdPs, some of which might
be malicious, and hence, OAuth should provide security in this
case. Using a technique called dynamic client registration, OAuth
RPs can even allow the ad-hoc use of any IdP, including malicious
ones. This is particularly relevant in OpenID Connect, where this
technique was first implemented.

Assumption (3). Typically, RPs that use explicit user intention track-
ing do not register different redirection URIs for different IdPs, as
in this case the RP records the IdP a user wants to authenticate
with. In particular, for RPs that allow for dynamic registration, us-
ing the same URI is an obvious implementation choice. This is for
example the case in the OAuth/OpenID Connect implementations
mod_auth_openidc and pyoidc (see below).

Attack on Authorization Code Mode. We now describe the IdP
Mix-Up attack on the OAuth authorization code mode. As men-
tioned, a very similar attack also applies to the implicit mode. Both
attacks also work if IdP supports just one of these two modes.

The IdP mix-up attack for the authorization code mode is de-
picted in Figure 3. Just as in a regular flow, the attack starts when
the user selects that she wants to log in using HIdP (Step 1 in Fig-
ure 3). Now, the attacker intercepts the request intended for the
RP and modifies the content of this request by replacing HIdP by
AIdP.8 The response of the RP 3 (containing a redirect to AIdP)
is then again intercepted and modified by the attacker such that it
redirects the user to HIdP 4 . The attacker also replaces the OAuth
client id of the RP at AIdP with the client id of the RP at HIdP
(which is public information). (Note that we assume that from this
point on, in accordance with the OAuth security recommendations,
the communication between the user’s browser and HIdP and the
RP is encrypted by using HTTPS, and thus, cannot be inspected or
altered by the attacker.) The user then authenticates to HIdP and is
redirected back to the RP 8 . The RP thinks, due to Step 2 of the
attack, that the nonce code contained in this redirect was issued by
AIdP, rather than HIdP. The RP therefore now tries to redeem this
nonce for an access token at AIdP 10 , rather than HIdP. This leaks
code to the attacker.

Breaking Authorization. If HIdP has not issued an OAuth client
secret to RP during registration, the attacker can now redeem code
for an access token at HIdP (in 11 and 12).9 This access token
allows the attacker to access protected resources of the user at HIdP.
This breaks the authorization property (see Section 5.2). We note
that at this point, the attacker might even provide false information

8At this point, the attacker could also read the session id for
the user’s session at RP. Our attack, however, is not based on this
possibility and works even if the RP changes this session id as soon
as the user is logged in and the connection is protected by HTTPS
(a best practice for session management).

9In the case that RP has to provide a client secret, this would
not work in this mode (see also Figure 2). Recall that in this mode,
client secrets are optional.

about the user or her protected resources to the RP: he could issue
a self-created access token which RP would then use to access such
information at the attacker.

Breaking Authentication. To break the authentication property (see
Section 5.2) and impersonate the honest user, the attacker, after
obtaining code in Step 10 , starts a new login process (using his own
browser) at the RP. He selects HIdP as the IdP for this login process
and receives a redirect to HIdP, which he ignores. This redirect
contains a cookie for a new login session and a fresh state parameter.
The attacker now sends code to the RP imitating a real login (using
the cookie and fresh state value from the previous response). The
RP then retrieves an access token at HIdP using code and uses this
access token to fetch the (honest) user’s id. Being convinced that
the attacker owns the honest user’s account, the RP issues a session
cookie for this account to the attacker. As a result, the attacker
is logged in at the RP under the honest user’s id. (Note that the
attacker does not learn an access token in this case.)

Variant. There is also a variant of the IdP mix-up attack that only
requires a web attacker (which does not intercept and manipulate
network messages). In this variant, the user wants to log in with
AIdP, but is redirected by AIdP to log in at HIdP; a fact a vigilant
user might detect.

In detail, the first four steps in Figure 3 are replaced by the fol-
lowing steps: First, the user starts a new OAuth flow with RP using
AIdP. She is then redirected by RP to AIdP’s authorization end-
point. Now, instead of prompting the user for her password, AIdP
redirects the user to HIdP’s authorization endpoint. (Note that, as
above, in this step, the attacker uses the state value he received from
the browser plus the client id of RP at HIdP.) From here on, the
attack proceeds exactly as in Step 5 in Figure 3.

Related Attacks. An attack in the same class, cross social-network
request forgery, was outlined by Bansal, Bhargavan, Delignat-La-
vaud, and Maffeis in [6]. It applies to RPs with naïve user intention
tracking (rather than explicit user intention tracking assumed in our
IdP mix-up attack above) in combination with IdPs, such as Face-
book, that only loosely check the redirect URI.10 Our IdP mix-up
attack works even if an IdP strictly checks redirect URIs. While the
attack in [6] is described in the context of concrete social network
implementations, our findings show that this class of attacks is not
merely an implementation error, but a more general problem in the
OAuth standard. This was confirmed by the IETF OAuth Work-
ing Group, who, as mentioned, are in the process of amending the
OAuth standard according to our fixes (see Section 3.6).

Another attack with a similar outcome, called Malicious End-
points Attack, leveraging the OpenID Connect Discovery mech-
anism and therefore limited to OpenID Connect, was described
in [27]. This attack assumes a CSRF vulnerability on the RP’s side.

Fix. A fundamental problem in the authorization code and implicit
modes of the OAuth standard is a lack of reliable information in
the redirect in Steps 6 and 7 in Figure 1 (even if HTTPS is used).
The RP does not receive information from where the redirect was
initiated (when explicit user intention tracking is used) or receives
information that can easily be spoofed (when naïve user intention
tracking is used with IdPs such as Facebook). Hence, the RP cannot
check whether the information contained in the redirect stems from
the IdP that was indicated in Step 1 .

Our fix therefore is to include the identity of the IdP in the redi-
rect URI in some form that cannot be influenced by the attacker, e.g.,
using a new URI parameter. Each IdP should add such a parameter

10Facebook, by default, only checks the origin of redirect URIs.

to the redirect URI.11 The RP can then check that the parameter
contains the identity of the IdP it expects to receive the response
from. (This could be used with either naïve or explicit user inten-
tion tracking, but to mitigate the naïve RP session integrity attack
described below, we advise to use explicit user intention tracking
only, see below.)

We show in Section 5 that this fix is indeed sufficient to mitigate
the IdP mix-up attack (as well as the attacks pointed out in [6, 27]).

3.3 State Leak Attack
Using the state leak attack, an attacker can force a browser to

be logged in under the attacker’s name at an RP or force an RP to
use a resource of the attacker instead of a resource of the user. This
attack, which breaks our session integrity property (see Section 5.2),
enables what is often called session swapping or login CSRF [7].

Attack. After the user has authenticated to the IdP in the authoriza-
tion code mode, the user is redirected to RP (Step 7 in Figure 1).
This request contains state and code as parameters. The response
to this request (Step 14) can be a page containing a link to the at-
tacker’s website or some resource located at the attacker’s website.
When the user clicks the link or the resource is loaded, the user’s
browser sends a request to the attacker. This request contains a Ref-
erer header with the full URI of the page the user was redirected to,
which in this case contains state and code.

As the state value is supposed to protect the browser’s session
against CSRF attacks, the attacker can now use the leaked state
value to perform a CSRF attack against the victim. For example, he
can redirect the victim’s browser to the RP’s redirection endpoint
(again) and by this, overwrite the previously performed authoriza-
tion. The user will then be logged in as the attacker.

Given the history of OAuth, leaks of sensitive data through the
referrer header are not surprising. For example, the fact that the au-
thorization code can leak through the Referer header was described
as an attack (in a similar setting) in [21]. Since the authorization
code is single-use only [20], it might already be redeemed by the
time it is received by the attacker. State, however, is not limited to
single use, making this attack easier to exploit in practice. Stealing
the state value through the Referer header to break session integrity
has not been reported as an attack before, as was confirmed by the
IETF OAuth Working Group.

State Leak at IdPs. A variant of this attack exists if the login page
at an IdP contains links to external resources. If the user visits
this page to authenticate at the IdP and the browser follows links
to external resources, the state is transferred in the Referer header.
This variant is applicable to the authorization code mode and the
implicit mode.

Fix. We suggest to limit state to a single use and to use the recently
introduced referrer policies [13] to avoid leakage of the state (or
code) to the attacker. Using referrer policies, a web server can
instruct a web browser to (partially or completely) suppress the
Referer header when the browser follows links in or loads resources
for some web page. The Referer header can be blocked entirely, or
it can, for example, be stripped down to the origin of the URI of the
web page. Referrer policies are supported by all modern browsers.

Our OAuth model includes this fix (such that only the origin is
permitted in the Referer header for links on web pages of RPs/IdPs)
and our security proof shows its effectiveness (see Section 5). The

11The OAuth Working Group indeed created a draft for an
RFC [22] that includes this fix, where this parameter is called iss
(issuer).

fix also protects the authorization code from leaking as in the attack
described in [21].

3.4 Naïve RP Session Integrity Attack
This attack again breaks the session integrity property for RPs,

where here we assume an RP that uses naïve user intention track-
ing.12 (Note that we may still assume that the OAuth state parameter
is used, i.e., RP is not necessarily stateless.)

Attack. First, an attacker starts a session with HIdP (an honest
IdP) to obtain an authorization code or access token for his own
account. Next, when a user wants to log in at some RP using AIdP
(an IdP controlled by the attacker), AIdP redirects the user back to
the redirection URI of HIdP at RP. AIdP attaches to this redirection
URI the state issued by RP, and the code or token obtained from
HIdP. Now, since RP performs naïve user intention tracking only,
the RP then believes that the user logged in at HIdP. Hence, the
user is logged in at RP using the attacker’s identity at HIdP or the
RP accesses the attacker’s resources at HIdP believing that these
resources are owned by the user.

Fix. The fix against the IdP mix-up attack (described above) does
not work in this case: Since RP does not track where the user wanted
to log in, it has to rely on parameters in the redirection URI which
the attacker can easily spoof. Instead, we propose to always use
explicit user intention tracking.

3.5 Implications to OpenID Connect
OpenID Connect [31] is a standard for authentication built on top

of the OAuth protocol. Among others, OpenID Connect is used by
PayPal, Google, and Microsoft.

All four attacks can be applied to OpenID Connect as well. We
here outline OpenID Connect and how the attacks apply to this
protocol. A detailed description can be found in [17].

OpenID Connect extends OAuth in several ways, e.g., by addi-
tional security measures. OpenID Connect defines an authorization
code mode, an implicit mode, and a hybrid mode. The former two
are based on the corresponding OAuth modes and the latter is a
combination of the two modes.

307 Redirect, State Leak, Naïve RP Session Integrity Attacks. All
three attacks apply to OpenID Connect in exactly the same way as
described above. The vulnerable steps are identical.

IdP Mix-Up Attack. In OpenID Connect, the mix-up attack applies
to the authorization code mode and the hybrid mode. In the au-
thorization code mode, the attack is very similar to the one on the
OAuth authorization code mode. In the hybrid mode, the attack is
more complicated as additional security measures have to be cir-
cumvented by the attacker. In particular, it must be ensured that the
RP does not detect that the issuer of the id token, a signed crypto-
graphic document used in OpenID Connect, is not the honest IdP.
Interestingly, in the hybrid mode, depending on an implementation
detail of the RP, either authorization or authentication is broken (or
both if no client secret is used).

3.6 Verification and Disclosure
We verified the IdP mix-up and 307 redirect attacks on the Apache

web server module mod_auth_openidc, an implementation of an
OpenID Connect (and therefore also OAuth) RP. We also verified
the IdP mix-up attack on the python implementation pyoidc. We ver-

12Recall the meaning of “naïve user intention tracking” from
Section 2.

ified the state leak attack on the current version of the Facebook PHP
SDK and the naïve RP session integrity attack on nytimes.com.13

We reported all attacks to the OAuth and OpenID Connect work-
ing groups who confirmed the attacks. The OAuth working group
invited us to present our findings to them and prepared a draft for an
RFC that mitigates the IdP mix-up attack (using the fix described
in Section 3.2) [22]. Fixes regarding the other attacks are currently
under discussion. We also notified nytimes.com, Facebook, and the
developers of mod_auth_openidc and pyoidc.

4. FKS MODEL
Our formal security analysis of OAuth is based on a slightly ex-

tended version (see Section 5.1) of the FKS model, a general Dolev-
Yao (DY) style web model proposed by Fett et al. in [14, 16]. This
model is designed independently of a specific web application and
closely mimics published (de-facto) standards and specifications
for the web, for example, the HTTP/1.1 and HTML5 standards and
associated (proposed) standards. The FKS model defines a general
communication model, and, based on it, web systems consisting
of web browsers, DNS servers, and web servers as well as web
and network attackers. Here, we only briefly recall the FKS model
(see [14, 16] for a full description, comparison with other models,
and a discussion of its limitations); see also [17].
Communication Model. The main entities in the model are (atomic)
processes, which are used to model browsers, servers, and attack-
ers. Each process listens to one or more (IP) addresses. Processes
communicate via events, which consist of a message as well as a
receiver and a sender address. In every step of a run, one event is
chosen non-deterministically from a “pool” of waiting events and is
delivered to one of the processes that listens to the event’s receiver
address. The process can then handle the event and output new
events, which are added to the pool of events, and so on.

As usual in DY models (see, e.g., [1]), messages are expressed
as formal terms over a signature Σ. The signature contains con-
stants (for (IP) addresses, strings, nonces) as well as sequence, pro-
jection, and function symbols (e.g., for encryption/decryption and
signatures). For example, in the web model, an HTTP request is
represented as a term r containing a nonce, an HTTP method, a do-
main name, a path, URI parameters, headers, and a message body.
For example, a request for the URI http://example.com/s?p=1 is
represented as

r :=〈HTTPReq,n1,GET,example.com,/s,〈〈p,1〉〉,〈〉,〈〉〉

where the body and the headers are empty. An HTTPS request for
r is of the form enca(〈r,k′〉,pub(kexample.com)), where k′ is a fresh
symmetric key (a nonce) generated by the sender of the request
(typically a browser); the responder is supposed to use this key to
encrypt the response.

The equational theory associated with Σ is defined as usual in
DY models. The theory induces a congruence relation ≡ on terms,
capturing the meaning of the function symbols in Σ. For instance,
the equation in the equational theory which captures asymmetric
decryption is deca(enca(x,pub(y)),y) = x. With this, we have that,
for example,

deca(enca(〈r,k′〉,pub(kexample.com)),kexample.com)≡ 〈r,k′〉

i.e., these two terms are equivalent w.r.t. the equational theory.
A (DY) process consists of a set of addresses the process listens

to, a set of states (terms), an initial state, and a relation that takes an
13mod_auth_openidc and nytimes.com are not susceptible to the

state leak attack since after the login/authorization, the user is im-
mediately redirected to another web page at the same RP.

http://example.com/s?p=1

event and a state as input and (non-deterministically) returns a new
state and a sequence of events. The relation models a computation
step of the process. It is required that the output can be computed
(more formally, derived in the usual DY style) from the input event
and the state.

The so-called attacker process is a DY process which records all
messages it receives and outputs all events it can possibly derive
from its recorded messages. Hence, an attacker process carries out
all attacks any DY process could possibly perform. Attackers can
corrupt other parties.

A script models JavaScript running in a browser. Scripts are de-
fined similarly to DY processes. When triggered by a browser, a
script is provided with state information. The script then outputs a
term representing a new internal state and a command to be inter-
preted by the browser (see also the specification of browsers below).
Similarly to an attacker process, the so-called attacker script may
output everything that is derivable from the input.

A system is a set of processes. A configuration of this system
consists of the states of all processes in the system, the pool of
waiting events, and a sequence of unused nonces. Systems induce
runs, i.e., sequences of configurations, where each configuration is
obtained by delivering one of the waiting events of the preceding
configuration to a process, which then performs a computation step.

A web system formalizes the web infrastructure and web appli-
cations. It contains a system consisting of honest and attacker pro-
cesses. Honest processes can be web browsers, web servers, or
DNS servers. Attackers can be either web attackers (who can listen
to and send messages from their own addresses only) or network
attackers (who may listen to and spoof all addresses and therefore
are the most powerful attackers). A web system further contains a
set of scripts (comprising honest scripts and the attacker script).

In our analysis of OAuth, we consider either one network attacker
or a set of web attackers (see Section 5). In our OAuth model, we
need to specify only the behavior of servers and scripts. These
are not defined by the FKS model since they depend on the spe-
cific application, unless they are corrupt or become corrupted in
which case they behave like attacker processes and attacker scripts;
browsers are specified by the FKS model (see below). The mod-
eling of OAuth servers and scripts is outlined in Section 5.1 and
defined in detail in [17].

Web Browsers. An honest browser is thought to be used by one
honest user, who is modeled as part of the browser. User actions,
such as following a link, are modeled as non-deterministic actions
of the web browser. User credentials are stored in the initial state
of the browser and are given to selected web pages when needed.
Besides user credentials, the state of a web browser contains (among
others) a tree of windows and documents, cookies, and web storage
data (localStorage and sessionStorage).

A window inside a browser contains a set of documents (one be-
ing active at any time), modeling the history of documents presented
in this window. Each represents one loaded web page and contains
(among others) a script and a list of subwindows (modeling iframes).
The script, when triggered by the browser, is provided with all data
it has access to, such as a (limited) view on other documents and
windows, certain cookies, and web storage data. Scripts then output
a command and a new state. This way, scripts can navigate or create
windows, send XHRs and postMessages, submit forms, set/change
cookies and web storage data, and create iframes. Navigation and
security rules ensure that scripts can manipulate only specific as-
pects of the browser’s state, according to the web standards.

A browser can output messages on the network of different types,
namely DNS and HTTP(S) requests as well as XHRs, and it pro-
cesses the responses. Several HTTP(S) headers are modeled, includ-

ing, for example, cookie, location, strict transport security (STS),
and origin headers. A browser, at any time, can also receive a
so-called trigger message upon which the browser non-determinis-
tically chooses an action, for instance, to trigger a script in some
document. The script now outputs a command, as described above,
which is then further processed by the browser. Browsers can also
become corrupted, i.e., be taken over by web and network attackers.
Once corrupted, a browser behaves like an attacker process.

5. ANALYSIS
We now present our security analysis of OAuth (with the fixes

mentioned in Section 3 applied). We first present our model of
OAuth. We then formalize the security properties and state the
main theorem, namely the security of OAuth w.r.t. these properties.
We provide full details of the model and our proof in the technical
report [17].

5.1 Model
As mentioned above, our model for OAuth is based on the FKS

model outlined in Section 4. For the analysis, we extended the
model to include HTTP Basic Authentication [19] and Referrer
Policies [13] (the Referer header itself was already part of the
model). We developed the OAuth model to adhere to RFC6749,
the OAuth 2.0 standard, and follow the security considerations de-
scribed in [26].

Design. Our comprehensive model of OAuth includes all configu-
ration options of OAuth and makes as few assumptions as possible
in order to strengthen our security results:

OAuth Modes. Every RP and IdP may run any of the four OAuth
modes, even simultaneously.

Corruption. RPs, IdPs, and browsers can be corrupted by the at-
tacker at any time.

Redirection URIs. RP chooses redirection URIs explicitly or the
IdP selects a redirection URI that was registered before. Redirec-
tion URIs can contain patterns. This covers all cases specified in
the OAuth standard. We allow that IdPs do not strictly check the
redirection URIs, and instead apply loose checking, i.e., only the
origin is checked (this is the default for Facebook, for example).
This only strengthens the security guarantees we prove.

Client Secrets. Just as in the OAuth standard, RPs can, for a certain
IdP, have a secret or not have a secret in our model.

Usage of HTTP and HTTPS. Users may visit HTTP and HTTPS
URIs (e.g., for RPs) and parties are not required to use Strict-
Transport-Security (STS), although we still recommend STS in
practice (for example, to reduce the risk of password eavesdrop-
ping). Again, this only strengthens our results.

General User Interaction. As usual in the FKS model, the user can
at any time navigate backwards or forward in her browser history,
navigate to any web page, open multiple windows, start simultane-
ous login flows using different or the same IdPs, etc. Web pages at
RPs can contain regular links to arbitrary external web sites.

Authentication at IdP. User authentication at the IdP, which is out
of the scope of OAuth, is performed using username and password.

Session Mechanism at RP. OAuth does not prescribe a specific ses-
sion mechanism to be used at an RP. Our model therefore includes
a standard cookie-based session mechanism (as suggested in [8]).

Attack Mitigations. To prove the security properties of OAuth,
our model includes the fixes against the new attacks presented in

Section 3 as well as standard mitigations against known attacks. Al-
together this offers clear implementation guidelines, without which
OAuth would be insecure:
Honest Parties. RPs and IdPs, as long as they are honest, do
not include (untrusted) third-party JavaScript on their websites, do
not contain open redirectors, and do not have Cross-Site Script-
ing vulnerabilities. Otherwise, access tokens and authorization
codes can be stolen in various ways, as described, among others,
in [6, 20, 26, 36].
CSRF Protection. The state parameter is used with a nonce that is
bound to the user’s session (see [8]) to prevent CSRF vulnerabilities
on the RP redirection endpoint. Omitting or incorrectly using this
parameter can lead to attacks described in [6, 20, 25, 26, 36].

More specifically, a new state nonce is freshly chosen for each
login attempt. Otherwise, the following attack is applicable: First,
a user starts an OAuth flow at some RP using a malicious IdP. The
IdP learns the state value that is used in the current user session.
Then, as soon as the user starts a new OAuth flow with the same RP
and an honest IdP, the malicious IdP can use the known state value
to mount a CSRF attack, breaking the session integrity property.14

We also model CSRF protection for some URIs as follows: For
RPs, we model origin header checking15 (1) at the URI where the
OAuth flow is started (for the implicit and authorization code mode),
(2) at the password login for the resource owner password creden-
tials mode, and (3) at the URI to which the JavaScript posts the
access token in the implicit mode. For IdPs, we do the same at the
URI to which the username and password pairs are posted. The
CSRF protection of these four URIs is out of the scope of OAuth
and therefore, we follow good web development practices by check-
ing the origin header. Without this or similar CSRF protection, IdPs
and RPs would be vulnerable to CSRF attacks described in [6, 36].
Referrer Policy and Status Codes. RPs and IdPs use the Referrer
Policy [13] to specify that Referer headers on links from any of
their web pages may not contain more than the origin of the re-
spective page. Otherwise, RPs or IdPs would be vulnerable to the
state leak attack described in Section 3.3 and the code leak attack
described in [21]. IdPs use 303 redirects following our fix described
in Section 3.1.
HTTPS Endpoints. All endpoint URIs use HTTPS to protect against
attackers eavesdropping on tokens or manipulating messages (see,
e.g., [26, 36]). Obviously, IdPs or RPs do not register URIs that
point to servers other than their own. (Otherwise, access tokens or
authorization codes can be stolen trivially.)
Session Cookies. Cookies are always set with the secure attribute,
ensuring that the cookie value is only transmitted over HTTPS. Oth-
erwise, a network attacker could read cookie values by eavesdrop-
ping on non-HTTPS connections to RPs. After successful login at
an RP, the RP creates a fresh session id for that user. Otherwise, a
network attacker could set a login session cookie that is bound to a
known state value into the user’s browser (see [39]), lure the user
into logging in at the corresponding RP, and then use the session
cookie to access the user’s data at the RP (session fixation, see [28]).

14Note that in this attack, the state value does not leak uninten-
tionally (in contrast to the state leak attack). Also note that this
attack and the mitigation we describe here, while not surprising, do
not seem to have been explicitly documented so far. For example,
nytimes.com is vulnerable also to this attack.

15The origin header is added to certain HTTP(S) requests by
browsers to declare the origin of the document that caused the re-
quest. For example, when a user submits a form loaded from the
URI http://a/form and this form is sent to http://b/path then the brow-
ser will add the origin header http://a in the request to b. All modern
browsers support origin headers. See [12] for details.

Authentication to the IdP. It is assumed that the user only ever sends
her password over an encrypted channel and only to the IdP this
password was chosen for (or to trusted RPs, as mentioned above).
(The user also does not re-use her password for different IdPs.)
Otherwise, a malicious IdP would be able to use the account of the
user at an honest IdP.
Authentication using Access Tokens. When an RP sends an access
token to the introspection endpoint of an IdP for authentication
(Step 12 in Figure 1), the IdP returns the user identifier and the
client id for which the access token was issued (Step 13). The
RP must check that the returned client id is its own, otherwise a
malicious RP could impersonate an honest user at an honest RP
(see [20, 37]). We therefore require this check.
User Intention Tracking. We use explicit user intention tracking.
Otherwise, the attack described in Section 3.4 can be applied.

Concepts Used in Our Model. In our model and the security prop-
erties, we use the following concepts:
Protected Resources. Closely following RFC6749 [20], OAuth pro-
tected resources are an abstract concept for any resource an RP
could use at an IdP after successful authorization. For example, if
Facebook gives access to the friends list of a user to an RP, this
would be considered a protected resource. In our model, there is a
mapping from (IdP, RP, identity) to nonces (which model protected
resources). In this mapping, the identity part can be ⊥, modeling a
resource that is acquired in the client credentials mode and thus not
bound to a user.
Service Tokens. When OAuth is used for authentication, we as-
sume that after successful login, the RP sends a service token to the
browser. The intuition is that with this service token a user can use
the services of the RP. The service token consists of a nonce, the
user’s identifier, and the domain of the IdP which was used in the
login process. The service token is a generic model for any session
mechanism the RP could use to track the user’s login status (e.g.,
a cookie). We note that the actual session mechanism used by the
RP after a successful login is out of the scope of OAuth, which is
why we use the generic concept of a service token. In our model,
the service token is delivered by an RP to a browser as a cookie.
Trusted RPs. In our model, among others, a browser can choose to
launch the resource owner password credentials mode with any RP,
causing this RP to know the password of the user. RPs, however,
can become corrupted and thus leak the password to the attacker.
Therefore, to define the security properties, we define the concept
of trusted RPs. Intuitively, this is a set of RPs a user entrusts with
her password. In particular, whether an RP is trusted depends on
the user. In our security properties, when we state that an adversary
should not be able to impersonate a user u in a run, we would
assume that all trusted RPs of u have not become corrupted in this
run.

OAuth Web System with a Network Attacker. We model OAuth
as a class of web systems (in the sense of Section 4) that can contain
an unbounded finite number of RPs, IdPs, and browsers. We call a
web system OWSn an OAuth web system with a network attacker if
it is of the form described in what follows.
Outline. The system consists of a network attacker, a finite set of
web browsers, a finite set of web servers for the RPs, and a finite
set of web servers for the IdPs. Recall that in OWSn, since we have
a network attacker, we do not need to consider web attackers (as
our network attacker subsumes all web attackers). The set of scripts
consists of the three scripts script_rp_index, script_rp_implicit, and
script_idp_form. We now briefly sketch RPs, IdPs, and the scripts,
with full details provided in our technical report [17].

Relying Parties. Each RP is a web server modeled as an atomic DY
process following the description in Section 2, including all OAuth
modes, as well as the fixes and mitigations discussed before. The
RP can either (at any time) launch a client credentials mode flow or
wait for users to start any of the other flows. RP manages two kinds
of sessions: The login sessions, which are used only during the user
login phase, and the service sessions (modeled by a service token
as described above). When receiving a special message, an RP can
become corrupted and then behaves like an attacker process.
Identity Providers. Each IdP is a web server modeled as an atomic
DY process following the description in Section 2, again including
all OAuth modes, as well as the fixes and mitigations discussed
before. Users can authenticate to an IdP with their credentials. Just
as RPs, IdPs can become corrupted at any time.
Scripts. The scripts which run in a user’s browser are defined as
follows: The script script_rp_index is loaded from an RP into a
user’s browser when the user visits the RP’s web site. It starts
the authorization or login process. The script script_rp_implicit is
loaded into the user’s browser from an RP during an implicit mode
flow to retrieve the data from the URI fragment. It extracts the
access token and state from the fragment part of its own URI. The
script then sends this information in the body of an HTTPS POST
request to the RP. The script script_idp_form is loaded from an IdP
into the user’s browser for user authentication at the IdP.

OAuth Web System with Web Attackers. In addition to OWSn,
we also consider a class of web systems where the network attacker
is replaced by an unbounded finite set of web attackers. We denote
such a system by OWSw and call it an OAuth web system with web
attackers, Such web systems are used to analyze session integrity,
see below.

Limitations of Our OAuth Model. While our model of OAuth is
very comprehensive, a few aspects of OAuth were not taken into
consideration in our analysis:

We do not model expiration of access tokens and session ids.
Also, IdPs may issue so-called refresh tokens in Step 9 of Figure 1.
In practice, an RP may use such a (long-living) refresh token to
obtain a new (short-lived) access token. In our model, we overap-
proximate this by not expiring access tokens. We also do not model
revocation of access tokens and user log out.

OAuth IdPs support controlling the scope of resources made avail-
able to an RP. For example, a Facebook user can grant a third party
the right to read her user profile but deny access to her friends list.
The scope is a property of the access token, but handled internally
by the IdP with its implementation, details, and semantics highly
dependent on the IdP. We therefore model that RPs always get full
access to the user’s data at the IdP.

In practice, IdPs can send error messages (mostly static strings)
to RPs. We do not model these.

Limitations of the underlying FKS model are discussed in [14].

5.2 Security Properties
Based on the formal OAuth model described above, we now for-

mulate central security properties of OAuth, namely authorization,
authentication, and session integrity (see our technical report [17]
for the full formal definitions).

Authorization. Intuitively, authorization for OWSn means that an
attacker should not be able to obtain or use a protected resource
available to some honest RP at an IdP for some user unless, roughly
speaking, the user’s browser or the IdP is corrupted.

More formally, we say that OWSn is secure w.r.t. authorization if
the following holds true: if at any point in a run of OWSn an attacker

can obtain a protected resource available to some honest RP r at an
IdP i for some user u, then the IdP i is corrupt or, if u 6=⊥, we have
that the browser of u or at least one of the trusted RPs of u must be
corrupted. Recall that if u = ⊥, then the resource was acquired in
the client credentials mode, and hence, is not bound to a user.

Authentication. Intuitively, authentication for OWSn means that
an attacker should not be able to login at an (honest) RP under the
identity of a user unless, roughly speaking, the IdP involved or the
user’s browser is corrupted. As explained above, being logged in at
an RP under some user identity means to have obtained a service
token for this identity from the RP.

More formally, we say that OWSn is secure w.r.t. authentication
if the following holds true: if at any point in a run of OWSn an
attacker can obtain the service token that was issued by an honest
RP using some IdP i for a user u, then the IdP i, the browser of u, or
at least one of the trusted RPs of u must be corrupted.

Session Integrity. Intuitively, session integrity (for authorization)
means that (a) an RP should only be authorized to access some
resources of a user when the user actually expressed the wish to
start an OAuth flow before, and (b) if a user expressed the wish to
start an OAuth flow using some honest IdP and a specific identity,
then the OAuth flow is never completed with a different identity (in
the same session); similarly for authentication.

More formally, we say that OWSw is secure w.r.t. session integrity
for authorization if the following holds true: (a) if in a run OWSw an
OAuth login flow is completed with a user’s browser, then this user
started an OAuth flow. (b) If in addition we assume that the IdP that
is used in the completed flow is honest, then the flow was completed
for the same identity for which the OAuth flow was started by the
user. We say that the OAuth flow was completed (for some identity
v) iff the RP gets access to a protected resource (of v).

We say that OWSw is secure w.r.t. session integrity for authenti-
cation if the following holds true: (a) if in a run ρ of OWSw a user
is logged in with some identity v, then the user started an OAuth
flow. (b) If in addition the IdP that is used in that flow is honest,
then the user is logged in under exactly the same identity for which
the OAuth flow was started by the user.

We note that for session integrity, as opposed to authorization
and authentication, we use the web attacker as an adversary. The
rationale behind this is that a network attacker can always forcefully
log in a user under his own account (by setting cookies from non-
secure to secure origins [39]), thereby defeating existing CSRF
defenses in OAuth (most importantly, the state parameter). This is
a common problem in the session management of web applications,
independently of OAuth. This is why we restrict our analysis of
session integrity to web attackers since otherwise session integrity
would trivially be broken. We note, however, that more robust
solutions for session integrity are conceivable (e.g., using JavaScript
and HTML5 features such as web messaging and web storage).
While some proprietary approaches exist, such approaches are less
common and typically do not conform to the OAuth standard.

Main Theorem. We prove the following theorem (see [17] for the
proof):

Theorem 1. Let OWSn be an OAuth web system with a network at-
tacker, then OWSn is secure w.r.t. authorization and secure w.r.t. au-
thentication. Let OWSw be an OAuth web system with web attack-
ers, then OWSw is secure w.r.t. session integrity for authorization
and authentication.

Note that this trivially implies that authentication and authoriza-
tion properties are satisfied also if web attackers are considered.

5.3 Discussion of Results
Our results show that the OAuth standard is secure, i.e., provides

strong authentication, authorization, and session integrity proper-
ties, when (1) fixed according to our proposal and (2) when ad-
hering to the OAuth security recommendations and best practices,
as explained in Section 5.1. Depending on individual implementa-
tion choices, (2) is potentially not satisfied in all practical scenarios.
For example, RPs might run untrusted JavaScript on their websites.
Nevertheless, our security results, for the first time, give precise
implementation guidelines for OAuth to be secure and also clearly
show that if these guidelines are not followed, then the security of
OAuth cannot be guaranteed.

6. RELATED WORK
We focus on work closely related to OAuth 2.0 or formal security

analysis of web standards and web applications.
The work closest to our work is the already mentioned work by

Bansal, Bhargavan, Delignat-Lavaud, and Maffeis [6]. Bansal et
al. analyze the security of OAuth using the applied pi-calculus and
the WebSpi library, along with the protocol analysis tool ProVerif.
They model various settings of OAuth 2.0, often assuming the pres-
ence of common web implementation flaws resulting in, for exam-
ple, CSRF and open redirectors in RPs and IdPs. They identify
previously unknown attacks on the OAuth implementations of Face-
book, Yahoo, Twitter, and many other websites. Compared to our
work, the WebSpi model used in [6] is less expressive and compre-
hensive (see also the discussion in [14]), and the models of OAuth
they employ are more limited.16 As pointed out by Bansal et al.,
the main focus of their work is to discover attacks on OAuth, rather
than proving security. They have some positive results, which, how-
ever, are based on their more limited model. In addition, in order
to prove these results further restrictions are assumed, e.g., they
consider only one IdP per RP and all IdPs are assumed to be honest.

Wang et al. [37] present a systematic approach to find implicit as-
sumptions in SDKs (e.g., the Facebook PHP SDK) used for authenti-
cation and authorization, including SDKs that implement OAuth 2.0.

In [29], Pai et al. analyze the security of OAuth in a very limited
model that does not incorporate generic web features. They show
that using their approach, based on the Alloy finite-state model
checker, known weaknesses can be found. The same tool is used
by Kumar [24] in a formal analysis of the older OAuth 1.0 protocol
(which, as mentioned, is very different to OAuth 2.0).

Chari, Jutla, and Roy [9] analyze the security of the authorization
code mode in the universally composability model, again without
considering web features, such as semantics of HTTP status codes,
details of cookies, or window structures inside a browser.

Besides these formal approaches, empirical studies were con-
ducted on deployed OAuth implementations. In [36], Sun and
Beznosov analyze the security of three IdPs and 96 RPs. In [25],
Li and Mitchell study the security of 10 IdPs and 60 RPs based
in China. In [38], Yang et al. perform an automated analysis of 4
OAuth IdPs and 500 RPs. Shernan et al. [34] evaluate the lack of
CSRF protection in various OAuth deployments. In [10, 33], practi-
cal evaluations on the security of OAuth implementations of mobile
apps are performed.

16For example, only two OAuth modes are considered, the model
is monotonic (e.g., cookies can only be added, but not deleted or
modified), fixed bounded number of cookies per request, no precise
handling of windows, documents, and iframes, no web messaging,
omission of headers, such as origin. We note that while OAuth does
not make use of all web features, taking such features into account
is important to make positive security results more meaningful.

In [27], Mladenov et al. perform an informal analysis of OpenID
Connect. They present several attacks related to discovery and dy-
namic client registration, which are extensions of OpenID Connect;
see also the discussion in Section 3.2 (related attacks) concerning
their malicious endpoint attack.

Note that many of the works listed here led to improved secu-
rity recommendations for OAuth as listed in RFC6749 [20] and
RFC6819 [26]. These are already taken into account in our model
and analysis of OAuth.

More generally, there have been only very few analysis efforts
for web applications and standards based on formal web models so
far. Work outside of the context of OAuth includes [2–5,14–16,23].

7. CONCLUSION
In this paper, we carried out the first extensive formal analy-

sis of OAuth 2.0 based on a comprehensive and expressive web
model. Our analysis, which aimed at the standard itself, rather than
specific OAuth implementations and deployments, comprises all
modes (grant types) of OAuth and available options and also takes
malicious RPs and IdPs as well as corrupted browsers/users into
account. The generic web model underlying our model of OAuth
and its analysis is the most comprehensive web model to date.

Our in-depth analysis revealed four attacks on OAuth as well as
OpenID connect, which builds on OAuth. We verified the attacks,
proposed fixes, and reported the attacks and our fixes to the work-
ing groups for OAuth and OpenID Connect. The working groups
confirmed the attacks. Fixes to the standard and recommendations
are currently under discussion or already incorporated in a draft for
a new RFC [22].

With the fixes applied, we were able to prove strong authorization,
authentication, and session integrity properties for OAuth 2.0. Our
security analysis assumes that OAuth security recommendations
and certain best practices are followed. We show that otherwise the
security of OAuth cannot be guaranteed. By this, we also provide
clear guidelines for implementations. The fact that OAuth is one of
the most widely deployed authorization and authentication systems
in the web and the basis for other protocols makes our analysis
particularly relevant.

As for future work, our formal analysis of OAuth offers a good
starting point for the formal analysis of OpenID Connect, and hence,
such an analysis is an obvious next step for our research.

8. ACKNOWLEDGEMENTS
This work was partially supported by Deutsche Forschungsge-

meinschaft (DFG) through Grant KU 1434/10-1.

9. REFERENCES
[1] M. Abadi and C. Fournet. Mobile Values, New Names, and

Secure Communication. In POPL 2001, pages 104–115.
ACM Press, 2001.

[2] D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and D. Song.
Towards a Formal Foundation of Web Security. In CSF 2010,
pages 290–304. IEEE Computer Society, 2010.

[3] A. Armando, R. Carbone, L. Compagna, J. Cuéllar,
G. Pellegrino, and A. Sorniotti. An authentication flaw in
browser-based Single Sign-On protocols: Impact and
remediations. Computers & Security, 33:41–58, 2013.
Elsevier, 2013.

[4] A. Armando, R. Carbone, L. Compagna, J. Cuéllar, and M. L.
Tobarra. Formal Analysis of SAML 2.0 Web Browser Single
Sign-on: Breaking the SAML-based Single Sign-on for
Google Apps. In FMSE 2008, pages 1–10. ACM, 2008.

[5] C. Bansal, K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis.
Keys to the Cloud: Formal Analysis and Concrete Attacks on
Encrypted Web Storage. In POST 2013, volume 7796 of
LNCS, pages 126–146. Springer, 2013.

[6] C. Bansal, K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis.
Discovering Concrete Attacks on Website Authorization by
Formal Analysis. Journal of Computer Security,
22(4):601–657, 2014. IOS Press, 2014.

[7] A. Barth, C. Jackson, and J. C. Mitchell. Robust defenses for
cross-site request forgery. In CCS 2008, pages 75–88. ACM,
2008.

[8] J. Bradley, T. Lodderstedt, and H. Zandbelt. Encoding claims
in the OAuth 2 state parameter using a JWT –
draft-bradley-oauth-jwt-encoded-state-05. IETF. Dec. 2015.
https://tools.ietf.org/html/
draft-bradley-oauth-jwt-encoded-state-05.

[9] S. Chari, C. S. Jutla, and A. Roy. Universally Composable
Security Analysis of OAuth v2.0. IACR Cryptology ePrint
Archive, 2011:526, 2011.

[10] E. Y. Chen, Y. Pei, S. Chen, Y. Tian, R. Kotcher, and P. Tague.
OAuth Demystified for Mobile Application Developers. In
CCS 2014, pages 892–903, 2014.

[11] Chromium Project. HSTS Preload Submission.
https://hstspreload.appspot.com/.

[12] Cross-Origin Resource Sharing - W3C Recommendation 16
January 2014.
http://www.w3.org/TR/2014/REC-cors-20140116/.

[13] J. Eisinger and E. Stark. Referrer Policy – Editor’s Draft, 28
March 2016. W3C. Mar. 2016.
https://w3c.github.io/webappsec-referrer-policy/.

[14] D. Fett, R. Küsters, and G. Schmitz. An Expressive Model for
the Web Infrastructure: Definition and Application to the
BrowserID SSO System. In S&P 2014, pages 673–688. IEEE
Computer Society, 2014.

[15] D. Fett, R. Küsters, and G. Schmitz. Analyzing the
BrowserID SSO System with Primary Identity Providers
Using an Expressive Model of the Web. In ESORICS 2015,
volume 9326 of LNCS, pages 43–65. Springer, 2015.

[16] D. Fett, R. Küsters, and G. Schmitz. SPRESSO: A Secure,
Privacy-Respecting Single Sign-On System for the Web. In
CCS 2015, pages 1358–1369. ACM, 2015.

[17] D. Fett, R. Küsters, and G. Schmitz. A Comprehensive
Formal Security Analysis of OAuth 2.0. Technical Report
arXiv:1601.01229, arXiv, 2016. Available at
http://arxiv.org/abs/1601.01229.

[18] R. Fielding (ed.) and J. Reschke (ed.). RFC7231 – Hypertext
Transfer Protocol (HTTP/1.1): Semantics and Content. IETF.
Jun. 2014. https://tools.ietf.org/html/rfc7231.

[19] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence,
P. Leach, A. Luotonen, and L. Stewart. RFC2617 – HTTP
Authentication: Basic and Digest Access Authentication.
IETF. Jun. 1999. https://tools.ietf.org/html/rfc2617.

[20] D. Hardt (ed.). RFC6749 – The OAuth 2.0 Authorization
Framework. IETF. Oct. 2012.
https://tools.ietf.org/html/rfc6749.

[21] E. Homakov. How I hacked Github again, 7 February 2014.
http://homakov.blogspot.de/2014/02/
how-i-hacked-github-again.html.

[22] M. Jones, J. Bradley, and N. Sakimura. OAuth 2.0 Mix-Up
Mitigation – draft-ietf-oauth-mix-up-mitigation-01. IETF. Jul.

2016. https:
//tools.ietf.org/html/draft-ietf-oauth-mix-up-mitigation-01.

[23] F. Kerschbaum. Simple Cross-Site Attack Prevention. In
SecureComm 2007, pages 464–472. IEEE Computer Society,
2007.

[24] A. Kumar. Using automated model analysis for reasoning
about security of web protocols. In ACSAC 2012. ACM,
2012.

[25] W. Li and C. J. Mitchell. Security issues in OAuth 2.0 SSO
implementations. In ISC 2014, volume 8783 of LNCS, pages
529–541, 2014. Springer, 2014.

[26] T. Lodderstedt (ed.), M. McGloin, and P. Hunt. RFC6819 –
OAuth 2.0 Threat Model and Security Considerations. IETF.
Jan. 2013. https://tools.ietf.org/html/rfc6819.

[27] V. Mladenov, C. Mainka, J. Krautwald, F. Feldmann, and
J. Schwenk. On the security of modern Single Sign-On
Protocols: Second-Order Vulnerabilities in OpenID Connect.
CoRR, abs/1508.04324v2, 2016.

[28] Open Web Application Security Project (OWASP). Session
fixation. https://www.owasp.org/index.php/Session_Fixation.

[29] S. Pai, Y. Sharma, S. Kumar, R. M. Pai, and S. Singh. Formal
Verification of OAuth 2.0 Using Alloy Framework. In CSNT
2011, pages 655–659. IEEE, 2011.

[30] J. Richer (ed.). RFC7662 – OAuth 2.0 Token Introspection.
IETF. Oct. 2015. https://tools.ietf.org/html/rfc7662.

[31] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and
C. Mortimore. OpenID Connect Core 1.0 incorporating errata
set 1. OpenID Foundation. Nov. 8, 2014.
http://openid.net/specs/openid-connect-core-1_0.html.

[32] J. Selvi. Bypassing HTTP Strict Transport Security. In
Blackhat (Europe) 2014, 2014.

[33] M. Shehab and F. Mohsen. Towards Enhancing the Security
of OAuth Implementations in Smart Phones. In IEEE MS
2014. IEEE, 2014.

[34] E. Shernan, H. Carter, D. Tian, P. Traynor, and K. R. B.
Butler. More Guidelines Than Rules: CSRF Vulnerabilities
from Noncompliant OAuth 2.0 Implementations. In DIMVA
2015, volume 9148 of LNCS, pages 239–260. Springer, 2015.

[35] SimilarTech. Facebook Connect Market Share and Web
Usage Statistics. Last visited Nov. 7, 2015. https:
//www.similartech.com/technologies/facebook-connect.

[36] S.-T. Sun and K. Beznosov. The Devil is in the
(Implementation) Details: An Empirical Analysis of OAuth
SSO Systems. In CCS 2012, pages 378–390. ACM, 2012.

[37] R. Wang, Y. Zhou, S. Chen, S. Qadeer, D. Evans, and
Y. Gurevich. Explicating SDKs: Uncovering Assumptions
Underlying Secure Authentication and Authorization. In
USENIX Security 2013, pages 399–314. USENIX
Association, 2013.

[38] R. Yang, G. Li, W. C. Lau, K. Zhang, and P. Hu. Model-based
Security Testing: An Empirical Study on OAuth 2.0
Implementations. In AsiaCCS 2016, pages 651–662. ACM,
2016.

[39] X. Zheng, J. Jiang, J. Liang, H. Duan, S. Chen, T. Wan, and
N. Weaver. Cookies Lack Integrity: Real-World Implications.
In USENIX Security 2015), pages 707–721, 2015. USENIX
Association, 2015.

https://tools.ietf.org/html/draft-bradley-oauth-jwt-encoded-state-05
https://tools.ietf.org/html/draft-bradley-oauth-jwt-encoded-state-05
https://hstspreload.appspot.com/
http://www.w3.org/TR/2014/REC-cors-20140116/
https://w3c.github.io/webappsec-referrer-policy/
http://arxiv.org/abs/1601.01229
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc2617
https://tools.ietf.org/html/rfc6749
http://homakov.blogspot.de/2014/02/how-i-hacked-github-again.html
http://homakov.blogspot.de/2014/02/how-i-hacked-github-again.html
https://tools.ietf.org/html/draft-ietf-oauth-mix-up-mitigation-01
https://tools.ietf.org/html/draft-ietf-oauth-mix-up-mitigation-01
https://tools.ietf.org/html/rfc6819
https://www.owasp.org/index.php/Session_Fixation
https://tools.ietf.org/html/rfc7662
http://openid.net/specs/openid-connect-core-1_0.html
https://www.similartech.com/technologies/facebook-connect
https://www.similartech.com/technologies/facebook-connect

	Introduction
	OAuth 2.0
	Attacks
	307 Redirect Attack
	IdP Mix-Up Attack
	State Leak Attack
	Naïve RP Session Integrity Attack
	Implications to OpenID Connect
	Verification and Disclosure

	FKS Model
	Analysis
	Model
	Security Properties
	Discussion of Results

	Related Work
	Conclusion
	Acknowledgements
	References

